
Citation: Pascoal, S.; Oliveira, S.;

Monteiro, F.; Padrão, J.; Costa, R.;

Zille, A.; Catarino, S.O.; Silva, F.S.;

Pinho, T.; Carvalho, Ó. Influence of

Ultrasound Stimulation on the

Viability, Proliferation and Protein

Expression of Osteoblasts and

Periodontal Ligament Fibroblasts.

Biomedicines 2024, 12, 361.

https://doi.org/10.3390/

biomedicines12020361

Academic Editor: Oliver Schierz

Received: 16 January 2024

Revised: 30 January 2024

Accepted: 1 February 2024

Published: 3 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Influence of Ultrasound Stimulation on the Viability,
Proliferation and Protein Expression of Osteoblasts and
Periodontal Ligament Fibroblasts
Selma Pascoal 1,2, Sofia Oliveira 2,* , Francisca Monteiro 2,3 , Jorge Padrão 4 , Rita Costa 1, Andrea Zille 4 ,
Susana O. Catarino 2,5 , Filipe S. Silva 2,5, Teresa Pinho 1,6 and Óscar Carvalho 2,5

1 UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS),
CESPU, 4585-116 Gandra, Portugal; selma.pascoal@iucs.cespu.pt (S.P.)

2 Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Campus Azurém,
4800-058 Guimarães, Portugal; scatarino@dei.uminho.pt (S.O.C.); oscar.carvalho@dem.uminho.pt (Ó.C.)

3 ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
4 Center for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho,

Campus of Azurém, 4800-058 Guimarães, Portugal; padraoj@2c2t.uminho.pt (J.P.);
azille@2c2t.uminho.pt (A.Z.)

5 LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
6 IBMC—Instituto Biologia Molecular e Celular, i3S—Inst. Inovação e Investigação em Saúde,

Universidade do Porto, 4200-135 Porto, Portugal
* Correspondence: sofiaoliveira@dem.uminho.pt

Abstract: Among the adjunctive procedures to accelerate orthodontic tooth movement (OTM),
ultrasound (US) is a nonsurgical form of mechanical stimulus that has been explored as an alternative
to the currently available treatments. This study aimed to clarify the role of US in OTM by exploring
different stimulation parameters and their effects on the biological responses of cells involved in OTM.
Human fetal osteoblasts and periodontal ligament fibroblasts cell lines were stimulated with US at
1.0 and 1.5 MHz central frequencies and power densities of 30 and 60 mW/cm2 in continuous mode
for 5 and 10 min. Cellular proliferation, metabolic activity and protein expression were analyzed.
The US parameters that significantly improved the metabolic activity were 1.0 MHz at 30 mW/cm2

for 5 min and 1.0 MHz at 60 mW/cm2 for 5 and 10 min for osteoblasts; and 1.0 MHz at 30 mW/cm2

for 5 min and 1.5 MHz at 60 mW/cm2 for 5 and 10 min for fibroblasts. By stimulating with these
parameters, the expression of alkaline phosphatase was maintained, while osteoprotegerin synthesis
was induced after three days of US stimulation. The US stimulation improved the biological activity
of both osteoblasts and periodontal ligament fibroblasts, inducing their osteogenic differentiation.

Keywords: fibroblasts; orthodontic tooth movement; osteoblasts; ultrasound

1. Introduction

During orthodontic tooth movement (OTM), several mechanical and biological pro-
cesses take place, comprising the remodeling of the periodontal ligament (PDL) and alveolar
bone. Remodeling and modeling involve coordinated action of osteoclasts and osteoblasts
in response to mechanical load. Moreover, inflammatory mediators, namely, interleukin
(IL)-1, IL-2, IL-6, IL-8 and tumor necrosis factor-alpha, are released after a mechanical
stimulus or injury, triggering the biologic process associated with OTM [1,2]. Orthodontic
treatment is usually considered a long-term treatment, which can lead to several complica-
tions, such as a high risk of caries, root resorption and decreased patient compliance and
satisfaction. Thus, accelerating OTM and shortening treatment duration is the primary goal
of the orthodontist to prevent the detrimental effects of longer treatment times and to meet
patients’ expectations [3,4].

