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A B S T R A C T

Falls are one of the most common causes of injuries in the elderly population. As a result, treatment costs have
also increased. Recent efforts to restore lower limb function in these populations have seen an increase in the
use of wearable robotic systems, however, fall prevention measures in these systems require early detection of
loss of balance to be effective. In short, the development of technologies, such as a brain-computer interface, that
is capable of recognizing situations at risk of falling based on the loss of balance caused by several factors, is
essential. Previous studies have investigated whether kinematic variables contain information about an impending
fall, but few have examined the potential of using electroencephalography (EEG) as a predictor of falling and how
the brain responds to prevent a fall. Perceived disturbances of balance are always accompanied by a specific
cortical activation, called disturbance-evoked potential (PEP).

In this study, the recognition of daily activities (walking, lifting, crouching, going up and down stairs) was also
part of the initial objective, however, due to the challenges encountered, the object of study of the present work
was focused on the recognition and binary classification of the presence of loss of balance (PEPs) in brain signals.
Thus, this dissertation intends to take the first steps toward the decoding of brain activity in response to imbalanced
events. Initially, to acquire the data, an experimental protocol was designed, so that the participants, using EEG,
were submitted to gliding-like perturbations while walking on the treadmill. Two healthy subjects were exposed to
a glide-like perturbation, and these perturbations occurred interspersed over a period lasting 30 to 60 seconds.
Each subject performed 2 experiments, that is, perturbations provoked while the individual walked on the treadmill:
i) at a speed of 1.6 km/h and ii) at a speed of 2.5 km/h.

Based on the approached methods, the perturbation evoked potential (PEP) components were found between
70-155 ms after the onset of the external perturbation. To decode pre-processed EGG data, four (4) artificial neural
networks were tested and different network architecture parameters and electrode layouts were compared. Overall,
the convolutional neural network trained to predict EEG balance disturbances had a far superior classification
performance than the other architectures, whose mean accuracy was 91.51 ˘ 2.91%, using a short window
length of 200 ms. The electrode layout composed of 5 channels (Fz, C3, Cz, C4, and Pz) presented the shortest
execution time to train the model, whose average value was 196 ˘ 44.24ms. In addition, it was possible to verify
that the use of a single electrode (Cz) obtained satisfactory precision results (86.47 +/- 0.03%). These discoveries
may contribute to the development of a system capable of detecting equilibrium disturbances in real-time.

K E Y W O R D S Brain-computer interface, Electroencephalogram, Falls recognition, Pertubation-Evoked Poten-
tial Deep learning.
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R E S U M O

As quedas são uma das causas mais comuns de lesões na população idosa. Como resultado, custos com o
tratamento têm também aumentado. Esforços recentes para restaurar a função dos membros inferiores nessas
populações viram um aumento no uso de sistemas robóticos vestíveis, no entanto, as medidas de prevenção
de quedas nesses sistemas exigem a detecção precoce da perda de equilíbrio para serem eficazes. Em suma,
é fundamental o desenvolvimento de tecnologias, tal como interface cérebro-computador, que seja capaz de
reconhecer situações risco de queda com base na perda de equilíbrio ocasionada por diversos fatores. Estudos
anteriores investigaram se as variáveis cinemáticas continham informações sobre uma queda iminente, mas
poucos examinaram o potencial do uso da eletroencefalografia (EEG) como um sinal de previsão de queda
e como o cérebro responde para evitar uma queda. As perturbações do equilíbrio percebidas são sempre
acompanhadas por uma ativação cortical específica, chamada de potencial evocado por perturbação (PEP).

Neste estudo, também fazia parte do objetivo inicial o reconhecimento das atividades diárias (andar, levantar,
agachar, subir e descer escada), porém, devido aos desafios encontrados, o objeto de estudo do presente
trabalho foi focado no reconhecimento e classificação binária da presença de perda de equilíbrio (PEPs) em
sinais cerebrais. Assim, esta dissertação pretende dar os primeiros passos em direção a decodificação da
atividade cerebral em resposta a eventos de desequilíbrio. Inicialmente, para adquirir os dados, um protocolo
experimental foi delineado, de forma que os participantes, usando EEG, fossem submetidos a perturbações do
tipo deslizamento enquanto andavam sobre a esteira. Dois sujeitos saudáveis foram expostos a perturbação
do tipo deslizamento, e estas perturbações ocorreram intercaladamente em um período de duração de 30 a
60 segundos. Cada sujeitou realizou 2 experimentos, ou seja, perturbações provocadas enquanto o indivíduo
andava na passadeira: i) a uma velocidade de 1.6 km/h e ii) a uma velocidade de 2.5 km/h.

Com base nos métodos abordados os componentes de potencial evocado de perturbação (PEP) foram
encontrados entre 70-155 ms após o início da perturbação externa. Para decodificar dados pré-processados do
EGG, quatro (4) redes neurais artificiais foram testados e diferentes parâmetros da arquitetura de rede e layouts
de eletrodos foram comparados. No geral, a rede neural convolucional treinada para prever as perturbações do
equilíbrio do EEG teve um alcance desempenho de classificação superior as demais arquiteturas, cuja precisão
média foi de 91,51 ˘ 2,91%, usando um comprimento de janela curto de 200 ms. O layout de eletrodo composto
por 5 canais (Fz, C3, Cz, C4 e Pz) apresentou o menor tempo de execução para treinar o modelo, cujo valor médio
foi 196 ˘ 44.24ms. Além disso, foi possível verificar que a utilização de um único eletrodo (Cz) obteve resultados
de precisão satisfatórios (86.47 +/- 0.03%). Essas descobertas podem contribuir para o desenvolvimento de um
sistema capaz de detectar perturbações do equilíbrio em tempo real.

PA L AV R A S - C H AV E Interface cérebro-computador, Eletroencefalograma, Reconhecimento de queda,
Potencial Evocado de Perturbação, Aprendizagem profunda.
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1

I N T R O D U C T I O N

This dissertation presents the work developed during my Masters’s Degree in Informatic Engineering, at the
Biomedical Robotic Devices Lab (BiRDLab) included in the Center for Micro-Electro-Mechanical Systems
(CMEMS), a research center of the Department of Industrial Electronics in the University of Minho.

The purpose of this dissertation was to investigate the decoding of human brain signals in response to slip-like
perturbations. The data that supports this work was acquired with electroencephalography (EEG) recordings
of subjects who were submitted to slip-like perturbations while walking on a treadmill at speed of 1.6km/h and
2.5km/h. The work developed represents a step towards a Brain-Computer Interface (BCI) device useful to
promptly detect gait disturbances, possibly giving more time margin for fall prevention mechanisms to act and
be more effective. This strategy aims to help seniors improve their quality of life, through a BCI that reads brain
signals and translates them into commands that will be relayed to the device when it detects a fall event.

The project was divided into 3 main phases, namely: i) research and design of EEG data acquisition protocols
during balance loss experiments in a laboratory setting; ii) research and development of data pre-processing
framework using EEGLAB to remove artifacts from the data and extract relevant features; and iii) research,
development, and validation of AI-based Deep Learning (DL) models for the detection of balance loss using EEG
data collected and preprocessed from experiments.

1.1 M O T I VAT I O N

The aging process has a wide-reaching impact on the human body and brain. It can affect various aspects of daily
life, such as the development of new tissues, the maintenance of mental health, and the activities of daily living.
Older adults may face difficulties in communicating, focusing, remembering, speaking, moving, or maintaining
balance. Thus, the elder may find it challenging to interact with family members, use stairs securely, remember
new information, or drive safely due to these impairments [30].

The World Health Organization (WHO) [50] estimates that over the course of a year, at least one-third of the
elderly population suffers a fall, provoked by cognitive, physical, and sensory deficits which arise with aging.
Accidental falls are one of the leading causes of injuries and the second leading cause of death related to
unintentional injuries.

The negative psychological and social repercussions of falls include not fulfilling daily tasks due to constant
threat by the unpredictability of fall risk events and practicing fewer physical activities, which leads to a lower

6
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quality of life [2]. As a result, there is an urgent need to create fall prevention and prediction technologies in order
to reduce the individual and societal burden of falls.

Conventional therapies such as exercising, managing medications, having vision checked, and making home
safer homes have been successful in fall reduction and prevention, however many individuals with severe illness
or injury remain unable to participate in activities of daily living (ADL) or complete standard care protocols [35].
Due to the need to improve the recovery of the locomotion impaired, robotic-assisted devices such as prostheses,
electrical stimulators, and exoskeletons have been developed. Additionally, similar types of devices can be also
applied for fall prevention purposes [7].

Powered exoskeletons are categorized by the U.S. Food and Drug Administration (FDA) as Class 2 medical
devices subject to additional regulations. They are commonly utilized in rehabilitation applications since they may
offer active support for sitting, standing, and walking. Exoskeletons can be used for rehabilitation as well as to
lower the risk of falling and/or help avoid falls [35]. However, falls while wearing exoskeletons pose a substantial
risk while using these technologies. Current exoskeletons approved by the FDA employ a variety of tactics to
prevent falls and are intended for use in conjunction with a trained partner. The efficiency of these approaches
has not been researched and is currently unknown [35].

Near-fall detection could provide new opportunities to identify older people at high risk of falling before a fall
occurs. Near falls are defined as trips, slips, and missteps and involve a loss of balance that does not result in a fall
because corrective action is taken to recover balance. Near falls occur more frequently than actual falls, and older
people who frequently experience near falls are at increased risk of future falls [20]. Therefore, for patients to have
a natural and effective recovery, they must fully control the devices they use, such as exoskeletons, prostheses,
orthoses, and robotic canes.

1.2 P R O B L E M S TAT E M E N T

It is suggested that human bipedal balance control is the combined activity of dispersed brain regions. However,
while there is evidence linking the cortical activity of specific brain regions, such as the motor cortex, to reactive
balance regulation, less is known about the functional interplay of additional cortical regions [49].

Electroencephalography signals recorded from the scalp reflect synchronous activation of cortical neurons
[48]. During active walking, robot-assisted passive walking, and walking with interactive feedback in a virtual
environment, EEG recordings revealed activation of electrocortical sources distributed across different cortical
regions including the anterior cingulate, prefrontal cortex, pre-motor cortex, supplementary motor area, posterior
parietal, and sensorimotor cortex [49].

Recent research shows that brain involvement occurs during balance reactions induced by whole-body postural
disturbances. An external disturbance evokes an evoked potential in humans, known as the perturbation-evoked
potential (PEP). PEP are broadly dispersed throughout the fronto-centro-parietal regions, with the greatest
amplitude occurring at the FCz/Cz electrodes [48]. Specifically, PEP can be used to study sensory and cortical
control of postural responses.
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BCI based on EEG technology has been employed in this context to develop portable synchronous and
asynchronous control and communication. Noninvasive EEG-based BCI can be classified as "evoked" (reactive
BCI), "spontaneous" (active BCI), or passive BCI. An evoked BCI takes use of a major feature of the EEG, the
so-called evoked potential, which displays the brain’s instantaneous automatic reactions to some external stimuli.
On the other hand, spontaneous BCI is based on the investigation of EEG events linked with various elements of
brain activity connected to mental tasks performed at the user’s discretion [30]. Finally, the concept of passive
BCI has recently been developed in the BCI area, in which the system takes action to perform a command
based on the random brain activity of the user while the participant lacks voluntary control over the system [41].
The use of EEG signal may increase the applicability of individualized brain-controlled rehabilitation equipment.
Individually tailored parameters for describing signals are generated from many training trials in the development
of EEG-based BCI, which are then utilized to perform online signal decoding [25].

As a result, EEG might reveal the cortical activations associated with loss of balance or balance regulation.
Furthermore, when compared to other neuroimaging techniques such as Positron Emission Tomography (PET),
functional Magnetic Resonance Imaging (fMRI), or functional Near-Infrared Spectroscopy (fNIRS), EEG provides
superior temporal resolution (1 ms), allowing researchers to precisely time-lock neural activity relative to per-
turbation onset or subsequent movements in order to extract perturbation-related or response-related cortical
activations [48].

One disadvantage of utilizing EEG is that it measures the total of electrical potentials from several sources of
cerebral activity that correlate to the distinct sensory, motor, or cognitive events. Nevertheless, it is possible to
extract Event-Related Potentials (ERP) associated with specific occurrences by averaging across EEG epochs
[48].

The ability to predict human movement intention is critical for successful gait restoration. Brain waves are
captured, processed, and interpreted to operate an assistive device in a BCI-based rehabilitation system. It is vital
for a successful assistive system to detect movement intention as early as possible to allow the system adequate
time to adjust to the individual’s needs [20].

Assistive, adaptive, and rehabilitative BCI applications for older adults and elderly patients should be created
to help with household duties, strengthen connections with family members, and improve cognitive and motor
abilities. Many BCI applications have been developed in the last decade to assist the elderly keeping them healthy,
with high quality of life, and a feeling of well-being [30].

The main goal of research in the field of Brain-computer interfaces is to gain control of a computer or machine
purely by utilizing users’ thoughts. While there has been a major emphasis on utilizing BCI to operate assistive
devices, BCI can improve Human-Machine Interaction (HMI) [10]. Thus, an effective algorithm for detecting near
falls based on ata can contribute to the development of fall detection systems by improving their performance,
time response, and quality in terms of accuracy.
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1.3 D I S S E R TAT I O N G O A L S A N D R E S E A R C H Q U E S T I O N S

The present work aims to decode events of imbalance in human gait from the collection of brain signals through
the use of the EEG. A protocol for data collection was designed based on good practices found in the scientific
literature. The data were collected with different subjects, wearing an EEG cap with 16 channels and submitted
to slip-like perturbations while walking on a treadmill in a controlled environment. EEG data were processed to
create relevant features, through feature engineering, which were then used to detect loss of balance during
walking on a treadmill through the implementation of artificial intelligence models. Because it was necessary to
identify the most used pre-processing and artifact removal methods and algorithms, as well as identify the most
relevant brain rhythms. Furthermore, the performance of different Artificial Neural Network (ANN) models, such as
Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), Gated Recurrent Units (GRU), among
others, were evaluated and compared in order to find a benchmark model that can identify the perturbations,
being robust enough to be implemented and integrated into different robotic platforms.

The present dissertation focused on pursuing the following towards the outlined solution:

• Goal 1: Gather information about human brain signals in response to ADL activities and loss of balance,
by performing a state-of-the-art review, and understanding the most effective and significant paradigms,
techniques, and devices. This will be presented in Chapter 2. Key Performance Indicators (KPIs): i) identify
BCI technologies applied in the real world; ii) EEG signals related to BCI application; iii) EEG variables
(namely latency, peak amplitude, and time to peak) regarding brain signals in response to slip events
evidenced in literature [48];

• Goal 2: Gather knowledge about methods used currently for decoding ADL activities, from data acquisition
to Artificial Intelligence models by performing a literature review. This method will be described in Chapter
3. KPIs: i) systematic review for article published; ii) data pre-processed tools used to extract relevant
information regarding ADLs; iii) Artificial Neural Network architecture applied to decode brain signal.

• Goal 3: Delineate protocols to obtain data from multiple subjects in the laboratory, while performing slip-like
perturbations wearing the EEG. This was then used to train and evaluate the best AI-based model. This
topic will be addressed in Chapter 4. KPIs: i) definition of an experimental protocol for data acquisition.

• Goal 4: Data analysis to identify patterns in the EEG signals and channels most related to the loss of
balance caused by slip-like perturbations in different subjects walking on treadmill at different speeds. -
Chapter 5. KPIs: i) identify EEG channels where a pattern can be found; ii) detection of signals components
in response to slip-like perturbations which positive potential (P1) that peaks around 30–90 ms after
perturbation onset and a negative potential (N1) that peaks around 90–160 ms [48].

• Goal 5: Exploit ANN models capable of recognizing slip-perturbation from a dataset with data collected
during trials performed in a laboratory setting. Chapter 6 shows the obtained results. KPIs: i) obtain an
average accuracy higher than 87.6% ˘ 4.2%, and F-Score higher than 87.2% ˘ 5 [35]; ii) obtain accuracy
above 80% for minimal electrode layout (1 channel) [10].
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Consequently, in this dissertation the following Research Questions are expected to be answered:

• RQ 1: What are the most relevant signals and features that can help recognize the loss of balance provoked
by slip-like perturbations? The answer is included in Chapter 5.

• RQ 2: What are the most relevant channels to decode the slip-like perturbations during walking? The
answer is included in Chapters 5 and 3.

• RQ 3: What is the best Deep Learning model to implement for the detection of slip-like perturbation during
walking? The answer is included in Chapter 3.

1.4 S C I E N T I F I C C O N T R I B U T I O N S

The main contributions of this dissertation to the current state-of-the-art in this field are:

• A systematic literature review of brain signals decoding related to daily activities and loss of balance
provoked by slip-like perturbations.

• Validation of data pre-processing methodologies described in the literature for slip-perturbation during
walking on a treadmill.

• Creation of a segmented and feature-selected dataset from the raw data collected along slip-perturbation
experiments performed in the laboratory, which allows more robust and validated training and testing of
AI-based models.

• Creation of Deep Learning classification algorithms capable of detecting loss of balance provoked by
slip-like perturbations.

• Selection through computational performance analysis, of the most relevant features and DL models to be
tested in a real-time application.

1.5 D I S S E R TAT I O N O U T L I N E

The remainder of this dissertation is organized in 6 chapters:
Chapter 2 contains a review of the literature regarding brain-computer interfaces, which devices are used for

data acquisition with a focus on EEG signal and its paradigms. In addition, in this chapter data pre-processing
techniques and the AI-based models applied for the decoding brain signal in general BCI applications are
presented.

Chapter 3 includes a start-of-the-art review about decoding human brain signals strategies to identify different
ADL and induced loss of balance in a static position. This analysis will include the experimental protocol previously
developed to collect the data, steps related to the data pre-processing, classification applying Deep Learning
algorithms, and discussion about the results obtained from the review.
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In Chapter 4, the project conceptual design of the dissertation is introduced and shows the dissertation’s main
phases.

In Chapter 5, the methodology used to obtain the PEP signals involved in the trials developed at EEGLAB will
be presented. This Chapter also shows the results which will be addressed in the next chapter.

Chapter 6 demonstrates the process of developing and evaluating DL-based models for slip-like perturbations,
as well as selecting the classifier that best fits the loss balance recognition.

Finally, Chapter 7 concludes the dissertation, presenting a short analysis of the work developed as well as the
answers to the RQs. In addition, it includes the directions for future research improvements to be developed.



2

B R A I N C O M P U T E R I N T E R F A C E S A N D D E C O D I N G B R A I N S I G N A L S

The study of the neurophysiological basis underlying many motor function abnormalities, such as difficulty
regulating limbs or movement limits, has piqued the public’s attention in recent decades. This research has
made substantial contributions to various domains, including neurorehabilitation and the method known as the
brain-computer interface. BCI are instruments that allow the translation of brain electrical activity into commands
that operate equipment such as computers, wheelchairs, prostheses, orthoses, or exoskeletons. According to
Mercado et al. [27], a BCI is defined by three key elements: i) a method for acquiring brain neural signals; ii) a
computer algorithm for decoding the collected signals; and iii) the device to be controlled. BCIs’ primary purpose
is to understand the user’s intents in order to regulate assistive devices. BCI advancements have demonstrated
the capability of deciphering motion intents or trajectories from EEG data, which is beneficial for neurological gait
rehabilitation. The description of the hardware and characteristics of the brain signals related to the processing of
data acquired from the EEG for BCI applications will be addressed in Section 2.1. The components necessary to
build a BCI system which translates brain signals into commands to control devices will be addressed in Section
2.2. In the end, Section 2.3 presents a brief discussion regarding BCI applications and the importance of decoding
brain signals that comprehensively characterize the response to slip-like perturbations.

2.1 E E G - B A S E D B R A I N C O M P U T E R I N T E R F A C E S

Brain-computer interface system typically consists of five main sequential steps: brain activity measurement,
preprocessing, feature extraction, classification, and translation into a command. Figure 1 shows a typical block
diagram illustrating the various phases of EEG signal processing for BCI. The brain activity of the user is recorded
using several types of EEG sensors during the brain activity acquisition phase. The raw EEG data contains a
number of artifacts due to muscular or ocular movement, which is removed during the pre-processing step. The
goal of feature extraction is to describe the signals using a few important values known as features. Frequently,
the selection of key features is also examined at this step. In the classification step, the retrieved characteristics
are classified using various machine learning and deep learning techniques. Finally, the categorized outputs are
converted into device commands in order to create a real-world BCI application.

12
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Figure 1: General architecture of a brain-computer interface.Taken from [26]

2.1.1 BCI Features and Resources

As previously stated, BCI entails essentially converting human brain activity into external action by delivering
neural commands to external equipment. Although BCI is most commonly used to assist handicapped persons
with motor system diseases, it may also be a highly beneficial tool for enhancing the quality of life of healthy
people, particularly the elderly. Assistive, adaptive, and rehabilitative BCI applications for older persons and
elderly patients should be created to help with household duties, strengthen connections with family members,
and improve cognitive and motor abilities.

According to Palmer et al., [30] there are several essential considerations to consider while developing a
ready-to-use BCI solution. The major difficulties include low classification accuracy, a limited number of degrees
of freedom, and a lengthy training period to learn how to use a BCI flawlessly. As a result, researchers have
been attempting to improve BCIs by creating a hybrid BCI (hBCI) that integrates at least two BCI modalities.
The hBCI combines various methodologies to make use of the benefits of numerous BCI modalities. It can
also be a mix of brain activity and nonbrain activity, and a variety of different psychological signals have been
demonstrated to be a potential choice for hBCI development. As a result, the input signals can be a combination
of EEG with eye movements (Electrooculogram - EOG), muscular activity (Electromyography, EMG), or heart
signal (Electrocardiogram, ECG or EKG) [30].

Furthermore, a closed-loop BCI system that uses visual and proprioceptive feedback with real-time modulation
and communication can be used not only for interacting with the external environment but also as a biofeedback
platform to improve the cognitive abilities of elderly patients and provide better therapeutic effects. This closed-loop
interaction between the participant’s brain reactions and the stimuli is hypothesized to produce cerebral plasticity
and so aid recovery [30].

The creation of less invasive or non-invasive devices is one of the most difficult tasks in BCI technology.
Using non-invasive equipment can significantly lower both the overall cost of the surgical procedure and the
patient’s physical damage. Non-invasive approaches, on the other hand, might result in weaker signals and a
poor signal-to-noise ratio (SNR), as well as reduced source inference accuracy and spatial resolution. These
disadvantages can be mitigated in part by using modern technologies like deep learning to interpret and extract
more meaningful source information from the EEG signal [30].
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2.1.2 Electroencephalography

Researchers have demonstrated the feasibility of controlling exoskeletons and neuroprosthetic devices using
non-invasive EEG, which collects and records brain electrical activity from electrodes placed on the scalp with
amplitudes in the microvolt range in real time [25, 12]. Because of the distance and impedance of bone and skin
between the electrodes and the cerebral cortex, the EEG cannot accurately detect single-neuron action potentials.
Instead, the EEG picks up local current flows on groups of active neurons within the cerebral cortex.

Other imaging techniques, such as fMRI, magnetoencephalography (MEG), and PET, are extremely expensive,
technically difficult, and not easily portable. Thus, EEG is still regarded as the only practical and realistic
non-invasive BCI method at present [25].

EEG-based BCIs have been mentioned in several recent reviews used to control assistive devices, for upper or
lower limbs, because EEG signals have shown the involvement of the sensorimotor cortex in the control of human
gait and also revealed differences in electrocortical activities between uphill and level ground walking in humans,
as well as active versus passive walking in a robotic device [27, 38].

According to Hasan et al. [16] due to the fact EEG data may be used to reflect the brain’s motor activity during
locomotion in real time, EEG-based gait studies have a high potential for predicting future movement intentions.
In Luu et al. [46] studies EEG recordings during walking exhibit different characteristics that 1) differ from calm
standing EEG and 2) are gait phase dependent. These findings suggest that EEG-based BCI that predicts user
movement intention might be developed.

