
University of Minho
School of Engineering

Miguel Domingos Silva Pinto Oliveira

Development of statistical
cycle-time analysis tool
in tire building

Masters Dissertation

Master’s in Industrial Engineering and Management

Dissertation supervised by

Ana Cristina da Silva Braga

january 2024

Copyright and Terms of Use for Third Party Work

This dissertation reports on academic work that can be used by third parties as long as the internationally

accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the

author through the RepositóriUM of the University of Minho.

License granted to users of this work:

CC BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/ [Esta é a mais restritiva das nos-

sas seis licenças principais, só permitindo que outros façam download dos seus trabalhos e os compartil-

hem desde que lhe sejam atribuídos a si os devidos créditos, mas sem que possam alterá- los de nenhuma

forma ou utilizá-los para fins comerciais.]

i

https://creativecommons.org/licenses/by-nc-nd/4.0/

Acknowledgements

I would like to express my deep gratitude and appreciation to professor Ana Braga for her insightful guid-

ance, patience and encouragement during the extend of this dissertation. This endeavour wouldn’t be

possible without her support and virtues, It was an amazing experience both at academic level and per-

sonal growth. I will be forever grateful for this.

My grateful appreciation is also extended to Ricardo Rodrigues for his guidance, friendship and mentorship

throughout all my childhood and early adulthood which culminated with this huge milestone. To Ana Rita

Silva, for the mentorship and for granting me the opportunity to work alongside her and trust to fulfill this

project within targets. To all the DEI team, directed by Tiago Batista, I deeply appreciate your friendship,

patience and humanity. This crowning achievement is dedicated to each and everyone of you.

Finally, I would like to thank my family as well for paying my tuition and help me financially throughout the

degree.

ii

Statement of Integrity

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results

along the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

University of Minho, Braga, january 2024

Miguel Domingos Silva Pinto Oliveira

iii

Abstract

Development of statistical cycle-time analysis tool in tire building

This dissertation covers the development of an end-to-end data science application in the tire industry and

supports the increasing importance of data-driven solutions in the context of Industry 4.0. Incorporating

evidence from research papers and personal correspondence, this dissertation demonstrates it is possible

to create strategic value from unstructured data, which is often a neglected by-product of industrial activi-

ties.

The value proposition is to capture the real-time data from industrial programmable logic circuits (PLC)

and store it in structured databases, compute industry-relevant metrics, and build a dashboard to support

managerial decisions over productivity, and machine up-time and efficiency. Pinpointing a set of pertinent

features of the application can (1) create an up-to-date database with support for multiple connectors, (2)

develop black-box algorithms to provide statistical measures, (3) increase awareness and visibility about

PLC settings. To this end, multiple technologies & methods were employed to implement a data pipeline,

to ensure numerical solutions to statistical problems with accuracy, and finally, to display pertinent data

in a data visualization dashboard according to a set of user requirements.

Keywords data-pipeline, statistics, tire-industry, database-modeling, feature-engineering, industry 4.0

iv

Resumo

Desenvolvimento de uma ferramenta estatística para análise de tempos de

ciclo na montagem de pneus

Esta dissertação aborda o desenvolvimento de uma aplicação com base nos principios de ciência de

dados na indústria de pneus e apoia a crescente importância de soluções orientadas por dados no con-

texto da Indústria 4.0. Incorporando evidências de artigos cientificos, esta dissertação demonstra que é

possível criar valor estratégico a partir de dados não estruturados, frequentemente negligenciados como

subproduto das atividades industriais.

A proposta de valor é capturar dados em tempo real dos programmable logic circuits e armazená-

los em bases de dados estruturadas, calcular métricas relevantes para a indústria e criar um painel

de apoio a decisões com especial enfase em produtividade e eficiência industrial. A identificação de

um conjunto de características pertinentes da aplicação permite (1) criar uma base de dados atualizada

com suporte para múltiplos conectores diferentes, (2) desenvolver algoritmos ’caixa-preta’ para fornecer

medidas estatísticas e (3) aumentar a conscientização e visibilidade sobre as configurações do PLC. Neste

sentido, foram empregues várias tecnologias e métodos para implementar um pipeline de dados, garantir

soluções numéricas para problemas estatísticos e, finalmente, exibir dados pertinentes num painel de

visualização de dados de acordo com um conjunto de requisitos do utilizador.

Keywords bases de dados, inferência estatistica, tire-industry, modelação de dados, indústria 4.0

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Research Methodology . 2

1.4 Dissertation Structure . 2

2 State of the Art 4

2.1 Support Vector Machine . 4

2.1.1 Mathematical Formulation . 5

2.1.2 Soft Margin Classifier . 6

2.1.3 Non-Linear Classifier and Kernel Trick . 7

2.2 Maximum Likelihood Estimation . 8

2.2.1 Mathematical Formulation . 8

2.2.2 Normal Distribution . 9

2.3 Kernel Density Estimation . 10

2.3.1 Mathematical Formulation . 10

2.3.2 Parzen Windows . 11

2.4 Bootstrap Method . 12

2.4.1 Confidence Intervals and Bootstrap Percentile Method 12

3 Company overview 13

3.1 Company Description . 13

3.1.1 Continental Mabor Organization . 13

3.1.2 Tire Structure . 15

3.1.3 Tire Manufacturing Process . 16

vi

4 Project in Tire Industry 20

4.1 Overview . 20

4.2 Competitive Analysis . 21

4.3 Waterfall Methodology . 22

4.3.1 Requirements . 22

4.3.2 Project Overview . 23

4.3.3 System architecture . 26

4.3.4 Technical Requirements . 28

4.4 Tech Stack . 29

4.4.1 Amazon Redshift . 29

4.4.2 SQLAlchemy . 30

4.4.3 Python and Jupyter Notebooks . 31

4.4.4 Jupyter Notebooks . 32

4.4.5 Apache Airflow . 32

5 Data Pipeline Orchestration 34

5.1 Data Integration . 36

5.2 Database Modeling . 40

5.2.1 STAR Schema . 41

5.2.2 Snowflake Schema . 43

5.2.3 Snowflake Procedures . 44

5.2.4 Virtual Tables . 45

5.3 Data Transformation . 48

5.3.1 Data Cleansing & Data Validation . 48

5.3.2 Aggregation functions . 55

5.3.3 Feature engineering & data reduction . 56

5.4 Performance . 60

5.4.1 Wrapper Pattern . 60

5.4.2 SQL optimizations . 61

5.4.3 Python Optimization . 65

5.4.4 Other Remarks . 70

6 Implementation 72

vii

6.1 Introduction . 72

6.2 Components . 74

6.2.1 Sidebar . 74

6.2.2 Datatable class . 74

6.2.3 Graph class . 81

6.3 Modules . 84

6.3.1 Triggers module . 85

6.3.2 Inferential statistics . 87

6.3.3 Descriptive statistics module . 90

7 Conclusion 91

viii

List of Figures

1 Linear SVM denoting the separating hyperplane (extracted from [Liu et al., 2019]). . . . 4

2 Comparison between hyper-planes Hua and Sun, 2001 5

3 Canonical hyper-planes and marginal band (extracted from [Pecha and Horák, 2020]) . . 6

4 Soft margin regularization with observations lying outside of the hyperplane (extracted

from [Pecha and Horák, 2020]). 7

5 Gaussian kernel for σ = 20 (left) and σ = 1 (right) (extracted from [Cristianini and Shawe-

Taylor, 2000]) . 8

6 Examples of symmetric kernel basis functions [Dinardo and Tobias, 2001]. 11

7 Continental Mabor (Mabor [2022]) . 14

8 Tire composition Continental and Finanzanalyst [2019] 15

9 Tire process Rodgers [2020]. 17

10 Internship Gantt diagram. 24

11 Initial wireframe proposal. 25

12 Data layer overview Paolozzi et al. [2012]. 26

13 High level Amazon Redshift system architecture Redshift [2022]. 30

14 High level SQLAlchemy system architecture Sqlalchemy [2023]. 31

15 Jupyter Notebook. 32

16 Apache Airflow interface . 33

17 Completeness, data type analysis overview . 38

18 Pattern and value frequency overview . 38

19 Numeric column-wise analysis . 38

20 Numeric column-wise descriptive analysis . 39

21 String column-wise descriptive analysis . 39

22 String column-wise descriptive analysis . 39

ix

23 Variable correlation analysis . 40

24 Database modeling . 41

25 Early version of the proposed physical model using STAR Schema 43

26 Proposed Snowflake schema. 44

27 Example of a procedure . 45

28 Virtual table resulting from the logical join between two tables 45

29 Materialized views CID count . 46

30 The figure illustrates multiple SQL queries that later turned into a single CIDStart mate-

rialized view . 47

31 A simple example of implicit casting. 50

32 A simple example of explicit casting. 50

33 Example of a custom data type using classes. 51

34 Pandera checks using data frame schema. 52

35 Percentile-based outlier detection. 53

36 Model prediction. 54

37 Stratified Sampling . 59

38 Timing decorator allows the count of elapsed time between the initial call and return of

the underlying function. 60

39 Memory usage computes the difference in memory during the program compilation. . . 61

40 Testing module sourced from StackOverflow based on the insert of 10.000rows. 62

41 Testing module sourced from StackOverflow based on the insert of 10.000rows. 63

42 Test results . 63

43 Example of the implementation of multiple queries in Python 64

44 Dask ecosystem (Dask). 66

45 Example of implementation of dask persist in a dataframe. 67

46 Example testing the speed of pandas sequential operations. 69

47 Example testing with dask parallel operations. 70

48 Results show a 68% gain on a simple task . 70

49 File structure layout. 73

50 Sidebar. 74

51 A very simple callback to display the selected cell on click 75

52 Event listener example . 75

x

53 Adding several handlers to an element without overwriting the existing context. 76

54 A simple example of multiple stylings using pythonic class attributes. 77

55 Field formatting for temperatures. 78

56 Using native options to customize the table. Deletable rows, paging and page size,

selectability, and sorting. 79

57 Python driven paging. 80

58 Python driven export using a layout button and pandas. 81

59 Export example with dummy data. 81

60 Python dash binding for Plotly graphs. 81

61 Transition example. 82

62 Callback dependencies. 83

63 Understanding callbacks hierarchy and precedence in order to avoid redundant opera-

tions using data graphs. 84

64 Page layout. 86

65 Smoothing factor per sample size . 88

66 Page layout. 89

xi

Chapter 1

Introduction

Tire building is an important step in tire production value chain in the Lousado plant especially with the

increasing production necessities and tire complexity. The investigation of the manufacturing cycle time

is thus a necessary step to ensure reduced losses and increased machinery efficiency. In this work,

it is provided a framework to analyse manufacturing throughput time and to compare across different

machines and tire types with the main purpose of identifying improvement opportunities and taking actions

to diminish their impact. As in hereof, we ought to develop a method to pursue machine optimization

by identifying said opportunities to improve throughput instead of increasing the production capacity by

acquiring new machines. The methods used for such tasks are data driven tools sustained on statistical

methods and data analytics. Among them, the techniques used were maximum likelihood, kernel density

estimation, support vector machine and bootstrap. Several tools were required due to the enormous data

volume and heterogeneity between cycle phases. These methods were implemented using SQL, Python

and python packages.

1.1 Motivation

This work was developed as an integral part of the master thesis in Industrial and Management Engineer-

ing, Minho University. The predictability and estimation of cycle times represents an important baseline

in the determination of other downstream processes and requirements such as Material Requirements

Planning (MRP), production planning and key performance indicators (Overall Equipment Effectiveness).

Statistical analysis is a toolset based on a scientific approach which solves these problems. From multivari-

ate regression models, machine learning, distribution modelling there are distinct solutions in the literature

as theorised solutions. The Continental Lousado plant is dedicated to the manufacturing of specialised

tires for the global market. The production unit in this study was the passenger tire building (PLT) and the

business solution proposed is the development of a decision support system reporting tool.

1

1.2 Objectives

The main objective of this work is the development of a decision support system infrastructure with the

following user requirements:

• Cycle time data pipe-lining, including extract, transform and loading workflows; handling multiple

data sources; scheduling, task atomicity and dependencies between directed acyclic graphs (DAGs);

• Analysis of cycle element times using statistical methods that will be defined later to meet user

technical requirements;

• Development of a support data base with support for several business intelligence connectors,

linking producer processes to consumers;

• Definition of KPI’s and reporting metrics;

1.3 Research Methodology

In order to follow through with the research objectives outlined in the section above, several studies were

made with varied natures and contexts. Insofar as this dissertation is concerned, we focused in exploratory

and descriptive studies to understand the dynamics of the underlying variables and their relationships with

the objectives.

Consequently, the strategy used was action research methods based on a number of qualitative and

quantitative data in both longitudinal and cross-section studies. The data will be manipulated in order to

achieve the end proposed end results and ultimately contribute to initiatives taken to reduce cycle times.

All mathematical models, exploratory analysis and descriptive studies will be implemented in Python.

1.4 Dissertation Structure

In the 2nd chapter it is made a literature review pertaining to concepts and methodologies used throughout

the development of this dissertation. In this chapter it is introduced the motivation behind the project, its

purpose and objectives, the research methodology as well as the document structure. The chapter 3

and 4 addresses the context of the project, describing the industry environment, technologies and project

methodology. The chapter 5 discusses the research questions which is the analysis of the triggers in the

tire building process, from product requirements to deployment. Starting from the business requirements

2

and available data, eloping into the formulation of concrete ideas and methods to tackle such issues

through brainstorming. The stages are, first and foremost the establishment of a database of pertaining

metrics to feed downstream processes and the deployment of such data using tools and data visualisation

techniques allowing for rich client interaction. It also discusses the inference of cycle times of the tire

building process. Once again with a similar approach, starting from business requirements to product

deployment. The stages are the careful selection and processing of the data followed by the employment of

several statistical inference algorithms. In chapter 6, we discuss the implementation of the web application

going into details about pertaining questions about layout and user interface. Ultimately, in chapter 7 a

succinct overview of the principal conclusions and findings related to this work are presented as well as

future work.

3

Chapter 2

State of the Art

2.1 Support Vector Machine

The support vector machine (SVM) was developed in 1995 by Vladimir Vapnik based on the Vapnik-

Chervonenkis theory and soon gained traction in the industry [Noble, 2006]. Traditional neural network

approaches suffered severe difficulties with generalization and producing models with efficient separability

of non-linear regions. SVM is a method particularly well suited to handle data-set classification by sepa-

rating positive from negative values with the hyperplane with the maximum margin [Wang, 2005]. It can

perform linear separation if feasible and non-linear separation with the kernel trick, implicitly mapping

inputs into a higher dimensional feature space. A margin is the distance between the hyperplane and the

nearest positive and negative samples. The picture in figure 1 shows a linear SVM.

Figure 1: Linear SVM denoting the separating hyperplane (extracted from [Liu et al., 2019]).

SVM is traditionally considered to be a supervised learning model relying on previously available labeled

data sets. It belongs to the class of kernel machines which are algorithms capable of operating with kernels.

There can be several hyper-planes that successfully classify the data, however, the most reasonable choice

must be the one that represents the largest separation or margin between the classes. Such a hyperplane

4

if exists is known as the maximum-margin hyperplane. Intuitively, a good class separation is achieved by

the hyperplane that has the larger margin and thus offers the best generalization error [Wang, 2005].

