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Abstract. We consider a certain class of polynomials with coefficients in ZM , all of which admit
a unique zero. We prove that the zero of each of those can be given by a (multiple) sum involving
the coefficients and a vectorial generalization of the Fuss-Catalan numbers.

We also consider the sequence of the partial sums of the generating function of the d -Fuss-
Catalan numbers. Using the holonomy of this sequence, we study its asymptotic behaviour. The
main difference from the known case d = 2 is, in that one, we have a “closed” expression for
the generating function.

1. Introduction

The Catalan numbers were studied by Euler, in the context of enumerating trian-
gulations of regular polygons [5]. Their study by the Mongolian mathematician Antu
Ming in the eighteenth century was announced in 1988 by Luo in [10] and further
discussed by Larcombe in [9].

These numbers have multiple interpretations and applications, several of which
can be found, for example, in [18], which also covers different generalizations of them.
Throughout this paper we focus on a couple of these, the d -Fuss-Catalan numbers, for
d ∈ N\{1} , whose element of order n , Cd(n) , is defined by

Cd(n) =
1

(d−1)n+1

(
dn
n

)
, (1)

and a vectorial generalization of the Catalan numbers, which we will define in (4).
Cd(n) , introduced by Fuss in [6], counts, for example, the number of partitions of a
n(d−1)+2-gon into d +1-gons and the number of d -ary trees with n internal nodes
(see [7]). Recall that the Catalan numbers are the 2-Fuss-Catalan numbers.

The first problem we are interested in is finding the zeros of some polynomials in
ZM , the ring of the integers modulo M ∈ N . Consider a polynomial Q = Q(x) with
coefficients in ZM of the form

adxd + · · ·+a1x+a0, where ai is nilpotent for i≥ 2 and a1 invertible. (2)
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The Chinese remainder theorem and the Hensel lemma guarantee that there exists
exactly one zero of Q in ZM . In this work, we will find a polynomial P in d + 1
variables such that the zero of any polynomial as in (2) is equal to P(a0,a−1

1 ,a2, . . . ,ad) .
The coefficients of P are essentially vector generalized Catalan numbers, which are d -
Fuss-Catalan numbers if ai = 0 for 1 < i < d .

The second problem was motivated by sequences presented in OEIS, The On-Line
Encyclopedia of Integer Sequences [17]. For d ∈ N \ {1} , r ∈ R \ {0} , and n ∈ N ,
consider the sequence

X(d,r,n) =
n

∑
k=0

Cd(k)rk. (3)

In connection with the first problem, we will see that, if p is a prime number and
r a multiple of p then, X(d,r,n) is the zero, in Zpn+1 of the polynomial rxd− x+1.

OEIS, in the sequence A112696 and onwards, presents recurrence formulas for(
X(2,r,n)

)
n∈N for some values of r , conjecturing them for some others. In this work,

we obtain recurrence formulas for all values of d and r .
We also study the asymptotic behaviour of this sequence, when it diverges. For

d = 2, this was done by Mattarei in [11], using, among other instruments, the generating
function of the Catalan numbers F2(x) = 1−

√
1−4x

2x . Elezović, in [3, 4] gives an efficient
algorithm for recursive calculations of asymptotic expansions of several sums including
X(2,1,n) . If d > 2 we do not have a nice expression for Fd(x) , apart from the equality
Fd(x) = 1+ xFd(x)d .

We use some well-known results for holonomic sequences such as the Poincaré-
Perron Theorem in [13, 12], and Corollary 1.6 of [8] to prove that

X(d,r,n)∼ 1√
2π

√
d

(d−1)
3
2

A(d)r
A(d)r−1

(A(d)r)n n−
3
2 ,

where A(d) = dd

(d−1)d−1 , and A(d)|r|> 1.

