ASYMPTOTICS FOR GENERATING FUNCTIONS OF THE FUSS-CATALAN NUMBERS

Assis Azevedo, Davide Azevedo

Submitted to Math. Inequal. Appl.

Abstract

We consider a certain class of polynomials with coefficients in \mathbb{Z}_{M}, all of which admit a unique zero. We prove that the zero of each of those can be given by a (multiple) sum involving the coefficients and a vectorial generalization of the Fuss-Catalan numbers.

We also consider the sequence of the partial sums of the generating function of the d-FussCatalan numbers. Using the holonomy of this sequence, we study its asymptotic behaviour. The main difference from the known case $d=2$ is, in that one, we have a "closed" expression for the generating function.

1. Introduction

The Catalan numbers were studied by Euler, in the context of enumerating triangulations of regular polygons [5]. Their study by the Mongolian mathematician Antu Ming in the eighteenth century was announced in 1988 by Luo in [10] and further discussed by Larcombe in [9].

These numbers have multiple interpretations and applications, several of which can be found, for example, in [18], which also covers different generalizations of them. Throughout this paper we focus on a couple of these, the d-Fuss-Catalan numbers, for $d \in \mathbb{N} \backslash\{1\}$, whose element of order $n, C_{d}(n)$, is defined by

$$
\begin{equation*}
C_{d}(n)=\frac{1}{(d-1) n+1}\binom{d n}{n}, \tag{1}
\end{equation*}
$$

and a vectorial generalization of the Catalan numbers, which we will define in (4). $C_{d}(n)$, introduced by Fuss in [6], counts, for example, the number of partitions of a $n(d-1)+2$-gon into $d+1$-gons and the number of d-ary trees with n internal nodes (see [7]). Recall that the Catalan numbers are the 2 -Fuss-Catalan numbers.

The first problem we are interested in is finding the zeros of some polynomials in \mathbb{Z}_{M}, the ring of the integers modulo $M \in \mathbb{N}$. Consider a polynomial $Q=Q(x)$ with coefficients in \mathbb{Z}_{M} of the form
$a_{d} x^{d}+\cdots+a_{1} x+a_{0}, \quad$ where a_{i} is nilpotent for $i \geq 2$ and a_{1} invertible.

[^0]The Chinese remainder theorem and the Hensel lemma guarantee that there exists exactly one zero of Q in \mathbb{Z}_{M}. In this work, we will find a polynomial P in $d+1$ variables such that the zero of any polynomial as in (2) is equal to $P\left(a_{0}, a_{1}^{-1}, a_{2}, \ldots, a_{d}\right)$. The coefficients of P are essentially vector generalized Catalan numbers, which are d -Fuss-Catalan numbers if $a_{i}=0$ for $1<i<d$.

The second problem was motivated by sequences presented in OEIS, The On-Line Encyclopedia of Integer Sequences [17]. For $d \in \mathbb{N} \backslash\{1\}, r \in \mathbb{R} \backslash\{0\}$, and $n \in \mathbb{N}$, consider the sequence

$$
\begin{equation*}
X(d, r, n)=\sum_{k=0}^{n} C_{d}(k) r^{k} . \tag{3}
\end{equation*}
$$

In connection with the first problem, we will see that, if p is a prime number and r a multiple of p then, $X(d, r, n)$ is the zero, in $\mathbb{Z}_{p^{n+1}}$ of the polynomial $r x^{d}-x+1$.

OEIS, in the sequence A112696 and onwards, presents recurrence formulas for $(X(2, r, n))_{n \in \mathbb{N}}$ for some values of r, conjecturing them for some others. In this work, we obtain recurrence formulas for all values of d and r.

We also study the asymptotic behaviour of this sequence, when it diverges. For $d=2$, this was done by Mattarei in [11], using, among other instruments, the generating function of the Catalan numbers $F_{2}(x)=\frac{1-\sqrt{1-4 x}}{2 x}$. Elezović, in [3, 4] gives an efficient algorithm for recursive calculations of asymptotic expansions of several sums including $X(2,1, n)$. If $d>2$ we do not have a nice expression for $F_{d}(x)$, apart from the equality $F_{d}(x)=1+x F_{d}(x)^{d}$.

