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Resumo 
 

A acumulação de fadiga física resultante da execução de tarefas que obrigam à 

aplicação de forças intensivas durante longos períodos é um fator de risco grave para as 

lesões musculoesqueléticos relacionadas com o trabalho (LMERT), resultando numa 

debilitação e absentismo dos trabalhadores a longo prazo, perda de produtividade e piores 

ambientes de trabalho [1,2,3]. Tipicamente a fadiga é estimada utilizando sensores de 

Eletromiografia (EMG) que ainda que precisos, apresentam a desvantagem de serem 

intrusivos e a sua colocação necessita do conhecimento prévio da anatomia humana [4]. 

Uma possível abordagem é o desenvolvimento de um modelo músculo-esquelético que 

permita a estimação de fadiga a partir de informação cinemática. Para tal, é necessária a 

criação de um modelo músculo-esquelético específico ao utilizador, ajustando tanto as 

propriedades geométricas como as de força [5]. O dimensionamento das propriedades de 

força e respetivos procedimentos são em geral pouco abordados, em particular para 

modelos de membros superiores, pelo que esta dissertação tem como objetivo o 

desenvolvimento e validação de um método preciso e prático para dimensionar a força de 

um modelo músculo-esquelético de corpo superior.  Utilizando o software open-source 

OpenSim, foi estudada a influência de várias abordagens de dimensionamento de força na 

exatidão da ativação muscular prevista pela simulação.  Foram recolhidos dados 

experimentais de 5 participantes durante a realização de exercícios do membro superior, e 

posteriormente foi calculado o erro entre ativações estimadas e experimentais para cada 

método. Analisando os resultados, concluiu-se que os métodos de dimensionamento de 

força desenvolvidos não contribuíram significativamente para a diminuição do erro 

inicialmente calculado, no entanto verificou-se que o ajuste das propriedades de força do 

modelo influenciaram significativamente a precisão da estimativa quando foram aplicadas 

forças externas ao movimento.  

Palavras-chave: LMERT; Fadiga; EMG; Modelos musculosqueléticos; Opensim. 
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Abstract 
 

The accumulation of physical fatigue resulting from the execution of tasks requiring 

the application of intensive forces over long periods is a serious risk factor for work-related 

musculoskeletal disorders (WMSDs), resulting in long-term debilitation and absenteeism of 

workers, loss of productivity, and worse working environments [1,2,3]. Typically, fatigue is 

estimated using Electromyography (EMG) sensors which, although accurate, have the 

disadvantage of being intrusive and their placement needs prior knowledge of human 

anatomy [4]. One possible approach is the development of a musculoskeletal model that 

allows fatigue estimation from kinematic information. This requires the creation of a user-

specific musculoskeletal model, adjusting both geometric and strength properties [5].  The 

scaling of force properties and approaches to perform such scaling are generally poorly 

addressed, particularly for upper limb models, so this dissertation aims to develop and 

validate an accurate and practical method for scaling the force of an upper body 

musculoskeletal model.  Using the open-source software OpenSim, various force scaling 

approaches were investigated with respect to their influence on the accuracy of muscle 

activation predicted by the simulation.  Experimental data was collected from 5 participants 

during execution of upper limb exercises, and then the error between estimated and 

experimental activations was calculated for each method. The results demonstrated that the 

developed force scaling methods did not contribute significantly to the decrease of the 

initially calculated error, however it was found that the adjustment of the model's force 

properties significantly influenced the estimation accuracy when external forces were 

applied to the movement. 

Keywords: WMSDs; Fatigue; EMG; Musculoskeletal models; OpenSim. 
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1. Introduction 

 

 

1.1. Context and Motivation 

 

In Europe, musculoskeletal disorders (MSDs) are the most reported health 

problem by workers, followed by depression and anxiety. They are the second leading 

cause of disability in work environment worldwide, resulting in half of the costs of all 

diseases derived from labour [1,2,3]. The change in work style in the last two decades, 

in particular the adoption of remote work and the intensification of computer-

dependent work, which force workers to be in the same position and execute 

repetitive tasks for longs periods has been contributing to the increase in these 

pathologies [6]. 

Musculoskeletal disorders (MSDs) are diseases associated with great pain, on a 

single or several points, that affect the normal range of motion of the body by damage 

in the soft tissue surrounding the joints like muscles, tendons, ligaments, nerves, and 

blood vessels [6]. They can be classified in MSDs of the upper limbs and neck, lower 

limbs and back according to the body part that they affect. Some of the most common 

disorders are carpal tunnel syndrome, strains, tendonitis, tension neck syndrome and 

mechanical back syndrome [7]. The development of Work-related MSDs (WMSDs) is 

related to several factors like the subject characteristics, but also biomechanical and 

psychosocial factors according to EU-OSHA (European Agency for Safety and Health at 

Work) [1,2,6]: 

Biomechanical factors: 

▪ high force application 

▪ bad posture 

▪ longs periods in the same position 

▪ repetitive tasks 

▪ exposure to vibration 

https://osha.europa.eu/pt/about-eu-osha
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Psychosocial factors: 

▪ poor autonomy 

▪ low motivation 

▪ lack of support of the co-workers 

▪ poor management of work tasks 

Subject factors: 

▪ medical record 

▪ Physical capacity 

▪ age 

▪ weight 

▪ bad health habits 

 

The exposure to these factors, especially during long periods, contributes to 

accumulation of physical fatigue. As the rate of accumulation of fatigue is higher than 

the rate of recuperation, the balance is destroyed and enables the growth of an MSD 

[7].  In 2016, S. Gallagher et.al proposed MSDs as an outcome of fatigue failure 

process, implying that this process occurs equally in musculoskeletal tissue as in non-

biological materials. Therefore, the greater the load applied, especially associated with 

high repetition, the lesser will be the time to tissue failure, such as muscle, tendons, 

ligaments, and bone [1]. The adoption of non-neutral positions while working or when 

executing daily activities, like twist or bend the torso, reach beyond the body, rotate, 

or elevate arms and hands close to maximums of their range of movement contributes 

to higher stress of musculoskeletal tissue, as it contracts or extends [1,8]. When works 

tasks are poorly managed or working conditions, the working rhythm characteristic of 

each subject is perturbed, moreover if is executed repetitive tasks, the body doesn´t 

have time to recover, resulting in fatigue accumulation that can lead to injury. [8] 

Muscle fatigue assessment usually rely on electromyography (EMG) sensors, 

which are highly influenced by electrode placement, signal noise and physiological 

factors that may lead to inaccurate measures [4], in addition to the need for 

knowledge in anatomy and a thorough skin preparation by the user, which makes it 
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impractical. Thus, it is necessary to develop a system capable of accurately estimate 

muscle fatigue without harm to the body, and thus prevent the formation of MSDs. 

Musculoskeletal models are computational models that recreate human 

musculoskeletal system, allowing the simulation of human body motion and 

estimation of muscle internal loads and joint reactions that otherwise are difficult to 

measure experimentally [9]. Given that the onset of muscle fatigue is manifested by a 

reduction in muscle strength and adaptation of body posture, these models can be an 

alternative to conventional EMG fatigue detection methods [4,10]. The scaling of the 

musculoskeletal model is a fundamental step to perform before starting the 

simulation, with high influence on the accuracy of the quantities to be estimated.  This 

process consists of adjusting model properties to subject characteristics, as faithfully as 

possible, being these length, mass, or force parameters. Musculoskeletal modeling and 

simulation software, such as OpenSim, possess tools that allow the scaling of mass and 

length proprieties of the model, however, do not address force fitting.  

 

1.2. Objectives 

 

Although, there are several studies and approaches concerning the scaling of 

model´s musculotendon length proprieties and geometry, the scaling of muscle 

strength or force capacities and its impact is not as addressed, especially those 

involving upper body models.  Thus, aiming for a highly subject-specific model with 

further application on muscle fatigue assessment, the main goal of this thesis is the 

development and validation of an accurate and practical method to scale the strength 

of an upper body musculoskeletal model. To achieve this end, the following objectives 

must be accomplished: 

• Conduct a review of the available literature regarding the approaches used 

to perform force scaling on upper body musculoskeletal models.  

• Create or adapt an upper body musculoskeletal model according to the 

requirements of the study.  
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• Develop a method capable of scaling the force proprieties of model based 

on kinematic data and open-source software. 

• Validate the developed approach by collecting experimental data. 

 

 

2. Theorical fundamentals 

 

 

2.1. Skeletal muscle 

 

In human body there are three types of muscle: cardiac, smooth and skeletal. 

The first two types are of involuntary control, where the first is responsible for the 

contractions in the heart that allow the pumping of blood into the body, and the 

second is found in organs such as the intestine and stomach, where it promotes slow 

contractions. Finally, the skeletal muscles are connected in its extension to bones by 

means of tendons and are responsible for body posture, generation of movements and 

force according to one's own will [11]. In this work we will focus only on this type of 

muscle. 

 

2.1.1. Muscle structure and contraction 
 

Skeletal muscles are the human body actuators, responsible for generating 

force and movement capable of sustaining body posture and perform innumerable 

tasks of daily life. They are constituted by clusters of basic units of fibers (Figure 1), 

also known as myofibers or muscle cells, surrounded by connective tissue and 

connected to motor neurons, the association of the last with a fiber is called motor 

unit. Each fiber in turn results from an agglomerate of myofibrils made up of 

myofilaments, mostly actin and myosin proteins. The combination of this proteins 
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attached by cross-bridges forms the muscle generators units of force and power know 

as sarcomeres [12,13]. 

 

Figure 1 - Muscle structure. Adapted from [14]. 

  

 The sliding filament theory is the most accepted conjecture to explain the 

process of muscle contraction, which consists in sliding of actin over myosin filaments. 

When the neural signal transmitted as electrical impulses from CNS (Central Nervous 

System) to motor neurons reaches the muscle fiber, the calcium (Ca2+) stored on 

sarcoplasmic reticulum is released to the cell cytoplasm, binding myosin to actin and 

forming a new cross bridge, meditated by ATP (Adenosine Triphosphate) hydrolysis. 

Resulting in shortening of sarcomere and so force generation, transmitted along the 

entire muscle, tendon and finally joint. This cycle is repeated by cross-bridge wrecking 

when ATP molecules binds to myosin again, and cross-bridge formation occurs again 

until neural excitation stops. Ceasing the neural stimulus, Ca2+ ions return to 

sarcoplasmic reticulum and the muscle returns to its initial state of relaxation [12].  

 Muscle contractions can be classified as static or isometric, dynamic concentric 

or isotonic concentric, and dynamic eccentric or isotonic eccentric, depending on the 

movement effected by the muscle to develop force. These types of contractions are 

present on daily life actions, like lifting an object (Figure 2). Initially, the dumbbell is 
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held by a force generated by the muscle while maintaining the same position of the 

limbs and joint, this called an isometric contraction (Figure 2(a)), resulting in a force 

with lower module. For example, when lifting the dumbbell, the force is exerted while 

bending the arm, there is joint movement and muscle shortening, representing an 

isotonic concentric contraction (Figure 2(b)). Finally, when putting the dumbbell down 

(Figure 2(c)), occurs stretching of the muscle and extension of the arm, this is referred 

as an isotonic eccentric contraction [4,12]. 

 

Figure 2 - Lifting a box. a) isometric contraction; b) isotonic concentric contraction; c) isotonic 

eccentric contraction. Adapted from [15]. 

 

2.1.2. Muscle force and fatigue 
 

One of the factors that influence the mechanical function of the muscle is the 

arrangement of the fibers. Depending on the muscle type, muscle fibers can be 

orientated in parallel or form an angle relative to muscle line of action, known as 

pennation angle, promoting an increase in muscle force since more fibers are 

concentrated in the same muscle volume. The muscles with this configuration are 

called pennate muscle and are the most common type on human limbs. During 

contraction of the muscle, the pennation angle increases, contributing to change on 

muscle shape by shortening its length and extending its thickness and width (Figure 3) 

[12,13]. 
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Figure 3 - Muscle and fiber shortening. Adapted from [13]. 

The force generation capacity is dependent on initial fiber orientation and the 

change in thickness during muscle contraction, as the ratio of fiber length to muscle 

length increases due to muscle shortening, the force transmitted to the joint decreases 

[12]. The velocity of contraction is correlated with myosin attachment to actin by ATP 

hydrolysis, influencing force. Faster concentric contractions result in lower muscle 

strength, contrary to the increased force output in eccentric contractions performed 

under the same conditions. Thus, maximal force is produced for an optimal length, 

pennation angle and velocity, involving an optimal overlap of myofilaments 

contributing to greater cross-bridge formation. Other factors that may influence 

muscle force are neural excitation, stimulation frequency, fiber type and calcium ions 

concertation on sarcoplasmic reticule [12,16]. 

  Muscle fatigue can be seen as a combination of failures of key physiological 

systems at the level of nerve stimulation, energy, and oxygenation. The origin of 

muscle fatigue can be attributed to changes in motor pathway, involving peripheral 

fatigue associated to the neuromuscular junction (junction between neuromotor and 

muscle fiber) and central fatigue on the CNS. During the execution of high muscle 

effort tasks, the excitation input inferred by the CNS and excitability of motor neurons 

decreases (central fatigue), this occurs to protect the muscles from severe damage, 

reducing the rate of action potential fired by motor neurons that reach muscle fibers. 
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This leads to an increase in Pi (inorganic phosphate) molecules that causes less uptake 

of calcium ions to sarcolemma (peripheral fatigue), interfering with cross-bridges 

formation and so decrease in force, that is a signal of muscular fatigue. The decreased 

oxygen supply to the muscle due to obstructed blood circulation during exercise is also 

a factor that can lead to muscle fatigue, as the ATP demand cannot be met [4,17]. 

 From a biomechanical view, muscle fatigue can be defined as a diminution in 

capacity of generating force during muscle contraction and is associated to a decrease 

of maximum voluntary contraction (MVC) force. The number of cycles and effort 

applied that is necessary to reach muscle fatigue level differs from person to person, 

with characteristics like gender, age, and muscle proprieties, thus is difficult to define a 

floor in detection of fatigue [4,17].  

 

2.2. Measurement of fatigue 
 

Usually, the evaluation of fatigue is conducted via Electromyography (EMG) 

techniques, that corresponds to the record of the muscle electrical activity in response 

to a force exertion task [17]. The most common EMG techniques to detect fatigue is 

sEMG (Surface Electromyography) because it is less invasive, as the electrodes 

measuring the electrical potential are placed only on the surface of the skin. 