Biomedicines 2024, 12, 361. https://doi.org/10.3390/biomedicines12020361 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines12020361
https://doi.org/10.3390/biomedicines12020361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-9617-5910
https://orcid.org/0000-0003-4116-6237
https://orcid.org/0000-0001-5630-6621
https://orcid.org/0000-0001-5299-4164
https://orcid.org/0000-0002-8962-0710
https://orcid.org/0000-0003-0012-6626
https://orcid.org/0000-0002-9447-8739
https://doi.org/10.3390/biomedicines12020361
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines12020361?type=check_update&version=1


Biomedicines 2024, 12, 361 2 of 13

In recent years, numerous adjunctive procedures based on surgical (e.g., corticotomy,
piezocision) [5,6] and nonsurgical (e.g., photobiomodulation, mechanical stimulation) [7,8]
procedures have been introduced to accelerate OTM. Particularly, mechanical stimulation
has gained more attention since it has been reported to activate osteoblasts and osteoclasts,
promoting bone remodeling [9]. Current in vivo and in vitro studies have applied different
mechanical loading regimes and have shown that this stimulus has a beneficial effect on
the proliferation and differentiation of bone cells [10–14].

Ultrasound (US) is a form of mechanical stimulus that has been explored as an al-
ternative to the currently available treatments to accelerate OTM. It is transmitted to the
human body as high-frequency acoustic pressure waves and it can cause biochemical and
biophysical events at the cellular level [15], also promoting bone formation [16–18]. This
therapy is commonly applied with central frequencies of 1.0 and 1.5 MHz and with an
intensity (i.e., power density) of 30 mW/cm2 in pulsed mode for 10, 15 or 20 min [19–22].
There is a lack of studies investigating other parameters that could also be employed during
US stimulation. Also, the previous studies [8,23,24] have shown inconsistent results on
the efficacy of therapeutic US in orthodontics, which may arise from the use of different
stimulation protocols, experimental models and/or tooth movement mechanics.

More in vitro studies should be conducted to better clarify the role of US in OTM by
exploring different stimulation parameters and their effects on the biological responses
of cells involved in OTM. This study aims to fill this gap in the literature by stimulating
human osteoblasts and periodontal ligament fibroblasts with US at 1.0 and 1.5 MHz central
frequencies and power densities of 30 and 60 mW/cm2, in continuous mode, for 5 and
10 min. The effects of such US parameters were analyzed in terms of proliferation, metabolic
activity and protein expression of osteoblasts and fibroblasts involved in the OTM.

2. Materials and Methods
2.1. Cell Culture

A human fetal osteoblast cell line (hFOBs; American Type Culture Collection—ATCC®,
Manassas, VA, USA) was cultured in Dulbecco’s Modified Eagle Medium/Nutrient Mixture
F-12 (DMEM-F12), without phenol red (PAN-Biotech GmbH, Aidenbach, Germany), con-
taining 2.5 mM L-glutamine (PanBiotech®, Aidenbach, Germany), 10% (v/v) fetal bovine
serum (FBS; Sigma-Aldrich, St. Louis, MO, USA) and 0.3 mg/mL geneticin (G418; PAN-
Biotech GmbH, Aidenbach, Germany). The hFOBs were used between 12 and 14 passages.

Human periodontal ligament fibroblasts (hPLFs) were isolated from healthy human
periodontal tissue and purchased from Innoprot®, Spain. They were cultured in DMEM-F12
culture medium supplemented with stable glutamine and 1.2 g/L NaHCO3 (PAN-Biotech
GmbH, Aidenbach, Germany) with 10% FBS (Sigma-Aldrich) and 1% (v/v) penicillin–
streptomycin (PAN-Biotech GmbH, Aidenbach, Germany). The hPLF cells were used at the
third passage. Both hFOBs and hPLFs were maintained at 37 ◦C in a humidified atmosphere
of 5% CO2, and the culture medium was changed twice a week.

2.2. Cell Seeding

At a 90% confluence, hFOBs and hPLFs were detached from the culture flasks with
0.25% (v/v) trypsin/EDTA (PAN-Biotech GmbH, Aidenbach, Germany). The hFOBs were
seeded at a concentration of 20,000 cells/well and the hPLFs at 30,000 cells/well in 12-well
plates for 72 h prior the US stimulation. The 12-well plates were maintained at 37 ◦C and
5% CO2.