2.1.2.1 EEG Scheme and Hardware for BCI Application

According to Rashid et al. [26] the cerebral cortex and subcortical regions are the two primary components of the
human brain. The subcortical areas manage fundamental and vital activities such as body temperature, breathing,
heart rate, and emotional reactions such as reflexes, fear, learning, and memory. The cerebral cortex, also known
as the cerebrum, on the other hand, governs sensory and motor processing as well as higher-level activities
like language processing, pattern recognition, thinking, and planning. The cerebral cortex is divided into two
hemispheres, each of which is divided into four lobes: the parietal, occipital, frontal, and temporal lobes.

The parietal lobe controls several functions, including spelling, objects, manipulation, perception, and spatial
awareness. The temporal lobe, on the other hand, is responsible for language, memory, facial recognition,
and emotion generation. The frontal lobe is responsible for organizing, social skills, planning, flexible thinking,
problem-solving, conscious movement, attention, and emotional and behavioral control. The occipital lobe is
involved in the interpretation of visual inputs.

Measurements from all electrodes need a correct EEG electrode placement to ensure the proper location of
electrodes in relation to cortical areas so that they can be reliably and precisely maintained from individual to
individual. Thus, the International 10/20 system is a widely accepted way of indicating the position of electrodes
on the scalp. The system is reliant on the link between the electrode placement and the underlying cerebral cortex
region. The numerals 10 and 20 denote that the distances between neighboring electrodes are either 10% or
20% of the entire front-back or right-left distance of the skull, respectively. The lobe is represented by a letter at
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Figure 2: Example of Electrode Placement Scheme. Taken from [26]

each position, whereas the hemisphere location is represented by a number. The frontal, parietal, temporal, and
occipital lobes of the 10/20 system are represented by the letters F, P, T, and O, respectively as shown in Figure 2.
The central lobe is not included; the letter C is just used for identification. The letter z (zero) indicates that an
electrode is positioned on the midline. Even numbers (2, 4, 6, 8) are used to represent right hemisphere electrode
placements, whereas odd numbers (1, 3, 5, 7) represent left hemisphere electrode positions.

EEG signals can be acquired in two ways: wirelessly or wired. EEG signal measurements are typically achieved
with a number of electrodes ranging from 1 to around 256. These electrodes are typically held in place by an
elastic cover. A conductive gel or paste is routinely used to improve contact between the electrodes and the skin.
As a result, placing the electrodes on the head is often arduous and time-consuming. Nonetheless, the use of dry
electrodes that do not require conductive gels or pastes has been demonstrated [26].

Wireless BCI systems have received adequate attention, owing mostly to their capacity to circumvent some
constraints found in wired systems, such as the use of cables between electrodes and the acquisition component,
which is sometimes difficult and time-consuming. The fact that a wireless EEG headgear is noninvasive is one of
its advantages. Furthermore, it does not obstruct the user’s movement. Nevertheless, its main disadvantage is in
relation to the range of the signal between the transmitter and the receiver, because depending on the environment
and activity that is carried out, the signal may suffer a loss due to the material and thickness of the walls.

2.1.2.2 Noise and Artifacts

A low SNR, which is a commonly used measure of fidelity in physical systems (it is defined as the ratio of a
signal’s squared amplitude or variance relative to the variance of the noise), and different noise sources are
among the most difficult challenges in EEG-based BCI application studies. Unwanted signals in the primary
transmission are referred to as noise, artifacts, or interference. EEG artifacts can come from two sources: external
or environmental factors and physiological ones. AC power lines, lights, and a wide range of electronic devices
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are examples of external noise sources (from computers, displays, and TVs to wireless routers, notebooks,
and mobile phones, amongst others). Physiological noise is caused by a variety of physiological activities
such as movement, other bioelectrical potentials, or changes in skin resistance. Electrooculographic activity
(EOG, eye), Electrocardiographic activity (ECG, heart), scalp-recorded Electromyographic activity (EMG, muscle),
ballistocardiography activity (heart-related pulsatile motion), and breathing are the most common physiological
noises.

2.1.3 EEG Control Signals

2.1.3.1 Motor Imagery

Motor imagery (MI) can be defined as the mental simulation or rehearsal of an action without any movements and
motor output [15]. The alpha and beta brain waves are the most significant frequency ranges for motor imagery.
Left and right hand MI evoked activity is detected on the C3 and C4 regions of the brain, respectively, whereas
foot movement imagery is generated by Cz. Due to the close proximity of the relevant brain areas, left and right
foot motions are difficult to differentiate in EEG. The cortical regions of the left and right hands, the tongue, and
the foot are vast and distinct. Thus, previous studies have shown that BCI applications may control the movement
of those bodily limbs through imagination.

According to Yokoyama et al. [15] neural decoding of basic MI information (e.g. differentiation of brain states
between ’walk’ and ’rest’ and between ’left leg’ and ’right leg’) was employed in gait rehabilitation research using
MI-based BCI. Upper-limb movement studies, on the other hand, have been successful in deciphering more
comprehensive and functional MI information, such as hand postures and movement direction.

2.1.3.2 Steady-State Evoked Potentials (SSEP)

When a person observes a periodic stimulus, such as a flashing visual or an amplitude-modulated sound, SSEP
emerges. The stimulation frequency or harmonics are equal to the EEG signal frequencies, which is an essential
feature of SSEP. The stimulation of a set frequency causes SSEP by producing EEG activity at the same frequency
as the stimulus. SSEP can be further classified based on visual, auditory, and somatosensory stimulation as
Steady-State Visually Evoked Potentials (SSVEP), Steady-State Auditory Evoked Potentials (SSAEP), and
Steady-State Somatosensory Evoked Potentials (SSSEP) respectively [26].

2.1.4 P300

The EEG signal in the brain is composed of multiple signals with varying qualities, each of which correlates to a
particular mental activity. One of the signals, P300, has been employed in a variety of BCI applications. When
the user is exposed to an unusual stimulus in a sequence of common stimuli, a positive wave known as P300
occurs roughly 300 milliseconds after the commencement of the target/rare stimulus. It is triggered when a person
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detects a single "target" stimulus within a steady stream of "non-target" inputs. P300 can be generated when the
person focuses on a specific stimulus while concurrently being exposed to multiple stimuli.

2.1.4.1 Event-Related Potential (ERP)

Event-Related Potentials are very small voltages deflections generated in brain areas in response to certain events
or stimuli. They are EEG alterations that are time-locked to the sensory, motor, or cognitive events and provide a
safe and noninvasive technique for studying psychophysiological correlates of mental processes. A wide range of
sensory, cognitive, and motor activities can trigger event-related potentials. They are assumed to represent the
total of postsynaptic potentials generated when a large number of similarly oriented cortical neurons (thousands
or millions) fire in synchrony while processing information [42].

Human ERPs are classified into two types. The early waves, or components peaking within the first 100
milliseconds following input, are referred to as ’sensory’ or ’exogenous’ since they are heavily influenced by the
physical properties of the stimulus. In contrast, ERPs generated in later parts indicate how the person analyzes the
stimuli and are referred to as ’cognitive’ or ’endogenous’ ERPs because they investigate information processing.
The waveforms are classified based on latency and amplitude.

Because of its significant potential in understanding and analyzing gait-related brain rhythms and Event-Related
Potentials, Brain-Computer Interfaces or Brain-Machine Interfaces have been more intensively researched in the
field of gait rehabilitation in recent years [16].

2.1.5 Perturbation Evoked Potential (PEP)

Physical balance disturbances cause brain reactions accompanied by a specific cortical activation, the so-called
PEP [10]. Perturbation Evoked Potentials are ERPs elicited by predicted or unexpected external whole-body
disturbances (mechanical perturbations to stability). PEPs are multicomponent cortical responses that are
comprised of an initial small positive wave (P1) followed by a large negative potential (N1) and a succeeding
positive (P2) and negative (N2) waves (4). The PEP differs from other ERPs in that it is evoked by multimodal
stimuli (visual, vestibular, somatosensory) caused by whole-body perturbations and has a relatively large N1
amplitude compared to evoked responses to other stimuli [49].

PEPs are extensively dispersed throughout the frontal, central, and parietal regions, however, the peak
amplitude of PEP N1 is greatest over frontocentral locations independent of stimulus or task circumstances. As a
result, the minimal recording montage to express the PEP N1 should comprise one electrode at either Cz or FCz
as shown in Figure 3.
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Figure 3: ERP scalp maps showing the topography of perturbation-evoked N1. Taken from [48]

PEPs can be contaminated by movement artifacts owing to whole-body perturbations, in addition to other
neural and non-neural artifacts such as eye blinks, eye movements, EMG, ECG, and line noise artifacts, which
are of special concern. It is worth noting, however, that perturbed head motions do not appear to mask the
early components of PEPs. This is most likely owing to the timing of events, with the perturbed head movement
beginning after the early components of the PEPs [48].

2.1.5.1 Components

The first component is a brief positive wave that lasts between 30 and 90 milliseconds. This is followed by a
negative peak at 90-160 ms and a last, late response (P2 and N2) at 200-400 ms. These PEPs are frequently
identified by averaging event-related waveforms from several trials. If PEP could be identified in a single trial and
used in a BCI system, balance disturbances could be detected far sooner in a fall detection system based on
EEG. This would provide considerably more time to implement preventative actions [35].

Figure 4: Waveform and terminology of Perturbation-evoked Potentials from a single normal subject. Taken
from [48]
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The most commonly researched properties of PEP components are the onset latency, peak latency, and peak
amplitude. The peak amplitude of the PEP components is measured with regard to a pre-perturbation baseline
period or as the voltage difference between the component peak and the perturbation onset. In Varghese et
al. [48] studies, the latencies of the PEP components are assessed in relation to perturbation onset (i.e., time
= 0 (Figure 5)). The peak latencies of the various PEP components vary between studies in the healthy adult
population due to changes in perturbation release timing, the metric employed to quantify perturbation initiation
or the time point picked by different researchers as the start of timing for the PEPs. For example, perturbations
delivered at various stages of the gait cycle may result in variable PEP latencies. Furthermore, the peak amplitude
of the PEP components varies with the kind of perturbation utilized and the starting acceleration of the perturbation
in the healthy adult population.

2.1.5.2 PEP P1

The first component of the PEP is the P1. Varghese et al. [48] paper summarizes that the peak amplitude of the
P1 is small, usually ranging between 0.2 and 7 µV. However, mean amplitudes as great as 12.7 µV were reported
for the P1 evoked by sudden platform toe-up (ankle perturbations) tilt, measured from the P1 onset to the peak of
P1.

Because of its modest amplitude and/or unpredictability in the mechanical initiation of disturbance relative to
the trigger, the P1 is not always discernible from background EEG signals. When the disturbance is quick, the P1
is easily detected; but, when the perturbation is sluggish, it might be indistinguishable from the baseline EEG
activity [10].

Evidence from previous works [10, 48] indicates that P1 is the first unspecific cortical response to perturbations
and that P1 features are associated with various parameters such as age, stance width, and height. The same
studies indicate that the P1 is most likely generated by somatosensory input. P1 latency is controlled by the
subject’s starting postural state (stance or gait), height, age, and diseases, whereas P1 amplitude is determined by
the beginning stance width (narrow or wide). It was discovered that when the perturbation is created during stance
and gait circumstances, the latency of the P1 peak is considerably delayed in gait situations. With increasing
stance width, the amplitude of the P1 rises. Varghese et al. [48] reported the impact of the base of support
by inducing sudden platform toe-up tilts with three different initial stance widths (0 cm, 3 cm, and 30 cm) and
discovered that the amplitude of the P1 increased with a wider stance.

2.1.5.3 PEP N1

The PEP N1 is broadly distributed in the frontal, central, and parietal regions. The amplitude of N1 varies from 0.8
to 80 µV depending on the variables varied in the tests and is greatest at either the FCz or CZ electrode [6, 35].

Unlike other PEP components, the N1 is reproducible across trials and subjects, regardless of the direction
of perturbation or the many parameters that impact the latency and amplitude of N1. Even with various types
of perturbations (stance perturbations versus sitting perturbations) and balancing reactions, the PEP N1 occurs
bilaterally with no significant changes in magnitude across left and right hemispheres (upper limb vs lower limb)
[48].
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(A) ERP-image plot of single-trial EEG epochs across all subjects. (B) Event-related spectral perturbation
(ERSP) and (C) inter-trial coherence (ITC) plots at the FCz electrode site. The vertical dashed line at time = 0
represents the perturbation onset. The bottom trace (D) shows the perturbation-evoked N1 averaged across all
subjects.

Figure 5: ERP the scalp maps, time series, and time–frequency plots of PEP N1 averaged from a single-subject
EEG data. Taken from [48]
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It has been proposed in Varghese et al. [48] that the N1 is associated with error detection and is independent of
sensory and motor processes linked with compensatory postural responses. They discovered that the amplitudes
of the N1 were smaller during predictable perturbations compared to unexpected situations. A substantial N1
potential emerged, however, when an unpredictable perturbation was applied following a sequence of predictable
perturbations.

After observing similar N1 peak latency and amplitude for stance and seated perturbations, the authors [10, 48]
proposed that the N1 response is driven by the perturbation and is independent of specific sensory inputs that
code the perturbation characteristics and motor elements of the balance reactions.

Despite these differences in the role of the N1, it is acceptable to assume that the N1 plays a role in compen-
sating postural responses. However, due to the lack of information on previous reports, further studies are needed
to understand the significance of the N1, especially whether it plays a role in detecting postural instability and/or
generating postural responses.

The PEP N1 is the outcome of averaging across many trials. As such, it is simply a summary measure of
cortical activations linked to balancing regulation, and averaging may result in the loss of significant information
about the underlying neuronal assemblies involved in producing the PEP N1.

The participation of distinct frequency bands during the PEP N1 has been linked to sensorimotor and cognitive
processes connected with reactive balance management. Furthermore, concurrent theta, alpha, and beta
frequency phase synchronization during this phase of the response to balance perturbation demonstrates the
participation of many concurrent cognitive processes in balance regulation, and that their combined activity leads
to the emergence of the PEP N1 [48].

The PEP N1 is the most extensively researched component of the PEP. Several environmental factors impact
the PEP N1 latency, amplitude, and psychological factors such as initial postural state (stance or gait), learning
effects or adaptation, perturbation amplitude and duration, the direction of perturbation (forward or backward),
perturbation mode (unilateral or bilateral), mechanical triggering mode of perturbation (self-induced or externally
induced), the base of support (stance width), concurrent cognitive task (dual tasking) and postural threat.

As mentioned by Varghese et al. [48] PEPs related to both stance and gait perturbations using treadmill
accelerations indicated delayed latencies and lower amplitudes in the PEP N1 during the walking test compared to
the standing condition. The authors hypothesized that the lower amplitude of the PEP N1 explains neurons’ failure
to react to perturbation stimuli caused by active movement during gait. In contrast to the differences in amplitudes
and latencies between stance and gait, no difference in N1 amplitude and latency was observed between seated
perturbations that elicited upper limb compensatory postural responses and stance perturbations that elicited
lower limb compensatory responses. Also, the authors found that changes in sensory qualities (sensory from
sitting vs stance perturbations) and motor responses (upper limb versus lower limb) required to recover balance
have no effect on the spatiotemporal aspects of the PEP N1.
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ERP-scalp maps (A) and ERP time series (B) of PEP N1 at the FCz electrode site averaged from a single normal
subject. Time = 0 represents the perturbation onset. (C) Event-related spectral perturbation plot at the FCz
electrode from a single normal subject.

Figure 6: ERP plots. Taken from [49]

2.1.5.4 PEP P2 and N2

The PEP N1 is followed by the P2 and N2 (known as late PEPs). In contrast to the PEP N1, the P2 and N2 are
not identified in all PEP research. Varghese et al. [48] cite that early PEP experiments, in particular, were unable
to uncover any long latency components (longer than 180 ms).

One possible explanation is that these lengthy delay components are associated with task-specific behavior
and their timing is not fixed, depending on the task [48]. As a result, late PEP are analyzed in a wider time window
after the N1 response, typically 200-400 ms after the start of the perturbation [10]. The N2 amplitude fluctuates
between 27 and 28 µV and is greatest at the CZ electrode. The P2 peak amplitude spans between 22 and 44 µV
and is greatest at the Cz or CPz electrodes. The starting stance width influences the magnitude of the P2 [48].

As a result, the authors [48] hypothesized that late PEP could indicate cognitive processes linked with task
demands or cognitive processing of the balance disturbance rather than sensorimotor processing involved with
balance response regulation. The same authors discovered that a concurrent cognitive task performed during
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the stance perturbations had no effect on the amplitude of the late PEP and argued that they indicate a sort of
orienting response that does not demand the attentional resources required in a dual-task paradigm.

The amplitude of P2 but not the latency is also modified by the initial postural position (stance or sitting), with
stance perturbations producing much greater P2 amplitudes than seated perturbations. This discrepancy was
attributed to differences in the latter phases of balance control between standing and sitting circumstances [10].

To summarize, late PEP are unlikely to represent cortical sensorimotor processing related to postural response
regulation, and if attention does explain variation in late PEP, it is more likely driven by attention changes toward
new perturbation events.

2.2 D E C O D I N G

As mentioned in the previous subsection, to build a BCI system, five components are generally needed: signal
acquisition during a specific experimental paradigm, preprocessing, feature extraction, classification (detection),
translation of the classification result to commands (BCI applications), which one of them will be detailed on next
subsections.

For quick and accurate processing and analysis of brain data, researchers have developed many open-source
software packages and toolboxes such as BCI20001, EEGLab, FieldTrip, and Brainstorm. These software
packages are based on advanced signal and image processing methods and artificial intelligence programs for
performing sensor or source-level analyses.

Prediction of human movement intention is highly significant for successful gait rehabilitation. In a BCI-based
rehabilitation system, the brain waves are extracted, processed, and translated to control an assistive device. For
an effective assistive system, it is critical to detect the movement intention as early as possible to provide the
system with enough time to adapt to the requirement of the individual [16].

2.2.1 Data Preprocessing and Feature Extraction

2.2.1.1 Data Preprocessing

Pre-processing is a time-consuming procedure that is used to eliminate any undesirable components present in
the EEG signal. Good preprocessing improves signal quality, which leads to improved feature separation and
classification performance. The basic approaches to reducing artifacts in the observed EEG are simply low, high,
and bandpass filters. However, these are only effective when the signal’s frequency bands do not overlap. When
there is spectral overlap and artifacts are recorded with the EEG, various artifact removal techniques such as
adaptive filtering, Artifact Subspace Reconstruction ASR, Common Average Reference CAR, and Independent
Component Analysis ICA decomposition. Besides, in some cases to increase computational efficiency and sync
EEG frequency with other devices, for example, EMG, the signal is downsampled.

As mentioned in the previous paragraph for data preprocessing, firstly, a series of filters are applied to the
signal to extract accurate information. The raw signal is collected from the electrode, and stored in a circular
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Figure 7: Performance of ASR in removing eye movement artifacts and unnatural high amplitude noise.

buffer for easier data stream handling. The notch filters, type of filter, can be applied to the raw signal to diminish
power line noise and its harmonic interference at 50Hz. The filtered signal is then filtered with a 2nd or 4th-order
Butterworth filter can be the low-pass, high-pass, or band-pass filter to extract the information [12]. If needed the
filters can be combined to obtain better signals.

In addition, an approach to remove artifacts is to perform amplitude threshold rejection removing all trials with
an amplitude that exceeds a specific pre-defined voltage. The rejection threshold can be adjusted based on the
value of the standard deviation (STD) [10]. Other approaches can be used in process of removing unwanted
artifacts from EEG signal and depending on the application they can be carried out in two steps. Artifact Subspace
Reconstruction is a non-stationary method that uses sliding window principal components analysis (PCA) to
remove unusual large-amplitude noise or artifacts. The usage of ASR increases data stationarity and makes the
data suitable for independent component analysis operation. In [16] studies, ASR can be used for two purposes:
bad channel rejection (flat channels, channels with a large amount of noise may be removed based on their
standard deviation, and channels, which are poorly correlated with other channels), and removal of short-time
high-amplitude artifacts in continuous data. The value is chosen in such a way that it was small enough to
remove activities from artifacts and eye-related components and large enough to retain signals from brain-related
components.

According to Varghese et al. [49], ICA is performed on epoched EEG data to remove eye blinks, eye movements,
whole-body movements, muscle artifacts, heart signals, and line noise artifacts. Identification and rejection of
artifact-independent components (IC) is based on the visual inspection of topographic maps, power spectra, and
time domain activity of each IC [49].

Lastly, the common average reference which is spatial filtering can be applied to the raw input signals to improve
the signal-to-noise ratio. For every sample time, CAR subtracts the mean value of all electrodes, which minimizes
the uncorrelated random noise with a zero mean through the averaging process [25].
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2.2.1.2 Feature Extraction

After the line noise and artifact removal phase, the most discriminative and non-redundant information within the
EEG is extracted through different feature extraction techniques. Time-domain, frequency domain, time-frequency
domain, and spatial domain are the popular types of feature extraction techniques in EEG-based BCIs.

The features can be extracted from all channels or from specific channels depending on preprocessing results.
In Jochumsen and Niazi [23], the template matching feature, an average of the epochs for the specific channel
was used, and the cross-correlation is calculated with each epoch. The feature was the cross-correlation with
zero time lag. The time-domain features were the mean amplitude of 0.5-second non-overlapping windows (i.e.:
four features were extracted from each channel). The frequency-domain features were power spectral density
estimated for the entire epoch in 1 Hz bins from 6–30 Hz. A 1-second Hamming window with a 0.5-second overlap
was used.

For time-series applied data segmentation to divide the data into time intervals [16] where the signals are
segmented in epochs locked to the onset of each class [32]. Using a sliding window with shift and overlapping
is possible to extract the signal amplitude in specific channels or components that will be used as input to the
classifier [51]. Besides, windows of different time lengths can be chosen to correspond to a specific class.

If the number of features is too high compared to the number of samples, there is a high chance of having
redundant and noisy features in the feature set. That is why a feature selection method is necessary to remove
redundant features. In Hasan et al. [16] work, the absolute value of the standardized u-statistic of a two-sample
unpaired Wilcoxon test (also known as the Mann-Whitney test) was chosen to be the criterion to select distinctive
and informative features. To further reduce the number of features, the average of the absolute values of the
cross-correlation coefficient between the candidate feature and all previously selected features were calculated,
and features that were highly correlated with the features already picked were less likely to be included in the
output list. This procedure ensured the formation of a reduced and more distinctive set of features for successful
classification.

Dimensionality reduction techniques improve the performance of classifiers, as they reduce the number of
features to mitigate the curse of dimensionality. These techniques can be categorized into feature selection (e.g.
F-score) selects a subset of original features and feature extraction which derives new features from original
features. The first category does not change the nature of the features, while in the second category, mathematical
transformations are used to reduce the number of features [37].

2.2.2 Classification - AI Algorithms

To operate a BCI system, the individual must generate distinct brain activity patterns that the system can recognize
and convert into commands. It should be noted that either regression or classification techniques might be used to
achieve the stated goal. However, the use of classification algorithms is the most prevalent strategy as the degrees
of freedom of most BCI systems are low and output commands are reduced to just a few options (classes). The
classification step’s design requires selecting one or more classification algorithms from a large number of options.
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The capability to achieve reliable automated categorization of EEG data is a critical step toward making
EEG more practical in many applications and less reliant on skilled specialists. It is worth mentioning that,
despite major progress in traditional BCI systems over the last two decades, the biggest challenge still confronts
significant problems in EEG categorization. Recently, the availability of large EEG data sets has led to the
use of Deep Learning (DL) architectures, particularly to extract relevant information from signals that were
previously impossible to obtain using conventional approaches, and has demonstrated success in addressing the
aforementioned challenges.

