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Abstract—Robotic applications are often designed to be reusable
and configurable. Sometimes, due to the different supported
software and hardware components, as well as the different
implemented robot capabilities, the total number of possible
configurations for a single system can be extremely large. In these
scenarios, understanding how different configurations coexist and
which components and capabilities are compatible with each other
is a significant time sink both for developers and end users alike.
In this paper, we present a static analysis tool, specifically designed
for robotic software developed for the Robot Operating System
(ROS), that is capable of presenting a graphical and interactive
overview of the system’s runtime variability, with the goal of
simplifying the deployment of the desired robot configuration.

Index Terms—software engineering, variability, software prod-
uct lines, software analysis

I. INTRODUCTION
Robots are evolving at an astounding pace in recent years.

Developments in software controllers and hardware components
led us from mostly static machines, performing repetitive tasks,
to autonomous vehicles and assistants, capable of adapting to
a multitude of scenarios. This shift is associated with highly
modular designs, now pursued by many robot makers, that
enable users to switch software and hardware components as
they see fit – be it for cost reduction, or simply to enable
different capabilities. As long as the different components
agree on a communication interface and protocol, the same
robotic components that are assembling goods in a factory
today, could be helping doctors save lives tomorrow.

The use of middlewares, such as the Robot Operating System
(ROS) [1], was crucial to standardize communication interfaces,
as well as managing some of the complexity associated
with lower-level tasks. ROS is very lenient in its design,
enabling highly dynamic and reconfigurable applications based
on independent components and message exchange channels.
However, while key to achieve modularity, this level of flexiblity
raises an array of well-known problems in software engineering,
namely variability management.

The research leading to these results has received funding support from the
projects: “STEROID - Verification and Validation of ADAS Components for
Intelligent Vehicles of the Future” from the European Union Financial Support
(FEDER) under grant agreement No. 69989; “NORTE-06-3559-FSE-000046
- Emprego altamente qualificado nas empresas – Contratação de Recursos
Humanos Altamente Qualificados (PME ou CoLAB)” financed by the Norte’s
Regional Operational Programme (NORTE 2020) through the European Social
Fund (ESF); and National Funds through the Portuguese funding agency, FCT
- Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020.

Variability essentially describes the features of a system,
points where components, parameters, or capabilities may
change due to configuration. As the number of features
increases and their interaction becomes more complex, de-
velopment becomes unmanageable without a unified view of
the commonalities and variation points among the acceptable
configurations of a system (i.e., its variants or products),
leading to the concept of Software Product Line (SPL)
development [2]. Here, domain engineering is fundamental,
which includes domain analysis – identifying and analysing
the interaction between different features, including detecting
invalid configurations – domain design – defining a generic
system architecture shared by all variants – and domain
implementation – defining how variability is resolved to obtain
executable applications.

This work focuses precisely on variability management in
the ROS ecosystem, a domain where the issue is evident –
robots such as the TurtleBot2, a simple mobile robot with a
few different sensors, already come with hundreds of packaged
configurations. We first studied how variability manifests in a
ROS application and how it is often expressed. We found out
that variability management is a mostly manual and error-prone
process, both for developers and (perhaps more so) for users.
This served as motivation for us to develop a methodology and
tool where ROS applications are interpreted as SPLs.

The proposed technique shows that it is possible, albeit with
some assumptions and limitations, to automatically extract
variability points (features) from source code, namely launch
files (commonly used both in ROS and ROS2), and identify
feature conflicts that would lead to invalid configurations. This
extracted information is displayed graphically to support the
developer in domain analysis. To aid in domain design, the
tool presents the system’s computation graph – its runtime
architecture – annotated with presence conditions, aiding
the user in understanding which runtime entities are tied to
particular features. Users can select features and see live updates
on the shape of the resulting graph. Users are also alerted
when a given configuration is potentially invalid, according
to a limited set of rules. Lastly, the tool supports domain
implementation by generating a configuration artefact (a launch
command) that deploys the selected variant.

For evaluation purposes, we have studied four open-source
robotic systems in depth and assessed how the tool handled



source code from those real-world applications. The technique
was implemented on top of the HAROS [3], [4] framework for
the development of high-assurance ROS applications, providing
a friendly interface for ROS developers. This is also a first step
towards supporting variability-aware analyses that would not
otherwise scale if applied individually to each of the (many
possible) configurations.