Figure 2, both H2 and H3 are suitable solutions however H3 is the maximum margin hyper-parameter as

depicted in the figure 2.

Figure 2: Comparison between hyper-planes Hua and Sun, 2001

2.1.1 Mathematical Formulation

Cristianini and Ricci considered the class of hyper-planes in some feature space H [Cristianini and Ricci,

2008]:

⟨w, x⟩+ b = 0 where w ∈ H , b ∈ R

f(x) = sgn(⟨w, x⟩+ b)

where sgn is the sign function which returns the sign of the real number

(2.1)

The data is correctly classified if yi(⟨w, x⟩ + b) > 0, since (⟨w, x⟩ + b) should be positive when

yi = +1 and negative if -1. This leads to the definition of the canonical hyper-planes by setting the closest

points in each side at which yi(⟨w, x⟩+ b) = 1 and yi(⟨w, x⟩+ b) = −1 respectively.

The optimal condition is thus to maximize the margin γ [Wang, 2005]. The margin is computed from

the two points in the canonical hyper-planes and is half of the marginal band. Let x1 and x2 be those

points, ⟨w, x1⟩ + b = 1 and ⟨w, x2⟩ + b = −1, then ⟨w, (x2 − x1)⟩ + b = 2. The marginal band

(x2 − x1)
w

||w|| =
2

||w|| . The margin is half of this γ = 1
||w|| [figure 3].

5

Figure 3: Canonical hyper-planes and marginal band (extracted from [Pecha and Horák, 2020])

Because the goal of the SVM is to improve generalization and learning stability, the optimal condition

for the hyperplane should maximize the margin value according to [Cristianini and Ricci, 2008]. This can

be posed as a quadratic constrained minimization problem:

min
w,b

1

2
||w2||

subject to yi(⟨w, x⟩+ b) > 1 for all i = 1, ..., m
(2.2)

The solution to these problems follows the Lagrangemultipliers and a few assumptions such as Karush-

Kuhn-Tucker (KKT) conditions and duality.

2.1.2 Soft Margin Classifier

Unlike the method explained above, the soft margin classifier allows some observations to lie on the wrong

side of the support vectors or even hyperplane at can be seen in figure 4.

6

Figure 4: Soft margin regularization with observations lying outside of the hyperplane (extracted from

[Pecha and Horák, 2020]).

This method is a relaxed formulation of the maximal margin formulation which allows the processing

of messy data that cannot be perfectly separated with a hyperplane [Cristianini and Ricci, 2008]. The new

mathematical formula accounts for a slack variable ϵ.

min
w,b

1

2
||w2||

subject to yi(⟨w, x⟩+ b) > 1(1− ϵ) for all i = 1, ..., m

ϵ > 0

(2.3)

2.1.3 Non-Linear Classifier and Kernel Trick

K(x, x′) = exp−
(x−x′)2

2σ2 (2.4)

Gaussian Radial Basis Function (RBF) kernel is a stationary kernel, invariant to translations. For a single

parameter, it exhibits isotropic property, which implies that scaling of one parameter leads to automatic

scaling of all other parameters. The adjustable parameter σ is tuned according to the nature of the problem

[Kwak, 2013]. If set to a higher value, the kernel behaves almost linearly, causing an overestimation of

the problem, and the nonlinear higher dimensional projection no longer holds. Similarly, if set to a very

small value, the regularization function is affected and this underestimation makes the decision boundary

sensitive to noise in the training data. It controls the flexibility of the classifier, as shown in the figure 5.

7

Figure 5: Gaussian kernel for σ = 20 (left) and σ = 1 (right) (extracted from [Cristianini and Shawe-Taylor,

2000])

The introduction of a kernel and the implied mapping of the input space into a feature space is known

as a kernel trick or kernel substitution.

2.2 Maximum Likelihood Estimation

The statistical distributions of the occurrences are quite beneficial while trying to gather some relevant

data for stochastic events. Although creating histograms can be useful for identifying trends in data, many

observations must be made to get a smooth and accurate approximation of the distribution. So, when any

limitations on the form of the distribution are known, it is generally more practical to utilize a parametric

model to estimate the distribution. By defining a set of statistical parameters based on the observed data,

a distribution is here estimated.

The maximum likelihood estimation (MLE) method is an optimization method relying on the likelihood

function to find the parameter of parametric models or distributions that maximize the underlying likelihood

probability function. That being said, it answers the question: for which parameter(s) value ”does the

observed data have the biggest probability?”.

2.2.1 Mathematical Formulation

Maximum likelihood is the most common technique for estimating parameters associated with discrete

stochastic variables (or probability density functions of continuous stochastic variables) based on j obser-

vations independently sampled from the distribution.

The general formulation for the probability density function follows:

8

P (X < r|θ) =
∫

p(x|θ)dX (2.5)

The goal is to find the parameter θ which maximizes the likelihood function whereX is the continuous

stochastic variable [Eliason, 1993].

L(θ) =
j∏
1

P (X = xi|θ) (2.6)

argmaxθL(θ|xj) (2.7)

2.2.2 Normal Distribution

In the case of normal distribution, the objective of the MLE function is to estimate the mean and variance

parameters.

p(x|µ, σ) = 1√
2πσ2

exp
−(x−µ)2

2σ2 (2.8)

Where x can be substituted for each X1, X2, ..., Xj for j observations. The likelihood L can be

written as:

L(µ, σ) = p(X1|µ, σ)p(X2|µ, σ)...p(Xj|µ, σ) (2.9)

L(µ, σ) =
j∏
1

P (X = xi|θ) (2.10)

According to Eliason [Eliason, 1993], this equation can be simplified with the log-likelihood function

and solved afterward in the form of convex continuous optimization:

∂

∂µ
L(µ, σ) = 0 and

∂

∂σ
L(µ, σ) = 0 (2.11)

9

2.3 Kernel Density Estimation

The probability density function (pdf), shows how the entire mass with a 100% probability is distributed

along the x-axis, or over the values of an X random variable. However, the histogram, the oldest pdf

empirical representation, is a very arbitrary structure because it depends on the initial point chosen and

the number of class intervals (bins) into which a sample’s range is divided. The histogram is plagued by

its original sin, regardless of the class selection method used: data binning, in which the data are stripped

of their individual positions and given bin (interval) locations instead.

In kernel estimation of the probability density function, these issues are not present. Kernel estimate is

not a new technique, it was invented 50 years ago by Rosenblatt and Parzen [Stefanski and Carroll, 1990].

2.3.1 Mathematical Formulation

Let the series X1, X2, ..., Xj be an independent sample from j observations taken from the population

X with an unknown distribution probability f(x). The kernel estimate assigns each i-th sample data point

X1 a function K(Xi, t) called a kernel function [Stefanski and Carroll, 1990] the following way:

1

n

j∑
1

K(Xi, t) (2.12)

This requires a normalization property:

∫
K(Xi, t)dt = 1 (2.13)

Examples of kernel basis functions are represented in the figure 6.

10

Figure 6: Examples of symmetric kernel basis functions [Dinardo and Tobias, 2001].

2.3.2 Parzen Windows

The pdf is estimated for each decomposed region separately called Parzen Windows. This approach

associates each random sample Xi with an arbitrary sequence of windows centered at x1, x2, etc. such

that the density at each point is different and calculated independently [Terrell and Scott, 1992]. The

number of windows is dependent on the sample and disposition:

p(x) =
1

j

j∑
1

1

h2
K(

xi − x

h
) (2.14)

Where once again j is the sample size, h is the dimension of the Parzen Window, p(x) is the probability

estimation of the variable x.

11

2.4 Bootstrap Method

An important property of this method is that is more robust and thus less sensitive to assumptions than

other traditional techniques [Davison and Hinkley, 1997].

In general, if we consider the bootstrap sample x = (x1, x2, ..., xj) that is obtained from ran-

domly sampling j times with replacement from the original data points, and apply this procedure B times

then calculate the value of the target statistic Ts(X) based on each sample, we will obtain B estimates

Ts(x1), Ts(x2), ..., Ts(xB).

2.4.1 Confidence Intervals and Bootstrap Percentile Method

Because bootstrap is flexible and requires no assumptions about the underlying data and distribution, we

can estimate the sampling distribution through the frequentist approach. This is the foundation of the

procedure according to [Davison and Hinkley, 1997].

The confidence coefficient α corresponds to the relative frequency which the confidence region will include

the true parameter value θ. A confidence interval will be defined by the limits θα1 and θα2.

P (θα1 < θ < θα2) = α (2.15)

Where [θα1 , θα2] is the coverage interval and α1 and α2 represent the left and right tail error proba-

bilities respectively. In the calculation, this is a case of two-sided confidence intervals.

Using this approach with the bootstrap method, we construct a confidence interval for parameter θ ob-

taining a bilateral bootstrap interval at (1-α) confidence interval.

(P (T∗j ≤ x|Xj) = α/2, P (T∗j ≤ x|Xj) = 1− α/2) (2.16)

where P (T∗j ≤ x|Xj) represents the estimated probability quantile for the bilateral bootstrap

interval α [Davison and Hinkley, 1997].

12

Chapter 3

Company overview

3.1 Company Description

Continental Mabor is part of the group Continental AG colloquially referred as Conti is a German multina-

tional automotive parts manufacturing company specializing in tires, brake systems, interior electronics,

automotive safety, and chassis components. Continental AG is structured into three divisions: automotive,

tires, Contitech Continental and Finanzanalyst [2019]. Its headquarters are located in Hanover.

Continental Mabor was a result of a joint venture between Continental AG and Mabor - Manufatura

Nacional de Borracha S.A. in 1989. In 1993, Continental Mabor was owned completely by the German

group as a result of a takeover Mabor [2022]. It’s currently one of the biggest foreign direct investments

in Portugal and one of the biggest gross profit generators in the country.

Ever since its acquisition, the continuous inflow of investment, training, and restructuring projects allowed

the manufacturing plant to go from 5000 tires a day in 1990 to 26000 tires a day in 1996. In 2016

was created a new operational facility CST - Commercial Specialty Tires as a result of the LousAgro project

which allowed access to a new distinct tire market, the specialty tires mostly used in agricultural machinery

(Agro) Mabor [2022].

3.1.1 Continental Mabor Organization

The internal organization of the company Continental Mabor is depicted in the following picture. It should

be noted this work was developed under the guidance of the Industrial Engineering Department Mabor

[2022].

13

Figure 7: Continental Mabor (Mabor [2022])

• Occupational safety and health

• Management

• Communication

• Solution development center

• Research & development

• Production of passenger light tires

• Quality

• Product industrialization

• Industrial engineering

• Controlling

• Information Technologies

• Logistics & operations

• Human resources

14

• Industrial safety

• Production of commercial truck tires

• Innovation

3.1.2 Tire Structure

The tire structure is projected to increase vehicle safety, stability, traction, cargo support, resistance to

dynamical charges produced by the acceleration forces, and damping resulting from road irregularities.

For the reasons mentioned, the tire manufacturing process has to ensure high-quality levels. Figure 8

shows the composition of the tire structure.

Figure 8: Tire composition Continental and Finanzanalyst [2019]

Tread Components

• The tread (1) is the most external element of the tire and has direct contact with the road surface

assuring high millage. It is made of a mixture of synthetic and natural rubber. It can be further

divided into the Cap, which is the outermost part of the tread and provides grip on the road surface

and wear resistance, the base underneath the cap reduces rolling resistance, and the shoulder

which is on the outer edges of the tread Rodgers [2020].

15

• Cap plies (2) is a layer capable of supporting speeds at high velocity, located directly below the

tire’s tread. Picture a nylon cord tightly wrapped around inelastic stitching, encapsulated in rubber

Rodgers [2020]. This single cord runs seamlessly from one end to the other, spiraling around the

tire’s circumference without overlap.

• Steel cord belt plies (3) provide the tire with rigidity enhancing shape retention and directional

stability and increasing mileage performance.

Casing Components

• Textile cord ply (4) is a rubberized rayon or polyester that controls the internal pressure of the tire

maintaining its shape.

• Inner liner (5) is an airtight component of butyl rubber that seals the air-filled inner chamber and

controls tire pressure.

• Sidewall (6) is the exterior wall of the tire connecting to the tread through the tread shoulder Rodgers

[2020]. It is made of natural rubber and protects the casing against external damage such as

atmospheric conditions.

Tire Bead Components

• Bead reinforcement (7) is made of a strong and heat-resistant synthetic fiber such as nylon and

facilitates precise steering direction.

• Bead apex (8) is a stabilizing synthetic rubber

• Bead core (9) is made up of steel wire embedded in rubber. The core ensures the tire sits firmly

on the wheel rim Rodgers [2020].

According to the figure, The belt can be either textile, metallic, or a combination of both and is a

rubber-coated component that prevents tire expansion at high speeds. A metallic tread contains steel

wiring and the textile tread has textile materials such as polyester. The metallic tread ensures directional

stability while the textile one aims for tire structural reinforcement.

3.1.3 Tire Manufacturing Process

The tire manufacturing process is divided into 5 main stages as demonstrated in the figure 9.

16

Figure 9: Tire process Rodgers [2020].

Mixture

The process starts at the mixing stage where all the input materials are quality controlled and verified to

meet the production standards. Mixing of a compound is the process of blending with all of the materials

in a formulation to produce a homogeneous material Rodgers [2020]. The mixture involves mechanical

stress usually through counter-rotating rotors causing pressure and sheer stress to the materials and high

temperatures.

Preparation

The preparation stage is divided into three general operations by machine specificity, namely extrusion,

calendaring, and bead building. At Continental, these processes are further divided into cold preparation

and hot preparation. The hot preparation is responsible for the fabrication of the tread, sidewalls, and

beads. The cold preparation integrates the remaining compounds Rodgers [2020].

Tire Building

Building is the process of assembling all the components onto a tire building drum resulting in a green tire

or uncured tire. The process was divided into two different working stations, one two-stage machine and

one single-stage machine where the casing belt and tread assembly were built in different machines.

The tire building operation can be broadly described as follows Rodgers [2020]:

First stage operation - casing

• Textile cord ply and inner liner is applied on the circular building drum

17

• The casing ply and multiply plies are applied to the drum

• Beads and sidewalls are applied

• Turn up and first shaping operation creating the casing

Second stage operation - tread/belt assembly

• The breakers and the tread are applied in a rotating drum

• The carcass is inflated and the breakers/tread conjunction is applied to the carcass producing the

uncured tire

• Stitchers ensure all components are tightly sealed and the trapped air is removed and deflated

All compounds require additional steps for quality reasons such as inspection and splicing.

Tire Curing

Tire curing or vulcanization is the fourth stage of operation and the most capital-intensive. The curing

consists of two areas, the green tire storage and the press area. The green tire storage holds the uncured

tires up to several shifts before they are moved to the press line Rodgers [2020]. Curing is the process of

applying pressure and heat to the green tire in a mold in order to give it its final shape. Heated molds are

crucial to achieve the final tire dimensions, tread pattern, and vulcanization of all rubber components.

Curing cycles can be complex and require an inflow of steam, water, and nitrogen at different stages and

temperatures.

