
Prepared for submission to JCAP

Ultralight bosons for strong gravity
applications from simple Standard
Model extensions

Felipe F. Freitasa,b Carlos A. R. Herdeiroc,b António P. Moraisa,b
António Onofred Roman Pasechnike Eugen Raduc,b Nicolas
Sanchis-Gualc,b Rui Santosf,g
aDepartamento de Física da Universidade de Aveiro,
Campus de Santiago, 3810-183 Aveiro, Portugal.
bCentre for Research and Development in Mathematics and Applications (CIDMA),
Campus de Santiago, 3810-183 Aveiro, Portugal.
cDepartamento de Matemática da Universidade de Aveiro,
Campus de Santiago, 3810-183 Aveiro, Portugal.
dCentro de Física das Universidades do Minho e do Porto (CF-UM-UP),
Universidade do Minho, 4710-057 Braga, Portugal.
eDepartment of Astronomy and Theoretical Physics, Lund University,
221 00 Lund, Sweden.
f ISEL - Instituto Superior de Engenharia de Lisboa,
Instituto Politécnico de Lisboa 1959-007 Lisboa, Portugal.
gCentro de Física Teórica e Computacional, Faculdade de Ciências,Universidade de Lisboa,
Campo Grande, Edifício C8 1749-016 Lisboa, Portugal.

E-mail: felipefreitas@ua.pt, herdeiro@ua.pt, aapmorais@ua.pt, Antonio.Onofre@cern.ch,
roman.pasechnik@thep.lu.se, eugen.radu@ua.pt, nicolas.sanchis@tecnico.ulisboa.pt,
rasantos@fc.ul.pt

Abstract. We construct families, and concrete examples, of simple extensions of the Standard Model
that can yield ultralight real or complex vectors or scalars with potential astrophysical relevance.
Specifically, the mass range for these putative fundamental bosons (∼ 10−10 − 10−20 eV) would lead
dynamically to both new non-black hole compact objects (bosonic stars) and new non-Kerr black
holes, with masses of ∼ M� to ∼ 1010M�, corresponding to the mass range of astrophysical black
hole candidates (from stellar mass to supermassive). For each model, we study the properties of the
mass spectrum and interactions after spontaneous symmetry breaking, discuss its theoretical viability
and caveats, as well as some of its potential and most relevant phenomenological implications linking
them to the physics of compact objects.
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1 Introduction

The problem of Dark Matter (DM) remains one of the greatest scientific puzzles of our time. Amongst
the proposals put forward, ultralight bosonic DM has become a hot topic within the astroparticle
physics and Strong Gravity communities, in particular, being suggested as a part (or even the whole)
of the DM budget of the Universe. Such fuzzy dark matter has been most widely considered in the
mass range of around 10−21 eV (or lower), to explain the dark matter halos [1, 2]; for reviews, see
e.g. [3–5]. But over the last decade, a considerable interest has been focused on a different (larger)
mass range, mostly motivated by the interesting phenomenology resulting from the interaction of such
hypothetical particles with astrophysical black holes [6].

A key question is the fundamental high energy physics (HEP) origin of such putative ultralight
bosonic particles. Often, they are justified as natural consequences of the string landscape, which has
been argued to originate from a string axiverse [7]. One may ask, however, if simpler and more concrete
extensions of the Standard Model (SM) of particle physics yield such particles. Such constructions
would be desirable to provide a broader HEP context to the models explored by the Strong Gravity
community in the context of the physics of compact objects and their astrophysical implications. This
paper represents a first effort towards filling in this gap, furthermore aiming at a presentation that
can provide a real bridge between the HEP, astroparticle physics and Strong Gravity communities.

If such ultralight bosons exist they can clump into self-gravitating lumps. These can be Newto-
nian or relativistic. In the relativistic case they form a sort of “star", that can achieve a compactness
comparable to that of black holes, being described by general relativity minimally coupled to the
classical field theory describing such ultralight bosons.

For complex fields, the relativistic solutions are called boson stars (for scalars [8, 9], see re-
views [10, 11]) or Proca stars (for vectors [12]). Collectively they are called bosonic stars, regardless
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of their scalar/vector nature. For some comparative studies see [13, 14] for non-rotating and [15] for
rotating bosonic stars.

Bosonic stars are time independent (i.e. in equilibrium) spacetime geometries. In part of their
parameter space, often called domain of existence, they are perturbatively stable and can form dy-
namically [16] - see [11] for a review of the scalar case and [17, 18] for the Proca case. The analysis of
stability for spinning (rather than static) bosonic stars is more subtle. Recent studies have addressed
the stability and formation of spinning bosonic stars providing evidence that there are stable solutions
both for scalar and Proca stars, with the former seeming to require appropriate self-interactions [19–
21]. Thus, bosonic stars are dynamically interesting objects, whose reality depends essentially on the
existence of their fundamental bosonic particle constituents.

For real fields, on the other hand, the self-gravitating lumps are called oscillatons [16]. They are
slightly time-dependent and decay, but they can be very long lived, at least for spherical stars [22].
Thus, they can still be dynamically interesting, albeit such models have been less explored in the
literature.

The reason why one needs ultralight fields for these stars, both in the real or complex cases,
is related to the requirement of obtaining stars with astrophysical masses. This will be explained
quantitatively in the next section.

Gravitational wave detection offers an opportunity to test the existence of such bosonic stars,
within a certain mass range, for both the stars and the fundamental bosons. Over the years, waveforms
for binaries of scalar and vector bosonic stars have been obtained - see e.g. [23–26], that could now be
confronted with real events. Recently, moreover, the event GW190521 [27] was shown to be compatible
with a collision of spinning Proca stars [28], with a slight statistical preference with respect to the
vanilla binary black hole scenario used by the LIGO-Virgo collaboration. The fundamental boson
in this scenario is a complex vector particle with mass µ ∼ 9 × 10−13 eV. This further suggests
investigating HEP scenarios where such a particle can emerge.

Ultralight bosons can also lead to a different sort of strong gravity signatures. They can interact
with spinning black holes in the astrophysical mass range through the phenomenon of superradi-
ance [29]. This process transfers part of the black hole rotational energy into the creation of a bosonic
cloud around the horizon [6]. In the case of complex scalars, this can lead to a new type of black
holes, with scalar [30] or Proca hair [31]. These black holes can also leave observational signatures,
both in gravitational waves and other observables, like the black hole shadow [32].

Although challenging, searches for very low mass bosons have been performed since several
decades already, to push the mass and couplings boundaries of these particles, even at the LHC.
One particular example is the axion (spin=0) or axion like particle (ALP), a potential dark matter
candidate that was initially proposed to explain the strong CP problem [33] and may impact the
cosmology and formation of the early Universe. Given the wide variety of ALP’s, many ideas have
been put forward, over the past decade or so [34–37], to probe their mass and couplings in regions not
accessible before. One of the most natural ways of searching for these particles at present and future
colliders, is through the couplings to Standard Model (SM) bosons [38]. Depending on the ALP mass,
the strategy changes considerably and, in the case of low mass ALP’s (lower than the electron mass),
couplings to photons can play an important role and may be probed at colliders, in particular at the
LHC [39–43] through associated production or decay. Although the direct detection of photons pose
severe constraints on the mass reach at colliders (few MeV) [40], indirect production of ALP is to be
considered, as well.

Light vector bosons are also being searched for in precision physics at colliders. Although generi-
cally with weaker mass limits, they are worth exploring including the ones motivated by gravitational
physics, once they come from laboratory experiments and are independent of any astrophysical as-
sumption. If these new bosons couple, even feebly, with the SM electroweak bosons through portals or
hidden sectors they can, in principle, be accessible experimentally and provide crucial information in
case of discovery, eventually about the nature of dark matter itself. Massless and massive (few MeV)
dark photons are examples of these type of particles that have been searched for (see [44–46] for a
review of dark photon phenomenology and experimental tests). For massless dark photons, several
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precision tests set stringent limits on the dark dipole scale [44] Λ2/(
√
αDdM), where Λ, αD and dM

are the effective scale for the interaction, the dark photon coupling and dark photon magnetic dipole,
respectively. Rare decays of K+ (K+ → π+νν̄) [44, 47] have set a lower bound (at 90% CL) on
the ratio above ∼ 9.5× 106 TeV2. Although searches for massless dark photons have been neglected
with respect to massive ones, the potential to search for signals in flavor physics, or in the detection
of single photon events from the decays of Higgs and Z bosons acompained by a dark photon, are
signatures accessible at the LHC.

To conclude, we emphasise that if the ultralight states are sufficiently decoupled in both the mass
and interaction spectrum, collider searches in the foreseeable future may be hopeless for detecting such
states. In this case, the (astro)physics of compact objects (and their gravitational waves), primordial
gravitational waves together with other cosmological/astrophysical phenomenology of ultralight DM,
will be the only possible ways to probe the proposed models.

The paper is organized as follows. In section 2 we introduce the strong gravity models and in
section 3 we introduce the high energy physics (HEP) models. In section 4 we discuss concrete HEP
models that match the need for ultralight bosons. We summarise our findings in section 5.

2 Strong Gravity models

Let us start with a brief description of the classical field theory models that are commonly in use by
the gravity community to address the gravitational effects of such putative ultralight bosons.

Einstein’s gravity in 3+1 dimensional spacetime is minimally coupled to a spin-s field, where s
takes one of the two values: s = 0 or s = 1. The action is (with c = 1)

S =

∫
d4x
√−g

[
R

16πG
+ L(s)

]
, (2.1)

where R is the Ricci scalar of the spacetime metric g. The s = 0 (scalar) and s = 1 (Proca) matter
Lagrangians are:

L(0) = −gαβΦ̄, αΦ, β − µ2Φ̄Φ− V int
(0) (Φ̄Φ) , (2.2)

L(1) = −1

4
FαβF̄αβ −

µ2

2
AαĀα − V int

(1) (AαĀα) . (2.3)

Here, Φ is a complex scalar field; A is a complex 4-potential, with the field strength Fαβ = ∂αAβ −
∂βAα. In both cases, µ > 0 corresponds to the mass of the field(s). The overbar denotes complex
conjugation and V int

(s) describes the self-interactions term in each case. One can, of course, consider
also generalised models including possibly many scalar and/or vector states with different masses, as
well as non-minimal couplings between them and/or with gravity. Additionally (or alternatively) one
can consider real fields, with Lagrangians identical to eqs. (2.2) and (2.3) but dropping the overbars.
Thus, one can face the model (2.1) as the simplest (and in a way the basic buliding block), but not
the most general field theory that could have interesting phenomenology for compact objects.