We use some well-known results for holonomic sequences such as the PoincaréPerron Theorem in [13, 12], and Corollary 1.6 of [8] to prove that

$$
X(d, r, n) \sim \frac{1}{\sqrt{2 \pi}} \frac{\sqrt{d}}{(d-1)^{\frac{3}{2}}} \frac{A(d) r}{A(d) r-1}(A(d) r)^{n} n^{-\frac{3}{2}},
$$

where $A(d)=\frac{d^{d}}{(d-1)^{d-1}}$, and $A(d)|r|>1$.

2. Preliminaries

The Catalan numbers have a lot of generalizations. In this work we are interested in the d-Fuss-Catalan numbers, defined in (1), and the natural vectorial generalization, $C_{\vec{v}}(\vec{n})$, seen, for example, in [2] and a more general case in [14]. $C_{\vec{v}}(\vec{n})$ is defined by

$$
\begin{equation*}
C_{\vec{v}}(\vec{n})=\frac{1}{(\vec{v}-\overrightarrow{1}) \cdot \vec{n}+1}\binom{\vec{v} \cdot \vec{n}}{\vec{n}}=\frac{1}{\vec{v} \cdot \vec{n}+1}\binom{\vec{v} \cdot \vec{n}+1}{\vec{n}} \tag{4}
\end{equation*}
$$

where, given $s \in \mathbb{N}, \vec{n} \in \mathbb{N}_{0}^{S}$ and $\vec{v} \in \mathbb{N}^{s}, \vec{v} \cdot \vec{n}$ denotes the inner product of \vec{n} and \vec{v} and $\binom{\vec{\cdot} \cdot \vec{n}}{\vec{n}}$ is the multinomial coefficient $\frac{(\vec{v} \cdot \vec{n})!}{n_{1}!\cdots n_{!}!\left(\vec{v} \cdot \vec{n}-\left(n_{1}+\cdots+n_{s}\right)!\right.}$.
$C_{\vec{v}}(\vec{n})$ is, for example, the number of ways that $\vec{v} \cdot \vec{n}$ people can be seated at a (round) table in such a way that, for all $i=1, \ldots, s$, there exist n_{i} groups of v_{i} people giving a v_{i}-hand shake with no crossings between different groups [2]. Of course, this

Figure 1: This is one of the 92810 possible configuration for 18 people to be seated around a table, as referred to in the text for $\vec{n}=(3,4)$ and $\vec{v}=(2,3)$.
is the same as the number of subdivisions of $\vec{v} \cdot \vec{n}$ points on a circumference in n_{i} sets of v_{i} point groups without crossing.
$C_{\vec{v}}(\vec{n})$ is also is the number of polygonal dissections of an $(\vec{v}-\overrightarrow{1}) \cdot \vec{n}+2$-gon into $n_{1}+\cdots+n_{s}$ polygons with n_{i} of them having $v_{i}+1$ edges, for $i=1, \ldots, s$. This can be found, for example, in [15].

Analogously with what happens with the Catalan numbers [16] and Fuss-Catalan numbers [6], these generalized Catalan numbers satisfy a recurrence relation that is an easy consequence of a result of Rhoades in [14] stating, in particular, that, if $\vec{r} \in \mathbb{N}_{0}^{s}$, $\vec{v} \in \mathbb{N}^{s}, m \in \mathbb{N}$ then

$$
\begin{equation*}
\sum_{\vec{r}_{1}+\cdots+\vec{r}_{m}=\vec{r}} C_{\vec{v}}\left(\vec{r}_{1}\right) \cdots C_{\vec{v}}\left(\vec{r}_{m}\right)=\frac{m}{m+\vec{v} \cdot \vec{r}}\binom{m+\vec{v} \cdot \vec{r}}{\vec{r}} . \tag{5}
\end{equation*}
$$

Lemma 1. For $s \in \mathbb{N}, \vec{n} \in \mathbb{N}_{0}^{S}$ and $\vec{v} \in \mathbb{N}^{s}$ we have

$$
\begin{equation*}
\forall \vec{n} \in \mathbb{N}_{0}^{S} \backslash\{\overrightarrow{0}\} \quad C_{\vec{v}}(\vec{n})=\sum_{i=1}^{s}\left(\sum_{\vec{r}_{1}+\cdots+\vec{r}_{v_{i}}=\vec{n}-\vec{e}_{i}} C_{\vec{v}}\left(\vec{r}_{1}\right) \cdots C_{\vec{v}}\left(\vec{r}_{v_{i}}\right)\right)^{1} \tag{6}
\end{equation*}
$$