2.2.2.1 Convolutional Neural Network

Convolutional Neural Networks (CNN) is a class of artificial neural networks (ANNs) that specializes in spatial
information exploration. CNNs have seen a lot of successful applications in many different domains such as
reaching human-level performance in image recognition problems as well as different natural language processing
tasks Motivated by the success of these CNN architectures in these various domains, researchers have started
adopting them for time series analysis [17].

CNN has at least one convolutional layer, which uses a convolution operator to map the input to output [43].
A CNN’s three major layers are convolution, pooling, and fully connected as shown in Fig. 8. On a dataset of
huge registers of various classifications, CNNs outperform the prior highest-computing techniques. CNNs are
feed-forward neural networks that may be used for image processing, pattern recognition, and classification.
The convolution layer filters the input data, such as kernels with trainable parameters, creating the next layer
in the network also called the feature map. The feature map is then down-sampled using the pooling layer to
reduce the dimension and consequently the computational complexity and overfitting. These settings enabled the
learning of many network features while keeping the number of traceable parameters low. After several alternating
convolution and pooling operations, the final feature map is unrolled to a fully connected hidden layer to generate
the output [34].

Figure 8: Example of CNN Architecture. Taken from [38]

2.2.2.2 Recurrent Neural Network

Recurrent Neural Network (RNN) architecture is a sophisticated Deep Learning classification algorithm that is
designed exclusively for sequential data. This type of DL architecture can assess the entire logical sequence of
the incoming data. These logical sequences are content-rich and have a complicated temporal interaction with one
another. The basic principle of RNN is that the current network’s hidden state retains the prior input information,
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which is then used for the next current network. Long Short-Term Memory (LSTM) and Gated Recurrent Units
(GRU) are two popular RNN designs that has received a lot of attention and success [43].

2.2.2.3 Long Short-Term Memory

Long Short Term Memory is a more advanced variant of the standard RNN in which three gates (forget gate,
update gate, and output gate) are added to regulate the information to store and pass while avoiding the vanishing
gradient problem that is generally associated with training a conventional RNN. Each gate in the cell is in charge
of a distinct duty. The forgetting gate’s function is to remove undesired information from the prior state and output
from the top hidden layer. The update gate updates new components to the state, while the cell filters the current
state and finds desired and unwanted information to guarantee that the output gate selects the critical information
generated by it. The data to be output is selected by the output layer, which is handled by the filtered input and
cellular state, i.e. the output layer decides which information will be output and processed by the cell state.

Figure 9: Example of LSTM Architecture. Adapted from [40]

2.2.2.4 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) is another RNN enhancement, and similar to LSTM, GRU uses gating mecha-
nisms to control and manage the flow of information between cells in the neural network. GRU contains two gates
(a reset gate and an update gate) that manage how information is retained and sent between nodes. The update
gate functions similarly to an LSTM’s forget and input gates, it determines what information to discard and what
fresh information to include, and another gate used to select how much past information to forget is the reset gate.
Although prior empirical assessments have not revealed a clear winner between GRU and LSTM, it is thought that
GRU may be a superior model when dealing with fewer data points to generalize on, due to the fewer parameters
in contrast to LSTM [43].
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2.2.3 BCI Applications for Activity Daily Life

BCI technology has clinical and non-clinical uses in a variety of fields, including medicine, entertainment, education,
and psychology, to address a variety of health conditions, including cognitive deficiencies, poor processing speed,
impaired memory, and motor capacity decrease in the elderly. These concerns can reduce the quality of life for
the elderly and have a negative impact on their mental health. Many BCI applications, as shown in Fig. 10 have
been created in the last decade to assist elderly persons in maintaining a healthy, decent quality of life and feeling
of well-being.

2.2.3.1 Wheelchair Control

One of the primary goals of a BCI wheelchair is to improve the quality of life and autonomy of patients with
motor neuron illnesses such as amyotrophic lateral sclerosis. This breakthrough technology enables handicapped
individuals to drive a wheelchair using their brain activity, offering them autonomy while traveling through an
experimental environment. BCI wheelchairs can employ various forms of EEG control signals such as MI, P300,
SSVEP, and hybrid [30].

2.2.3.2 Gait Recovery

Exoskeleton robots help patients in a bottom-up strategy, in which the exoskeleton acts on their limbs (bottom)
to create reactions in the brain region (top). Bottom-up therapy aided by a robot has yet to show considerable
improvement over therapist-assisted rehabilitation.

The use of BCI with lower limb exoskeleton robots has increased due to its use in rehabilitation. According to
research [38], to compensate for the downside of current robot-assisted technology, it is desirable to shift from
the bottom-up approaches to the top-down approach in the aspect of enhancing neuroplasticity in rehabilitation.
By completing the loop, gait rehabilitation parameter feedback produced from bio-signals can have a favorable
influence on patients’ neuroplasticity, which means that walking supported by a robot stimulates the patient’s brain.
In this regard, EEG is useful for recognizing the patient’s thoughts during gait therapy.



2.3. Discussion 29

(a) BCI Applications. Taken from [30]

(b) Exoskeleton. Taken from [18]

Figure 10: Examples of BCI Applications

Robotic training is being used to reestablish gait patterns. Conventional rehabilitation methods utilizing
robotic technology aid in sensorimotor repair by assisting and encouraging participants to do specified activities.
Exoskeletons are a potential task-oriented tool for restoring a more physiological walking pattern in severely
impaired persons and recovering natural alternating activations of lower limb muscles [33].

2.2.4 Prevent Fall Risk

In order to develop a BCI control of the robot-assisted gait device, fundamental research aiming at detecting the
precise active role of the motor cortex during the gait cycle has to be done [11]. Passive Brain-Computer Interface
(pBCI) do not provide active control to users; moreover, they monitor their state of mind and detect changes in the
state of mind of users. Due to their ability to detect changes in the user’s mental state, pBCIs are a promising tool
for detecting perceived balance perturbation [10].

So far, only a few studies have investigated the neural correlates of human walking, principally due to both the
inherent experimental difficulty of measuring EEG signals in the ambulatory context and the challenging goal of
balance control in walk rehabilitation tasks and loss of balance during a perturbation.

2.3 D I S C U S S I O N

This chapter provided an introduction to current topics related to brain-computer interfaces and the decoding of
brain signals for ADLs and slip-like perturbations. The analysis carried out considered EEG data that allowed
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a comprehensive characterization of the response to this type of perturbation. In terms of the brain signal,
understanding the role of brain regions (channels) related to gait and the responses of these channels in response
in identifying the occurrence of loss of balance due to perturbation during gait is very important. The analysis of
EEG data, presenting pre-processing techniques, ML and DL algorithms applied in BCI devices, corroborates the
importance of developing and improving this technology. In addition, with regard to slip-like perturbations, it was
possible to identify the type of signal to look for and what are the characteristics of the signal when there is a loss
of balance (waveform, amplitude, and moment).

As it was possible to verify throughout this literature review, the combination of EEG data for ADL and loss
of balance provides different complementary information for the development of this work, taking into account
the parameters addressed in the literature review. Furthermore, the ranking of the various AI-based models for
classifying disturbance and non-disturbance identifying those that most influence the landslide outcome should
also be considered in the next tasks of this dissertation. Finally, the computational performance demanded in the
construction of AI models must be studied and analyzed due to its relevance in a real-time scenario.
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A C T I V I T I E S O F D A I LY L I V I N G A N D R E S P O N S E T O B A L A N C E L O S S :
L I T E R AT U R E R E V I E W

Despite the progress of devices and gadgets to get a natural and effective recovery, the subject must fully
control the devices they use. In this context, Brain Computer Interface has been introduced to decode motor or
cognitive intentions from recordings of brain activity and translate these predictions into commands for computer
programs or robotic devices [28]. This part of the BCI which deciphers the user’s motor intent from recorded
brain activity is typically referred to as a neural decoder. BCI technologies, based on motion decoders from brain
recordings through non–invasive technologies such as scalp EEG signals appealing to ensure wider applicability
of personalized brain–controlled rehabilitation devices. The electrodes placed on the scalp capture the signals
that have an amplitude in the range of microvolts in real-time. In the development of EEG-based BCIs, individually
tuned parameters for characterizing signals are computed from several training trials, which are used to perform
online signal decoding [25].

The main goal of this study is to review the literature to understand the process of decoding different modes
of locomotion (walking, climbing/descending stairs, ascending/descending on a ramp) which are classified as
Activities of Daily Living, and develop a solution for imbalance events of human gait through the use of EEG which
function is capture and register the brain signals [40, 4]. A protocol for data collection will be implemented based
on good practices found in the scientific literature [4]. It is intended that the group of volunteers with determined
healthy subjects use at least a 16-channel EEG. These sensor data will be collected with different subjects walking
in a controlled environment. The data of EEG must be processed to create significant features, through feature
engineering, which will be used to detect the subject’s locomotion intentions through the implementation of artificial
intelligence models [26]. It will be necessary to identify tasks and algorithms for pre-processing and removal of
the most commonly used artifacts, such as the Independent Component Analysis and the Artifacts Subspace
Reconstruction, as well as identifying the most relevant brain rhythms. Therefore, it is intended to evaluate the
classification of AI-Based models, and compare them in order to have an optimized benchmark model for real-time
use with low computational cost. It is expected that the best model is able to predict the occurrence of loss of
balance.

31
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3.1 M E T H O D S

3.1.1 Research Strategy

We have conducted a systematic review. This type of review is a systematic way of exploring existing literature. It
starts with choosing a set of keywords, along with Boolean operators, to try and extract only the most pertinent
papers in the literature. Since our focus is to review papers that decoded modes of locomotion capturing the
signals from EEG and use intelligent machine learning algorithms for gait analysis in the lower limb, the choice of
keywords should reflect the topic. They should be general enough not to miss applicable literature and encompass
the varying techniques, sensors, devices, and terminology researchers use in their research but restrictive to
eliminate irrelevant research. The aforementioned keywords have been used to extract papers available in three
databases: WEB OF SCIENCE, PUBMED, and SCOPUS. : ("EGG" OR "Electroencephalogram") AND ("ADL" OR
"Walking" OR "Climb" OR "Descend" OR "Sit-to-Stand" OR "Stand-to-Sit") AND ("BCI") AND ("Decoding") AND
("Classification") AND ("Machine Learning" OR "Deep Learning").

3.1.2 Inclusion and Exclusion Criteria

In addition to the keywords, inclusion, and exclusion criteria have been used to further filter the results. Results
were limited to journal and conference papers only. There were a few studies where the full-text paper was not
available or inaccessible by us, and hence was not included. The total number of papers identified with this
inclusion and exclusion criteria was 151 papers. Afterward, duplicate papers available on databases have been
removed, as good papers were published before 2015, reducing the number of papers to 98. These papers
have been analyzed based on abstract only, manually removing less relevant or irrelevant papers (i.e. the scope
of these papers have no significance to our review). Some reasons that resulted in the exclusion of papers
included, upper limb rather than lower limb robotics, motor imagery instead of gait analysis, and the absence of
electroencephalography. Results were further limited to research articles excluding conference papers. 16 out of
the 54 full-text articles that we assessed for eligibility were included in this review. The full text of these papers
has been reviewed focusing on the parameters the researchers are considering, the intelligent algorithms they
used, the sensing modalities, the types of subjects they have tested/trained their algorithms on, and the overall
performance of their systems. This process is visually illustrated in Figure 11.

3.2 E X P E R I M E N TA L P R O T O C O L A N D S E T U P

3.2.1 Experimental Procedure

Regarding the group of 16 articles gathered in this literature search, there was clear evidence that walking was
more prevalent to decode gait. From the whole group of studies, 12 conducted walking, stop and stand movement,
5 of 12 papers conducted sit-to-stand, stand-to-sit movement, 2 of 12 conducted step up, side step, and back
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Figure 11: Flowchart on the methodology of article selection.

step movement, and only one conducted turn left and turn right in its experimental protocol. Table 1 depicts the
16 studies that conducted gait decoding. All experimental protocols and informed consent were obtained from
all participants. In 13 papers all individuals with no history of neurological disorder participated in their study, 2
papers conducted their experiments with stroke patients as well and only one paper conducted its experiment with
an amputee subject.

Gait decoding was delivered in 16 studies, seven papers conduct these studies on treadmills with a minimum
speed of 1.5 km/h and a maximum speed of 3.5km/h. In 3 papers each session began with the subject standing
quietly in an upright posture for 2 minutes (mins). The treadmill’s speed was slowly increased to 1.6 kilometers
per hour (km/h) in [46] experiment and the subject walked normally at this gait speed for 5 mins. At the beginning
part of the experiment where subjects finished the baseline period, subjects were instructed to walk on a treadmill
at a fixed slow speed of 1.5 kilometers per hour (km/h) [43]. During the task, subjects were instructed to walk



3.2. Experimental Protocol and Setup 34

steadily for 15 mins where the decoder is calibrated for the next BCI control [47]. Chisari et al. [39] and [40]
experiment with the participants walking on a treadmill at two distinct velocities, 2.5 km/h and 3.5 km/h. For each
walking velocity, two acquisitions of 10 minutes each were performed. Healthy participants in [11] study attended
one experimental session in which they were asked to either walk in a passive or in an active mode at a speed
of 1.5Km/h wearing an exoskeleton, as soon the treadmill started, participants walked for 49s, after which the
treadmill was stopped. The treadmill had a delay of at least 7s to come up to a stable speed and 7s to slow down
and stop completely.

Table 1: Experimental Protocol - Procedure
Article Participants Age

(avg)
Task Treadmill Speed

(km/h)
Trials Time per trial

(min)
[43], [47] 8 Healthy 24.5 sit-to-stand;

stand-to-sit
1.6 3 20

[32] 8 Healthy 24.5 walking 1.6 3 20
[39], [40] 11 Healthy 30 walking 2.5 / 3.5 2 for each speed 10 for each trial
[22] 10 Healthy 25 resting; walking

intention; walking
50 0.5

[11] 10 Healthy 32 walking; stand 1.5 7 active walking;
7 passive walking

1

[23] 13 Healthy 24 stand-to-sit; sit-
to-stand; walking;
step up; side
step; back step;

50 for each task 180

[37] 27 Healthy 24 walking
[46] 5 Healthy 24.5 walking 1.6
[45] 5 Healthy 8 stand-to-sit; sit-

to-stand; walking;
stop;

1.6 20

[51] 1 Healthy; 1
Non-Healthy

walking; turn left;
turn right; stop

20

[38] 3 Healthy; 8
Non-Healthy

walking 9 1

[12] 4 Healthy 23 stand-to-sit; sit-to-
stand

78 2

[27] 20 Healthy 22 step forward; step
up; step back

10 4

[16] 7 Healthy; 2
Non-Healthy

32.6 walking; stop 145 175

Six of these 16 manuscripts performed gait movements during overground locomotion. The experiment
paradigm in [22] consisted of three states: a resting state of approximately 10 s, an intention state, and 10 s
exoskeleton walking. Prasad et al. [51] is composed of 2 tasks, the first task was a four-class, single-session task
in which the subjects performed different movements (i.e.: walking forward, turning right, turning left and stopping,
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following the marked path on the ground, and the second task, subjects only executed walking and stop motions
according to audible beep instructions).

Eguren et al. [45] perform four different types of locomotion tasks (i.e.: sitting and standing, start and stop
overground walking). In the sitting and standing task, the participants completed 20 sit-to-stand and stand-to-sit
transitions which were initiated by a visual cue placed in front of the subjects. The session began with the
participant standing quietly in an upright posture for 15 seconds. After the quiet standing period, the participant
began the self-initiated sit-to-stand and stand-to-sit transitions. The waiting period between the transitions was
approximately 10 seconds. The participants were verbally informed when 20 transitions were completed. At the
start and stop of the overground walking session, the participants completed 20 walk-to-stand and stand-to-walk
transitions. The session began with the participants standing still for 15 seconds. After the stationary standing
period, the participant held the standing position for a period ranging randomly from 10 to 15 seconds before the
stand-to-walk transition (indicated by a green light). The participants walked on a 10-meter walkway and were
instructed to stop walking at the onset of a red light. The walk-to-stop transition completed a single trial and the
participant returned to the starting position. The process continued until 20 trials were completed.

Jochumsen et al. [23] performed 6 tasks which were: (1) stand-to-sit; the subject was standing in front of a
chair (height of seat: 45 cm) and had to sit on that, (2) sit-to-stand; the subject was sitting on the chair and had to
stand up, (3) walking; the subject had to walk three strides (starting with the right leg), (4) step up; the subject had
to step up to a plateau (height: 16 cm) starting with the right foot, (5) side step; the subject took one step to the
right side, and (6) back step; the subject took one step back starting with the right foot. Each run consisted of six
blocks where each block was 10 movements of the same movement type, (i.e., after each run 10 movement trials
were performed of each movement type). After each run, a resting recording of two minutes was performed (i.e.,
five recordings in total) while the subjects were standing relaxed and focused on a point on the wall four meters
away. A clock was counting down to three seconds, and the subject had to initiate the movement task at this
point. The movement trials were separated by 15 s. The subjects were instructed not to blink or do any facial
movements during the 3-second countdown and while the movement task was performed. The experiment was
performed in an electrically shielded room, and it lasted approximately three hours.

The single trial performed in [38] experiment is composed of trial start, auditory cue, start walking, stop walking,
and trial end. It took about 1 minute for each trial. Each subject was asked to walk into the room after the cue sign.
They walked at their natural pace while looking at the marked dot to minimize ocular and head movement artifacts.
Tan Abdullah Al-Mamun et al. [37] the subjects had to perform free walking along an approximately 21-meter
corridor.

Lastly, in the experiment [32] for sit-to-stand and stand-to-sit, a video stimulus that lasted for 4s to 5s and
showed either the sit-to-stand or stand-to-sit video task, was presented to guide the participants to avoid the
ambiguity of the instructions. The protocol began with a sitting posture, followed by 5 repeated trials of sit-to-stand
and stand-to-sit tasks alternatively.
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Figure 12: The 10/20international system of electrode positions for EEG. Taken from [29]

3.2.2 EEG Setup

According to the articles reviewed in this study, all the EEG data were collected and labeled in accordance with
the extended 10-20 international system (see an example in Fig. 12). Under the 10/20 system, the skull is divided
into six areas from nasion to inion with interval rates of 10%, 20%, 20%, 20%, 20%, and 10% (Fp: frontopolar, F:
frontal, C: central, P: parietal, and O: occipital, respectively), and also divided into the same ratios from left to right
preauricular points (T3: temporal, C3: central, Cz, C4, and T5, respectively).

Four (4) papers describe the use of a 64-channel active EEG electrode system in which 4 channels were used
as EOG sensors to capture and remove eye-related artifacts using adaptive filtering algorithms. The sampling
frequency in 3 of 4 papers mentioned was set to 100 Hz [43, 47, 46]. Ground (GND) and reference (REF) channels
were placed on the left and right earlobe (A1 and A2), respectively. T7 and T8 channels were moved to FCz and
AFz, respectively. FT9, FT10, TP9, and TP10 were used as EOG to capture eye blinks and eye movements. This
modification aims to improve the decoding accuracy based on two main reasons: 1) GND and REF channels
in the standard setup were close to the motor cortex and 2) EOG sensors were required in the artifact removal
algorithm [43, 46]. Eguren et al. [45] study a 64-channel was used to record wirelessly at 1000 Hz from the face
and scalp. Channels TP9, PO9, PO10, and TP10 were removed from the cap and used for EOG to capture blinks
and eye movements; however, these data were excluded from all analyses in this experiment.

EEG data were recorded with a custom signal pre-amplifying active electrode cap and a 64- channel EEG
amplifier with a sampling rate of 2048 Hz/channel (bandwidth DC - 1024 Hz), however EEG was resampled at
1024 Hz before further preprocessing [39, 40]. Jochumsen et al. [23] also recorded using a 64-channel sampled
with 1200 Hz whereas [51] the sampling frequency was 100Hz.

Nienhuis et al. [11] electrical signals from 62 electrodes were recorded at a 500Hz sampling rate, while Jeong
et al. [22] and Park et al. [38] used 32-channel wireless EEG data system, however in the first paper the authors
digitized the frequency at a sampling of 1000 Hz and second paper at 500Hz. In addition, in contrast with the
rest of the articles presented in this study, [51] EEG (64 channels) was recorded by combining two 32-channel
amplifiers (sampled at 100 Hz).
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From whole papers, only [32] obtained EEG signals using 11 passive electrodes with a sampling rate set to
1200 Hz, and the reference and ground electrodes placed on the left and the right earlobes, respectively. EOG
signals were acquired from 2 passive electrodes positioned under and next to the outer canthus of the right eye.
The system in this paper and in other 5 papers was set up to record EMG signals simultaneously throughout
the experiment which is often used to modulate the gait pattern and some application to identify the onset of the
movement. EMG electrodes were placed on Tibialis Anterior (TA), Vastus Medialis (VM) and Biceps Femoris (BF)
of each leg [40, 39], Rectus Femoris (RF), TA, and Gastrocnemius Lateralis (GL) of two lower limbs [32], Gastroc
Medialis (GM), Semitendinosus and Vastus Lateralis (VL) [11], two bipolar Ag/AgCl electrodes on the TA and BF
muscles of the right leg (these muscles are known as fast activation muscles for walking)[22] and in [16] study
The EMG channel was placed at the mid-belly of right leg TA muscle with the reference electrode placed on the
bony surface of the right knee. TA was chosen because it is one of the muscles which activates the earliest during
a gait cycle.

Table 2 shows EEG details from 16 studies.

Table 2: Experimental Protocol - Sensor Detail
Article EEG Channels EEG Frequency Additional Sen-

sors
[43], [47], [46] 64 100Hz EOG
[39], [40] 64 2048Hz EMG
[23] 64 1200Hz
[45] 64 1000Hz EOG
[37] 62 1000Hz
[11] 62 500Hz EMG
[22] 32 1000Hz EMG
[38] 32 500Hz
[51] 64 100Hz
[32] 11 1200Hz EOG and EMG
[12] 8 250Hz EMG
[27] 19 200Hz
[16] 8 500Hz EMG

3.3 E E G D ATA A C Q U I S I T I O N A N D P R O C E S S I N G

The EEG signals, typically ranging in the amplitude of microvolts, are captured from active electrodes and amplified
through an EEG amplifier and digitized. Initially, the signals were then filtered using the following filter types: i)
4th order Butterworth in 5 papers, ii) 2nd order Butterworth filter in 4 papers, iii) Finite Impulse Response (FIR)
in 2 papers, and iv) Zero phase 24th Chebyshev type II in 1 paper. In addition, different classes of the filter
were applied: i) highpass filter from 0.1 Hz to 10 Hz was used, based on [40, 16] the value of 1 Hz is applied to
eliminate DC power supply bias from the signal and according to [22] value of 10 Hz is applied to remove delta
(1-4 Hz), theta (4-8 Hz) band from the signals; ii) bandpass filter from 0.1 Hz to 50 Hz (average) was applied in
the majority of the papers, which frequency range is the most suited for gait decoding, allowing to EEG spectrum
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Figure 13: Brain Waves Frequencies. Adapted from [13]

be divided, as shown in Fig. 13 into delta (1-4 Hz), theta (4-8 Hz), mu (8-12 Hz), beta (12-30 Hz) and gamma
(30-50 Hz) bands [37].

In Prasad et al. [51] the acquired data were filtered in the 0.1–2Hz range using a second-order Butterworth filter,
and standardized by channel by subtracting the mean and dividing by the standard deviation (z-score) [46, 45, 51].
Despite taking as many experimental precautions to reduce interference of movement artifacts as possible, EEG
data during walking may generally contain movement and other artifacts, either physiological or non-physiological.
In particular, gait-locked artifacts overlap in time and frequency with brain activity [21].

As a consequence, when decoding gait activity from EEG signals special care should be taken to avoid
exploiting task-related artifacts instead of neural correlates to decode the task itself. To minimize this risk, several
preprocessing procedures have been proposed in the literature to reject movement artifacts, most of them based
on independent component analysis (ICA) [24]. ICA was employed to remove the independent components (IC)
(Figure 14) representing artifacts by visual inspection [38] to project the data from the scalp channels domain
to the IC domain. A custom 50 Hz comb notch filter with no real poles has been used to remove the power line
interference [39].