  The presence of fatigue on muscle is translated by changes on EMG signal 

amplitude and frequency parameters, usually obtained by means of signal processing 

methods, on time and frequency, respectively. These changes can be attributed to an 

increase in motor unit recruitment and firing rate in order to maintain force when 

muscle reaches fatigue. It is also traduced by a decrease in muscle fiber conduction 

velocity (MCV) due to accumulation of lactate acid, produced in anaerobic conditions, 

as form to protect organism damage [4]. The comparison between time and frequency 

analyses can be seen in Table 1. 
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Table 1 - sEMG time and frequency analyses 

 sEMG - time domain 

Principle Increase in amplitude of EMG signal with fatigue due to greater 

recruitment of MUs (Motor Units) in dynamic contractions [4] 

Parameters Root Mean Square (RMS); Integrated Electromyography (iEMG) [4] 

Strengths Measure of force magnitude [18] 

Limitations Not very accurate, better associated with spectral methods; Subject 

specific fatigue threshold [4] 

 sEMG - frequency domain 

Principle EMG spectrum frequencies decrease when muscle is fatigued. The 

current value of parameter is compared with the value of a state 

without fatigue and registered the differences [4] 

Parameters Mean power frequency (MPF); Median frequency (MF); Muscle fiber 

conduction velocity (MCV) [4] 

Strengths More reliable and most used in isotonic contractions [4] 

Limitations Subject specific fatigue threshold [4] 

 

Amplitude based measurement of fatigue is less used due to the instability of 

its behaviour, since it can increase, decrease or suffer no change. It´s highly dependent 

on muscle type and intensity of contraction. On other hand, the frequency parameters 

have the same relation of decreasing regardless of fatiguing conditions [4,19,20]. 

Overall, sEMG has many limitations in respect to high sensibility to electrical noise, 

electrodes placement and area, conductive gel used between skin and electrode, 

muscle contraction intensity and blood flow, and many others. Its use in isotonic 

contractions is questionable, as it can be influenced by physiological factors such as 

muscle length and joint movement changes [4]. In addition to its impracticality of use, 

which requires the rigorous placement of multiple sensors, and an exhaustive 

preparation of the skin that can be uncomfortable for the user. 
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 Other methods beyond EMG to evaluate fatigue are NIRS (near-infrared 

spectroscopy), infrared thermography and MMG (Mechanomyography), described in 

subsequent table. 

 

Table 2 - NIRS, infrared thermography and MMG evaluation methods 

 NIRS (near-infrared spectroscopy) 

Principle During execution of effort, the body necessity for oxygen is greater, 

contributing to an increase in oxygenated hemoglobin. The 

difference between oxygenated and deoxygenated hemoglobin in 

blood is proposed as an indicator of muscle fatigue, measured using 

near-infrared radiation ray and optical sensors [4,21] 

Conclusions Muramatsu et al. (2013), found that this difference is constant when 

muscle isn´t in fatigue conditions and that it increases with fatigue 

as time pass [20] 

Strengths Non-invasive; The relation is not dependent on load; Can be used on 

isometric and isotonic contractions; Give information about fatigue 

progression velocity; Complement sEMG [4,21] 

Limitations The blood oxygenation is influenced by subject characteristics and 

breathing; Affected by skin fatness and melanin concentration 

[21,22] 

 Infrared thermography 

Principle While exercising there is generation of heat due to metabolic 

process, increasing temperature around the contracted muscle. This 

difference in skin temperature can be evaluated by infrared 

thermography [23] 

Conclusions Bartuzi et al. (2016) studied the correlation between muscle fatigue 

and temperature measured by infrared thermography when 

compared with EMG on low load isometric contraction of upper 

limb. They conclude that muscle temperature increases with higher 

muscle contraction forces, where fatigue is greater. It has a great 
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correlation with the analysed EMG frequency parameters [23]. 

Hadžic et al. also obtained same conclusions when doing trials with 

concentric contractions of lower limb, though it is needed more 

research [24] 

Strengths Non-invasive; Contactless; Good sensitivity for low muscle load [23] 

Limitations More study is needed for non-athletes and elderly population; 

Influenced by variations in temperature and skin fat [23,24] 

 MMG (Mechanomyography) 

Principle Records the muscle vibrations arising by motor unit activation. The 

same parameters for sEMG, amplitude and frequency, are used [4] 

Conclusions  Tarata et al. (2003), compared MMG And EMG signals regarding 

fatigue monitoring. They found that RMS and MF parameters of 

MMG increased and decreased in response to muscle fatigue on 

sustained contractions, presenting the same relation as sEMG [25] 

Strengths Detects difference in neural activation; not affected by 

electromagnetic radiation; less variability between genders [4,25] 

Limitations Use in dynamic contractions is limited; Crosstalk contamination [4] 

 

The NIRS and infrared thermography are non-invasive methods that can be 

used evaluate fatigue however is still necessary more studies to prove it´s efficacy and 

not only as EMG complement. MMG can also reveal central and peripheral fatigue as 

EMG, it isn´t affected by electromagnetic radiation and can be used in individuals with 

chronical electric implants unlike EMG. However, there is no standard protocols for 

signal acquisition like in EMG systems, and the MMG signal from the muscle to be 

measured can be disturbed by the activity of the neighbouring muscle, known as 

crosstalk contamination [4,25,26]. 

 Besides the methods stated above, it is also possible to infer fatigue trough 

biomarkers like ATP metabolism, Oxidative stress and inflammatory markers [17]. 
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2.3. Musculoskeletal models 
 

The development of musculoskeletal models enabled the estimation of internal 

loads of muscles, ligaments and joint reactions that are difficult measure by 

experimental tests, and so allow to identify the source of abnormal movement in 

patients with neuromuscular or musculoskeletal disorders and define better recovery 

strategies. These models are constituted by rigid bodies or segments, that normally 

represent bones, and joints that connect them and stimulate their movement through 

forces generated by enveloping muscles [27,28]. Musculoskeletal systems simulations 

are dependent on formulation of musculotendon dynamics, that can be defined by 

Hill-type musculotendon models, which are used on simulation frameworks like 

Opensim. In Hill-type models musculotendon units (Figure 4) are defined as extensible 

strings connected to bones, in which muscles fibers are assumed as being 

homogenous, keeping the same height and area as the angle between tendon and 

fiber, the pennation angle, is commuted [29]. 

 

Figure 4 - Geometric representation of musculotendon unit. Where 𝜙-pennation angle; h-

pennated muscle height; 𝑙𝑀- length of muscle; 𝐹𝑇- Tendon force; 𝐹𝑀-Muscle force. Adapted 

from [14]. 

The muscle force is computed based on a combination of activation and 

contraction dynamics (Figure 5), where the last uses the results from activation 

dynamics, musculotendon length and velocity to compute muscle length, velocity, and 

force [29]. 
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Figure 5 - Schematic representation of musculotendon dynamics. Adapted from [14]. 

 The activation dynamics represents the relation between neural excitation and 

muscle activation level (a(t)), that can increase or decrease dependent on the 

availability of calcium ions. On the other hand, contraction dynamics defines the 

relation between muscle activation and musculotendon force on Hill-type models. The 

Hill-type model is defined, as seen in Figure 6, by an elastic tendon (3) with length 𝑙𝑇, 

forming a pennation angle (α) with muscle fiber of length 𝑙𝑀. This fiber is constituted 

by two parallel components, an active contractile component (1) and a passive elastic 

one (2) [29,30,31]. 

 

Figure 6 - Hill-type musculotendon unit. Adapted from [29]. 



 
 

14 
 

     This model assumes that muscle force is only dependent on muscle activation 

(a), length and velocity. The dependence of these elements’ forces with tendon length 

(𝑙𝑇), muscle length (𝑙𝑀) and velocity (𝑣𝑀) can be described by the following curves. 

 

 

Figure 7 - Tendon-Force length curve (𝑓𝑇(𝑙𝑇)). Adapted from [14]. 

The tendon-force length curve (Figure 7) represents the change of tendon force 

(𝑓𝑇) with the tendon length (𝑙𝑇). Behind the tendon slack length this force is null, 

however as tendon stretches beyond this length a force is produced and increases 

exponentially with tendon strain [29].  

 

 

Figure 8-Active force–length curve (green) (𝑓𝑙(𝑙𝑀)) and passive force–length curve (orange) 

(𝑓𝑃𝐸(𝑙𝑀)). Adapted from [14]. 
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When the muscle is activated, an active force (𝑓𝑙) defined by a gaussian 

function is generated (Figure 8, green curve), and it´s value is higher or lower 

depending on muscle length (𝑙𝑀), being maximal at optimal muscle length. On the 

other side, when the muscle is stretched beyond a threshold length, a passive force 

(𝑓𝑃𝐸) is developed and growths exponentially (Figure 8, orange curve) [12,29]. 

 

 

Figure 9 - Force–Velocity curve (𝑓𝑉(�̃�𝑀)). Adapted from [14]. 

When executing concentric contractions, which involves the shortening of the 

muscle, the force produced is greater for lower velocities (�̃�𝑀). On the other hand, 

movements that contribute to muscle lengthening are characterized by a higher 

strength when executed faster [12,29,31]. 

All these curves can be related by equation (1), where the muscle force is in 

equilibrium with tendon force, without considering the effect of muscle mass and 

rigidity of tendon. Where 𝑓0     
𝑀 is the maximum isometric muscle force when muscle is 

in its optimal length, and the parameters with tile, 𝑙𝑀, �̃�𝑀 and 𝑙𝑇 are normalized by 

muscle fiber optimal length, maximum muscle contraction velocity and tendon slack 

length, respectively. This formulation is considered as the condition of initialization of 

the simulation process, which has many solutions [29]. 

 

𝑓0     
𝑀 (𝑎 𝑓𝐿 (�̃�

𝑀
) 𝑓𝑉(�̃�𝑀) +  𝑓𝑉(�̃�𝑀) + 𝑓𝑃𝐸 (�̃�

𝑀
) ) 𝑐𝑜𝑠 𝛼 −  𝑓0     

𝑀 𝑓
𝑇

(�̃�
𝑇
) = 0    (1) 
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  To obtain a single solution, the next step involves the calculation of normalized 

muscle velocity (�̃�𝑀) by equation (2), that is constrained by a maximum pennation 

angle value and a minimum muscle length value in order to have a better approach to 

muscle natural physiology [27]. 

 

�̃�𝑀 = 𝑓
𝑖𝑛𝑣     
𝑉

(
𝑓𝑇(𝑙𝑇) cos 𝛼−𝑓𝑃𝐸(𝑙𝑀)⁄

𝑎 𝑓𝐿(𝑙𝑀)
)      (2) 

 

Thus, the force generated by Hill-type musculotendon models is computed based on 

the constant parameters of muscle and tendon proprieties, namely muscle fiber 

optimal length, maximal muscle contraction velocity, tendon slack length, maximal 

isometric muscle force and optimal pennation angle, that are usually obtained by 

cadaveric studies [30]. 

 

 

3. Required utilities 
 

 

3.1. OpenSim 
 

OpenSim is an open-source software that enables the creation and sharing of 

musculoskeletal models and dynamics simulations of movement by the user, allowing 

the study of the influence of neuromuscular system on forces and joints moments 

produced by muscles. The analyses and studies effectuated by these simulations help 

to understand the biomechanics of movements, making it possible to improve 

knowledge about physical disabilities and to develop more effective recovery 

strategies [28,32]. 
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In OpenSim models the bones are defined as rigid segments, in which the child 

segment moves relative to a parent segment by means of a joint. All segments have a 

parent except for the ground, and the range of motion of the joint can be constrained 

by limits. Muscles, based on Hill-type models, wrap to these segments trough insertion 

and origin points, creating a path representing the muscle´s line of action. The force 

produced by these actuators is dependent on its path, fiber and tendon length, the 

rate of change of length and activation level. In addition to the active forces from 

muscles or actuators, external forces obtained experimentally by force plates, such as 

ground reaction forces, or internal passive forces from springs or dampers can also be 

applied to the model. And lastly, model´s controllers generate and regulate muscle 

excitations. In sum, OpenSim models, are defined by bodies, joints, forces, constraints, 

and controllers, whether these are lower (Figure 10), upper extremity, head, neck, 

human or animal models [32,33]. 

 

Figure 10 - Lower extremity model on OpenSim, with muscles and ground forces applied. 

Adapted from [32]. 

Depending on the application and data availability of the study, model´s 

controls or response can be found trough inverse or forward simulations methods. 

Inverse methods like inverse dynamics (IK), static optimization (SO), and computed 

muscle control (CMC), start from marker trajectories positions, force data and 
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Figure 11 - Inverse method. Adapted from [34]. 

velocities that describe a specific motion and determine joint and muscle kinetics, and 

musculotendon dynamics responsible for generating that movement, as described by 

the red arrows on Figure 11 [32,34]. 

 

On the opposite, forward methods like forward dynamics tool follow the blue arrows 

of Figure 11, driving the movement of a model departing from estimated muscle 

excitations, joint torques, applied forces or other controllers [32,34]. 

 

3.2. Xsens MVN 
 

The Xsens MVN is a motion capture system based on inertial measurement 

units (IMUs) sensors. It can be used indoors and outdoors and capture several types of 

motions, it has been applied on diverse fields like biomechanical, rehabilitation, 

sport,3D animations and virtual reality [35,36]. 

 The segments position and orientation are computed in real time by 

accelerometers and gyroscopes included on the 17 inertial and magnetic measurement 

units trackers placed on the subject that executes the motion. The orientations are 

registered and visualized on a biomechanical model calibrated with user body segment 

dimensions [36]. 
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Figure 12 - Xsens MVN body model. Adapted from [35]. 

This model is formed by 23 rigid body segments attached by 22 joints, each 

with 3 degrees of freedom (DOF) . The definition of segments axes and frame origin is 

based on ISB (International Society of Biomechanics) recommendations [37]. The 

kinematic data of the motion described can be exported in several files format: BVH, 

FBX, C3D, MVNX, being the last two the most useful for this work. The C3D format 

contains information about the anatomical bony landmarks’ positions during motion, 

registered as markers on the Xsens MVN body model and represented on Figure 13 by 

the points designated with “p” letter. While the MVNX contains segments’ position, 

angular velocity, acceleration, orientations in quaternions and joint angles in ZXY and 

XZY Euler angle sequence, that may be used as input of human body simulations [35]. 
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Figure 13 - Markers of Xsens exported on C3D.Adapted from [35]. 

Magnetic interferences of the surrounding environment, sensor noise and 

displacement of the IMUs related to soft tissue, are the main factors that affect motion 

tracking accuracy [35,36]. In 2018, Michael Sweet et al., analyzed the effect of IMUs 

(Xsens MTw Awinda) displacement on knee angle variability during gait. Though the 

study sample was small, the results demonstrated that initial IMU placement can lead 

to a variance of 5-10 degrees in the measured knee angle value [38]. Richard Hsiao et 

al. (2017), studied the effect of velocity on Xsens IMUs tracking accuracy by collecting 

data at 40 bpm, 80 bpm and 120 bpm while performing neck flexion. The ground truth 

of the movement was extracted with the aid of a high-speed motion capture camera. 

The results indicated a decrease in precision of IMUs motion capture system with the 

increase of the movement speed [39].  
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3.3. Upper body model 
 

The model used in this project is defined only by bodies on upper body, since 

the main interest is the study of the upper arm dynamics. For that purpose, it was 

selected the combination of two models already developed, the arms of “Upper 

extremity model” developed by Holzbaur et al. [40] and the body of “Thoracolumbar 

Spine and Rib Cage model” by Bruno et al. [41] (Figure 14). 

 

 

Figure 14 - Thoracolumbar Spine and Rib Cage model (left); Upper extremity model (center); 

model used in this project (right). Adapted from [40,41]. 