where \vec{e}_{i} is the unit-vector with 1 in its $i^{\text {th }}$ coordinate.
Proof. For $i=1, \ldots, s$ such that $n_{i}>0$, using (5) for $m=v_{i}$ and $\vec{r}=\vec{n}-\vec{e}_{i}$, we obtain

$$
\begin{aligned}
\sum_{\vec{r}_{1}+\cdots+\vec{v}_{v_{i}}=\vec{n}-\vec{e}_{i}} C_{\vec{v}}\left(\vec{r}_{1}\right) \cdots C_{\vec{v}}\left(\vec{v}_{v_{i}}\right) & =\frac{v_{i}}{v_{i}+\vec{v} \cdot\left(\vec{n}-\vec{e}_{i}\right)}\binom{v_{i}+\vec{v} \cdot\left(\vec{n}-\vec{e}_{i}\right)}{\vec{n}-\vec{e}_{i}} \\
& \left.=\frac{v_{i}(\vec{v} \cdot \vec{n}}{\vec{v} \cdot \vec{n}} \begin{array}{c}
\vec{n}-\vec{e}_{i}
\end{array}\right) \\
& =\frac{(\vec{v} \cdot \vec{n})!}{(\vec{v} \cdot \vec{n}) n_{1}!\cdots n_{s}!((\vec{v}-\overrightarrow{1}) \cdot \vec{n}+1)!} v_{i} n_{i}
\end{aligned}
$$

and then

$$
\sum_{i=1}^{s} \sum_{\vec{r}_{1}+\cdots+\vec{r}_{v_{i}}=\vec{n}-\vec{e}_{i}} C_{\vec{v}}\left(\vec{r}_{1}\right) \cdots C_{\vec{v}}\left(\vec{r}_{v_{i}}\right)=\frac{(\vec{v} \cdot \vec{n})!}{n_{1}!\cdots n_{s}!((\vec{v}-\overrightarrow{1}) \cdot \vec{n}+1)!},
$$

[^1]completing the proof.
Recall that a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is holonomic of order $s(s \in \mathbb{N})$ and degree t $\left(t \in \mathbb{N}_{0}\right)$ if there exist $p_{0}, p_{1}, \ldots, p_{s}$ polynomials in n such that p_{0} never vanishes (to simplify), the maximum of their degrees is t and
$$
\forall n \in \mathbb{N} \quad\left[n>s \Rightarrow p_{0}(n) a_{n}=\sum_{i=1}^{s} p_{i}(n) a_{n-s}\right] .
$$

It is well known (the proof can be made, for example, using the Stirling approximation) that

$$
\begin{equation*}
C_{d}(n) \sim \frac{1}{\sqrt{2 \pi}} \frac{\sqrt{d}}{(d-1)^{\frac{3}{2}}}\left(\frac{d^{d}}{(d-1)^{d-1}}\right)^{n} n^{-\frac{3}{2}} . \tag{7}
\end{equation*}
$$

In the article [1] one can find good approximations of binomials of the form $\binom{d n}{n}$.

3. The zero of polynomials of particular kind

As it was said in the Introduction, any polynomial of the form (2) has a unique zero in \mathbb{Z}_{M}. This is a consequence of the following result, which is just a version of Hensel's Lemma applied to this kind of polynomials, and of the Chinese Remainder Theorem.

Lemma 2. Let p be a prime number and $Q=Q(x)$ a polynomial of the form $a_{d} x^{d}+\cdots+a_{1} x+a_{0}$, where p divides a_{i} for $i \geq 2$ and p do not divide a_{1}. Then, for all $k \in \mathbb{N}$, the congruence $Q(x) \equiv 0 \bmod p^{k}$ has a unique solution.

Proof. If $k=1$ then the result is trivial as $Q(x) \equiv 0 \bmod p$ is equivalent to $a_{1} x+$ $a_{0} \equiv 0 \bmod p$ and a_{1} is invertible modulo p. For $m \geq 1$, if x_{m} is the unique solution of $Q(x) \equiv 0 \bmod p^{m}$, then all solutions of $Q(x) \equiv 0 \bmod p^{m+1}$ are of the form $x=$ $x_{m}+s p^{m}$, with $s \in \mathbb{Z}$. As p divides a_{i} for $i \geq 2$ and p^{m} divides $Q\left(x_{m}\right)$,

$$
\begin{aligned}
Q(x) \equiv 0 \quad \bmod p^{m+1} & \Leftrightarrow Q\left(x_{m}\right)+a_{1} p^{m} s \equiv 0 \quad \bmod p^{m+1} \\
& \Leftrightarrow \frac{Q\left(x_{m}\right)}{p^{m}}+a_{1} s \equiv 0 \quad \bmod p
\end{aligned}
$$

and the conclusion follows as this last congruence has only one solution modulo p.
We now present an expression for the zero of polynomials of the form (2), for $M \in \mathbb{N}$. All the operations in this section are made in the ring \mathbb{Z}_{M} and it is clear that all the "infinite" sums referred to here only have a finite number of non-zero terms.