Inspection

The final inspection covers the following areas Rodgers [2020]:

• Visual check by a specialized inspector for several defects such as blisters, exposed cords, and

incomplete fill

• Removal of flash if present

• Uniformity (measurements)

• Shearography and other special inspections required by the customer for specific tires

18

• Laboratory analysis for a) cut tire analysis and individual component measurements b) durability

tests c) specific statistical quality control (SQC)

• Some specialized tires such as large commercial truck tires as well as some light truck tires are

inspected through X-ray which can penetrate the rubber and analyze the steel cord structure, place-

ment, and uniformity

19

Chapter 4

Project in Tire Industry

4.1 Overview

The tire industry is a critical component of the global economy as it provides essential input to a broad

range of industries such as transportation, construction, and agriculture.

By market size, it is estimated to be worth around $230 billion as of 2022. The market is expected to

grow at a compound annual growth rate (CAGR) of 6.1% from 2022 to 2028 Report [2012]. In recent

history, the COVID-19 pandemic had a significant effect on the automotive tires market directly in the

short term as the production and sales of new vehicles witnessed a decline in 2020. Moreover, owing

to restrictions, vehicle owners reduced the amount of driving resulting in delayed visits for maintenance

or tire replacement. However, with the projected exponential increase in vehicle sales over the forecast

period, the market is expected to be revived economically.

The main drivers of demand are population growth, urbanization, increasing disposable income for new

original equipment manufacturers (OEM) tires (while the opposite is true for aftermarket supply), and the

growth of the automotive industry. The demand for tires is also influenced by government regulations

related to fuel efficiency and environmental concerns as stated Report [2012].

On the other hand, the tire industry is highly dependent on raw materials such as natural rubber, synthetic

rubber, carbon black, and other chemicals. The industry is also heavily influenced by the price of crude

oil as it is a major component of synthetic rubber Report [2012].

All in all, the tire industry is expected to grow in the coming years due to factors such as the increasing

demand for vehicles in emerging economies, technological advancements in tire manufacturing, and the

growing popularity of electric vehicles. However, the industry faces significant challenges that need to

be addressed to sustain growth and profitability. For instance, mature industries such as the tire and

mobility markets face a great deal of competitiveness and everything boils down to economies of scale

and efficiency to achieve the profitability margins required by investors.

20

4.2 Competitive Analysis

The tire industry is highly concentrated, with a few large companies dominating the market. The major

players in the tire industry are Bridgestone, Michelin, Goodyear, Continental, and Pirelli. It is highly com-

petitive, with companies competing on factors such as price, quality, innovation, and brand recognition

Report [2012]. The industry also faces significant challenges such as rising raw material costs, changing

consumer preferences, and increasing government regulations.

Tire manufacturing is a capital-intensive process that requires significant investments in equipment,

facilities, and human resources. The costs of production can vary depending on factors such as location,

labor costs, energy costs, and regulations

The tire industry can be analyzed using Porter’s Five Forces framework, which helps to understand

the competitive dynamics of the industry. The five forces are:

• Threat of new entrants: The tire industry is a capital-intensive industry that requires significant

investments in manufacturing facilities, research and development, andmarketing Research [2010].

As a result, the threat of new entrants is relatively low. Existing companies have established brands

and strong distribution networks, which make it difficult for new entrants to compete. The tire

industry is highly globalized, with many tire manufacturers operating in multiple countries and

exporting products to other regions. International trade policies, tariffs, and regulations can have a

significant impact on the industry. For example, the U.S.-China trade war led to increased tariffs on

imported tires, which impacted the profitability of tire manufacturers. Advancements in technology

have improved the quality, safety, and durability of tires. For example, the development of new tire

compounds and tread designs can enhance performance and fuel efficiency. However, investing in

new technologies can also increase production costs and impact profitability.

• Bargaining power of suppliers: The tire industry is heavily reliant on raw materials such as

rubber, steel, and chemicals Report [2012]. The bargaining power of suppliers can be high, espe-

cially if there are limited suppliers of these raw materials. However, tire manufacturers can reduce

their dependence on specific suppliers by diversifying their sourcing strategies

• Bargaining power of buyers: The tire industry is highly competitive, and buyers have a sig-

nificant amount of bargaining power. Consumers are price-sensitive and have access to a wide

range of tire brands, which means that tire manufacturers must keep prices competitive and offer

high-quality products to remain competitive.

21

• Threat of substitutes: There are several substitutes for tires, including public transportation,

bicycles, and walking. However, these alternatives are not practical for most consumers, which

means that the threat of substitutes is relatively low Research [2010].

• Intensity of competitive rivalry: The tire industry is highly competitive, with several established

brands competing for market share. The industry is characterized by frequent price wars, aggres-

sive marketing, and product innovation. Companies must constantly improve their products and

processes to remain competitive.

4.3 Waterfall Methodology

The waterfall method, also known as the waterfall model, is a traditional project management approach

used in software development and other fields. It is a linear and sequential model that consists of distinct

phases, with each phase being completed before moving on to the next one. The model follows a top-down

approach, meaning that the process flows steadily downward, just like a waterfall, and each phase must

be completed in order Adenowo and Adenowo [2013].

4.3.1 Requirements

This is the initial planning phase in which the team gathers as much information as needed to ensure

the success of the project. This part is very crucial because the waterfall method is linear, so it is very

important to detail and plan ahead with a lot of forethought to avoid problems downstream Adenowo and

Adenowo [2013].

For this purpose, it is necessary to gather information about specific roles and responsibilities, team

members and stakeholders, resources required, budget, timeline, and deadlines, identify the customer,

project scope delimitation, goals, metrics, and deliverables, etc.

Many of these requirements were already discussed and aligned internally before the start of this internship

such as the project deadlines, purpose, and goals. Some other information with flexible constraints was

adapted during the project.

22

4.3.2 Project Overview

Problem

Currently the company has no tool to control construction machines cycle times with the

precision and accuracy desired. This leads to a lot of hours of work employed in traditional

sampling methods via footage analysis and inaccurate results.

There is software developed and installed in each machine to time the cycle time

elements via programmable logic circuits actuators.

This software needs also to be validated to ensure the data

collected is representative of the current state of production.

Purpose

The implementation of such measures will help immensely the industrial engineering

department by reducing hours employed in sampling and by producing data with much

higher accuracy and trustworthiness than ever before.

Business Case

As the tire industry is a mature and consolidated industry with a high barrier to entry due to

the high capital intensity, know-how and low product differentiation, the company strategy

is to be as lean as possible and ensure the highest productivity output possible.

The monitorization of the cycle times and PLC controls for each machine will allow to

optimize further each machine by choosing the optimal PLC programming within each

machine and PLC class.

For example, given a class of machines, we can learn which is the fastest performer by

assessing cycle times and then perform an in-depth analysis to learn the latent variables

(understand if it is due to the PLC programming, mechanical pieces or other

shenanigans) and use it as a reference for the remaining machines in the class.

Goals
Create a software application to monitor PLC settings and risk assessment.

Create software to make a statistical analysis of the cycle times.

Deliverables

Software application with PLC monitoring capacity.

SQL datamart for the PLC data and cycle time data with support in Excel,

power bi.

Software application for statistical analysis of cycle times.

23

Project Scope

Project Scope

An integral part of the project is to contact the key stakeholders for data integration (IT partners)

and engineering to assist in whichever tasks are required. This includes all the PLC validation,

data accesses, and servers.

Outside Project

Scope

This project doesn’t affect other ongoing analytical solutions, it doesn’t make any changes to the

data warehouses (SQL and RedShift) and it’s not responsible for the maintenance or data

quality in the source. This project isn’t responsible for the improvement of PLC circuits, it is

a tool to learn improvement opportunities. All ad hoc issues are requested to the responsible

partners and they should take over the changes accordingly.

Gantt Diagram

The proposed duration for the internship with the aligned tasks initially predicted a kick-off in the first week

of March till the end of September. The Gantt diagram is defined in the figure 10.

Figure 10: Internship Gantt diagram.

24

Objectives

The main purpose of this project was the development of a data-driven decision support system infras-

tructure with two essential objectives: monitoring and control of PLC triggers and the statistical inference

of cycle times (CT).

PLC tracking CT Statistical Inference

Define customer requirements Define customer requirements

Obtain and select the required data Obtain and select the required data

Development of a support database Development of a support database

Selection of suitable PLC metrics Development of a statistical inference framework

Deploy metrics into data-visualization techniques Deploy metrics into data-visualization techniques

Develop a user interface Develop a user interface

Wireframe

The proposed layout wireframe for the user interface, widgets, and graphs follows the following mock-up

in figure 11.

Figure 11: Initial wireframe proposal.

25

4.3.3 System architecture

Monolith architecture overview

Figure 12: Data layer overview Paolozzi et al. [2012].

The data layer provides a brief overview of all the interacting components, from the back end and data

sources, all the way to the business logic and front end layer where it interacts with the users. In this

application, the data flow is mainly one-way since it does not collect user data besides user inputs.

For this purpose, the application is divided into 3 main layers according to the figure 12:

• Data layer: it provides the functionalities to interact with the databases. It has a data helper

function with miscellaneous methods and decorators to provide a different range of functionalities,

create facades, and extend behaviors to existing functions. Some of those purposes are to provide

interfaces between the database modules and data frames and facades grouping several interface

functions.

• Business layer: It provides the necessary tools to implement business domain logic and statistical

analysis. It includes data manipulation operations such as grouping and sorting data as well as

calculating the key metrics we ought to analyze. It prescribes methods for how business objects

interact and enforce the routes by which business objects are accessed and updated. It includes

the business rules which are operations, constraints, and definitions which rule data flows. The

26

application facade is the gateway that connects to the user interface. This contains the helper

functions and facade class which encapsulates methods that transform the output business data

into the input of data visualization functions.

• Presentation layer: The presentation layer includes all the functions and classes directly respon-

sible for client interaction, interface creation, and user interactivity. It is mainly done with plotly

and dash packages in python which in turn binds to a javascript layer to create the HTML/CSS/-

Javascript frontend.

27

4.3.4 Technical Requirements

Libraries and relevant packages

Apache Airflow

Apache Airflow is an open-source tool to author, schedule and monitor

workflows, and it is used for scheduling and orchestration of data pipelines or workflows.

These data pipelines deliver data sets that are ready for consumption either by business

applications, data analysis, or big data applications.

Boto3

This is the Amazon Web Services Software Developer Kit for Python to create, configure

and manage AWS services. In this case, this is the connector used for the Amazon RedShift

database.

Dash
Dash is an open source framework for building data visualization interfaces built on top of

flask, react and plotly.

Dash Bootstrap Components

Dash Bootstrap components is an extension of Dash library maintained by the same developers

providing new widgets and binds to the powerful front end framework Bootstrap. It uses a

pre-built grid system and custom themes and building blocks.

Dash Table
Dash table is a module built on top of Dash providing the functionalities of custom tables in

front-end.

Dash HTML Components Dash HTML components is an extension of Dash providing new HTML base components.

Dash Tabulator
Dash tabulator is a binding for tabulator javascript framework to build, dynamic tables and

rich feature tables.

Distfit
Distfit is the module used to fit distributions and make parametric estimations using namely

the Maximum Likelihood Estimator to datasets.

Flask

Flask is a Web Server Gateway Interface providing a micro-framework to connect the web

applications to the server side communications. It provides effective and simple means to scale

and release complex web applications.

Graphviz

Graphviz is an open-source graph visualization software used to represent structural information

as graphs and networks. It is the core for the visualization of Directed Acyclic Graphs and other

data/workflow graphs.

Keras preprocessing
This is the data pre-processing and data augmentation module of the Keras library. It provides

several helping functions to digest data inputs.

Mysql MySQL is the standard ODBC SQL connector

Numpy
Numpy is a mathematical and computational framework of Python and it is the core of other

scientific computing environments such as machine learning and data analysis applications.

Openpyxl

Openpyxl provides an interface to the excel handlers and allows the export and formatting

into xls, xlsx, xlsm formats. It also provides every functionality of excel through python binding

functions.

Pandas
Pandas is a fast, powerful, flexible, and easy-to-use open-source data analysis and manipulation

tool.

28

Libraries and relevant packages

Pandas Profiling
Its primary goal is to provide a one-line Exploratory Data Analysis (EDA) experience in a

consistent and fast solution.

Pyodbc
Pyodbc is an open source Python module that makes accessing Open Database Connectivity

ODBC databases simple

PySpark

PySpark is an interface for Apache Spark in Python. It not only allows to write Spark

applications using Python APIs, but also provides the PySpark shell for interactively

analyzing data in a distributed environment

Requests Requests library for http connections.

Sklearn
Sklearn is a machine learning library with several clustering algorithms, classification,

regression and support vector machines.

Scipy

SciPy is a collection of mathematical algorithms and convenience functions built on NumPy .

It adds significant power to Python by providing the user with high-level commands and

classes for manipulating and visualizing data.

SQLAlchemy
It provides a full suite of well-known enterprise-level persistence patterns, designed for

efficient and high-performing database access, adapted into a simple and Pythonic domain language.

Statsmodel

Statsmodels is a Python module that provides classes and functions for the estimation of many

different statistical models, as well as for conducting statistical tests, and statistical data exploration.

An extensive list of result statistics is available for each estimator.

Urlib3
urllib3 is a powerful, user-friendly HTTP client for Python. Much of the Python ecosystem

already uses urllib3

4.4 Tech Stack

4.4.1 Amazon Redshift

Amazon Redshift is a data warehouse service in the Amazon Webservice (AWS) Cloud provided by Ama-

zon. Amazon Redshift is a relational database management system (RDBMS) and provides the same

functionalities as traditional RDBMS systems:

• Flexibility - it is easy to add, update, or delete tables, records, relationships, and other changes to

the data without impacting existing applications

• ACID compliance - Atomicity, Consistency, Isolation, Durability performance. Ensures data consis-

tency and validity regardless of errors

• Ease of use - easy to run complex SQL queries

• Collaboration - multiple people can operate and access data simultaneously

• Built-in security - role-based security ensures data access is limited to specific users

29

• Database normalization - relational databases employ a normalization technique reducing redun-

dancy and improving data integrity

Amazon Redshift Architecture

It’s a collection of computing resources called nodes, which are organized into clusters. Each cluster runs

an engine and contains one or several databases.

A cluster is a core infrastructure component and is provisioned with two or more compute nodes and an

additional leader node that coordinates the compute nodes. The leader node handles external communi-

cation with applications, such as query editors and business intelligence (BI) tools Redshift [2022]. For

that reason, the client application interacts directly only with the leader node, hence its importance in the

process.

Each cluster contains one or more databases. User data is stored on the compute nodes. The SQL client

communicates with the leader node which in turn runs queries with the underlying compute nodes. Each

database is organized into one or more schemas Redshift [2022]. The figure 13 illustrates the RedShift

architecture.

Figure 13: High level Amazon Redshift system architecture Redshift [2022].

4.4.2 SQLAlchemy

SQLAlchemy SQL Toolkit is a comprehensive set of tools for working with relational databases using object-

oriented programming languages such as Python. Its major components are the SQLAlchemy Object

Relational Mapper (ORM) and SQLAlchemy Core as depicted in figure 14.