Bad channels, indicated as a standard deviation greater than 1000 µV or kurtosis of more than five standard
deviations from the mean can be rejected [47], in another hand an automatic rejection of bad channels can also
be performed on EEGLAB toolbox in Matlab [3] based on the probability and Kurtosis statistics of the distribution
of the entire signal in each channel using a threshold of 90% [39].

After that, a common average reference (CAR) spatial filtering on the remaining signals is applied to improve
the signal-to-noise ratio. A CAR filter is applied to the chunk of EEG data inside each window and the band (1-8
Hz) was extracted with a 4th-order zero-lag Butterworth filter [40]. For every sample time, CAR subtracts the mean
value of all electrodes, which minimizes the uncorrelated random noise with a zero mean through the averaging
process [25]. Epochs containing high- amplitude (above 100 µV) and irregular artifacts were manually removed
from the data by visual inspection [39, 40], however, epochs were rejected if they exceeded ˘ 150 µV [23].
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Figure 14: Examples of artifact and brain ICs.Taken from [15]

An artifact subspace reconstruction (ASR) was applied to remove high amplitude artifacts (e.g. eye blinks,
muscle burst) [45]. ASR applies principal component analysis to the EEG data in sliding windows and identifies
channels that significantly deviate from the baseline data containing minimal movement artifact [47]. Prasad et al.
[51] compared classification accuracies with and without ASR, to assess the potential effects of motion artifacts.

Next, Reliable Independent Component Analysis (RELICA) was applied to ensure that classification perfor-
mance was not affected by movement-related artifacts. The extracted ICs were then clustered across RELICA
repetitions for each subject according to their mutual similarity into a number of clusters equal to the number
of EEG channels. Within the RELICA framework, a quality index can be associated with each IC based on the
compactness of the cluster to which it was associated [39]. The ICA weights were applied to the EEG signals
coming from Step I, projecting the data into the domain of the independent component. Components that belong
to stereotypical artifacts (e.g. neck muscles, eye movement) were rejected by back projecting the EEG signals to
the original domain using only the components related to brain activity [40].

A summary of some procedures discussed above can be seen in Figure 15, where single-subject EEG data
were first preprocessed (green box) by going through two EEG preprocessing stages, namely Step I (cyan box)
and Step II (orange box). The first is more conservative and includes line noise, bad channels, and noisy epochs
removal. The second applies a more aggressive rejection of artifacts to maximize the reliability of extracted ICs
(blue box). ICs are applied to data processing according to the first preprocessing step.

Studies from the literature have identified neural correlates of gait in different frequency bands. The most
common approach is based on Event-Related Desynchronization (ERD)/Event-Related Synchronization (ERS),
which was calculated by normalizing the power in the frequency of interest from the active and passive walking by
the corresponding baseline condition [11] in mu (8-13 Hz) and beta (14- 20 Hz) known as sensory-motor rhythms
[39].
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Figure 15: Schematic workflow of the offline EEG processing and classification.Taken from [39]
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Other works exploited Movement Related Cortical Potentials (MRCP). An MRCP comprises two main com-
ponents: a readiness potential (RP) and a movement monitoring potential (MMP). The RP is a negative cortical
potential, which begins approximately 1 2 s before the onset of a voluntary movement activated over the pre-
supplementary motor area (pre-SMA) or the contralateral primary motor cortex (M1). An MMP is a slow positive
deflection associated with the outcome of the motor process after the execution of the movement intention.
Therefore, owing to its characteristics such as potential spontaneity and early detection of user intentions, an
MRCP decodes the process of movement preparation/execution based on a single trial basis [22]. in delta (<3
Hz) or theta (4–8 Hz) [39]. The MRCP signals were extracted from the EEG signals recorded during the Motor
Execution (ME). The EEG signals were then high-pass filtered at 0.05 Hz (2nd order non-causal Butterworth filter).
The notch filter frequency rate was defined at 50 Hz to filter out the electrical noises. Next, the EEG signals were
down-sampled from 1200 to 250 Hz [32].

Besides the procedures mentioned above, two papers included other methods in their real-time operations:
(1) Ravindran et al. [43] used an H-infinity algorithm to specifically remove eye blinks, eye motions, amplitude
drifts, and recording biases simultaneously. The parameters of the H-infinity algorithms were kept the same as the
real-time decoding. Peripheral channels were removed as they typically contain many artifactual components, (2)
whereas Nakagame et al. [46] using data recorded from EOG channels, applied H-infinity filter to remove ocular
artifacts and signal drifts which may be the major source ofEEG contamination. EOG and peripheral channels
were then removed resulting in 50 channels being retained for designing and validating the Unscented Kalman
Filter (UKF) decoder [46] [43]. An UKF was implemented as a neural decoder and its parameters were updated
during BCI operations by using a closed-loop decoder adaptation (CLDA) to improve the performance in real-time
[47].

3.4 O U T C O M E S

The results of the majority of papers that used Machine Learning and Deep Learning approaches to train and
validate the models to decode EEG signals to classify the types of ADLs will be presented in the next sections
with their respective results. The table below summarizes the percentage of data split and the models’ accuracy
obtained from the literature review.

Table 3: Dataset Split (Train, Validation, and Test) & Accuracy
Article Train Validation Test Accuracy
[43] 80% 20% 10% 90%
[39] 80% 20% 10% 90%
[40] 60% 15% 25% 80%
[22] 50% shared with train 50% 86% multiple channels and

81% Cz Channel
[46] 4 segment of data 1 segment of data 43%
[32] 14 trials 1 trial 82.73%
[11] 90% 10% 89.9%
[38] 7 trials 1 trial 83.4%
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[37] CV = 77.8%
[12] 75 25 83.3%
[27] 70 30 86%
[16] 85.65%

3.4.1 Gait Deconding from EEG with LSTM

Chisari et al. [39] adopted an extensive offline preprocessing stage as shown in Fig. 15 to guarantee that the
optimization of network hyper-parameters, as well as model performance, were not, or minimally, influenced by
artifacts time-locked with stepping frequency.

Regarding cortical correlates of gait, different frequency bands of the EEG spectrum (δ band (1-4 Hz), δ and θ

bands (1-8 Hz), from δ to µ and low β bands (1-16 Hz), only µ and low β bands (8- 16 Hz), high β band (24-40
Hz)) were extracted as neurophysiological features to decode walking activity.

All the bands including low frequencies (1-3, 1- 8, 1-16 Hz) are characterized by the presence of a MRCP
prior to each swing phase. In contrast, the ERDS ranges (8-16, 24-40 Hz) present a desynchronization—smaller
absolute signal amplitude—during the swing phase with respect to the stance phase [39].

During the offline evaluation, the effect of LSTM hyper-parameters selection we examined on the decoding
performance. Performance was evaluated in terms of accuracy and cross-entropy loss of the network trained on
60% of the whole dataset (training set) in the 1-16 Hz frequency band, since it is the widest band considered
in this study, and used to predict 15% of the whole dataset (validation set). To evaluate the performance with
different frequency bands, we considered a network with 2 LSTM layers, 250 LSTM units in the first layer and
100 LSTM units in the second layer, trained with constant learning rate of 10´3 (none learning rate schedule),
achieving on average 92.8˘3.1% of accuracy and 0.14˘0.12 of loss in validation [39].

Thus, the three classifiers were trained for each subject with the EEG signals filtered in the 1-8 Hz frequency
band, and their performances were tested on the 25% of the completely unseen data in the test set.

Chisari et al. [39] proposed in their study a deep learning-based classifier for decoding of gait events from scalp
EEG signals, which their method relies on the memory capabilities of a specific type of recurrent network, namely
LSTM, to learn time dependencies within the data. Indeed, the brain activity generated prior to the swing phase
of each leg overlaps in time with the stance phase of the contro-lateral leg (Wagner et al 2014). This fact may
prevent clear discrimination of the dynamics of each leg, as shown by the ineffective performance of memory-less
classifiers in the decoding of right and left gait events separately with respect to the decoding of the two legs
together.

3.4.2 Gait Intention Using Spatio-Spectral CNN

This study was conducted entirely online. The accuracy is the average of all test sets from k-fold cross-validation.
The subaverage is the average accuracy of each subject group and the total average is the average of all subjects.
The classification accuracy using spatio-spectral CNN model was 83.4% on gait/stand state recognition. In another
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hand, the accuracy for the gait and stand intention recognition reached 77.3% and 77.7%. The findings suggest
that selecting the data’s characteristics is critical while building a CNN architecture. Park and Park [38] used only
19 EEG channels from the participants, which was insufficient to reflect spatial features. A deep learning model
with improved spatial and temporal features of EEG data should increase performance.

3.4.3 Real-Time EGG-based BCI

The paper results analyzed below were performed using online preprocessing and offline decoding combination.
Nakagome et al. [43] aimed to improve the decoding accuracy and robustness for the lower limb decoding using
EEG from algorithm perspectives. Accurate lower limb decoding is important for controlling exoskeletons and
neuroprosthetics for better usability and systems.

Unscented Kalman Filter UKF showed its superior performance in early convergence with a smaller number of
samples and when evaluated from the r-value perspective. On the other hand, UKF showed its vulnerability when
evaluated from the R2 score and also when a channel is perturbed.

UKF decoders tend to perform better with fewer samples, but with larger tap sizes, other algorithms may
outperform UKF decoders. This might be one of the baselines used to determine the number of samples to be
utilized in real-time decoding.

It was not previously known how sampling frequency affects performance. This study looked at this issue using
a sample-by-sample decoding approach and discovered that performance may be improved. Although data can
be recorded at the highest sampling frequency, the delta band passed features can technically reduce the sample
size to 20Hz if there is a sufficient frequency range for reconstruction.

With this approach, [43] could technically also increase the future prediction time from 1 ms (when 100 Hz) to 5
ms (in 20 Hz) with the same decoding scheme. We also showed that the performance could actually improve.

In particular, Luu et al. [32] found sustained α/µ suppression in the Posterior Parietal Cortex (PPC), and
Inferior Parietal Lobe (IPL) regions and significant decreases (ERD) in the β band, indicating increased cortical
involvement in the walking task. Besides, the results also revealed a substantial increase in cortical activity in the
low frequency (∆ bands) in the Anterior Cingulate Cortex (ACC) region, demonstrating the potential benefits of
using closed BCI, which employs cortical networks involved in error monitoring and motor learning. In addition, β

suppression was observed in the ACC, PPC, and IPL, as well as low γ in the and superior temporal gyrus STG.
These findings suggest that the closed-loop BCI system encourages spontaneous control of human gait.

The system may also help to better understand cortical dynamics during walking with a closed-loop BCI system.

3.4.4 Decoding Sensorimotor Rhythms

Classification performances differentiating walking from baseline for both healthy participants and stroke patients
were above 93% and 89%, respectively [11]. The classifier weights revealed that the key brain signals contributing
to this performance were ERD in the mu rhythm, which was more bilaterally distributed, and ERD in the beta
and low gamma bands, which were more centro-medially situated, as previously described. In comparison to
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the baseline, brain signals in the beta band centro-medially situated (Cz electrode) were substantially different
between passive walking and active walking (with an exoskeleton). The mu-band effect appeared to be more
lateralized over the hand parts, whereas beta/gamma appeared to be more medially concentrated over the foot
areas. This might be a result of implicit hand activity or volume conduction effects causing central mu-cancellation.
It is commented in article [11] that some studies have measured cerebral activity during actual gait, showing that
walking increases cerebral activity bilaterally in the medial primary sensorimotor cortices, the supplementary
motor area, and the prefrontal cortex.

A canonical correlation analysis (CCA) has shorter computational time and can be used experimentally, and
because of that CCA can be easily implemented during online BCI.

Although the main goal of work is not to develop a BCI for gait rehabilitation, it is relevant to understand a
collect all information about the procedure needed first to assess the possibility of decoding walking intention from
brain signals during lower limb rehabilitation by a robot, because maybe it will contribute in cases and experiments
where the subjects are non-healthy.

When stroke patients are immersed in a robot-gait training system, [11] offline classification findings reveal that it
is possible to discriminate between resting and walking with high accuracy. García-Cossio et al.[11] demonstrated
in the previous study, that the online implementation of this approach (i.e., using a logistic regression classifier to
distinguish walking intention from resting) can be used to control a treadmill in a binary mode (on/off) using EEG
signals from healthy volunteers, with high accuracy rates. These findings demonstrated the viability of establishing
a BCI for gait rehabilitation.

3.4.5 Decoding Movement-Related Cortical Potentials

Jeong et al. [22] performed single-channel and multiple-channel decoding. As the data reveal, the performance of
the multi and single-channel techniques differed very little (less than 5%). This suggests that for a BCI, it may
be possible to detect movements with only a single EEG channel; hence, assistive technology for giving afferent
input can be activated. Furthermore, it was proven that the Cz channel outperformed other neighboring channels
in terms of discriminant performance. Their experimental findings are connected to the lower-limb movement,
which is one of the explanations for the Cz channel activation in this investigation (i.e., walking). Besides, each
electrode’s increased cortical density during a body movement is reflected across the motor cortex according to
the body region. The lower limb is intimately associated with the motor cortex’s core position near the Cz channel.
The single-channel BCI technique with optimum sites results in the utilization of a minimal number of EEG feature
vectors for a final choice, possibly reducing computing time for model training and real-time situations.

Jochumsen and Niazi [23] identified the movements that could be classified with respect to the idle activity
with accuracies in the range of 80%–90%. For the movement type discrimination, 54% of the movements were
correctly classified with the stand-to-sit and sit-to-stand movements being the most discriminable movement types.
The results indicate that it is feasible to identify and categorize movement intentions linked with functional motions,
which might be utilized to construct a BCI that introduces task diversity in neurorehabilitation.
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The detection of movement intents was measured by classification between movement intentions and idle
activities. The epochs were recovered with prior knowledge of when the movements happened; consequently, in a
real-time BCI decoder, this information will be unavailable, and fewer movements may be successfully recognized.
The detection algorithm may be tweaked to be less cautious, but this increases the risk of false positives. One
possible solution is to build a cue-based BCI system in which the detector is only active during specific time frames
[23].

3.4.6 Neural Decoding of Gait in Developing Children

At least 6 of 13 articles in this analysis, showed that meaningful changes in EEG during walking occur at low
frequencies (< 10 Hz) [43, 47, 45, 37, 51, 46]. EEG in the delta band (0.1 – 3 Hz) was used for neural decoding
walking; thus, the EEG features correspond to time-domain amplitude modulated (AM) potentials in the delta band
[43, 47, 45]. EEG signals in this band have been demonstrated to carry relevant information on human gait. Slow
cortical potentials in the delta band EEG have also been used with a linear decoder to interpret human gait during
treadmill walking, and the results were equivalent to invasive BCI techniques. Furthermore, these studies have
revealed that a real-time closed-loop BCI for human treadmill walking from an EEG signal in the delta band has
high decoding accuracy.

Because EEG signals carry not only efferent motor control during human walking but also multisensory afferent
feedback, they need to be observed carefully. It is a difficult task to extract relevant neural features from scalp
EEG data for the interpretation of human gait. To deal with this, [45] employed a causal model that predicts
current kinematics based on EEG signals before the current motor command. Moreover, feedback signals include
delays related to the present motor command, being afferent feedback modified in future EEG signals that are not
included as inputs in the designed causal model.

Finally, brain signals are very dynamic, and it is crucial in the development of a robust neural decoder. Typically,
neural decoders are taught offline by fitting neural signals to real motions. This technique, on the other hand,
ignores participants’ brain dynamics while moving from open-loop to closed-loop BCI, which often results in lower
online performance.

3.5 D I S C U S S I O N

The literature review was thoroughly evaluated for studies including BCIs for directing lower-limb robotic systems.
The experiments frequently entailed categorizing discrete state directives such as walking, stopping, turning,
standing, and sitting. It was observed that just a few EEG denoising techniques were used, or that they were not
thoroughly tested. For neural classification, many neural features and decoders were employed. Overall, the
systems’ performance is promising, but it is distant from practical applications due to the small sample pools
used, potential safety hazards, and other difficulties. Moreover, in all papers, there were no records regarding
experiments with loss of balance in the elderly, which is the main subject of this study. Summarizing the results
obtained from the literature review allows inferring that:
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(1) Deep learning-based model for gait decoding enables to the exploitation of non-invasive brain activity
recordings to detect walking events (i.e. swing and stance phases) in healthy people. Overall, Tortora et al. [39]
outcomes suggested the use of a memory-based deep learning classifier as a possibly more effective input to
brain-controlled rehabilitation or restoration devices when used in real-time and with the ability to control each leg
individually.

(2) Park et al. [38] developed a spatio-spectral CNN model with a gait state identification accuracy of 83.4%
We also achieved 77.3% and 77.7% accuracy in gait and stand intention identification, respectively. Based on the
results, this study was able to decipher the gait intention of individuals with subacute or chronic strokes as well as
healthy volunteers.

(3) 4 papers [47, 43, 46, 45] showed that motion artifacts are negligible in delta band frequencies at the gait
speeds used in this study (i.e., 1.6km/h).

(4) Walking intention decoded from cortical patterns formed in the sensorimotor strip during robot-assisted gait
training in both healthy volunteers and stroke patients with minor lower limb disability could be revealed in [11].
The modulation of low gamma activity in the central midline regions was shown to be linked with the stages of the
gait cycle in healthy volunteers but not in stroke patients.

(5) Lower extremity functional motions generate MRCPs that are evident in the EEG. The MRCP with the
greatest amplitude was induced by the stand-to-sit exercise, while the MRCP with the least amplitude was evoked
by walking. It was demonstrated that motions could be recognized in idle activity and that individual movement
tasks could be categorized [51]. Although a direct comparison with the prior studies is difficult due to varied
experimental procedures and methodology, MRCP detection obtained a high grand-average decoding performance
of 86% for all patients in a single session[22].
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D E C O D I N G L O W E R L I M B L O S S O F B A L A N C E F R O M B R A I N S I G N A L S :
D E S I G N C O N C E P T I O N

Currently, as demonstrated by the literature review described in Chapter 3, very few studies direct their efforts
towards loss of balance caused by slip-like perturbation or any others. Additionally, although some studies have
already shown reasonable results to identify loss of balance, the data collected is generally from participants that
stayed stand on a balance platform, and then the platform introduced balance perturbations. Thus, there is a
need to obtain EEG data of slip-like perturbations during walking on the treadmill and analyze the brain signals
response to these events.

This chapter discusses the conceptual design of this dissertation. The analysis of the state-of-the-art presented
in the previous chapters, in addition to gathering a set of essential theoretical knowledge for the practical chapters
presented next, also allowed for the identification of some gaps in the scientific literature regarding the analysis
of brain signals in response to slip-like perturbations and their importance in developing AI-based algorithms to
reduce the risk of falling. As a result, the answer offered in this dissertation is split into two parts: i) experimental
data analysis of experimental data for studying how brain signals react to slip-like perturbations.; and ii) using
AI-based models, identify perturbation and non-perturbation events considering the collected data and resulting
findings.

4.1 I N T R O D U C T O R Y I N S I G H T

WHO reports emphasize the high global incidence of falls while also warning that this incidence may rise in the
coming years due to the world’s aging population. In addition to economic, social, and physical concerns, falls in
the elderly produce a long-term sensation of anxiety that prevents them from doing everyday duties, resulting in
decreased autonomy and physical ability, and therefore increasing the risk of future falls. As a result, different
technical solutions to this challenge are required.

Therefore, this dissertation aims to contribute to the study of the brain signals in response to slip-like per-
turbations through the analysis of EEG experimental data, previously collected in – University of Minho. The
experimental data analysis performed in this dissertation will allow for a general and complete understanding
of this brain signal response, as well as the identification of signal behavior for loss of balance, which may be
considered in the development of technological solutions that act on this problem.
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Obtaining quantifiable data from the examination of slip-like perturbations that can be utilized as inputs in the
process of training AI-based algorithms would increase the promising outcomes related to BCI development for
fall prevention purposes. Additionally, the work developed has not only the objective to select the best fit AI-Based
algorithm for falls prevention but rather to gather information of interest for the design of fall prevention devices
allowing to produce of scientific outputs not only for the development of this dissertation but also for other works
under development in the same field. Independently of this, it is also an objective to present a comparison among
Deep Learning algorithms in comparison to computer performance.

4.2 R E S E A R C H H Y P O T H E S I S

The investigation activities that were developed within the scope of this dissertation are based on the following
technological hypotheses.

• The analysis of the subject’s EEG data pre-processed signals can allow the identification of the event of
balance loss events in relevant EEG channels during slip-like perturbation [48, 10, 10]. (Goal 4; Chapter 5)

• This project also considers the ability of AI-Based models in recognizing the loss of balance events during
slip-like perturbations and the existing hypothesis that brain signals decoding has the potential to prevent
slip-related falls [35]. (Goal 5; Chapter 3)

• The feasibility of using a single EEG channel (Cz) to decode the brain signal referring to slip-like perturba-
tions, so that the accuracy of the model is greater than 85% [10]. (Goal 5; Chapter 3)

4.3 P R O J E C T C O N C E P T U A L D E S I G N

In order to address the previous issues in the field of elderly fall prevention, this dissertation aims to provide
quantitative information for the development of anti-fall BCI decoding. To this end, the approach presented in this
dissertation is divided into two main points: i) Brain signal analysis of slip-induced falls previously collected at
Birdlab – University of Minho and ii) Classifying slip-like perturbation events based on quantitative data obtained
from the previous point. The strategy that is presented in this chapter follows the type of architecture that is usually
followed by the literature, and it is summarized in Figure 16.

The first block of the proposed tool (Data Acquisition and Processing) represents the proposed data acquisition
through an experimental protocol and processing techniques to clean and normalize the data that were used
to train the AI models. The second block presents the deep learning models that were built to classify the data
extracted from the brain signals. Thus, based on the results obtained from the classification models, disturbance
perturbation was identified and the results are intended to contribute to the development of BCI Devices.

Due to the fact that the signal originates from perturbation events, several artifacts from muscle and postural
movements can alter the data. As a result, numerous methodologies were used during experimental trials to
complement this analysis and make changes based on the signal origin.



4.3. Project Conceptual Design 49

Figure 16: Schematic of the Project Phases.

Four (4) artificial neural networks were trained and tested, and their results were discussed. Thus, the
classification for perturbation and non-perturbation focuses on the human response to slip-like events during
walking on a treadmill at 1.6km/h and 2.5km/h.

4.3.1 Slip-like perturbations experimental data analysis

For the development of phase 1, it was essential the collection of slip-like perturbations’ experimental data was
carried out prior to the beginning of this dissertation. From the data collection protocol, it is possible to analyze
several EEG data. Additionally, the initial framework using EEGLAB was created to run the pre-process tools over
EEG raw data. Firstly, the study of decoding EEG signals for ADLs contributes to understanding which techniques
and tools must be applied to preprocess data, however, the majority of literature removes the artifacts from the
signals, which implies the removal of some time windows regarding these artifacts.

In turn, the analysis of independent variables such as gait speed, for example, can increase artifacts during
walking as soon as the speed increases and their influence on the recovery process. Through this analysis will be
possible to understand the brain signal response to risky scenarios with variable conditions, making it challenging
to find solutions for fall prevention. Outline the EEGLAB framework, and tools to segment the data must be applied
to obtain the PEP waveform from EEG signals. The obtained quantitative data as outputs of this analysis are
also objective to be considered during the analysis in order to facilitate classification for loss of balance events
addressed in 4.3.2. EEG data analysis for slip-like perturbations will be presented in Chapter 5.
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4.3.2 Decoding perturbations events

Since the development of BCI is one of the currently growing approaches to fall prevention [30], the second
major goal of this dissertation is to classify slip-like perturbations events during walking on the treadmill so that
can contribute to the development of a device for fall prevention. A framework script in Python developed by
BiRDLab was customized to work with EEG data collected from experimental trials. As previously mentioned, the
classification for loss of balance events was based on the quantitative outputs from the previous addressed data
analysis.