The thorax in “Thoracolumbar Spine and Rib Cage model” (Figure 14 (left)) is 

represented by twelve ribs on each side, each one with mobility of one DOF, 

connected to spinal column vertebra. The sternum is connected to clavicula and 

scapula, and has tree rotations on x, y, z axis. The head and neck are modelled as a 

single body and a have tree DOF as well as pelvis, column´s vertebrae, and abdomen 

[41]. The arm in “Upper extremity model” (Figure 14 (center)) is constituted by 

humerus, radius, ulna, and hand, linked by two joints. The shoulder joint that links 

humerus to scapula enables the movements of abduction/adduction in y-z plane, 

flexion-extension in x-y plane and internal/external rotation in z-x plane in OpenSim 

coordinate system. On the other hand, elbow and wrist joint has 2 DOF, flexion-

extension and internal/external rotation [40]. To each body on the two models, a 

muscle is associated with a with a particular path point. In accordance with our study 

purpose and hardware limitations, some changes were made to simplify the model 
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regarding muscle composition and joint motion definitions.  In the lower arm, 

extensors and flexors muscles of the hand were removed and the wrist joint was 

deprived of motion, as well as the rib, column, neck and sternum joints. Abdomen and 

respective muscles were removed from the model, as its movements were not 

considered as a study factor in this work. 

Resulting on final model (Figure 14 (right)) with 46 muscle actuators and 

sixteen joint coordinates: shoulder joint with 3 DOF and elbow joint with 2 DOF for 

each arm, and pelvis joint with 3 DOF in rotational and 3 DOF in translation.  

 

3.4. OpenSim MOCO 
 

Moco (“musculoskeletal optimal control”) is an OpenSim extension capable of 

solving several problems related to biomechanics, such as motion tracking, motion 

prediction, parameter optimization, model fitting or electromyography-driven 

simulation. This open-source and customizable software package can predict a 

trajectory usually quicker than the others by using direct collocation method and 

accepts almost any Opensim model [42]. The optimal control problem is formulated by 

providing a model, goals, and constraints, defined by the user or retired from Moco 

library. Additionally, it can be given reference data (markers coordinates, external 

forces and muscle activity) to track while predicting a motion or optimizing 

parameters. The study, MocoStudy, starts by describing the problem with 

MocoProblem class by setting the cost function (time, states, kinematic constraints, 

controls…), the model and controls to which it is subjected, with respect to bounds like 

time, states, controls, or model properties to optimize (Figure 15). After establishment 

of the problem, MocoSolver class is called to solve it and find the optimal solution, 

while satisfying the kinematics constraints. MocoSolver supports both forward and 

inverse dynamics, and enables the setting of convergence tolerance, constraint 

tolerance and number of mesh intervals of the problem [42]. 
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Figure 15 - Synthesis of MocoStudy. Adapted from [42]. 

 

Depending on the problem the motion can be prescribed, tracked, or predicted. 

Moco library possess tools that enables the resolution of problems dependent on the 

motion observed, namely MocoInverse, that from the prescribed movement solves 

muscle/actuator redundancy problems, whereas MocoTrack enables motion tracking. 

In both tools, there are model’s constraints and motion data (coordinates, marker 

trajectories or external loads) are provided, however the way how the motion is 

handled while computing the controls and actuators states is different. While in 

MocoInverse the problem is subject to the prescribed motion, beyond the constraints 

defined, following it strictly while minimizing the costs, in MocoTrack deviations from 

the kinematic provided are predicted while obeying to kinematics constraints, 

obtaining a solution that minimizes the error between reference data and the data 

predicted, in addition to other costs. Regarding the prediction of muscle activity, both 

tools when applied the same model and kinematic data, showed for most muscles a 

peak muscle activity timing similar to the measured EMG data from a gait cycle, as well 

as resemblances with Opensim SO and CMC results [42]. 
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MocoInverse is a faster and more robust option if the motion is known and 

must be closely followed, MocoTrack is more suitable when the goal is to study 

deviations from the original data. For other problems not standardized, like motion 

prediction, it is necessary to develop a specified study [42]. 

 

 

4. Literature review 

 

 

4.1. OpenSim uncertainty 
 

Computational models and simulation software allow to recreate, to a certain 

extent, human musculoskeletal system and from there draw results and conclusions, 

that are difficult to obtain otherwise. However, it is crucial to verify their conformity 

with reality, and characterize its error and uncertainty.  

In order to understand OpenSim software error and it´s variables, an advanced 

search was executed in Scopus and PubMed databases with keywords “OpenSim”, 

“error”, using Boolean operator “AND”. Most results were common to both databases 

and mainly focused its analysis on gait and lower-limb models. Only studies that 

quantified Opensim's error and assessed the causes of its variation were selected. 

Applying this criteria, five studies were examined, whose main conclusions are 

described below. 

 

4.1.1. Results 
 

In 2014, Beth Lewandowski et al. using an Opensim full body model with 

muscle type Thelen 2003 determined OpenSim calculation error by comparing the 

difference between estimated and experimental ankle torque, obtained through 
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isometric and isokinetic contractions tests. They reported a maximum difference of 3.3 

% for isometric measures and 4.8 % for isokinetic analyses [43]. Ursula Trinler et al. 

(2018), characterized the error between experimentally obtained EMG and the lower 

limb muscle activations estimated by OpenSim’s Static Optimization (SO) and 

Computed Muscle Control (CMC), in addition to its variability with subject walking 

speed. The OpenSim generic model gait2392 was scaled for each of ten individuals. 

The joint angles were determined by inverse kinematics and subsequently muscle 

activation by SO and CMC. Comparing them to the experimental muscle activation 

obtained from the EMG, the mean absolute error ranged from 15 % to 68 % for SO, 

and from 13 % to 69 % for CMC, being lower for slower walking speeds [44]. 

Different modelling approaches and definitions like joint axes orientations, 

DOFs, geometry, muscle parameters, number of muscles or segments and mass 

proprieties can interfere on the calculation of joint kinematics and further joint 

moments, which will consequently induce changes on predicted muscles’ force and 

activation [45,46]. 

In 2015, Casey A. Myers et al. accessed through probabilistic methods, the 

uncertainty propagation on consecutive stages of a gait simulation. Files with 

variations of model initial proprieties (mass, inertia, maximum isometric force, tendon 

slack length) and markers positions were introduced as input of OpenSim inverse 

kinematics, inverse dynamics and static optimization tools and used to generate 

sequential outputs of joint kinematics, moments, and muscle forces. The 5 % and 95 % 

confidence bounds were calculated for each of these metrics. The results 

demonstrated that the combined effect of all sources of uncertainty in simulation 

inputs had significant impact on outputs, with mean confidence bounds that ranged 

from 2.7° to 6.4° in joint kinematics, 2.7 N to 8.1 N m in joint moments, and 35.8 N to 

130.8 N in muscle forces. The authors pointed out that uncertainty associated to 

marker movement artifact and placement error had a major impact on joint kinematics 

and joint moments, while changes in muscle parameters strongly influenced muscle 

forces, and in turn joint moments were sensitive to body segment variations. 

Additionally, output sensibility was dependent on gait portion analyzed [47]. Sarah A. 

Roelker et al. (2017) investigated the difference between the outputs computed using 
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Opensim IK, RRA (Residual Reduction Algorithm) and SO of four musculoskeletal 

models, anthropometric scaled to the same subjects and with the same input data. The 

four models were distinct between each other, carrying different muscle parameters 

like maximum isometric force, coordinate system, number of body segments and 

DOFs. Significant differences were found between models on joint angles magnitude 

determined by inverse kinematics, because of disparities in definitions of pelvis neutral 

position and knee joint center, which contributed also to joint moments variations. In 

addition to influence of joint kinematics, the unequal peak isometric force values also 

contribute to variation amid models on peak muscle force and peak activation 

magnitude by a maximum of 151 % and 1500 %, apart from greater or lesser RMS error 

between experimental EMG and estimated muscle activation [46]. 

Besides model’s proprieties, the scaling process of a generic model to specific 

user conducted primary, may have impact on simulated joint kinematics and kinetics. 

The position of the model's markers and the dimensions of each body relative to the 

subject's real measures strongly influence the simulation output. Thomas K. Uchida et 

al. (2022), studied the influence of this uncertainty on OpenSim inverse dynamics 

calculation of joint angles, moments and power on gait models, revealing that a 

difference of only 2 cm between model´s and physical markers position can cause the 

estimated peak joint angle to vary up to 15.9°, moment to 26.6 Nm, and power by 75.9 

W [48]. 

As described, there is always an error associated to estimated quantities from 

simulations, that can be larger or smaller depending on the modeling variables and 

input parameters, thus whenever possible the predicted results should be validated 

against experimental measures and/or published studies, while also having special 

attention to error aroused from input data collected, like EMG, markers positions and 

joint angles from Mocap systems. 

 

4.2. User specific scaling 
 

One of the ways to minimize this error is by adjusting the model as close as 

possible to the individual user characteristics. Ideally, the musculoskeletal model 
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should be built based on the individual's own bone and muscle structure, resulting in a 

highly subject-specific model, but this is a time-consuming and costly process, so 

generic models with basis on cadaveric studies are usually chosen. Models known as 

scaled-generic, result from the adaptation of parameters from a generic model to a 

particular individual [49]. Contrary to subject-specific models that are built on user real 

geometry and muscle data derived from medical imaging, in scaled-generic models the 

generic body segments, joint orientations, and muscle architecture are adjusted to 

user by means of scale factors computed from markers coordinates, determined via 

optical trackers or IMUs systems [50]. 

 In 2020, James P. Charles et al.  assessed the accuracy of muscle torques 

obtained by lower limb models with individualised properties and models built using 

generic values from younger and older population. Muscle torques estimated by 

models derived from MRI were closer to the experimental values than those predicted 

by the generic models, where in the latter the rmse (root mean squared error) 

exceeded 50 % [49]. Riad Akhundov et al. (2022), evaluated the effects of personalized 

models on kinematics, kinetics and musculotendon (MTU) dynamics over generic 

models from the same person. The joints centres, segments mass, inertia and 

isometric peak force of the subject-specific models were constructed based on subject 

lower limb MRI images, while generic models MTU proprieties were retired from 

literature and geometry was linearly scaled to each subject. The results demonstrated 

significative differences on joint kinematics and moments between models, subject-

specific models presented lower muscle forces and activations, and more realistic fiber 

lengths and velocities, whereas in generic models, body segments, muscle masses and 

volumes were disparate from actual anatomy of the subject. Variability in maximum 

isometric muscle force between right and left limb was also observed in subject-

specific models, promoting its use for studying patients with partially affected 

members [50]. 

Although, the advantages of models obtained with the aid of medical imaging 

are several, such as more realistic model proprieties, better simulation predictions and 

denoted intra and inter-subject variability, due to costs and time issues, the scaled-
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generic models were the ones selected to be used in this work and as such the scaling 

of these models will be the focus of this review. 

 

4.3. Geometrical scaling 
 

The process of conversion of a generic model to a scaled-generic model, known 

as scaling, is associated to a reformulation of the model’s initial base proprieties of 

geometry, inertia, and muscles to a specific subject, involving changes at level of the 

body segments, joints and musculotendon units. Alterations at geometry level 

(segment lengths, joint orientations, muscle attachment points) strongly influence the 

simulation results. Thus, it is important to pay attention to the accuracy of the 

parameters provided. There are several formulations that allow to scale these 

geometrical parameters, they are roughly distributed as: i) linear scaling; ii) non-linear 

scaling; iii) optimization-based scaling. The first approach, the linear scaling, adjusts 

the body segments dimensions and musculotendon lengths properties linearly by 

means of scale factors, computed by the ratio between the distances of a given pair of 

model markers and the corresponding pair of experimental markers on a given trial. 

On the other hander hand, non-linear scaling methods map the subject bone geometry 

and muscle path, reconstructing the reference model by means of non-linear 

transformations [51,52]. Lastly, in optimization-based scaling methods, used by 

simulations software like OpenSim, the parameters to be scaled are computed by 

reducing the least-squares error between model’s markers positions and experimental 

markers positions that match the same anatomical landmark, over a selected time 

interval and motion [51]. 

Using two different non-linear scaling approaches to adapt the geometrical 

proprieties of a generic lower limb model, M. E. Lund et. al (2015) examined the 

output differences between these methods and linear scaling, and it´s sensitivity to the 

marker’s positions. On both approaches a subject-specific stick-figure model is 

constructed from a standing reference pose, where the joint axes and segment 

reference frames are defined, and markers are placed. Resorting to non-linear 

functions, the generic model is scaled by assimilating the geometric specifications 
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defined on the stick-figure model. The difference between the two methods lies in the 

characterization of the joint parameters. While in one of the methods the hip joint 

center is computed trough regression equations (anatomical landmark scale model), in 

the other the joint locations are optimized using additional functional joint trials 

(Kinematically scaled model). The linear scaling model predictions are strongly 

influenced by markers placement on the subject, contrary to the other two methods. 

However, in all approaches, the muscle moment arms, muscle force and joint contact 

force are dependent on the model markers positions.  The joint angles and moments 

profiles of the three models were similar with some differences on hip 

abduction/flexion moment, knee flexion moment, and ankle inversion/internal 

rotation angles and moments. Among them, the smallest variation in simulated knee 

joint contact force relative to measured forces from prosthesis was achieved on the 

Kinematically scaled model, although the results presented are not sufficient to 

conclude the superiority of a scaling method over the other [53]. 

      In 2019, P. Puchaud et. al, studied the influence of the scaling method on 

kinematics, trough lower limb models with geometrical proprieties scaled with five 

different approaches: i) linear scaling (segment length factors); ii) image-based scaling;  

iii) linear scaling with optimization-based scaling (optimization of segments lengths, 

joints axes orientations, only selected markers coordinates) ; iv) linear scaling with 

optimization-based scaling ( only optimization of joints axes orientations, all markers 

coordinates ); v) image-based-scaling + optimization-based scaling (only joints axes 

orientations and all markers coordinates). The segment lengths, joint orientations, 

joint angles of linear and linear-optimization models were compared with the values of 

the reference image-based model, drawing the conclusion that model scaled with 

linear scaling plus optimized marker coordinates and joint axes orientations presented 

the best results. Although these results encourage the use of optimization-based 

scaling, as it contributes to minimize kinematic errors, its use in segment length scaling 

may have to be reconsidered, has its values were significantly different from the 

reference imaging data, while having particular attention to constraints and initial 

guess defined for the algorithm [51]. 
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As mentioned before, since most scaling procedures rely on markers to access 

anatomical landmarks and joints axes, they are greatly influenced by placement of 

markers on subject body and the choices on model marker’s locations [53]. 

 

4.4. Strength scaling 
 

Apart from the geometrical scaling of a model, which involves the tuning of 

length, mass, inertia, orientations of segments, joints and musculotendon length 

proprieties to a subject’s anthropometry, a muscle actuator in a musculoskeletal 

model is also defined by its peak force, usually derived from cadaveric studies. This 

propriety is usually overlooked when scaling the generic model, as its influence on 

simulation results is also controversial. However, having as objective the development 

of a highly user-specific model, special attention should be given to this parameter. A 

literature search was performed in Scopus and PubMed databases with the following 

keywords and Boolean operators: "strength scaling” AND “OpenSim” OR 

“Musculoskeletal model"; "force scaling” AND “Musculoskeletal model". Out of the 

few results, only the more relevant for this work were chosen, i.e., articles with focus 

on upper-limb models, scaled-generic models, and influence of force scaling on 

simulation outputs. Therefore, out of the documents found, only 5 studies that met 

the selection criteria were chosen. 