Let $d \geq 2$ and $\vec{v}=\left(v_{2}, \ldots, v_{d}\right) \in \mathbb{N}^{d-1}$. Consider, for $\vec{x}=\left(x_{2}, \ldots, x_{d}\right)$ whose coordinates are all nilpotent in \mathbb{Z}_{M}, the (finite) sum in \mathbb{Z}_{M}

$$
\begin{equation*}
y_{\vec{v}}(\vec{x})=\sum_{\vec{n} \in \mathbb{N}_{0}^{d-1}} C_{\vec{v}}(\vec{n}) x_{2}^{n_{2}} \cdots x_{d}^{n_{d}}, \quad \text { where } \vec{n}=\left(n_{2}, \ldots, n_{d}\right) . \tag{8}
\end{equation*}
$$

Notice that $y_{\vec{v}}(\vec{x})$ is always invertible as it is a sum of 1 with a nilpotent element.

Lemma 3. With the above notation,

$$
\begin{equation*}
y_{\vec{v}}(\vec{x})=1+x_{2} y_{\vec{v}}(\vec{x})^{v_{2}}+\cdots x_{d} y_{\vec{v}}(\vec{x})^{v_{d}} . \tag{9}
\end{equation*}
$$

Proof. It is easy to see by comparing the terms of the sums that, for $i=2, \ldots, m$,

$$
\begin{aligned}
x_{i} \cdot y_{\vec{v}}(\vec{x})^{v_{i}} & =\sum_{\vec{n} \in \mathbb{N}_{0}^{d-1}}\left(\sum_{\vec{r}_{1}+\cdots+\vec{r}_{v_{i}}=\vec{n}} C_{\vec{v}}\left(\vec{r}_{1}\right) \cdots C_{\vec{v}}\left(\vec{r}_{v_{i}}\right)\right) x_{2}^{n_{2}} \cdots x_{d}^{n_{d}} \cdot x_{i} \\
& =\sum_{\vec{n} \in \mathbb{N}_{0}^{d-1}, n_{i} \geq 1}\left(\sum_{\vec{r}_{1}+\cdots+\vec{r}_{v_{i}}=\vec{n}-\vec{e}_{i}} C_{\vec{v}}\left(\vec{r}_{1}\right) \cdots C_{\vec{v}}\left(\vec{r}_{v_{i}}\right)\right) x_{2}^{n_{2}} \cdots x_{d}^{n_{d}}
\end{aligned}
$$

and then, denoting by z the right side of (9),

$$
\begin{aligned}
z & =1+\sum_{i=2}^{d}\left(\sum_{\vec{n} \in \mathbb{N}_{0}^{d-1}, n_{i} \geq 1}\left(\sum_{\vec{r}_{1}+\cdots+\vec{r}_{v_{i}}=\vec{n}-\vec{e}_{i}} C_{\vec{v}}\left(\vec{r}_{1}\right) \cdots C_{\vec{v}}\left(\vec{r}_{v_{i}}\right)\right) x_{2}^{n_{2}} \cdots x_{d}^{n_{d}}\right) \\
& =1+\sum_{\vec{n} \in \mathbb{N}_{0}^{d-1} \backslash\{\overrightarrow{0}\}}\left(\sum_{i=2}^{d} \sum_{\vec{r}_{1}+\cdots+\vec{r}_{v_{i}}=\vec{n}-\vec{e}_{i}} C_{\vec{v}}\left(\vec{r}_{1}\right) \cdots C_{\vec{v}}\left(\vec{r}_{v_{i}}\right)\right) x_{2}^{n_{2}} \cdots x_{d}^{n_{d}}
\end{aligned}
$$

and the conclusion follows using (6) and the fact that $C_{\overrightarrow{\mathrm{V}}}(\overrightarrow{0})=1$.
We are now in the conditions to show an (algebraic) expression for the zero of a polynomial as in (2), whose existence and uniqueness are guaranteed by Lemma 2 and the Chinese Remainder Theorem.

