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Abstract. Traditionally, computer vision solutions for detecting elements of interest (e.g., 

defects) are based on strict context-sensitive implementations to address contained problems 

with a set of well-defined conditions. On the other hand, several machine learning approaches 

have proven their generalization capacity, not only to improve classification continuously, but 

also to learn from new examples, based on a fundamental aspect: the separation of data from 

the algorithmic setup. The findings regarding backward-propagation and the progresses built 

upon graphical cards technologies boost the advances in machine learning towards a subfield 

known as deep learning that is becoming very popular among many industrial areas, due to its 

even greater robustness and flexibility to map and deal knowledge that is typically handled by 

humans, with, also, incredible scalability proneness. Fabric defect detection is one of the 

manual processes that has been progressively automatized resorting to the aforementioned 

approaches, as it is an essential process for quality control. The goal is manifold: reduce human 

error, fatigue, ergonomic issues and associated costs, while simultaneously improving the 

expeditiousness and preciseness of the involved tasks, with a direct impact on profit. Following 

such research line with a specific focus in the textile industry, this work aims to constitute a 

brief review of both defect types and Automated Optical Inspection (AOI) mostly based on 

machine learning techniques, which have been proving their effectiveness in identifying 

anomalies within the context of textile material analysis. The inclusion of Convolutional 

Neural Network (CNN) based on known architectures such as AlexNet or Visual Geometry 

Group (VGG16) on computerized defect analysis allowed to reach accuracies over 98%. A 

short discussion is also provided along with an analysis of the current state characterizing this 

field of intervention, as well as some future challenges. 

1. Introduction 

 

In the textile industry, a series of fabric processes using either natural or synthetic raw materials are 

employed to produce clothes, coatings, among many other outputs with distinct market targets (e.g., 

household items retail, automotive industry). Inevitably, these processes are commonly prone to 
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originate various types of defects or flaws in the production items – mostly, during knitting activities -, 

inducing undesirable additional costs in the textile value chain (for example, through complains and 

devolutions or items that were undervalued due to imperfections), which, depending on occurrence 

rates, may lead to significant financial losses. As such, textile defects must be mindfully addressed, 

through inspection activities, to ensure high-quality standards, envisaging manifold purposes that may 

range from internally spotting malfunctioning machinery to preventing the delivery of low-quality 

materials into partners/stakeholders' hands.  

Traditionally, the identification of textile defects is performed by human vision-based inspection, 

which is inaccurate and time-consuming.  In recent years, one has been witnessing the increase of 

popularity of Automatic Optical Inspection (AOI) systems, due to their capabilities for providing 

consistent and reliable quality control process, with greater results than human vision-based 

inspection. AOI consists, essentially, of a set of acquisition equipment (RGB sensors, illumination kits 

for light uniformization, clean chambers - in case of very high precision requirements -, etc.), remote 

or local processing hardware (e.g., workstation) and real-time defect detection-oriented algorithms 

that, together, establish a powerful combination to automatically and effectively perform expeditious 

quality analysis and to provide pertinent decision support. As such, in the industry in general and, in 

particular, in the textile fabrics context, these systems have the potential of playing a significant role to 

ensure high-quality and high-speed production, while equipping industries with more efficient and 

competitive tools, capable of lowering costs [1].  

Some recent surveys have been proposed focusing defect inspection, highlighting the importance of 

developing automated methods capable of tackling with sensitive human factors such as ergonomics, 

and predisposition to fatigue and flaw. In [2], a broad review transversal to industry was provided, 

focusing visible and palpable defects. More focused in the textile industry, another couple of recent 

contributions can be found, i.e., [3] and [4]. The former was a four-page review that lightly addresses 

the types of defects, inspection procedures and provides a few of (mainly traditional) computer vision 

approaches within the textile defect detection context. The later, provides an extensive review 

concerned with textile defect detection methods categorized into traditional algorithms and learning-

based algorithms. This paper shares similar concerns, but with a stronger emphasis in the last 5 years 

of representative image-based machine learning approaches for textile inspection, which, moreover, 

can be found benchmarked nearby the end of the document, in terms of techniques and methods 

employed, defect types addressed, performances achieved, resorted metrics and involved datasets, thus 

seeking to add value over previous surveys. 

       This paper is organized as follows: in the next section, a brief description of the research method 

is given; in section 3, a background on textile defect types is provided and recent AOI approaches in 

textile industry are reviewed, with greater emphasis in machine learning-based methods; section 4 

provides a summary of this review, wherein it can also be found a table benchmarking the different 

analyzed machine learning approaches; in the end, conclusions are drawn. 