The remainder of this paper is structured as follows.
Section II provides some necessary background on software
variability. Section III complements it, providing background
on ROS and how variability may manifest in ROS applications
according to our preliminary study. We follow with Section IV,
describing our approach and tool implementation, which are
evaluated in Section V. Lastly, Section VI compares our work
to prior approaches in the same domain, and Section VII lays
down our conclusions and directions for future work.

II. SOFTWARE VARIABILITY

Variability is a concept that goes hand in hand with the
concept of Software Product Lines (SPL) [2]. An SPL is a
family of (software) products, also called variants, that stem
from a common base. Each variant supports a different set of
capabilities, components or parameters, collectively referred
to as features. Understanding and adopting an SPL-oriented
development process reduces the overall complexity of building
modular designs. Variability, then, measures in what ways a
system can be reconfigured, by adding, removing or replacing
its features.

According to [5], there are four main sources of variability
in robotics: the clients, who require different capabilities for
different applications; the different environments in which a
robot is expected to operate; the range of supported hardware
and software components; and the supported middlewares, with
each requiring its own interface code for the same component.
So it is clear how a modern and modular robotic system could
be interpreted as an SPL with an overwhelming number of
theoretically possible products.

Feature-oriented domain analysis is one of the most common
approaches to variability management [6]. Here, a feature model
provides a hierarchical representation of all the available fea-
tures in the system. It also establishes relations of dependency
and conflict between features, such as the selection of one
feature requiring the inclusion (or exclusion) of another. In
particular, child features require always the selection of their
parent feature, while siblings often represent different, but not
necessarily exclusive, options for the same parent feature –
e.g., different hardware components for an abstract Sensor
feature. Feature models also admit relations between features
that are not in the same hierarchical line, resulting in cross-tree
constraints. Given a set of constraints and hierarchical relations,
one can easily determine whether a given selection of features
is a consistent (or valid) product.

During design and implementation, the naïve approach to
variability is to clone-and-own, duplicating code and then
changing it as necessary. This strategy has an obvious deficiency
in terms of maintainability, which makes compositional and

1 <launch>
2 <arg name="vel_topic" default="vel_cmd" />
3 <arg name="use_teleop" default="false" />
4 <param name="max_vel" type="double" value="0.8" />
5 <include file="$(find example)/launch/diagnostics.launch" />
6 <node name="controller" pkg="robot_teleop" type="kb_teleop"

if="$(arg use_teleop)">
7 <remap from="vel_cmd" to="$(arg vel_topic)" />
8 </node>
9 <node name="controller" pkg="robot_planner"

type="laser_planner" unless="$(arg use_teleop)">
10 <remap from="vel_cmd" to="$(arg vel_topic)" />
11 </node>
12 </launch>

Fig. 1. Example ROS launch file.

annotative approaches better suited choices [7]. The former
views features as isolated modules and then composes them
to obtain the final product. The latter uses annotations in the
artefacts to identify what is related to each feature. For design,
this can be achieved, for instance, through stereotypes in UML
models. For implementation, a common example is the use of
conditional compilation – e.g., #ifdef preprocessor directives in
C code. Each approach has its benefits and trade-offs; neither
is a de facto choice.

While, ideally, SPL engineering would be adopted from
the beginning of the development (in a, so called, proactive
approach), in practice it is often only adopted later in the
process as the complexity of the products increases, often
without any prior domain analysis nor feature model to help
manage the existing variability. This led to the development
of many reverse engineering methods and tools for automatic
extraction of feature models from source code [8].

III. THE ROBOT OPERATING SYSTEM

ROS builds upon established concepts in software engineer-
ing, easing its learning curve and making it more appealing as
a prototyping and development platform.

In terms of source code, software is organized in packages,
the basic build and distribution units. Many packages are open
source and freely available for reuse. Some are even collected
in official indices called distributions. The latest distributions
of ROS, for example, list more than 4 000 packages.

At runtime, a ROS system functions based on the concept
of computation graph: a distributed network of black-box
components (nodes) that communicate by exchanging messages
(mostly) over publisher-subscriber channels (topics). ROS is
multilingual, with its two main languages being C++ and Python.
In order to assemble a system (i.e., define its computation
graph), developers often use launch files – XML files where
one is able to declare: (i) which nodes the ROS infrastructure
should run; (ii) what unique names to assign to each node;
(iii) which parameters to pass to each node instance; and (iv)
how to redirect communication channels, to connect nodes. A
single system can be composed of multiple launch files to be
executed in parallel.

