
Optimization of Traffic Lights Using Supervised Learning

D.S. Carrilho1,b), C. Coelho2,a), M. Fernanda P. Costa2,c), L.L. Ferrás2,d) and A.J.
Soares2,e)

1Accenture Technology Center, Braga, Protugal
2Centre of Mathematics, University of Minho, Campus de Gualtar, 4710 - 057 Braga, Portugal

a)Corresponding author: ceciliaeduarda58@gmail.com
b)diana.sofia.carrilho@gmail.com

c)mfc@math.uminho.pt
d)luislimafr@gmail.com

e)ajsoares@math.uminho.pt

Abstract. With the increasing number of vehicles, conventional traffic lights with fixed times are unable to prevent traffic congestion
at intersections [1]. In this work, an intelligent traffic simulator is developed based on a Supervised Learning approach using
artificial neural networks. The simulator makes decisions about which traffic light should be activated to minimise waiting times
and maximise traffic flow, resulting in an intelligent management of green and red times.

INTRODUCTION

This work aims to develop an intelligent solution using artificial neural networks, to reduce drivers’ average waiting
time and make the traffic at an intersection (with four traffic lights) smoother, thus avoiding traffic jams. The prototype
intersection consists of vehicles located in the four lanes (Figure 1 (a)), represented by Li, where i = 1, ..., 4. To
solve this problem, we developed a traffic simulator and a neural network for real-time optimisation (called Intelligent
Traffic Simulator - ITS).

Simulation

Green time

Mean velocity

Simulation time

Traffic flow

Conventional Traffic Simulator

Download Data

Global mean time: 4 s

Total dispatched vehicles: 2

Vehicles waiting: 14

NVW: number of vehicles waiting

MWT: mean waiting time

NDV: number of dispatched vehicles

NVW: 2

MWT: 0 s

NDV: 0

NVW: 7

MWT: 0 s

NDV: 0

NVW: 2

MWT: 0 s

NDV: 0

NVW: 3

MWT: 14 s

NDV: 2

L1

L2

L3

L4

(a) (b)

FIGURE 1. (a) Schematic of an intersection; (b) Conventional Traffic Simulator (CTS). The traffic can be seen in real time.

Before the development of the Intelligent Traffic Simulator (ITS), we developed a simple, fixed-time, traffic
simulator - the Conventional Traffic Simulator (CTS) (see Figure 1 (b)). The CTS allows to model the behaviour

of each vehicle throughout the simulation time. To develop this simulator, we used the p5. js library written in the
JavaS cript language, as well as HTML and CSS. With these programming tools, it was possible to implement a
dynamic graphical interface that represents both the intersection under study and the traffic flow. This simulator is
based on the following assumptions: an intersection has four lanes; each traffic light has only two colours (green/red);
when the traffic light for a given lane is green (the other three traffic lights become red), vehicles in that lane can travel
in any direction; each green phase has a fixed time of 30 seconds; for each lane, there is a random process to generate
the vehicles. By default, every 4 seconds a vehicle is randomly placed on one of the lanes.

Intelligent Traffic Simulator: To develop the intelligent simulator, we used ML5.js, a high-level Machine Learning
library built on top of TensorFlow.js. It was decided to use an Artificial Neural Network (ANN) with supervised
learning. The following figure illustrates the architecture of the ANNs used for the development of the intelligent
simulator (together with details of the activation functions).

I1

.

.

.

.

.

.

.

.

.

H16

H1

I2

I3

I8

O1

O4

.

.

.

input layer

hidden layer
(ReLu)

output layer
(Softmax)

FIGURE 2. Architecture of the ANN used in this work. I1 − I4 are the number of cars in each lane and I5 − I8 are the mean waiting
time for each lane. O1 − O4 are the traffics light to be activated (A, B, C or D)

To develop intelligent models, it was necessary to train the neural networks with the so called training datasets.
To create these datasets, we used a procedure similar to the CTS, but now there were no fixed-time periods for the
green lights. Instead, the user plays the role of a traffic warden and determines which lane will be activated (turn
green) based on his perception of congestion (the user looks at the average wait time and number of vehicles in each
lane to make his decision), by using the keyboard keys (called traffic warden simulator- TWS).

To test the trained models, we developed a script that passes a set of decision rules to an algorithm that automates
traffic light decision tasks - this algorithm mimics the TWS, by playing the role of the user. The inputs are the number
of vehicles and the average waiting time per lane, and the output is the traffic light to be activated. This algorithm
is used on the fly. That is, while the ITS is running, the model makes predictions and the result of its prediction is
immediately compared to the result given by this algorithm. For more details, see [2].