 

2. Review process 

 

To produce this review, a PRISMA-like procedure was followed, whose steps are depicted in Figure 1. 

Relevant academic databases such as Science Direct, IEEE Xplore, ACM Digital Library, MDPI, 

Google Scholar, etc. were queried with the keywords “defect detection”, “textile fabric”, “automatic 

inspection”, “deep learning”, “machine learning”, which were used alone and combined. Publications 

done in the latest 5 years were considered, mainly – only a reduced set of works former to this period 

were included for contextualization purposes. After collecting all the papers returned from the 

mentioned databases, a screening step took place aiming the suppression of duplicated documents. 

Also, by analysing the abstract, the non-relevant articles were removed, and then, the content of the 

articles was inspected in more detail to check the appropriateness for inclusion. Finally, the resulting 

hindmost set of articles were divided into a few concise topics, focusing AOI in textile industry. 
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Figure 1- Prisma-based systematic methodology used to review image-based machine learning 
methods to perform defect detection in the textile industry. 

3. Automatic optical inspection in the textile industry 

 

In the web material manufacturing processes, visual inspection in quality control is to determine levels 

of product quality successfully. The manual inspection process, where much labour is involved, is 

highly influenced by the lack of efficiency, and it is time-consuming with low accuracy, and also 

prone to error due to environmental conditions and human errors. Hence the development of an AOI 

system using computer vision and machine/deep learning more often plays a leading role in defect 

detection in different industrial processes. In this section, a brief presentation of textile defects is 

provided, and the concept of defect detection technologies is described. 

3.1. Types of defects 

Defects in web material manufacturing products are unavoidable due to device hardware and 

environmental conditions during manufacturing processes. Any abnormality in the fabric that causes 

the product to be rejected by the consumer is a fabric defect. The various types of defects detected 

during quality controls are broadly classified as follows [5]: 

• Critical Defects: crucial anomalies that render an item completely unusable and could cause 

harm to the user of the product. These defects put businesses at serious risk of product liability 

issues, lawsuits, and product recalls;  

• Major Defects: are those that could adversely affect the function, performance, or appearance 

of a product; 

• Minor Defects: are usually small, insignificant issues that don’t affect the function or form of 

the item. 

Cotton Incorporate [6] has categorized the defect types into six main categories as (i) vertical lines, (ii) 

horizontal lines, (iii) isolated defects, (iv) pattern defects, (v) finishing defects, and (vi) printing 

defects (Erro! A origem da referência não foi encontrada.). Samples of defects such as missing 

yarn, broken end, needle line, oil spot, hole, press off, mixed yarn, gouts can be seen catalogued in 

their database (Figure 3). 

 

 

Figure 2. Categorization of defects [6]. 
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Figure 3. Samples of defects [6]. 

 

These defects can occur periodically during the processes due to an attached object to the surface of 

the rolls, and it usually happens when there is more than one roll. Francisco G. Bulnes et al.[7] has 

solved this problem by grouping the periodical defects and cluster them. 

3.2. Defect detection methods 

Technologies using AOI shows a high potential for quality inspection and has drawn considerable 

interest in web material manufacturing. AOI system conclude creating image datasets and detection 

methods in which will let to final result and segment the defect from background (Figure 4). The 

fabric detection methods can be categorized into classical computer vision and machine learning 

methods. 

 

Figure 4. General AOI pipeline for textile quality assessment. 

 

Relying in [8] , classic computer vision and machine learning-based methods are compared in Table 1, 

regarding the following defined criteria: capacity to map complex problems, margin to operate 

independently from structured datasets, openness to provide control over parameters extraction, level 

of required development effort, ability to adapt and scale to new environments and cases, low-profile 

hardware admissibility (performance vs. available processing power), and attainable estimation 

accuracy. A rating scale based on typographical symbol classification to grade each criterion was 

adopted, wherein a single bullet (•) refers to lowest relevance and a bullet triplet (•••) represents 

highest relevance. 

Image-based machine learning methods, in particular, the supervised ones, are suitable to map 

complex problems, but they also highly rely on structured datasets to operate properly. The control 

over feature extraction is not as clean as in traditional computer vision, due to the automatic processes 

that are carried out along neural networks and preform as "black-box" operations. Other noteworthy 
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characteristics are their ability to adapt to a certain variability of conditions (e.g., light, background) 

and to scale to more categories of elements within a given context, without the need for extra coding 

efforts. Even though machine learning methods require high-processing capabilities to operate time-

effectively, they are potential estimation accuracy enhancers, as well. Complying with the goals 

previously defined for this paper, and considering the textile inspection context, the next subsections 

will be devoted to review both classic computer vision and image-based machine learning methods, 

with a more emphasis in the later class of approaches. 