30

Figure 14: High level SQLAlchemy system architecture Sqlalchemy [2023].

Core contains the breadth of database integration with the most prominent part of this being the SQL

Expression Language.

The SQL Expression Language is a toolkit on its own independent of the ORM package which provides a

mean of constructing SQL expressions represented by composable objects which are then executed against

the target database resulting in a set of transactions Sqlalchemy [2023]. Each and every interaction is

achieved by passing SQL expression objects representing these statements.

The ORM is built upon Core to provide a means of working with a domain object model mapped to a

database schema. ORM is a programming technique for converting data between a relational database

and the heap of object-oriented programming languages Sqlalchemy [2023]. For this effect, an object-

oriented implementation is created based on an underlying schema. For example, given an address book

entry representing a single person along with contact, address, and name fields, the ORM equivalent would

be through a Person object with each attribute holding a data item: Person.address, Person.name,

etc.

4.4.3 Python and Jupyter Notebooks

Python is a high-level, imperative, object oriented, and functional programming language. One of its main

features is to allow easy reading of the code and less verbosity when compared with other programming

languages.

31

4.4.4 Jupyter Notebooks

A Jupyter Notebook (figure 15) is a rich Internet web computing environment that supports both executable

code and rich text elements for note-taking. Notebook documents are human-readable documents con-

taining analysis descriptions, figures, tables, mathematical expressions as well as executable snippets of

code.

Figure 15: Jupyter Notebook.

The Jupyter Notebook App runs on a server-client application. It can be executed locally requiring no

internet access. The main components are the notebook kernel or computational engine that executes

the code contained in a Notebook and the notebook dashboard which is first shown when launching the

application and is used to open the documents and manage kernels.

4.4.5 Apache Airflow

Apache Airflow is an open-source workflow management platform for data engineering pipelines. It uses

directed DAGs to manage workflow orchestration. Tasks and dependencies are defined with Python and

the Airflow manages the scheduling and execution. DAGs can be run procedurally on a defined schedule

(hourly or daily) or based on external event triggers.

32

Figure 16: Apache Airflow interface

It has a very rich set of operators bundled with a very clean web application to explore DAG’s definition

together with their dependencies, progress, metadata and logs (figure 16). The base modules are very

easy to extend so they promote the community development of extensions.

33

Chapter 5

Data Pipeline Orchestration

Data orchestration refers to the process of managing and coordinating various data-related tasks and work-

flows within an organization. It involves the arrangement, integration, and automation of data movement,

processing, and analysis across different systems, applications, and platforms.

In today’s data-driven world, organizations deal with vast amounts of data from various sources, such as

databases, data warehouses, cloud services, application programming interfaces (APIs), and external data

providers. Data orchestration aims to streamline and optimize these complex data processes to ensure

data availability, reliability, and consistency throughout the organization Matskin et al. [2021].

Data orchestration is composed primarily by the following steps, by no particular order:

• Data Integration: Involves integrating data from disparate sources, including structures and un-

structured data into a unified view. This can be achieved through data extraction, transformation,

and loading (ETL) processes, where data is extracted from different sources, transformed into a

consistent format and loaded into a target system.

• Data Transformation: Data often needs to be transformed or enriched to make it suitable for anal-

ysis or to meet specific business requirements. Data orchestration includes tasks such as data

cleansing, normalization, aggregation, where data is processed and modified as needed.

• Data Movement and Synchronization: Data orchestration coordinates the movement of data across

various systems and platforms, ensuring that data is delivered to the right place at the right time.

This involves tasks such as data replication, data synchronization, and data migration, which enable

data consistency and availability across different environments.

• Workflow Automation: Data orchestration involves automating the execution of data-related tasks

and workflows to reduce manual effort, improve efficiency, and minimize errors. This can be

achieved through workflow management systems or data orchestration tools, which enable the

design, scheduling, and monitoring of data processes.

34

• Data Governance: Data orchestration includes enforcing data governance policies and security

measures to ensure data privacy, compliance, and protection. It involves managing data access

controls, data quality, data lineage, and auditing to maintain data integrity and trustworthiness.

• Data Analytics and Insights: Data orchestration plays a crucial role in facilitating data analysis and

deriving meaningful insights. By orchestrating data processes, organizations can ensure that the

right data is available to analysts, data scientists, and decision-makers, enabling them to derive

actionable insights and make informed business decisions.

A data pipeline’s architecture is made up of 4 main parts: a data source, business logic, a destination,

and a scheduler (for batch).

• Data sources: Common data sources are application databases, APIs, or files from an SFTP server.

In this scenario, the data sources will be the Enterprise Resource Planning backend, file sheets and

machine internal database for staging.

• Business logic: Business logic is a general term that encompasses the type of transformations

that need to be applied to the data inside the data pipeline. It usually involves cleaning, filtering,

and applying logic to the data that is specific to the business. It will be tackled in two steps: data

cleansing and data transformation.

• Data destination: Typically, the target we send the data is another database. Common data targets

are databases or data storage areas that are made for analytics.

• Orchestration tool: The orchestration tool is responsible for organizing, controlling and managing

workflows and data batches ensuring automated data pipelines. For this purpose, Luigi and Airflow

were considered, eventually considering Apache Airflow.

35

5.1 Data Integration

Data profiling

Data profiling is the process of analyzing and examining data from various sources to gain a better un-

derstanding of its structure, quality, and content. It involves assessing the completeness, consistency,

accuracy, and integrity of the data. Data profiling aims to identify and understand data patterns, relation-

ships, and anomalies, and to provide insights into the overall health and usability of the data.

The primary goal of data profiling is to gather metadata about the data, including statistical summaries,

data types, field lengths, and value distributions. This information helps in assessing the overall quality of

the data and identifying potential data quality issues. By understanding the characteristics and properties

of the data, organizations can make informed decisions about data integration, migration, cleansing, and

transformation processes.

Data profiling techniques typically involve examining the data at both the structural and content levels.

Structural profiling focuses on the data’s schema, such as column names, data types, and relationships

between tables. Content profiling involves analyzing the actual values within the data, such as identifying

missing values, outliers, or inconsistent formats.

Data profiling can be performed using various tools and techniques, ranging from manual analysis to

automated processes. Some common techniques include statistical analysis, pattern recognition, data vi-

sualization, and data quality rules and checks. The results of data profiling provide insights into the data’s

strengths and weaknesses, allowing organizations to address any data quality issues and make informed

decisions about data management and usage.

Pandas profiling

Pandas profiling is an extension to pandas data-frames which provides a one-point stop to all the require-

ments of data-frame profiling.

• Profiling Overview:

Provides an API to access all the descriptive metadata of the data-frame, from variable type,

columns, row count, duplicates, and memory usage (figures 20, 21, 22).

• Column Analysis:

This involves analyzing individual columns within a data set. For example, you can profile a column

36

containing customer names to determine the most common names, identify any missing or incon-

sistent values, or identify outliers. This analysis helps in understanding the data distribution and

detecting potential data quality issues (figures 17, 19).

• Value Frequency Analysis:

This analysis examines the frequency of different values within a specific column. It helps in identi-

fying duplicate or redundant values, determining cardinality (number of distinct values), and detect-

ing potential data anomalies or errors. For example, you can identify if a product category column

contains misspelled or inconsistent values (figure 18).

• Data Type Analysis:

This involves analyzing the data types of columns within a data-set. It helps in ensuring that the

data is stored in the appropriate format. For example, you can identify if a column that should

contain dates has string values or if numeric columns contain non-numeric characters.

• Completeness Analysis:

This analysis assesses the completeness of data within a data-set. It helps in identifying missing or

null values within columns and understanding the extent of missing data. This insight is crucial for

data quality assessment and decision-making processes (figure 17).

• Pattern Analysis:

This involves identifying patterns and relationships within the data (figure 23). For example, you

can analyze the correlation between different columns to determine if there are any dependencies

or if one column can be derived from another. Pattern analysis helps in understanding the data

structure and identifying any inconsistencies or anomalies.

• Statistical Analysis:

This analysis involves calculating statistical measures such as mean, median, standard deviation,

and outliers for numerical columns (figure 19). It helps in understanding the distribution of data,

identifying extreme values, and detecting potential data quality issues.

37

Figure 17: Completeness, data type analysis overview

Figure 18: Pattern and value frequency overview

Figure 19: Numeric column-wise analysis

38

Figure 20: Numeric column-wise descriptive analysis

Figure 21: String column-wise descriptive analysis

Figure 22: String column-wise descriptive analysis

39

Figure 23: Variable correlation analysis

5.2 Database Modeling

Data modeling is the process of defining and analyzing data requirements to support business processes

and problems within the scope of computer science and information systems. This involves different

stakeholders such as the business stakeholders as potential users of the information system and the data

modelers.

40

Figure 24: Database modeling

The workflow for data modeling involves the concepts in figure 24, which can be explained below:

• Conceptual data model is defined as an abstract model that organizes data description, data

semantics, and consistency constraints of data. The datamodel emphasizes on what data is needed

and how it should be organized instead of what operations will be performed on data. The two most

common data modeling techniques used are entity-relationship (ER) diagrams for the data objects

and unified modeling language (UML) to model classes and methods accross the application.

• Logical datamodelwhich structuresmultiple logical models that can be implemented in databases.

• Physical datamodel which organizes data into tables, accounts for access, performance, storage

details, data elements, structures, and relationships between them.

5.2.1 STAR Schema

A star schema is a type of data modeling technique used in data warehousing to represent data in a

structured and intuitive way. It is the fundamental schema among data mart schemes and it is also the

simplest. The data is disposed into a central fact table that contains the measures of interest, surrounded

41

by dimension tables that describe the attributes of the measures. The start schema is necessary and the

predecessor of the snowflake schema.

It is said to be a star as its physical model resembles the star shape having a fact table at its center and

the dimension tables at its periphery representing the star’s points. The fact table contains the measures

or metrics that are of interest to the user or organization. For example, in a sales data warehouse, the fact

table might contain sales revenue, units sold, and profit margins. Each record in the fact table represents

a specific event or transaction, such as a sale or order. The dimension tables in a star schema contain

the descriptive attributes of the measures in the fact table. Facts change regularly, and dimensions do not

change, or change very slowly. In a star schema, each dimension table is joined to the fact table through

a foreign key relationship. This allows users to query the data in the fact table using attributes from the

dimension tables.

The star schema is a popular data modeling technique in data warehousing because it is easy to understand

and query. The simple structure of the star schema allows for fast query response times and efficient use

of database resources. Additionally, it can be easily extended by adding new dimension tables or measures

to the fact table, making it a fast, simple scalable and flexible solution for data warehousing.

Some advantages of STAR Schema Han et al. [2012]:

• Simpler queries Join logic of star schema is needed to fetch data from a transactional schema

that is highly normalized.

• Simplified business report logic In comparison to a transactional schema that is highly nor-

malized, the star schema makes simpler common business reporting logic

• Query performance Because a star schema database has a small number of tables and clear

join paths, queries run faster than they do against an Online Transaction Processing system. Small

single-table queries, usually of dimension tables, are almost instantaneous.

• Easy to understand and navigate Star schema are easy for end users and applications to

understand and navigate.

Some disadvantages of STAR Schema Han et al. [2012]:

• De-normalized schema Data integrity is not enforced well since in a highly de-normalized schema

state. Data doesn’t follow ACID ruleset (Atomicity, Consistency, Isolation, Durability).

• Not suitable for very detailed data Star schema doesn’t reinforce many-to-many relationships

within business entities – at least not frequently.

42

• Doesn’t scale very well with the size of information

Figure 25: Early version of the proposed physical model using STAR Schema

Based on the figure 25 as a reference, it’s possible to conclude the MachineTable is a fact table and

all the surrounding tables are dimension tables containing the necessary measures.

5.2.2 Snowflake Schema

As previously stated, the Snowflake schema is an extension of the STAR schema where dimensions are

further broken down into sub-dimensions. Snowflake schema is very popular in business intelligence, data

warehouses, data marts, and overall SQL relational databases.

Because individual dimensions are broken down into logical sub-dimensions, this adds additional complex-

ity to the model but can make it easier for business analysts to perform their assessments. The central

fact table connects to multiple dimension tables via foreign keys like in STAR schematics.

Additionally, snowflake schema is more storage space efficient since they are more normalized than their

predecessor. De-normalized data models have more redundancy and thus more duplicated or unneces-

sary data fields which obviously carry additional space and performance cost.

43

Figure 26: Proposed Snowflake schema.

In the figure 26, the snowflake schema for the current problem is proposed.

5.2.3 Snowflake Procedures

A procedure (or sproc) is a subroutine available to all relational database management systems (RDBMS)

and thus not exclusive to snowflake databases. Such procedures are stored within the database and have

certain properties that make them attractive to developers. An example of a procedure is depicted in figure

27.

For instance, stored procedures can save time, memory and processor power. Several SQL statements

can be saved within a procedure and all applications which access the database can call these procedures.

Finally, these may contain stored variables, flexible user-defined data types, and control flow units (such

as IF, WHILE, LOOP, CASE statements).

44

// Example of a procedure

CREATE PROCEDURE SelectAllCustomers @City nvarchar(30)

AS

SELECT * FROM Customers WHERE City = @City

GO;

EXEC SelectAllCustomers @City = 'London';

Figure 27: Example of a procedure

5.2.4 Virtual Tables

Virtual Tables (or views) are a special kind of SQL tables (figure 28. They provide a virtual environment that

can perform various complex operations in memory. The definitions of the view are stored in the database

in a dictionary like the procedures.

Figure 28: Virtual table resulting from the logical join between two tables

Virtual tables can be classified into:

• Simple View based on a single table, without any GROUP By clause or function

• Complex View based on multiple tables or containing GROUP BY clause or function

• Inline View based on a sub-query which creates a temporary table and simplifies a complex query

• Materialized View stores the definition as well as the data. Stores the data in physical memory.

45

Some key differences between virtual tables and procedures:

• Stored procedures are more flexible and accept parameters while views are static

• Views can be used to simplify complex queries (Inline Views) while procedures cant be used in

queries

• Views are memory representations and therefore can’t physically change any memory address while

procedures can modify tables

• Procedures can contain several statements while views are limited to only one SELECT

• Materialized Views can be the target of INSERT or modification clauses whereas procedures can’t

Materialized View

Materialized view is a physical presentation of the retrieved data. This replica can be reused without

executing the view again. They are snapshots of a query at a specific time hence they are very helpful to

improve general dataflow and data governance. The scheme for the CID is in figure 29.

Figure 29: Materialized views CID count

A useful application of this concept is the implementation of two CID count views. The main purpose

of these tables is to count and track the PLC actuator ID per foreign key of the fact table.