The example in Fig. 1 illustrates the typical features of a
ROS/ROS2 XML launch file. The arg tag declares an argument



– essentially a local variable that can be used throughout the
launch file. In the example, only default values are specified,
which will be used if the user does not provide alternative values
via command line. The param tag declares a global parameter
that can be accessed at runtime by any ROS node. Launch files
can include the contents of other launch files, enabling a form
of composition. The node tag is self-explanatory – it instantiates
a node into the system. Each node is given a unique name and
launches an executable (type) from a ROS package (pkg). The
same node type may be used multiple times in the computation
graph, as long as each name is unique. The nested remap tags
redirect communication channels of the respective nodes. In
this example, whenever the nodes access vel_cmd, they will be
transparently redirected to the value of the vel_topic arg instead.
More interestingly, these nodes are conditional. The first node
is only launched if the value of use_teleop is true. Conversely,
the second node is always launched, unless use_teleop is true.

An empirical study [9] shows that command-line arg, runtime
param and channel remap are widely used in the ROS ecosystem.
With these features, developers can write modular code that
is not tied to a specific application; each component can be
reconfigured as necessary during system orchestration. File
inclusion and conditional statements are also used, in a similar
measure. Additional mechanisms, used to a lesser extent, are,
e.g., environment variables (not shown in Fig. 1).

Our preliminary study of ROS systems – among which are
popular robots in the community, such as the TurtleBot21,
Husky2 and Lizi3 – has shown that developers tend to prefer a
compositional approach to variability. For each capability there
are multiple launch files with slightly different configurations,
from which a selection is launched in parallel. For example,
one common launch file starts the robot’s base, while, for
example, a second launch file, picked from a set of provided
launch files, starts navigation components with the correct map
for a given area. On average, only about 20% of all nodes are
unique [9]. The abundant code duplication in launch files is
confirmed by other studies as well [10]. Lizi is an exception; it
leans towards the annotative method, having fewer but highly
parameterisable entry points that use conditional file inclusion
(depending on user-supplied arg) to load features.

IV. VARIABILITY ANALYSIS FOR ROS
The attentive reader might have noticed that, in our brief

introduction to how variability manifests and how it is handled
in ROS applications, in Section III, we have never mentioned
what, exactly, constitutes a feature in ROS (or an application,
for that matter). There are no formal definitions for such
concepts in the official ROS documentation, a fact that poses
our first challenge when automating variability analysis. ROS
works with dynamic and open-ended networks, which makes
it harder to define up front the full architecture of a system.
A single robot might represent a full application in itself, if
acting alone, but it could also be just a component of a larger

1https://wiki.ros.org/Robots/TurtleBot
2https://wiki.ros.org/Robots/Husky
3https://wiki.ros.org/lizi

Fig. 2. Feature metamodel for a ROS application.

application in the context of a robot swarm, for example. As
such, we assume that the intention of the developers of a
robotic application is essential to identify the packages and
components that compose it. We base our approach on the fact
that developers almost always provide (one or more) launch
files to be used as the entry points to run a ROS application.
With that in mind, we can start designing what a ROS feature
model could look like.

A. ROS Feature Modelling

We consider a ROS application to be a set of nodes to
be launched, along with their configuration. Nodes are major
actors in the ROS computation graph, and their configuration
dictates which parameters and communication channels will
be available at runtime. In other words, an application is the
set of necessary building blocks to compose a specific system
product or computation graph.

We consider a feature of an application to be any con-
figuration option that ultimately affects the structure of the
computation graph4. As we have seen in Section III, nodes,
parameters and communication channels are the core compo-
nents of the ROS computation graph. Channels are determined
by the set of launched nodes, without user intervention. Nodes
and parameters are, in turn, determined by the selected launch
files. The resulting configuration options a user has – namely,
launch files and their corresponding command-line arguments
– make the features of a ROS application.

Launch files are features for the obvious reason that they
group together and enable all other components; they are the
entry points of an application. Command-line arguments (arg),
despite not being features per se – in the traditional sense of
an observable component or functionality – can be set with
a user-provided value, which is then used instead of hard-
coded literals to determine the inclusion or exclusion of other
features and components. For example, $(arg use_teleop) in
Fig. 1 determines which of the two nodes will be instantiated.
To the top-level set of launch files that a user wants to deploy in
parallel, to instantiate a concrete application, we call a system.
This feature hierarchy is shown in Fig. 2.

Standard feature model restrictions are supported over the
presented structure. The selection of a child feature imposes
the selection of its parent – selecting the arguments of a launch
file entails the selection of that launch file. Features can be
grouped in xor-groups, where exactly one child feature must
be selected, e.g., exactly one of the alternative values for an
argument. Cross-tree constraints of inclusion – when a launch

4Variability may also affect the internal behaviour of the nodes, but that is
beyond the scope of this work.
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file includes another one – and exclusion – when launch files
conflict with each other due to launching nodes or parameters
with the same name – are also supported. Section IV-D explains
how all these are automatically extracted from source code.