 

Table 1. Comparison between classic computer vision methods and modern machine/deep learning 

methods regarding problem mapping, dataset dependency, control over parameters/features extraction, 

adaptability and scalability for new cases, and potential for accurate estimations, from less relevant (•) 

to most relevant (•••). 

 

Complex 

problem 

mapping 

capacity 

Margin to 

work     

independent 

from   

structured 

datasets 

Control 

over 

feature and 

parameter 

extraction 

process 

Overall 

independence 

from 

development 

effort 

Potential for 

adaptability 

and 

scalability 

(new cases) 

Low-profile 

hardware 

admissibility 

Overall 

estimation 

accuracy 

potential 

Classic 

Computer   

Vision 

methods 

• •• ••• •• • ••• •• 

Supervised        

image-based      

machine 

(deep) 

learning 

methods 

••• • • ••• ••• • ••• 

3.2.1. A brief contextualization concerning classic computer vision approaches 

The traditional methods of computer vision - such as binarizations, morphological operations, colour 

space transformations and related processing tasks, etc. – alone, usually rely on code specifically 

developed to address particular challenges, which are not supported by modern computational 

intelligence methodologies, disregarding the presence or absence of problem/conditions-oriented 

statistical modelling. Some of these methods can be fairly represented by Gaber filter, Wavelet 

transform, Fourier transform for textile defect detection. For example, S. Sadaghiyanfam [9], 

employed Gray Level Co-occurrence Matrix (GLCM) and three types of wavelets transform, including 

Haar, 2nd order Daubechies (db2), Sym4 with the different number of levels and compared the results. 

When the feature extraction was done for the acquired image and non-defective template, then the 

statistical information was compared. Both methods were successful in defect detection for the texture 

with high resolution.  

When the GLCM is used along with other methods, it leads to a better result in defect inspection. For 

instance, in [10], they used a Discrete Curvelet Transform (DCT) to convert the acquired image to a 

binary image and then employed GLCM. They represented that this combination gives better 

performance when compared to GLCM-based and wavelet-based.  

Such methods are suitable for textile defect inspection. Nonetheless, their problem/conditions-oriented 

nature constitutes a drawback in scenarios requiring tolerance for circumstantial variations affecting 

both elements of interest and background. More specifically, if the focus of the problem (context) 

shifts or the conditions (e.g., light) change, a solution developed for a very specific purpose and 

relying on the traditionality of computer vision will most probably have its performance degraded, as 

well as it will require deeper source-code reengineering. Some approaches capable of tackling such 

drawbacks are provided by the machine learning field, wherein training strategies are designed with 
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the potential of generalizing, ideally, any classification problem. A key feature is the separation of the 

problem representation from the algorithmic approach, which supports codeless machine knowledge 

ground improvement strategies that rely on retraining models with datasets extended with cases never 

seen before. A well-known approach that can be referenced as example is active learning, which 

allows the improvement of inference models through expert reinforcement in dubious machine-based 

guesses (i.e., confidence rate below a given threshold). In the next section, machine learning 

approaches applied to textile defect inspection will be reviewed. 

3.2.2. Machine/Deep Learning approaches 

Computational intelligence can be integrated as an essential part of smart manufacturing to enable 

accurate insights for enhanced decision making across industrial activities such as - but not restricted 

to - production cycle itself and product quality inspection. Machine learning, and more specifically, 

deep learning (DL) has been widely investigated in different stages of the manufacturing lifecycle 

covering concept, design, evaluation, production, operation, and sustainment [11], [12]. 

In regard to the approaches that can be found in the literature, K. Hanbay et al. [13] proposed a new 

feature extraction method called DST-PCA for detection of knitting fabric defects e.g., Needle 

breakages, hole, press-off and gouts. They used Discrete Shearlet Transform (DST) to extract the 

features and then Principal Component Analysis (PCA) was employed [14] to optimize them as input 

for a three-layer ANN. 