46

for __machine in tqdm(machines):

query = """

SELECT RecipeID, CyclePhaseID, MachineID, CIDStart, COUNT(CIDStart)

as CIDStartCount, datepart(day, CreatedOn) as Day,

datepart(month, CreatedOn) as Month, datepart(year, CreatedOn)

as Year

FROM {}

GROUP BY MachineID, CyclePhaseID, CIDStart, RecipeID,

datepart(year, CreatedOn), datepart(month, CreatedOn),

datepart(day, CreatedOn)""".format(__machine)

_data = pd.read_sql_query(query, self.connection)

ISO FORMAT

_data["Date"] = _data["Year"].astype(str) + '-' +

_data["Month"].astype(str) + '-' + _data["Day"].astype(str)

_data = _data.drop(["Day", "Month", "Year"], axis=1)

d = d.append(_data)

Figure 30: The figure illustrates multiple SQL queries that later turned into a single CIDStart materialized

view

47

5.3 Data Transformation

5.3.1 Data Cleansing & Data Validation

Data cleansing, also known as data cleaning or data scrubbing, is the process of identifying and correct-

ing or removing errors, inconsistencies, inaccuracies, and anomalies from a data-set. The goal of data

cleansing is to improve data quality, ensuring that the data is accurate, reliable, and suitable for analysis

or other data processing tasks.

Type checking

Type checking is a process performed by compilers, interpreters, and other programming tools to verify

the correctness of the types used in a program. It involves analyzing the code to ensure that variables,

expressions, and function calls are used consistently with their declared types.

The purpose of type checking is to catch programming errors and ensure that operations are performed

on compatible data types. It helps prevent type-related bugs, such as attempting to perform arithmetic

operations on incompatible types (e.g., adding a number to a string) or passing arguments of the wrong

type to a function.

Type checking can be performed statically or dynamically:

• Static type checking: Static type checking is done at compile-time and involves analyzing the source

code without executing it. The compiler examines the types declared for variables, functions, and

expressions and checks if they are used correctly throughout the program. Static type checking can

catch many errors before the program is run, which can help improve reliability and performance.

• Dynamic type checking: Dynamic type checking is performed at runtime while executing the pro-

gram. The type of a variable or expression is checked when it is actually used during program

execution. If a type mismatch or inconsistency is detected, an error or exception may be raised.

Dynamic type checking allows for more flexibility but may result in errors occurring during program

execution.

Type-checking can be enforced through type annotations in statically typed languages. These anno-

tations explicitly specify the types of variables, function parameters, and return values. Statically typed

languages, such as Java or C++, often perform extensive type-checking during compilation. In dynamically

typed languages, type checking is typically looser or deferred until runtime.

48

One of the key aspects of using python dynamic typed variables is that it assigns by default the broadest

variable type available at compilation time. When loading data into pandas, the library assesses for each

column the data types and assigns integer (4 bytes), floating point, string, bool, and object. The object type

is useful because it is the broadest data type available to Python which means there is virtually no chance

of compiling errors or casting losses downstream due to data types, at the obvious cost of performance.

Datetime ISO 8601 format The datetime format used throughout the application was the Interna-

tional Organization for Standardization ISO 8601 following the general rules:

• Date and time values are ordered from largest to smallest unit of time: year, month, day, hour,

minute, second

• Each date has a fixed number of zeros so it must be padded with leading zeros

• Representation can be formatted with a minimal number of separators (hyphen for dates and colon

for time values). For example, the 6th day of the 1st month of the year 2009 may be written

as ”2009-01-06” in the extended format or simply as ”20090106” in the basic format without

ambiguity.

For this purpose, the datetime standard Python library was used.

Type Casting

Type casting is often necessary when we want to perform operations that require operands of compatible

types or when you need to store a value in a variable of a different type. For example, casting can be used

implicitly while operating two variables together such as adding and integer to a floating point where the

resulting variable will implicitly be of type float. This is utterly important in data driven programs such as

this project where very strictly typed variables can result in data type errors downstream or overly relaxed

weak typed variables can lead to memory issues.

There are two forms of type-casting:

• Implicit type casting (coercion) (figure 31): Implicit type casting occurs automatically by the

compiler or interpreter when it is safe to convert one type to another without losing information or

precision. For example, converting an integer to a float or widening the range of a numeric type.

Implicit type casting is also known as type coercion.

49

• Explicit type casting (conversion) (figure 32): Explicit type casting involves manually converting

a value from one type to another using casting operators or functions provided by the programming

language. Explicit casting is typically required when there is a potential loss of information or

precision during the conversion.

x = 5 # integer

y = 2.0 # float

result = x + y # The integer x is implicitly cast to float before the addition

print(result) # Output: 7.0

Figure 31: A simple example of implicit casting.

x = 5

y = 2.7

result = x + int(y) # Explicitly cast the float to an int using the int()

function

Figure 32: A simple example of explicit casting.

User-defined data types and strong typing

Custom data types, also known as user-defined data types, are data structures created by a programmer

to represent specific entities or concepts within a program. They allow developers to define their own data

structures that go beyond the built-in data types provided by a programming language.

Custom data types are typically created using classes, structures, or enums, depending on the program-

ming language. They encapsulate related data and provide methods or functions to operate on that data.

The figure 33 shows a custom data type as a Rectangle and its properties.

50

class Rectangle:

def __init__(self, width, height):

self.width = width

self.height = height

def calculate_area(self):

return self.width * self.height

def calculate_perimeter(self):

return 2 * (self.width + self.height)

Figure 33: Example of a custom data type using classes.

Pandera Pandera is an open-source Python library that provides a lightweight and intuitive way to

validate and sanitize structured data, primarily focused on working with pandas data frames. It offers

a declarative syntax for defining data validation rules and can be used in data pre-processing and data

quality assurance workflows.

Pandera allows you to define schemas to specify the structure, types, and constraints of your data. These

schemas act as blueprints for validating and cleaning your data. The library provides various built-in

validators, such as checking for null values, ensuring data types, enforcing value ranges, and validating

string patterns.

It allows for:

• Schema definition: Pandera allows you to define schema using a concise and expressive syntax.

You can specify column names, data types, and various validation rules for each column in your

data.

• Data validation: Once we have defined a schema, we can use it to validate the data. Pandera

provides functions to validate pandas data frames against the specified schema, ensuring that the

data conforms to the defined rules. It flags any discrepancies or errors encountered during the

validation process.

• Integration with pandas and dask: Pandera seamlessly integrates with pandas, leveraging

its powerful data manipulation capabilities. We can combine Pandera’s schema validation with

pandas’ data handling operations, making it convenient for data pre-processing tasks.

51

import pandera as pa

from pandera import Column, Check, DataFrameSchema

schema = DataFrameSchema({

"small_values": Column(float, Check.less_than(100)),

"one_to_three": Column(int, Check.isin([1, 2, 3])),

"phone_number": Column(str, Check.str_matches(r'^[a-z0-9-]+$')),

})

from pandera.typing import Series

class Schema(pa.DataFrameModel):

column1: Series[int] = pa.Field(le=10)

column2: Series[float] = pa.Field(lt=-1.2)

column3: Series[str] = pa.Field(str_startswith="value_")

@pa.check("column3")

def column_3_check(cls, series: Series[str]) -> Series[bool]:

"""Check that column3 values have two elements after being split with

'_'"""

return series.str.split("_", expand=True).shape[1] == 2

Schema.validate(df)

Figure 34: Pandera checks using data frame schema.

With the operation in the figure 34, we can assert custom data-types such as ”small_values” which

is a type of float within the 100 range and we can also match strings using regex.

Outlier detection

Outlier detection particularly in time series data refers to the identification of data points or patterns that

deviate significantly from the expected behavior or the normal pattern of the time series. Outliers can

indicate anomalous events, errors, or unusual behavior that may require further investigation or different

52

treatment in analysis or modeling.

Outlier detection uses several distinct methods to create a decision function or decision boundary which

is then able to decide whether a new observation belongs to the same distribution as existing observations

(inlier) or should belong to a different origin process (outlier).

Percentile based method In the percentile-based method (35), the values will be ranked and the

values will be dropped or kept according to the percentiles considered. For this method, the threshold

percentiles are user-defined and can be toggled to adjust the process sensitivity to outliers and are adjusted

for skewed distributions.

if skew > 3:

P05 = _data["Duration"].quantile(0.05)

P60 = _data["Duration"].quantile(0.60)

_data = _data[~((_data["Duration"] < P05) |(_data["Duration"] > P60))]

else:

P05 = data["Duration"].quantile(0.05)

P60 = data["Duration"].quantile(0.90)

data = data[~((data["Duration"] < P05) |(data["Duration"] > P60))]

Figure 35: Percentile-based outlier detection.

Support Vector Machine One-Class Support Vector Machine (SVM) is an unsupervised model for

anomaly or outlier detection. Unlike the regular supervised SVM, the one-class SVM does not have target

labels for the model training process. Instead, it learns the boundary for the normal data points and

identifies the data outside the border to be anomalies.

This problem can be thought of as a classification problem where by default 1 counts as normal data

points or inliers and -1 as outliers. The algorithm will then drop the values classified as -1 and keep the

inliers (figure 36).

53

Predict the anomalies

prediction = one_class_svm.predict(X_test)# Change the anomalies' values to

make it consistent with the true values

prediction = [1 if i==-1 else 0 for i in prediction]

Figure 36: Model prediction.

Missing Data

Missing data can be categorized into three categories:

• Missing Completely at Random (MCAR)

• Missing at Random (MAR)

• Not Missing at Random (NMAR)

If the probability of missing data is the same for all classes, then the data is said to be missing

completely at random. This effect implies that the causes of the missing data are unrelated to the data.

A good example of why this may be happening is due to sampling and random sampling of a population

where each member has an equal chance of being included in the sample. The unobserved data members

are considered MCAR.

If the probability of missing is the same only in defined groups within the observed data, then the data

is missing at random (MAR). An example of MAR is when a sample is taken from the population and the

probability to be included depends on a given property of the data.

If the probability of missing data varies across time for reasons unknown an unrelated to the data, the data

is missing not at random (NMAR). This situation is much more difficult to assess as the reasons could

be several and varied. For example, this could be due to detection mechanism wear and tear over time,

producing more missing data as time progresses.

The missing data properties can be solved in different ways:

• Ignore

• Discard the data rows completely

• Parameter estimation

• Imputation

54

Ignore

By ignoring the fact some data values are missing, we set up to use incomplete entries regardless in

computations and calculations. It can be an option depending on the relevance of the missing values for

the computations. It’s a worthy option when the data available is very sparse or limited.

Discard data

Discarding data with missing properties means they won’t be considered for calculations. This can

be row-based or column-based. In the case of a dense data set, this technique has a very good positive

effect because all the remaining entries are complete.

Parameter estimation

Parameter estimation fills unknown fields using prediction techniques based on the known values.

Imputation

There are several imputation techniques used to fill missing values. The most popular are:

• Average, take the mean value of all the known values

• Min, take the minimum value of all known values

• Zero, substitute empty values with zero

• Random, take a random between the min and max of known values

5.3.2 Aggregation functions

Aggregating data involves combining multiple rows or groups of data into a summarized format. Aggre-

gation functions like sum, average, count, or maximum can be used to consolidate data and calculate

statistics at a higher level. Aggregation functions condense multiple data points into a single value, pro-

viding insights into the overall characteristics or trends of the data-set.

Some examples of standard aggregation functions supported by both SQL and Python:

• Sum: calculates the total sum for a given group

• Count: counts the total occurrences for a given group

• Mean/Average

• Median

• Quantiles and percentiles

55

• Minimum/Maximum

• Standard deviation/Variance

• Mode

Pandas aggregation functions

These functions are usually used in the context of a group-by or aggregate clause.

• Dataframe.query: allows for boolean expressions for filtering according to the SQL terminology

• Dataframe.rolling: creates a rolling window column with lag (n)

• Dataframe.pivot: creates a pivot table

• Dataframe.melt, Dataframe.sort_values, Dataframe.sort_index: sorts and reindexes

• Dataframe.apply, Dataframe.transform, Dataframe.applymap: apply operations value by value with

lambda function

SQL aggregation functions

These functions are usually used in the context of a HAVING, OVER, SELECT DISTINCT or PARTITION

clause.

• AVG: average

• COUNT: count

• MAX, MIN

• STDEV, STDEVP, VAR, VARP

• PERCENTILE_CONT, PERCENTILE_DISC

5.3.3 Feature engineering & data reduction

Sometimes, data may be too large or complex for analysis. Data reduction techniques such as sampling,

feature selection, or dimensionality reduction (e.g., principal component analysis) can be applied to reduce

the data size while preserving its integrity Paulson et al. [2022].

56

Datetime transformations

Date and time transformations involve manipulating and extracting specific information from date and

time variables to derive meaningful features or facilitate analysis. These transformations allow for better

understanding, interpretation, and utilization of temporal data.

Extracting components from date time Date time variables can be further decomposed into their

constituent parts such as year, month, day, hour, minute, second, day of the week, day of the month,

quarter which allows for a more granular approach with deeper insights by capturing different temporal

patterns downstream.

This was the basis for a new sub-dimension table in the data model.

Extracting components from shift Some other useful trick is to link the shift to date time and

associate each time constituent, to its shift counterpart. As a simplified example, the 17 hours of the day

represent the 1 hour of shift 2.

Sampling functions

Sampling functions are one of the backbones of the application developed as a good sampling function

allows the unbiased representation of the data and extensive testing without having to cycle through the

whole data-set Paulson et al. [2022]. The sampling methods used were also employed in the staging and

development and still persist currently in the last release of the application to evaluate and characterize

the data as well as run some computationally expensive algorithms.

Balanced datasets Because the data-set had multiple stratus and variables, we needed sampling

functions that permitted objective assessment of a snapshot of a specific variable, all else equals. The

only way to accurately compare measurements and statistics is through balanced data-sets, in order to

reduce bias.

A balanced sample refers to a sample that accurately represents the proportions or distribution of different

groups or categories within a population. In a balanced sample, each group or category is adequately

represented, allowing for reliable statistical analysis and inference for each subgroup.

The concept of a balanced sample is particularly relevant when dealing with imbalanced data-sets, where

the number of observations or instances in different groups or classes is significantly disproportionate.

57

Imbalanced data-sets are common in various domains, such as fraud detection, disease diagnosis, or rare

event prediction.

Balanced sampling helps mitigate the issue of imbalanced data-sets and ensures that statistical analysis

and modeling are not biased towards the majority group(s). It enables more accurate assessment of

performance metrics, such as precision, recall, or accuracy, for different groups and improves the overall

robustness of the analysis.

As an example, if we want to analyze and compare the cycle-time duration for a machine in two different

periods, we ought to consider the same subgroups, same proportion of recipe types, operators, tire type,

and tire diameter.

Stratified Sampling Stratified sampling is a sampling technique used in statistics and research to

ensure that the sample reflects the characteristics or proportions of the population being studied. It

involves dividing the population into homogeneous subgroups or strata based on specific variables or

attributes and then selecting a proportional or representative sample from each stratum.

The process follows these steps:

• Identify the Stratification Variable: Determine the variable or attribute that will be used to divide the

population into strata. This variable should be relevant and meaningful in terms of the research

objectives.

• Define Strata: Create distinct and mutually exclusive strata based on the values or categories of

the stratification variable. Each stratum should be internally homogeneous but have distinct char-

acteristics compared to the other strata.

• Determine Sample Sizes: Decide on the desired sample size for each stratum. The sample sizes

can be proportional to the size or proportion of each stratum in the population or can be determined

based on statistical considerations.