B. ROS Variational Architectures

Besides the feature model just described, we provide the
SPL’s computation graph. In previous work, Santos et al. [11]
proposed an architectural model for representing computation
graphs of ROS applications. Here, these are extended by
allowing the annotation of runtime entities with presence
conditions, propositional formulae over the features of the
extracted feature model and the components they spawn.
This allows the user to quickly identify, in a single model,
which elements are mandatory or optional, and under which
configurations. For instance, if a node is spawned by a launch
file a, its presence condition is simply a. If it is launched
conditionally, with if, when an argument x has value v, and
assuming feature a_x_v denotes that v is assigned to x in
a, its presence condition is a_x_v. If two launch files, a
and b, spawn a node with the same name, n, we have to
calculate a super-product that merges both occurrences of
n, disjoining its presence conditions (in this case, a ∨ b, if
launched unconditionally). Note that the feature model would
actually have an exclusion constraint forbidding a and b to be
selected simultaneously due to the node name clash. Presence
conditions are simplified when elements are merged, and if they
evaluate to false (resp. true), elements are forcibly excluded
from (resp. added to) the final product.

All extracted entities keep a series of attributes pertaining
to their configuration in the launch files. For example, a node
maintains attributes such as its name, package and executable
type – extracted from the node tag itself – but it also keeps
a set of name remappings – extracted from child remap tags –
that it should apply to redirect communication channels. These
attributes, too, are kept variational, i.e., annotated with presence
conditions, so that we may calculate their final value when
merging selected features. For example, a node of type t1 in
launch file a and type t2 in file b can only determine its final
type once either a or b are selected.

C. Multi-step configuration

Once the feature model and the variability-aware compu-
tation graph are created, the user may perform multi-step
configuration by iteratively selecting/rejecting features. Each
feature can be in one of three states: selected, if it should
be part of the system; deselected, if it should be excluded;
or unselected, if no choice has yet been made. This state is
determined by the user selections, but can also be affected
by the feature model constraints (e.g., if an argument value
a_x_v is selected by the user, its parent launch file a is also
automatically selected). In parallel, the computation graph is
also refined as the feature selection evolves. For example, if a
node has presence condition a∨b, and the user selects launch file
a, the presence condition becomes true and the node becomes
unconditionally present in the application.

Algorithm 1 Feature model extraction
Input: a set of launch files lfiles
Output: a feature model fm

lns ← {}
fm ← FM(”root”)
for all xml ∈ lfiles do

f _lch ← xml .GETNAME()
fm.ADDCHILD(”root”, f _lch)
for all arg ∈ xml .GETELEMENTS(”arg”) do

if AFFECTSCG(xml , arg) then
f _arg ← arg.GETFIELD(”name”)
fm.ADDCHILD(f _lch, f _arg)
fm.ADDXOR(f _arg, GETVALUES(xml , arg))

for all inc ∈ xml .GETELEMENTS(”include”) do
fm.ADDINCLUDES(f _lch, inc.GETFIELD(”file”))

for all elem ∈ xml .GETELEMENTS(”node”) ∪
xml .GETELEMENTS(”param”) do

pc ← f _lch ∧ GETCONDITION(xml , elem)
ln ← {pc} ∪ lns.GET(f _lch)
lns.PUT(elem, ln)

for all elem ∈ lns.KEYS() do
if SIZE(lns.GET(elem)) > 1 then

for all l1, l2 ∈ lns.GET(elem) do
fm.ADDEXCLUDES(l1, l2)

Once no unselected features are left, a single concrete
product has been configured and can be launched. By then, the
conditional presences are resolved, leading to an architecture
without any variation points. The concrete call to roslaunch that
runs such system – calling the selected launch files with the
selected argument values – is then provided to the user.

D. Extraction

Constructing feature models is a laborious and error-prone
task, as mentioned in Section II, but its value is undeniable,
especially when aided by automatic extraction procedures.

Our approach to ROS variability revolves around launch files
and nodes, since both are concrete source code artefacts that
can be analysed. Using static analysis to extract communication
channels from ROS nodes has been done by Santos et al. [11]
and implemented in HAROS [3], [4], a framework for quality
assurance of ROS applications. This framework analyses launch
files in order to build a computation graph, but it does not
support the feature model structure we propose. We extended
its capabilities so that: (i) we act on a global view over all
launch files; (ii) features and attributes are variational; (iii)
presence conditions are logic formulae, rather than unresolved
strings; (iv) cross-tree constraints are supported; and (v) the
computation graph can be calculated as the user selects features.