2. Preliminaries

The Catalan numbers have a lot of generalizations. In this work we are interested
in the d -Fuss-Catalan numbers, defined in (1), and the natural vectorial generalization,
C~v(~n) , seen, for example, in [2] and a more general case in [14]. C~v(~n) is defined by

C~v(~n) =
1

(~v−~1) ·~n+1

(
~v ·~n
~n

)
=

1
~v ·~n+1

(
~v ·~n+1

~n

)
(4)

where, given s ∈N , ~n ∈Ns
0 and ~v ∈Ns , ~v ·~n denotes the inner product of ~n and ~v and(~v·~n

~n

)
is the multinomial coefficient (~v·~n)!

n1!···ns!(~v·~n−(n1+···+ns))!
.

C~v(~n) is, for example, the number of ways that ~v ·~n people can be seated at a
(round) table in such a way that, for all i = 1, . . . ,s , there exist ni groups of vi people
giving a vi -hand shake with no crossings between different groups [2]. Of course, this
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Figure 1: This is one of the 92810 possible configuration for 18 people to be seated
around a table, as referred to in the text for ~n = (3,4) and ~v = (2,3) .

is the same as the number of subdivisions of ~v ·~n points on a circumference in ni sets
of vi point groups without crossing.

C~v(~n) is also is the number of polygonal dissections of an (~v−~1) ·~n+2-gon into
n1 + · · ·+ns polygons with ni of them having vi +1 edges, for i = 1, . . . ,s . This can
be found, for example, in [15].

Analogously with what happens with the Catalan numbers [16] and Fuss-Catalan
numbers [6], these generalized Catalan numbers satisfy a recurrence relation that is an
easy consequence of a result of Rhoades in [14] stating, in particular, that, if ~r ∈ Ns

0 ,
~v ∈ Ns , m ∈ N then

∑
~r1+···+~rm=~r

C~v(~r1) · · ·C~v(~rm) =
m

m+~v ·~r

(
m+~v ·~r

~r

)
. (5)

LEMMA 1. For s ∈ N , ~n ∈ Ns
0 and ~v ∈ Ns we have

∀~n ∈ Ns
0 \{~0} C~v(~n) =

s

∑
i=1

 ∑
~r1+···+~rvi=~n−~ei

C~v(~r1) · · ·C~v(~rvi)

 1 (6)

where ~ei is the unit-vector with 1 in its ith coordinate.

Proof. For i = 1, . . . ,s such that ni > 0, using (5) for m = vi and ~r =~n−~ei , we
obtain

∑
~r1+···+~rvi=~n−~ei

C~v(~r1) · · ·C~v(~rvi) =
vi

vi +~v · (~n−~ei)

(
vi +~v · (~n−~ei)

~n−~ei

)

=
vi

~v ·~n

(
~v ·~n
~n−~ei

)
=

(~v ·~n)!

(~v ·~n)n1! · · ·ns!
(
(~v−~1) ·~n+1

)
!

vini

and then
s

∑
i=1

∑
~r1+···+~rvi=~n−~ei

C~v(~r1) · · ·C~v(~rvi) =
(~v ·~n)!

n1! · · ·ns!
(
(~v−~1) ·~n+1

)
!
,

1As ~n 6=~0 the sum is never empty, although the second summation is, if ni = 0
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completing the proof.

Recall that a sequence (an)n∈N is holonomic of order s (s ∈ N ) and degree t
(t ∈ N0 ) if there exist p0, p1, . . . , ps polynomials in n such that p0 never vanishes (to
simplify), the maximum of their degrees is t and

∀n ∈ N

[
n > s ⇒ p0(n)an =

s

∑
i=1

pi(n)an−s

]
.

It is well known (the proof can be made, for example, using the Stirling approxi-
mation) that

Cd(n)∼
1√
2π

√
d

(d−1)
3
2

(
dd

(d−1)d−1

)n

n−
3
2 . (7)

In the article [1] one can find good approximations of binomials of the form
(dn

n

)
.

3. The zero of polynomials of particular kind

As it was said in the Introduction, any polynomial of the form (2) has a unique
zero in ZM . This is a consequence of the following result, which is just a version of
Hensel’s Lemma applied to this kind of polynomials, and of the Chinese Remainder
Theorem.