 

4.4.1 Results 
 

Over the years, several studies have tried to scale this force using different 

methods and studied its influence on simulation output.  Overall, these methods are 

based on subject physical characteristics like height and weight, muscle volume, or 

optimization algorithms based on experimental measurements of force or 

torque (Table 3). 

Table 3- Strength scaling methods review 

Study Model Method Equipment Validation Outcomes 
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J.M. de Vet et al. 

(2021) [54] 

Thoracoscapular 

Delft shoulder 

and elbow model 

(TDSEM);138 

muscle-elements 

Muscle volume-

isometric force 

Force-transducer Maximum 

directional forces 

and moments 

measured during 

MVIC (Maximum 

voluntary 

isometric 

contraction) trials  

The applicability 

of this method in 

population with 

lower force or 

higher force 

generating 

capacities is not 

tested  

Charles et al. 

(2020) [49] 

Lower limb 

musculoskeletal 

models (pelvis, 

legs, feet); 92 

musculotendon 

unit actuators 

Muscle volume-

fiber length; 

Body mass  

  

Siemens 3.0 T 

Prisma scanner; 

Isokinetic 

dynamometer 

Joint torques 

measured in 

isokinetic and 

isometric 

conditions 

The scaling by 

mass and length 

did not reveal 

significative 

differences 

compared to 

generic models. 

Not tested for 

upper-limb 

models 

F. D. Maso et al. 

(2016) [55] 

Upper-limb EMG-

driven 

musculoskeletal 

model (scapula, 

arm, forearm); 

One DOF- 

flexion/extension 

of forearm. 4 

muscles units. 

Optimization-

based algorithm 

(joint torque) 

EMG sensors; 3D 

force and torque 

sensor (SH2653-

1106B3, Sensix, 

Poitiers, France) 

Force, torque, and 

muscle excitation 

(biceps brachii 

short head, 

brachioradialis, 

brachialis, triceps 

brachii long head) 

from three elbow 

MVIC. 

Using a specific 

assortment of 

MVIC trials, the 

smallest RMSE 

between 

predicted and 

computed joint 

torques was 7.4 

%.  
 

Correa and Pandy 

(2011) [56] 

Opensim generic 

gait model;  

10 body 

segments, 23 

DOF, 92 muscle-

tendon units 

Body mass- 

musculotendon 

length 

Motion capture 

system (VICON, 

Oxford Metrics 

Group, Oxford, 

UK, 100 Hz); 6 

strain-gauged 

force plates 

(AMTI, 

Watertown, MA, 

USA, 1000 Hz) 

peak isometric 

muscle forces 

computed from 

MRI  

The muscle forces 

patterns 

estimated by the 

scaled model 

were close to 

those predicted 

by the MR-based 

model during 

walking. Further 

research is 

needed to verify 

the correlation 

between muscle 

volume and body 

mass on upper- 

limbs models. 
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Goislard de 

Monsabert B. et 

al. 2017 [57] 

hand model (five 

fingers and wrist); 

23 DOF and 42 

muscles 

Optimization-

based algorithm 

(net joint 

moments) 

torque sensor 

(DR2112 50 Nm, 

SCAIME, Juvigny, 

France).                                                                 

Surface EMG data 

(MP150, Biopac 

Systems Inc., 

Goleta, CA) 

(Disposable 

Ag/AgCl surface 

electrodes 8 mm 

diameter). 

Correlation 

between 

measured net 

joint moments 

and estimated 

muscle moment 

capacities; Muscle 

activations and 

external forces 

determined from 

power grip tasks 

The method 

proposed was 

able to represent 

differences on 

force capacities 

between subjects. 

 

 

4.5. Mass-length, muscle volume-based methods 
 

Within the selected studies ,presented in the Table 3, three are based on the 

relationship between mass, muscle volume and muscle fiber-tendon length. 

The first method, translated by equation (1), was developed by Correa and Pandy 

(2011) and is based on mass-length relationship, by assuming that muscle volume is 

proportional to total body mass and muscle-fiber length to musculotendon length, 

scaling muscle´s maximum isometric force by the product of these variables and the 

generic peak isometric force defined on the model [56]. 

 

𝐹𝑚𝑎𝑥
𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹𝑚𝑎𝑥

𝑔𝑒𝑛𝑒𝑟𝑖𝑐
×

𝑀𝑠𝑐𝑎𝑙𝑒𝑑

𝑀𝑔𝑒𝑛𝑒𝑟𝑖𝑐
×

𝑙𝑀𝑇𝑈
𝑔𝑒𝑛𝑒𝑟𝑖𝑐

𝑙𝑀𝑇𝑈
𝑠𝑐𝑎𝑙𝑒𝑑        (1) 

 

The forces estimated by lower limb models scaled with this method and by 

models based on MRI images have shown same behaviour during walking and non-

expressive statically differences between values, where on both models the inertial 

properties, optimal muscle-fiber lengths and tendon slack lengths, joint locations and 
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orientations were adjusted to each subject by scaling factors based on body mass and 

MRI images, respectively. These outcomes present this method as a possibility for use 

when studying models of children but does not give guarantees for populations with 

other age groups, health status, motions, or models of other body parts [56]. 

Hernandez V. et al. 2015,2018 utilized this method to scale the peak muscle force on 

upper-limb musculoskeletal model, and N. Rezzoug et al. 2019, additionally, attributed 

a factor of 0.5 to this formulation for female subjects, having obtained favourable 

results on young healthy population [58, 59, 60]. 

Years later, James P. Charles et al. (2020), investigated the accuracy in 

estimating muscle torque with respect to experimental data of five lower limbs models 

containing different muscle properties. All models were constructed from MRI and 

Diffusion tensor imaging (DTI), featuring the same bone geometry and muscle paths, 

but with variations on muscle-force generating proprieties (optimal fiber length, 

tendon slack length, pennation angle and maximum isometric force). One of the 

models contained properties derived from MRI, while in the others these arose from 

generic data of elderly or young population, with two models for each population type. 

Regarding these four models, two of them, one for each population, use a mass law 

between the body mass of each subject (𝑀𝑠𝑢𝑏𝑗𝑒𝑐𝑡)  and the body mass of a generic 

model (𝑀𝑔𝑒𝑛𝑒𝑟𝑖𝑐) to scale maximum isometric force (equation 2), in addition to an 

optimization algorithm to determine the values of fiber and tendon length based on 

subject anthropometry [49]. 

 

𝐹𝑚𝑎𝑥
𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹𝑚𝑎𝑥

𝑔𝑒𝑛𝑒𝑟𝑖𝑐
× (

𝑀𝑠𝑢𝑏𝑗𝑒𝑐𝑡

𝑀𝑔𝑒𝑛𝑒𝑟𝑖𝑐
)

(2 3⁄ )

       (2) 

 

Overall, the knee muscles torque estimated by the models derived from MRI 

had the most accuracy. However, the models scaled with generic young data exhibit 

similar comportment and the rmse differences between them were smaller. Although, 

the optimization of muscle architecture derived from cadaveric studies of elder 

population contributed to improve the results, the scaling by mass, and optimization of 
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muscle force-length proprieties of young data did not reveal significative differences 

when compared with models with generic data without optimization, given that the 

subjects on this study had similar age and mass as the generic data selected. The 

results also suggested that these young generic models may only be reliable for people 

with lower strength, as the rmse value varied as per subject, reinforcing the need to 

develop individualised models capable of showing inter-subject variability [49].  

Lastly, in 2021, J.M. de Vet tried to scale strength proprieties based on the 

correlation between subject’s mean maximum force in isometric and/or isokinetic 

strength trials and total muscle volume, obtaining a subject-specific upper-limb model. 

The total upper muscle volume is estimated based on its linear relationship with mean 

maximum force, reported on a study by Bart Bolsterlee et al. (2015, [61]). This volume 

is used to calculate a scale factor in relation to total upper-extremity muscle volume of 

the generic model. The scaled muscle-element volume (𝑣𝑚,𝑠𝑐) is then obtained by 

multiplying this scale factor by the generic muscle-element volume. Finally, the specific 

peak isometric muscle force (𝐹𝑚𝑎𝑥
𝑚,𝑠𝑐) is determined by the product between scaled 

muscle volume (𝑣𝑚,𝑠𝑐), scaled muscle’s optimal fiber length (𝑙0
𝑚,𝑠𝑐), optimal pennation 

angle (𝛼0
𝑚) and muscle specific tension (𝜎𝑚𝑎𝑥

𝑠𝑐 ) , expressed on equation (3) [54]. 

 

𝐹𝑚𝑎𝑥
𝑚,𝑠𝑐 =

𝑣𝑚,𝑠𝑐 × cos(𝛼0
𝑚)

𝑙0
𝑚,𝑠𝑐 × 𝜎𝑚𝑎𝑥

𝑠𝑐   (3) 

 

Although it is not possible to experimentally validate the individualized muscle force, it 

may be a possible method to scale upper-extremity models, with exception for 

population with non-uniform muscle force distribution like elderly or athletes [54]. 

 

4.6. Torque based methods 
 

In addition to scaling methodologies based on the proportionality between 

mass and length, there are also studies that resorted to the use of optimization 



 
 

35 
 

algorithms, by computing factors or variables that meet the best value of the objective 

function, in this case the minimization of the moments.  

 In 2016, Fabien Dal Maso et al. estimated maximum muscle isometric force 

(equation 4) by multiplying physiological cross-sectional area (PCSA) of each muscle 

extracted from literature and a product of two variables ( 𝑤𝑚, 𝜎𝑚𝑎𝑥) ,computed trough 

minimizing the rmse between predicted joint torques (𝑄𝐸𝑀𝐺)  obtained via an 

electromyographic-driven musculoskeletal model and computed torques (𝑄𝐼𝑁𝑉) from 

inverse dynamics (equation 5) , using several combinations of elbow flexion and 

extension MVIC trials [55]. 

 

𝐹𝑚𝑎𝑥
𝑖𝑠𝑜 = 𝑤𝑚 × 𝜎𝑚𝑎𝑥 × 𝑃𝐶𝑆𝐴𝑚  (4) 

 

min
𝑤𝑚,𝜎𝑚𝑎𝑥

1

2
∫(𝑄𝐸𝑀𝐺(𝑡) − 𝑄𝐼𝑁𝑉(𝑡))

2
  (5) 

 

The best combination presented a rmse between predicted and computed 

torques of 7.4 %. This method decreased the error relative to previous ones. However, 

this study uses an upper-limb model with only one DOF of the elbow joint, not 

representing the physiological joint with 2 DOFs and true physiological values of 

muscle’s maximum muscle stress (𝜎𝑚𝑎𝑥) [55]. 

Goislard de Monsabert B. et al. (2017), also proposed an optimization algorithm 

(equation 6) centered on minimizing the difference between net joint moments 

estimated by a model (�̂�𝑒𝑟𝑔𝑜
𝑗

) and experimentally measured (𝑀𝑒𝑟𝑔𝑜
𝑗

) on MVIC trials of 

wrist and hand joints.  The estimated joint moments are function of muscle specific 

tension (𝜎𝑚𝑎𝑥), scaling factor per muscle group (𝑐𝑔), and the estimated mechanical 

activation in a certain task per muscle group (𝑎𝑚𝑒𝑐ℎ
𝑔

(𝑛)). The maximum isometric force 

(equation 7) is then individualized by multiplying the muscle PCSA value from literature 

and 𝜎𝑚𝑎𝑥  , 𝑐𝑔  resulting from the optimization procedure [57]. 
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𝑓[𝜎𝑚𝑎𝑥, 𝑐𝑔, 𝑎𝑚𝑒𝑐ℎ
𝑔

(𝑛)] = ∑{𝑀𝑒𝑟𝑔𝑜
𝑗 (𝑛) − �̂�𝑒𝑟𝑔𝑜

𝑗
[𝜎𝑚𝑎𝑥 , 𝑐𝑔, 𝑎𝑚𝑒𝑐ℎ

𝑔
(𝑛)]}

𝑛

2

  (6) 

𝐹𝑚𝑎𝑥
𝑚 = 𝑐𝑔 × 𝜎𝑚𝑎𝑥 × 𝑃𝐶𝑆𝐴𝑚  (7) 

 The quantities estimated, like muscle forces, with this force scaling method 

demonstrated strength variability between subjects, whether they are old, young or 

athlete, contrary to the initial model. Further investigation regarding the muscle force-

length relationship and its use in other types of musculoskeletal models is required 

since it was not included in this procedure [57]. 

     Despite the uncertainty of the impact of scale strength on simulation results, 

since the conclusions differ between studies and muscle strength is difficult to validate 

directly, it is one of the model muscle definition parameters that can be changed and 

contribute, even if slightly, to approximate more the generic model to a specific user. 

The body mass-length force scaling methods have a straightforward implementation 

and formulation. Notwithstanding, through them, it might be difficult to exhibit 

strength differences between subjects and muscles with opposite functions, 

additionally its efficacy depends on the geometrical parameters scaled previously. On 

the other side, the torque-based optimization algorithms may be more concise in 

reflecting inter and intra-subject muscle strength variability but are generally more 

delaying and highly dependent on algorithm formulation, constraints, and initial 

conditions. 

 

 

5. Methodology 

 

 

This chapter describes the scaling approach used in this study in order to adjust 

the generic model to a user-specific model and analyze the influence of scaling 

methods. Starting by scaling the geometrical proprieties according to subject´s 

anthropometric data, customization of the model strength is then performed by tuning 
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peak isometric muscle force value, culminating on a final model with both geometrical 

and force proprieties fit to each user.   

 

5.1. Scaling methodology 
 

The scaling of the model is an essential step to do before starting any 

simulation, as this process alters joint positions, muscles fibers and tendon proprieties 

that influence further calculations of muscle forces, activity, joint moments, and 

torque [32,34]. On this work, the conversion of a generic model to a user-specific 

model will be sub-divided in two major processes: geometrical scaling and force scaling 

(Figure 16). 

 

 

 

Figure 16 - Model scaling methodology. 

 

This methodology consists briefly in transforming the generic model in a 

geometrical scaled model trough geometrical scaling process by adjusting 

anthropometry, mass and musculotendon length proprieties using OpenSim Scale tool. 

Then this new model will serve as input to the force scaling process, in addition to the 

joint angles, external forces applied on the movement performed by the subject, and 

an additional variable k that is dependent on the force scaling method applied, 

described later in this chapter. Finalizing this process, the resultant output is a model 

specific to the user, in both anthropometry and strength. 
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5.1.1.  Geometrical scaling 
 

The geometric scaling is essential to compute precise orientation and position 

of joints and body segments, as well as its kinematics and proportions. In Opensim the 

model body segments are scaled uniformly or disparately for each direction of the 

coordinate system by applying scale factors, that may be obtained by measurement-

based or manual scaling. The scaling factors attained by the first scaling method 

correspond to the ratio between the distance of the model’s markers pairs and the 

distance of the pairs of experimental markers that refer to the same anatomical 

positions. Concluded the process of scaling the dimensions of the segments, the model 

virtual markers are moved to match the positions of the experimental markers in a 

static pose. This pose is computed by minimizing the least-squares error between 

virtual markers locations and experimental markers positions provided in a file, over a 

selected time interval. The weight of each marker and coordinate are used to 

determine how strongly the algorithm should try to match them. The greater the 

weight the stronger the algorithm should match the experimental value more closely 

[62,63]. The overall scaling process is represented in Figure 17. 