The process of extracting the feature model is depicted
in Algorithm 1. Given a set of launch files, the algorithm
iteratively processes each file and creates a feature model. Here,
procedure FM creates a new feature model with the given root
feature, ADDCHILD adds a parent/child relationship, ADDXOR
adds a xor-group to a parent feature, and ADDINCLUDES
and ADDEXCLUDES add inclusion and exclusion cross-tree
constraints, respectively.

For each launch file, the algorithm calculates a unique name
with GETNAME and adds that feature to the feature model.
XML tags are processed in order, mimicking the behaviour of



1 <launch>
2 <arg name="model" default="kobuki" />
3 <arg name="use_teleop" />
4 <arg name="vel_topic" value="$(arg model)/vel_cmd" />
5 <node name="$(arg model)" pkg="example" type="$(arg

model)_driver">
6 <remap from="vel_cmd" to="$(arg vel_topic)" />
7 </node>
8 <include file="$(find example)/launch/control.xml">
9 <arg name="use_teleop" value="$(arg use_teleop)" />

10 <arg name="vel_topic" value="$(arg vel_topic)" />
11 </include>
12 </launch>

Fig. 3. Example arguments that may affect the computation graph.

the ROS infrastructure, roslaunch, and preserving its semantics.
We abstract some of the procedures to retrieve XML elements
and fields as GETELEMENTS and GETFIELD, respectively.

Starting with the arg tag, only those that affect the architec-
ture are relevant, a test we abstract by AFFECTSCG. If its value

is set, it is not considered a feature, since every reference to
it can be directly replaced. Otherwise, it is an input argument
and a feature candidate. It will be effectively a feature if it is
used – directly in the launch file or transitively via include –
(i) to instantiate a node or param; (ii) to remap communication
channels; or (iii) to resolve a Boolean condition that, directly
or transitively, affects nodes, parameters or communication
channels. Note that while an arg with a set value may not be a
feature in itself, it can depend on command-line arg that, then,
may become transitive features. For example, take the listing
in Fig. 3. Assume that the included control.xml is the launch
file in Fig. 1. The first two arg are input arguments, while
vel_topic is not. The model arg determines the name and type of a
node, so it affects the computation graph and, thus, is a feature.
Both use_teleop and vel_topic are passed on via include, and we
know that use_teleop determines the nodes launched in that file,
making it also a feature. On the other hand, vel_topic affects the
computation graph by determining the ultimate name assigned
to a communication channel with the remap tag. However, its
value depends on model. If model was not a feature in itself, it
would transitively become one at this point.

Calculating the possible values an arg can take, a process
abstracted by GETVALUES, can be done in some cases,
although it may not be trivial. The simplest case is when
the arg is used to fully replace the value of an attribute that, by
definition in the ROS launch XML specification, can only take
values from a given enumeration. One such case is the type

attribute of a param, that can only be one of "bool", "string",
"int", "double", "yaml" or "auto". Another relatively easy case is
an arg that is used only in Boolean conditions, which makes
it "true", "false", "0" or "1". If the arg is used in place of the
executable type for a given node (e.g., model), and we have
access to the corresponding package in the file system, we can
scan the available executables and produce a set of possible
values. Lastly, if the arg is used in a file path expression, e.g.,
"path/to/$(arg file).launch", we enumerate all possibilities by
inspecting the package’s file structure.

The next step processes include tags, adding inclusion
constraints that force the selection of the called launch file.
Note that the same file may be included in multiple launch files,
so there is not a simple parent/children relationship between
launch files.

Finally, the node and the param tags are handled in similar
fashion. Procedure GETCONDITIONS calculates the presence
conditions of these elements, based on the parent launch files
and required argument values. Here, the main goal is to identify
if elements with the same name are being launched in multiple
launch files, causing a conflict between them. In that case, an
exclusion constraint is added to the feature model.

E. Tool Support and Visualization

Our prototype implementation5 is, in essence, split into three
stages: (i) executing HAROS, to produce JSON files with the
intra-node models; (ii) executing a command-line tool, harosvar,
that analyses all launch files in a set of packages and produces
JSON files containing their feature models; and (iii) executing
harosviz, a modified HAROS visualization server. This server
differs from the original in terms of its model visualization.
Whereas the original displays a series of pre-computed (static)
computation graphs, based on user-provided lists of launch
files, we now display an interactive feature model with live
computation graph calculation, as illustrated in Fig. 4.