M. Li et al. [15] proposed a novel visual saliency–based defect detection algorithm that employs the 

histogram features extracted from the Context-Aware (CA) saliency maps to detect defects (Broken 

end, thin bar, thick bar, netting multiple, knots, hole, oil spot, and stain) in patterned and non-patterned 

fabric images. Such features were used to feed an SVM for classification. Three other different 

saliency models were used to generate the saliency maps for the fabric images (Spectral Residual 

(SR)[16] , Graph-based Visual Saliency (GBVS) [17] , and the third one is the model based on 

Covariances (COV)[18]. Also to evaluate SVM, they used Random Forest (RF) and compared the 

result. The K-Nearest Neighbours (KNN) algorithm is a supervised machine learning algorithm that 

can be used to solve both classification and regression problems. It was used by [19] for horizontal, 

vertical, and isolated defect inspection, more specifically, to classify coefficients matrix extracted 

using Discrete Wavelet Transform (DWT). V. Gnanaprakash et al.[20] extracted features e.g., 

contrast, correlation, cluster shade, energy, etc. from the image using GLCM and used more 3 

Backpropagation Neural Network (BPNN) learning algorithms: Resilient Backpropagation, Scaled 

Conjugate Gradient, and Levenberg Marquardt and compared them, in which Gradient descent with 

adaptive learning rate showed a better performance. Also, D. Choundhury et al. [21] have used GLCM 

for feature extraction and fed the features to 4 types of Artificial Neural Networks (ANN): 

Backpropagation networks (BPN), Radial Basis Function networks (RBF), Recurrent Neural Network 

(RNN), Learning Vector Quantization network (LVQ), in which among them, they got the best 

performance using RNN to compare with others. S. Mei et al.[22] proposed a non-motif-based Multi-

Scale Convolutional Denoising Auto Encoder (MSCDAE) method based on the Gaussian pyramid. 

This model trains the network with randomly sampled image patches from defect-free samples. Then, 

a batch gradient descent algorithm is applied in an error backpropagation fashion to optimize the 

process. They used the residual map of each image patch as the indicator for pixel-wise prediction and 

segmented it using a predefined threshold. The final inspection result was obtained by synthesizing the 

residual map reconstruction at each resolution level. 

Recently, the implementation of the deep learning method in industrial applications is growing due to 

its ability in features extraction from raw data and automatic recognition [23]. Within this context, 

CNNs are becoming increasingly popular for analysing images, and are playing a main role in 

intelligent manufacturing [24], [25]. W. Ouyang et al. [26] developed a DL algorithm for an on-loom 

fabric defect inspection system to detect horizontal, vertical, and isolated defects. They improved the 

autocorrelation measurement by FFT in the image, which represents the motif image to be used for 

fabric motif generation. They employed Zero-mean Normalized Cross-Correlation (ZNCC) for 
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generating the fabric motif map that, in turn, eliminates the weave pattern in the image but inherits the 

fabric defects information. They determined the probability of the defect area in the map related to the 

number of nodes found in the node-searching area by taking the ground image as a reference. The area 

with higher probability is the defect area. The fabric defect probability map undergoes to the CNNs as 

a Pairwise Potential Activation Layer (PPAL). To classify the fabric defect uniform textured fabrics, 

P. Bandara et al. [27] employed CNN and locate thread missing, oil stain and hole defects in the 

image. They concluded that utilizing a light beam of similar colour intensity leads to a better detection 

of defects than a white light. Grab cut is one of the methods used by Y. Chen et al. [28] to segment 

hole, knob, stain, hanging, broken warp and broken weft defect areas . Here, the advantage is the 

maintenance of the characteristics of defects to be used for further processes. They simplified the 

number of convolution layers and the number of neurons in the full connection layer in the CCN 

network structure of AlexNet [29] in order to reduce the parameters and then fed the samples to it for 

fabric defect recognition and classification. Y. Huang et al. [30] proposed an efficient CNN for defect 

segmentation and detection of defects (Carrying, thin bar, knots, fuzz balls, warp, weft, stain, line, 

broken end, hole, netting multiple, thick bar) in yarn-dyed and patterned texture fabric. They divide 

the network into two parts: segmentation and decision. The input image is firstly passed to the 

segmentation part and, then, its output is trained for the decision network. A method based on CNN 

and Low-Rank Representation (LRR) was proposed by [31] , in which they extracted the features of 

fabric image using a multi-level pyramid CNN and stored them in the feature’s matrix. To speed up 

the training, they utilized Sparse Autoencoder in each layer. Then, a low-rank representation model 

and augmented lagrangian multiplier algorithm was applied to features matrix, dividing it into low-

rank matrix (corresponding to the background), sparse matrix (corresponding to the defective regions) 

and, based in the latter, saliency maps. To locate the fabric defect region, they used a threshold 

segmentation algorithm to discriminate the saliency map. 