Before feeding the framework with the data, it is necessary to label the segmented data and to establish
strategies to split the data, to compare different experimental setups, such as: i) same subject with different
speed, ii) same speed with different subjects, and iii) all subjects and all speeds. The preceding described
methods are ways to lessen overfitting on a dataset because of its size and the dearth of data on perturbations.
Additionally, regarding this section, decoding brain signals using AI-based models to prevent falls due to slip-
induced perturbations will be presented in Chapter 6, which purpose is to perform comparative analysis and
identify the best hyperparameters and the best fit artificial neural network architecture considering the possibility
of decoding brain signals from EEG data, besides the model has good computer performance because perhaps it
will contribute for a real-time solution.

4.4 O U T C O M E S

The aging of the world’s population leads to an increase in the prevalence of neurological illnesses such as de-
mentia, Parkinson’s disease, and cerebrovascular accidents. In addition to other implications, the aforementioned
disorders cause people to be less mobile, increasing the likelihood of falls. Aside from the economic ramifications
for the world’s healthcare systems, these incidents result in post-fall injuries. For all these reasons and considering
the need to develop alternative strategies for fall prevention, this dissertation intends, based on a brain signal
analysis, to gather a set of quantitative information, considering EEG data, for training the AI-Based models to
identify the slip-like perturbation with the purpose of get the natural human response to these events classifying
as perturbation and non-perturbation.

Two major phases were selected and presented in this Chapter: (i) slip-induced experimental data analysis
which design is based on good practices to collect EEG data and preprocessing which is applied to remove the
artifacts and select relevant features, as mentioned on previous Chapter, allowing to detect loss of balance during
walking on a treadmill will be addressed in Chapter 5; and ii) decoding perturbations events for fall prevention
robotic devices which AI framework, developed by BiRDLab team, was adapted from this project, and selection of
the deep learning architecture was based on the literature review presented in Chapter 1 and 2, where DL-based
models and their computer performance will be evaluated and discussed in Chapter 6.
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4.5 D I S C U S S I O N

This dissertation aims to gather a set of information useful to the development of wearable robotic devices to fall
prevention, based on a comprehensive study of the brain signal response to slip perturbations. In this chapter, an
architecture was idealized based on a literature review of collected and processed data for ADLs and its gaps
related to running experimental protocols for loss of balance.

The literature reviews presented in Chapter 3, in addition to allowing the understanding and variables of interest
to be analyzed during the study of experimental data from slip-like perturbations, also allowed for the identification
of some gaps in the literature, which will be filled as much as possible during the analysis of experimental data
collected at BiRDLab.

The experimental data analysis’ outcome will be a fundamental step in identifying the loss of balance signature in
EEG the signals. Additionally, the EEG data analysis performed will provide a more comprehensive understanding
of the brain signals response to slip-like perturbations considering different subjects and speeds of gait, thus filling
the gaps found in the review of the existing literature [35, 10, 31], which results for loss of balance were obtained
from experiments where the subjects stood on a platform and postural reactions were applied in two horizontal
translations (forward and backward) and two vertical translation (toes up and toes down). This outcome will be
achieved in Chapter 5.

Finally, the classification for perturbation and non-perturbation using different Artificial Neural Networks
Architectures for fall prevention was also a gap determined after the analysis of the existing literature [10, 31],
which the present dissertation intends to overcome, besides to compare the AI-based models in the face to
computer performance to evaluate their effectiveness, which outcomes will be discussed in Chapter 6.

In this Chapter research hypotheses that were considered to support the investigation described were also
addressed as well as the outcomes expected to achieve in this dissertation.
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I N D U C E D L O S S B A L A N C E D ATA A N A LY S I S

The purpose of this chapter is to present a comprehensive analysis of brain response to slip-like perturbations
considering EEG data in different walking speeds and considering variable slip perturbations. This chapter will
also address the experimental protocol used for data collection as well as how the data were processed. The
primary output of this chapter is quantitative data that may be used to help determine the target requirements
for balance loss decoding by analyzing cerebral cortex signals of the response to slips. The methods to set up
and run an experimental protocol, data pre-processing, and recognition of brain reactions caused by balance
disturbances as well as the data segmentation and data labeling will be addressed in Section 5.2. The main
results related to Perturbation Evoked Potential will be analyzed in Section 5.3. In the end, Section 5.4 presents a
discussion regarding results from the pipeline deployed in the EEGLAB framework (Matlab).

5.1 I N T R O D U C T O R Y I N S I G H T

As previously mentioned, the development of balance loss decoding requires, as an initial step the analysis of the
natural brain signals response of humans to slip events, in order to gather information capable of determining the
characteristics of actuation capable of mimicking this response. Therefore, an experimental protocol was designed
and conducted by BiRDLab team, to collect brain signals from the cerebral cortex and study these signals in order
to identify and obtain the variables of interest in slip-like perturbation responses analysis.

In this analysis, a pipeline was deployed in EEGLAB, whose goal is the data cleansing and normalization
by applying pre-processing techniques to extract relevant features and evaluating their importance for the
effectiveness of a successful brain signal response after a slip perturbation based on literature review (Chapter 3)
and later be used in the decoding and classification to predict slip-like perturbations, which one will be presented
on next Chapter.

5.2 M E T H O D S

The research covered in this chapter sought to understand the brain signals’ reactions to slip-like perturbations
by collecting EEG data and processing it through data cleaving and normalization processes. The methods
applied to obtain a comprehensive analysis will be addressed in this Section sorted by the following topics: i) the
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experimental setup to data acquisition through EEG system inside a controlled environment (Subsection 5.2.1); ii)
pre-processing the raw data applying filter and techniques to improve signal-to-noise ratio (Subsection 5.2.2).

5.2.1 Experimental Procedures

In order to study the brain signals in response to slip-like perturbations, experiments were conducted at BiRDLab,
University of Minho. Initially, in order to proceed with the experiment, the subjects had to present: i) healthy
locomotion; ii) total postural balance; iii) over 18 years old; and iv) body mass less than 135 kg. Individuals who:
i) had any disease (mainly neurological) or deficit that affected locomotion were excluded; and ii) have recently
undergone surgical procedures that affect mobility. Based on the prerequisites three healthy male participants
(age: 26 ˘ 5; height: 1.80m ˘ 3.85cm; weight: 71 ˘ 3.3 kg) were selected for the experimental protocol. All
the subjects that participated in these protocols presented the right dominance. All participants provided written
informed consent and voluntarily accepted to participate in the experimental trials. Each participant performed the
qualitative assessment of the preferred foot by completing the Waterloo Footedness Questionnaire.

To provide data to better understand the brain signals response due to balance loss events and record
the instant of the slip perturbations, two sensor systems were used in this protocol. Wireless EEG Headset
(g.NAUTILUS PRO), 16 channels (active wet electrodes) to record brain activity in a controlled environment; and
IMUs from Xsens MVN Awinda which is composed of 17 IMUs, however, only one was used to record acceleration
caused when the rope is pulled to mimic a slip-like perturbation event when the subject is walking on the treadmill.
The data from the brain activities were collected through EEG system at 500Hz, and 1 IMU at 100Hz was used to
record the acceleration caused by the action of pulling the rope.

Subjects used a safety harness device during the experiments to avoid falls in the event of an irreversible Loss
of Balance (LOB). This method consisted of a vest that was rope-attached to a structure in the ceiling. The length
of the rope was modified to ensure that there was at least 15 cm between the knees and the treadmill belt. This
step was carried out by instructing individuals to elevate their feet, resulting in the application of complete body
weight to the harness system.

To achieve synchronized data gathering from sensors, Sync Lab Desktop for Windows OS, created by BiRDLab,
was utilized to synchronously start and stop data collection from previously listed sensors. The Desktop program
sends electrical trigger signals. The former is delivered via Syncbox, a previously designed hardware interface that
links to the Xsens and EEG devices via direct USB connection. The following diagram describes the experimental
setup that was used to obtain data.
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1) EEG headset. 2) EGG base station to capture the signals from the headset and send them to SyncLab. (3) Xsens
IMU to register the acceleration regarding pulling rope. (4) Xsens base station, which establishes communication
between the Xsens IMU and Synclab. (5) Sync Box to synchronize the base stations. (6) PC with SyncLab to
collect and process the sync data;

Figure 17: Experimental setup for balance loss data collection.

Subjects were instructed to manage unexpected slip-like disturbances while walking on the treadmill, and
they were not informed about the protocol in order to avoid any prior bias in their brain activity response. A
concealed rope was hooked up to the subject’s ankle at heel striking time, and a second person manually marked
the perturbations to be utilized later to adjust the registers with Xsens IMU data. Because the rope was constantly
linked to one of the subjects’ feet during all of the trials, the participants did not know whether a disturbance would
occur or not. The experimental protocol was applied to volunteers in two (2) different treadmill velocities (1.6 km/h
and 2.5 km/h). The volunteers had to wear the EEG cap while walking on the treadmill, and the protocol was
performed for each speed per subject.

• 1 treadmill inclination (flat – 0º)

• time per trial: 20 - 30 minutes

• 2 situations (perturbation and non-perturbation)

According to a literate review of Chapter 3, the volunteers had to walk on the treadmill for 20 to 30 minutes
for each speed. For each experimental session (1.6 km/h and 2.5 km/h) where perturbations were delivered,
the operator applied a minimum of 30 perturbations at random moments during walking. Both phases (Non-
perturbation and perturbation) occurred intercalated within a duration period of the 30s to 60s.
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5.2.2 Data Pre-processing

The events (slip-like perturbations) were automatically recorded by Xsens whose magnitude of the acceleration
vector was used to indicate the occurrence of provoked perturbation for both speeds. In order to detect any spikes
that represent wrong situations such as dropping the rope, or a rope hitting the treadmill, as a solution, it was
suggested to use the synclab to record the occurrence of events manually. To synchronize these events, a script
was created in Matlab to allow this adjustment and the validation of the records before starting the pre-processing
of the data. The result of 1 trial is shown in Fig.18.

After the data acquisition, the pre-processing of EEG data was carried out using custom-made scripts (Appendix
D) in EEGLAB toolbox [3] running in MATLAB. The EEG dataset has 19 rows (row 1: time (2 ms for each register);
rows 2 - 17: EEG channels; row 18: null; row 19: events related to perturbation), and each column represents
the values from brain signals obtained by the electrodes, thus, the number of columns is directly related to the
duration of the trial.

Firstly, the irrelevant attributes were deleted (rows 1 and 18), and the registers in row 19 were imported as
events. Afterward, as described before, it is necessary to check the time recorded in the dataset with the time
recorded by Xsens and then adjust the time when the perturbation event occurred. It is important to note that
the EEG system frequency is 500Hz and Xsens is 100Hz, and this may affect the register of the event time in
milliseconds. Furthermore, the information about channel locations needs to be imported to be used when plotting
the graphics and analyzing the channels’ significance.

Figure 18: Comparison between the manual label and Xsens IMU acceleration vector magnitude to perform
label correction (1 Trial - 40 Perturbations)

As EEG signal is highly prone to noise and also is non-stationary, EEG recordings can be understood as a
mixture of independent cerebral and non-cerebral sources called artifacts (e.g., ocular, muscular, etc.). These
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artifacts are considered disturbances in brain electrical signals, thus a pre-processing procedure to remove them
from the recorded EEGs must be implemented to allow the extraction of valuable event-related information. The
pre-processing steps used to process EEG signal are summarized in Fig.19 and the images of the results of the
signals obtained after each step of the pre-processing are shown in Appendix A.

Figure 19: Pre-processing Framework Pipeline

Initially, based on papers related to ADLs, in order to cut off the low-frequency drift the data were high-pass
filtered at 0.3 Hz using a 4th-order Butterworth filter, and line noise was attenuated at 50 Hz by using a notch filter.
However, analyzing the data after these steps, it was not possible to obtain PEP patterns. Thus, a band-pass filter
between 4Hz and 30Hz was applied to the data removing low frequencies (applied in motor imagery or stable
movements) and frequencies above 30Hz avoiding the muscular artifacts that belong to the natural walking and
postural recovery after a balance loss [35].

The processed EEG signal was re-referenced using a common average as a part of the pre-processing process.
CAR is commonly used in EEG, where it is necessary to identify small signal sources in very noisy recordings [1].
The re-referenced EEG signal was then ready for ICA operation, in which independent components representing
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independent EEG source signals were extracted using Infomax [6]. According to papers [31, 49, 35, 48, 10]
components centered around CZ and distributed over frontal, central, and parietal areas (FCz, C3, C4, and CPz),
have a strong relation to the detection of balance loss. As shown in Appendix A Fig.26 the EEG headset does not
have frontocentral and centroparietal electrodes, and due to the fact of electrodes are fixed, it was decided to
test four (4) approaches: i) use all channels; ii) remove all channels except Fz, C3, Cz, C4, Pz, which ones are
closer of central area, iii) Fz and Cz, because during some trials was observed the Fz channel obtained similar
responses related to provoked perturbation as presented in literature [31, 49, 35, 48, 10], and iv Cz was used.

To study the event-related EEG dynamics of continuously recorded data, the data epochs time-locked to events
of interest were extracted (for example, data epochs time-locked to onsets of one class of experimental stimuli).
Thus, the EEG signals were segmented into epochs time-locked to perturbation onset (epoch range: -2s to +1s),
wherein 0 ms is included in the window, corresponding to the first sample at the perturbation onset. In addition,
due to the poor quality of the data obtained, one subject was discarded. Thus, two remaining male subjects were
kept to analyze data.

5.3 O U T C O M E S

During the occurrence of a slip-like perturbation, the grand average shows (Fig. 20) a strong negative shift (N1
component of PEPs) starting shortly after perturbation onset and peaking 138 ˘ 3 ms after perturbation onset
with an average amplitude of –3.77 ˘ 1.72 µV for treadmill speed = 1.6km/h, and peaked on average 150 ˘ 5
ms after perturbation onset with an amplitude of –5.16 ˘ 2.08 µV for speed = 2.5km/h. The negative peak is
followed by a strong positive rebound, the P2 component of PEPs, that peaked on average 226 ˘ 21 ms after
perturbation onset with an amplitude of 2.25 ˘ 1.61 µV for treadmill speed = 1.6km/h and peaking 216 ˘ 5 ms
after perturbation onset with an average amplitude of 3.76 ˘ 2.72 µV for speed = 2.5km/h.

Furthermore, the P1 component was also detectable in the grand average. P1 started shortly after perturbation
and peaking 74 ˘ 4ms after perturbation onset with an average amplitude of 2.35 ˘ 0.7µV for treadmill speed =
1.6km/h and peaked on average 88 ˘ 3 ms after perturbation onset with an amplitude of 2.25 ˘ 0.7 µV for speed
= 2.5km/h. On the other hand, the negative peak (N2) which succeeds the later positive component (P2) was not
as clearly detected as other components, however, it was still possible to analyze its grand average value and it
showed peaking at 308 ˘ 4 ms after perturbation onset with an average amplitude of –0.94 ˘ 0.6 µV for treadmill
speed = 1.6km/h, and peaked on average 318 ˘ 17 ms after perturbation onset with an amplitude of –1.3 ˘ 1.39
µV for speed = 2.5km/h. At perturbation onset (0 ms) on average, no visible derivation from the baseline is found.

The graphics of grand mean PEP latencies and PEP magnitudes for a representative remaining electrodes (Fz,
C3, C4 e Pz) are shown in Appendix A from Fig.32 to Fig. 39. One observation is Fz channel produces strong
PEP responses as compared to parietal and central-left and central-right cortices. Moreover, it was analyzed
during the development of this work that C3 and C4 responses are undetectable in subject 2 at both speeds.
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(a) Grand Average PEP for Speed = 1.6km/h

(b) Grand Average PEP for Speed = 2.5km/h

Figure 20: Grand average of perturbation trials at channel Cz. Black lines show the average for each speed. (a):
Average of 70 trials for treadmill speed = 1.6km/h; (b): Average of 69 trials for treadmill speed =
2.5km/h. Time = 0 represents the perturbation onset

As depicted in Fig. 21, the grand average on a topographical level for time-points: t = 60-80 ms (P1 peak);
t = 130-160 ms (N1 peak) and t = 300-320 ms (P2 peak) and t = 210-230 ms (N2 peak). The peak of the N1
component was centered around Cz and distributed for speeds 1.6km/h and 2.5km/h. Also, the peak of all PEP
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components is centered around Cz, although, for P2 and N2 peak is highlighted the presence of Pz channel as
well for speed = 2.5km/h. Otherwise, the peak magnitude in N1, P2, and N2 components over the C4 channel has
opposite directions (signal) in comparison to the Cz channel.

(a) P1 Component (Speed 1.6km/h and 2.5km/h) (b) N1 Component (Speed 1.6km/h and 2.5km/h)

(c) P2 Component (Speed 1.6km/h and 2.5km/h) (d) N2 Component (Speed 1.6km/h and 2.5km/h)

Figure 21: Topographical plots show the scalp distribution of the grand average in PEP responses

5.4 D I S C U S S I O N

We were able to elicit PEPs using the paradigm and experimental setup described in the method section of this
work. Our findings were in agreement with [48, 35, 10, 6]. We observed an average amplitude of ´3.77 µV (speed
= 1.6km/h) and -5.16 µV (speed = 2.5km/h) for the N1 component of PEPs elicited during the two tested protocols.
On average, the N1 component peaked with a latency of 138 ˘ 3 ms and 150 ˘ 5 ms relative to perturbation
onset. The N1 event was spread around frontal, and central areas with a maximal peak at Cz. These findings
related to latency are in accordance with results published in previous studies, however, related to amplitude they
are in discordance. According to Ditz et al. [10] study, they found higher amplitudes (´28.3 ˘ 14.5 µV), and
Ozdemir et al. [31] found amplitudes of ´16 ˘ 3 µV (Young) and ´11 ˘ 2 µV (Elderly).

The late components of PEPs (P2 and N2), can be mainly found from 200 ms and 300 ms after perturbation
onset [48]. As shown in Fig. 20, we were able, through grand average, to identify those components, however,
for subject 1 (green line) the component N2 cannot be distinguishable. On average, the P2 peaked at 226 ˘ 21
ms (speed = 1.6km/h) after perturbation onset with an amplitude of 2.25 ˘ 1.61 µV and peaked at 216 ˘ 5 ms
(speed = 2.5km/h) after perturbation onset with an amplitude of 3.76 ˘ 2.72 µV This finding agrees with the result
regarding waveform and latency of previously conducted studies involving postural seated perturbations [10] and
balance platform which introduces perturbation [35, 6]. In contrast, Ditz et al. study found higher amplitudes in P2
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(16.7 ˘ 5.3 µV). The observed differences between PEP amplitudes between our study and previous reports
could be explained by the difference in task design between our study and [10].

A decreasing amplitude of signal obtained from the grand average could be justified due to the postural reaction
to recover the posture after the evoked perturbation. In the previous studies, the P2 amplitude was higher in
passive trials, i.e. trials that do not evoke a compensatory balance reaction. This disagreement between their and
our results could occur due to different types of perturbation. In our experiment, participants were exposed to
whole-body perturbations when they are walking on a treadmill, while the PEPs in previous studies’ experiments
were elicited using base translation or seated on the cockpit. According to Ozdemir et al. [31], lower N1 amplitude
can be observed when attentional resources are limited by dual-tasking which led to greater postural instability.

The P1 component of PEPs was distinguishable from background EEG for all of the recorded participants. This
finding is inconsistent with P1 responses observed in previously conducted studies’ perturbation tasks. Due to
the experimental setup that was run in this study which general results were lower than in comparison with the
results in the literature, even the small amplitude in P1 could result in separating this early PEP component from
background EEG. Since the perturbation was manually induced, there were small differences in the perturbation
stimulus between the trials. These variations, together with the low amplitude, might have resulted in the absence
of a P1 response in PEPs of single participants due to the averaging of trials.

In a recent review, Varghese et al. [48] suggested that P1 is the earliest non-specific cortical response to a
perturbation. They contended that the P1 is unrelated to the context of the balancing perturbation task and lacks
information on the predictability of the perturbation or whether the perturbations are internally or externally caused.
Unlike P1, N1 potential has been shown to not just be influenced by afferent signals. Instead, it is also influenced
by the predictability and difficulty of the balance task [31], as well as the presence of competing for cognitive tasks
[48]. Typically, EEG data are trial-averaged to improve the signal-to-noise ratio from event-related potentials. After
confirming that PEP components were preserved, it was determined that perturbations could also be observed
during trials while wearing EEG. This is a crucially important step toward the decode brain signal in response to
the detection of perturbation.

In summary, by analyzing the grand mean of all channels per speed, it is possible to distinguish the presence
of N1 magnitude in comparison to other PEP components, mainly in comparison to the walking stage (non-
perturbation). Moreover, the Cz results differ from the rest of the electrodes, being constant in all trials (1.6km/h
and 2.5 km/h). These observations led to speculation that there might exist a balance control network that has
a status for the walking stage (the baseline period) and activation during reactive balance control events (PEP
N1). Underlying EEG correlates show differences between the perturbation condition and the rest condition which
correspond to the time window used for feature extraction of the best-performing classifiers [10].



6

D E C O D I N G L O W E R L I M B S L I P - L I K E P E R T U R B AT I O N

This chapter aims to offer baseline specifications for the future development of a brain-computer interface to
prevent slip-related falls, considering brain signals related to perturbation events. The target specifications defined
in this chapter for the deep learning architectures were obtained from the slip-induced experimental data and the
methods used to pre-process and classify the data from the EEGLAB addressed in Chapter 5. For this reason,
the target specifications primarily intend to decode brain signals in response to slip-like perturbations.

Thus, the methods to segment and label data as well as the architecture and parameters regarding deep
learning models will be addressed in Section 6.2. Furthermore, the main results obtained from the training of the
different Artificial Neural Networks architectures will be analyzed in Section 6.3. Finally, Section 6.4 presents a
discussion regarding the results obtained, highlighting the positives aspect as well as recognizing the limitations.

6.1 I N T R O D U C T O R Y I N S I G H T

The current chapter shows the AI-based models used to detect the presence of perturbation in EEG trials which
will be part of the development of fall prevention wearable robotic devices. This requires the decoding of brain
signals in response of humans to slip events, in order to determine if there were a loss of balance during walking.
Based on previously collected fall data and the specification for fall slip-like perturbations allowed feeding the
AI-based model to classify the presence of the disturbance in the brain signal, consequently, the system can take
control of the patient if it is needed to prevent falling.

Studies examining perturbations with an EEG paradigm, as well as the temporal relationship between signal
modalities, are rare. More importantly, based on the literature review, no previous studies [45, 39, 23, 32, 47]have
evaluated the influence of balance perturbations on EEG during walking, and mainly, few of them [35, 10, 6]
developed AI-based model to identify when a balance loss occurs.

6.2 M E T H O D S

As a result, and taking into consideration the drawbacks observed in the literature, the methods used to validate
and recognize the LOB provoked by perturbation (study material of this work) presented in Chapter 3 will be
discussed in this Section by the following methods: i) labeling the data in two classes (perturbation and non-
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perturbation) considering the data segmentation mentioned in the literature review in Chapter 3, and convert
the data into sub-datasets (Subsection 6.2.1); ii) application of Deep Learning-based models on the datasets
and parameters used for training the models (Subsection 6.2.2); iii) strategies applied to split data into training,
validation, and test dataset (Subsection 6.2.3); and iv) the metrics used to quantify the developed models quality
(Subsection 6.2.4).

6.2.1 Data Labeling

The step that followed the data segmentation was the labeling, i.e., the process in which each acquired sample is
assigned a “label” that identifies it as part of perturbation or non-perturbation events. This process was carried out
manually, where, according to Ravindran et al. [35], the Class 1 (non-perturbation) was composed of individual
trial windows during the baseline period (1200 – 500 ms) prior to the onset of perturbation and Class 2 consisted
of EEG segments between 0 ms until +500 ms post perturbation onset.