2.1 Maximal mass of bosonic stars

The simple models given by eqs. (2.2) and (2.3) yield a valuable lesson which justifies the focus on
ultralight particles. The maximum Arnowitt-Deser-Misner (ADM) mass of a scalar boson star made
up of a free complex scalar field (V int

(0) = 0) is of the order of the Compton wavelength of the scalar
field:

Mmax
ADM = α

(s)
BS

M2
Pl

µ
= α

(s)
BS 1.34× 10−19M�

(
GeV

µ

)
, (2.4)

where MPl,M� denote the Planck mass and solar mass, respectively. The constant α(s)
BS is obtained

from computing the explicit solutions and it is of order unity, but its specific value depends on the
quantum numbers of the boson star. For instance, for the fundamental and most stable, spherically
symmetric stars α(0)

BS = 0.633 [11], whereas for the fundamental rotating stars α(0)
BS = 1.315 [48, 49].
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Thus, for typical SM particle masses, say µ ∼ 1 GeV, this maximal mass is small, by astrophysical
standards (and particularly so concerning the known compact objects):1 Mmax

ADM ∼ 10−19M�. For
this reason such boson stars were historically dubbed mini-boson stars. On the other hand, if one
allows for ultralight particles, in the mass range

µ ∈ [10−20, 10−10] eV , (2.5)

the maximal mass is in the range of the known astrophysical black holes

Mmax
ADM ∈ [1, 1010] M� . (2.6)

Self-interactions (V int
(0) 6= 0) can change the relation between the fundamental boson mass µ and

the maximal mass a boson star can support Mmax
ADM e.g [50, 51]. We will further comment on this in

Sec. 4.2.1, but for the moment we will take the simplest free models described above as the motivation
to consider ultralight bosons.

For Proca stars without self-interactions (V int
(1) = 0), the relation (2.4) also holds and only the

values of the constant α(s)
BS differ. For instance, for the fundamental and most stable, spherically

symmetric stars α(1)
BS = 1.058 [12, 13], whereas for the fundamental rotating stars α(1)

BS = 1.125 [15].
The bottom line is that the scaling of the maximal mass with the inverse of the boson mass, cf.

Eq. (2.4), requires ultralight particles in order for bosonic stars to have the masses of astrophysical
black holes. Even lighter bosonic particles are required for the description of galactic DM halos [3–5],
since they correspond to larger length scales (via their Compton wavelength) which sets the length
scale of the gravitational structures they form.

2.2 Superradiance and “hairy" black holes

A second reason (partly related to the first) why the mass interval (2.5) is interesting for strong gravity
systems, relates to the interaction of such putative ultralight bosons with black holes.

The rotational energy of spinning black holes can be mined by a classical process called super-
radiance - see [29] for a comprehensive review.2 This process can be mediated by ultralight bosonic
particles. That is, bosonic modes with frequency ω ∈ R+ and azimuthal harmonic index m ∈ N
(which could be, e.g., quantum fluctuations) will be amplified if they have frequency in the superradi-
ant regime, 0 < ω < mΩH , where ΩH is the horizon angular velocity of a Kerr black hole (see e.g. [52]).
These modes grow, exciting many bosonic quanta in the same state, becoming a Bose-Einstein con-
densate around the spinning black hole, which spins down as a result of the transfer of energy and
angular momentum to the bosonic cloud around it. The process stalls once the black hole horizon
angular velocity slows down enough to meet the phase angular velocity of the dominant growing mode,
ω/m, as fully non-linear numerical simulations have shown [53–55]. The new equilibrium point is a
black hole with bosonic hair [56] (scalar [30] or Proca [31, 57]), when the bosonic field is complex.
These black holes can have an interesting and distinct phenomenology. If the bosonic field is real, on
the other hand, the new equilibrium state is non-stationary, and the bosonic cloud decays by emitting
gravitational waves, since the bosonic cloud’s energy distribution is non-axisymmetric [6]. Current
LIGO-Virgo-KAGRA searches aim at setting bounds on such putative continuum backgrounds of
gravitational waves [58].

In this scenario, the importance of the boson mass is related to the efficiency of the superradiance
process. Although bosonic modes with any mass may trigger the energy extraction process, the
timescale for the runaway process that grows a macroscopic cloud depends sensitively on a resonance
betweeen the Compton wavelength of the bosonic particle and the Schwarzschild radius of the black
hole. Away from this sweet spot the time scale grows very fast [29]. Thus, efficient superradiant
energy extraction from astrophysical black holes, which have the mass range (2.6), requires bosonic
particles in the range given in (2.5).

1There are, however, speculative compact objects such as primordial black holes that could have sub-solar masses.
2The rotational energy of black holes is thought to power significant astrophysical events, such as powerful jets in

Active Galactic Nuclei (AGNs) and other active galactic centres.
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3 HEP models - general principles for ultralight bosons

Having motivated that hypothetical ultralight bosonic particles are interesting from the viewpoint of
strong gravity systems, we turn to the question of their HEP origin. What goes into models that may
have such incredibly small masses? Fine-tuning? Then, how would such masses be protected against
quantum corrections? Additionally, for such particles to evade current collider constraints, couplings
to the SM particles must be zero or very small. How is this consistently accomplished? These are
some of the obvious questions that must be addressed. In this section we shall discuss different generic
principles. Concrete models will follow in the subsequent sections.

The emergence of ultralight bosonic particles in HEP models can be obtained in a number of
different ways. These can either be scalars (spin-0) or vectors (spin-1), and the nature of their origin
is often intrinsically related to the type of symmetries present in a given model.

Let us first simply assume fine-tuning : that a tiny physical mass of a given scalar emerges due to
a remarkable cancellation of theory parameters that Nature might have accidentally picked. Indepen-
dently of their size such a cancellation can be fine-tuned to the desired degree. However, this rather
crude solution lacks from a fundamental explanation and is typically plagued with severe problems.
In particular, scalar masses are unprotected against quantum corrections and can receive large con-
tributions. For example, if the fine-tuned ultralight mass, say of the order O(10−10 eV), is well below
the natural energy-scale of the theory, for instance the Higgs boson mass or the electroweak (EW)
scale, µEW ∼ O(100 GeV), the dominant quantum corrections are typically of the order O(1 GeV)
completely spoiling the original mass. Quantum corrections to a particle mass can be expanded in a
perturbative series. Therefore, to preserve the size of the uncorrected mass, it is necessary to rely on
an order-by-order cancellation which, although possible, seems unlikely.

As an alternative to the fine-tuned solution one might consider a feebly coupled theory. In
other words, the size of an ultralight scalar does not result from a cancellation of large parameters,
but instead, it is proportional to a set of tiny theory parameters that compensate for any sizeable
effects from the much larger EW scale. Furthermore, quantum corrections can be kept under control
provided that the same parameters that suppress the mass will also suppress all quantum effects. A
feebly interacting sector is effectively decoupled from the EW scale. Therefore, besides a gravitational
footprint, it may become rather challenging to search for complementary signatures of such a theory
in collider experiments.

At this point, the question that one might pose is if there is any way of simultaneously allowing
for an ultralight scalar without imposing tiny couplings. The answer is yes and can be achieved based
on symmetry principles.

Let us then consider an alternative scalar sector equipped with a certain global continuous
symmetry. According to the Goldstone’s Theorem [59], if such a symmetry is spontaneously broken
there will be as many massless scalar degrees of freedom as the number of broken symmetry generators.
These are typically dubbed as Goldstone bosons and, for the case of a global symmetry, they remain
in the physical particle spectrum. At this point, it is evident that, independently of the energy scale
at which this breaking occurs, such a model can naturally offer massless scalars. However, these
are neither candidates for building up bosonic stars (as they are massless), nor their cosmology is
favoured due to stringent constraints on the production of excessive dark radiation [60]. In HEP, the
typical approach is to softly break such a symmetry. By soft breaking we mean that the size of such
explicit breaking is small in comparison to the scale of the theory and, most importantly, quantum
effects do still preserve the original symmetry to all orders in perturbation theory. As a result, the
Goldstone bosons acquire a finite mass that can be arbitrarily small and is protected against quantum
corrections. Notice that the interaction strength of these pseudo-Goldstone particles with the Higgs
boson, or even other heavy scalars that the model might predict, can be sizeable enough to be at the
reach of collider experiments.

So far we have only discussed possibilities for spin-0 bosons. However, HEP models can also
consistently predict ultralight Proca fields. In particle physics, the gauge principle forbids explicit
mass terms for vector bosons which can only be generated upon spontaneous breaking of a continuous
gauge symmetry. We can then regard this class of models as an extension of the latter by promoting
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the global symmetry to a local one. The question now is how can one generate such an incredibly small
mass to a Proca field? The answer is twofold. First, we can rely, once again, in a feebly interacting
gauge sector. In other words, given that the Proca field mass, µProca ∝ gv, is proportional to a new
gauge coupling g and the scale at which the breaking occurs v, one can always choose g to be as small
as we might need such that gv . O(10−10 eV). However, in this limit we are decoupling the Proca
field to a level where it becomes essentially non-interacting, thus invisible, except by its gravitational
effect. In fact, no matter how small the couplings are, the equivalence principle tells us that all
matter/energy gravitates and thus one cannot make any particle invisible to gravity. Alternatively,
one can rely on a tiny breaking scale such that v/µEW is very small. As such, the Proca field can
become ultralight independently of the value of g. This is a rather elegant hypothesis as the size of
the Proca field can be seen as a signature of a, yet to discover, new-physics (NP) scale, well below the
EW one. Last but not least, it is well known that vector boson masses are protected against quantum
corrections by virtue of the gauge symmetry [59].

4 Concrete HEP models

We now turn to concrete models where ultralight bosons may emerge. Our aim is to present realistic
benchmark scenarios; thus the Higgs and the EW gauge bosons must be included. It is then instructive
to start by revisiting the bosonic EW sector of the SM. First, let us introduce the scalar (Higgs)
potential

V0 (H) = µ2
HH

†H +
1

2
λH(H†H)2 , (4.1)

which is manifestly invariant under SU(2)W×U(1)Y transformations, dubbed the EW symmetry, and
where W refers to weak interactions whereas Y denotes the weak hypercharge. In (4.1) H is the SM
Higgs SU(2)W doublet whose real valued components can be written as

H =
1√
2

(
ω1 + iω2

vh + h+ iz

)
. (4.2)

While vh is the vacuum expectation value (VEV) that describes the classical ground state config-
urations of the theory, h represents radial quantum fluctuations around such a minimum of the
potential (4.1). The Goldstone modes ω1,2 and z are absorbed by longitudinal degrees of freedom of
the W± and Z gauge bosons once the EW symmetry is spontaneously broken by the Higgs doublet
VEV 〈H〉 = 1√

2

(
0 vh

)>, with vh ≈ 246 GeV. The coupling of the EW vector bosons with the Higgs
doublet is described by the following kinetic terms

L0
kin ⊃ DµH

†DµH with Dµ = ∂µ + ig1Y Bµ + ig2
τa
2
Aaµ , (4.3)

where Dµ is the covariant derivative, g1,2 are the U(1)Y and SU(2)W gauge couplings, τa (a = 1, 2, 3)
the Pauli matrices and Bµ, Aaµ the massless electroweak gauge bosons. In what follows, such a bosonic
EW-sector of the SM should be implicit.