• Combine Samples

The main advantage of stratified sampling is that it ensures that the sample includes representatives

from each subgroup or stratum, thus improving the accuracy and precision of estimates for different groups

within the population. By incorporating the variability within each stratum, stratified sampling allows for

more accurate inferences and generalizations. The implementation can be seen in the figure 37.

58

table = "tbLive_Machine_%03d_CycleTime" % __machine

query2 = sql.select(

sql.table(table),

sql.func.row_number().over(order_by(sql.column("RecipeID"))).label("seqnum"),

sql.func.count().over().label("count"),

sql.func.count().over(partition_by(sql.column("RecipeID"))).label("cnt"))

query2 = query2.filter(sql.and_(sql.column("CyclePhaseID") == phase,

sql.column("CreatedOn").between('{}'.format(start_date),'{}'.format(end_date))))

df = pd.DataFrame(columns = ["MachineID", "RecipeID", "CreatedOn", "Duration",

"Barcode", "OperatorID", "ShiftHistoryID"])

df = df.astype(dtype={"MachineID": "int16", "RecipeID": "int16", "CreatedOn":

"datetime64[s]", "Duration": "float16", "OperatorID": "object",

"ShiftHistoryID": "object"})

df = df.set_index("CreatedOn")

data = dd.read_sql_query(query2, connection_string, index_col="CreatedOn",

npartitions = 20, meta = df)

data = data.compute()

Figure 37: Stratified Sampling

This example groups data by machine for a specific time frame and cycle-phase and iterates over

the recipes partitions ensuring the number of recipes considered for the sample is somewhat equal, even

though very likely some recipes run much more frequently due to being fast movers.

Oversampling Oversampling is a technique used in data pre-processing to address class imbalance in

data-sets, where one or more classes have significantly fewer instances compared to other classes. The

goal of oversampling is to increase the representation of the minority or underrepresented class(es) by

artificially generating or duplicating samples.

The primary purpose of oversampling is to create a balanced data-set that allows machine learning models

to learn from and make accurate predictions for both the majority and minority classes. By increasing the

59

number of instances in the minority class, oversampling helps to alleviate the bias towards the majority

class and improves the performance of classifiers in predicting the minority class.

In the scenarios where the data-set is too skewed and there aren’t nearly enough occurrences for a par-

ticular class, one of the solutions proposed was the oversampling for those through re-sampling and thus

artificially generating and duplicating samples.

5.4 Performance

5.4.1 Wrapper Pattern

A wrapper function is a function or subroutine whose main purpose is to call a second subroutine. In

object-oriented programming, the decorator pattern acts to encapsulate another object allowing a new

behavior to be added incrementally without affecting the baseline behavior or this class. That being said,

this allows functionality to be extended to individual components without affecting their counterparts.

This augmentation strategy was employed as a means to evaluate the application performance throughout

the development stage. Performance was measured with timing (figure 38) and memory (figure 39).

def timing(f):

@wraps(f)

def wrap(*args, **kw):

ts = time()

result = f(*args, **kw)

te = time()

print ('func:%r args:[%r, %r] took: %2.4f sec' % \

(f.__name__, args, kw, te-ts))

return result

return wrap

Figure 38: Timing decorator allows the count of elapsed time between the initial call and return of the

underlying function.

60

def record_mem_usage(func):

@wraps(func)

def wrapper(*args, **kwargs):

process = psutil.Process(os.getpid())

mem_start = process.memory_info()[0]

rt = func(*args, **kwargs)

mem_end = process.memory_info()[0]

diff_KB = (mem_end - mem_start) // 1000

print('memory usage of %s: %s KB' % (func.__name__, diff_KB))

return rt

return wrapper

Figure 39: Memory usage computes the difference in memory during the program compilation.

5.4.2 SQL optimizations

SQL engine

The framework used for SQL ODBC driver handling was SQLAlchemy. SQLAlchemy uses Object Relational

Mapper (ORM) logic and unit of work pattern when synchronizing changes to the database. A unit of work

is started implicitly when the first SQL statement is issued against the database. All subsequent reads and

writes by the same application are considered part of the same unit of work. The application must end

the unit of work by issuing either a COMMIT or a ROLLBACK statement. The COMMIT statement makes

permanent all changes made within a unit of work. The ROLLBACK statement removes these changes

from the database. This goes even beyond the simple statements and clauses as it includes attributes

assigned to objects, tracking the changes made to all rows through identity maps. This obviously involves

a decent amount of bookkeeping and record control in order to keep the data flowing smoothly at a cost

of some performance, especially in a lot of sequential INSERT statements (as an example).

This was the initial implementation, using SQLAlchemy and ORM module. However, SQLAlchemy also

provides a built-in Core package separate of the ORM module, which includes an extensible Python-based

SQL expression language, metadata and connection pool.

61

Testing ORM and Core packages

class Customer(Base):

__tablename__ = "customer"id= Column(Integer, primary_key=True)

def init_sqlalchemy(dbname = 'sqlite:///sqlalchemy.db'):

engine = create_engine(dbname, echo=False)

DBSession.remove()

DBSession.configure(bind=engine, autoflush=False,

expire_on_commit=False)

Base.metadata.drop_all(engine)

Base.metadata.create_all(engine)

def test_sqlalchemy_orm(n=100000):

init_sqlalchemy()

t0 = time.time()

for i in range(n):

customer = Customer()

customer.name = 'NAME '+ str(i)

DBSession.add(customer)

if i % 1000== 0:

DBSession.flush()

DBSession.commit()

print"SqlAlchemy ORM: Total time for "+ str(n) + " records "+

str(time.time() - t0) + "

engine.execute(Customer.__table__.insert(),

[{"name":'NAME '+ str(i)} fori inrange(n)]

)

print"SqlAlchemy Core: Total time for "+ str(n) + " records "+

str(time.time() - t0) + " secs"definit_sqlite3(dbname):

c = conn.cursor()

c.execute("DROP TABLE IF EXISTS customer")

c.execute("CREATE TABLE customer (id INTEGER NOT NULL, name

VARCHAR(255), PRIMARY KEY(id))")

Figure 40: Testing module sourced from StackOverflow based on the insert of 10.000rows.

62

test_sqlalchemy_orm(100000)

test_sqlalchemy_core(100000)

Figure 41: Testing module sourced from StackOverflow based on the insert of 10.000rows.

The result obtained:

SqlAlchemy ORM: Total time for 100000records 16.4133379459secs

SqlAlchemy Core: Total time for 100000records 0.568737983704secs

Figure 42: Test results

As it’s possible to conclude by the figure 42, the difference between the modules is astonishing at

least when it comes to the insertion of 10.000 rows sequentially (figure 40 and 41). On this basis, the

Core engine was chosen to issue the commit statements of new data into the database.

SQL statements over python statements

While pandas offer an arguably much easier and more flexible alternative to SQL manipulation it comes

at a huge cost of performance. After all, SQL database management systems are the primitives for data

handling and are designed to efficiently store and retrieve data from the disk whereas pandas is nowhere

near as capable. For very large data-sets, this carries an exponential cost.

Furthermore, SQL managers have built-in query optimizers that choose the most efficient way to compile

queries and statements. Pandas does not have a query optimizer and suffers from the problems Python

has (dynamically typed variables is one). While pandas can support multiple ´central processing units

(CPUs) it often requires very explicit programming in order to do so, while SQL does this parallelization

innately.

63

query = """SELECT RecipeID, CyclePhaseID, MachineID as Machine, CIDStart,

CIDStartCount, Date

FROM CIDStart

"""

query2 = """SELECT R.ID as RecipeID, R.RecipeName, CT.Name

FROM Recipes as R, ConstructionTypes as CT

WHERE R.TireTypeID = CT.ID AND MachineTypeID = {}""".format(machinetype)

query3 = """SELECT CID as CIDStart, Name as CIDName

FROM CycleElementSettings

WHERE MachineTypeID = {}""".format(machinetype)

query4 = """SELECT MachineID as Machine, Name as MachineID

FROM MachineTable

WHERE MachineTypeID = {}""".format(machinetype)

q1 = pd.read_sql_query(query, con= self.local_connection)

q2 = pd.read_sql_query(query2, con= self.local_connection)

q4 = pd.read_sql_query(query4, con= self.local_connection)

data = q1.merge(q2, on = "RecipeID").drop_duplicates()

data["Date"] = data["Date"].apply(lambda x: datetime.strptime(x, "%Y-%m-%d"))

data = data.drop_duplicates()

data = data.merge(q4, left_on = "Machine", right_on = "Machine")

Figure 43: Example of the implementation of multiple queries in Python

The figure 43 is an excellent example of several simple queries being concatenated and processed

using pandas data-frames instead of using a unique complex SQL query.

SQL procedures over inline statements

Different relational database management systems (RDBMS) have different configurations, and compi-

lators and may operate very differently, but historically procedures are much more efficient than inline

statement queries. When an SQL procedure is created, the SQL queries are separated from the procedu-

64

ral logic and compiled statically into sections in a package. For each section, an access plan is selected

based on a DB2 optimizer.

A query plan (or query execution plan) is a sequence of steps used to access the data in a relational

database. When a query is submitted, the query optimizer evaluates the best execution plan. All in all,

procedures provide the following advantages:

• Pre-parsed SQL statements. The SQL statements are pre-compiled into a template and the param-

eters are substituted at execution time.

• Pre-generated query execution plan. The execution plan of very complicated queries is stored pre-

compilation in memory, avoiding the overhead costs of the optimizer computing a new execution

plan(s). This execution plan is cached and is particularly helpful in small queries performed fre-

quently (where the execution plan would have been calculated every time).

5.4.3 Python Optimization

Global Interpreter Lock

The Global Interpreter Lock (GIL) is a mechanism used by computer language interpreters to synchronize

the execution of threads so that only one native thread (per process) can run at a time. An interpreter

using the GIL can only run one thread at a time, even when running on a multi-core processor. Common

interpreters that use the GIL include CPython and Ruby MRI.

The use of a global interpreter lock limits the amount of parallelism reachable through the concurrency

of a single interpreter process with multiple threads. If the process does not rely on outside calls, the in-

terpreter will be locked for long periods of time and there will be no benefit from running the process on

a multiprocessor machine. Also, when the single thread calls are blocking an operating system process

such as disk access (such as writing data from disk), the entire process is blocked.

Python tried to solve this GIL issue by instead the multiple threads to multiple processes; making it so that

each processor has a fundamental locker. It makes it hard to synchronize and communicate with threads.

It is unpractical and laborious to share the memory, only can be implemented by declaring a queue.

Dask releasing the global interpreter by pandas library; Because the Dask array implements Pandas and

Numpy library interface, it will allow multiple threads to run simultaneously during computation to poten-

tially allow improvements in performance by multiple threads

65

Dask Dataframes (300MB+)

By default, Dask DataFrame uses the multi-threaded scheduler. The full range Dask ecosystem can be

seen in figure 44. This exposes some parallelism when pandas or the underlying NumPy operations

release the global interpreter lock (GIL). Generally, pandas is more GIL bound than NumPy, so multi-core

speed-ups are not as pronounced for Dask DataFrame as they are for Dask Array. This is particularly true

for string-heavy Python DataFrames, as Python strings are GIL bound.

Use cases:

• Manipulating large datasets, even when those datasets don’t fit in memory (above 300MB)

• Accelerating long computations by using many cores

• Distributed computing on large datasets with standard pandas operations like groupby, join, and

time series computations

• Trivially parallelizable operations (such as element-wise operations, row-wise operations, loc, aggre-

gations)

• Cleverly parallelizable operations (groupby aggregate ops, value counts, drop duplicates, merge)

• Operations requiring a shuffle

Figure 44: Dask ecosystem (Dask).

Persistent data (<300MB)

In contexts where the data needs to be accessible throughout the program execution and it is feasible to

store it outside of a physical disk using Random Access Memory resources, the best alternative would be

66

to store it in-memory either using an SQLite database or dask persist method.

SQLite A different temporary file is created each time so that, just as with the special ”:memory:”

string, two database connections to temporary databases each have their own private database. Tempo-

rary databases are automatically deleted when the connection that created them closes.

Even though a disk file is allocated for each temporary database, in practice the temporary database

usually resides in the in-memory pager cache and hence there is very little difference between a pure

in-memory database created by ”:memory:” and a temporary database created by an empty filename.

The sole difference is that a ”:memory:” database must remain in memory at all times whereas parts of

a temporary database might be flushed to disk if the database becomes large or if SQLite comes under

memory pressure.

The previous paragraphs describe the behavior of temporary databases under the default SQLite configu-

ration. An application can use the temp_store pragma and the SQLITE_TEMP_STORE compile-time

parameter to force temporary databases to behave as pure in-memory databases, if desired.

Dask persist This turns lazy Dask collections into Dask collections with the same metadata, but now

with their results fully computed or actively computing in the background. For example, a lazy dask array

built up from many lazy calls will now be a dask array of the same shape, dtype, chunks, etc., but now

with all of those previously lazy tasks either computed in memory as many small numpy.array (in the

single-machine case) or asynchronously running in the background on a cluster (in the distributed case)

(figure 45).

df = dd.read_csv('/path/to/*.csv')

df = df[df.name == 'Alice']

df['in-debt'] = df.balance < 0

df = df.persist() # triggers computation

df.value().min() # future computations are now fast

Figure 45: Example of implementation of dask persist in a dataframe.

In this example, the data is instanced by default as a collection of many lazy calls of a dask data

67

frame where it gathers the data frame metadata and stores the operations as future or delayed tasks.

When calling the persistent method, the lazy calls will execute and be locked by the scheduler until the

operations are finished and it is released. Eventually, all of the futures of this collection will be completed

at which point further queries on this collection will likely be very fast. In this case, the min() computation

will likely be much faster than using standard pandas library or dask compute method.

This is especially useful when loading data and using such data for a lot of sequential or complex tasks.

By using .persist() method before passing the data to other tasks, the loading steps of the data will

be run only once instead of once for every task assigned.

Lazy evaluation for the parallelization of complex tasks

Sometimes problems don’t fit into one of the collections like dask.array or dask.dataframe. In these cases,

we can parallelize custom algorithms using the simpler dask.delayed interface.

We used the dask.delayed (figure 47) function to wrap the function calls that we want to turn into tasks.

None of the function calls have happened yet. Instead, the object total is a Delayed result that contains

a task graph of the entire computation.

68

import dependencies

from time import sleep

calculate square of a number

def calculate_square(x):

sleep(1)

x= x**2

return x

calculate sum of two numbers

def get_sum(a,b):

sleep(1)

return a+b

%%time

call functions sequentially, one after the other

calculate square of first number

x = calculate_square(10)

calculate square of second number

y = calculate_square(20)

calculate sum of two numbers

z = get_sum(x,y)

print(z)

Figure 46: Example testing the speed of pandas sequential operations.

69

import dask

from dask import delayed

%%time

Wrapping the function calls using dask.delayed

x = delayed(calculate_square)(10)

y = delayed(calculate_square)(20)

z = delayed(get_sum)(x, y)

print(z)

Figure 47: Example testing with dask parallel operations.