On the left-hand side of this figure, we see an excerpt of
the extracted feature model, displayed as a hierarchical tree.
Dark filled circles represent collapsed sub-trees, while white
circles represent expanded trees. The topmost visible layers
correspond to launch files, with one being deselected (in red,
with the cross mark in front) and one being selected (in green,
with the check mark in front). A parenthesized check mark
means that the selection of that feature is derived, in this case
because the user selected one of the launch file’s arguments
(in the second layer), which requires the parent launch file
to also be present. If an argument has a default value, it is
always displayed among the options. When the tool is unable to
calculate an argument’s possible values, the user has the option
of manually inserting a value of their choice. Lastly, to make
evident problematic configurations, we add a warning symbol
in front of launch files for which there are potential conflicts,
determined by exclusion constraints. The user can click on the
symbol to get a list of conflicting files and their conditions. As
the user selects features, these conflicts may become impossible
(e.g., the selected argument values never lead to the launch
of conflicting nodes), and the warning disappears. Once a
product is fully configured, the respective roslaunch command
is provided to the user.

On the right-hand side we can see an excerpt of the
variability-aware ROS computation graph that would result
from the feature selection on the left side. White circles
represent ROS nodes, while coloured circles represent the
communication channels. The warning symbols are a visual
indication of potential conflicts at the node level as occurring in

5https://github.com/git-afsantos/harosvar

https://github.com/git-afsantos/harosvar


Fig. 4. Screen capture of the prototype visualization tool.

the feature model; in this case, multiple ROS entities clashing
with the same name. Drawings in dashed lines represent entities
that are not fully resolved with the current feature selection.
Since all features start as unselected, the initial computation
graph tends to be large, to contain multiple potential conflicts,
and to be mostly drawn in dashed lines. As features are selected
and deselected, the graph becomes smaller and drawn mostly
in solid lines. Users can inspect the attributes, conflicts and
conditions of each element. While most of the graph rendering
is reused from HAROS, the formatting of presence conditions
and the display of potential conflicts are novel.

The visualizer also improves upon HAROS regarding com-
putation graph analysis. HAROS allows users to define custom
queries, presumably representing problematic patterns, such
as topics with multiple publishers. Queries would run for all
manually declared configurations, one by one, and results could
be inspected in the visualizer, highlighting affected elements.
Our approach turns again towards live computation. As the
computation graph is resolved, queries are evaluated in real
time against the current graph, as shown in Fig. 4 (affected
entities are highlighted in red). Moreover, queries may also
consider the presence conditions of elements, e.g., collecting
only elements that are affected by certain features. Queries are
provided in PyFLWOR syntax, a Python-like query language
and system based on XQuery and XPath. The example shows
the selection of topics with more than one publisher, defined
by the query on the top, topics[len(self.publishers) > 1].

V. EVALUATION

The evaluation of variability analysis and model extraction
processes often takes into account various performance aspects,
both functional and non-functional. Regarding the former, we
are interested in assessing how effective the proposed technique
is in detecting variability points in launch files. Moreover,
we are also interested in the complexity of the resulting
feature models, which are evidence of the variability level
of the ROS system and represent the configuration effort that
would be expected of the user. Non-functional metrics are
often time measurements, which in this work would regard
the performance of the feature model and computation graph
extraction (e.g., parsing and interpretation of files); and their

TABLE I
EVALUATION RESULTS REGARDING LAUNCH FILES

System LF LV LC LCU LCA

Kobuki 21 4 17 17 0
TurtleBot2 53 15 38 36 2
Lizi 14 2 12 12 0
Husky 137 37 100 98 2

TABLE II
EVALUATION RESULTS REGARDING COMMAND-LINE ARGUMENTS

System A ACG AS ASD ASV IF IFM

Kobuki 18 0 0 0 0 0 0
TurtleBot2 195 23 19 15 5 6 2
Lizi 66 12 1 1 0 20 4
Husky 391 82 40 40 12 57 4

update during multi-step configuration. Thus, this section aims
to answer the following research questions.

RQ1 Does the execution time of the technique scale for
realistic ROS systems?

RQ2 How effective is the technique in automatically
extracting feature models?

RQ3 How complex are the extracted feature models of
realistic ROS systems?

To answer these questions, we applied our technique to four
distinct mobile ROS robots with which we have experience:
Kobuki, TurtleBot2, Lizi and Husky. These robots have received
contributions from the ROS community over the years, and
are iconic subjects used in robotics research and education.