H. Zhang et al. [32] proposed a method based on YOLO to detect belt yarn, knot tying, hole defects on 

yarn-dyed fabric . They trained the network with YOLO9000, Tiny-YOLO, and YOLO-VOC and the 

precision was 0%, 36%, and 86%, respectively. Based on those preliminary tests, they selected 

YOLO-VOC for their experiments, and to optimize the network, they changed the iterations to 20000 

and 30000 with a learning rate of 0.01 that improved the precision to 94.5% and 90.6%, respectively. 

An effective deep learning method known as Stacked AutoEncoders (SAEs) is used by [33] to detect 

defects e.g., broken end, hole, netting multiple, thick bar, thin bar. Since the size of the defect in the 

image is tiny, to extract the right features, they applied the fisher criterion into the loss function of 

SAE and proposed Fisher Criterion-based Stacked AutoEncoders (FCSAE). The SAE was constructed 

with the encoder part of several pre-trained autoencoders. According to the context centred on the 

pixel, the confidence of each one is predicted by the network. Their results showed better accuracy 

comparatively with the Image Decomposition (ID) method [34] and the original SAE. Z.Liu et al.[35], 

developed an algorithm to optimize the DL network in order to detect missing yarn, scratch, twill flaw, 

and dye spot defects in fabric with complicated texture. They modified the original VGG16 model, 

which they called LZFNet. To initialize the training, they employed parameters pre-trained by 

ImageNet as initial values. Due to the large number of parameters, a deconvolution network was used 

to project feature activation back to the input pixel space and generate the map. After a detailed 

visualization analysis, they found out that the main features are extracted before layer 10 in the 

VGG16 network so that they trained the model using ten convolutional layers. Hence, the total number 

of fully connected layer parameters in their model was reduced to 5.3% in comparison with the 

original VGG16 network. Since the connection in traditional convolutional network is between each 

layer, G. Huang et al. [36] proposed Dense Convolutional Network (DenseNet), in which all the layers 

have full connection to each other in a feed-forward fashion but since its default output is 1000 

categories, Z.Zhu [37] modified its network to meet their requirement which is classifying only 11 

defects. In their experiments focusing data transmission, they proved that the latency with edge 

computing was reduced 30% when compared with cloud computing. 
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In the next section, a discussion is provided along with a benchmark that considers the machine 

learning-methods here reviewed. 

 

4. Discussion 

 

Having well-structured datasets is crucial in (supervised) machine learning methods. A valid approach 

may lie in using available public datasets (Table 2) that contain different types of defects. Another one 

is to create a customized dataset based on desired types of defects. It should be considered that the 

existing datasets can be augmented to create a larger number of examples for improved training stages 

in deep neural networks which can be done by basic operations such as rotation, flipping, translation, 

and random cropping [38]. 

Depending on the purpose, there are different methods to measure the performance of the approach 

such as Area under Curve (AUC), Precision, and Accuracy (ACC), F1 Score, Mean Squared Error. 

The screening of works analysed in this paper points out AUC, ACC, and precision as the most used 

metrics for the evaluation of methods. 

The summary of this review is shown in table 2 and demonstrates that significant research has been 

reported to detect the defect by using machine learning, mostly deep learning with different type of 

defect e.g., hole, knob, stain, hanging, broken warp and broken weft, etc. Among them, DL has shown 

better performance than ML and classical methods. As it is shown in the following table, CNN with 

the accuracy of 98% [26] and 98.2% [28] and modified VGG16 with accuracy of 98.1% [35] for 

various type of defects have precise detection. 

 

Table 2. Recent learning methods summary. 

Techniques Ref Methods year Defect type 
Performance 

Metrics 
Dataset 

Spectral [9] 
GLCM and Wavelet 

Transform 
2018 N/A N/A 

Self-made 

dataset 

Spectral [10] 
GLCM and 

DCT 
2018 N/A N/A N/A 

ML [13] ANN 2019 

Needle 

breakages, hole, 

press-off and 

gouts 

ACC = 95.46% 
Self-made 

dataset. 

ML [15] 
SVM and 

RF 
2019 

Broken end, thin 

bar, thick bar, 

netting multiple, 

knots, hole, oil 

spot, and stain 

ACC = 95.5% 

ACC = 93.5% 

TILDA and 

self-made 

dataset. 