CPU times: user 2.07ms, sys:4.62ms, total:6.69ms

CPU times: user 1.72ms, sys:2.24ms, total:3.96ms

Figure 48: Results show a 68% gain on a simple task

5.4.4 Other Remarks

In most of the optimization cases, unless there is a very specific context most softwares provide already

some extend of built-in optimization handles. Further optimization requires either management of CPU

resources, HDD storage space, threads, processes, RAM, etc. This is not a zero-sum game whereas an

increase of CPU performance may leak into additional RAM costs, as example. The best optimization

strategy will always depend on the context of the problem and the resources available.

Time-memory tradeoff

Time–memory trade-off is a case where an algorithm or program trades increased space usage with

decreased time.

The data storage consumed in performing a given task (RAM, HDD), and time refers to the time

consumed in performing a given task (computation time or response time). The utility of a given space–

time trade-off is affected by related fixed and variable costs (e.g., CPU speed, storage space), and is subject

to diminishing returns. For example, queuing tasks add a cost in latency. Every time workers finish a task,

they have to ask the scheduler what to do next and sit under-utilized, or even idle, until they get an answer.

70

Recalculation and table look-ups

Another example of a common dilemma involves a lookup table which can be implemented either by ad-

dressing the entire lookup table which will consume more memory resources, or selecting the needed

entries and computing the desired metrics, which will cost less memory requirements but additional com-

puting time.

Indexing and table scans

DBMS offers the capability of creating database index structures improving the speed of lookup operations

at the cost of additional space. Without the index, table scans are necessary to locate the data. The main

difference between these operations is that indexing iterates over only the index data structures and table

rows are retrieved from the index search, while table scans iterate over all table rows which is much more

computationally expensive.

71

Chapter 6

Implementation

Following the project’s main objectives, the application was divided into 3 major modules. Each of this

modules establishes different data flows and operations with common procedures and functions even

though they are applied to possibly very different data (different cycle-phases and different machines).

• Triggers analysis;

• Descriptive statistics;

• Inferential statistics;

6.1 Introduction

The development file structure is organized by folders and within several different files according to the

image below. According to figure 49, the main folders are:

• Assets: contains styling patterns and figures such as images and .css and .js files. These concern

the application layout.

• Pages: contains a file per each specific application page

The main files are:

• Components: it contains the UI components built upon HTML, Dash, and the assets folder

• Graphs: in this file, there were defined functions and pieces of code related to the display of infor-

mation in the pages using graphs and tables

• Database: in this file, there is a class managing context that makes all the calls and data access to

the triggers database (access to the sourcing databases, queries processing, and metrics upload

into a local database)

72

• Database CTOO: this file contains a class that creates all the connections to the data warehouse

and queries mostly data about cycle times

• Statistics functions: this file has all the statistical tools used in the program

• Helper functions: a miscellaneous file with a lot of different functions, patterns and objectives

• App: it is the main file of the application connecting all the other modules.

Figure 49: File structure layout.

Some other files worth mentioning are the installation text file, where general support for the installation

of the application is provided along with explanations and shell commands, and the requirements file which

contains all the dependencies within the project.

73

6.2 Components

6.2.1 Sidebar

Figure 50: Sidebar.

The sidebar (figure 50) is the main building component of the user interface as it allows the selection

of different pages through hrefs and are organized into two collapsible modules: LOSBKM and LOSBPU

which are two different machines.

The sidebar was built on top of Bootstrap sidebar with a customized layout.

6.2.2 Datatable class

The data table is a custom class based on the dash.dash_table and is an interactive table component

designed for viewing and exploring large data-sets. For the purpose of visualization, edits were discarded

as they were not needed at this time. The root for the tables used is React.js for which the python

class is only a binding. The API was designed to be extensively customized through its properties and

rendered with standard HTML. The creation possibilities are nearly endless, but we will focus on some key

customizations of the data tables relevant to this application.

Callbacks Perhaps the most important feature of each component it’s its ability to be responsive to page

interactions. That’s what callbacks are. Each page interaction generates another function in return. For

74

example, the simple click or manipulation of a layout component generates a trigger in another function

which will then return the desired result. In the case of a data table, the simple sorting clicks by itself

generates a callback on the data table function, which then updates the existing data in order to reflect

the sorting desired as shown in figure 51.

app.layout = dbc.Container([

dbc.Label('Click a cell in the table:'),

dash_table.DataTable(df.to_dict('records'),[{"name": i, "id": i} for i in

df.columns], id='tbl'),

dbc.Alert(id='tbl_out'),

])

@callback(Output('tbl_out', 'children'), Input('tbl', 'active_cell'))

def update_graphs(active_cell):

return str(active_cell) if active_cell else "Click the table"

Figure 51: A very simple callback to display the selected cell on click

Listeners and stacking callbacks Considering the single example listed where there is only one

function and callback assigned to the table to highlight the clicked cell, in production data tables need

to possess very different behaviors and be linked to different event listeners. The event listeners can be

added to an event handler using the method addEventListener() (figure 52).

document.getElementById("myBtn").addEventListener("click", displayDate);

Figure 52: Event listener example

In this example, one element is created (a button) and the click of this button generates a callback,

displayDate function. The addEventListener() method attaches an event handler to an element without

overwriting existing event handlers which means several event handlers can be added (figure 53) to an

element simultaneously.

75

document.getElementById("myBtn").addEventListener("click", displayDate);

document.getElementById("myBtn").addEventListener("click",

displayLocalization);

Figure 53: Adding several handlers to an element without overwriting the existing context.

In this second example, two listeners are added for button click with two different callback functions.

This is often useful for elements such as the data table, allowing a click to generate multiple callbacks.

These callbacks can be linked to javascript code, as is the case of native sorting, or pythonic code, by

performing functions linked to the python backend.

CSS Styling Dash data tables formatting follows the HTML table general formatting, so the easiest way

to do this is by creating a CSS file and modifying it with custom formats assigning it to the desired id’s

classes, either using bootstrap templates, code-pen, or other online resources available. This way is by

far the most creative and bound-free as the stylings are endless.

Python Styling Dash data tables also offer standardized pythonic styling using custom class attributes.

This is the easiest way to style it since there are different custom attributes and inputs as well as predefined

themes according to figure 54.

76

style_cell_conditional=[

{

'if': {'column_id': c},

'textAlign': 'left'

} for c in ['Date', 'Region']

],

style_data={

'color': 'black',

'backgroundColor': 'white'

},

style_data_conditional=[

{

'if': {'row_index': 'odd'},

'backgroundColor': 'rgb(220, 220, 220)',

}

],

style_header={

'backgroundColor': 'rgb(210, 210, 210)',

'color': 'black',

'fontWeight': 'bold'

}

Figure 54: A simple example of multiple stylings using pythonic class attributes.

Formatting Data tables also offer formatting options, such as data validation, custom types, and for-

mats (figure 55). The formatting options include the addition of type fields such as numeric and strings,

precision or number of decimal cases, custom ascii symbols, suffix/prefix, among other configurations.

This is all natively supported by the data tables without no additional required customization such as

javascript functions.

77

{

'id': 'min',

'name': 'Min Temperature ˚(F)',

'type': 'numeric',

'format': Format(

nully='N/A',

precision=0,

scheme=Scheme.fixed,

sign=Sign.parantheses,

symbol=Symbol.yes,

symbol_suffix='˚C'

),

equivalent manual configuration

'format': {

'locale': {

'symbol': ['', '˚F']

},

'nully': 'N/A'

'specifier': '($.0f'

}

'on_change': {

'action': 'coerce',

'failure': 'default'

},

'validation': {

'default': None

}

Figure 55: Field formatting for temperatures.

This simple example customizes the table with the machine minimum working temperature, adding a

suffix ”ºC”, and a precision of 0 (integer), among other features.

78

Native Filtering, paging, sorting The data table has built-in filtering, paging, and sorting with its

native javascript code (figure 56). This means we only need to pass the right supported arguments with

Python and it should be done without additional effort. For simple interactive tables where standard opera-

tions are required, this feature is very helpful. Any additional or custom behavior needs to be implemented

on Python side.

dash_table.DataTable(

id='datatable-interactivity',

columns=[

{"name": i, "id": i, "deletable": True, "selectable": True} for i in

df.columns

],

data=df.to_dict('records'),

editable=True,

filter_action="native",

sort_action="native",

sort_mode="multi",

column_selectable="single",

row_selectable="multi",

row_deletable=True,

selected_columns=[],

selected_rows=[],

page_action="native",

page_current= 0,

page_size= 10,

)

Figure 56: Using native options to customize the table. Deletable rows, paging and page size, selectability,

and sorting.

However, these behaviors can also be implemented with python driven logic. An example of page

sizing and paging follows in figure 57.

79

PAGE_SIZE = 5

app.layout = dash_table.DataTable(

id='datatable-paging',

columns=[

{"name": i, "id": i} for i in sorted(df.columns)

],

page_current=0,

page_size=PAGE_SIZE,

page_action='custom'

)

@callback(

Output('datatable-paging', 'data'),

Input('datatable-paging', "page_current"),

Input('datatable-paging', "page_size"))

def update_table(page_current,page_size):

return df.iloc[

page_current*page_size:(page_current+ 1)*page_size

].to_dict('records')

Figure 57: Python driven paging.

Exporting In the newest versions, data tables can easily export the data to several formats upon request,

such as .xlsx and .csv. However, the current design involved the addition of a button element ”Export”

to the layout and exporting using python pandas driven export. We can see this in action in figure 58 and

59.

80

html.Button('Export',id="download-xlsx")

@app.callback(

Output("first_output","data"),

[Input('download-xlsx','n_clicks'),Input("ticker", "value")],

prevent_initial_call = True,

)

def dl_un_xlsx(n_clicks,ticker):

while n_clicks == 1:

df.to_excel("data_{}.xlsx".format(timestep))

Figure 58: Python driven export using a layout button and pandas.

Figure 59: Export example with dummy data.

6.2.3 Graph class

The charts module inherits most of its charts from plotly.js using a simple python binding. The dcc.Graph

(figure 60) also supports other python figure environments such as seaborn, datashader, matplotlib and

bokeh although for the purpose of streamlining the code, we will only be looking at plotly.

app = Dash()

app.layout = html.Div([

dcc.Graph(figure=fig)

])

Figure 60: Python dash binding for Plotly graphs.

The syntax for graph creation in dash is straightforward. We create the figure using the supported

libraries such as plotly figure and pass it onto the dcc.Graph constructor and it will automatically convert

81

it to browser-interpreted code.

Interactive Graphs Interactive visualization is the ultimate goal of every data visualization application.

For this purpose, plotly.js uses a vectorized backend resourcing to high-quality SVG images and We-

bGL for the rendering.

When it comes to interactivity, the interactions happen because every figure in dash consists of a set of

attributes and properties as we have already seen. This means everything can be dynamically changed

with callbacks and custom functions targeting such attributes. Starting with the basics, the dcc.Graph

component has four attributes that can change through user interaction: hoverData, clickData,

selectedData, relayoutData. These properties update when hovering over points, clicking on

points, or selecting regions of points in a graph.

Other supported lists of interactive rich features include:

• Transitions between callbacks (figure 61)

'transition': {

'duration': 500,

'easing': 'cubic-in-out'

}

Figure 61: Transition example.

• Custom animations

• Cross-filtering using different graphs, buttons, dropdown or other layout elements

• Graph styling using CSS

• Zooming, selecting, hovering, clicking

• Overlapping data such as bar charts, trendlines

• Custom notes and drawings

Sharing data between callbacks In order to pursue complex interactions between different layout

elements, it is often needed to share data between callbacks (figure 62). While it’s not required, it’s very

82

much preferred since it will improve performance, especially on large data sets. This means having one

callback with multiple outputs instead of having several callbacks on the original data with one output.

@callback(Output('intermediate-value', 'data'), Input('dropdown', 'value'))

def clean_data(value):

some expensive data processing step

cleaned_df = slow_processing_step(value)

more generally, this line would be

json.dumps(cleaned_df)

return cleaned_df.to_json(date_format='iso', orient='split')

@callback(Output('graph', 'figure'), Input('intermediate-value', 'data'))

def update_graph(jsonified_cleaned_data):

more generally, this line would be

json.loads(jsonified_cleaned_data)

dff = pd.read_json(jsonified_cleaned_data, orient='split')

figure = create_figure(dff)

return figure

@callback(Output('table', 'children'), Input('intermediate-value', 'data'))

def update_table(jsonified_cleaned_data):

dff = pd.read_json(jsonified_cleaned_data, orient='split')

table = create_table(dff)

return table

Figure 62: Callback dependencies.

In figure 63, there are 3 callback functions but only 2 graphs are being updated and transferred to

layout. The reason there is a third callback function is because the two graph callbacks depend on the

same sourcing data, therefore if we want to change or query the original data, we only need to do it once

before each graph updates.

83

Figure 63: Understanding callbacks hierarchy and precedence in order to avoid redundant operations

using data graphs.

Caching Another solution to share data between components and pages is to cache data on the server

side. In computing, a cache is a high-speed data storage layer that stores a subset of data, typically

transient in nature, so that future requests for that data are served up faster than is possible by accessing

the data’s primary storage location.

Caching uses Redis via Flask-Cache for storing “global variables” on the server side in a database. This

data is accessed through a function (global_store()), the output of which is cached and keyed by its

input arguments. Uses the dcc.Store solution to send a signal to the other callbacks when the expensive

computation is complete. This signaling is performant because it allows the expensive computation to only

take up one process and be performed once. Without this type of signaling, each callback could end up

computing the expensive computation in parallel, locking four processes instead of one.

6.3 Modules

The modules are built on top of several components and consist of several callbacks. Modules were

designed with the strategic goals of the application in mind and divided into three main modules:

• Descriptive statistics is the module responsible for the calculation and display of all the descriptive

statistics tables and sampling.

• Triggers is the module responsible for the display and aggregation of PLC cid and triggers used in

each machine and class considered.

• Inferential statistics is the module responsible for the sampling and calculation of inference metrics.

84

6.3.1 Triggers module

The triggers module does aggregations and computations per start and end cycle triggers for each ma-

chine, construction type, tire type and inch size. The triggers module is as much a support decision tool

as a risk measurement since it increases the accountability and visibility of the logic circuit programming

changes effected by the engineering department which otherwise would be unknown. These changes can

have an impact on productivity and cycle times, thus the availability of such information to the industrial

department is crucial.

Purpose and objectives

The main purpose of this module is to provide a holistic view of the programming cid triggers being con-

sidered for the start and end phases across each class variable. It should help the user to understand

the number of occurrences of each trigger at the programmable logic circuit level and compare, for ex-

ample, with the PLC charge list or other accountable information and conclude if the machine is properly

programmed and considering the right trigger for the job or if it requires an engineering revision.

This module was the first to be developed and it is arguably the most important one in our system logic

because it verifies before any additional computation if the data being produced is reliable. According

to the data quality requirements, in order to achieve comparability between peers, the data acquisition

methods must be the same between machines. For instance, if the machines are considering different

triggers for the same cycle elements, can we consider the cycle elements as being the same? The answer

is very likely no since the cycle phases will have different start or end triggers.

User inputs

From the user perspective, the first components which require user interaction are located in the topbar

and are the datepicker component, cycle phases dropdown, and tire type dropdown. In addition, there are

two tabs, one for the initial triggers analysis and the other for the final triggers.