LEMMA 2. Let p be a prime number and Q = Q(x) a polynomial of the form
adxd + · · ·+a1x+a0 , where p divides ai for i≥ 2 and p do not divide a1 . Then, for
all k ∈ N , the congruence Q(x)≡ 0 mod pk has a unique solution.

Proof. If k = 1 then the result is trivial as Q(x)≡ 0 mod p is equivalent to a1x+
a0 ≡ 0 mod p and a1 is invertible modulo p . For m≥ 1, if xm is the unique solution
of Q(x) ≡ 0 mod pm , then all solutions of Q(x) ≡ 0 mod pm+1 are of the form x =
xm + spm , with s ∈ Z . As p divides ai for i≥ 2 and pm divides Q(xm) ,

Q(x)≡ 0 mod pm+1⇔ Q(xm)+a1 pms≡ 0 mod pm+1

⇔ Q(xm)

pm +a1s≡ 0 mod p

and the conclusion follows as this last congruence has only one solution modulo p .

We now present an expression for the zero of polynomials of the form (2), for
M ∈N . All the operations in this section are made in the ring ZM and it is clear that all
the “infinite” sums referred to here only have a finite number of non-zero terms.

Let d ≥ 2 and ~v = (v2, . . . ,vd) ∈ Nd−1 . Consider, for ~x = (x2, . . . ,xd) whose
coordinates are all nilpotent in ZM , the (finite) sum in ZM

y~v(~x) = ∑
~n∈Nd−1

0

C~v(~n)x
n2
2 · · ·x

nd
d , where ~n = (n2, . . . ,nd) . (8)

Notice that y~v(~x) is always invertible as it is a sum of 1 with a nilpotent element.
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LEMMA 3. With the above notation,

y~v(~x) = 1+ x2y~v(~x)
v2 + · · ·xdy~v(~x)

vd . (9)

Proof. It is easy to see by comparing the terms of the sums that, for i = 2, . . . ,m ,

xi · y~v(~x)vi = ∑
~n∈Nd−1

0

 ∑
~r1+···+~rvi=~n

C~v(~r1) · · ·C~v(~rvi)

xn2
2 · · ·x

nd
d · xi

= ∑
~n∈Nd−1

0 ,ni≥1

 ∑
~r1+···+~rvi=~n−~ei

C~v(~r1) · · ·C~v(~rvi)

xn2
2 · · ·x

nd
d

and then, denoting by z the right side of (9),

z = 1+
d

∑
i=2

 ∑
~n∈Nd−1

0 ,ni≥1

 ∑
~r1+···+~rvi=~n−~ei

C~v(~r1) · · ·C~v(~rvi)

xn2
2 · · · x

nd
d


= 1+ ∑

~n∈Nd−1
0 \{~0}

 d

∑
i=2

∑
~r1+···+~rvi=~n−~ei

C~v(~r1) · · ·C~v(~rvi)

xn2
2 · · · x

nd
d

and the conclusion follows using (6) and the fact that C~v(~0) = 1.

We are now in the conditions to show an (algebraic) expression for the zero of a
polynomial as in (2), whose existence and uniqueness are guaranteed by Lemma 2 and
the Chinese Remainder Theorem.

THEOREM 1. Let M ∈ N and P(x) = adxd + · · ·+ a1x+ a0 be a polynomial in
ZM as in (2). Then the unique zero x of the polynomial is equal to the (finite) sum

x0 =−a−1
1 a0 ∑

~n=(n2,...,nd)∈Nd−1
0

(−1)~v·~nC~v(~n)a
(~v−~1)·~n
0 a−~v·~n1 an2

2 · · ·a
nd
d , (10)

where ~v = (2,3, . . . ,d) and ~1 = (1, . . . ,1) .
Moreover x0 is invertible if and only if a0 is invertible.