 

 

 

Figure 17 - Geometrical scaling process. 
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To perform the scaling process in OpenSim is required at least four inputs: a 

generic model containing markers; the experimental coordinates of markers from a 

static trial; the scaled model’s mass; a setup file with the definitions of the scale 

factors and weights to be assigned to the markers to perform markers-based 

optimization scaling. Additionally, can be include a file with experimental joint angles 

of the same trial.  

First, the markers x-y-z coordinates and motion joint angles were obtained by 

Xsens motion capture system, and further converted to Opensim file format (trc and 

mot) using Mokka (Mokka 0.6.2, Motion Kinematic & Kinetic Analyzer, Arnaud Barré 

2009-2013) and Matlab software (Matlab R2021b, The MathWorks, Inc.). Due to 

difference in the global coordinate frame on OpenSim and Xsens, it was necessary to 

apply a rotation matrix of -90 degrees around x-axis on marker position data. The 

model markers (28 markers) were placed and named in agreement with anatomical 

landmarks of Xsens markers for upper limbs, torso and head, since the model is only of 

the upper body (Figure 18). 

 

 

Figure 18 - Model´s markers. 

 

Opensim documentation recommends not use all markers from motion-

capture system to position and scale the model, only markers that match anatomical 

landmarks and functional joint centres [32,65]. Within the experimental markers, the 

ones that represented anatomical landmarks on arms, sternum, pelvis, and head were 
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chosen to track and model markers were to match these positions. Each marker was 

given a tracking weight of one since markers’ location reliability is the same for all 

(Table 4). The markers placed on hands and spinal column were excluded since they do 

not include movable joints on this model. 

 

Table 4 - Tracking markers and respective weight 

Marker Name Weight 

pIJ 1 
pPX 1 

pRightAcromion 1 
pLeftAcromion 1 

pTopOfHead 1 

pRightAuricularis 1 
pLeftAuricularis 1 

pRightASI 1 
pLeftASI 1 

pSacrum 1 

pRightArmLatEpicondyle 1 
pRightArmMedEpicondyle 1 

pRightUlnarStyloid 1 

pRightRadialStyloid 1 
pRightOlecranon 1 

pLeftArmLatEpicondyle 1 
pLeftArmMedEpicondyle 1 

pLeftUlnarStyloid 1 

pLeftRadialStyloid 1 
pLeftOlecranon 1 

 

 

5.1.2. Force scaling 
 

The OpenSim scale tool allows the adaptation of model´s geometry, mass and 

musculotendon length proprieties between subjects, however doesn´t consider the 

inter-subject variability of muscle strength. As described in chapter 4 there are various 

methods to scale the peak isometric force, ranging from a simple equation or more 

complex mathematical optimization. To test the influence of the scaling method on the 

determination of the muscle force/muscle activation, three methods presented in the 

literature were selected and additionally an optimization algorithm was developed. 

The formulations selected from literature are summarized on the Table 5. 
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Table 5 - Scaling methods from literature 

Author Formula 

James P. Charles et al. (2020) [49] 
𝐹𝑚𝑎𝑥

𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹𝑚𝑎𝑥
𝑔𝑒𝑛𝑒𝑟𝑖𝑐

× (
𝑀𝑠𝑐𝑎𝑙𝑒𝑑

𝑀𝑔𝑒𝑛𝑒𝑟𝑖𝑐
)

(2 3⁄ )

        

 

Correa and Pandy (2011) [56] 
𝐹𝑚𝑎𝑥

𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹𝑚𝑎𝑥
𝑔𝑒𝑛𝑒𝑟𝑖𝑐

×
𝑀𝑠𝑐𝑎𝑙𝑒𝑑

𝑀𝑔𝑒𝑛𝑒𝑟𝑖𝑐
×

𝑙𝑀𝑇𝑈
𝑔𝑒𝑛𝑒𝑟𝑖𝑐

𝑙𝑀𝑇𝑈
𝑠𝑐𝑎𝑙𝑒𝑑         

Steele et al. (2012b) [66] 
𝐹𝑚𝑎𝑥

𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹𝑚𝑎𝑥
𝑔𝑒𝑛𝑒𝑟𝑖𝑐

× (
𝐻𝑠𝑐𝑎𝑙𝑒𝑑

𝐻𝑔𝑒𝑛𝑒𝑟𝑖𝑐
)

2

        

 

Where (𝑀𝑠𝑐𝑎𝑙𝑒𝑑)  corresponds to the total body mass of each subject, and 

(𝑀𝑔𝑒𝑛𝑒𝑟𝑖𝑐) to the body mass of the generic model,  𝑙𝑀𝑇𝑈
𝑠𝑐𝑎𝑙𝑒𝑑  to the scaled 

musculotendon length, 𝑙𝑀𝑇𝑈
𝑔𝑒𝑛𝑟𝑖𝑐

 to musculotendon length before scaling the generic 

model, 𝐻𝑠𝑐𝑎𝑙𝑒𝑑 to the height of the subject and 𝐻𝑔𝑒𝑛𝑒𝑟𝑖𝑐 to height of the model by 

definition. Analyzing the three formulas it is possible to observe that the scaled 

maximum isometric force( 𝐹𝑚𝑎𝑥
𝑠𝑐𝑎𝑙𝑒𝑑) is given by means of multiplying a factor to the 

maximum isometric force originally set on the model (𝐹𝑚𝑎𝑥
𝑔𝑒𝑛𝑒𝑟𝑖𝑐

), whether it is 

determined by ratios of mass, height or mass-length.  

In addition to those methods a muscle activation-based optimization algorithm 

was developed, that can be resumed on the following flowchart. 
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Figure 19 - Flowchart of muscle activation-based optimization algorithm to scale model 
strength. 

 

This algorithm was implemented in Python ver. 3.8.13, having been created four main 

functions:  

• Compute muscle activation- estimates the muscle activation by providing the 

respective inputs: model, kinematics, loads, experimental EMG, initial and final 

time to solve the problem. 

• Compute scale factor- obtains the scale factor or scale factors trough solving of 

an activation-based optimization problem.  

•  Scale model – scale the strength proprieties of the given musculoskeletal 

model, multiplying the model´s peak isometric force by the obtained scale 

factor (s). 

•  Compute RMSE- calculates the mean RMSE between predicted and 

experimental activations of the supplied muscles. 
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 The algorithm starts by computing the initial muscle activations that may have 

originated the input kinematics and kinetics.  This type of muscle redundancy problem 

is solved using OpenSim Moco tool’s “MocoInverse”, which by providing the joint 

angles, forces, musculoskeletal model it is possible to find the resultant activation per 

frame rate for each model’s muscle, known as inverse dynamics methods. Within this 

tool is added other class, known as “MocoControlTrackingGoal” that will track the 

prescribed experimentally measured normalized EMG, by minimizing the sum of 

squared differences between experimental and predicted activations [67,68]. Once 

this step is completed, follows the determination of the scaling factor(s) that will 

change the maximum isometric force of the muscle, through an activation-based 

optimization algorithm, implemented using Python optimization library “pymoo” [69].  

An optimization problem is defined by the variables to be determined known as 

decision variables, in this case the scale factor(s), the objective function to be 

maximized or minimized, and by limits and constraints that condition it. Assuming that 

the normalized experimental activation (𝑎𝑒𝑥𝑝) (range from 0 to 1) per muscle can be 

expressed as the product between Moco’s estimated muscle activation (𝑎𝑒𝑠𝑡) and a 

factor (S), according to equation 1, then the difference between the two variables has 

to be equal to zero. This is the premise that defines the objective function of the 

optimizer, that is to minimize the squared difference between the sum of experimental 

and predicted activation of selected muscles (from 1 to n) over an instant (t) within the 

time interval selected (ti to tf), translated by equation 2. The scale factor of force (S) to 

compute, was defined as being bounded inferiorly and superiorly by values of 0.1 and 

10, respectively, which represents a variation of strength capacity between values that 

are 10 % weaker and 1000 % stronger than the original model.  

 

𝑎𝑒𝑥𝑝 = 𝑆 × 𝑎𝑒𝑠𝑡  <=>  𝑎𝑒𝑥𝑝 − 𝑆 × 𝑎𝑒𝑠𝑡 = 0        (1) 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ( ∑ 𝑎𝑒𝑥𝑝
𝑚𝑢 (𝑡)

𝑛

𝑚𝑢=1

− ∑ 𝑆𝑖 × 𝑎𝑒𝑠𝑡
𝑚𝑢(𝑡)

𝑛

𝑚𝑢=1

)

2

, 𝑚𝑢 = 1 … 𝑛, 𝑡 ∈ [𝑡𝑖, 𝑡𝑓]     (2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 0.1 ≤ 𝑆𝑖 ≤ 10,  𝑖 = 1 … 𝑁 
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𝐹𝑖𝑠𝑜,𝑚𝑎𝑥
𝑠𝑐𝑙 = 𝑆 × 𝐹𝑖𝑠𝑜,𝑚𝑎𝑥

𝑔𝑒𝑛
                                               (3) 

 

The optimal solution corresponds to the value of  scale factor (S) that generates 

the minimum difference between activations, this value (equation 3) will be then 

multiplied by isometric maximum force of previously geometrically scaled model 

(𝐹𝑖𝑠𝑜,𝑚𝑎𝑥
𝑔𝑒𝑛

)  obtaining then the scaled isometric peak force (𝐹𝑖𝑠𝑜,𝑚𝑎𝑥
𝑠𝑐𝑙 ).  This new force 

scaled model is then used as input to Moco, including the same motion, experimental 

activations and external loads defined initially, and muscle activations are again 

computed. Finally, the RMSE between this new estimated activation and experimental 

EMG is calculated and registered, and cycle is replicated until the initially defined 

number of iterations is reached. Each RMSE and scale factor(s) computed per cycle is 

registered and saved in a text file. 

In order to test the influence of scaling factor dimensions, i.e., scaling the 

model with a single unique factor for all the muscles or determine multiple scale 

factors assigned to each muscle, variations were made in the problem formulation, 

while keeping S as the variable to compute, the same variable bounds and premise of 

the objective function. Given this, three formulations were made:  

• First: one variable, single-objective optimization 

• Second: multivariable, single-objective optimization 

• Third: one variable, multi-objective optimization. 

 

In the first formulation, a single scale factor (S) is determined and used to scale all the 

muscles on the model, by minimizing the objective function translated by equation 4. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓(𝑆) = ( ∑ 𝑎𝑒𝑥𝑝
𝑚𝑢 (𝑡)

𝑛

𝑚𝑢=1

− ∑ 𝑆 × 𝑎𝑒𝑠𝑡
𝑚𝑢(𝑡)

𝑛

𝑚𝑢=1

)

2

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 0.1 ≤ 𝑆 ≤ 10                       (4) 
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The second problem involves the minimization of a single goal from the optimization of 

more than one decision variable, whose dimension (i) is corresponding to the number 

of muscles (mu) experimentally analysed (equation 5). This contributes to uneven 

scaling of the model, where each of the given group of factors will only be applied to 

the muscle that has been associated with it. 

  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓(𝑆) = ( ∑ 𝑎𝑒𝑥𝑝
𝑚𝑢 (𝑡)

𝑛

𝑚𝑢=1

− ∑ 𝑆𝑖 × 𝑎𝑒𝑠𝑡
𝑚𝑢(𝑡)

𝑛

𝑚𝑢=1

)

2

, 𝑚𝑢 = 1 … 𝑛, 𝑖 = 1 … 𝑛      

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 0.1 ≤ 𝑆𝑖 ≤ 10                      (5) 

 

The third formulation (equation 6) is similar to the first one with the respect of number 

of unknown variables, however it differs on the number of objectives to minimize. 

Unlike, the other formulations presented above that are based on the experimental 

and estimated muscle activations of a single movement executed by the subject, this 

problem is projected considering the different stimulations of the muscles according to 

the mobility of the joint in multiple directions. Therefore, the number of goals (i) is 

defined by the number of motions selected to analyse, which result on a single 

solution that represent the minimum possible difference between activations for that 

association of movements. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑓𝑖(𝑆) = ( ∑ 𝑎𝑒𝑥𝑝
𝑚𝑢 (𝑡)

𝑛

𝑚𝑢=1

− ∑ 𝑆 × 𝑎𝑒𝑠𝑡
𝑚𝑢(𝑡)

𝑛

𝑚𝑢=1

)

2

, 𝑖 = 1 … 𝑗      

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 0.1 ≤ 𝑆 ≤ 10                       (6) 
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The addition of these three optimization-based proposals with the mass-length 

approaches addressed in the beginning of this subchapter, gives a set of six force 

scaling methods to analyse on this work, summarized on the table below. To 

simplifying the process of data discussion, for each method were attributed letters of 

identification. 

 

Table 6 - Force scaling methods 

Scaling method Name Formula 

Mass  M 
𝐹𝑚𝑎𝑥

𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹𝑚𝑎𝑥
𝑔𝑒𝑛𝑒𝑟𝑖𝑐

× (
𝑀𝑠𝑐𝑎𝑙𝑒𝑑

𝑀𝑔𝑒𝑛𝑒𝑟𝑖𝑐
)

(2 3⁄ )

 

 

Mass-length ML 
𝐹𝑚𝑎𝑥

𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹𝑚𝑎𝑥
𝑔𝑒𝑛𝑒𝑟𝑖𝑐

×
𝑀𝑠𝑐𝑎𝑙𝑒𝑑

𝑀𝑔𝑒𝑛𝑒𝑟𝑖𝑐
×

𝑙𝑀𝑇𝑈
𝑔𝑒𝑛𝑟𝑖𝑐

𝑙𝑀𝑇𝑈
𝑠𝑐𝑎𝑙𝑒𝑑  

Height H 
𝐹𝑚𝑎𝑥

𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹𝑚𝑎𝑥
𝑔𝑒𝑛𝑒𝑟𝑖𝑐

× (
𝐻𝑠𝑐𝑎𝑙𝑒𝑑

𝐻𝑔𝑒𝑛𝑒𝑟𝑖𝑐
)

2

 

Muscle activation-based 

optimization (single variable-

single objective) 

SS 𝐹𝑚𝑎𝑥
𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹𝑚𝑎𝑥

𝑔𝑒𝑛𝑒𝑟𝑖𝑐
× 𝑆 

𝑚𝑖𝑛 𝑓(𝑆) 

Muscle activation-based 

optimization (multi variable-

single objective) 

MS 𝐹𝑚𝑎𝑥
𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹𝑚𝑎𝑥

𝑔𝑒𝑛𝑒𝑟𝑖𝑐
× 𝑆𝑖 , 𝑖 = 1 … 𝑛 

𝑚𝑖𝑛 𝑓(𝑆) 

Muscle activation-based 

optimization (single variable- 

multi objective) 

SM 𝐹𝑚𝑎𝑥
𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐹𝑚𝑎𝑥

𝑔𝑒𝑛𝑒𝑟𝑖𝑐
× 𝑆 

 min 𝑓𝑖 (𝑆), 𝑖 = 1 … 𝑛 

 

 

 

5.2. Experimental validation 
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With the purpose of studying the influence of these scaling methods on 

simulation results, an experimental protocol was formulated. The protocol was divided 

into two parts, the first half was defined with the goal of calibrating the 

musculoskeletal model, while the second half concerns the validation of the force 

scaling approaches. 