The datepicker allows the user to select a date window to collect the data and perform the analysis. The

cycle phases dropdown selects the cycle phase the user wants to analyze. Both of these components

are mandatory. There is an additional drop-down in case the user wants to filter by tire type and it’s an

additional requested feature that is helpful to troubleshoot programming changes across tire types.

On an important note, these user inputs affect all the visualization elements. By querying tire type, these

changes should reflect in all graphs and tables accordingly.

85

Visualization elements

For the assessment of the information, there are 3 main graphs and one accessory table. The graphs are

as follows:

• Tire type sunburst chart: this chart allows the user to understand how the triggers are related to the

tire type. By selecting the trigger in the analysis, the user is able to see the distribution of counts

across tire types. If there is any causal relationship between the triggers and tire types (which

obviously has to be determined by the engineering team), this graph will help show it.

• Machine bar chart: this machine shows the distribution of triggers across every machine. The user

is able to see if the occurrence of a specific trigger is linked to a specific machine which should

then be forward to the engineering once again to address the specific machine(s).

• Data table: This is a general-purpose data table whose main purpose is to support as a reference

of the tables above. This table should contain all the information displayed and can be filtered or

exported for better analysis or information forwarding.

The figure 64 represents a skeleton of the layout.

Figure 64: Page layout.

86

6.3.2 Inferential statistics

The inferential statistics module is by far the most computationally complex and heavyweight module and

is thus one of the main focuses of this project. It is able to provide several cycle time estimators at different

confidence levels.

Purpose and objectives

The main objective of this module is to be able to provide an accurate estimation of the cycle time estima-

tors using reliable statistical methods and robust estimators.

From the user perspective, upon parameterization, it should able to return dynamically several estimators

such as mean, and quartiles, among others using different methods which can then be compared or used

ensemble to provide an even more robust estimator.

User inputs

The user inputs for this algorithm are the data range picker for which the samples are collected and the

cycle phase selector. These are standard to all the modules. In addition, one key input of this module

is the confidence level considered for statistical computations. The confidence level is a parameter that

must be considered in every frequentist statistical analysis and refers to the probability that the real value

of the original population for this statistic is within the defined confidence limits.

The predefined confidence levels are 95% and 99%.

Algorithm logic

The development of this algorithm posed a few challenges during the staging phases due to several factors,

namely its computation complexity and lack of scalability with data set size and computational power and

the fact that the calculations could not be pre-computed and stored before running (it should compute on

demand). This way a key factor during development because it vastly restricted the number of estimators

used and the data-set size.

Sample size One of the solutions to fight the scalability of the data sets is to consider a fixed-size

data. The number chosen for this was 3000 samples. In order to achieve this number, a lot of runs were

performed to study:

87

• the stability of the results from the procedures

• the total elapsed time between runs

• theoretical considerations of the algorithms used

The standard rule for every inference algorithm is the bigger and broader data set, the better results it

should be able to return (in theory). However, by assessing this curve and considering the computational

complexity we are able to study the amount of accuracy and stability gained per 100 additional data points

per additional complexity added (algorithm duration). This was the reason why the 3000 samples were

considered.

Smoothing factor and sample size In order to achieve better and more predictable results, we con-

sidered a higher smoothing factor in both the distribution fitting methods and the kernel density estimation.

In the following graph figure 65, we can see the test runs for the distribution fit using different smoothing

operators. We concluded the best approach would be to consider a smoothing factor of 4 since it provides

the best results for low sample sizes (2000-3000 samples).

Figure 65: Smoothing factor per sample size

88

Re-sampling There are also two parameters in the table, the sample drawn and the sample used. The

sample drawn is the number of samples drawn from the original data-set and the sample used is the size

of the sample used to feed the algorithm. The reason why there are two separate fields for sample size is

due to re-sampling methods used to ensure there is always enough data to perform computations.

Therefore, if for some reason there is insufficient data being drawn from one machine (ex. date range

of one day, machine has low volume due to maintenance or shift stoppage, etc) the algorithm will use

re-sampling techniques to fill out the data. Thus, samples drawn between 2000-3000 samples will be

accepted and considered without further re-sampling. However, for samples under 2000, the algorithm

will generate enough samples to guarantee a minimum of 2000 samples.

Choice of estimators The procedure considers several estimators for each statistic but only displays

the best-fitting ones as depicted in figure 66. When first running the program it will fit several distributions

and methods and then it will evaluate the best-suited methods using the sum of squared errors metric

which is the sum of the errors between the distribution of the actual data and the distribution of the

estimator.

This method was requested by the users so it doesn’t overcrowd and clutter the display with useless data.

Figure 66: Page layout.

89

6.3.3 Descriptive statistics module

Purpose and objectives

Then descriptive statistics module collects stratified samples and aggregates several descriptive statistics

per interest variable. The statistics calculated are mean, mode, standard deviation, Q1, Q2, Q3, inter-

quartile range 1-3, inter-quartile range 1-2, inter-quartile range 2-3, skewness, kurtosis.

Algorithm logic

Sample size Once again, the sample size is a key variable to consider when doing dynamic studies.

The population size can be as big as several thousands of lines per machine or none or close to none per

machine.

For the first problem, the solution found was to draw samples. This time the algorithm is not so computa-

tionally expensive as the inferential statistics module, but the dimension of the population could still be a

problem as it grows to infinity. In addition, the purpose of samples in statistics is also to be able to create

a reliable inference about population statistics without running through the population. For such purpose

was then considered a fractionary sampling.

The sampling function follows a hyperbolic co-secant as pictured below.

cschz(z) =
2

(e10z−3 − e−10z−3)
(6.1)

Stratified sampling and aggregations In order to calculate meaningful statistics, the samples are

stratified according to the different classes considered: machines, tire type, recipes, operator, shift, and

rim size. The reason stratified sampling is used is to have a meaningful representation across classes and

to have a balanced data set.

As an example, when calculating machine statistics, the algorithm balances out all the remaining categories

of the data-set for this machine, ensuring there is a similar number of samples per recipe, operator, shift,

and tire type. If this were not the case, the recipe high runners and tire types would overweight the

remaining tire classes, and thus the machine statistics would be biased towards them.

90

Chapter 7

Conclusion

We have presented an end-to-end data statistical system for doing data science with relational data models.

The system achieved the objectives proposed initially:

• Increase overall awareness of machine cycle time and adjacent information

• Develop a risk assessment tool to oversee the current status of validation of PLC triggers

• Develop a statistical analysis framework to infer and predict cycle times with accuracy

• A vast set of interface user requirements

Overall the system was tested in production. It was documented and its performance was tested. The

current features should be reliable and work according to the description. In the ultimate analysis, these

goals will align with the strategic objectives of the company.

Prospects for future work

This tool was the first iteration of a data-driven concept to incorporate data in decision support systems.

It’s clearly there is still a lot of work to be done and a lot of potential to be discovered. To this end, some

of the directions for future work are:

Data validation The current data is very unreliable and requires additional work in order to assure data

quality. It also requires the implementation of fault measures and KPIs to a) prevent the occurrence of data

quality concerns and b) increase the visibility and monitoring of data quality across time and machines.

Quality data should be the foundation of any good data-driven module.

91

Database management The current database system is a data warehouse barely staging ready. A lot

of new procedures should be implemented to clean up the data, aggregate and manipulate into higher-level

metrics. The next step would be to create a reliable pipeline into a data mart with pertaining measures

and views.

Additional behaviors The current system logic is very restrictive which can make the comparison of

the data complicated. It provides a very basic framework to look into cycle times, trigger breakdown, and

descriptive statistics. This could be definitely improved with new behaviors such as the longitudinal study

of a class to understand the evolution of a variable across time or cross comparison across same class

objects (operator, shift, machine performance comparison). The current application does not provide

means to make a piece-wise analysis. That is, although the data is fed per part number, it is currently not

possible to check the phase times for individual pieces.

Rich layout dashboard The dashboard layout has far too little and simple elements which are not so

fulfilling to interact.

92

Bibliography

Adetokunbo AA Adenowo and Basirat A Adenowo. Software engineering methodologies: a review of the wa-

terfall model and object-oriented approach. International Journal of Scientific & Engineering Research,

4(7):427–434, 2013.

AG Continental and RBI Finanzanalyst. Continental ag. 2019.

Nello Cristianini and Elisa Ricci. Support Vector Machines, pages 928–932. Springer US, Boston, MA,

2008. ISBN 978-0-387-30162-4. doi: 10.1007/978-0-387-30162-4_415. URL https://doi.

org/10.1007/978-0-387-30162-4_415.

Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-

based Learning Methods. Cambridge University Press, 2000. doi: 10.1017/CBO9780511801389.

Dask.

Anthony Christopher Davison and David Victor Hinkley. Bootstrapmethods and their application. Number 1.

Cambridge university press, 1997.

John Dinardo and Justin Tobias. Nonparametric density and regression estimation. Journal of Economic

Perspectives, 15:11–28, 02 2001. doi: 10.1257/jep.15.4.11.

Scott R Eliason. Maximum likelihood estimation: Logic and practice. Number 96. Sage, 1993.

Jiawei Han, Micheline Kamber, and Jian Pei. 4 - data warehousing and online analytical processing. In

Jiawei Han, Micheline Kamber, and Jian Pei, editors, Data Mining (Third Edition), The Morgan Kaufmann

Series in Data Management Systems, pages 125–185. Morgan Kaufmann, Boston, third edition edition,

2012. ISBN 978-0-12-381479-1. doi: https://doi.org/10.1016/B978-0-12-381479-1.00004-6. URL

https://www.sciencedirect.com/science/article/pii/B9780123814791000046.

SJ Hua and Zhirong Sun. Support vector machine approach for protein subcellular localization prediction.

Bioinformatics (Oxford, England), 17:721–8, 09 2001. doi: 10.1093/bioinformatics/17.8.721.

93

https://doi.org/10.1007/978-0-387-30162-4_415
https://doi.org/10.1007/978-0-387-30162-4_415
https://www.sciencedirect.com/science/article/pii/B9780123814791000046

Nojun Kwak. Nonlinear projection trick in kernel methods: An alternative to the kernel trick. IEEE transac-

tions on neural networks and learning systems, 24(12):2113–2119, 2013.

Guoxu Liu, Shuyi Mao, and Jae Kim. A mature-tomato detection algorithm using machine learning and

color analysis. Sensors, 19:2023, 04 2019. doi: 10.3390/s19092023.

Continental Mabor. Continental mabor. https://www.continentalmabor.pt, 2022. Accessed: 2022-09-30.

Mihhail Matskin, Shirin Tahmasebi, Amirhossein Layegh, Amir H Payberah, Aleena Thomas, Nikolay

Nikolov, and Dumitru Roman. A survey of big data pipeline orchestration tools from the perspective

of the datacloud project. In Proc. 23rd Int. Conf. Data Analytics Management Data Intensive Domains

(DAMDID/RCDL 2021), pages 63–78, 2021.

William S Noble. What is a support vector machine? Nature biotechnology, 24(12):1565–1567, 2006.

Stefano Paolozzi, Pierluigi Del Nostro, Francesco Orciuoli, Pierluigi Ritrovato, and Daniele Toti. A semantic-

based architecture for managing knowledge-intensive organizations: The aristotele platform. 11 2012.

ISBN 978-3-642-38332-8. doi: 10.1007/978-3-642-38333-5_15.

Noah H. Paulson, Joseph Kubal, Logan Ward, Saurabh Saxena, Wenquan Lu, and Susan J. Babinec.

Feature engineering for machine learning enabled early prediction of battery lifetime. Jour-

nal of Power Sources, 527:231127, 2022. ISSN 0378-7753. doi: https://doi.org/10.1016/j.

jpowsour.2022.231127. URL https://www.sciencedirect.com/science/article/pii/

S0378775322001495.

Marek Pecha and David Horák. Analyzing l1-loss and l2-loss Support Vector Machines Implemented in PER-

MON Toolbox, pages 13–23. 01 2020. ISBN 978-3-030-14906-2. doi: 10.1007/978-3-030-14907-9_

2.

Amazon Redshift. Redshift. https://docs.aws.amazon.com/redshift/latest/dg/c_high_

level_system_architecture.html, 2022. Accessed: 2010-09-30.

Mordor Report. Mordor inteligence report. https://www.mordorintelligence.com/

industry-reports/automotive-tires-market, 2012. Accessed: 2010-09-30.

Expert Market Research. Expertmarketresearch. https://www.expertmarketresearch.com/

reports/tire-market, 2010. Accessed: 2010-09-30.

Brendan Rodgers. Tire engineering: An introduction. CRC Press/Taylor amp; Francis Group, LLC, 2020.

94

https://www.sciencedirect.com/science/article/pii/S0378775322001495
https://www.sciencedirect.com/science/article/pii/S0378775322001495
https://docs.aws.amazon.com/redshift/latest/dg/c_high_level_system_architecture.html
https://docs.aws.amazon.com/redshift/latest/dg/c_high_level_system_architecture.html
https://www.mordorintelligence.com/industry-reports/automotive-tires-market
https://www.mordorintelligence.com/industry-reports/automotive-tires-market
https://www.expertmarketresearch.com/reports/tire-market
https://www.expertmarketresearch.com/reports/tire-market

Sqlalchemy. sqlalchemy. https://docs.sqlalchemy.org/en/20/intro.html, 2023. Ac-

cessed: 2010-09-30.

Leonard A Stefanski and Raymond J Carroll. Deconvolving kernel density estimators. Statistics, 21(2):

169–184, 1990.

George R Terrell and David W Scott. Variable kernel density estimation. The Annals of Statistics, pages

1236–1265, 1992.

Lipo Wang. Support vector machines: theory and applications, volume 177. Springer Science & Business

Media, 2005.

95

https://docs.sqlalchemy.org/en/20/intro.html

	Introduction
	Motivation
	Objectives
	Research Methodology
	Dissertation Structure

	State of the Art
	Support Vector Machine
	Mathematical Formulation
	Soft Margin Classifier
	Non-Linear Classifier and Kernel Trick

	Maximum Likelihood Estimation
	Mathematical Formulation
	Normal Distribution

	Kernel Density Estimation
	Mathematical Formulation
	Parzen Windows

	Bootstrap Method
	Confidence Intervals and Bootstrap Percentile Method

	Company overview
	Company Description
	Continental Mabor Organization
	Tire Structure
	Tire Manufacturing Process

	Project in Tire Industry
	Overview
	Competitive Analysis
	Waterfall Methodology
	Requirements
	Project Overview
	System architecture
	Technical Requirements

	Tech Stack
	Amazon Redshift
	SQLAlchemy
	Python and Jupyter Notebooks
	Jupyter Notebooks
	Apache Airflow

	Data Pipeline Orchestration
	Data Integration
	Database Modeling
	STAR Schema
	Snowflake Schema
	Snowflake Procedures
	Virtual Tables

	Data Transformation
	Data Cleansing & Data Validation
	Aggregation functions
	Feature engineering & data reduction

	Performance
	Wrapper Pattern
	SQL optimizations
	Python Optimization
	Other Remarks

	Implementation
	Introduction
	Components
	Sidebar
	Datatable class
	Graph class

	Modules
	Triggers module
	Inferential statistics
	Descriptive statistics module

	Conclusion