Figure 22: Sample of raw data from EEG trial demonstrating how the classes are defined.

Python code was written to label the signals present in each file, allowing easy clicks to label all samples.
Labeling processes based on sliding time regarding class 1 and class 2 allowed to the extraction of data sets with
relevant data which ones will be used to train the DL-based models. These extracted datasets were combined
and filtered by subjects and speeds. Combining the data sets by the subjects and grouping them according to the
speed and the filters used, allowed us to have a total of 10 datasets that were later used as a data source in the
classification step through deep learning models. The table below summarizes the available datasets:
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Table 4: New datasets extracted from data segmentation
Dataset Subjects Treadmill Speed Channels/ICA Nº Perturbation
DATASET_16_CAR_CH s1 and s2 1.6km/h Channels 70
DATASET_25_CAR_CH s1 and s2 2.5km/h Channels 69
DATASET_s1_CAR_CH s1 1.6km/h and

2.5km/h
Channels 60

DATASET_s2_CAR_CH s2 1.6km/h and
2.5km/h

Channels 79

DATASET_all_CAR_CH s1 and s2 1.6km/h and
2.5km/h

Channels 139

DATASET_16_ICA_CH s1 and s2 1.6km/h ICA 70
DATASET_25_ICA_CH s1 and s2 2.5km/h ICA 69
DATASET_s1_ICA_CH s1 1.6km/h and

2.5km/h
ICA 60

DATASET_s2_ICA_CH s2 1.6km/h and
2.5km/h

ICA 79

DATASET_all_ICA_CH s1 and s2 1.6km/h and
2.5km/h

ICA 139

6.2.2 Classification Models and Architectures Parameters

The fast development and advancement of deep learning techniques have made it possible to achieve promising
results for the analysis of gait for the control or the potential control of active lower limb exoskeletons and orthoses
[34, 43]. Using the literature analysis carried out in Chapter 3, three distinct neural network architectures were
chosen and adapted to the problem of this dissertation. Thus, architectures of Convolutional Neural Networks
(CNNs) [35], Gated Recurrent Unit (GRU) [43] and Long Short-Term Memory Neural Networks (LSTMs) [39, 14, 15]
were built. In addition, even not mentioned at the state-of-the-art, a CNN-LSTM architecture that involves layers of
CNN for feature extraction on input data combined with LSTMs to support sequence prediction was employed and
tested during the development of this thesis [5]. These architectures are described in the next paragraph and
shown in Fig. 23.

Regarding the extraction of features from the data obtained from the previous Section. The extraction was
accomplished using the sliding window approach, the most often used method for data segmentation and feature
extraction, in which a signal is divided into numerous equal-sized windows (subgroups) from which distinct
characteristics may be estimated. The size of the sliding window represents the resolution of activity recognition.
By using a large window size, a stream of activity data may be processed as one to analyze long-term activity
patterns, but if several activities are packed in one window, it fails to identify balance loss events. When dealing
with perturbations that occur in a relatively short period of time, a smaller window size may be more appropriate.
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The input shown represents a single feature window. a) The CNN detects correlations among the many features
presented. b) The LSTM network recognizes important temporal aspects. c) The GRU is able to effectively
retain long-term dependencies in sequential data d) The hybrid CNN-LSTM retrieves temporal patterns from the
CNN convolutional layer utilizing convolutional features. Following the fully connected layer (the layer where
all the inputs from one layer are connected to every activation unit of the next layer), the last layer employs
the softmax activation function (rather than ReLU) to get probabilities of the input belonging to a certain class
(classification).

Figure 23: Deep Learning architectures.

According to the literature reviewed in Chapter 3, the most commonly used sliding windows have a size equating
to roughly 200 milliseconds, with a 50% overlap between subsequent windows. Overlap can be utilized to increase
the relevance of processed findings when processing data versus time. Depending on how it is used, overlap may
aid in two ways: it can provide extra detail on how a quantity is changing over time or it can provide a smoothing
effect, making the data prediction clear. In addition, increasing overlap can provide a smoothing effect and help
make trends in data easier to observe, however, it results in more calculations per unit of time. This effect can be
used to gain additional granularity on how a quantity in the data is changing with respect to time by increasing the
number of calculations in a given measurement length. Within the scope of this research, a 200ms window was
chosen to execute the comparison analysis, equating to a window containing 100 samples, with a 50% and 80%
overlap between two successive windows of 50 samples, corresponding to a window "advance" of 200 ms. Despite
research demonstrating that overlap can have a large influence on classification performance and computational
cost for real-time applications, the proportion of overlap between subsequent windows was preserved at 50% in
this dissertation for all experiments undertaken.

As mentioned on Subsection 6.2.1 the labeling of dataset signals was done at the sample level, windows
constructed by the sliding window approach required to be tagged as well. The window labeling was done
automatically using the Mode Labeling Method (MLM), where the label of a particular window is the mode of all
labels in that window.
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During all of the operations, test specifications such as the loss function used, the number of Epochs, the
optimizer employed, the number of hidden layers, and the Learning Rate were kept constant for all the architectures.

According to Ishaani and Chase [19] the hyperparameters are values that can control the process of learning
and based on their studies the description on the main hyperparameters are listed below:

a The batch size indicates how many samples will be considered for tuning before the internal model
parameters (weights and biases) are updated.

b The number of epochs indicates how many times the learning algorithm will run on the training dataset.
The number of epochs dictates the amount of time it takes for the whole set of input training data to be
transmitted through the neural network while training takes place. Multiple epochs during training will
guarantee that the neural network weights change. When too few or too many epochs are employed,
underfitting or overfitting can occur.

c For tuning, the optimization algorithm is considered. While the algorithm trains, the network’s weights,
and biases may vary, influencing the overall model performance. The output of the loss function is large if
network predictions based on the model are bad. An optimizer is in charge of closing the gap between
updating model parameters and calculating the loss function.

d During the training phase, the dropout strategy selects neurons to disregard. When these neurons’
contributions are removed, their weights are no longer used. Dropout is based on the premise that as a
neural network trains, the weights of the neurons are altered in relation to the neurons. This can also result
in nearby neurons being specialized, which can lead to an overfitted model.

e The number of neurons in a hidden layer may be described as the number of units reflecting the number
of neurons in a layer. A unit is in charge of receiving input from all of the nodes in the layer below. The
number of neurons in a layer determines the total capacity of the network.

f Cross-entropy loss, also known as log loss, assesses the effectiveness of a classification model whose
output is a probability value between 0 and 1. As the predicted probability diverges from the actual label,
the cross-entropy loss increases.

Although ANN can work with raw data as input, some studies refer to the option of using previously extracted
features as inputs [35, 10, 39]. Thus, in order to conduct a comparison research on how both neural networks
react with the same sort of data, the four feature subsets were employed as inputs in the training and testing of the
constructed architectures. During all of the operations, according to Ravindran et al. [35], test specifications such
as the loss function used, the number of Epochs, the optimizer employed, the number of hidden layers, dropout,
and the Learning Rate were kept constant for all the architectures, in contrast, different sizes of Batch was used to
train the models[35, 39]. The Table below provides a summary of all these characteristics and respective values.
The use of neural networks in this study was accomplished by implementing the underlying architecture without
resorting to internal layer optimizations.
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Table 5: Specifications for the use of the Deep Learning models
Hyperparameters Value
Epoch Number 100
Batch Size 16, 32, 64 and 128
Hidden Layers 128
Dropout 0.5
Optimizer Adam
Learning Rate 0.0005
Loss Function Cross Entropy Loss

6.2.3 Model Building and Evaluation

The first step taken for the model’s building and evaluation in the comparative analysis was to select the proper
dataset and split it into a train set (training the model), a validation set (evaluate the model during the training
process), and test set (evaluate the final model accuracy before deployment). For this division, due to the amount
of data and samples obtained during the development of this project, each dataset used in this study has only two
distinct subjects, subject 1 with 30 disturbances recorded at a speed of 1.6km/h and 2.5 km/h, and subject 2 with
40 disturbances recorded at a speed of 1.6km/h and 39 disturbances at a speed of 2.5km/h. Furthermore, as no
cross-validation techniques were applied, the created feature windows were divided by the following approaches:

• Approach 1: Speed of 1.6km/h (Total samples = 70):

– 40 samples of subject 2 and 2 samples of subject 1 were used as training data (total of 60%)

– 14 samples of subject 1 were used as validation data (total of 20%)

– 14 samples of subject 1 were used as test data (total of 20%)

• Approach 2: Speed of 2.5m/h (Total samples = 69):

– 40 samples of subject 2 and 1 sample of subject 1 were used as training data (total of 60%)

– 14 samples of subject 1 were used as validation data (total of 20%)

– 14 samples of subject 1 were used as test data (total of 20%)

• Approach 3: Subject 1 (Total samples = 60):

– 42 samples were randomly selected as training data (total of 70%)

– 9 samples were randomly selected from remaining data as validation data (total of 15%)

– The last 9 samples were used as test data (total of 15%)

• Approach 4: Subject 4 (Total samples = 79):

– 55 samples were randomly selected as training data (total of 70%)

– 12 samples were randomly selected from the remaining data as validation data (total of 15%)
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– The last 12 samples were used as test data (total of 15%)

• Approach 5: Subject 4 (Total samples = 139):

– 97 samples were randomly selected as training data (total of 70%)

– 21 samples were randomly selected from remaining data as validation data (total of 15%)

– The last 21 samples were used as test data (total of 15%)

These splitting methodologies are not ideal, however, it is expected that, in approaches 1 and 2, all windows
of the certain subjects are placed entirely either in the training data group or in the test data group, causing no
activity to be only trained or only tested. In addition, with the separation of data by subject, although there is a
probability of overfitting for the training data, we can still independently test the generalization of the model (or
increase confidence in the obtained generalization value). In approaches 3 and 4, as the number of samples
for speeds 1.6km/h and 2.5km/h are practically the same, and in the combined dataset all subsets of data are
aggregated, the dataset was divided randomly. These same methodologies were also applied to the dataset that
has independent components.

In order to understand deep-learning models the classification of slip-like perturbations was carried out using
(4) four Neural Networks architectures mentioned in Section 6.2.2 and presented in Fig. 23. Furthermore, to
analyze which would be the most suitable models for the classification of slip-like perturbations, we performed
several training and validation using different combinations between 5 datasets (Table 4) and DL-based models.
In addition, for each dataset was used 4 subsets of features as input to train and evaluate these deep learning
models (a subset of features is summarized in the Table below). The performance of neural networks with the
best set of features was analyzed and from the performance, results obtained an initial analysis was made for the
best classification model for balance loss recognition.

Table 6: Subset of Features per Dataset and Deep Learning-Based Model
Channels Subsets

Participants Treadmill Speed Channels DL Model

S1

All GRU
1.6km/h Fz, C3, Cz, C4, Pz CNN-LSTM
2.5km/h Fz, Cz CNN

Cz LSTM

S2

All GRU
1.6km/h Fz, C3, Cz, C4, Pz CNN-LSTM
2.5km/h Fz, Cz CNN

Cz LSTM

1.6km/h

All GRU
S1 Fz, C3, Cz, C4, Pz CNN-LSTM
S2 Fz, Cz CNN

Cz LSTM

2.5km/h

All GRU
S1 Fz, C3, Cz, C4, Pz CNN-LSTM
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S2 Fz, Cz CNN
Cz LSTM

All All

All GRU
Fz, C3, Cz, C4, Pz CNN-LSTM
Fz, Cz CNN
Cz LSTM

Independent Components Subsets
Participants Treadmill Speed ICs DL Model

S1 All

GRU
1.6km/h CNN-LSTM
2.5km/h CNN

LSTM

S2 All

GRU
1.6km/h CNN-LSTM
2.5km/h CNN

LSTM

1.6km/h All

GRU
S1 CNN-LSTM
S2 CNN

LSTM

2.5km/h All

GRU
S1 CNN-LSTM
S2 CNN

LSTM

All All All

GRU
CNN-LSTM
CNN
LSTM

6.2.4 Model Evaluation Metrics

Evaluating a model is the most important task in building an effective AI-based model. Its metrics are used to
measure the quality of the model. As a binary classification task, the models used during the development of
this work can only produce two results (perturbation or non-perturbation). Because supervised deep learning
approach was applied, the models follow the following steps: i) fit a model on training data; ii) test the model on
testing data. Once the model’s predictions are obtained from the test data, a comparison between the test data
and the true values (the correct labels) is performed. To measure the effectiveness of the classification model, the
generated classification outcomes may be compared with the actual values of the provided observation. To extract
the metrics a Confusion Matrix is utilized to describe these results.

The confusion matrix is a table that summarizes the classification model’s performance in predicting instances
from different classes i.e., it is an organized way of mapping the predictions to the original classes to which the
data belong. The confusion matrix has two axes: one for the expected label and one for the actual label.
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Figure 24: Confusion Matrix Example for Binary Classes. Taken from [44]

• True Positives (TP): the actual value is Positive (P) and predicted is also Positive i.e., the model correctly
predicts the positive class.

• True negatives (TN): when the actual value is Negative (N) and prediction is also Negative i.e., the model
correctly predicts the negative class.

• False positives (FP): When the actual is negative but prediction is Positive. Also known as the Type 1
error i.e., the model gives the wrong prediction of the negative class (predicted-positive, actual-negative).

• False negatives (FN): When the actual is Positive but the prediction is Negative. Also known as the Type
2 error i.e., the model wrongly predicts the positive class (predicted-negative, actual-positive).

The confusion matrix delivers insight not only into the errors being made by the classifier but more importantly
the types of errors that are being made. In addition, the confusion matrix not only allows the calculation of the
accuracy of a classifier, be it the global or the class-wise accuracy, but also helps compute other important metrics
that evaluate ML and DL models. In general, we can get the following quantitative evaluation metrics from this
binary class confusion matrix:

6.2.4.1 Accuracy

Accuracy is calculated as the number of all correct predictions divided by the total number of the dataset. The
best accuracy is 1.0, whereas the worst is 0. Based on equation 1 accuracy is calculated as the total number of
two correct predictions (TP + TN) divided by the total number of a dataset (P + N).

Accuracy “
TP ` TN

TP ` TN ` FP ` FN
(1)

Accuracy is widely used to evaluate model performance; nevertheless, there are a few drawbacks considered
before relying on accuracy excessively. One of these disadvantages is that the model must categorize observations
based on an imbalanced dataset in which one class, either true or false, is more prevalent than the other.
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Error costs of positives and negatives are usually different. For instance, one wants to avoid false negatives
more than false positives or vice versa. Other basic measures, such as sensitivity and specificity, are more
informative than accuracy and error rate in such cases.

Figure 25: Illustration of Metrics extracted from Confusion Matrix. Adapted from [36]

6.2.4.2 Recall (Sensitivity)

The recall or Sensitivity metric calculates how many of the actual positive instances are able to correctly predict. It
is the ratio of true positives to the total number of actual positive values in the data.

Recall “
TP

TP ` FN
(2)

6.2.4.3 Specificity

Specificity is defined as the algorithm’s or model’s ability to predict a genuine negative of each accessible category.
It is also known simply as the true negative rate in the literature. Formally, the equation below may be used to
compute it.

Speci f icity “
TN

TN ` FP
(3)
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6.2.4.4 Precision

Precision metrics inform how correct, or precise, the model’s positive predictions are. In definition, precision is
defined as the actual correct prediction divided by the total number of positive predictions as presented in equation
4.

Precision “
TP

TP ` FP
(4)

Precision is an important metric when False Positives are more important than False Negatives

6.2.4.5 F1 Score

The F1 score is calculated as a weighted average of precision and recall. As presented in equation 4 and 2,
there is a false positive and false negative in accuracy and recall, therefore it takes both into account. F1 score is
frequently more helpful than accuracy, especially if the class distribution is unequal. Accuracy works best when
the cost of false positives and false negatives is comparable. If the cost of false positives and false negatives
varies significantly, it is preferable to include both Precision and Recall.

F1Score “
2 ˆ pRecall ˆ Precisionq

pRecall ` Precisionq
(5)

6.2.4.6 Matthews Correlation Coefficient

Scientific researchers can use a variety of statistical tools to analyze binary classifications and their confusion
matrices, depending on the purpose of the investigation. Accuracy and F1 score based using confusion matrices
were (and continue to be) among the most often used metrics in binary classification problems. However,
when applied to unbalanced datasets, these statistical techniques might possibly provide overoptimistic inflated
outcomes [8].

Instead, the Matthews correlation coefficient (MCC) is a more reliable statistical rate that produces a high score
only if the prediction performed well in all four confusion matrix categories (true positives, false negatives, true
negatives, and false positives), proportionally to the size of positive and negative elements in the dataset. MCC, in
fact, calculates the correlation between the real classes and the predicted labels. (worst value = ´1; best value =
+1) [9].

MCC “
pTP ˆ TNq ´ pFP ˆ FNq

a

pTP ` FPq ˆ pFP ` FNq ˆ pTN ` FPq ˆ pTN ` FNq
(6)

6.3 R E S U LT S

In the following subsections, the main results obtained in the evaluation process of the different Deep Learning
architectures explained in the previous Section will be exposed in Section 6.3.1. Furthermore, the choice of
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the best subset of parameters, considering the recognition of slip-like perturbations based on the evaluation
metrics, as well as the analysis regarding runtime to train and validate the model, will be depicted in Section
6.3.2. Furthermore, the comparison of the best model results between the channel subset and ICs subset will be
presented in Section 6.3.2.

6.3.1 Deep Learning Architecture

As mentioned in Sections 6.2.2 and 6.2.3, four architectures of Deep Neural Networks were applied to decode
and classify the slip perturbation events. In order to make a comparative analysis of the performance of the
Deep Learning models, the inputs for the training of these architectures are the combination of 3 attributes from
datasets presented in Table 6. These combinations resulted in 128 test outcomes for channel subsets and 34 test
outcomes for the ICs subset to be analyzed.

Table 7: Classification Metrics Results for Channels’ Dataset
Speed at 1.6 km/h

Model ACC F1 Score MCC Precision Recall Specification
CNN 88.10% 86.91% 74.08% 87.58% 87.12% 88.10%
CNN-LSTM 86.61% 84.99% 71.40% 90.33% 84.21% 86.61%
GRU 84.82% 81.96% 67.38% 86.95% 82.05% 84.82%
LSTM 84.82% 83.08% 66.97% 87.66% 82.19% 84.82%

Speed at 2.5 km/h
Model ACC F1 Score MCC Precision Recall Specification
CNN 92.86% 92.26% 85.48% 94.19% 91.37% 92.86%
CNN-LSTM 90.48% 88.06% 78.65% 92.43% 87.36% 90.48%
GRU 92.14% 91.42% 84.05% 93.74% 90.41% 92.14%
LSTM 91.07% 90.16% 80.83% 91.78% 89.39% 91.07%

Subject 1
Model ACC F1 Score MCC Precision Recall Specification
CNN 95.31% 94.39% 89.68% 96.44% 95.65% 95.31%
CNN-LSTM 96.35% 96.03% 92.18% 96.54% 95.66% 96.35%
GRU 90.63% 90.13% 81.05% 93.48% 89.67% 90.63%
LSTM 88.54% 87.49% 75.20% 59.43% 86.94% 88.54%

Subject 2
Model ACC F1 Score MCC Precision Recall Specification
CNN 93.18% 91.88% 80.74% 91.49% 92.78% 93.18%
CNN-LSTM 92.80% 91.44% 83.46% 91.62% 92.47% 92.80%
GRU 95.08% 92.82% 87.08% 93.19% 94.05% 95.08%
LSTM 93.94% 91.89% 83.28% 91.85% 92.19% 93.94%

Combined Dataset (Subjects and Speeds)
Model ACC F1 Score MCC Precision Recall Specification
CNN 88.10% 86.48% 73.87% 91.03% 86.86% 88.10%
CNN-LSTM 87.14% 85.29% 73.84% 90.08% 85.75% 87.14%
GRU 86.19% 84.24% 72.80% 90.33% 83.43% 86.19%
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LSTM 85.52% 83.45% 69.58% 88.30% 81.84% 85.52%

The final results for channel subsets, obtained for each of the tests performed as well as the graphics of the
remaining results regarding the evaluation metrics are shown in Appendix B, from Fig.40 to Fig.89. Through direct
observation of metrics results in Table 7, the best performance results in the subsets of features sort of by speed
(1.6km/h and 2.5km/h) and CAR filter were obtained for the CNN model in both subsets when used 5 channels
(Fz, C3, Cz, C4, Pz) as the input (Speed: 2.6km/h, Accuracy: 92.86%, Recall: 91.37%, Specificity: 92.86%,
Precision: 94,19%, F1-Score: 92.26%, MCC: 85.48%). In addition, other tests were performed to evaluate the
model performance sort of by subjects 1 and 2 as well, and the best performance results regarding DL-Model were
different between the subsets. For Subject 1 the CNN-LSTM model was the best and it used all 16 channels as
the input (Accuracy: 96.35%, Recall: 95.65%, Specificity: 96.35%, Precision: 96.54%, F1-Score: 96.03%, MCC:
92.18%). Otherwise, for Subject 2 the GRU model was the best and it also used all 16 channels as the input
(Accuracy: 95.08%, Recall: 91.93%, Specificity: 83.22%, Precision: 87.80%, F1-Score: 88.62%, MCC: NaN).
Complementary to the tests mentioned previously, an evaluation was performed with combined dataset which
includes all speeds and subjects to be used as training input and the best performance result was obtained for
CNN model when it used all channels as input (Accuracy: 88.10%, Recall: 86.86%, Specificity: 88.0%, Precision:
91.03%, F1-Score: 86.48%, MCC: NaN).

From the tests carried out with the artificial neural networks, besides training the model and running the tests
with a different number of channels, as shown in Appendix B in Figs. 44, 54, 64, 74 and 84, it can be seen that
the best results regarding performance evaluation metrics are obtained using the following hyperparameters: a)
Batch Size: 16 (Subject 1 and combined data), 32 (2.5km/h), 64 (Subject 1), 128 (1.6km/h); b) Overlap: 50
(2.5km/h and combined data), 80 (1.6km/h, Subject 1 and Subject 2).