Theorem 1. Let $M \in \mathbb{N}$ and $P(x)=a_{d} x^{d}+\cdots+a_{1} x+a_{0}$ be a polynomial in \mathbb{Z}_{M} as in (2). Then the unique zero x of the polynomial is equal to the (finite) sum

$$
\begin{equation*}
x_{0}=-a_{1}^{-1} a_{0} \sum_{\vec{n}=\left(n_{2}, \ldots, n_{d}\right) \in \mathbb{N}_{0}^{d-1}}(-1)^{\overrightarrow{\mathrm{v}} \cdot \vec{n}} C_{\vec{v}}(\vec{n}) a_{0}^{(\overrightarrow{\mathrm{v}}-\overrightarrow{1}) \cdot \vec{n}} a_{1}^{-\vec{\rightharpoonup} \cdot \vec{n}} a_{2}^{n_{2}} \cdots a_{d}^{n_{d}} \tag{10}
\end{equation*}
$$

where $\vec{v}=(2,3, \ldots, d)$ and $\overrightarrow{1}=(1, \ldots, 1)$.
Moreover x_{0} is invertible if and only if a_{0} is invertible.
Proof. We find a solution x_{0} of the form $x_{1} y$, where $y=y_{\vec{v}}(\vec{x})$ is defined in (8) for x_{2}, \ldots, x_{d} nilpotents. Using equality (9),

$$
\begin{aligned}
P\left(x_{1} y\right)=0 & \Longleftrightarrow \sum_{i=2}^{d} a_{i} x_{1}^{i} y^{i}+a_{1} x_{1} y+a_{0}=0 \\
& \Longleftrightarrow \sum_{i=2}^{d} a_{i} x_{1}^{i} y^{i}+a_{1} x_{1}\left(1+x_{2} y^{2}+\cdots x_{d} y^{d}\right)+a_{0}=0 \\
& \Longleftrightarrow \sum_{i=2}^{d}\left(a_{i} x_{1}^{i}+a_{1} x_{1} x_{i}\right) y^{i}+a_{1} x_{1}+a_{0}=0 .
\end{aligned}
$$

So, if we choose

$$
\left\{\begin{array}{l}
x_{1}=-a_{0} a_{1}^{-1} \\
x_{i}=-a_{i} a_{1}^{-1} x_{1}^{i-1}=(-1)^{i} a_{0}^{i-1} a_{1}^{-i} a_{i}, \quad i \geq 2
\end{array}\right.
$$

we obtain the referred solution.
The last observation is an immediate consequence of the fact that y is invertible, as mentioned before.

For example, the zero of the polynomial $a_{d} x^{d}+a_{1} x+a_{0}$ is, with the previous notation, equal to the sum

$$
x_{0}=-\sum_{k \in \mathbb{N}_{0}}(-1)^{d k} C_{d}(k) a_{0}^{(d-1) k+1} a_{1}^{-d k-1} a_{d}^{k}
$$

In particular, if p is a prime number and r a multiple of p then, for $n \in \mathbb{N}_{0}$,

$$
\sum_{k=0}^{n} C_{d}(k) r^{k}
$$

is a solution of the congruence $r x^{d}-x+1 \bmod p^{n+1}$.
The rate of growth, in n, of this sum, for all $r \neq 0$, follows from Theorem 3.
REMARK 1. Suppose we have a polynomial $Q(x)=\sum_{i=0}^{d} a_{i} x^{i}$ in \mathbb{Z}_{M} such that a_{i} are nilpotent for $i \leq d-2$, and a_{d-1} and a_{d} are invertible, which can be seen as a kind of reverse form of (2).
Q may have more than one solution, as we can see, for example, if $Q(x)=$ $x^{3}+x^{2}+3 x+9$ and $M=27$, but only one is invertible. To prove this, consider the polynomial $Q^{*}(y)=\sum_{i=0}^{d} a_{i} y^{d-i}$, of the form (2), noticing that $y^{d} Q\left(y^{-1}\right)=Q^{*}(y)$, for invertible y.

4. Holonomic sequences related to Fuss-Catalan numbers

For $d \in \mathbb{N} \backslash\{1\}, r \in \mathbb{R} \backslash\{0\}$ and $n \in \mathbb{N}$, consider $X(d, r, n)$ defined in (3). We intend to obtain a recurrence relation for the sequence $(X(d, r, n))_{n \in \mathbb{N}}$, generalizing some cases referred to in OEIS, as mentioned in the Introduction.