 

5.2.1. Participants 
 

The study sample was non-probabilistic, according to the selection criteria: age 

between 18-40 years; without health issues at neurological, cardiovascular, or 

musculoskeletal level. Five healthy participants were recruited to the experiment 

(gender: 3 females and 2 males, age: 23.20 ± 3.49 years, height: 1.66 ± 0.11 m, body 

mass: 60.80 ± 12.74 kg), and respective personal and anthropometric data (age; 

height; body mass; gender; upper arm length; forearm length; shoulder width) were 

registered (Table 7). All subjects gave their informed consent for inclusion before their 

participation.  

 

Table 7 - Age (years), Gender (female/male), age (years), body height (m) and body mass (kg) 
for each participant 

Subject  Age 

 (Years) 

Gender 

(F/M) 

Body Height  

(m) 

Body Mass 

(kg) 

1 23 F 1.612 49 

2 26 F 1.7 63 

3 32 M 1.74 68 

4 24 M 1.76 77 

5 26 F 1.5 47 
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5.2.2. Data acquisition 
 

The joints kinematics were recorded using 17 Xsens IMUs sensors (Xsens MTw 

Awinda, Xsens Technologies, Enschede, The Netherlands) on upper and lower body, 

with a sampling rate of 60 Hz. They were placed on the designated suit and fixed in 

place with hook and loop straps and duct tape on the head, sternum, right shoulder 

blade, left shoulder blade, left upper arm, right upper arm, left forearm, right forearm, 

right hand, left hand, pelvis, left upper leg, right upper leg, left lower leg, right lower 

leg, left foot, right foot. Muscle electrical activity was captured by wireless surface 

EMG sensors (Delsys TrignoTM Avanti Platform, Massachusetts, USA), with a sampling 

frequency of 2100 Hz. A total of eight sensors were placed according to SENIAM [70] 

positioning recommendations, for each one of the eight muscles: Biceps brachii (two 

heads), Triceps long head, Triceps lateral head, Brachioradialis, Pectoralis major, 

Deltoid anterior, Deltoid middle and Deltoid posterior. The force exerted by the 

participants during the first part of the protocol, was translated by a strain gauge load 

cell capable of reading a weight value up to 20 kg in one-direction while in 

compression and tension, and subsequent characteristics: Repeatability Error Max: ± 

10 g; Cell Non-Linearity Max: 10 g; Cell Hysteresis Max :10 g. Accoupled with a load cell 

amplifier (HX711) 24-bit analog-to-digital converter (ADC) with 10 samples per second 

output data rate and gain of 12. This amplifier was connected to an 8-bits 

microcontroller (ATMEGA8) by a two-wire interface (clock and data), as shown in 

Figure 20. The trials were executed after synchronization of EMG, Xsens and force 

acquisition systems. 
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Figure 20 - Load cell amplifier (HX711) with microcontroller (ATMEGA8) circuit diagram [71,72]. 

 

5.2.3. Experimental Procedure 
 

Firstly, after skin preparation and placement of EMG sensors (Figure 21), MVC 

(maximum voluntary contractions) were performed with the dominant arm for each 

one of the eight muscles selected to be analyzed. 3 repetitions with a 60 s interval in 

between were executed for each muscle. Terminated the MVIC acquisition, IMUs 

sensors were placed on the respective suit (Xsens MTw Awinda, Xsens Technologies, 

Enschede, The Netherlands) worn by the subject (Figure 21). The Xsens full-body 

model was then configured for each participant by the providing anthropometric 

measures, and further calibrated on MVN Studio software (MVN studio software, 

Xsens Technologies). 
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Figure 21 - Placement of EMG sensors (left) and Xsens suit with IMUs sensors (right). 

 

Then, the protocol was executed sequentially, according to following order: 1) Elbow 

flexion, shoulder flexion and shoulder abduction movements; 2) point to point tasks. 

The first part of the protocol aims to scale the strength of the model for each subject, 

consisting in the measurement of muscle myoelectric activity and total muscle force 

exerted during the execution of three different isolated upper limb movements: elbow 

flexion, shoulder flexion and shoulder abduction.  
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Figure 22 - Part I of protocol. Start pose (A), Elbow flexion (B), Shoulder flexion (C), Shoulder 
abduction (D). 

 

As exemplified on Figure 22 , the survey participants start on n-pose (shoulder flexion: 

0°, shoulder abduction: 0°, elbow flexion: 0°) and maintain this posture 5 seconds, 

then after this period the maximum force is exerted with dominant arm, holding 3 

seconds, while performing the isometric movement of the upper limb (shoulder 

flexion: 90° or shoulder abduction: 90°, elbow flexion: 90°) with upright posture, 

finishing with the return to the neutral position. Each movement is repeated five 
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times, with an interval of 60 seconds amid each recurrence, and 2 minutes between 

movements, giving a total of 15 trials per subject. 

The second half of the protocol aims to validate the force scaling methods 

presented earlier, through recording of EMG signals during a continuous motion with a 

diversified shoulder joint mobility. This part of the protocol was based on a study by 

Robert M. Mira et al. (2021) [73]. The setup consists of circumference with a radius of 

30 cm with nine red points (Figure 23), that represent the circumference center (O), 

the four cardinal directions (N, S, W, E) and four intercardinal directions (NE, NW, SE, 

SW) of compass rose. This circumference was secured on the wall so as to face the 

subject while executing the exercise in a standing position. 

 

 

Figure 23 - Part II of protocol. Circumference of radius 30 cm and center O. 

 

The first 5 seconds are identical to the first part of the protocol, staring with 

same pose, afterwards the subjects lift the dominant arm, where the EMG sensors are 

placed, moving pointer to the center of target set (O) and keep it two seconds, 
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proceeding then to appoint to target (NE) and maintain that position for two seconds, 

then return to center (O) and hold two seconds with straight posture. Repeating the 

same procedure to the next targets (E, SE, S, SW, W, NW, N) in clockwise direction, 

with the last being (O). This exercise is reproduced three times, with a break of 60 s 

between each repetition. 

 

5.2.4. Data processing 
 

The force data was registered by software CleverTerm [74] through 

communication of serial port from microcontroller to computer, and posteriorly saved 

on a text file with time and weight data columns. This file was then formatted 

according to Opensim file structure (force, application point, torque) and resampled to 

60 Hz with self-made python code. The joint angles and virtual markers were exported 

in MVN Analyze (Xsens Technologies, Enschede, The Netherlands) to mvnx and c3d file 

format, respectively. Then, the mvnx files were used as input of a MATLAB (version 

R2021a) script, which converts Xsens joint angles to Opensim coordinate system and 

exports the resultant angles on a mot file, with header, column labels and data 

formatted according to Opensim and model’s joint definitions.  The markers 3D 

coordinates were exported to trc file trough import of the c3d files on Mokka software, 

and further transformed to the model coordinate system in the OpenSim interface. 

The raw EMG signals were exported using EMGworks® Analysis (EMGworks®, Delsys) 

and normalized with the MVC signals via a custom python program. 

 

5.2.5. Statistical analysis 
 

The statistical analyses were performed using JASP software version 0.16.4 (JASP, 

University of Amsterdam, Netherlands).  To study the differences between force 

scaling approaches, paired samples t-tests were performed for parametric data. The 

respective assumptions were evaluated: (1) data Independence (2) data normality, 

trough Shapiro-Wilk test; (3) existence of outliers. The equivalent non-parametric 
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Wilcoxon signed-rank test was executed when assumptions were violated. The 

statistical tests were conducted with a confidence level of 95% (α=0.05). 

 

 

6. Results and Discussion 
 

 

6.1. Preliminary trials and results  
 

Experimental data, namely joint angles, external forces, and EMG were 

collected from one individual (gender: female, age: 26 years, height: 1.50 m, body 

mass: 47 kg) while executing isometric elbow flexion, and further used as input data 

for simulation software tests. The experimental protocol was similar to the first part of 

the protocol presented in chapter 5, but only executed for the elbow flexion 

movement. Starting by adjusting the geometrical proprieties of the generic upper body 

model to the subject, a muscle redundancy problem was solved using MocoInverse 

tool by providing the corresponding kinematics and external loads files. The time 

interval defined for running the simulation corresponds to the duration of the 

isometric contraction, in which the elbow joint angle is constant, and the maximum 

force is exerted. The tool prediction accuracy was then explored by comparing the 

obtained muscle activation against measured EMG.  

 The experimental (orange) and estimated activations (blue) curves of nine 

muscles: Deltoideus Anterior, Deltoideus Medius, Deltoideus Posterior, Pectoralis 

Major, Biceps Brachii (long head), Biceps Brachii (short head), Brachioradialis, Triceps 

Brachii (long head), Triceps Brachii (lateral head), are shown on Figure 24. To establish 

a comparison between values, the experimental activations were normalized to peak 

value of MVC for each of the nine muscles selected, where both heads of Biceps 

Brachii were assumed to exhibit the same experimental activation. The computation 
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Time (s) 

time for the estimated activations during a trial of 3.5 seconds was 47 minutes using 

an intel® core ™ i5-4210U CPU @ 1.70 GHz 2.40 GHz. 

 

 

 

Figure 24 - Normalized experimental (orange) and estimated (blue) muscle activations during 
execution of maximum isometric force (6.0 s to 9.5 s), obtained by MocoInverse tool. 

 

Observing both curves for each muscle, although some similarities can be 

found between curves for muscles like Deltoideus Anterior, Deltoideus Medius, Triceps 

Brachii (long head), for majorities of muscles the predicted profile deviates 

considerably from the experimental one. To quantify this difference, the RMSE 

between experimental and predicted activation was computed for each muscle along 

with the mean and standard deviation values (Table 8). 

 

Table 8 - RMSE values of the nine muscles. Mean and standard deviation (std) of RMSE values 

Muscle RMSE Mean ± Std 

 Deltoideus Anterior 0.19085  
 
 
 

0.28344 ± 0.17062 
 

 Deltoideus Medius 0.13127 

 Deltoideus Posterior 0.25575 

 Pectoralis Major 0.36255 

 Biceps Brachii (long head) 0.39929 

 Biceps Brachii (short head) 0.50538 
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Time (s) 

 Brachioradialis 0.17091 

 Triceps Brachii (long head) 0.0243 

 Triceps Brachii (lateral head) 0.5107 

 

As it is also possible to verify in the graphs in Figure 24, the results in Table 8 

reveal that the estimates of muscle activations of the Biceps Brachii (short head) and 

Triceps Brachii (lateral head) muscles are the furthest from reality, with a maximum 

RMSE around 51 %, while the minimum was 2.43 % for Triceps Brachii (long head) 

muscle. Demonstrating overall large differences between the measured activations 

and the predicted ones by MocoInverse, with a mean RMSE of (28.34 ± 17.06) %. 

 Additionally, it was studied the influence on the results when adding 

experimental EMG tracking to the initial algorithm. The muscle activations were 

computed with the same model, interval of time, input kinematics and forces files but 

with inclusion of a cost term for the reference experimental EMG, which involves the 

preparation of additional input file that contains the experimental measured 

normalized activations of the nine muscles selected, the solution is then found with 

the goal of minimizing the differences between predicted and reference activations.  

The problem was solved in 2 h 43 min with the same CPU, being the resultant muscle 

activation curves presented in Figure 25, and the respective RMSE values in Table 9. 
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Figure 25 - Normalized experimental (orange) and estimated (blue) muscle activations during 
execution of maximum isometric force (6.0 s to 9.5 s), obtained by MocoInverse with EMG 
tracking. 

 

Table 9 - RMSE values of the nine muscles. Mean and standard deviation (std) of RMSE values 

Muscle RMSE Mean ± Std 

 Deltoideus Anterior 0.09636  
 
 
 

0.06599 ± 0.04236 
 

 Deltoideus Medius 0.02036 

 Deltoideus Posterior 0.02488 

 Pectoralis Major 0.07882 

 Biceps Brachii (long head) 0.1378 

 Biceps Brachii (short head) 0.10828 

 Brachioradialis 0.05902 

 Triceps Brachii (long head) 0.0497 

 Triceps Brachii (lateral head) 0.01869 

 

Analyzing the graphs of Figure 25, it is possible to verify that predicted 

activation profile and peak value are closer to the experimental ones, especially for 

Triceps Brachii (lateral head), Deltoideus Medius and Deltoideus Posterior muscles, as it 

also possible to confirm trough their RMSE values (Table 9), with errors less than 2.5 %. 

Conversely to Biceps Brachii muscles in which the maximum error is detected with a 

value of 13.8 %, although the mean error is (6.60 ± 4.24) %. Comparing both raw 

MocoInverse and MocoInverse with EMG tracking results it possible to conclude that 

addition of the experimental activation data to the objective function contributes to a 

better muscle activation prediction closer to reality, with an error decrease of 23 %. 

Since the inclusion of EMG tracking contributes to better results, this algorithm was 

selected as the main solver for the force scaling procedures calculations that comprises 

muscle redundancy problems. 

 

6.2. Final trials and results  
 

After data processing, the scaling process was then initialized for each of the 

subjects, starting with geometrical scaling. Utilizing Opensim Scaling tool (Opensim 

version 4.3), the geometrical upper body model was scaled by introducing the 
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respective files of markers positions and weights, motion, and total mass value of the 

scaled model.  This last parameter was defined as subject total upper body mass, 

including the upper extremities, head, torso, and pelvis, and was determined by 

multiplying subject’s total mass by the percentage corresponding to the upper mass of 

the human body, which was 58.17 % for female and 60.8 % for male [75]. The resultant 

marker error, root mean square (RMS) error and maximum error, for each scaled 

model is presented on Table 10. 

 

Table 10 - Marker error after model scaling 

Marker error 

RMS error/(cm) Maximum error/(cm) 

Subject 1 1.392 2.877 

Subject 2 1.630 2.749 

Subject 3 1.404 2.811 

Subject 4 1.476 2.741 

Subject 5 1.203 1.979 

 

These errors values are slightly above than desired, as Opensim documentation 

recommends a maximum marker error less than 2 cm for bony landmarks and an 

RMSE less than 1 cm, which can affect further calculations. These errors values can be 

due to difference in definitions amid model and subject body marker’s locations, 

choices of scaling factors or scaling markers pairs for each model segment on the 

scaling tool, IMUs displacement during data collection or electromagnetic 

interferences that affect the motion tracking accuracy and contribute to deviations 

from the actual dimensions of the segments and location of anatomical landmarks or 

joint centers. 

Once the geometric scaling process was completed, the calculation of force 

scaling factors to be applied to each subject´s scaled model was carried out.  As 



 
 

59 
 

mentioned in Chapter 5, a factor or several factors are calculated by each of the six 

methods with the aim of adjusting the isometric peak muscle force and thus obtain a 

strength scaled model. From the first part of the experimental trials, encompassing 15 

trials, the data was processed and from the five trials of each joint movement, the one 

that presented the maximum exerted force value was selected to be used as the basis 

for the scaling factor calculations (Table 11). From this trial, the kinematics, external 

loads, torques, and EMG files were formatted according to the Moco Opensim 

specifications, and subsequently with the addition of the scaled geometrical model, 

were used as input data to compute muscle activation using MocoInverse with EMG 

tracking. The reaction force was assumed to be unidirectional (y-axis) and pointing 

downward (negative), and the resulting torques were calculated by multiplying the 

force by the distance from the force application point to the elbow or shoulder joint. 