Before proceeding, however, we would like to mention the existence of a solitonic solution of just
the above (bosonic) EW equations of motion taken from L0

kin and V0 (H) (thus, in the spirit of the
aforementioned bosonic stars, but without the need of hypothetical new particles) – the sphaleron
[61]. This non-perturbative classical solution relies on a balance between the scalar (Higgs) and
(non-Abelian) gauge interactions. In particular, it has been suggested as a mechanism for a possible
explanation of baryonic asymmetry [61, 62]. The sphaleron is usually studied neglecting gravity
(i.e. in Minkowski spacetime); its self-gravity does not change significantly its properties [63]. But
considering gravity, one can build a non-linear superposition between a sphaleron and a black hole
horizon, constructing a black hole with sphaleron hair.3 This is an interesting counter example of the
black hole no hair conjecture [64]. These configurations, however, are unstable [65, 66]; furthermore,

3The same occurs for spinning bosonic stars: one can place a black hole horizon at their centre, leading to the hairy
black holes in [30, 31, 57].
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they are likely limited to the microscopic realm, with an ADM mass ∼ 10 TeV, thus unlikely to be
relevant in an astrophysical context. But we note that the mechanism allowing for the sphaleron’s
existence may also work in the various SM extensions considered below, with a crucial role played by
the non-Abelian interactions.

4.1 Ultralight scalars: a minimal approach

4.1.1 Fine-tuned vs. a feebly coupled theory: the case of complex scalars

The first model to consider is among the simplest extensions of the SM that one might think of. It
consists of an additional complex singlet φ charged under a global U(1)G symmetry such that the
theory is invariant under the phase transformation

φ→ eiαφ . (4.4)

The scalar potential before electroweak symmetry breaking (EWSB) reads as

V (H,φ) = V0 (H) + µ2
φφ
∗φ+

1

2
λφ |φ∗φ|2 + λHφH

†Hφ∗φ , (4.5)

where λHφ is typically dubbed as the Higgs portal coupling since it is the only interaction where the
new scalar can couple to the SM. Note that the potential V (H,φ) is bounded from below whenever
the conditions

λH , λφ > 0 , λHλφ − λ2
Hφ > 0 , (4.6)

are verified. Expanding the theory around the minimum of the potential one obtains the condition
µ2
H = −λHv2

h. Replacing µ2
H in (4.5), the Hessian matrix evaluated in the vacuum of the theory

comes already in a diagonal form and reads as

M2 =


03×3 03×1 03×1 03×1

01×3 2λHv
2
h 0 0

01×3 0 µ2
φ + 1

2λHφv
2
h 0

01×3 0 0 µ2
φ + 1

2λHφv
2
h

 , (4.7)

where we identify the SM Higgs boson and new complex scalar masses as

m2
h = 2λHv

2
h m2

φ = µ2
φ + 1

2λHφv
2
h , (4.8)

respectively. The relevant cubic and quartic self interactions involving the singlet φ are trivially given
as

λ
hφφ

= vhλHφ , λ
hhφφ

= λHφ , λ
φφφφ

= λφ . (4.9)

While the mass of the Higgs boson is well known to be mh ≈ 125 GeV, the model has enough freedom
to allow for an ultralight complex scalar in one of the following cases:

1. Fine-tuned scenario: For a portal coupling of orderO(1), if we require Sign(µ2
φ) = −Sign(λHφ)

and
∣∣∣µ2
φ

∣∣∣ ≈ 1
2 |λHφ| v2

h such that they differ by no more than one part in 1020, then mφ .

10−10 eV can be achieved.

2. Feebly interacting scenario: Alternatively, if we now allow the portal coupling to be tiny,
i.e. 10−62 . λHφ . 10−42 and now take µ2

φ to be of the same order of λHφvh, then one can also
have 10−20 . mφ . 10−10 eV.

The first scenario relies on a remarkable fine-tuning of quantities that are of the size of the EW
scale. While at first glance it may seem an easy choice, the inherent complications that come together
with such a solution are rather unattractive. In particular, an ultralight scalar at least 21 orders of
magnitude below the EW scale poses a tremendous hierarchy problem which is rather more severe
than the well known Higgs boson mass hierarchy problem in the SM [67, 68]. To give an idea of what
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h

λHφφ φ∗

+O(δ2)

FIG. 1. Leading, one-loop, quantum corrections to the m2
φφ
∗φ quadratic term in the mass basis:

δ = 1
16π2 is the perturbative expansion parameter.

is involved, let us consider that λHφ & λφ ∼ λH such that the dominant quantum corrections to
the mass m2

φ are coming from portal interactions, given at leading order by the Feynman diagram in
Fig. 1. These can be translated into the correction

M2
φ = m2

φ + ∆2 with ∆2 ∼ O
(
δλHφµ

2
EW

)
, (4.10)

and where the loop factor is δ = 1/16π2. Recalling that the EW scale is of the order 1011 eV, it
becomes clear from Eq. (4.10) that the first order term correction is such that, at least, a cancellation
degree of ∆2/m2

φ ≈ δλHφ1031 ≈ 1029 is necessary. As one goes to higher order terms the degree of
cancellation gets relaxed by increasing powers of δλHφ. However, the size of m2

φ can only be preserved
if all such loop orders cancel simultaneously.

It is clear from the discussion above that the minimal way to control the size of ∆ is in the limit
of a feebly interacting theory where λHφ → 0+. The portal coupling must be extremely small, still
non-zero, in order to compensate for the size of the EW scale and simultaneously suppress ∆ to a
level where quantum corrections are no longer an issue. The mass parameter µ2

φ also needs to be of
the same order as the product λHφv2

h. Notice that in this scenario the presence of such an ultralight
scalar may only be probed in a gravitational channel provided that the coupling to the Higgs boson,
and any other SM particle, is effectively zero.

4.1.2 Generalization to larger multiplicities
The potential in Eq. (4.5) can be easily generalized to the case of a complex scalar that transforms as
a fundamental representation of a global SU(N) group. In particular, one could define a new Φ field

Φ =
1√
2

 ρ1 + iπ1

...
ρN + iπN

 , (4.11)

such that the new scalar potential is identical to that in Eq. (4.5) but with the replacements φ→ Φ
and φ∗ → Φ†. The same discussion regarding a fine-tuned or a feebly interacting theory applies, the
mass spectrum and self couplings are also identical to the ones above and the only distinction resides
in the multiplicity of equal mass complex fields, in particular

m2
φ1

= m2
φ2

= · · · = m2
φN with φi =

1√
2

(ρi + iπi) . (4.12)

The SU(N) symmetry forces an equal mass to every complex scalar as seen in Eq. (4.12), which
may be too restrictive. However, in a completely generic setting without any symmetry, the amount of
possible interactions between N different scalars is enormous, substantially complicating the problem.
A simpler solution leading to N non-degenerate masses is to replace the SU(N) by a smaller symmetry
as e.g. U(1)1×· · ·×U(1)N where each of theN scalars is charged under a different U(1). The advantage
of this structure is that the potential can be constructed solely in terms of the operators φ∗iφi such
that a generalization of Eq. (4.5) reads as

V (H,φ) = V0 (H) + µ2
iφ
∗
iφ
i +

1

2
λijφ

∗
iφ
iφ∗jφ

j + λHiH
†Hφ∗iφ

i . (4.13)
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The N masses are now non-degenerate and equal to

m2
φi = µ2

i +
1

2
λHiv

2
h . (4.14)

As a side note, let us remark that, from the viewpoint of gravity, some of the effect of considering
N complex scalars can be understood by simple arguments. For instance, consider a (mini-)boson
star composed by such N complex scalars with the same mass and without self-interactions. How
does its maximal mass (2.4) change? The corresponding action

S =
∫
d4x
√−g

[
R

16πG − gαβφ∗i, αφi, β − µ2
iφ
∗
iφ
i
]
φi≡φ

= N
∫
d4x
√−g

[
R

16πGefe
− gαβφ∗, αφ, β − µ2φ∗φ

]
, (4.15)

becomes that of a single complex field but with an effective Newton’s constant Gefe ≡ GN under the
assumption that all fields acquire the same classical profile φi ≡ φ. This implies the maximal mass
scales down with N:

Mmax
ADM = α

(s)
BS

M2
Pl

Nµ
= α

(s)
BS 1.34× 10−19M�

(
GeV

Nµ

)
, (4.16)

where α(s)
BS are the same numbers discussed in Section (2.1). Thus, allowing a multiplicity of the fields

does not help in getting astrophysical masses with heavier bosons.

4.1.3 Ultralight real scalars

So far we have only discussed the possibility of complex scalars which are relevant to describe astro-
physical objects such as boson stars or black holes in equilibrium with scalar clouds. However, real
scalars are also known to offer an interesting phenomenology in the form of continuous monochromatic
gravitational waves that dissipate the angular momentum of the black hole-scalar cloud system [69, 70]
and could be detected by current searches to (dis)prove the existence of bosonic clouds around spinning
black holes [71, 72], if such bosonic particles exist in Nature. Besides, real fields can also form massive
solitonic solutions known as oscillatons that may be very long lived and have potential astrophysical
interest [22, 73, 75–77].

If we consider the case of a single real scalar ϕ feebly interacting with the Higgs boson, the
discussion is in many aspects identical to what we have already argued above. The main difference is
the lack of a Noether charge that allows new interactions of the form ϕH†H and ϕ3. However, while
the latter plays no role on the mass, the former is a portal-like coupling and needs to be extremely
small in order to prevent large contributions. One possible solution to prevent such an effect is to
impose a discrete Z2 symmetry where ϕ → −ϕ which would forbid both terms and result in a mass
spectrum analogous to that of the complex case.

4.2 Softly broken global symmetry hypothesis

While the fine-tuning solution introduces a severe hierarchy problem, the choice of extremely small
portal couplings is, to some extent, arbitrary. Furthermore, the effect of an incredibly small interaction
can be ignored and simply consider that the µ2

φ parameter describes, on its own, the mass of the new
boson. However, one can ask whether tiny masses, protected against quantum corrections, can emerge
as a result of a fundamental principle without putting any restrictions on portal couplings.