For $n, k \in \mathbb{N}$, we let $(n)_{k}$ denote the falling factorial $\prod_{i=0}^{k-1}(n-i)\left(=\frac{n!}{(n-k)!}\right)$. Notice that $(n)_{k}$ is a polynomial in n of degree k.

Theorem 2. Let $d \in \mathbb{N} \backslash\{1\}$, and $r \in \mathbb{R} \backslash\{0\}$. Then $(X(d, r, n))_{n \in \mathbb{N}}$ is a holonomic sequence of order 2 and degree $d-1$. More precisely, for $p_{0}(n)=((d-1) n+$ 1) $d_{-1}, p_{2}(n)=d(d n-1)_{d-1}$ and $p_{1}=p_{0}+r p_{2}$, we have

$$
\forall n \in \mathbb{N} \backslash\{1\} \quad p_{0}(n) X(d, r, n)=p_{1}(n) X(d, r, n-1)-r p_{2}(n) X(d, r, n-2) .
$$

Proof. As

$$
\begin{aligned}
& p_{1}(n) X(d, r, n-1)-r p_{2}(n) X(d, r, n-2) \\
& \quad=p_{0}(n) \sum_{k=0}^{n-1} C_{d}(k) r^{k}+p_{2}(n) \sum_{k=0}^{n-1} C_{d}(k) r^{k+1}-p_{2}(n) \sum_{k=0}^{n-2} C_{d}(k) r^{k+1} \\
& \quad=p_{0}(n) \sum_{k=0}^{n-1} C_{d}(k) r^{k}+p_{2}(n) C_{d}(n-1) r^{n} \\
& \quad=p_{0}(n) X(d, r, n)-p_{0}(n) C_{d}(n) r^{n}+p_{2}(n) C_{d}(n-1) r^{n}
\end{aligned}
$$

we only need to prove that $p_{0}(n) C_{d}(n)=p_{2}(n) C_{d}(n-1)$. In fact,

$$
\begin{aligned}
\frac{C_{d}(n)}{C_{d}(n-1)} & =\frac{((d-1)(n-1)+1)\binom{d n}{n}}{((d-1) n+1)\binom{(n-1)}{n-1}} \\
& =\frac{((d-1)(n-1)+1)}{((d-1) n+1)} \frac{(n-1)!((d-1)(n-1))!(d n)!}{n!((d-1) n)!(d(n-1))!} \\
& =\frac{((d-1)(n-1)+1)!(d n)!}{n((d-1) n+1)!(d(n-1))!} \\
& =\frac{(d n)_{d}}{n((d-1) n+1)_{d-1}} \\
& =\frac{d(d n-1)_{d-1}}{((d-1) n+1)_{d-1}}
\end{aligned}
$$

which concludes the proof.
The following observation will be useful in the next section.
REMARK 2. Notice that a constant sequence satisfies the recurrence referred to in the previous theorem. As a consequence, if $\left(Z_{n}\right)_{n}$ is a non-constant solution of the recurrence, then $\left\langle\left(Z_{n}\right)_{n},(1)_{n}\right\rangle$ is a basis of the space of solutions of the recurrence.

Notice also that the characteristic polynomial of the recurrence, $p_{0}(n) x^{2}-p_{1}(n) x-$ $r p_{2}(n)$, has the zeros 1 and $\frac{r p_{2}(n)}{p_{0}(n)}$ and that

$$
\lim _{n \rightarrow \infty} \frac{r p_{2}(n)}{p_{0}(n)}=\frac{r d^{d}}{(d-1)^{d-1}}
$$

5. Asymptotics for Generating Functions of the Fuss-Catalan Numbers

We are now in conditions to establish the asymptotic behaviour of the sequence $(X(d, r, n))_{n}$, when $\frac{|r| d^{d}}{(d-1)^{d-1}}>1$ which, using (7), is when it diverges.