 

Table 11 - Maximum value of force exerted (N) and respective trial for each subject and 
movement 

 Elbow flexion Shoulder flexion Shoulder abduction 

Subject Trial Maximum 

force value/(N) 

Trial Maximum 

force value/(N) 

Trial Maximum 

force value/(N) 

1 1 111.277 

 
5 53.156 

 
5 44.218 

 

2 5 93.350 

 
5 75.484 

 
5 75.891 

 

3 4 132.523 

 
2 113.234 

 
2 107.606 

 

4 2 191.690 

 
1 131.837 

 
3 135.691 

 

5 4 170.220 

 
2 76.175 

 
1 59.802 
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Before testing the several force scaling algorithms, the muscle redundancy 

problem is initially solved with the musculoskeletal model geometrically scaled, but in 

which a factor is applied to strengthen the model to guarantee the convergence of the 

solver within the defined tolerance, that is, so that does not occur saturation of muscle 

recruitment, characterized on the simulation by continuous muscle activation value 

without variation on response.  The strength factor (Table 12) chosen for each subject 

was defined as the minimum value that ensures the achievement of the optimal 

solution in any of the three movements. 

 

Table 12 - strength factor selected for each subject 

Subject Strength factor 

1 2 

2 6 

3 5 

4 10 

5 3 

 

It should be noted that this value is a multiplication factor with respect to the original 

strength properties of the generic model. Starting by computing the muscle activations 

with the models already strengthened the several force scaling algorithms were 

computed and applied to the models, culminating on the calculation of the RMSE 

between the experimental activations and the ones predicted by the models. The 

interval of time selected to run the simulation encompassed the period where the 

peak force was exerted by the subject, being the joint angle value constant and 

maximum. Residual actuators that account for dynamic discrepancies between the 

model and the measured motions and forces were added to the model on pelvis body. 

All simulations were done under the following MocoInverse tool settings:  
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• Solver: “MocoCasADiSolver “ 

• Maximum iterations number: 1000 

• Convergence tolerance: 0.001 

• Constraint tolerance: 0.001 

• Mesh interval: 0.02 

 

In the case of the optimization-based methods (SS, MS, SM) the muscle activations 

predicted by the model with only the application of the initial strength factor were 

used as initial guess to compute the scale factor(s), with the goal of minimizing the 

differences between experimental and predicted activations.  For the multi-objective 

optimization method (SM) the activations predicted for all the three movements were 

added to the objective function, meanwhile in the single-objective optimization 

methods (SS and MS) the calculation of the factor(s) was based on the differences in 

activations of the movement in which the greatest error was observed, in this case 

being elbow flexion for subject 1 and shoulder flexion for the others. 

 The RMSE (mean and standard deviation) values for all six force scaling 

methods (M, ML, H, SS, SM, MS) and for the model with only the initial strength factor 

applied (O) are presented on the Tables 13,14 and 15 for each one of the three 

movements (elbow flexion, shoulder abduction, shoulder flexion). For the 

optimization-based algorithms (SS, SM, MS) the RMSE is correspondent to the 

minimum value computed within the ten cycles completed. This number was defined 

considering the balance between the computer time required to run the algorithm, 

namely to estimate muscle activation, and finding an optimal solution, i.e., a scaling 

factor that minimizes the error. 

 

Table 13 - RMSE (mean and standard deviation) values of the scaling methods for elbow 
flexion 

Elbow Flexion 

Subject Method 

1 O M ML H SS SM MS 
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0.1522 

± 

0.0953 

0.1129 

± 

0.0506 

0.0683 

± 

0.0405 

0.0874 

± 

0.0524 

0.1098 

± 

0.0492 

0.0988 

± 

0.0618 

0.0719 

± 

0.0427 

RMSE 

(Mean 

± Std) 

         

2 

  

0.0292 

± 

0.0245 

0.0307 

± 

0.0254 

0.0318 

± 

0.0299 

0.0287 

± 

0.0241 

0.0334 

± 

0.0269 

0.0308 

± 

0.0255 

0.0463 

± 

0.0476 

RMSE 

(Mean 

± Std) 

         

3 

  

0.0206 

± 

0.0213 

0.0211 

± 

0.0225 

0.0183 

± 

0.0171 

0.0206 

± 

0.0211 

0.0245 

± 

0.0263 

0.0205 

± 

0.0193 

0.0450 

± 

0.0650 

RMSE 

(Mean 

± Std) 

         

4 

  

0.0121 

± 

0.0078 

0.0121 

± 

0.0078 

0.0107 

± 

0.0059 

0.0121 

± 

0.0079 

0.0123 

± 

0.0080 

0.0123 

± 

0.0082 

0.0081 

± 

0.0106 

RMSE 

(Mean 

± Std) 

         

5 

  

0.0659 

± 

0.0423 

0.0788 

± 

0.0524 

0.0463 

± 

0.0284 

0.0535 

± 

0.0330 

0.0581 

± 

0.0362 

0.0656 

± 

0.0421 

0.0751 

± 

0.1145 

RMSE 

(Mean 

± Std) 

 

 

Table 14 - RMSE (mean and standard deviation) values of the scaling methods for shoulder 
abduction 

Shoulder Abduction 

Subject Method 

1 O M ML H SS SM MS 
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0.0215 

± 

0.0231 

0.0263 

± 

0.0175 

0.0658 

± 

0.0482 

0.0541 

± 

0.0383 

0.0198 

± 

0.0145 

0.0362 

± 

0.0261 

0.0666 

± 

0.0710 

RMSE 

(Mean 

± Std) 

         

2 

  

0.0888 

± 

0.0896 

0.0855 

± 

0.0879 

0.0922 

± 

0.0882 

0.0898 

± 

0.0901 

0.0807 

± 

0.0856 

0.0852 

± 

0.0877 

0.0976 

± 

0.1181 

RMSE 

(Mean 

± Std) 

         

3 

  

0.0136 

± 

0.0086 

0.0126 

± 

0.0082 

0.0154 

± 

0.0094 

0.0138 

± 

0.0087 

0.0096 

± 

0.0073 

0.0142 

± 

0.0089 

0.0246 

± 

0.0316 

RMSE 

(Mean 

± Std) 

         

4 

  

0.0516 

± 

0.0450 

0.0516 

± 

0.0450 

0.0672 

± 

0.0688 

0.0513 

± 

0.0447 

0.0505 

± 

0.0437 

0.0506 

± 

0.0413 

0.0255 

± 

0.0329 

RMSE 

(Mean 

± Std) 

         

5 

  

0.0231 

± 

0.0203 

0.0263 

± 

0.0243 

0.0193 

± 

0.0154 

0.0201 

± 

0.0164 

0.0212 

± 

0.0179 

0.0207 

± 

0.0183 

0.0167 

± 

0.0121 

RMSE 

(Mean 

± Std) 

 

 

Table 15 - RMSE (mean and standard deviation) values of the scaling methods for shoulder 
flexion 

Shoulder Flexion 

Subject Method 

1 O M ML H SS SM MS 
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0.0644 

± 

0.0463 

0.0351 

± 

0.0239 

0.1259 

± 

0.1045 

0.0896 

± 

0.0699 

0.0397 

± 

0.0265 

0.0603 

± 

0.0434 

0.0544 

± 

0.0377 

RMSE 

(Mean 

± Std) 

         

2 

  

0.2391 

± 

0.1555 

0.2048 

± 

0.1339 

0.2780 

± 

0.1745 

0.2523 

± 

0.1658 

0.1551 

± 

0.1219 

0.2014 

± 

0.1322 

0.2274 

± 

0.1503 

RMSE 

(Mean 

± Std) 

         

3 

  

0.1331 

± 

0.1528 

0.1187 

± 

0.1364 

0.1667 

± 

0.1947 

0.1350 

± 

0.1550 

0.0687 

± 

0.0746 

0.1405 

± 

0.1613 

0.0245 

± 

0.0645 

RMSE 

(Mean 

± Std) 

         

4 

  

0.1733 

± 

0.1111 

0.1733 

± 

0.1111 

0.1600 

± 

0.1570 

0.1714 

± 

0.1097 

0.1648 

± 

0.1448 

0.1641 

± 

0.1441 

0.1071 

± 

0.1031 

RMSE 

(Mean 

± Std) 

         

5 

  

0.1706 

± 

0.0744 

0.1474 

± 

0.0713 

0.2112 

± 

0.1174 

0.2081 

± 

0.1092 

0.1925 

± 

0.0918 

0.1713 

± 

0.0748 

0.0542 

± 

0.0694 

RMSE 

(Mean 

± Std) 

 

 

Observing the results, it can be seen some variations on the RMSE between 

methods that may contribute unfavorably or favorably when compared to error that 

does not involve its application (O). Among them, the greater variations were reached 

by method MS and SS on the shoulder flexion, as well for method ML, though the error 

is greater. In relation to methods M and H, with respect to subjects 2, 3, and 4 there 

are situations in which the value is equivalent to the initial error value (O), which is 
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likely, because the mass and the height values of the generic model are nearly the 

same to those of these subjects, resulting in a scale factor of approximately the value 

one, which does not occur in subjects 1 and 5 who have notably different body 

properties. Method SM also does not influence the error remarkably, as it tries to 

minimize the differences of the activations between the three movements.  

To assess the influence on the initial error value (O) of the presented six 

methods (M, ML, H, SS, SM, MS), a one-tailed paired samples test was carried out with 

the null hypotheses that the mean difference between the pair is equal or greater than 

zero. First, the assumptions of the parametric paired samples t-test for each pair were 

evaluated: (1) the differences between the two set of values are independent of one 

another; (2) The differences between the matched pairs should be approximately 

normally distributed; (3) No outliers in the differences between the two groups.  This 

analysis was executed for each of the three movements. 

 Assured the independence of the subjects and measurements, the normality 

was assessed through Shapiro-Wilk test for each pair, being the results presented in 

Table 16. 

 

Table 16 - The p-values of the normality tests for all pairs (M-O, ML-O, H-O, SS-O, MS-O, SM-O) 
respective to the motion (Elbow flexion, Shoulder flexion, Shoulder abduction), considering a 
significance level of 5 %. The significant values (p-value < 0.05) appear in bold 

Test of Normality (Shapiro-Wilk) 

Elbow flexion Shoulder flexion Shoulder abduction  
p 

 
p 

 
p 

M-O 0.046 M-O 0.747 M-O 0.849 

ML-O 0.019 ML-O 0.333 ML-O 0.164 

H-O 0.005 H-O 0.708 H-O 0.002 

SS-O 0.024 SS-O 0.867 SS-O 0.121 

MS-O 0.048 MS-O 0.205 MS-O 0.852 

SM-O < 0.001 SM-O 0.245 SM-O 0.029 

 

The assumption of normality is violated by all the groups in elbow flexion and 

H-O, SM-O groups in shoulder abduction, the remaining pairs didn´t show a significant 

difference (p<0.05) suggesting that the pairwise differences are normally distributed.  
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For these pairs, then existence of outliers between its differences was analysed trough 

boxplots.  

 

 

Figure 26 - Boxplots for M-O, ML-O, H-O, SS-O, MS-O, SM-O in shoulder flexion. 

 

 

 

Figure 27 - Boxplots for M-O, ML-O, H-O, SS-O, MS-O, SM-O in shoulder abduction. 

 

In case of shoulder flexion (Figure 26), It is verified the existence of outliers in 

SM-O and ML-O groups, and in ML-O, SS-O, MS-O in shoulder abduction (Figure 27) 
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violating the assumption of inexistence of outliers. For these variables an equivalent 

non-parametric test was selected, the Wilcoxon’s signed rank test, for the other pairs 

that passed all assumptions a paired samples t-test was carried out.  

Starting by elbow flexion, based on the results of Table 17 no statistically 

significant differences were verified, since the p-value for all pairs was greater than the 

significance level of 5 %, failing to reject the null hypothesis.  The median differences 

between pairs, represented by Hodges-Lehmann Estimate, are minimal, thus 

concluding the methods M, ML, H, SS, MS, SM had no significative effect on the initial 

error value for elbow flexion. 

 

Table 17 - Wilcoxon signed rank test for all pairs in elbow flexion, considering a significance 
level of 5 % 

 
W p Hodges-Lehmann Estimate 

M-O 6 0.708 < 0.001 

ML-O 3 0.156 -0.011 

H-O 2 0.094 -0.006 

SS-O 6 0.406 -0.002 

MS-O 9 0.688 0.007 

SM-O 6 0.406 > -0.001 

 

Regarding shoulder abduction, in Table 18 and Table 19 only SS-O demonstrated 

significant results (p-value =0.031), while the other variables failed to reject null 

hypothesis. 

 

Table 18 - Paired samples t-test for group M-O in shoulder abduction, considering a 
significance level of 5 % 

 
t df p Mean Difference SE Difference 

M-O 0.484 4 0.673 7.118×10-4 0.001 
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Table 19 - Wilcoxon signed rank test for ML-O, H-O, SS-O, MS-O, SM-O variables in shoulder 
abduction, considering a significance level of 5 %. The significant values (p-value < 0.05) appear 
in bold 

 
W p Hodges-Lehmann Estimate 

ML-O 12 0.906 0.009 

H-O 9 0.688 < 0.001 

SS-O 0 0.031 -0.003 

MS-O 10 0.781 0.009 

SM-O 6 0.406 < 0.001 

 

Lastly, in both tests (Table 20 and 21) performed for shoulder flexion only groups M-O 

and MS-O showed significant results, with a respective p-value of 0.014 and 0.026. 

 

Table 20 - Paired samples t-test for M-O, H-O, SS-O, MS-O in shoulder abduction, considering a 
significance level of 5 %. The significant values (p-value < 0.05) appear in bold 

 
t df p Mean Difference SE Difference 

M-O -3.346 4 0.014 -0.02 0.006 

H-O 2.072 4 0.946 0.015 0.007 

SS-O -1.677 4 0.084 -0.032 0.019 

MS-O -2.748 4 0.026 -0.063 0.023 

 

Table 21 - Wilcoxon signed rank test for ML-O, SM-O variables in shoulder abduction, 
considering a significance level of 5 % 

 
W p Hodges-Lehmann Estimate 

ML-O 14 0.969 0.037 

SM-O 4 0.219 -0.004 

 

As described, out of the six force scaling methods only M, MS, SS presented 

significative results with a p-value of 0.014, 0.026 in shoulder flexion and 0.031 in 

shoulder abduction respectively. Out of the optimization-based methods with single 
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objective (MS and SS), only method MS had a notable influence on minimizing 

shoulder flexion error, although the SS-O pair also showed a negative mean difference, 

this was not found to be statistically significant. In addition, the factor obtained by the 

SS method promoted a significant reduction in the shoulder abduction error, despite 

this motion was not considered in the objective function, which may arise from the 

similarity in muscle recruitment of shoulder flexion and abduction, namely the deltoid 

muscle. In MS method this was not verified as a different factor is obtained for each 

muscle with the goal of minimizing the muscle activation specific to that motion. For 

the remaining approaches, except for the body mass-based method (M) that promoted 

a better fit to the experimental activations in shoulder flexion, the calculated scaling 

factors either had no effect or contributed to maximizing the error of the simulation 

results. 