2.3. Ultrasound Stimulation

A customized device was developed to deliver tailored US stimulation to cells. The
customized equipment was developed to stimulate cultured cells in 12-well plates. It was
connected to a DC power supply (Uni-Trend Technology Co., Ltd., Shanghai, China) and to
a computer with software that allowed for control of the central frequency, power density
and duration of stimulation. The ultrasonic transducers consisted of one piezoelectric
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transducer positioned on top of each well. They were immersed in the culture medium to
guarantee the propagation of the acoustic waves (Figure 1).
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Figure 1. In vitro US stimulation setup.

Untreated cells were used as controls and operated under the same conditions, but
with the US equipment turned off. The transducers were disinfected with 70% (v/v) ethanol
and sterilized with UV radiation for 20 min inside a biological safety level 2 vertical laminar
airflow cabinet (Gelaire®, Seven Hills, Australia). The stimulation was performed in a
sterile environment inside the laminar flow cabinet at room temperature, and, following
stimulation, the 12-well plates were maintained inside the incubator at 37 ◦C in a humidified
5% CO2 atmosphere.

The US stimulation was performed in two phases to evaluate its effect on cellular
behavior. Firstly, hFOBs and hPLFs were stimulated only once at 1.0 and 1.5 MHz with
30 mW/cm2 and 60 mW/cm2 for 5 and 10 min in continuous mode, and the metabolic
activity was analyzed after 1, 24 and 72 h of US stimulation. The stimulation conditions
that induced the highest metabolic activity were selected and applied daily for three days
to assess the effects of several US stimulation sessions on cellular proliferation, alkaline
phosphatase (ALP), osteoprotegerin (OPG) and receptor activator of nuclear factor-kappa
β (RANKL) expressions. Four replicas were used for each experimental condition.

2.4. Metabolic Activity

For the initial screening, an MTT cell proliferation assay (Celltiter 96®, Promega®,
Madison, WI, USA) was used according to the manufacturer’s indications to assess the
metabolic activity. This assay is based on the cellular conversion of a tetrazolium salt
into a formazan product that is solubilized and then detected using a 96-well plate reader.
After 1, 24 and 72 h of the single US stimulation, hFOBs and hPLFs were incubated with
MTT reagent for 4 h at 37 ◦C in a humidified atmosphere of 5% CO2. Afterwards, the
solubilization solution was added, and the absorbance was read at 570 nm in a microplate
reader (Epoch, BioTek, Santa Clara, CA, USA). To exclude the effect of culture medium, a
blank was prepared with only culture medium without cultured cells, and its absorbance
was subtracted to the absorbance from the cultured wells.

For the second phase, MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethonyphenol)-
2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) reagent (Biovision®, San Francisco, CA,
USA) was used to quantify the metabolic activity. After one, two and three days of daily US
stimulation, cells were incubated with MTS reagent for 4 h at 37 ◦C, 5% CO2 in a humidified
atmosphere and the absorbance was read at 490 nm using a microplate reader (Epoch,
BioTek, Santa Clara, CA, USA). Similarly, a blank was prepared, and the calculations were
performed as previously mentioned.
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2.5. Cell Concentration

After one, two and three days of daily stimulation, hFOBs and hPLFs were trypsinized
and counted with 0.4% (v/v) trypan blue solution (PAN Biotech GmbH, Aidenbach,
Germany) using a hemocytometer. Trypan blue is used to count cells based on the fact that
viable cells do not take up trypan blue, while the dead cells are permeable and incorporate
the dye. The cellular morphology was observed daily with an inverted microscope (Kern®,
Albstadt, Germany) to check for morphology alterations due to US stimulation.

2.6. Alkaline Phosphatase Expression

The ALP activity was measured using a commercial colorimetric kit (BioVision®,
San Francisco, CA, USA) after one, two and three days of daily US stimulation. For this,
culture medium was collected from each condition after each timepoint, and the assay was
conducted according to the manufacturer’s protocol. Briefly, 80 µL of culture medium was
added to 96-well plates with 5 mM p-nitrophenyl phosphate solution and incubated for 60 min
at room temperature, protected from light. Afterwards, stop solution was added to each
condition, and the absorbance was measured at 405 nm using a microplate reader (Epoch,
BioTek, Santa Clara, CA, USA). A standard curve was prepared, and the amount of ALP in
each experimental condition was calculated according to the manufacturer’s protocol.