We use the following asymptotic behaviour: if $a, b \in \mathbb{Z}$, with $a \neq 0$, then

$$
\begin{equation*}
\prod_{j=2}^{n+1}(a j+b)=a^{n} \prod_{j=2}^{n+1}\left(j+\frac{b}{a}\right)=a^{n} \frac{\Gamma\left(n+2+\frac{b}{a}\right)}{\Gamma\left(2+\frac{b}{a}\right)} \sim \frac{\Gamma(n)}{\Gamma\left(2+\frac{b}{a}\right)} a^{n} n^{2+\frac{b}{a}} \tag{11}
\end{equation*}
$$

as $\Gamma(x+\alpha) \sim \Gamma(x) x^{\alpha}$ when $x \rightarrow+\infty$.
REmARK 3. In order to apply Corollary 1.6 of [8] in the next theorem we draw the attention to the fact that, if p and q are two polynomials of the same degree s and q is never zero in \mathbb{N}, then

$$
\sum_{n=1}^{\infty}\left|\frac{p(n+1)}{q(n+1)}-\frac{p(n)}{q(n)}\right|<\infty
$$

as the degree of the polynomial, in $n, p(n+1) q(n)-p(n) q(n+1)$ is at most $2 s-2$.
THEOREM 3. With the above notation, if $A(d)=\frac{d^{d}}{(d-1)^{d-1}}$ and $A(d)|r|>1$,

$$
X(d, r, n) \sim \frac{1}{\sqrt{2 \pi}} \frac{\sqrt{d}}{(d-1)^{\frac{3}{2}}} \frac{A(d) r}{A(d) r-1}(A(d) r)^{n} n^{-\frac{3}{2}} .
$$

Proof. By Remark 2, the zeros of the characteristic polynomial of the recurrence equation converge, when n tends to infinity, to different numbers, namely $A(d) r$ and 1. Therefore, and using Remark 3 for $p=p_{i}, i=1,2$ and $q=p_{0}$, we are in the conditions to apply Corollary 1.6 of [8]. In particular, there exists a solution $\left(Y_{n}\right)_{n}$ of the recurrence equation such that $Y_{n} \sim \prod_{j=2}^{n+1} \frac{r p_{2}(j)}{p_{0}(j)}$. Notice that, using (11), we have

$$
\begin{aligned}
\prod_{j=2}^{n+1} \frac{r p_{2}(j)}{p_{0}(j)} & =\prod_{j=2}^{n+1} \frac{r d(d j-1)_{d-1}}{((d-1) j+1)_{d-1}}=(r d)^{n} \prod_{i=1}^{d-1} \prod_{j=2}^{n+1} \frac{d j-i}{(d-1) j+2-i} \\
& \sim r^{n} d^{n} \prod_{i=1}^{d-1} \frac{\Gamma\left(2+\frac{2-i}{d-1}\right)}{\Gamma\left(2-\frac{i}{d}\right)}\left(\frac{d}{d-1}\right)^{n} n^{-\frac{i}{d}-\frac{2-i}{d-1}} \\
& =k_{d} r^{n} d^{n}\left(\frac{d}{d-1}\right)^{(d-1) n} n^{-\frac{3}{2}}, \quad \text { where } k_{d}=\left(\prod_{i=1}^{d-1} \frac{\Gamma\left(2+\frac{2-i}{d-1}\right)}{\Gamma\left(2-\frac{i}{d}\right)}\right) \\
& =k_{d}\left(\frac{d^{d}}{(d-1)^{d-1}} r\right)^{n} n^{-\frac{3}{2}} .
\end{aligned}
$$

As $\left\langle\left(Y_{n}\right)_{n},(1)_{n}\right\rangle$ is a basis of the space of solutions of the recurrence, there exist $a, b \in \mathbb{R}$ such that, letting X_{n} denote $X(d, r, n),\left(X_{n}\right)_{n}=a\left(Y_{n}\right)_{n}+b(1)_{n}$ and then

$$
\begin{equation*}
X_{n} \sim a Y_{n} \sim a k_{d}(A(d) r)^{n} n^{-\frac{3}{2}} . \tag{12}
\end{equation*}
$$

To calculate $a k_{d}$, using (7), we have

$$
\frac{X_{n}-X_{n-1}}{Y_{n}}=\frac{C_{d}(n) r^{n}}{Y_{n}} \underset{n}{\longrightarrow} \frac{1}{k_{d} \sqrt{2 \pi}} \frac{\sqrt{d}}{(d-1)^{\frac{3}{2}}}
$$

and, on the other hand, using (12),

$$
\frac{X_{n}-X_{n-1}}{Y_{n}}=\frac{Y_{n}-Y_{n-1}}{Y_{n}} \underset{n}{\longrightarrow} a\left(1-\frac{1}{A(d) r}\right)
$$

from where we obtain

$$
a k_{d}=\frac{1}{\sqrt{2 \pi}} \frac{\sqrt{d}}{(d-1)^{\frac{3}{2}}} \frac{A(d) r}{A(d) r-1},
$$

concluding the proof.
REmARK 4. Although it is not relevant, we would like to point out that k_{d} referred to in the above proof is equal to $\frac{1}{\sqrt{2 \pi}}\left(\frac{d}{d-1}\right)^{d+\frac{1}{2}}$.