4.2.1 A real pseudo-Goldstone boson, or axion-like particle (ALP), candidate

Let us then consider the same potential V (H,φ) as introduced in Eq. (4.5). So far we have assumed
that only the Higgs doublet H develops a VEV to break the EW symmetry. In a more generic
approach one can also consider that the φ scalar also acquires a non-zero VEV, that we will denote
as vσ in what follows. For a non-zero vσ the global U(1)G symmetry gets broken and, as a result of
Goldstone’s theorem, a new massless real scalar emerges in the physical particle spectrum. However,
this solution serves neither the astrophysical purposes of this article nor it is cosmologically favoured.
For instance, observations of the Bullet Cluster strongly disfavour models with massless scalars [78–
81]. Furthermore, it is typically argued that continuous global symmetries are marginally violated
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by quantum gravitational effects such that they are not exact, but approximate [5]. Based on these
arguments we can introduce a small soft U(1)G breaking mass parameter in the scalar potential of
Eq. (4.5) such that 4

V (H,φ)→ V (H,φ) + Vsoft with Vsoft =
1

2
µ2
s(φ

2 + φ∗2) . (4.17)

The Goldstone mode can be described as a phase, θ, in the field space such that φ can be
generically expressed as

φ =
1√
2

(σ + vσ)eiθ/vσ , (4.18)

with σ denoting the quantum fluctuations in the radial directions around the classical field configu-
ration vσ, such that the soft potential can be recast as

Vsoft =
1

2
µ2
s(vσ + σ)2 cos

(
2θ

vσ

)
. (4.19)

Using the field expansion in Eq. (4.18), the minimization conditions of the new potential in Eqs. (4.17)
and (4.19) read as

µ2
H = −1

2

(
v2
hλH + v2

σλHφ
)

µ2
φ = −1

2

(
v2
σλφ + v2

hλHφ + 2µ2
s cos

2θ

vσ

)
for θ = nπvσ , n ∈ Z ,

(4.20)

such that, excluding the gauge Goldstone directions ω1,2 and z, see Eq. (4.2), the mass matrix has
the form

M2 =

 v2
hλH vhvσλHφ 0

vhvσλHφ v2
σλφ 0

0 0 −2µ2
s

 . (4.21)

Note that the minimization condition along the angular direction, θ, reads as

∂V

∂θ
= −vσµ2

s sin
2θ

vσ
= 0 , (4.22)

whose solutions correspond to θ = nπvσ as indicated in Eq. (4.20). Notice that, for the U(1) preserving
part of the potential, the angular degrees of freedom can be gauged away by expressing φ as in
Eq. (4.18). On the other hand, the inclusion of explicit breaking terms implies that, in that sector,
such a gauge freedom is no longer present. While at an energy-scale Λ� µs the angular direction is
effectively flat, physically relevant effects are induced by Vsoft and must be considered as we discuss
below.

Rotating M2 to the mass basis one obtains

m2 = O†i
mM2

mnO
n
j =

m2
h1

0 0
0 m2

h2
0

0 0 m2
θ

 , (4.23)

where the eigenvalues are

m2
h1,2

=
1

2

[
v2
hλH + v2

σλφ ∓
√
v4
hλ

2
H + v4

σλφ + 2v2
hv

2
σ

(
2λ2

Hφ − λHλφ
)]

,

m2
θ = −2µ2

s ,

(4.24)

4Note that because φ is a real field we could also add cubic terms to the potential as they would also break the
symmetry softly. However, the inclusion of only dimension one and two terms is still consistent with the renormalizability
of the model because these terms can only modify the minimum conditions and the propagators. This in turn means
that no new infinities are generated and dimension three terms can safely be neglected.
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and the orthogonal rotation matrix O reads as

O =

 cosα sinα 0
− sinα cosα 0

0 0 1

 . (4.25)

The physical basis vectors h1 and h2 are written in terms of the gauge eigenbasis ones h and σ as
follows: h1

h2

θ

 = O

hσ
θ

 . (4.26)

Note that the scalar potential in Eq. (4.19) is a periodic function of the pseudo-Goldstone boson θ.
This means that, upon expansion of the cosine, only even powers of θ are allowed in a polynomial
form of the mass basis scalar potential. This also means that with the soft breaking terms φ2 + φ∗2

the theory is invariant under a remnant discrete Z2 ⊂ U(1)G symmetry where the pseudo-Goldstone
transforms as θ → −θ.

This model offers three real scalars. First, one of the Higgs bosons, either h1 or h2, must be the
SM-like Higgs while the other one is a new scalar that can be heavier or lighter than 125 GeV. Second,
the pseudo-Goldstone boson θ receives its mass from a soft-breaking parameter and is a candidate
for an ultralight real scalar. The size of its mass is a consequence of a marginal violation of the
global U(1)G which is well motivated to be induced via quantum gravitational effects - see e.g. [82].
Before moving to the discussion on the possibility of having ultralight scalars we note that in the
non-linear formulation given by Eq. (4.18), cubic interactions between the pseudo-Goldstone θ and
the h1,2 physical scalars appear due to the kinetic term

∂µφ
∗∂µφ =

1

2

[
(∂σ)2 + (∂θ)2 (σ + vσ)

2

v2
σ

]

=
1

2

[
(∂σ)2 + (∂θ)2

]
+

1

vσ
(∂θ)2 σ +

1

2v2
σ

(∂θ)2 σ2 .

(4.27)

Taking the cubic coupling (∂θ)2 σ and using the equation of motion one can show that for assimptot-
ically free fields the following relation holds

(∂θ)2 σ = −(∂µθ)(∂
µσ)θ − σθ(∂ · ∂)θ =

1

2
θ2 (∂ · ∂)σ + σm2

θθ
2

= −1

2

[
sinαm2

h1
h1 + cosαm2

h2
h2

]
θ2 + σm2

θθ
2 .

(4.28)

Expanding the soft breaking potential in Eq. (4.19) yields a cubic coupling m2
θ

v2
σ
σθ2 which cancels the

one coming from Eqs. (4.27) and (4.28). The non-linear formulation clearly shows that when dealing
with low energy processes the Goldstone nature of θ is manifest since its mass is proportional to the soft
breaking parameter. Radiative corrections to the mass are proportional to the self-energy diagrams
shown in Fig. 2. This formulation allows us to understand in a simple manner why corrections to the
mass vanish in the limit mθ → 0. In the non-linear formulation the diagram on the left has a term
proportional to m4

θ/v
2
σ and another term proportional to p4/v2

σ. Therefore, because corrections to the
mass are calculated at p2 = m2

θ, in the limit mθ → 0 the quantum corrections to the mass vanish and
the global U(1)G is recovered (see also discussions in [83–86]).

In what follows h1 will always denote the SM-like Higgs boson, and it can be either heavier or
lighter than h2. The fact that h2 can be lighter than the Higgs boson raises a question on how light
can it be, in particular, if it can become a candidate for a second ultralight real scalar. As previously
discussed it is not sufficient to require a super tiny mass if quantum corrections play a dominant role.
In the complex scalar case with no spontaneous breaking of the global symmetry via the appearance
of a singlet VEV, we concluded that in order to have an ultralight scalar we would need either a
fine-tuned or a feebly coupled scenarios. Therefore in the limit vσ → 0 the discussion in the previous
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FIG. 2. Leading quantum corrections to the mass of the pseudo Goldstone boson.

section for the unbroken scenario applies. On the other hand, because vh is fixed by the W boson
mass, if we take the limit vσ →∞, mh2

→∞ the theory decouples.
Let us now assume that we have an ultralight pseudo-Goldstone boson. Before moving to the

phenomenological implications of this choice, we present the cubic and quartic couplings in the scalar
sector that involve at least one θ field, and the coupling modifier for the Higgs couplings to the
remaining SM particles

λ
θθhi

=
m2
hi

v2
σ

O2i

λ
θθhihj

=
1

4

[
λφO2iO2j + (−1)i+jλHφO1iO1j

]
λ
hi SM SM

= O1i gSM

(4.29)

with O11 = O22 = cosα and O12 = −O21 = − sinα. We choose as input parameters the particle
masses, the rotation angle α and the singlet VEV vσ. The quartic couplings can be written in terms
of these parameters as follows

λ
Hφ

=
sin 2α (m2

h1
−m2

h2
)

2 vσ vh

λ
φ

=
cos2 αm2

h2
+ sin2 αm2

h1

v2
σ

λ
H

=
cos2 αm2

h1
+ sin2 αm2

h2

v2
h

.

(4.30)

Finally, quartic self interactions of the pseudo-Goldstone come entirely from Vsoft and read as

λ
θθθθ

= −m
2
θ

6v2
σ

. (4.31)

Notice that the latter is valid in the vicinity of each of the n ∈ Z physically equivalent minima of the
theory when θ/vσ < 1, and relevant only when mθ ∼ vσ. Otherwise, for mθ � vσ, λθθθθ → 0 such
that θ can be treated as a free ultralight real scalar.

Let us now discuss the possible astrophysical and collider physics consequences. First, the collider
phenomenology of the model is perfectly sound [87–89]. One of the Higgs bosons is the 125 GeV scalar,
the second Higgs boson is free to be much heavier or much lighter than the SM Higgs. Althouh several
searches for extra scalars have already been performed at LEP, at the Tevatron and at the LHC, the
mixing angle between the two scalars can always be made small enough that the production rates
of the non-SM scalar are too small to be detected. The non-SM Higgs can be very light but if we
move very far away from the electroweak scale radiative corrections start playing an important role.
We will then be in some kind of fine-tuned region as explained in detail before. The measurement of
the 125 GeV Higgs couplings to the SM particles set a constraint on the mixing angle which reflects
via unitarity in the other Higgs boson’s coupling to the SM particles. At present the bound is about
| sinα| < 0.3 [90–92] (note that at the level of the cross section and branching ratios this corresponds
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to cos2 α > 0.91). Assuming that mθ ≈ 0 the partial width of a Higgs boson decaying into θ particles
is given by

Γ(hi → θθ) =
1

32π2

m3
hi

v2
σ

O2
i1 , (4.32)

and for the SM-like Higgs h1 we obtain a constraint from the measurement of the invisible Higgs
decay which yields an upper bound on the Higgs invisible branching ratio equal to 0.11 [93]. We can
find an order of magnitude for O2

i1/v
2
σ using the constraints on the Oi1 obtained from the precision

measurements on the Higgs couplings. Taking | sinα| = 0.3 and the Higgs boson width to be 4 MeV
we obtain vσ > 75 GeV. As the value of sinα decreases, and its value is of course compatible with
zero, the constraint on vσ will become increasingly weaker.

The pseudo-Goldstone boson mass is not bounded by any collider constraints. This ultralight
scalar can be produced at the LHC or any other future collider via the portal coupling. As a conse-
quence at least one of the Higgs boson has to participate in the process. This will lead to the usual
final states in typical searches for dark matter that include mono-jet, mono-W, Z, and mono-Higgs
events or two jets and missing energy as discussed in [94]. In these processes the SM particle is the
one identified together with missing energy. Processes with neutrinos in the final state constitute the
main background to the signal and a good modelling of both is very important.