2.7. Osteoprotegerin and Receptor Activator of Nuclear Factor-Kappa β Expression

The released form of RANKL and OPG was quantified via an enzyme-linked im-
munosorbent assay (ELISA) using two commercially available kits (Elabscience®,
Signal Hill, CA, USA). The cell culture medium was collected at each time point (one,
two and three days of daily US stimulation), and 100 µL of each experimental condition
was incubated in a 96-well plate pre-treated with the primary antibody specific for the pro-
tein of interest. The ELISA assay was performed following the manufacturer’s instructions.
The absorbance was read at 450 nm using a microplate reader (Epoch, BioTek, Santa Clara,
CA, USA). A standard curve for each protein of interest was prepared, and the amount of
RANKL or OPG was calculated accordingly.

2.8. Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 6.0 for Windows
(Solana Beach, CA, USA). The Shapiro–Wilk test was used to ascertain the data’s normality.
For normally distributed data, a one-way ANOVA test was conducted, followed by Tukey’s
HSD test for multiple comparisons. For non-normally distributed data, the Kruskal–Wallis
test was applied along with Tukey’s HSD test for multiple comparisons. The p-values lower
than 0.05 were considered statistically significant, and the results are expressed as mean ±
standard deviation.

3. Results
3.1. Initial Optimization by Metabolic Activity

The colorimetric MTT assay was used to assess cellular metabolic activity at the end
of 1, 24 and 72 h of single US stimulation.

Concerning the hPLFs, there were no significant differences in the metabolic activity
of the stimulated cells compared to the untreated cells after 1 and 24 h (Figure 2A). After
72 h, only the experimental group stimulated with 1.0 MHz at 30 mW/cm2 for 5 min
induced significant differences when compared to the control (p < 0.05). When comparing
US parameters, 1.5 MHz at 30 mW/cm2 for 5 or 10 min did not alter the hPLFs’ metabolic
activity, as opposed to the remaining experimental conditions that statistically increased
cell activity throughout the experiment. Overall, the experimental conditions of 1.0 MHz
at 30 mW/cm2 for 5 min and 1.5 MHz at 60 mW/cm2 for 5 min and 10 min appear
to be promising for hPLFs stimulation, since they showed superior metabolic activity
values in comparison to other stimulation conditions after 24 and 72 h of a single US
stimulation session.
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Figure 2. Initial screening of US stimulation parameters through the evaluation of metabolic activity,
using the MTT assay, of hPLFs (A) and hFOBs (B). Statistical differences were detected compared to
control: (a) 1.5 MHz, 30 mW/cm2, 5 min; (b) 1.5 MHz, 30 mW/cm2, 10 min; (c) 1.0 MHz, 30 mW/cm2,
5 min; (d) 1.0 MHz, 60 mW/cm2, 10 min; (e) 1.5 MHz, 60 mW/cm2, 5 min; (f) and 1.5 MHz,
60 mW/cm2, 10 min (g). * p < 0.05; ** p < 0.01; *** p < 0.001. Data are represented as mean± SD
(n = 4).

The hFOBs also did not show altered metabolic activity 1 h after the single US stimula-
tion (Figure 2B). At 24 h, hFOBs displayed significantly increased metabolic activity after
being stimulated with the 1.0 MHz at 30 mW/cm2 for 5 min (p < 0.001) or 10 min (p < 0.01)
and with 1.0 MHz at 60 mW/cm2 for 5 min (p < 0.001) when compared to untreated cells.
The effects on the metabolic activity 72 h after stimulation persisted with the experimental
conditions of 1.0 MHz at 30 mW/cm2 for 5 min (p < 0.01) and for 10 min (p < 0.05). Other
conditions, such as 1.0 MHz at 60 mW/cm2 for 10 min (p < 0.001), 1.5 MHz at 30 mW/cm2

for 10 min (p < 0.05) and 1.5 MHz at 60 mW/cm2 for 5 min (p < 0.001), significantly altered
the metabolic activity as well. Overall, the US conditions of 1.0 MHz at 30 mW/cm2 for
5 min and 1.0 MHz at 60 mW/cm2 for 5 and 10 min seem to be promising, since they
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induced statistically significant differences in metabolic activity 24 and 72 h after a single
US compared to the control and other experimental conditions.

3.2. Optimal Parameters Analysis

After the initial optimization, the most promising US parameters were selected based
on their ability to enhance cellular metabolic activity. For hPLFs, the most promising
conditions were 1.0 MHz at 30 mW/cm2 for 5 min and 1.5 MHz at 60 mW/cm2 for 5 and
10 min, while for hFOBs, the conditions that resulted in the greatest impact on cell viability
were 1.0 MHz at 30 mW/cm2 for 5 min and 1.0 MHz at 60 mW/cm2 for 5 and 10 min. These
cells were stimulated daily for three consecutive days to evaluate the effect of prolonged
US stimulation on cell activity and protein expression (i.e., ALP, OPG, RANKL).