Proof. We find a solution x0 of the form x1y , where y = y~v(~x) is defined in (8) for
x2, . . . ,xd nilpotents. Using equality (9),

P(x1y) = 0⇐⇒
d

∑
i=2

aixi
1yi +a1x1y+a0 = 0

⇐⇒
d

∑
i=2

aixi
1yi +a1x1(1+ x2y2 + · · · xdyd)+a0 = 0

⇐⇒
d

∑
i=2

(aixi
1 +a1x1xi)yi +a1x1 +a0 = 0.
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So, if we choose{
x1 =−a0a−1

1
xi =−aia−1

1 xi−1
1 = (−1)iai−1

0 a−i
1 ai, i≥ 2,

we obtain the referred solution.
The last observation is an immediate consequence of the fact that y is invertible,

as mentioned before.

For example, the zero of the polynomial adxd + a1x+ a0 is, with the previous
notation, equal to the sum

x0 =− ∑
k∈N0

(−1)dkCd(k)a
(d−1)k+1
0 a−dk−1

1 ak
d .

In particular, if p is a prime number and r a multiple of p then, for n ∈ N0 ,

n

∑
k=0

Cd(k)rk

is a solution of the congruence rxd− x+1 mod pn+1 .
The rate of growth, in n , of this sum, for all r 6= 0, follows from Theorem 3.

REMARK 1. Suppose we have a polynomial Q(x) = ∑
d
i=0 aixi in ZM such that

ai are nilpotent for i ≤ d−2, and ad−1 and ad are invertible, which can be seen as a
kind of reverse form of (2).

Q may have more than one solution, as we can see, for example, if Q(x) =
x3 + x2 + 3x+ 9 and M = 27, but only one is invertible. To prove this, consider the
polynomial Q∗(y) = ∑

d
i=0 aiyd−i , of the form (2), noticing that ydQ(y−1) = Q∗(y) , for

invertible y .

4. Holonomic sequences related to Fuss-Catalan numbers

For d ∈ N \ {1} , r ∈ R \ {0} and n ∈ N , consider X(d,r,n) defined in (3). We
intend to obtain a recurrence relation for the sequence

(
X(d,r,n)

)
n∈N , generalizing

some cases referred to in OEIS, as mentioned in the Introduction.
For n,k ∈ N , we let (n)k denote the falling factorial ∏

k−1
i=0 (n− i) (= n!

(n−k)! ).
Notice that (n)k is a polynomial in n of degree k .

THEOREM 2. Let d ∈N\{1} , and r ∈R\{0} . Then
(
X(d,r,n)

)
n∈N is a holo-

nomic sequence of order 2 and degree d−1 . More precisely, for p0(n) =
(
(d−1)n+

1
)

d−1 , p2(n) = d
(
dn−1

)
d−1 and p1 = p0 + rp2 , we have

∀n ∈ N\{1} p0(n)X(d,r,n) = p1(n)X(d,r,n−1)− rp2(n)X(d,r,n−2).
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Proof. As

p1(n)X(d,r,n−1)− rp2(n)X(d,r,n−2)

= p0(n)
n−1

∑
k=0

Cd(k)rk + p2(n)
n−1

∑
k=0

Cd(k)rk+1− p2(n)
n−2

∑
k=0

Cd(k)rk+1

= p0(n)
n−1

∑
k=0

Cd(k)rk + p2(n)Cd(n−1)rn

= p0(n)X(d,r,n)− p0(n)Cd(n)rn + p2(n)Cd(n−1)rn,

we only need to prove that p0(n)Cd(n) = p2(n)Cd(n−1) . In fact,

Cd(n)
Cd(n−1)

=
((d−1)(n−1)+1)

(dn
n

)
((d−1)n+1)

(d(n−1)
n−1

)
=

((d−1)(n−1)+1)
((d−1)n+1)

(n−1)!
(
(d−1)(n−1)

)
!
(
dn
)
!

n!
(
(d−1)n

)
!
(
d(n−1)

)
!

=

(
(d−1)(n−1)+1

)
!
(
dn
)
!

n
(
(d−1)n+1

)
!
(
d(n−1)

)
!

=

(
dn
)

d

n
(
(d−1)n+1

)
d−1

=
d
(
dn−1

)
d−1(

(d−1)n+1
)

d−1

,

which concludes the proof.

The following observation will be useful in the next section.