RESULTS and DISCUSSION

Conventional Traffic Simulator: To evaluate the dynamics of the conventional simulator (CTS), a simulation with a
duration of 1 h was performed, with a fixed green time of 30 s, and a flow of 15 vehicles per minute with an average
speed of 12 m/s (the results are shown in Table 1).

Note: Let t1, ..., tn be the set of waiting times of vehicles crossing the intersection during a cycle (one cycle
consists in the activation of all four traffic lights at least once) on a given lane. The average waiting time of a lane’s
vehicles is given by Tav = 1

n

(∑n
k=1 tk

)
, where n is the number of vehicles passing through the intersection in one cycle.

It was found that the vehicles’ average waiting time, Tav, varied between 60 s and 64 s for the four lanes and
the maximum waiting time, Tmax, is different for each lane. The fixed green time (30 s) was not sufficient to allow all
waiting vehicles to cross the intersection, so Tav increased in each lane and consequently the corresponding maximum
waiting time, Tmax. Regarding the average number of stops in each lane (S av), it was found that there was a slight
increase in lane C and consequently a longer average waiting time is verified. The maximum number of stops (S max)
in all four lanes was 1. Note that S av is defined in the same way as Tav. The total number of vehicles crossing the

intersection during the green phase, Nvd, was somewhat higher in lane D. These values, the average number of stops,
the average waiting time, and the number of vehicles crossing the intersection, vary from lane to lane because random
factors (such as the number of injections in the simulator) affect real traffic conditions.

TABLE 1. Results obtained for the CTS. Simulation:
1 h; Average speed: 12 m/s; Flux: 15 vehicles/min.

Lane Tav Tmax S av S max Nvd

A 64 s 145 s 0.78 1 209
B 60 s 119 s 0.75 1 187
C 64 s 126 s 0.81 1 247
D 61 s 121 s 0.77 1 248

The data obtained from this simulation allowed us to develop a useful empirical function to predict the waiting
time of a vehicle based on its distance from the traffic light:

f (Pvehi) =
(Pvehi − 1) ×Ctvei

Vav
+ Treac + (Pvehi − Ngini) × Treac + Tgini, (1)

where Cvehi is the length of each vehicle (a random integer value in the interval [5,6]), Vav is the average speed (set
to 12 m/s in this example), Dbtb is the bumper-to-bumper distance (a random decimal value in the interval [0.38,1.8]),
Ctvehi is the total length of the vehicle (Ctvei = Cvehi + Dbtb), Treac is the reaction time in seconds (a random decimal
value in the interval [1.5,2]), Tgini represents the first 10 s of the total green time, Ngini is the number of vehicles
crossing the intersection in the first 10 s (a random integer value in the interval [3,4]), and Pvei is the position (1,2,3,...)
of the vehicle in the queue (Pvei > Ngini). This function is useful to predict the waiting time of a vehicle in real
situations.

Intelligent Traffic Simulator: To evaluate the dynamics of the intelligent simulator, four training datasets were cre-
ated, based on different weights assigned to the various parts of a queue. The idea is to take into account the influence
of the driver’s reaction delay when the vehicle in front starts moving. The weighted waiting times are given by Tav
and the formulas (2) and (3):

Tav−50%,vec1 = t1 × 0.5 +
1

n − 1

n−1∑
k=2

ti

 × 0.5, Tav−70% vec1 = t1 × 0.7 +
1

n − 1

n−1∑
k=2

ti

 × 0.3. (2)

Tav−70%,m f =
1
dn/2e


d n

2 e∑
k=1

ti

 × 0.7 +
1

n − dn/2e

 n∑
k=d n+2

2 e

ti

 × 0.3, (3)

where dye represents the ceiling function. The datasets assume, for each queue: all vehicles are assigned the same
weight, DTraining-Tav; the first vehicle is assigned a weight of 50% and the remaining 50%, Dtraining-Tav−50% vec1; a
weight of 70% to the first vehicle and 30% to the remaining, Dtraining-Tav−70% vec1; a weight of 70% to the first half
of the queue and 30% to the other half, DTraining-Tav−70% m f .