In summary, the model under consideration in this section provides an extraordinary candidate
for an ultralight real scalar. Its mass is always protected against quantum corrections irrespective
of the scales involved in the theory, which follows from a marginal explicit violation of the global
U(1)G symmetry. This can simply come as a mass term or also include sizeable self-interactions. It
is also worth mentioning that models with extended scalar sectors offer the possibility for strong first
order phase transitions between different vacua that may have occurred in the early Universe. Such
phase transitions can manifest themselves in the form of a stochastic background of primordial GWs,
potentially at the reach of LISA or future experiments. We must note that constraints on ultralight
scalar masses have already been set using measurements of the spin of astrophysical BHs [95–97] and
searches of continuous gravitational waves [72, 98, 99]. However, these studies assume a scalar field
coupled only to gravity. Self-interactions and couplings to other particles can affect the superradiant
instability and may alter the excluded mass ranges [100–103].

As discussed above, when mθ ∼ vσ the quartic self couplings λ
θθθθ

can be sizeable and an astro-
physical impact can be expected when compared to a non-interacting limit. Quartic self-interactions
increase the maximum mass of bosonic stars and oscillatons [104–106], without requiring a lower
boson particle mass, and can even quench some instabilities associated with rotating stars [21, 107].
To get a measure on the impact of self interactions, for the case of scalar boson stars obtained with
the model (2.1) with (2.2) and V int

(0) (Φ̄Φ) = λ|Φ̄Φ|2, the maximal mass of the corresponding spherical
fundamental boson stars scales differently from (2.4) [50, 51]:

Mmax
ADM ' 0.062

√
λ
M3

Pl

µ2
' 0.062

√
λM�

(
GeV

µ

)2

. (4.33)

Thus, λ 6= 0 could, in principle, increase the maximal mass to the point where astrophysical masses
would not require ultralight bosons. In the context of the model we have just described, these self-
interactions can be, at most, as large as 4π. This is an interesting alternative to the ultralight
particles paradigm, in the context of bosonic stars; but it is not without challenges. Constructing the
gravitational solutions starting from the mini-bosonic stars (i.e. without self-interactions) and then
slowly increasing a dimensionless coupling Λ, defined as

λ

4π
= Λ

µ2

M2
Pl

' Λ

1038

( µ

GeV

)2

, (4.34)

until reaching λ of order unity is not possible. Indeed, even for fairly large values of Λ ∼ (O(103))
and even if one takes µ ∼ O(1 GeV), λ is still extremely small. In an alternative approch one may
consider the Einstein-Klein-Gordon equations in the limit of large self-interactions [108]. Conversely,
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the known solutions of self-interacting bosonic stars, e.g. with Λ ∼ O(103) [51], correspond to feeble
self-interactions (an extremely small λ).

Let us also comment that considering even higher order self-interactions, for instance sextic,
leads to a qualitative novelty: Q-balls. These are complex scalar field solitons, obtained with a non-
renormalizable self-interaction, arising in some effective field theories [109, 110]. However, differently
from mini-boson stars (or the ones with a quartic self-interaction), this type of configurations does not
trivialize in the limit of vanishing gravitational constant, i.e. in the flat spacetime limit. Q-balls have
a rich structure and found a variety of physically interesting applications; for example, they appear in
supersymmetric generalizations of the SM [111], and have been suggested to generate baryon number
or to be dark matter candidates [112]. Again, they also possess generalizations with a rotating black
hole horizon at their center [113].

4.2.2 A free complex pseudo-Goldstone boson candidate
In this section we discuss the possibility of ultralight complex scalars which are relevant for compact
objects such as boson stars. As we have demonstrated above, spontaneously broken global U(1)
symmetries, in combination with tiny soft-breaking effects, offer a mechanism to generate extremely
small masses protected against quantum effects. The same principles must then apply in order to
generate ultralight complex scalars.

Let us consider an extension of the real pseudo-Goldstone model with an extra global U(1)G′

symmetry and a second scalar that we denote as φ2. Without loss of generality we assume that the
Higgs doublet H is neutral under the product group U(1)G ×U(1)G′ but the two complex scalars φ1

and φ2 possess non-trivial Noether charges such that the theory is invariant under the transformations

φ1 → eiqαφ1 φ2 → eiqαφ2 φ1 → eiq1α
′
φ1 φ2 → eiq2α

′
φ2 with q1 6= q2 . (4.35)

The model also contains an exact discrete Z2 interchange symmetry that acts on φ1 and φ2 as follows

φ1 → φ2 φ2 → φ1 . (4.36)

Defining φi ≡ (φ1, φ2), the scalar potential, invariant under the EW and the U(1)G × U(1)G′ × Z2

symmetry reads as

V (H,φ1, φ2) = V0 (H) + µ2
φφ
∗
iφ
i +

1

2
λφ
∣∣φ∗iφi∣∣2 + λHφH

†Hφ∗iφ
i + λ12φ

∗
1φ1φ

∗
2φ2 . (4.37)

The continuous global symmetry U(1)G×U(1)G′ can be marginally broken by the explicit mass terms

Vsoft =
1

2
µ2
s

(
φ2

1 + φ2
2 + c.c.

)
(4.38)

which we require to preserve the Z2 symmetry. Such interchange symmetry has a crucial role in
allowing a solution with a complex pseudo-Goldstone physical state as we discuss below. The φ1 and
φ2 fields can be generically expressed as

φ1 =
1√
2

(σ1 + vσ1)eiθ1/vσ1 φ2 =
1√
2

(σ2 + vσ2)eiθ2/vσ2 . (4.39)

The interchange symmetry also imposes that the ground state of the theory is such that vσ1 = vσ2 ≡
vσ, and the minimization conditions read as

µ2
H = −1

2

(
v2
hλH + 2v2

σλHφ
)

and

µ2
φ = −1

2

[
v2
σ (λφ + λ12) + v2

hλHφ + 2µ2
s cos

2θ1,2

vσ

]
for θ1,2 = nπvσ, n ∈ Z .

(4.40)

The vσ VEVs completely break the U(1)G ×U(1)G′ symmetry such that at the groud state the mass
matrix can be written in a block diagonal form M

2
= diag

(
M2,M2

PG

)
with

M2 =

 v2
hλH vhvσλHφ vhvσλHφ

vhvσλHφ v2
σλφ v2

σλ12

vhvσλHφ v2
σλ12 v2

σλφ

 M2
PG =

(
−2µ2

s 0
0 −2µ2

s

)
. (4.41)
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We can now rotate M2 to the mass basis by means of an orthogonal transformation,

m2 = O†i
mM2

mnO
n
j =

m2
h1

0 0
0 m2

h2
0

0 0 m2
h3

 , (4.42)

where the rotation matrix O reads as

O =

cosαh
sinαh√

2
sinαh√

2

sinαh − cosαh√
2
− cosαh√

2

0 − 1√
2

1√
2

 , (4.43)

such that the physical eigenstates can be expressed ash1

h2

h3

 = O

 h
σ1

σ2

 . (4.44)

The mass eigenvalues of the three real scalars h1, h2 and h3, are given by

m2
h1,2

=
1

2

[
v2
hλH + v2

σ(λφ + λ12)±
√
v4
hλ

2
H + v4

σ(λφ + λ12)2 − 2v2
hv

2
σ

(
λH(λφ + λ12)− 4λ2

Hφ

)]
,

m2
h3

= v2
σ(λφ − λ12) ,

(4.45)
such that we define h1 to be the SM Higgs boson while h2 and h3 two new real scalars. The pseudo-
Goldstone mass matrix M2

PG is already diagonal yielding two degenerate real scalars with mass

m2
θ1 = m2

θ2 = −2µ2
s . (4.46)

Note that such a mass equality is exact and follows from the Z2 interchange symmetry, which remains
intact in the ground state of the theory. Furthermore, not only the masses are degenerate but also all
interaction terms, which allows one to redefine the two real scalars in terms of a complex field η and
its conjugate η∗ ≡ η̄ as follows

η =
1√
2

(θ1 + iθ2) η̄ =
1√
2

(θ1 − iθ2) , (4.47)

with mass
m2
η = −2µ2

s . (4.48)

Provided that the U(1)G × U(1)G′ symmetry is marginally violated by the soft parameter µ2
s, the η

field is the only ultralight complex scalar candidate that the model under discussion can offer. Even
though η is a complex field there is no Noether charge or any residual U(1) symmetry associated to
it. Therefore, it is important to discuss how does η and η̄ appear in a polynomial form of the scalar
potential. To see this let us look at the terms involving only θ1 and θ2 which read

V (θ1, θ2) =
1

2
v2
σµ

2
s

[
cos

(
2θ1

vσ

)
+ cos

(
2θ2

vσ

)]
. (4.49)

Using η and η̄ as defined in Eq. (4.47) and expanding the cosines to the fourth power of the fields,
valid for θ1,2/vσ < 1, one obtains the following potential

V (θ1, θ2)→ V (η, η̄) = −2µ2
sη̄η +

µ2
s

v2
σ

|η̄η|2 +
1

6

µ2
s

v2
σ

(
η4 + η̄4

)
+ · · · , (4.50)

where the last term clearly does not preserve U(1) transformations. This means that for a small
µ2
s/v

2
σ ratio η possesses an accidental, or approximate, Noether charge such that the ground state

– 15 –



of the theory contains a free, ultralight, complex scalar with relevance for astrophysical observables
such as boson stars. Interaction terms involving the h1, h2 and h3 real scalars are obtained using the
same procedure discussed in the previous section. Notice that the η field is not the only ultralight
candidate. However, the difference now is that instead of one single additional real scalar we can
have two. For instance, a tiny new physics scale vσ ≪ vh can drive h2 and h3 to be ultralight with
potential astrophysical relevance. With this in mind one can obtain the self-interactions involving
only the η fields

λ
ηηη̄η̄

=
µ2
s

v2
σ

λ
ηηηη

= λ
η̄η̄η̄η̄

=
1

6

µ2
s

v2
σ

, (4.51)

while, for completeness, non-zero quartic and cubic couplings involving h2 and h3 are given in Ap-
pendix A 5.

Similarly to the case of the real pseudo-Goldstone model, the complex scalar η possesses the
same protection against quantum corrections to its mass, remaining ultralight irrespective on how
strongly it couples to the SM. This model has two scalars that are candidates to be the SM-like Higgs,
h1 and h2. The couplings of h1 (h2) to the remaining SM particles are just the SM Higgs couplings
multiplied by cosαh (sinαh). The mixing angle αh is constrained from Higgs couplings measurements
to the SM particles at the LHC to be |sinαh| < 0.3 or |cosαh| < 0.3, if h1 or h2 are the SM-like
Higgs, respectively. The h3 scalar is essentially singlet like and it does not couple to the remaining
SM particles. It is also interesting to note that if we take for instance h1 to be the SM-like Higgs, as
cosαh → 1, h1 decouples from the ultralight scalars but we can still test the portal coupling via the
coupling to the h2 scalar. Still, in the same limit, h2 decouples from the SM particles and probing the
portal coupling would become increasingly cumbersome at colliders. Away from this limit all particles
are in principle observable at the next LHC run.