REMARK 2. Notice that a constant sequence satisfies the recurrence referred to
in the previous theorem. As a consequence, if (Zn)n is a non-constant solution of the
recurrence, then 〈(Zn)n,(1)n〉 is a basis of the space of solutions of the recurrence.

Notice also that the characteristic polynomial of the recurrence, p0(n)x2− p1(n)x−
rp2(n) , has the zeros 1 and rp2(n)

p0(n)
and that

lim
n→∞

rp2(n)
p0(n)

=
rdd

(d−1)d−1 .

5. Asymptotics for Generating Functions of the Fuss-Catalan Numbers

We are now in conditions to establish the asymptotic behaviour of the sequence
(X(d,r,n))n , when |r|dd

(d−1)d−1 > 1 which, using (7), is when it diverges.
We use the following asymptotic behaviour: if a,b ∈ Z , with a 6= 0, then

n+1

∏
j=2

(a j+b) = an
n+1

∏
j=2

( j+ b
a ) = an Γ(n+2+ b

a )

Γ(2+ b
a )
∼ Γ(n)

Γ(2+ b
a )

ann2+ b
a (11)
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as Γ(x+α)∼ Γ(x)xα when x→+∞ .

REMARK 3. In order to apply Corollary 1.6 of [8] in the next theorem we draw
the attention to the fact that, if p and q are two polynomials of the same degree s and
q is never zero in N , then

∞

∑
n=1

∣∣∣∣ p(n+1)
q(n+1)

− p(n)
q(n)

∣∣∣∣< ∞,

as the degree of the polynomial, in n , p(n+1)q(n)− p(n)q(n+1) is at most 2s−2.

THEOREM 3. With the above notation, if A(d) = dd

(d−1)d−1 and A(d)|r|> 1 ,

X(d,r,n)∼ 1√
2π

√
d

(d−1)
3
2

A(d)r
A(d)r−1

(A(d)r)n n−
3
2 .

Proof. By Remark 2, the zeros of the characteristic polynomial of the recurrence
equation converge, when n tends to infinity, to different numbers, namely A(d)r and
1. Therefore, and using Remark 3 for p = pi , i = 1,2 and q = p0 , we are in the
conditions to apply Corollary 1.6 of [8]. In particular, there exists a solution (Yn)n of
the recurrence equation such that Yn ∼∏

n+1
j=2

rp2( j)
p0( j) . Notice that, using (11), we have

n+1

∏
j=2

rp2( j)
p0( j)

=
n+1

∏
j=2

rd(d j−1)d−1

((d−1) j+1)d−1
= (rd)n

d−1

∏
i=1

n+1

∏
j=2

d j− i
(d−1) j+2− i

∼ rndn
d−1

∏
i=1

Γ(2+ 2−i
d−1 )

Γ(2− i
d )

(
d

d−1

)n

n−
i
d−

2−i
d−1

= kd rndn
(

d
d−1

)(d−1)n

n−
3
2 , where kd =

(
d−1

∏
i=1

Γ(2+ 2−i
d−1 )

Γ(2− i
d )

)

= kd

(
dd

(d−1)d−1 r
)n

n−
3
2 .

As 〈(Yn)n,(1)n〉 is a basis of the space of solutions of the recurrence, there exist
a,b ∈ R such that, letting Xn denote X(d,r,n) , (Xn)n = a(Yn)n +b(1)n and then

Xn ∼ aYn ∼ akd(A(d)r)nn−
3
2 . (12)

To calculate akd , using (7), we have

Xn−Xn−1

Yn
=

Cd(n)rn

Yn
−→

n

1
kd
√

2π

√
d

(d−1)
3
2

and, on the other hand, using (12),

Xn−Xn−1

Yn
=

Yn−Yn−1

Yn
−→

n
a
(

1− 1
A(d)r

)
,
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from where we obtain

akd =
1√
2π

√
d

(d−1)
3
2

A(d)r
A(d)r−1

,

concluding the proof.

REMARK 4. Although it is not relevant, we would like to point out that kd re-

ferred to in the above proof is equal to 1√
2π

( d
d−1

)d+ 1
2 .
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