6. Acknowledgments

The research of the authors were partially financed by Portuguese Funds through Fundação para a Ciência e a Tecnologia within the Projects UIDB/00013/2020 and UIDP/00013/2020.

REFERENCES

[1] T. Burić and N. Elezović, Asymptotic expansions of the binomial coefficients, J Appl Math Comput 46 (2014) 135-145.
[2] W. C. Chu, A new combinatorial interpretation for generalized Catalan number, Discrete Math. 65 (1987), 91-94.
[3] N. Elezović, Asymptotic expansions of central binomial coefficients and Catalan numbers, J. Integer Seq. 17 (2014) Article 14.2.1.
[4] N. Elezović, Asymptotic expansions of gamma and related functions, binomial coefficients, inequalities and means, J. Math. Inequalities 9 (2015) 1001-1054.
[5] L. Euler, Leonhardi Euleri-Opera omnia. Series 4 A. Commercium epistolicum. Vol. 4.1. Leonhardi Euleri commercium epistolicum cum Christiano Goldbach. Pars I/Correspondence of Leonhard Euler with Christian Goldbach. Part I. Original texts in Latin and German, Edited by Franz Lemmermeyer and Martin Mattmüller, Springer, Basel (2015).
[6] N. I. Fuss, Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat, Nova Acta Academiae Scientiarum Imperialis Petropolitanae 9 (2014) 243-251.
[7] P. Hilton and J. Pedersen, Catalan numbers, their generalization, and their uses, Math. Intelligencer 13 (2) (1991) 64-75.
[8] R. J. Kooman, Asymptotic behaviour of solutions of linear recurrences and sequences of Möbiustransformations, J. Approx. Theory 93 (1998) 1-58.
[9] P. J. Larcombe, The 18th century Chinese discovery of the Catalan numbers, Math. Spectrum 32 (1999) 5-7.
[10] J. J. Luo, Antu Ming, the first inventor of Catalan numbers in the world, Neimenggu Daxue Xuebao 19 (1988) 239-245 (in Chinese).
[11] S. Mattarei, Asymptotics of partial sums of central binomial coefficients and Catalan numbers, arXiv preprint arXiv:0906.4290 (2009). Available at https://arxiv.org/abs/0906.4290.
[12] O. Perron, Über einen Satz des Herrn Poincaré, J. Reine Angew Math. 136 (1909) 17-37.
[13] H. Poincaré, Sur les équations linéaires aux différentielles ordinaires et aux différences finies, Amer. J. Math. 7 (1885) 203-258.
[14] B. Rhoades, Enumeration of connected Catalan objects by type, European J. Combin. 32 (2011) 330-338.
[15] A. Schuetz and G. Whieldon, Polygonal dissections and reversions of series, Involve 9 (2016) 223-236.
[16] A. Segner, Enumeratio modorum, quibus figurae planae rectilineae per diagonales dividuntur in triangula, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, 7 (1761) 203-209.
[17] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, OEIS Foundation Inc., https: //oeis.org.
[18] R. P. Stanley, Catalan Numbers, Cambridge University Press, New York (2015).

Assis Azevedo, Center of Mathematics, University of Minho, Campus de Gualtar, 4710-157 Braga, Portugal e-mail: assis@math.uminho.pt
Davide Azevedo, Center of Mathematics, University of Minho, Campus de Gualtar, 4710-157 Braga, Portugal e-mail: davidemsa@math. uminho.pt
Corresponding Author: Assis Azevedo

[^0]: Mathematics subject classification (2010): 41A60, 05A10.
 Keywords and phrases: Fuss-Catalan numbers; asymptotic behavior; holonomic sequence; polynomial congruence; vectorial Catalan numbers.

[^1]: ${ }^{1}$ As $\vec{n} \neq \overrightarrow{0}$ the sum is never empty, although the second summation is, if $n_{i}=0$