Table 8: Classification Metrics Results for ICs’ Dataset
Speed at 1.6 km/h

Model ACC F1 Score MCC Precision Recall Specification
CNN 76.79% 75.49% 51.97% 76.45% 75.97% 76.79%
CNN-LSTM 79.29% 78.21% 57.37% 79.07% 78.35% 79.29%
GRU 80.00% 78.36% 57.80% 80.46% 77.75% 80.00%
LSTM 79.46% 76.15% 54.59% 78.38% 76.39% 79.46%

Speed at 2.5 km/h
Model ACC F1 Score MCC Precision Recall Specification
CNN 85.71% 84.38% 69.77% 85.57% 84.86% 85.71%
CNN-LSTM 83.63% 82.52% 66.95% 86.14% 83.29% 83.63%
GRU 78.27% 75.86% 53.72% 82.81% 75.15% 78.27%
LSTM 79.46% 76.15% 55.37% 80.70% 75.20% 79.46%

Subject 1
Model ACC F1 Score MCC Precision Recall Specification
CNN 88.54% 86.87% 75.28% 90.11% 85.34% 88.54%
CNN-LSTM 90.10% 87.60% 75.95% 89.88% 86.69% 90.10%
GRU 89.06% 85.01% 71.56% 88.76% 83.85% 89.06%
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LSTM 88.54% 87.18% 74.94% 88.75% 86.23% 88.54%

Subject 2
Model ACC F1 Score MCC Precision Recall Specification
CNN 91.25% 90.40% 83.49% 93.15% 91.67% 91.25%
CNN-LSTM 94.79% 94.46% 89.91% 94.70% 95.27% 94.79%
GRU 92.71% 91.99% 84.21% 92.86% 91.36% 92.71%
LSTM 92.71% 92.05% 84.27% 92.58% 91.70% 92.71%

Combined Dataset (Subjects and Speeds)
Model ACC F1 Score MCC Precision Recall Specification
CNN 88.10% 84.33% 70.01% 84.97% 85.07% 88.10%
CNN-LSTM 89.09% 88.56% 77.78% 88.22% 89.57% 89.09%
GRU 87.10% 84.93% 72.64% 8.90% 84.10% 87.10%
LSTM 88.49% 86.59% 74.84% 89.83% 85.93% 88.49%

Regarding ICs subsets, the final results obtained for each of the tests performed as well as the graphics of the
remaining results regarding the evaluation metrics are shown in Appendix C, from Fig.90 to Fig.119. Opposite to
channel subsets, which have 4 combinations for channels (16 channels, 5 channels, 2 channels, and 1 channel),
the ICs subsets were training with 16 independent components only. Through direct observation of the results
in Table 8, the best performance results in the subsets of features sort of by speed (1.6km/h and 2.5km/h)
and ICA filter were obtained for the GRU model at speed of 1.6km/h as the input (Accuracy: 80.00%, Recall:
77.75%, Specificity: 80.00%, Precision: 80.10%, F1-Score: 78.36%, MCC: 57.80%) and the CNN model at
speed of 2.5km/h as the input (Accuracy: 85.71%, Recall: 84.86%, Specificity: 85.71%, Precision: 84.97%,
F1-Score: 84.38%, MCC: 69.77%). In addition, other tests were performed to evaluate the model performance
sort of by subjects 1 and 2 as well, and the best performance results regarding DL-Model were different between
the subsets. For Subject 1 the CNN-LSTM model was the best (Accuracy: 90.10%, Recall: 81.09%, Specificity:
90.10%, Precision: 80.40%, F1-Score: 79.87%, MCC: NaN). For Subject 2 the CNN-LSTM model was the best
(Accuracy: 94.79%, Recall: 95.27%, Specificity: 94.79%, Precision: 94.70%, F1-Score: 94.46%, MCC: 89.91%).
Complementary to the tests mentioned previously, an evaluation was performed with combined dataset which
includes all speeds and subjects to be used as training input and the best performance result was obtained for
CNN-LSTM model was the best (Accuracy: 89.09%, Recall: 89.57%, Specificity: 89.09%, Precision: 88.22%,
F1-Score: 88.56%, MCC: 77.78%).

From the tests carried out with the artificial neural networks, as shown in Appendix C in Figs. 91, 97, 103,
109 and 115, it can be seen that the best results regarding performance evaluation metrics are obtained using
the following hyperparameters: a) Batch Size: 16 (Subject 1 and 2.5km/h), 32 (Subject 2), 128 (Subject 2 and
combined data); b) Overlap: 50 (1.6km/h and 2.5km/h), 80 (Subject 1, Subject 2, and combined data).

6.3.2 Models and Parameters Evaluation

Furthermore, to the value of metrics presented above, a comparative analysis of Deep Learning models related to
the frequency (number of times) of the model performed above accuracy of 85%, as well as the inputs used and
hyperparameters tested, it was possible to obtain the values to evaluate their relevance to decode brain signal to
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predict loss of balance provoked by slip-like perturbations. The final results can be observed in AppendixB through
the graphics Figs. 45, 55, 65, 75 and 85 and AppendixC through the graphics Figs. 92, 98, 104, 110 and 116
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Table 9: Number of results from Channels data (Accuracy ě Target)

Dataset
DL Models EEG Channels Hyperparameters

Model ACCě85% Channels ACCě85% Batch ACCě85% Overlap ACCě85%

1.6 km/h

CNN 1 16 2 16 1
50 1

CNN-LSTM 3 5 1 32 -
GRU - 2 - 64 -

80 3
LSTM - 1 1 128 3

Dataset
DL Models EEG Channels Hyperparameters

Model ACCě85% Channels ACCě85% Batch ACCě85% Overlap ACCě85%

2.5 km/h

CNN 21 16 14 16 18
50 36

CNN-LSTM 18 5 32 32 19
GRU 17 2 3 64 18

80 40
LSTM 20 1 27 128 21

Dataset
DL Models EEG Channels Hyperparameters

Model ACCě90% Channels ACCě90% Batch ACCě90% Overlap ACCě90%

S1

CNN 10 16 13 16 4
50 6

CNN-LSTM 8 5 8 32 7
GRU 3 2 - 64 6

80 15
LSTM - 1 - 128 4

Dataset
DL Models EEG Channels Hyperparameters

Model ACCě90% Channels ACCě90% Batch ACCě90% Overlap ACCě90%

S2

CNN 4 16 13 16 9
50 8

CNN-LSTM 5 5 8 32 6
GRU 12 2 2 64 6

80 17
LSTM 4 1 - 128 4

Dataset
DL Models EEG Channels Hyperparameters

Model ACCě85% Channels ACCě85% Batch ACCě85% Overlap ACCě85%

All

CNN 7 16 9 16 6
50 12

CNN-LSTM 7 5 10 32 5
GRU 3 2 - 64 3

80 7
LSTM 2 1 - 128 5

The results attained in this study for channel subsets, for frequency of accuracy above 85%, obtained for
each test performed, are depicted in Table 9. It should be noted that the combined subdataset obtained
approximately 15% of the test’s accuracy above 85%, from this 15% as CNN model (36.84%) well as CNN-LSTM
(36.84%) performed above 85%, and the best parameter used as input was 5 channels (52.63%). In addition,
regarding hyperparameters, 16 of Batch Size (31.58%) and Overlap of 50 (63.16%) performed above 85%. The
results obtained related to speed of 1.6km/h, only 3% of results had accuracy above 85%. The CNN-LSTM
model represented 75% of these results, and 16 channels were the best parameter used as input (50%). Both
hyperparameters, 128 of Batch Size and Overlap of 80 obtained 75% of the results with accuracy above 85%.
Regarding speed at 2.5km/h greater than 59% or results performed above 85%. It can be noted that all models,
batch sizes, and overlaps have results almost equally distributed. Otherwise, regarding channels, it can be noted
that the best input was 5 channels (42.1%) of results with accuracy above 85%. In contrast to subsets results, it
can be observed in Appendix B through the graphics Figs. 75 and 85 that subsets filtered by Subject 1 or Subject
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2 obtained results above 90%. As they are shown in Table 9 the results obtained related to subject 1 obtained
approximately 16% of the test’s accuracy above 90%, from this 15% the CNN model (47.62%) performed above
90%, and the best parameter used as input was 16 channels (61.9%). In addition, regarding hyperparameters, 32
of Batch Size (33.33%) and Overlap of 80 (71.43%) performed above 90%. For subject 2 the result was 19.53%
which test accuracy was above 90%. The GRU model represented 48% of these results, and 16 channels were
the best parameter used as input (52%). In addition, regarding hyperparameters, 128 of Batch Size (36%) and
Overlap of 80 (68%) performed above 85%.

A direct comparison through Table 11 between the best results obtained (regardless of the architecture and
execution time) in the tests performed with the dataset with ERP of the EEG channels and the ERP of the ICs,
where the approach with 16 channels was considered for analysis, since the training and testing the models with
dataset ICs was done with 16 ICs only, showing that the subsets of the dataset of channels obtained the best
performance with consistent results above 88% and accuracy superior to the results obtained by the dataset
of ICs. Another comparative analysis was also carried out, directly, where the architecture of the models that
obtained greater accuracy in a dataset was analyzed, with their respective architecture in another dataset and
vice versa. Through direct observation of the Table 11, it was possible to verify that only for the approach with a
subset of data related to Subject 2 and Combined, the same architectural topology in the IC dataset was superior.

Table 10: Number of results from ICs data (Accuracy ě Target)

Dataset
DL Models Hyperparameters

Model ACCě85% Batch ACCě85% Overlap ACCě85%

1.6 km/h

CNN - 16 -
50 1

CNN-LSTM - 32 -
GRU 1 64 -

80 -
LSTM - 128 1

Dataset
DL Models Hyperparameters

Model ACCě80% Batch ACCě80% Overlap ACCě80%

2.5 km/h

CNN 6 16 3
50 7

CNN-LSTM 7 32 3
GRU - 64 3

80 6
LSTM - 128 4

Dataset
DL Models Hyperparameters

Model ACCě90% Batch ACCě90% Overlap ACCě90%

S1

CNN - 16 1
50 -

CNN-LSTM 1 32 -
GRU - 64 -

80 1
LSTM - 128 -

Dataset
DL Models Hyperparameters

Model ACCě90% Batch ACCě90% Overlap ACCě90%

S2

CNN 3 16 4
50 3

CNN-LSTM 5 32 2
GRU 1 64 1

80 8
LSTM 2 128 4

Dataset
DL Models Hyperparameters
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Model ACCě85% Batch ACCě85% Overlap ACCě85%

All

CNN 1 16 4
50 3

CNN-LSTM 4 32 5
GRU 3 64 2

80 10
LSTM 5 128 2

In order to compare, the results for ICs subsets are depicted in Table 10. These datasets, as mentioned in the
previous Section, were trained with 16 ICs. Through direct observation, it should be noted that the combined
subdataset obtained approximately 40.63% of the test’s accuracy above 85%. The best model was LSTM model
(38.46%), and the best hyperparameters used to train the models 32 of Batch Size (38.46%) and Overlap of 80
(79.62%) performed above 85%. In contrast to channel subsets, the tests accuracy-related at speed 1.6km/h
and 2.5km/h were less than 85%. Regarding speed at 1.6km/h, only one model and hyperparameters obtained
results above 80%, they were GRU model, and 128 Batch Size and Overlap of 50. Related to speed at 2.5 km/h
greater than 40% or results performed above 80%. The CNN-LSTM model represented 53.85% of these results,
and the following hyperparameters, 128 of Batch Size (30.77%) and Overlap of 50 (53.85%) performed above
80%. Similar to channel subsets, the test’s accuracy related to Subject 1 and Subject 2 obtained results above
90%. Nevertheless, for Subject 1, only one model and hyperparameters obtained results above 90%, they were
the CNN-LSTM model, and 16 Batch Size and Overlap of 50, while the Subject 2 presented the results above
34% of the tests accuracy above 90%, which one obtained CNN-LSTM model (45.45%) as the greatest results.
Moreover, regarding hyperparameters, both 16 and 128 of Batch Size presented the same results (36.36%) and
Overlap of 80 (72.73%) performed above 90%.

A direct comparison through Table 11 between the best results obtained (regardless of the architecture and
execution time) in the tests performed with the dataset with ERP of the EEG channels and the ERP of the ICs,
where the approach with 16 channels was considered for analysis since the training and testing of the models
with dataset ICs was done with 16 ICs only, showing that the subsets of the dataset of channels obtained the
best performance with consistent results above 88% and accuracy superior to the results obtained by the dataset
of ICs. Another comparative analysis was also carried out, directly, where the architecture of the models that
obtained greater accuracy in a dataset was analyzed, with their respective architecture in another dataset and vice
versa. Through direct observation of Table 11, it was possible to verify that only for the approach with a subset of
data related to Subject 2 and Combined, the same architectural topology in the IC dataset was superior.

Table 11: Comparative table between the data set of Channels and ICs that obtained better results in their
respective network architectures of the model

Channels Subsets
Filtered By: Model Batch Size Overlap Runtime (sec) Accuracy

1.6km/h
CNN 128 80 143 88.10%
GRU 128 50 102 69.29%

2.5km/h
CNN 128 50 103 90.71%
CNN 16 50 172 88.57%

S1
CNN-LSTM 64 80 194 96.35%
CNN-LSTM 16 80 388 95.31%



6.4. Discussion 79

S2
GRU 16 80 366 95.78%
CNN-LSTM 32 80 352 92.80%

Combined
CNN 16 50 277 88.10%
CNN-LSTM 128 80 273 85.71%

Independent Components Subsets
Filtered By: Model Batch Size Overlap Runtime (sec) Accuracy

1.6km/h
GRU 128 50 104 80.00%
CNN 128 80 154 73.51%

2.5km/h
CNN 16 50 176 85.71%
CNN 128 50 90 80.71%

S1
CNN-LSTM 16 80 390 90.10%
CNN-LSTM 64 80 191 89.58%

S2
CNN-LSTM 32 80 280 94.74%
GRU 16 80 295 89.58%

Combined
CNN-LSTM 128 80 280 89.09%
CNN 16 50 289 80.00%

6.4 D I S C U S S I O N

In this master’s dissertation, python’s framework to decode the brain signal and recognize the loss of balance
provoked by slip-like perturbations from several AI-based classification models and feature selection models was
built in order to find the combination that presents better classification results for this type of perturbation event.
The performance of the different combinations was evaluated from the results presented in Section 6.3, using
the following parameters: i) Performance evaluation metrics, ii)Subset of parameters used, and iii) Training and
classification times of the models.

Deep Learning-based classification was established with a combination of different classifiers and parameter
selection and proved to be an accurate strategy, as based on the results presented in the previous chapter (Table
9 and Table 10), at the level of accuracy, all models that were trained performed above of 75%, and some of these
obtained results greater than 95%. This process allowed the most relevant parameters and hyperparameters
to be found for the binary classification (perturbation event and non-perturbation), either by data extracted from
which the ERP of the channels were processed or from the ERP of independent components (Appendix B and
Appendix C respectively), which should aid in a time-effective and low computation strategy for real-time near fall
recognition.

The success achieved regarding the performance of the classification models based on accuracy, through
the approaches described in Section 6.2.3, shows the robustness of the applied process. An important point
that must be observed is in relation to the other metrics, the F1-Score presented similar results, with its average
value 2% lower than the accuracy. However, the MCC presented lower results compared to the other metrics.
This discrepancy in the results can be justified by the size of the dataset and the absence of techniques such
as cross-validation, the model cannot generalize the data and is adjusted very close to the training dataset,
generating overfitting in the data. Another factor is in relation to the balance of the data, as the segmented data
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were labeled as non-disturbance in a time window of 700 ms and disturbance in a time window of 500 ms, this
time window difference can contribute to dataset imbalance, and consequently in the training of the model, as the
model will be trained with a larger time window whose data are related to the non-perturbation period. Thus, it will
better classify the data when there is no slip-like perturbation during the walk.

Regarding the analysis made of the artificial neural network architectures, it is noted, through observation of
the graphs in Appendix B and C and in the tables of Section 6.3.2, that the maximum results of all models were
similar to each other in all approaches in the data set grouped by EEG channels, except for the approach related
to subset Subject 1, where it was observed that CNN-LSTM obtained a maximum accuracy of 96.35% while LSTM
obtained the worst result (88.54%). Nonetheless, even so, it is a good result compared to the results presented in
the literature. Similar to the dataset grouped by EEG channels, the dataset grouped by ICs also presented models
whose results were close to each other, except for the approach of the data subset Speed 2.5km/h, where it was
observed that CNN obtained a maximum accuracy of 85.71% while LSTM had the worst result (78.27%).

Even though the results presented are similar to each other, we can also verify that in all approaches (10)
both in the set grouped by EGG Channels and by data set grouped by ICs, the CNN model was the most ranked
in 1st place with maximum accuracy. It is generally the most used model to solve problems involving image
inputs and in this process, the implemented CNN architecture received as input 1D matrices of features extracted
from sequential data. This method obtained good results in terms of performance metrics, since the convolution
processes applied to extract characteristics from the arrays used, apparently, were carried out in the most efficient
way, as stated in the literature [35]. Despite the performance results in all architectures being satisfactory, due
to the low volume of data used in this work, the architectures of artificial neural networks must continue to be
tested with more samples of data, different parameters and inputs, such as EEG data and EMG together, because
several studies claim to obtain positive results in the recognition of activities with the use of this type of neural
networks [39, 12, 16].

Furthermore, to the maximum values of the model classification metrics that were presented in the previous
paragraph, it is possible to obtain relevant insights by analyzing the frequency of the results of models whose
accuracy was greater than 85%, or even approaches whose value was greater than 90%. Thus, it was possible
to observe through the tables of Section 6.3.1 that the CNN-LSTM model obtained mostly superior results than
the other model, in terms of times that the model reached accuracy above the mentioned values. Based on its
architecture, described in Section 6.2.2, models in CNN-LSTM are expected to have such results, however, a
large computational effort is required to achieve these results.

Through direct observation of the graphs in Appendix B in Figs. 46 56 66 76 86 for EEG Channels datasets and
Appendix C in Figs. 93 99 105 111 117 for ICs datasets it is noticed in general that execution times are generally
higher in the CNN-LSTM architecture, followed by LSTM, GRU and finally CNN in both datasets (Channels and
ICs). These results are coherent because due to the architecture of the CNN-LSTM model, it can support very
long input sequences that can be read as blocks or subsequences by the CNN model and later gathered by
the LSTM model. Applying this hybrid model, the samples are divided into additional subsequences, where the
CNN model will interpret each subsequence and the LSTM will gather their interpretations. Thus, this process
should require a higher computational training effort than the other models, and this can be interpreted through
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the aforementioned graphs. It is also observed that the other LSTM and GRU models, in most tests, have very
close execution times, which is justified by the similarity in the respective architectures. And finally, from a general
analysis, it is possible to analyze that the CNN model has a shorter execution time, with an average difference of
the 30s, which can corroborate the choice of model.

The comparative analysis between the best architectures from channels subsets and ICs subsets, from results
shown in Table 10 and described in Section 6.3, the differences among results may indicate that the data does not
need to be preprocessed using ICA algorithms, or that applying ICA to the signal data, in addition to reducing
artifacts, can reduce overfitting in the training process, however, to reach a conclusion about the results, more
samples need to be collected and tests performed.

In summary, related to the topics discussed above and through the graphics in Appendix B C combine with the
metrics results presented in Section 6.3, the deep neural network models could, in general, predict the presence of
slip-like perturbation signals through 5 channels with 32 of batch size and overlap of 50. Furthermore, to support
this decision, was also important to analyze the runtime for each model and its parameters, and the models using
5 channels as input spent a maximum of 180 seconds to train the models.

Thus, this initial study of the behavior of neural networks for decoding data from brain signals, showed that,
despite the positive results, due to the low volume of data and tools that were not applied in the training and
validation stage of the models, such as cross-validation in search of finding the best combination for dataset
division and grid search to optimize the choice of hyperparameters, may have contributed to optimistic results,
therefore, more parameters and approaches need to be tested, mainly referring to the loss of balance caused by
slip-like perturbation or other types of near fall perturbations. This need is due to the fact that most literature has
carried out studies of the brain response related to ADLs, while the literature [35] was the only one that addressed
the issue of loss of balance, however, the study itself analyzed the perturbation applied through a platform and not
walking on a treadmill.

This fact raises the need to carry out several studies and some changes in the future, in order to obtain
satisfactory performance results. The architectures used must be tested and validated in other scenarios,
such as walking on a treadmill at normalized speed in accordance with the principle of dynamic similarity (v =
a

Fr ˚ g ˚ L, where Fr the Froude number (0.15); g is the gravity acceleration (9.81m{s2); L is the leg length
from the prominence of the greater trochanter external surface to the lateral malleolus), applying other types of
perturbations and carry out tests for decoding daily activities in order to obtain results to be comparable with the
studies currently carried out in the literature. Furthermore, studies should be carried out to better understand the
influence that different inputs and parameters have on the performance of these artificial neural networks. Finally,
and as mentioned in most of the works analyzed in the literature, new tests must be performed in conjunction with
other sensors, for example, EMG, and simulate real-time decoding.
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C O N C L U S I O N

This dissertation presents the process of developing brain signal decoding in response to slip-like perturbation.
The current state-of-art concern that falls among the elderly is a severe danger that can result in death or non-fatal
effects, as well as a significant sociological and economic impact on families and society. Furthermore, even if a
fall does not result in an injury, people can develop a fear of falling, which is a big issue that affects both their
mental and physical health.

Slipping appears to be the most common cause of falls. Slip-related falls typically have even worse effects than
being held responsible for a major share of hip fractures in the elderly, highlighting the need to address this issue
as soon as possible. As a result, effective solutions to the aforementioned problem are vital, and any effort to
reduce or avoid a fall can save many lives. As a result, the development of wearable robotic systems for preventing
slip-like falls arises as a solution to this problem. The fundamental function of these devices is to identify a loss of
balance scenario and generate an actuation capable of restoring a proper biomechanical posture to allow the
patient to resume a steady walking stride after a slip-like disturbance.

To intervene in this problem, the study of brain signals in response to slip-like perturbations appears to be a
common preliminary step of the previous approach. Thus, the first step of the work was developing theoretical
knowledge in the fields of EEG signals, BCI applications, and ANN, including the research for the most current
studies related to decoding brain signals to ADLs. Furthermore, the extent of the literature included guidance and
manuals related to frameworks, which assisted the understanding of the concepts, and guidelines from these
tools.

During the process of developing the requirements applied to the case study (slip-like perturbation), the absence
of detailed and specific guidance for creating those requirements was confirmed as a considerable difficulty for the
process, mainly during the data analysis phase, which led to another state-of-the-art related to the brain signal
response to the loss of balance. A new study was conducted in order to perceive balance perturbations in brain
signals which are always accompanied by a specific cortical activation (PEP). However, it is aggravated due to the
reduced amount of papers related to ANN architecture to decode those signals.

Considering the previously referred limitations found in the scientific literature, the present dissertation seeks to,
firstly, present a comprehensive analysis of the brain signal response to slip-like perturbations previously collected
at BirdLab. Through the brain signal analysis performed in Chapter 3 it was possible to elicit PEPs, and the
findings were in agreement with related papers. When the perturbation is delivered, it results in peaks in the N1
component. In addition, it was observed the maximum peak in central areas, mainly at Cz.

82
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Regarding the deep learning results attained in this dissertation for slip-like perturbation recognition, a compara-
tive analysis was performed by using different deep learning models and architecture parameters, which allows the
most relevant combination to classify non-perturbation and perturbation events. The best classification algorithm
for the deep learning model was the CNN classifier. The performance obtained for this algorithm was: Accuracy >
88.09%; F1-Score > 86.48%; MCC > 74.07%; Precision > 87.58%; Recall > 86.52%; and Specificity > 88.09%;
Furthermore, the training runtime was same for all models, except to CNN-LSTM which runtime spent was higher
than other models. In general, all deep learning outcomes for the same classification problem were good (accuracy
> 84%), and their potential was demonstrated, indicating that they could be a good option, however, it is important
to collect more data.

The results from this study will be useful to design future studies for testing on those populations. Overall, the
findings suggest that the EEG signals contain short-latency neural information related to an incoming fall, which
may be useful for developing brain-machine interface systems for fall prevention.

In short, the investigation work developed in the scope of this dissertation enabled for answering the RQs
outlined in Chapter 1.

• RQ 1: What are the most relevant signals and features that can help recognize the loss of balance provoked
by slip-like perturbations?

This RQ is addressed in Chapter 5. This study identified the presence of PEPs components in brain signals
in response to slip-like perturbation and how changes in PEPs are related to changes in the actual dynamic
postural response. For example, whether there is any difference in the onset, latency, or amplitude of
ERPs that are correlated to particular elements of a balanced response. Compared to ERPs in other
modalities such as visual, auditory, and memory-related ERPs, PEPs are the least explored ERPs even
though they possess many diagnostic and research applications to assist in understanding the cortical
control of balance [48]. It was found that all the components of the PEP were preserved and that the
latency of the P1 and N1 waves preceded. This suggests the P1 and N1 components are viable signals
for fall prediction. Compared to P1, N1 is a significantly larger component distributed across the central,
frontal, and parietal channels at a latency of 100–150 ms, thus it can consider relevant features that can
help recognize the loss of balance. Furthermore, evidence of the potential involvement of the cortex during
reactive balance control in humans has come from event-related potentials (ERPs) that are time-locked to
periods of instability. An unexpected postural perturbation evokes a large negative potential (termed as
the perturbation-evoked potential N1 (PEP N1) that peaks 100–200 ms after the perturbation onset and is
widely distributed over frontal, central, and parietal

• RQ 2: What are the most relevant channels to decode the slip-like perturbations during walking?