The real scalar masses m2
h1
, m2

h2
and m2

h3
, if ultralight (note that one of scalars h1 or h2 is the

SM-like Higgs with a mass of 125 GeV), may receive enormous quantum corrections from Higgs boson
loops unless the quartic couplings λ

hihjhkhl
, as well a the trilinear couplings λ

hihjhk
, see Appendix

A, are also extremely small. In practice, this corresponds to an equally tiny portal coupling λHφ
essentially closing the portal between the ultralight sector and the SM particles. Therefore, if we
expect the couplings to be perturbative but not too small for the portal to be closed, the masses of
h1 and h2 should be of the order of the electroweak scale. The mass of h3 is only proportional to
the singlet VEV and so it lives, to a large extent, in a different mass scale. Note however that when
vσ → 0 one of the h1 or h2 scalars will be the 125 GeV while the other together with h3 will become
massless.

To finalize this section, we discuss potential astrophysical and collider physics implications. A
model with an ultralight sector containing one complex and two real scalars offers a rather rich astro-
physical phenomenology. The two real states can leave characteristic GW signatures when interacting
with astrophysical BHs, as explained above for the real case. On the other hand, the complex scalar
field can form stable boson stars and clouds in equilibrium with black holes (or black hole hair); such
boson stars or hairy black holes, in binaries, would merge producing GWs that could be detected by
current observations, could provide a smoking gun signature for the bosonic field and thus the bosonic
particle. A proof of concept is in fact given by [28]. However, if we want to preserve the stability of
the self-gravitating scalar condensate (either in black holes or in a solitonic star) one has to require
a certain hierarchy between µ2

s and v2
σ in order to suppress the U(1) violating self interactions in

Eq. (4.50). Whereas quantifying this hierarchy requires a detailed study of the decay timescale of e.g.
oscillations obtained from the model (4.50), at least in the spherical case, such timescale may be much
larger than the Hubble time, cf. [22], even for µ2

s

v2
σ
∼ O(1). In such case, however, all self-interaction

terms among ultralight states are sizeable and may need to be considered. However, if vσ � µs the
only ultralight particle is η which can be treated as a free complex scalar.

5In this appendix we only show the trilinear scalar couplings that include at least one ultralight scalar candidate.
Although in many models more than one scalar can play the role of the SM-Higgs, as it is the case for the model under
discussion, when choosing the Feynman rules to be presented we opted to consider h1 to be the SM-like Higgs. The
complete set of Feynman rules for all models are available from the authors upon request.
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In essence, the current model offers an extraordinary candidate for a free ultralight complex
scalar provided that the vσ scale is sufficiently larger than the soft breaking parameter µs. Depending
on the model parameters, two new real scalars can also have extra astrophysical, collider or even
cosmological implications. Finally, with a rich vacuum structure, there is a possibility for strong
first order phase transitions having occurred in the early Universe potentially leaving a stochastic
background of primordial GWs at the reach of LISA or future gravitational interferometers.

4.2.3 A complex pseudo-Goldstone boson candidate with self-interactions

The discussion of the previous model revealed that in the limit where quartic self-interactions are tiny
the complex scalar acquires an accidental Noether charge. However, when such terms become relevant
this is no longer the case and can affect the stability of compact objects composed (partly or in the
whole) by a condensate of these scalar particles. Moreover, self-interactions can change the maximal
mass of bosonic stars, as discussed in section 4.2.1. The aim now is to propose a framework based
on the same principles but allowing for self interacting complex scalars and an exact, rather then
accidental, Noether charge. A possible way that one might think of consists in a modification of the
previous case where we promote the global abelian U(1)G × U(1)G′ × Z2 symmetry to a non-abelian
one SU(2)G × U(1)G. In this case, instead of two scalar fields φ1 and φ2 related by an interchange
symmetry, we unify them in a single SU(2)G doublet representation Φ = (φ1, φ2)

>, such that the
scalar potential can be written as

V (H,Φ) = V0 (H) + µ2
ΦΦ†Φ +

1

2
λΦ

∣∣Φ†Φ∣∣2 + λHΦH
†HΦ†Φ . (4.52)

Notice that, similarly to the breaking of the EW symmetry in the SM, a VEV in Φ reduces SU(2)G×
U(1)G down to U(1)G′ . However, the key difference now is that we are dealing with global symmetries,
and, as a result of the breaking, three Goldstone bosons, θ1,2,3, emerge in the physical spectrum.
Recalling that Goldstone modes correspond to angular directions in the field space one can express
the doublet Φ in an exponential form as

Φ =
1√
2

(
0

vϕ + ϕ

)
e
i
2

τaθa
vϕ , (4.53)

with ϕ representing radial quantum fluctuations around the classical field configuration vϕ and τa

the three Pauli matrices. Under the assumption that the SU(2)G × U(1)G symmetry is marginally
violated by tiny effects from, e.g. Quantum Gravity or other unspecified source, one can add a soft
breaking potential such that the angular modes become marginally massive. Before writing it let us
note a few relevant details:

1. In order to preserve a Noether charge one cannot write mass terms of the form µ2
sφ

2
1 +c.c. where

we are casting Φ = (φ1, φ2)
>. To see this, if one expands Eq. (4.53) and define

η+ =
1√
2

(iθ1 + θ2) and η− =
1√
2

(−iθ1 + θ2) , (4.54)

the upper component of Φ and its conjugate take the form

φ1 = η+(vϕ + ϕ)

sin

(√
θ2
3+2η+η−

vϕ

)
√
θ2

3 + 2η+η−
and φ∗1 = η−(vϕ + ϕ)

sin

(√
θ2
3+2η+η−

vϕ

)
√
θ2

3 + 2η+η−
, (4.55)

with the + and − superscripts denoting the sign of the global Noether charge. It is then clear
that writing φ2

1 + c.c. results in the unwanted U(1)G′ violating operators η+η+, η−η− as well as
higher order combinations of these operators upon power series expansion of the sine and the
square roots. However, since we want to preserve a global Noether charge, we can instead define
the SU(2)G soft breaking term µ2

1φ
∗
1φ1.
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2. The φ2 component is neutral under U(1)G′ and can be cast as

φ2 =
1√
2

(vϕ + ϕ)

√
θ2

3 + 2η+η− cos

(√
θ2
3+2η+η−

vϕ

)
− iθ3 sin

(√
θ2
3+2η+η−

vϕ

)
√
θ2

3 + 2η+η−
. (4.56)

Therefore, soft terms of the form µ2
2(φ2

2 + c.c.) conserve a remnant U(1)G′ Noether charge and
can safely be added to the Lagrangian. Furthermore, bilinear operators η+η− and θ2

3 become
allowed generating the needed mass terms for the pseudo-Goldstone bosons. Note that for
µ2

1 = µ2
2 the SU(2)G symmetry is restored and the complex fields η± become massless as we

show below.

Taking into account the two points above, the SU(2)G ×U(1)G symmetry can be softly broken by

Vsoft = µ2
1φ
∗
1φ1 +

1

2
µ2

2

(
φ2

2 + c.c.
)
, (4.57)

such that a residual U(1)G′ symmetry is preserved. The soft breaking terms can be explicitly written
in terms of the pseudo-Goldstone bosons as

Vsoft =
1

2
(vϕ + ϕ)

2
(µ2

1 + µ2
2)η+η− +

[
µ2

2θ
2
3 −

(
µ2

1 − µ2
2

)
η+η−

]
cos

(
2
√
θ2
3+2η+η−

vϕ

)
θ2

3 + 2η+η−
. (4.58)

The minimization conditions of the full V +Vsoft scalar potential are analogous but not as trivial
as those in Eqs. (4.20) and (4.40). In particular, we have

µ2
H = −1

2
(v2
hλH + v2

ϕλHφ)

µ2
Φ = −1

2

v2
hλHΦ + v2

ϕλΦ +

2
(
µ2

1 + µ2
2

)
η+η− +

[
2µ2

2θ
2
3 − 2(µ2

1 − µ2
2)η+η−

]
cos

(
2
√
θ2

3 + 2η+η−

vϕ

)
θ2

3 + 2η+η−


∀ θ3 =

√
n2π2v2

ϕ − 2η+η− with n ∈ Z ,

(4.59)
such that, for any n, the second minimization condition recovers the canonical form

µ2
Φ = −1

2

(
v2
hλHΦ + v2

ϕλΦ + 2µ2
2

)
. (4.60)

If we consider the limit of small field values we can expand Eq. (4.58) to the fourth power on the
pseudo-Goldstone modes approximating it to the following polynomial potential

Vsoft ≈− µ2
2θ

2
3 +

(
µ2

1 − µ2
2

)
η+η− +

2

3

µ2
2 − µ2

1

v2
ϕ

∣∣η+η−
∣∣2 +

1

3

µ2
2

v2
ϕ

θ4
3 +

3µ2
2 − µ2

1

3v2
ϕ

η+η−θ2
3 (4.61)

where, contrary to Eq. (4.50), it contains an exact Noether charge. Note that in the limit of µ2
1 = µ2

2

the complex scalar η± becomes massless and the SU(2)G symmetry is restored. The current model
also offers a real scalar with mass

m2
θ3 = −2µ2

2 , (4.62)

different than that of its complex partner

m2
η± = µ2

1 − µ2
2 . (4.63)
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Note that the model contains enough freedom to allow a mass hierarchy between the real and the
complex scalars such that only one of them can be chosen to be of astrophysical relevance, therefore
agreeing with current excluded mass bounds for real ultralight scalar bosons. The existence of a real
field is constrained by current bounds on ultralight bosonic particles. The freedom in the values of the
masses makes it possible to avoid those excluded regions. Furthermore, if v2

ϕ � µ2
i both θ3 and η±

can be treated as free particles such that the mass of the lighter does not receive quantum corrections
from the heavier pseudo-Goldstone.

The model also contains two additional real scalars whose masses read as

m2
h1,2

=
1

2

[
v2
hλH + v2

ϕλΦ ∓
√
v4
hλ

2
H + v4

ϕλΦ + 2v2
hv

2
ϕ (2λ2

HΦ − λHλΦ)
]
, (4.64)

where we define h1 to be the SM Higgs boson while h2 a new real scalar. These can be written in
terms of the gauge eigenbasis vectors h and ϕ as follows:(

h1

h2

)
= O

(
h
ϕ

)
, (4.65)

where the rotation matrix reads as

O =

(
cosα sinα
− sinα cosα

)
. (4.66)

We can then write the relevant self interactions involving ultralight scalars for the model under
consideration. Notice that the same features discussed for h2 in the two previous sections also apply
here. The quartic couplings involving only pseudo-Goldstone bosons can be read from the last three
terms in Eq. (4.61) whereas the remaining ones are given as

λ
η+η−h1h1

= λ
θ3θ3h1h1

=
1

4

(
λHΦ cos2 α+ λΦ sin2 α

)
λ
η+η−h2h2

= λ
θ3θ3h2h2

=
1

4

(
λHΦ sin2 α+ λΦ cos2 α

)
λ
h1h1h2h2

=
1

32
[3λH + 2λHΦ + 3λΦ − 3 (λH − 2λHΦ + λΦ) cos(4α)]

λ
h2h2h2h2

=
1

8

(
λΦ cos4 α+ 2λHΦ cos2 α sin2 α+ λH sin4 α

)
.