Table I and Table II summarise the results of our experiments,
considering a variety of metrics. Table I is focused on metrics
pertaining to launch files, namely how many there are (LF);
the number of files that never lead to conflicts with other files
(LV); the number of files that have, at least, one potential
conflict (LC); and, among LC, those that have at least one
conflict that is unconditional (LCU ), and those whose conflicts
always depend on the values of their arg (LCA). Table II shows
our findings related to command-line arg, such as their number
across all launch files (A); how many affect the structure of
the computation graph in some measure (ACG); the number
of arg, among ACG, that require non-Boolean values (AS);



and, among those, how many provide a default value (ASD)
and how many have computed values besides their defaults
(ASV ). In addition, we calculate the number of times arguments
from ACG affect an if or unless condition (IF), as well as the
maximum number of times a single arg does so (IFM ).

Note that we do not aim to measure the efficacy of the
extracted models against a ground truth representing the
developers’ intentions. There is no reliable method to obtain
this ground truth, other than studying the test subjects in depth –
reading source code, documentation, contacting the developers,
etc., which we leave for a future study.

Regarding RQ1, we did not find any performance bottleneck
in the proposed approach. Parsing and interpreting launch files
is a fast process. There are no alignment issues when calculating
the models – two ROS resources are the same if they have
the same name. Calculating computation graphs proved to be
almost immediate for all our experiments (ranging from 120
milliseconds to 3.68 seconds), which is also not surprising,
given that the involved logic formulae are rather simple, due
to the structured nature of launch files.

Regarding RQ2, we consider the overall precision and recall
of the approach, resorting to manual observation to validate
our results. Our technique is precise by construction, given that
only launch files and arguments that affect the computation
graph are considered features. Ranges of valid arg values
are computed only in predictable, deterministic scenarios. All
reported conflicts are also confirmed to be present.

In terms of completeness (recall), all features have been
detected, according to our model. We have found that many
arg (the difference between A and ACG) do not affect
the computation graph. Instead, they are used to configure
secondary aspects, such as navigation. Boolean arg are trivially
detected and computed, based on if and unless. However, the
tool was unable to compute any values besides the default for
43 out of 60 AS (71.67%). More than half of these (26) are ROS
names for nodes and channels that must be provided by the user,
seen in TurtleBot2, Lizi and Husky. The remaining arguments
(17) pertain to third-party packages, indicating launch and
data files to import. Since third-party packages are not part of
the subject systems per se, we left their features out of our
measurements. Recall that, when value inference fails, the user
is still able to provide the intended value via the tool’s interface.
Note also that we are only concerned with the completeness
of the variability extraction technique, which builds on the
computation graphs automatically extracted with HAROS using
intra-node source code analysis [11]. HAROS allows the user
to provide additional information to fix incomplete graphs.

As for RQ3, looking at the number of launch files that
realistic ROS systems carry, and considering that the vast
majority may induce runtime conflicts, the utility of a tool such
as we propose, to support the user in system configuration,
becomes evident. It is true that, all things considered, the
numbers of ACG do not come close to A. The true question,
however, is not how many arguments affect the computation
graph, but rather how they do so. Out of 117 ACG, 57 are
Booleans, while 60 belong to AS. Most AS provide a default

value, but most also fall out of the predictable cases for which
our tool can compute valid ranges of values. This makes system
configuration less intuitive for users, and requires more manual
effort to validate the resulting products. We argue that simply
being aware of those variability points and their connection to
the computation graph is helpful for the user.

Concerning the 57 Boolean ACG, we can see that there is a
total of 83 IF, i.e., there are more decision points than Boolean
arg, meaning that some are used multiple times. Indeed, some
arg are used a total of 4 times (IFM ) throughout a single launch
file and its inclusions. Fortunately, decision points concentrate
at the topmost level; only 3 Boolean arg propagate down via
include, while non-Boolean arg are passed down more often.

Overall, the Lizi system stands out in this corpus, in the way
that it approaches launch files. It has the lowest LF because
most of its variability resides in a single main launch file, with
multiple arg that alter its behaviour. Its IF is notably high,
relatively speaking, amounting to an average of 1.43 if per
launch file – even though we know they are not distributed
equally – while other systems show an average below 0.5. This
is due to the other systems, in contrast, following a clone-and-
own approach, having multiple similar launch files, changing
only some aspects of their configuration. Husky, for instance,
has 24 arg used in file paths. We are able to calculate half of
them, while the other half relates to third-party packages. In
reality, 10 of the missing 12 are five repetitions of the same two
arg, spread over five very similar launch files. This repetition
offers simplicity in the one hand, but might overwhelm users
with the sheer number of launch files in the other.