The datasets were created manually by running a 30-minute manual simulation using TWS, for each. The cardi-
nality of these sets was as follows: #DTraining-Tav = 110, #DTraining-Tmed−50%,vec1 = 112, #DTraining-Tav−70%,vec1 =

107, #DTraining-Tmed−70%,m f = 108. In each training dataset, the attributes are the number of vehicles and the average
waiting time in each of the 4 lanes, and the label is the traffic light to be activated. To train the intelligent model we
have considered 200 epochs, a batch-size of 12, and a 0.2 learning rate. In the end we obtained four different neu-
ral network models, denoted by: Model-Tav, Model-Tav−50% vec1, Model-Tav−70% vec1, Model-Tav−70% m f . As mentioned
earlier, the tests were performed on the fly using a specially developed algorithm that mimics the decisions of the
user/traffic warden.

To evaluate the performance of the four models, we used three metrics, namely Accuracy (Acc.), Precision (Pre.)
and Recall (Rec.), for each class i, i = 1, ..., 4:

Accuracyi =
T Pi + T Ni

T Pi + T Ni + FPi + FNi
, Precisioni =

T Pi

T Pi + FPi
, Recalli =

T Pi

T Pi + FNi
. (4)

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative. Since we are
considering a multi-class problem, we have that TPi =

∑4
j=1 x j, j, TNi =

∑4
j=1, j,i

∑4
k=1,k,i x j,k, FPi =

∑4
j=1, j,i x j,i,

FNi =
∑4

j=1, j,i xi, j. The xi, j are the entries of the 4 by 4 multi-class matrix with predictions for classes A (j = 1), B
(j = 2), C (j = 3), D (j = 4) and Ground Truth for classes A (i = 1), B (i = 2), C (i = 3), D (i = 4).

TABLE 2. Performance metrics for the models: Model-Tav, Model-Tav−50% vec1, Model-Tav−70% vec1, Model-Tav−70% m f .

Model-Tav Model-Tav−50% vec1 Model-Tav−70% vec1 Model-Tav−70% m f

Lane Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec.

A 94.05% 0.83 0.83 95.09% 0.88 0.92 97.81% 0.93 0.98 95.45% 0.88 0.94
B 91.45% 0.85 0.81 98.49% 1.0 0.94 95.99% 0.85 0.98 93.01% 0.90 0.84
C 93.68% 0.97 0.81 95.09% 0.88 0.94 93.07% 0.97 0.79 95.1% 0.97 0.85
D 94.08% 0.83 0.97 96.23% 0.95 0.90 96.35% 0.92 0.94 94.06% 0.80 0.95

Analysing the overall results presented in Table 2, we see that the performance values obtained for the models
Model-Tav−50% vec1, Model-Tav−70% vec1 and Model-Tav−70% m f are high and very close to each other. The worst results
are obtained for the Model-Tav (equally distributed weights). For the four models, the mean waiting time (determined
from Equation 1) was ≈ 36s in the 4 lanes. The number of vehicles that cross the intersection during the green phase
was: 899 for Model-Tav, 914 for Model-Tav−50% vec1, 917 for Model-Tav−70% vec1 and 948 for Model-Tav−70% m f . This
shows that Model-Tav−70% m f was more efficient than the other three models.

CONCLUSIONS

The intelligent simulator proved to be much more efficient than the fixed-time simulator, resulting in a reduction in
vehicle’s average waiting time of approximately 50%. The model Model-Tav−70% m f allowed more vehicles to cross
the intersection than any other model.

The results obtained are promising and in the near future we will:

• perform more simulations with more diverse input parameters, i.e. using different values for average speed and
traffic flow in order to obtain a more comprehensive overview of the functioning and performance of the models;

• apply this study to an actual intersection. To do this, it would be necessary to conduct a study of traffic behaviour
at a specific intersection in a city, in order to collect real traffic data and consequently train the models proposed
here using data from that intersection.

Finally, it should be noted that the implementation of a traffic simulator is not trivial, as it is a very complex and
lengthy process that requires the performance of extensive studies to concretely capture all the dynamics of traffic
conditions.

Regardless of how much technology is available for optimising traffic lights, we must always take into account
the urban design of a city as a whole, from the architecture of the street on which we want to set up smart traffic lights
to the type of vehicles that travel on it.

ACKNOWLEDGMENTS

The authors acknowledge the funding by Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science
and Technology) through projects UIDB/00013/2020 and UIDP/00013/2020.

REFERENCES

[1] A. K. Martin Treiber, Traffic Flow Dynamics: Data, Models and Simulation (Springer, 2013).
[2] D. Carrilho, Smart Traffic Signals, Master’s thesis, University of Minho - Department of Mathematics, R. da

Universidade, 4710-057 Braga (2021).