3.2.1. Metabolic Activity and Cell Concentration

Concerning the effect of daily US stimulation on the metabolic activity, hPLFs pre-
sented significantly increased metabolic activity after one and two days of daily US stimula-
tion with 1.0 MHz at 30 mW/cm2 for 5 min (p < 0.001) compared to the control (Figure 3A).
After three days of stimulation, there were no statistical differences among the conditions.
The metabolic activity of hFOBs (Figure 3B) was not altered following daily US stimulation
at any of the time points. The US stimulation did not affect the proliferation of hPLFs
(Figure 3C) or hFOBs (Figure 3D).
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Figure 3. Cellular assays to investigate the optimal parameters for US stimulation. Metabolic activity,
assessed through MTS assay, on hPLFs (A) and hFOBs (B). Cell concentrations of hPLFs (C) and
hFOBs (D). Statistical differences were detected compared to control: (a) 1.5 MHz, 30 mW/cm2,
5 min; (b) and 1.5 MHz, 60 mW/cm2, 10 min (c). * p < 0.05; *** p < 0.001. Data are represented as
mean± SD (n = 4).

3.2.2. Expression of Osteogenic Markers

The expression of ALP on hPLFs and hFOBs was maintained along the time course of
the experiment for all groups, without statistically significant differences compared to the
untreated cells (Figure 4A,B).
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The ALP expression on hPLFs (A) and hFOBs (B). The OPG production by hPLFs (C) and hFOBs (D).
Statistical differences were detected compared to 1.5 MHz, 30 mW/cm2, 5 min (b) and 1.5 MHz,
60 mW/cm2, 10 min (c). * p < 0.05; ** p < 0.01. Data are represented as mean ± SD (n = 4).

Concerning the soluble OPG concentration on hPLFs (Figure 4C), the untreated cells
showed decreased release of OPG for up to three days. The cells stimulated with 1.0 MHz
at 30 mW/cm2 for 5 min and 1.5 MHz at 60 mW/cm2 for 5 min reverted this tendency,
increasing the OPG release on day 3 compared to day 2. However, there were no sta-
tistically significant differences between US stimulation and control conditions. Among
the stimulation parameters, 1.0 MHz at 30 mW/cm2 for 5 min significantly improved the
released form of OPG when compared to the experimental conditions, with 1.5 MHz at
60 mW/cm2 for 5 min (p < 0.01) and 10 min (p < 0.05) after three days of stimulation. Also,
stimulating with 1.5 MHz at 60 mW/cm2 for 10 min induced significantly higher released
OPG after two days of stimulation when compared to the same US condition applied for
5 min (p < 0.05).

Although there were no statistically significant differences in the OPG expression of
hFOBs (Figure 3D), cells exposed to 1.0 MHz at 60 mW/cm2 for 5 and 10 min showed a
consistent increase in OPG expression along with the number of US sessions. This trend is
opposite to the one observed for the control and 1.0 MHz at 30 mW/cm2 for 5 min, which
exhibited an increased OPG synthesis at day two, followed by a decrease at day three.

To complement this analysis, the released form of RANKL was also quantified using
an ELISA assay, but no expression was found; therefore, these data are not shown.

4. Discussion

In the present study, we continuously stimulated human osteoblasts and fibroblasts
with US and investigated which US parameters were the most promising in modulating
their biological response. Our results suggested that the best US parameterization would
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be 1.0 MHz at 30 mW/cm2 for 5 min, 1.0 MHz at 60 mW/cm2 for 5 min and 10 min for
hFOBs and 1.0 MHz, 30 mW/cm2 for 5 min, 1.5 MHz, 60 mW/cm2 for 5 min or 10 min
for hPLFs, since these conditions significantly and consistently improved their metabolic
activity. Also, US maintained the ALP expression and stimulated OPG synthesis, while
RANKL expression was not detected, showing that US promoted bone formation events in
these cells (Figure 5).
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Among the current non-invasive therapies to increase the orthodontic movement,
photobiomodulation and vibration are commonly employed due to the commercially
available devices that deliver these therapies. However, there are still issues related to
their efficacy, paving the way for the search for other potential therapeutic modalities. The
application of US in dentistry, although less studied, seems to modulate the biological
response of cells involved in OTM. In fact, US stimulation has been reported to stimulate
the differentiation and maturation of osteoblasts [25,26] and hPLFs [27–29]. Also, previous
studies have shown the beneficial effects of US on such cells, promoting their proliferation
and activity [20,30,31].