VI. RELATED WORK

Variability has been traditionally implemented in C source
code using preprocessor directives (#ifdef) to take advantage
of conditional compilation. This problem has been tackled
using different strategies, such as integrating build systems
and their configurations in the analysis, as (major) sources of
variability [12]; using mining techniques, in addition to static
analysis, to find feature correlations and constraints [13]; or
integrating multiple layers, scripts and file types into feature
models, considering also that some pieces of information are
not always Boolean [14]. While this is not a common problem
in ROS, some concepts can be compared, and even transposed.
For example, integrating the launch interpreter semantics into
the extraction process is a core aspect of our approach, as is
the merging of Boolean and non-Boolean information from
multiple layers of variability into a single model.

The work of Assunção et al. [15] is an interesting contrast
to ours. The driving motivation of their work is to extract
feature models that are variability-safe, i.e., models where all
possible feature combinations are structurally well-formed and
unresolved references to undefined elements are forbidden. We,
on the other hand, support unresolved references explicitly,
and present them to users in the form of warnings and other
indicators, so that users can take action.

Schlie et al. [16] focus on model extraction in systems
where variability is implemented through clone-and-own. This



is something that we anecdotally have seen in ROS, for instance
by cloning launch files and changing the parameters they pass
down to nodes. Rather than traditional feature models, they
build a so-called 150% model; a type of model that represents
variability at the implementation level, e.g., showing alternative
code blocks when under conditional compilation. Likewise, we
define features in terms of tangible source code artefacts, that
can be traced back to their origin.

Lastly, in stark contrast to our approach, HyperFlex [17] is a
Model-Driven Engineering (MDE) toolkit. Users of HyperFlex
build architectural diagrams and feature models using mostly
visual representations, which can then be instantiated to con-
crete implementations, configured via automatically generated
code – which, in ROS, corresponds to automatically generating
launch files. The tool supports building multiple feature models,
targeting different levels of abstraction and, consequently,
different users. For example, one feature model, intended for
domain experts, might capture the functional variability for a
low-level capability, such as perception or mobile manipulation,
using vocabulary that is appropriate for this domain. Another
feature model, intended for system integrators, would describe
the robotic application at a high level of abstraction, referring to
the lower-level features while hiding their internal complexity.
The connections between levels of abstraction are defined with
model-to-model transformations, that the tool also supports.
The clear separation of concerns and the use of semantic
vocabulary are compelling conveniences for the development
of robotic applications – but they require an MDE approach
from the start. Our feature models, on the other hand, operate
at a much lower level of abstraction. Features correlate directly
to source code artefacts without domain-specific meaning, a
direct consequence of a reverse engineering approach. One
major benefit, though, is that it requires no previous investment
in modelling. It can be used by roboticists without training in
software engineering, or by software engineers working with
existing or legacy systems.

VII. CONCLUSION

Variability analysis is a current and complex problem in the
world of software engineering, but especially so in robotics.
As developers shift deeper into modular designs, building a
robotic system revolves largely around reusing, configuring
and orchestrating third-party components. This can be seen
in ROS launch files, files designed for the purpose of system
orchestration, which are also a major source of variability.

In this paper, we have proposed a method to automatically
extract a variability model of a ROS application, and presented
a prototype tool that implements this approach. The interactive
view shows how each feature will impact the system’s architec-
ture at runtime, as it calculates the resulting ROS computation
graph in real time. The tool is also capable of identifying
invalid configurations and allows users to execute queries over
the model, to identify further issues.

XML launch files are supported by the original ROS and
ROS2, but the latter favours Python launch files instead, which

make analysis much more of a challenge. Regardless, it is a
challenge that we intend to take on.

Another limitation of our approach is that static analysis is
sometimes unable to extract a fully resolved computation graph,
as evidenced during our experiments. The underlying tool
for this, HAROS, requires user-provided extraction hints that
supply the missing pieces of information. In our case, such hints
must also take presence conditions into consideration, since the
way a system’s features are integrated and configured certainly
has an effect on the final product. How to best approach this
is a challenge that we intend to study further.

Lastly, we intend to explore how software analysis tools,
such as HAROS, can be altered or reused in such a way that
they are able to operate on variational models. The goal is to,
ideally, analyse once, and determine all possible configurations
that would cause an issue to manifest.
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