(4.67)

Finally, the cubic interactions read as

λ
η+η−h1

= λ
θ3θ3h1

=
1

2
(vhλHΦ cosα+ vϕλΦ sinα) =

1

2

m2
h1

vϕ
sinα

λ
η+η−h2

= λ
θ3θ3h2

=
1

2
(vϕλΦ cosα− vhλHΦ sinα) =

1

2

m2
h2

vϕ
cosα

λ
h1h2h2

=
1

8
[vh(3λH + λHΦ) cosα+ 3vh(λHΦ − λH) cos(3α) + vϕ(λHΦ + 3λΦ) sinα

+3vϕ(λΦ − λHΦ) sin(3α)] =
1

4

m2
h1

+ 2m2
h2

vhvϕ
(vh cosα+ vϕ sinα) sin(2α),

(4.68)

with the Lagrangian basis quartic couplings written in terms of the physical parameters as in Eq. (4.30)
identifying λφ and λHφ with λΦ and λHΦ respectively. Let us comment that larger global symmetries,
as e.g. those described by generic SU(N) groups, can offer a larger multiplicity of both real and
complex ultralight pseudo-Goldstone modes when spontaneous and explicit symmetry breaking takes
place simultaneously. As a final remark, the model presented in this section, in particular the details
of a softly broken SU(2) global symmetry is, to the best of our knowledge, so far lacking in the
literature and discussed here for the first time.

– 19 –



4.3 Ultralight Proca fields: the case of gauge theories with spontaneous symmetry
breaking

In Sec. 4.2 we have studied the case of emergent ultralight scalars in the form of pseudo-Goldstone
bosons. The key feature is that a marginal violation of a continuous global symmetry generates
ultralight scalar masses on the Goldstone directions, protected against quantum corrections by the
underlying, approximate, symmetry. In what follows we change our paradigm and instead of global
invariance under a certain transformation group we consider local or gauge symmetries. This simple
modification has profound effects. In spontaneously broken gauge symmetries, the Goldstone bosons,
which are non-physical, are absorbed by longitudinal modes of vector bosons and, instead of massless
scalars one obtains massive spin-1 bosons. Therefore, as long as a continuous symmetry is local, there
is no longer the need to invoke any explicit breaking. Also relevant is the fact that a gauge symmetry
protects vector bosons from acquiring large quantum corrections.

4.3.1 A real ultralight Proca field

Let us consider the model discussed in Sec. 4.2.1 but with local U(1)H transformations instead of
global ones. Here, H is used to denote a hidden gauge symmetry in order to distinguish it from the
ordinary U(1)Y or the global U(1)G so far discussed. Since gauge symmetries are well known to be
exact in nature, as e.g. SU(3)C, that describes quantum chromodynamics, or U(1)e.m., that describes
the electromagnetic theory, it is no longer necessary to softly break it. Therefore, for our purposes in
the current discussion, it is sufficient to consider the scalar potential in Eq. (4.5), which is in fact the
most generic one. The scalar sector has the same properties discussed in Sec. 4.2.1 apart from the
absence of the pseudo-Goldstone mode θ. In particular, there will be two physical Higgs bosons with
a mass spectrum and a single scalar mixing angle.

Let us then study the gauge sector by considering the following kinetic terms

Lkin ⊃
1

4
B′µνB

′µν +Dµφ
∗Dµφ with Dµ = ∂µ + ig′1B

′
µ and B′µν = ∂µB

′
ν − ∂νB′µ .

(4.69)
Note that, in general a kinetic mixing term of the form 1

2κBµνB
′µν is also allowed resulting in a mixture

of the new B′µ gauge boson with the photon. However, there are strong phenomenological constraints
on the value of κ which must be rather small. We refer to the discussion in Sec. B of [114] where it
is shown that for small kinetic mixing we can, to a good approximation, set κ → 0. Furthermore, it
is also possible to impose invariance of the Lagrangian under a discrete (dark) symmetry such that
B′ → −B′ and φ→ φ∗, while all other particles are even under this transformation.

It promptly follows from the Dµφ
∗Dµφ term that, in the ground state 〈φ〉 = 1√

2
vσ, the theory

contains a new real gauge boson Bµ with mass

m2
B =

1

4
g′1

2
v2
σ . (4.70)

Writing vσ = εvh, in the limit where either ε or g′1 are in the range [10−31, 10−21] then Bµ becomes an
excellent candidate for an ultralight real Proca field with a mass in the range 10−20 . mB/eV . 10−10.
While for small ε we are attributing the size of the Proca field’s mass to a new energy-scale well below
the EW one, a tiny g′1 would result in a feebly interacting theory. It is also possible that the smallness
of the Bµ mass results from an hybrid scenario where 10−31 . g′1ε . 10−21. While a small g′1 only
affects the mass and coupling of the new gauge boson a small vacuum expectation value of the singlet
leads us once more to fine tuning in the scalar sector. In fact, a tiny vσ is obtained via λφ ≈ λH [115]
and leads to a light mass of one of the Higgs bosons.

The fact we are discussing an abelian symmetry, means that there are no self-interactions solely
involving Bµ. However, the new gauge field does interact with the physical Higgs bosons h1 and h2

allowing the following quartic and cubic self interactions

gBBhihj = 2g′1
2O2iO2j gBBhi = 2mBg

′
1O2i , (4.71)
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with the rotation matrices given in Eq. (4.25). Since we are postulating a very light gauge boson,
the cubic vertex with both Higgs bosons is strongly suppressed and as one would expect there are
no constraints from the Higgs invisible decays. The quartic couplings can only be large if we would
be considering the fine-tuned scenario where g′1 is not constrained while ε → 0. Again considering
that h1 is the SM-like Higgs boson, the only quartic interaction that would survive ε → 0 would be
gBBh2h2

which incidentally would be the interaction between four massless particles (this is because
sinα is also of order ε in the limit ε → 0). It is interesting to note that for the case of an extremely
small U(1)H breaking scale and a large gauge coupling g′1, the relic abundance of the Proca field B in
today’s Universe depends on the annihilation channel h2h2 → BB (in the ε→ 0 scenario h2 can also
be part of a dark sector of the Universe)

In essence, the model under discussion can potentially offer both astrophysical and cosmological
observables which may shed light on a dark sector of the Universe. Last but not least, the non-SM
Higgs, h2 can be detected at the LHC provided that the U(1)H breaking scale is of the order or larger
than the EW one.

4.3.2 A complex ultralight Proca field with self interactions

In Sec. 4.2.3 we have studied the possibility for ultralight complex scalars with relevance for boson
stars. Our aim now is to discuss a simple model with emergent ultralight complex vector bosons,
necessary to describe the hypothesis of stable Proca stars.

A complex Proca field must be invariant under a U(1) phase transformation which, for the case
of gauge theories, can be regarded as a candidate for hidden electromagnetism. In fact, the same
principles applied for the SM electroweak sector can be employed here in such a way that new hidden,
ultralight, vector bosons emerge. In particular, complex Proca fields can be formally regarded in the
same footing as the well known SM W± bosons.

Let us then consider an extension of the SM bosonic sector with a mirror, or hidden, SU(2)H ×
U(1)H gauge symmetry. Similar concepts but at higher scales were previously discussed both in terms
of astrophysical observables [116, 117] and dark matter models [118–121]. This means that, besides
a complete copy of the vector boson content, one also has a new complex scalar doublet that can
be cast as in Eq. (4.53). With such a formulation the communication between the mirror and the
visible sectors can be realized via the scalar quartic portal coupling λHΦ in Eq. (4.52) and a kinetic
mixing between U(1)Y and U(1)H. However, strong restrictions on the kinetic mixing constrain it to
be rather small [122–125] such that we can safely neglect it in the remainder of the discussion.

The gauge sector can then be described by the following Lagrangian

Lkin ⊃
1

4
B′µνB

′µν +
1

4
F ′

a
µνF

′µν
a +DµΦ∗DµΦ , (4.72)

where the gauge covariant derivative reads as

Dµ = ∂µ1 + ig′1B
′
µ1 + ig′2

τa
2
A′
a
µ , (4.73)

the field strength tensors are given by

B′µν = ∂µB
′
ν − ∂νB′µ and F ′

a
µν = ∂µA

′a
µ − ∂νA′

a
µ − g2ε

a
bcA
′b
µA
′c
ν (4.74)

and where εabc denotes the Levi-Civita symbol while g′1 and g′2 are the U(1)H and SU(2)H gauge
couplings respectively. The scalar potential is identical to that in Eq. (4.52) where the mirror doublet
Φ can be expanded as in Eq. (4.53).

The ground state of the mirror sector is characterized by the vacuum state

〈Φ〉 =
1√
2

(
0
vϕ

)
, (4.75)

which reduces the mirror symmetry according to the well known pattern SU(2)H×U(1)H → U(1)h.e.m,
with h.e.m denoting hidden electromagnetism. The scalar sector is identical to that discussed for the

– 21 –



global SU(2)G × U(1)G model but no longer containing the θ3 and η± pseudo-Goldstone state since
the breaking of our gauge symmetry is purely spontaneous. In particular, the mass spectrum can
be read from Eq. (4.64) while quartic and cubic self-interactions are given in the last two lines of
Eq. (4.67) and the last line in Eq. (4.68) respectively.