Currently, US is mainly applied at low intensities (e.g., 30 and 60 mW/cm2) for 10, 15 or
20 min in pulsed mode. Our study contrasts with the existing studies in the literature, since
we intended to investigate the effect of low-intensity US in continuous mode for shorter
stimulation times. Our results demonstrate that continuous US stimulation delivered
for 5 and 10 min per day is able to positively influence the cells, exposing them to less
stimulation. Also, since we applied US at low intensities with shorter durations, we did
not expect any temperature increase during stimulation [32,33].

The US stimulation was able to increase the metabolic activity of both hFOBs and hPLFs
compared to the control, depending on the US parameters. These findings are in agreement
with other studies that demonstrated that US improved metabolic activity [34–37]. In the
initial optimization of US parameters, a single session of US was sufficient to impact the cells’
metabolic activity up to 72 h after the stimulation. Both cell lines responded differently to
US stimulation, since the most promising conditions differed between cell types, except for
the 1.0 MHz at 30 mW/cm2 for 5 min, which was consistently superior to the control in both
hFOBs and hPLFs. This suggests that this particular condition could be used to improve
osteoblastic and PDL fibroblastic activity.
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Following the previous optimization phase, the most promising US parameters were
applied daily for three days. The metabolic activity given by the MTS data increased in
the first two days after US stimulation and then decreased after the third day for both cell
types. This also occurred in the untreated cells, indicating that this cellular response was
not caused by the US stimulation. This can be elucidated by analyzing the cell proliferation
results. The hPLFs proliferated throughout the study span, which diminished the space
available in the culture plate for them to proliferate normally, reducing cellular metabolism
on day 3 due to the higher cell confluency. The hFOBs’ behavior was slightly different,
since their proliferation significantly increased up to day 2, but decreased at day 3 in both
the experimental and control groups. This can be explained because osteoblasts are a cell
line and, thus, they have a higher growth rate than hPLFs (primary cells), reaching a higher
cell confluency more quickly. Although both cell types reduced their metabolic activity
or proliferation, they remained active and continued synthetizing specific osteogenic
differentiation markers.

ALP is closely related to the calcification process of mineralized tissues, such as
bone [38], and, thus, its quantification is generally used as an early-stage marker of os-
teogenic differentiation [39]. ALP also works as an activation marker of human osteoblasts
following mechanical stimulation [40]. It has been demonstrated that ALP activity in
osteoblasts increases from day 5 after daily US stimulation, which can be an indicative of
enhanced osteogenesis [22,41]. Also, hPLFs have been reported to synthetize more ALP up
to seven days after US stimulation [42,43]. In our study, the ALP expression was constant
throughout the experiment for all conditions, with no statistically significant differences
being observed between stimulated cells and the control group over three days of daily
stimulation. This indicates that further US stimulation sessions are required in order to
have a measurable impact on ALP activity.

The OPG is a soluble form of RANKL and acts as its scavenger, thereby inhibiting
osteoclast precursors from maturing into osteoclasts. Both RANKL and OPG are syn-
thesized by osteoblasts and fibroblasts [44,45]. The balance between RANKL and OPG
expression determines whether bone is formed or resorbed [46,47]. Higher OPG levels
result in fewer osteoclasts and, thus, the OPG expression is considered as an early marker
for osteoblastic activity and bone formation [48]. Also, it has been reported that, under
physiological conditions, hPLFs may synthesize higher levels of OPG compared with
RANKL, which has an inhibitory effect on osteoclastogenesis [45]. When the physiolog-
ical balance is disturbed (e.g., under the influence of mechanical forces), the production
of osteoclastogenesis-stimulating molecules is increased, leading to increased osteoclast
formation. hFOBs can present increased OPG synthesis following US stimulation, but
this response may be dependent on the duration of treatment [49]. Regarding hPLFs, the
available literature is scarce in terms of investigating the OPG expression on these cells.
Our results showed that certain experimental US conditions appear to have a positive
effect on OPG production in both hPLFs and hFOBs. The untreated hPLFs had decreased
OPG expression throughout the experiment, while the US stimulation with 1.0 MHz at
30 mW/cm2 and 1.5 MHz at 60 mW/cm2 for 5 min promoted a recovery of OPG expression
after three days. Differently, in the hFOBs, the OPG expression peaked on day 2, followed
by a decrease up to day 3. This trend was reversed in the hFOBs stimulated with 1.0 MHz at
60 mW/cm2 for 5 and 10 min. These findings suggest that daily US stimulation influences
the OPG expression of hPLFs and hFOBs for up to three days, although this biological
response was not significantly different from the control. Thus, US should be applied for
longer periods to reach statistically significant differences when compared to the untreated
cells. In addition, we did not detect RANKL expression in either cell type which indicates
that the US stimulation at these parameters does not induce osteoclastogenesis events
in either cell, but rather promotes the bone formation, as was confirmed by OPG and
ALP expression.