To test the influence of the force scaling process in simulation prediction, using 

the data collected from part II of the protocol corresponding to point-to-point 

exercises, the muscle activation was estimated and further compared to the associated 

experimental activations. The RMSE was computed for the same models with initial 

scale factor (O) and after force scaling with approaches MS, SS. These two approaches 

were chosen to study the effect of applying a unique scale factor, equal for all muscles 

(method SS) or a specific factor associated to each muscle (method MS). The RMSE 

values (mean and standard deviation) for each approach are shown in Table 22. 

  

Table 22 - RMSE (mean and standard deviation) values of the scaling methods for point-to-
point exercises 

Subject Method 

1 

  

  

O SS MS 
 

0.0149 

 ±  

0.0006 

0.0158 

 ± 

0.0003 

0.0238 

 ± 

0.0016 

RMSE 

(Mean ± 

Std) 
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2 0.0167 

 ± 

0.0030 

0.0201 

 ± 

0.0027 

0.0281 

 ± 

0.0006 

RMSE 

(Mean ± 

Std) 
 

     

3 0.0157 

 ± 

0.0087 

0.0160 

 ± 

0.0083 

0.0176 

 ± 

0.0057 

RMSE 

(Mean ± 

Std) 
 

     

4 0.0301 

 ± 

0.0053 

0.0297 

 ± 

0.0050 

0.0087 

 ± 

0.0003 

RMSE 

(Mean ± 

Std) 
 

     

5 0.0438 

 ± 

0.0079 

0.1146 

 ± 

0.0692 

0.0570 

 ± 

0.0272 

RMSE 

(Mean ± 

Std) 
 

 

   The greatest variations, with positive or negative differences relative to O are 

registered in the MS method for subjects 2, 4 and 5, while for SS method there are no 

notable changes, apart from subject 5.  A two-tailed paired samples t-test was carried 

out to study the effect of the force scaling methods on simulation results, namely 

muscle activation. The assumptions for a parametric paired samples t-test of 

independence, normality and existence of outliers were evaluated for each group. The 

normality of the groups (MS-O, SS-O) was assessed trough Shapiro-Wilk test for each 

pair, being the results presented in Table 23. 

 

Table 23 - The p-values of the normality tests for pairs (SS-O, MS-O) considering a significance 
level of 5 %. The significant values (p-value < 0.05) 

Test of Normality (Shapiro-Wilk) 
 

W p 

SS-O 0.592 < 0.001 
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MS-O 0.796 0.075 

 

Significative differences (p <0.05) were found for pair SS-O, suggesting that the 

pairwise differences are not normally distributed.  Checked this assumption, next the 

existence of outliers was examined for group MS-O (Figure 28) , with one outlier being 

found implying the normality of this group.  

 

 

Figure 28 - Boxplot for variable MS-O. 

 

Failing the approval of the assumptions the pairwise differences were assessed trough 

Wilcoxon ´s signed rank test, presented on Table 24. 

 

Table 24 - Wilcoxon signed rank test for SS-O, MS-O, considering a significance level of 5 % 
 

W p Hodges-Lehmann Estimate 

SS-O 13 0.188 0.002 

MS-O 10 0.625 0.007 

 

No significative differences were found for both groups, thus concluding that none of 

the methods contributed to remarkably change the initial error. The Figure 29 and 
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Table 25 shows the boxplot and descriptive statistics for the variables O, SS and MS, 

the variable O has the lowest median line between the three variables with a value 

lower than 0.02 which means half of the error values are greater than or equal to this 

value and half are less. Method SS shows a lower median than method MS, so on 

average its error value is lower. Both variables have outliers, with MS having a lower 

data dispersion than SS, with the lowest interquartile range (IQR) between the three 

methods, suggesting less variability in the middle 50 % of the data.  

 

 

Figure 29 - Boxplots for variables O, SS and MS in point-to-point exercises. 

 

 

Table 25 - Descriptive statistics for variable O, S, MS 
 

O SS MS 

Median 0.017 0.02 0.024 

Mean 0.024 0.039 0.027 

Minimum 0.015 0.016 0.009 

Maximum 0.044 0.115 0.057 

Range 0.029 0.099 0.048 
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IQR 0.014332 0.013728 0.01055 

 

Thus, it can be concluded that the force scaling methods did not have the 

ability to influence the results, in this case the estimation of muscle activation, with 

the best results being achieved with the initial model that was primarily uniformly 

scaled with a factor. The outlier in the SS group is consequence of the no convergence 

of the solver in two of point-to-point trials computed for that subject, resulting in an 

extreme error value. In MS method, a different factor is obtained for each muscle, 

which may lead to larger force discrepancies between muscle groups, contributing to a 

greater error.  

To further explore the application of a force scale factor to the geometric 

scaled model and its impact on muscle activation prediction accuracy by MocoInverse 

tool with EMG tracking, a scatter plot of the scale factor versus the mean RMSE of 

muscle activations was traced (Figure 29), for one of the subjects (subject 2). Using the 

same subject´s model, the activation error was calculated for two movements, 

shoulder flexion and point-to-point, while increasing the factor from two to fourteen. 

These factors are multiples of the initial force proprieties of the generic model, i.e, the 

peak isometric muscle force. 
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Figure 30 - Scatter plot of the scale factor versus the mean RMSE of muscle activations, for 
shoulder flexion and point-to-point exercises. 

 

As shown in the plot, for the shoulder flexion motion in blue, as the scale factor 

increases, the error decreases abruptly until it stabilizes, resembling a parabolic 

profile. Contrary to point-to-point movement, where there is a subtle increase in error 

as you move along the x-axis, but never reaching 5%. For shoulder flexion, smaller 

factors result in RMSE values greater than 40%, which represents poor tracking of 

experimental activation. From factor six onwards the error decreases from 24% to a 

minimum of 14% and a change in curvature shape occurs. Thus, although the force 

scaling factor strongly influences the tool tracking accuracy for shoulder flexion, the 

same is not true for the point-to-point exercise, which was a much smaller error. The 

greater error in shoulder flexion may be due to uncertainties of the input data like 

joint angles or external loads, as well the short time the simulation was run over. 

While, for to point-to-point exercises where the 30 s movement was fully evaluated, 

for shoulder flexion only the short period of 5 s was evaluated, which comprises only 

the period of application of maximum isometric force, translated initially by a sudden 
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increase in muscle activation, which may lead to less robustness of the initial guess and 

following calculations. Changes on net joint moments faster than allowed by 

deactivation and activation time constants may also compromise the result [76]. 

Isometric shoulder flexion involves the development of higher forces and moments, 

errors in measurements of these quantities as well as joint angles, plus motion´s noise 

and unrealistic accelerations or net joint moments contribute strongly to lower 

accuracy of simulation estimates [5,76]. Compared to isometric shoulder flexion, in 

which there is a force opposing the movement and holding the joint in position, 

resulting in an effort situation with continuous increase in the activation level closer to 

maximum value, the point-to-point exercise is only subjected to body weight and full 

mobility of the shoulder and elbow joint is allowed, showing lower muscle activation 

levels without sudden changes.  

Since the initial scale factor was obtained over the period when the peak 

isometric force was exerted, a correlation analysis was performed to investigate the 

possibility of a linear association amid these variables, the maximum force exerted in 

the isometric exercises and the initial strength scaling factor applied to the model post 

geometrical scaling. The values selected for maximum force were respective to 

shoulder flexion motion, since it was the movement most sensitive to factor change 

and the most prone to the optimal solution not being found. The assumptions of 

normality, linearity and outliers for parametric correlation analysis were verified. The 

Shapiro-Wilk test in Table 26 demonstrated no significative results (p<0.05), suggesting 

that both variables are approximately normally distributed.  

 

Table 26 - The p-values of the normality tests for variables Maxforce (Maximum force) and 
Sfactor (Scale factor), considering a significance level of 5 % 

Test of Normality (Shapiro-Wilk) 
 

W p 

Maxforce 0.923 0.551  

Sfactor 0.941  0.67 
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The scatterplot (Figure 31) of one variable against the other displayed a linear 

relationship, as well no outliers were found in the boxplot of both variables (Fig. 31), so 

none of the main assumptions were violated.  

 

 

Figure 31 - Scatterplot of Scale factor and Maximum force (N). 

 

 

Figure 32 - Boxplots for variables Maximum force (Left) and Scale factor (Right). 

 

Pearson's correlation test was then run, testing the null hypothesis that there is no 

association between the two variables. The resultant Pearson’s r value and p value are 

shown on Table 27.  
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Table 27- Pearson’s r and p values for Maxforce-Sfactor pair 

Pearson's Correlations 
 

Pearson's r p 

Maxforce-Sfactor 0.856 0.064 

 

The results reveal a strong, positive correlation (r=0.856) between maximum force 

exerted in shoulder flexion and the strength scale factor applied to the model, 

however not statistically significant (p = 0.064 >0.05), concluding that there is no 

significant linear association between the variables. So, although may exist a 

correlation between variables in the sample (n=5), it cannot be extrapolated to the 

population, requiring a larger sample size to test this hypothesis. 

 

 

7. Conclusions and Future work 
 

 

This dissertation was developed with the foundation of creating a highly user-

specific upper limb model, englobing the process of transforming a generic model into 

a scaled-generic model, with focus on the understudied field of upper limb model´s 

force scaling. The scaling of model´s strength proprieties was addressed through 

several methods and its impact on simulation outputs was validated against 

experimental data.  

In Chapter 4, a review concerning Opensim error, user-specific scaling, 

geometrical and force scaling approaches was conducted. From modeling variables to 

input parameters, the main sources of error in Opensim simulations, as well as its 

quantification, were identified and noted for the upcoming calculations.  After 

considering the study conditions, the use of scaled-generic models was selected, and 

their scaling process was addressed. The importance and impact of geometrical scaling 
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on simulation results was highlighted, as well as an analysis of the main advantages 

and disadvantages of the different approaches that can be used in this scaling 

procedure. Lastly, a review of force scaling methods was held, which proved to be 

scarce for upper limb models, nevertheless it was possible to identify the 

fundamentals of the various methodologies and divide them into two main groups: 

mass-length, muscle volume-based and moment-based methods. 

Chapter 5 aborded the methodology used in this thesis to convert a generic 

model to a user-specific model. The conversion process is initiated by scaling of the 

geometrical proprieties using Opensim scale tool by input of body mass, markers 3D 

coordinates and definitions of the scale factors that will scale each body segment.  

Next, it was described the procedure to adjust the peak isometric force of the model, 

which was defined as the product between the generic muscle isometric force and a 

scale factor. To obtain this factor, six different approaches were introduced, including 

those discussed in Chapter 4, in addition to the optimization algorithms designed 

based on muscle activation.  In the latter, the scaling factor was determined by running 

several cycles, starting with the prediction of muscle activation by MocoInverse and 

culminating in the attainment of the force scaled model. 

From Chapter 6 onwards, the experimental tests performed to validate the 

methods covered in the methodology (Chapter 5), as well as their respective results, 

were described. Two types of exercises were executed, and respective data was 

collected, in order to use as input to the biomechanical simulations, with the goal of 

obtaining muscle activation. Muscle activations were predicted using the MocoInverse 

tool with associated EMG tracking, as pre-tests revealed greater accuracy with this 

addition than using the tool alone. For each of the three isometric movements (elbow 

flexion, shoulder flexion, shoulder abduction), the average RMSE between estimated 

and experimental activations of nine muscles was calculated for each model scaled by 

each of the six methods. From these results it was possible to conclude that none of 

the methods contributed to minimize the error for all three motions simultaneously, 

which was expected for the methods based on single-objective optimization (SS and 

MS), since the factor is obtained by minimizing the activation differences with respect 

to one of the motions, namely the one with the highest RMSE value for the model with 
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only the application of an initial force factor that allows the solver to converge. Out of 

all force scaling approaches, only M, MS and SS showed significant results that favored 

better accuracy of the results for one of the three motions. The same metrics, muscle 

activation and RMSE, were estimated and calculated for models scaled by the MS and 

SS method but using a point-to-point exercise as the input kinematics. Statistical 

analysis of the results revealed that neither approach contributes to significantly 

decrease the error relative to that obtained by the scaled model with the initial scale 

factor. Furthermore, to study the influence of the scaling of model´s force properties 

on the muscular activation prediction, a scatter plot of the RMSE versus the initial 

scaling factor, expressed by an integer, was generated for one of the subjects in the 

conditions of shoulder flexion and point-to-point movements. The graph 

demonstrated different variations for each motion, with shoulder flexion being the 

most affected by the change of the scale factor, translated by an inverse relationship, 

where the increase of the scale factor value tends to drastically reduce the error, 

ranging from values of 46 % to 14 %. The same effect was not observed for the point-

to-point movement, with a slight increase in the error, although not more than 5 %. 

The greater error in shoulder flexion may result from uncertainties in the input joint 

angles and the time interval analyzed, which presents a rapid and increasing variation 

of the muscle activation profile. The different effect of the scaling factor between 

movements is probably due to the existence of an opposing force equivalent in 

magnitude to the net force exerted by the subject, which is one of the simulation 

inputs, unlike the point-to-point movement where external forces other than gravity 

were not applied.  Since the MocoInverse tool solves the muscle redundancy problem 

based on the kinematics that is prescribed, uncertainties in the motion, external forces 

and moments strongly affect the accuracy of the results. Another factor with influence 

on the simulation results are the settings of the optimization problem, such as mesh 

interval, convergence tolerance, constraint tolerance, activation dynamics and tendon 

compliance, among others, and whose effect was not studied in this thesis. Lastly a 

correlation between maximum net force applied in shoulder flexion and the force scale 

factor was examined, being the factors positive integer numbers. It was concluded that 

although may exist a positive correlation it is not significant, needing an evaluation 

with a larger sample size.  
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Thus, it can be concluded that the scaling of the force properties of the model 

has a more significant influence on the simulation results in situations involving the 

development of forces and moments of greater module, having a noticeable impact on 

finding the optimal solution, in this case muscle activation.  Not undervaluing, 

however, the strong effect of the inputs kinematics and problem settings on the 

accuracy of the results. One of the main limitations of this work is the small number of 

samples that may have led to inconclusive results. The choice of the point-to-point 

exercise to validate the force scaling methods may not have been the most adequate 

since the activation levels only reached average values. The force scaling methods 

investigated in this work were applied to the model after pre-scaling, not being studied 

concretely a procedure to guarantee the convergence of the solver. The optimization 

methods developed may be the most suitable for this purpose, however they are time 

consuming and not directly applicable, requiring several input data, such as EMG. Also, 

the methods developed did not account for the force variability between right-left 

upper limb. 

For future research, it is proposed to analyze the force scaling approaches for a 

larger sample and for diversified movements and conditions, such as those conducive 

to the development of fatigue. Furthermore, using musculoskeletal models and 

Opensim Moco software, develop a strategy based on the prediction of muscle 

strength and/or muscle activation, capable of assessing muscle fatigue in a work 

environment. 
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