It follows from the scalar kinetic terms evaluated at the vacuum, i.e. 〈DµΦ∗DµΦ〉, that the vector
bosons mass matrix reads as

M2
V = v2

ϕ


1
4g
′
2 0 0 0

0 1
4g
′
2 0 0

0 0 1
4g
′
2 − 1

2g
′
1g
′
2

0 0 − 1
2g
′
1g
′
2

1
4g
′2
1

 . (4.76)

We can now rotate M2
V to the U(1)h.e.m charge and mass proper basis with the following transfor-

mation

m2
V = O†V i

mM2
mnO

n
V j =


m2
A+ 0 0 0
0 m2

A− 0 0
0 0 m2

B 0
0 0 0 m2

γ′

 , (4.77)

with

OV =


1√
2

i√
2

0 0
1√
2
− i√

2
0 0

0 0 sin θ′
W

cos θ′
W

0 0 − cos θ′
W

sin θ′
W

 , (4.78)

such that the physical eigenvectors are defined as
A+
µ

A−µ
γ′µ
Bµ

 = OV


A′1µ
A′2µ
A′3µ
B′µ

 . (4.79)

The gauge mixing angle θ′
W

is the mirror analogous of the Weinberg angle and is related to the mirror
gauge couplings g′1,2 and the hidden charge e′ as

g′1 =
e′

cos θ′
W

and g′2 =
e′

sin θ′
W

. (4.80)

With the definitions above we can, at last, write the masses of the mirror gauge bosons as

mγ′ = 0 , m2
B =

1

2
v2
ϕe
′2 csc2

(
2θ′

W

)
, m2

A± =
1

4
v2
ϕe
′2 csc2 θ′

W
, (4.81)

where, for the case of a new extremely small energy scale, the model predicts a new complex vector
field A±µ with astrophysical relevance in the context of Proca stars. In addition, the model also offers
a real Proca field Bµ as well as a new, massless, hidden photon γ′µ. Note that the smallness of both
the real and complex Proca fields can also be attributed to a feebly interacting theory where, instead
of a new tiny scale vϕ, it is the value of e′ that sets the size of both mA± and mB.

The presence of a hidden photon can also have interesting phenomenological implications. In
particular, it was recently proposed in [126] that rare Kaon decays such asK+ → π+π0γ′, are sensitive
channels to probe massless hidden photons where the typically searched kinetic-mixing interactions
are nonviable. Furthermore, as it is discussed in [127] traces of hidden and ordinary photon mixing in
the weak and electromagnetic interactions are only possible if new particles beyond those of the SM
are involved, opening up the possibility for complementary searches for new physics.

To finalize this section let us write down the self-interactions involving ultralight Proca fields,
the hidden photon and scalars. First, let us consider the pure gauge sector where, due to non-trivial
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Lorentz index contractions we explicitly write the cubic and quartic interactions as

L3 = ie′ cot θ′
W
∂νgµρ

(
BρA−µA+

ν − BρA+
µA−ν

)
+ ie′θ′

W
∂νgµρ

(
γ′ρA−µA+

ν − γ′ρA+
µA−ν

)
+ Perm(µ, ν, ρ)

(4.82)

and

L4 =− 1

4
e′

2
gµρgνλ

[
cot2 θ′

W

(
BµBρA−ν A+

λ − BµBλA−ν A+
ρ

)
+
(
γ′µγ

′
ρA−ν A+

λ − γ′µγ′λA−ν A+
ρ

)
− cot θ′

W

(
Bµγ′ρA−ν A+

λ − Bµγ′λA−ν A+
ρ

)
+ csc2 θ′

W

(
A−µA+

ρ A+
ν A−λ −A−µA+

λA+
ν A−ρ

)]
+ Perm(µ, ν, ρ, λ) ,

(4.83)

respectively, with gµν the space-time metric. Interactions with scalars read as

gBBh1h1
=
m2
B

v2
ϕ

sin2 α gBBh2h2
=
m2
B

v2
ϕ

cos2 α gBBh1h2
=
m2
B

v2
ϕ

sin(2α)

gAAh1h1
=
m2
A
v2
ϕ

sin2 α gAAh2h2
=
m2
A
v2
ϕ

cos2 α gAAh1h2
=
m2
A
v2
ϕ

sin(2α)

gBBh1
= 2m2

B sinα gBBh2
= 2m2

B cosα gAAh1
= 2m2

A± sinα gAAh2
= 2m2

A± cosα ,

(4.84)

with the scalar mixing angle defined in Eq. (4.25). Note that, unlike the pseudo-Goldstone cases
discussed above, production of ultralight Proca fields in collision experiments is highly suppressed
by their own mass such that, for astrophysically relevant scales, their search at current and next
generation of particle colliders is rather challenging if not unrealistic, for the vector DM models
presented in this work.

Most of the features described for the model with a single (real) Proca field are also valid for the
current discussion. Among the differences we highlight the possibility of self interactions involving
four complex A±. If the size of mA results from an extremely small mirror symmetry breaking scale
then, the U(1)h.e.m gauge coupling, e′, can be sizeable and the self interactions on the last term of
Eq. (4.83) must be considered. On the other hand, if the mass results from a feebly interacting
mirror sector, then the theory becomes asymptotically free. A potential observation of Proca stars
can be seen as a channel to probe the details of the mirror sector, in particular, to shed light on the
scales and interactions strengths involved. The recently suggested identification of GW190521 as a
collision of Proca stars [28] is tentative in this direction; however the analysis in this work does not
consider self-interactions. It would be quite interesting to understand the impact of these. Notice
that, as discussed above, one of the possible ways of making A± ultralight is by imposing a tiny
hidden charge. In such a scenario quartic interactions with the hidden photons γ′ become extremely
suppressed while sizeable self interactions among massive modes (first and last terms in Eq. (4.83))
can become sizeable in the limit θ′

W
→ 0 such that e′ csc2 θ′

W
∼ e′ cot2 θ′

W
∼ O(1). However, not only

this is a fine-tuned scenario as well as the masses of both the real and complex Proca fields would
become comparable thus affecting the stability of the Proca star. Alternatively, if e′ is on its own
sizeable, A± can get annihilated into a pair of γ′ and the stability of the Proca star needs to take into
account strong gravity effects. Such a discussion lies beyond the scope of this manuscript and will be
addressed elsewhere.

Could the real Proca be related to the XENON1T excess? [128] 6 We should be careful because
current constraints on bosonic particle mass, in principle, only apply to real fields. However, if the
emergence of a complex field implies the existence of real massive fields, those constraints become
relevant. Note that, unless the theory is feebly interacting, the first term in Eq. (4.82) implies that
the real Proca field can efficiently decay in a pair of complex ones if mB > 2mA. In such a scenario,
the complex Proca field can be candidate to, at least, a fraction of the dark matter abundance in the
Universe. On the other hand, for mB < 2mA, then both Proca fields become dark matter candidates.

6The XENON1T experiment has reported results from searches for new physics. An excess over known backgrounds
was observed at low energies and most prominent between 2 and 3 keV.

– 23 –



Model Symmetry Complex Vectors Real Vectors Complex Scalars Real Scalars Masses Self Interactions
1 Global U(1)G 7 7 7 θ, h2 (4.24) (4.29) (4.30) (4.31)
2 Global U(1)G ×U(1)G′ 7 7 η h2, h3 (4.45) (4.48) (4.51) (A.1) (A.2)
3 Global SU(2)G ×U(1)G 7 7 η± θ3, h2 (4.62) (4.63) (4.64) (4.61) (4.67) (4.68)
4 Local U(1)H 7 B 7 h2 (4.70) (4.71)
5 Local SU(2)H ×U(1)H A± B 7 h2 (4.81) (4.82) (4.83) (4.84)

TABLE 1. Summary of models. The hi fields are only viable ultralight candidates in the limit
of feebly interacting theories. In model 2 we denote the ultralight complex scalar candidate as η
instead of η± (as in model 3) in order to indicate that the Noether charge is accidental rather than
fundamental.

Note that h2 decay channels to both Proca fields is suppressed either by a tiny scale vϕ � mh2
or by

the hidden electromagnetic gauge coupling e′. If the mirror symmetry breaking scale is larger than
the EW one with a new visible scalar at colliders, then the mirror sector must be feebly interacting
in order to allow for ultralight vector bosons. In such a scenario, only mass terms contribute to the
solution of stable Proca stars while self interactions are extremely suppressed. As a final remark, it is
worth mentioning that the multiplicity of Proca fields, both complex and scalars, is larger in models
invariant under larger hidden gauge symmetries. In fact, the SU(2)H ×U(1)H model introduced here
is the minimal scenario where a well motivated complex Proca field in the context of HEP can emerge.

5 Summary and conclusions

We have presented five simple extensions of the SM capable of providing ultralight real and complex
bosons. While fine-tuned solutions are unattractive and potentially problematic from the perspective
of Quantum Field Theory, ultralight candidates stemming from sectors constructed upon symmetry
arguments are well formulated and stable against quantum corrections. In particular, ultralight scalars
can emerge when continuous global symmetries are both explicitly and spontaneously broken whereas
Proca fields result from the spontaneous breakdown of new gauge symmetries if either the scale of the
theory is well below the EW one or if the interactions strengths are significantly weaker than those
of the SM.

We show in Tab. 1 a summary of the models discussed in this article with focus on the nature of
the ultralight boson candidates. In particular, model 3, so far lacking a discussion in the literature,
and model 5, introduced here for the first time from the perspective of an ultralight Mirror sector as
opposed to a heavier one, can provide extraordinary complex field candidates relevant for boson and
Proca stars respectively.

The models presented provide a SM-like Higgs with a mass of 125 GeV with couplings to the
remaining SM particles that are either the ones predicted by the SM or are such that the SM limit can
be attained in a simple way. Together with the SM Higgs, there are in many cases more scalars that
can be lighter or heavier than the SM Higgs but are expected to have their mass at the electroweak
scale. In fact, many of these extensions, although not the ultralight scalars, have been probed in the
previous LHC runs and searches will continue at next run. A wealth of phenomenological information
combining astrophysical sources, collider data and cosmological observations can potentially shed light
on the existence of a new ultralight bosonic sector.
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A Quartic and cubic self interactions for the global U(1)G × U(1)G′ model

We give in this Appendix a list of quartic and cubic self interactions involving all ultralight candidate
bosons, η. h2 and h3. Recall that, unlike η, h2 and h3 can be also be heavier than the EW scale.

λ
h2h2h2h2

=
1

16

[
(λ12 + λφ) cos4 αh + 2λH sin4 αh + λHφ sin2(2αh)

]
λ
h3h3h3h3
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16
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h2h2h3h3

=
1
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]
λ
h1h1h2h2

=
1

64
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λ
h1h1h3h3

=
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2λHφ cos2 αh − (λ12 − 3λφ) sin2 αh
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λ
h1h1ηη̄

=
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4
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2λHφ cos2 αh + (λ12 + λφ) sin2 αh
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λ
h2h2ηη̄

=
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4
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h3h3ηη̄
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4
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(A.1)

and
λ
h1ηη̄

= vhλHφ cosαh +
1√
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λ
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(A.2)
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The quartic couplings are expressed in terms of the physical masses, the mixing angle αh and the
VEVs as

λH =
m2
h1

cos2 αh +m2
h2

sin2 αh

v2
h

λHφ =

(
m2
h1
−m2

h2

)
cosαh sinαh√

2vhvσ

λφ =
m2
h1

sin2 αh +m2
h2

cos2 αh +m2
h3

2v2
σ

λ12 =
m2
h1

sin2 αh +m2
h2

cos2 αh −m2
h3

2v2
σ

.

(A.3)
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