Some limitations of this study should be highlighted. Although we have extensively
investigated the effects of US parameters on several biological outcomes (i.e., metabolic
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activity, cell proliferation, ALP and OPG soluble expressions), other biological analyses
should be conducted in the future in order for us to fully understand the impact of such
stimulation protocols on cells involved in OTM. Nevertheless, these findings still provide
important insight into the US stimulation of hFOBs and hPLFs to accelerate orthodon-
tic movement.

These findings will aid future directions in this field, as our study’s implications and
applicability are huge. Although therapeutic US is clinically approved for bone fracture
treatment by the Food and Drug Administration (FDA), this therapy is not yet clinically
employed as an adjunctive therapy to accelerate OTM [50]. Low-frequency mechanical
vibrations (at 30 or 120 Hz) are clinically used to accelerate OTM, but their effects may
not be clinically important [51–53], thus revealing the need for new adjunctive therapies
to effectively accelerate OTM. Ultrasound uses high-frequency mechanical waves (at 1.0
and 1.5 MHz), but the stimulation protocols used in in vitro studies are limited to what
is currently approved for bone (i.e., 1.5 MHz, 30 mW/cm2, 20 min, pulsed mode), and
its cellular effects remain unclear [50]. Therefore, appropriate optimization of US dosage
for OTM should be conducted as a starting point before endorsing its use in animal and
clinical research. As such, we have investigated the effects of different US parameters on
the cells involved in OTM, assessing several biological outcomes, such as cell proliferation,
metabolic activity, ALP, OPG and RANKL soluble expression. It is worth noting that we
used only human-derived cells, as opposed to previous studies that used mainly animal-
derived cell lines, which strengths our results and the potential of this therapy to be applied
in orthodontics.

Our findings showed that continuous US, rather than pulsed US, for only 5 min may
promote biologic events associated with orthodontic movement, such as bone formation.
Employing US in continuous mode for a shorter duration is desirable in order to reduce
the treatment time and increase patient adherence. The US at the frequencies proposed, 1.0
and 1.5 MHz, has a penetration depth of up to 5 cm, which assures that the periodontal
tissue can effectively absorb the mechanical stimulus [54]. Also, it is a noninvasive and
painless therapy, and the parameters reported herein can be easily implemented in clinical
settings. As there are already US devices to treat mandibular fractures [55], these can also
be employed to specifically target OTM. The success of this therapy in clinical practice
will improve orthodontic treatments not only by accelerating the treatment, but also by
targeting more complex tooth movements without using invasive techniques. This therapy
could also be adjusted and customized according to the clinical condition of each patient,
and different stimulation settings could be applied to different teeth, depending on the
nature of the OTM. Despite the study´s clinical implications, more in vitro studies are
required in order to investigate US for longer stimulation durations and periods to fully
understand its effects on osteogenic differentiation markers in long-term application before
reaching in vivo and clinical studies.

5. Conclusions

Applying US with 1.0 MHz at 30 mW/cm2 for 5 min and 1.0 MHz at 60 mW/cm2

for 5 min and 10 min for hFOBs, and 1.0 MHz, 30 mW/cm2 for 5 min and 1.5 MHz,
60 mW/cm2 for 5 min or 10 min for hPLFs, significantly increased the metabolic activity of
both osteoblasts and fibroblasts, and positively influenced the OPG synthesis over RANKL,
promoting bone formation. Future cell and animal studies should be conducted to better
understand the efficacy of US in accelerating orthodontic movement before endorsing its
use in clinical practice.
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