Since the component is distributed over frontal, central, and parietal areas with the peak amplitude located
at Cz, the removal of channels that are far away from Cz does not change the classification accuracy
and suggests that no additional discriminating information can be found in these channels [10]. The most
relevant channels that can decode the slip-like perturbations during walking, based on analysis of brain
signals in response to loss of balance events in Chapter 5 and the results of performance metrics related to
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DL-based models in Chapter 6, were the Fz, C3, Cz, C4, and Pz (5 channels). This hypothesis is supported
by the high accuracies of well above 85% (peak) and the minimum runtime spent to train the models as
presented in Appendix B.

In addition, the minimal layout that uses only the Cz electrode obtained high accuracies of well above 80%
(peak) as listed below, however, as per results regarding runtime in Appendix B this layout spent much time
in comparison to 5 channels and 2 layouts is still a much-discussed topic and without a definitive answer

– Speed at 1.6 km/h: Model = CNN-LSTM, ACC = 85.00%, F1S = 82.10%, MCC = 71.40%, PREC =
90.03%, REC = 82.38% and SPEC = 85.00%;

– Speed at 2.5 km/h: Model = CNN, ACC = 91.07%, F1S = 90.40%, MCC = 81.06%, PREC = 90.34%,
REC = 90.73% and SPEC = 91.07%;

– Subject 1: Model = CNN, ACC = 88.02%, F1S = 86.37%, MCC = 73.96%, PREC = 86.88%, REC =
87.13% and SPEC = 88.02%;

– Subject 2: Model = CNN-LSTM, ACC = 86.36%, F1S = 84.77%, MCC = 72.85%, PREC = 89.59%,
REC = 83.55% and SPEC = 86.36%;

– Combined: Model = LSTM, ACC = 81.90%, F1S = 79.76%, MCC = 63.05%, PREC = 84.55%, REC
= 78.94% and SPEC = 81.90%.

• RQ 3: What is the best Deep Learning model to implement for the detection of slip-like perturbation during
walking?

From the work results presented in Chapter 6, the best Deep Learning algorithm for slip-like perturbation
events recognition was the CNN architecture described in Chapters 2 and 6. When testing the trained
model with unseen data it was achieved the following results related to five (5) data subsets, which were
study objects of this dissertation:

– Speed at 1.6 km/h: ACC = 88.10%, F1S = 86.91%, MCC = 74.08%, PREC = 87.58%, REC =
87.12% and SPEC = 88.10%;

– Speed at 2.5 km/h: ACC = 92.86%, F1S = 92.26%, MCC = 85.48%, PREC = 94.19%, REC =
91.37% and SPEC = 92.86%;

– Subject 1: ACC = 95.31%, F1S = 94.39%, MCC = 89.68%, PREC = 96.44%, REC = 95.65% and
SPEC = 95.31%;

– Subject 2: ACC = 93.18%, F1S = 91.88%, MCC = 80.74%, PREC = 91.49%, REC = 92.78% and
SPEC = 93.18%;

– Combined: ACC = 88.10%, F1S = 86.48%, MCC = 73.87%, PREC = 91.03%, REC = 86.86% and
SPEC = 88.10%.

In addition, through direct observation of the graphs in Appendix B in Figures 46, 56, 66, 76 and 86, the
mean, standard deviation and maximum of the runtime spent to train the ANN architectures, the CNN
model also presented the best performance spending less time to be trained, as described below:
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– Speed at 1.6 km/h: AVG = 163.75s, SD = 59.54s and MAX = 315s;

– Speed at 2.5 km/h: AVG = 162.56s, SD = 61.43s and MAX = 311s;

– Subject 1: AVG = 151.53s, SD = 58.96s and MAX = 292s;

– Subject 2: AVG = 176.88s, SD = 75.11s and MAX = 351s;

– Combined: AVG = 261.59s, SD = 134.40s and MAX = 578s.

7.1 F U T U R E W O R K

In summary, significant components in PEPs were recognized as early as 70-155 ms after the onset of a
mechanical external disturbance, and the perturbations were decoded using a CNN model from a single channel.
Furthermore, it has been proved that the model was driven mostly by important components in the PEP to infer
predictions, rather than by artifacts. However, it should be noted that these results were obtained using data from
able-bodied young adults, and only the data collected from two participants were used in the process of analyzing
brain signals in response to slip-like perturbations, as well as training and validating the artificial intelligence model.
Future research into the repeatability and reproducibility of the findings in more susceptible groups, such as those
over 65 and people with other gait disorders, such as chronic stroke, is needed. In addition, due to the fact PEP
frequency analysis has only been performed in healthy people, future studies should analysis at the frequency
properties of PEPs in older individuals and patient groups to see if abnormal frequency modulations in a specific
frequency band contribute to the abnormalities identified in the time domain [48].

Regarding the experimental protocol, as initially the recognition of ADLs was the object of study of this
dissertation, the new experimental protocol needs to be developed to carry out data collection experiments for
the different daily activities listed in the literature review. Complementarily, as a suggestion for future research, it
recommends that the steps of the EEGLAB framework used in the pre-processing phase be applied and tested
with the data acquired from this new experimental protocol, whose aim is to validate whether the methods used for
the recognition of the PEP also apply to the recognition of ADLs.

As mentioned in this dissertation, non-invasive hBCI technologies have been studied and applied for attempting
to improve classification accuracy. In addition, Electroencephalography (EEG) uses fast temporal resolution and is
most widely utilized in combination with other brain/non-brain signal acquisition modalities. Thus, the suggestion
for future work is to combine EEG and EMG signals in hBCI to detect muscular movement which acts as an
artifact in EEG signals, resulting in the false detection of brain signals, and analyze EMG activation patterns during
slip-like perturbations to verify the latency related to postural recovery after perturbation events.

Due to the fact cross-validation was not applied to the dataset and the size of it is smaller in comparison with
the data related to the papers in Chapters 2 and 3. As a result, it is envisaged that the results produced would be
suboptimal, thus, attempts to enhance the design should be incorporated in future works in order to discover how
deep learning approaches operate best in the context of identifying slip-like perturbations. Furthermore, the use of
cross-validated grid search to identify the optimal hyperparameters for ANN architecture, demands future studies
to investigate this method in order to obtain the optimal model to decode the brain signal.
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Although other online BCI systems do not suffer severely from the use of a window-based classification
technique, a BCI that is designed to detect loss of balance control operates under strong time constraints [10].
Future studies should address the delay imposed by the window-based categorization approach and determine if
the duration of that delay is problematic in real-world scenarios.

Overall, the findings suggest that the EEG signals contain short-latency neural information related to an
incoming fall, which may be useful for developing brain-machine interface systems for fall prevention. Despite
comparable results with the literature, continued development of the tested neural networks and the usage of
raw inertial data as input to the networks should be processed to be implemented. Ablation studies should be
conducted to determine the impact of the various stages of each architecture on fall event recognition.
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A
O U T C O M E S F R O M P R E - P R O C E S S I N G S T E P S

A.1 C O M P O N E N T S O F W I R E L E S S E E G S Y S T E M

Figure 26: EEG g.NAUTILUS PRO - Components



A.2. Plots from Data Pre-Processing Steps 95

A.2 P L O T S F R O M D ATA P R E - P R O C E S S I N G S T E P S

Figure 27: EEG Raw Data

Figure 28: Data high filtered at 0.2 Hz using 4th Butterworth



A.2. Plots from Data Pre-Processing Steps 96

Figure 29: Line Noise

Figure 30: Data filtered by bandpass between 4 Hz and 30 Hz



A.3. Plots from Grand Average of Perturbations over Fz, C3, C4 and Pz electrodes 97

Figure 31: Channel Locations (Fz, C3, Cz, C4, and Pz)

A.3 P L O T S F R O M G R A N D AV E R A G E O F P E R T U R B AT I O N S O V E R F Z , C 3 , C 4 A N D P Z E L E C T R O D E S

Figure 32: Fz - Grand Average PEP for (Speed = 1.6km/h)



A.3. Plots from Grand Average of Perturbations over Fz, C3, C4 and Pz electrodes 98

Figure 33: Fz - Grand Average PEP for (Speed = 2.5km/h)

Figure 34: C3 - Grand Average PEP for (Speed = 1.6km/h)



A.3. Plots from Grand Average of Perturbations over Fz, C3, C4 and Pz electrodes 99

Figure 35: C3 - Grand Average PEP for (Speed = 2.5km/h)

Figure 36: C4 - Grand Average PEP for (Speed = 1.6km/h)



A.3. Plots from Grand Average of Perturbations over Fz, C3, C4 and Pz electrodes 100

Figure 37: C4 - Grand Average PEP for (Speed = 2.5km/h)

Figure 38: Pz - Grand Average PEP for (Speed = 1.6km/h)



A.3. Plots from Grand Average of Perturbations over Fz, C3, C4 and Pz electrodes 101

Figure 39: Pz - Grand Average PEP for (Speed = 2.5km/h)
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A.4 S U B D ATA S E T S F R O M E E G L A B

Table 12: Dataset extracted from EEGLAB
Dataset from EEGLAB Month Treadmill Speed Channels/ICA Epochs Qty
Data_16_ago_CAR_Channels_ERP August 1.6km Channels 30
Data_25_ago_CAR_Channels_ERP August 2.5km Channels 40
Data_16_set_CAR_Channels_ERP September 1.6km Channels 30
Data_25_set_CAR_Channels_ERP September 2.5km Channels 39
Data_16_ago_CAR_ICA_ERP August 1.6km ICA 30
Data_25_ago_CAR_ICA_ERP August 2.5km ICA 40
Data_16_set_CAR_ICA_ERP September 1.6km ICA 30
Data_25_set_CAR_ICA_ERP September 2.5km ICA 39



B
S L I P - L I K E P E R T U R B AT I O N C L A S S I F I C AT I O N M E T R I C S F O R D E E P
L E A R N I N G M O D E L S - C H A N N E L S

B.1 O U T C O M E S O F E N T I R E D ATA S E T ( N O F I LT E R ) :

Figure 40: All subjects and speeds - Table filter by CNN model.
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B.1. Outcomes of Entire Dataset (no filter): 104

Figure 41: All subjects and speeds - Table filter by LSTM model.

Figure 42: All subjects and speeds - Table filter by GRU model.



B.1. Outcomes of Entire Dataset (no filter): 105

Figure 43: All subjects and speeds - Table filter by CNN-LSTM model.

Figure 44: All subjects and speeds - Classification Metrics Graphics sort of by (a) Models, (b) Channels, (c)
Batch and (d) Overlap



B.1. Outcomes of Entire Dataset (no filter): 106

Figure 45: All subjects and speeds - Accuracy greater 80% and 85% sort of by Model, Channels, Batch and
Overlap. Overall accuracy greater 80% and 85%. Overall MCC greater 70% and 80%.

Figure 46: All subjects and speeds - Runtime sort of by Model.
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Figure 47: All subjects and speeds - Runtime sort of by Channel.

Figure 48: All subjects and speeds - Runtime sort of by Batch Size.
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Figure 49: All subjects and speeds - Runtime sort of by Overlap.
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B.2 O U T C O M E S F I LT E R E D S P E E D = 1 . 6 K M / H

Figure 50: Table filter by CNN model (Speed = 1.6km/h).



B.2. Outcomes filtered Speed = 1.6km/h 110

Figure 51: Table filter by LSTM model (Speed = 1.6km/h).

Figure 52: Table filter by GRU model (Speed = 1.6km/h).
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Figure 53: Table filter by CNN-LSTM model (Speed = 1.6km/h).

Figure 54: Classification Metrics Graphics sort of by (a) Models, (b) Channels, (c) Batch and (d) Overlap.
Dataset filtered by speed = 1.6km/h.



B.2. Outcomes filtered Speed = 1.6km/h 112

Figure 55: Accuracy greater 80% and 85% sort of by Model, Channels, Batch and Overlap. Overall accuracy
greater 80% and 85%. Overall MCC greater 70% and 80%. Dataset filtered by speed = 1.6km/h.

Figure 56: Runtime sort of by Model. Dataset filtered by speed = 1.6km/h.
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Figure 57: Runtime sort of by Channels. Dataset filtered by speed = 1.6km/h.

Figure 58: Runtime sort of by Batch. Dataset filtered by speed = 1.6km/h.
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Figure 59: Runtime sort of by Overlap. Dataset filtered by speed = 1.6km/h.
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B.3 O U T C O M E S F I LT E R E D B Y S P E E D = 2 . 5 K M / H

Figure 60: Table filter by CNN model (Speed = 2.5km/h).



B.3. Outcomes filtered by Speed = 2.5km/h 116

Figure 61: Table filter by LSTM model (Speed = 2.5km/h).

Figure 62: Table filter by GRU model (Speed = 2.5km/h).
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Figure 63: Table filter by CNN-LSTM model (Speed = 2.5km/h).

Figure 64: Classification Metrics Graphics sort of by (a) Models, (b) Channels, (c) Batch and (d) Overlap.
Dataset filtered by speed = 2.5km/h.
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Figure 65: Accuracy greater 80% and 85% sort of by Model, Channels, Batch and Overlap. Overall accuracy
greater 80% and 85%. Overall MCC greater 70% and 80%. Dataset filtered by speed = 2.5km/h.

Figure 66: Runtime sort of by Model. Dataset filtered by speed = 2.5km/h.
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Figure 67: Runtime sort of by Channels. Dataset filtered by speed = 2.5km/h.

Figure 68: Runtime sort of by Batch. Dataset filtered by speed = 2.5km/h.
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Figure 69: Runtime sort of by Overlap. Dataset filtered by speed = 2.5km/h.
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B.4 O U T C O M E S F I LT E R E D B Y S U B J E C T 1

Figure 70: Table filter by CNN model (Subject 1).
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Figure 71: Table filter by LSTM model (Subject 1).

Figure 72: Table filter by GRU model (Subject 1).
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Figure 73: Table filter by CNN-LSTM model (Subject 1).

Figure 74: Classification Metrics Graphics sort of by (a) Models, (b) Channels, (c) Batch and (d) Overlap.
Dataset filtered by Subject 1.
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Figure 75: Accuracy greater 80% and 85% sort of by Model, Channels, Batch and Overlap. Overall accuracy
greater 80% and 85%. Overall MCC greater 70% and 80%. Dataset filtered by subject 1.

Figure 76: Runtime sort of by Model. Dataset filtered by Subject 1.
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Figure 77: Runtime sort of by Channels. Dataset filtered by Subject 1.

Figure 78: Runtime sort of by Batch. Dataset filtered by Subject 1.
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Figure 79: Runtime sort of by Overlap. Dataset filtered by Subject 1.
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B.5 O U T C O M E S F I LT E R E D B Y S U B J E C T 2

Figure 80: Table filter by CNN model (Subject 2).
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Figure 81: Table filter by LSTM model (Subject 2).

Figure 82: Table filter by GRU model (Subject 2).
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Figure 83: Table filter by CNN-LSTM model (Subject 2).

Figure 84: Classification Metrics Graphics sort of by (a) Models, (b) Channels, (c) Batch and (d) Overlap.
Dataset filtered by Subject 2.
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Figure 85: Accuracy greater 80% and 85% sort of by Model, Channels, Batch and Overlap. Overall accuracy
greater 80% and 85%. Overall MCC greater 70% and 80%. Dataset filtered by subject 2.

Figure 86: Runtime sort of by Model. Dataset filtered by Subject 2.



B.5. Outcomes filtered by Subject 2 131

Figure 87: Runtime sort of by Channels. Dataset filtered by Subject 2.

Figure 88: Runtime sort of by Batch. Dataset filtered by Subject 2.
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Figure 89: Runtime sort of by Overlap. Dataset filtered by Subject 2.



C
S L I P - L I K E P E R T U R B AT I O N C L A S S I F I C AT I O N M E T R I C S F O R D E E P
L E A R N I N G M O D E L S - I C S

C.1 O U T C O M E S O F E N T I R E D ATA S E T ( N O F I LT E R ) :

Figure 90: Classification metrics results of all subjects and speeds - Entire Dataset
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C.1. Outcomes of Entire Dataset (no filter): 134

Figure 91: All subjects and speeds - Classification Metrics Graphics sort of by (a) Models, (b) Batch and (c)
Overlap

Figure 92: All subjects and speeds - Accuracy greater 80% and 85% sort of by Model, Batch and Overlap.
Overall accuracy greater 80% and 85%. Overall MCC greater 70% and 80%.
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Figure 93: All subjects and speeds - Runtime sort of by Model.

Figure 94: All subjects and speeds - Runtime sort of by Batch.
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Figure 95: All subjects and speeds - Runtime sort of by Overlap.

C.2 O U T C O M E S F I LT E R E D S P E E D = 1 . 6 K M / H

Figure 96: Classification metrics results of dataset filtered by 1.6km/h (Speed)
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Figure 97: Classification Metrics Graphics sort of by (a) Models, (b) Batch and (c) Overlap. Dataset filtered by
speed = 1.6km/h.

Figure 98: Accuracy greater 80% and 85% sort of by Model, Batch and Overlap. Overall accuracy greater 80%
and 85%. Overall MCC greater 70% and 80%. Dataset filtered by speed = 1.6km/h.
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Figure 99: Runtime sort of by Model. Dataset filtered by speed = 1.6km/h.

Figure 100: Runtime sort of by Batch. Dataset filtered by speed = 1.6km/h.



C.3. Outcomes filtered by Speed = 2.5km/h 139

Figure 101: Runtime sort of by Overlap. Dataset filtered by speed = 1.6km/h.

C.3 O U T C O M E S F I LT E R E D B Y S P E E D = 2 . 5 K M / H

Figure 102: Classification metrics results of dataset filtered by 2.5km/h (Speed)
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Figure 103: Classification Metrics Graphics sort of by (a) Models, (b) Batch and (c) Overlap. Dataset filtered by
speed = 2.5km/h.

Figure 104: Accuracy greater 80% and 85% sort of by Model, Batch and Overlap. Overall accuracy greater 80%
and 85%. Overall MCC greater 70% and 80%. Dataset filtered by speed = 2.5km/h.
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Figure 105: Runtime sort of by Model. Dataset filtered by speed = 2.5km/h.

Figure 106: Runtime sort of by Batch. Dataset filtered by speed = 2.5km/h.
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Figure 107: Runtime sort of by Overlap. Dataset filtered by speed = 2.5km/h.

C.4 O U T C O M E S F I LT E R E D B Y S U B J E C T 1

Figure 108: Classification metrics results of dataset filtered by Subject 1
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Figure 109: Classification Metrics Graphics sort of by (a) Models, (b) Batch and (c) Overlap. Dataset filtered by
Subject 1.

Figure 110: Accuracy greater 80% and 85% sort of by Model, Batch and Overlap. Overall accuracy greater 80%
and 85%. Overall MCC greater 70% and 80%. Dataset filtered by subject 1.
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Figure 111: Runtime sort of by Model. Dataset filtered by Subject 1.

Figure 112: Runtime sort of by Batch. Dataset filtered by Subject 1.
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Figure 113: Runtime sort of by Overlap. Dataset filtered by Subject 1.

C.5 O U T C O M E S F I LT E R E D B Y S U B J E C T 2

Figure 114: Classification metrics results of dataset filtered by Subject 2
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Figure 115: Classification Metrics Graphics sort of by (a) Models, (b) Batch and (c) Overlap. Dataset filtered by
Subject 2.

Figure 116: Accuracy greater 80% and 85% sort of by Model, Batch and Overlap. Overall accuracy greater 80%
and 85%. Overall MCC greater 70% and 80%. Dataset filtered by subject 2.
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Figure 117: Runtime sort of by Model. Dataset filtered by Subject 2.

Figure 118: Runtime sort of by Batch. Dataset filtered by Subject 2.



C.5. Outcomes filtered by Subject 2 148

Figure 119: Runtime sort of by Overlap. Dataset filtered by Subject 2.



D
E E G L A B B A S I C U S E R G U I D E

Type "EEGLAB" on Command Window in Matlab. The EEGLAB windows will pop-up, and then click
on Import Data to upload the dataset.

Figure 120: Import data
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In data file, select the file format. Click on Browse to select the file in PC folders. Type the name for
the dataset and then type the data sammpling rate in Hertz (Hz).

Figure 121: Import data info

To import event info, the user can run one of the following commands. Pop-up will open a new window
and then type the row’s number from dataset on Event channels field.
Pop-Up GUI: EEG = pop_chanevent( EEG );
or
Command: EEG = pop_chanevent( EEG, 19, ’edge’, ’leading’, ’edgelen’, 0 );

Figure 122: Import Event Info
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To import delete a channel, the user can run one of the following commands. Pop-up will open a new
window. Type the row’s number which will de deleted from dataset on Channel range field and then
check the box regarding remove these
Pop-Up GUI: EEG = pop_select( EEG );
or
Command: EEG = pop_select( EEG, ’nochannel’, [1,18]);

Figure 123: Delete Rows - (Row 1 and 18)

To import channel locations, create a variable which one will be used to save the channels’ name and
the run the command to save them on data info.
Create a variable: chanlocs = struct(’labels’, ’Fp1’, ’Fp2’, ’F3’, ’Fz’, ’F4’, ’T7’, ’C3’, ’Cz’, ’C4’,
’T8’, ’P3’, ’Pz’, ’P4’, ’Po7’, ’Po8’, ’Oz’);
Run the Command: EEG.chanlocs = pop_chanedit( chanlocs );

Figure 124: Insert channel locations
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Figure 125: Plot - Channel locations (16 channels)

Figure 126: Status overview
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Apply high-pass filter using a fourth-order zero-phase Butterworth filter at 0.02Hz Pop-up will open a
new window. On Frequencies for filtering (Hz) field fill it with 0.2 (High-pass) and EMPTY (Low-pass);
on File order type 4 (fourth-order); and then select the filter type (high-pass).
Pop-Up GUI: EEG = pop_tesa_filtbutter( EEG );
or
Command: EEG = pop_tesa_filtbutter( EEG, 0.2, [], 4, ’highpass’ );

Figure 127: Filter data: High-pass

Remove line noise. Click on Tools -> Cleanline.

Figure 128: CleanLine
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On Line noise frequencies to remove type "50" (50Hz)

Figure 129: CleanLine Options Window

Apply band-pass filter using a fourth-order zero-phase Butterworth filter between 4Hz and 30Hz.
Pop-up will open a new window. On Frequencies for filtering (Hz) field fill it with 4 (High-pass) and
30 (Low-pass); on File order type 4 (fourth-order); and then select the filter type (band-pass).
Pop-Up GUI: EEG = pop_tesa_filtbutter( EEG );
or
Command: EEG = pop_tesa_filtbutter( EEG, 4, 30, 4, ’bandpass’ );

Figure 130: Filter the data: Band-pass



155

Reference the channels to the common average. The user can run one of the following commands.
Pop-up will open a new window and then check the box Compute average reference.
Pop-Up GUI: EEG = pop_reref( EEG );
or
Command: EEG = pop_reref( EEG, [] );

Figure 131: Re-reference the data

Apply Independent Component Analysis (ICA) to decompose data into independent sources. Pop-up
will open a new window and then select runica algorithm.
Pop-Up GUI: EEG = pop_runica( EEG );
or
Command: EEG = pop_runica(EEG, ’icatype’, ’runica’);

Figure 132: Decompose data by ICA
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Figure 133: Status overview - Updated CAR and ICA

To open the Extract data epoch pop-up run the following command. Pop-up window will show up.
Type the event name in Time-locking event types; type de Epoch limits in seconds, for exempla, -2 1;
and the name the new dataset.
Pop-Up GUI: EEG = pop_epoch(EEG)

Figure 134: Extract data Epochs
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Figure 135: Status overview - Epoch
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To export the pre-processed data click on Files -> Export -> Data and ICA activity to text file

Figure 136: Export data

Select the options that you prefer to export. Click on "Ok" and then name the file and save it.

Figure 137: Export data - Pop Up
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