ML [19] KNN 2019 

Horizontal yarn 

missing, vertical 

yarn missing, 

hole, stain 

ACC = 95% N/A 

ML [20] 

Gradient descent with 

adaptive learning rate, 

Resilient 

Backpropagation, 

Scaled Conjugate 

Gradient and 

Levenberg Marquardt 

2018 N/A 

ACC = 81%, 

ACC = 76%, 

ACC = 73%, and 

ACC = 72% 

N/A 

ML [21] 
BPN, RBF, RNN, 

and LVQ 
2018 N/A 

ACC = 90%, 

ACC = 60%, 

ACC = 96%, and 

ACC = 85% 

N/A 
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ML [22] 

Multi-Scale 

Convolutional 

Denoising 

AutoEncoder 

2018 

Oil polluted, 

heterozygous, 

scratched, flying-

fiber, perforated 

and gauzy 

N/A 

Fabrics [30], 

KTH-TIPS 

[31], Kylberg 

Texture [32] 

and self-made 

dataset. 

DL [26] CNN 2019 

Horizontal defect, 

vertical defect, 

and isolated 

defect 

ACC=98% 

TILDA and 

Self-made 

dataset 

DL [27] CNN 2019 
Thread missing, 

oil stain and hole 
N/A N/A 

DL [28] 
AlexNet-based  

CNN 
2017 

Hole, knob, stain, 

hanging, broken 

warp and broken 

weft 

 

ACC=98.2% TILDA 

DL [30] CNN 2021 

Carrying, thin 

bar, knots, fuzz 

balls, warp, weft, 

stain, line, broken 

end, hole, netting 

multiple, thick 

bar 

N/A 

Three public 

dataset and 

one self-made 

dataset. 

DL [31] CNN and LRR 2018 N/A N/A 

TILDA and 

Defect library 

of the 

University of 

Hong Kong. 

DL [32] 
YOLO-VOC 

 
2018 

Belt yarn, knot 

tying, hole 
Precision=94.5% 

Self-made 

dataset 

DL [33] 
Stacked Auto 

Encoders 
2016 

Broken end, hole, 

netting multiple, 

thick bar, thin bar 

ACC=85.5%, 

84.4%, 82.2%, 

95.3%, 86.5% 

respectively to 

Defect type. 

The dataset 

from [29]. 

DL [35] Modified VGG16 2019 

Missing yarn, 

scratch, twill 

flaw, and dye 

spot 

ACC=98.1% 

Xiamen 

Face++ 

Company 

DL [37] Modified Dense net 2020 

Pin holes, burl 

mark, chafed 

yarn, rough, 

loose warp, 

stretched warp, 

end out, overshot, 

stain 

AUC= 18% 

Alibaba 

Tianchi 

Competition 

 

5. Conclusions and future challenges 

 

In this paper, we have presented a recent overview of defect detection for the web material 

manufacturing industry focused on the textile fabric. Since the manual human visual examination 

raises significant issues (e.g. ergonomics, subjective criteria, fatigue and proneness to failure), the 

inspection process must be done by using some industrial automation to enhance the quality and to 

decrease the production cost of the final product in which computer vision and ANN can play a main 
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role.  In this paper, the main workflow and goals underlying these techniques and their results are 

represented, which seems to point out DL methods have accuracy enhancers, comparatively to other 

approaches. In opposition, one should bear in mind that this kind of learning methods usually require 

extensive and representative datasets - that are not always available -, burdensome and time-

consuming training activities, as well as high-performance hardware.   

Even though the machine/deep learning methods are potentially more precise than the ones relying in 

computer vision, when providing solutions for defect detection purposes - in fact, as in many other 

contexts -, aspects such as processing requirements (image resolution, flaws minimal tolerances, 

inspection cadence, etc.), available computation power and real-time supporting decision needs should 

be considered while defining an AOI system for quality assessment. Finding a compromise between 

classic computer vision (CV) dynamics for gross tasks, DL for sharper inference and strategies for 

computational resources bottleneck minimization, might be a proper way of designing responsive and 

precise AOI for industry. Moreover, future challenges should concern developments at two levels: a) 

promote the implementation of democratized multipurpose DL/CV frameworks for lego-based 

building solutions, scalable and flexible enough to adapt the several inspection requirements adopted 

across industry; and b) encourage domain-aware knowledge sharing strategies (classified imagery, 

annotated data, etc.) capable of leveraging integrative active learning to sustain both existing and 

emerging CV/DL-based tools. 
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