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Abstract. The number of forest fires has increased in recent years. Ris-
ing ambient temperatures and rising demographics are the main drivers
of these disasters. Optimization has been widely applied in forest fire-
fighting problems, allowing improvements in the effectiveness and speed
of firefighters actions. In this work, a resource dispatch problem for for-
est firefighting (involving 7 resources to extinguish 20 ignitions) is pre-
sented. The main goal is to minimize the total burned area caused by
the ignitions. To solve this work, a genetic algorithm (GA) adapted to
this problem was used. Furthermore, a statistical analysis was carried
out among several GA operators, crossover, mutation and selection, to
verify which operators obtain the best results for this problem.

Keywords: Forest Fires, Single-objective Optimization, Dispatching Prob-
lem, Genetic Algorithm

1 Introduction

Over the years, the number of forest fires on our planet has been very high, prov-
ing to be quite worrying, as they represent high-risk situations for the health of
living beings and forests. Wildfires damage wildlife and the atmosphere, bringing
serious environmental problems. In recent years, the causes of fires have been
due to climate change, such as the increase in ambient temperature and due
to the criminal hand. For example, between 2019 and early 2020, Australia was
devastated by several forest fires caused by unprecedented high temperatures [6].

Every year, around 4 million square kilometers of land (roughly the size of the
European Union) are burned worldwide [17]. In Europe, more than five thousand
five hundred square kilometers of land burned in 2021, with one thousand square
kilometers belonging to protected areas in the European Union [18]. In 2017,
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Portugal faced several forest fires, being a record year for the number of fires that
occurred. The main causes were high temperatures and dry thunderstorms [7].

Firefighting is a very important and studied area in the literature. It is nec-
essary to protect and avoid catastrophes, such as forest fires, and for this pur-
pose studies are carried out to support the decisions of professionals in forest
firefighting (firefighters, civil protection, etc.). The number, skills and level of
preparation of firefighting teams are very important factors in fighting fires [1].
The better and faster the performance of the firefighting team, the less damage
will be caused. The gradual increase in forest fires has been a worrying factor for
society and for the planet Earth, since they cause deaths, pollution, damage to
infrastructures, among other negative aspects. The management of the suppres-
sion of forest fires implies knowing how many and which combat resources must
be dispatched for each forest fire, in order to extinguish the fire in the best way
and quickly. For example, in the paper by Zeferino et al. [19] a mathematical
optimization model was developed to find the best location solution for different
aircraft that maximizes the coverage of risk areas. Its application was used in a
case study in Portugal. In engineering, some optimization strategies have been
used to solve problems associated with fire suppression aiming to find the op-
timal trajectory and location of combat vehicles, obtaining the shortest route,
determining the number and which resources to dispatch, among others. In the
work by Chan et al. [8] the Firefly algorithm was proposed to dispatch a lim-
ited amount of drones and firefighters between several zones. The performance
of Firefly algorithm was evaluated in a wide variety of configurations, showing
that when a relatively small number of drones are used (for example, 10 - 20%
of the total number of zones) the algorithm can reach up to 80 - 95% of the
optimal performance in most cases. A mathematical model was formulated in
[10] for firefighting and rescue service dispatch problem. This problem aims to
determine the allocation of firefighters to vehicles and how the vehicles should
be dispatched for an emergency. The model was solved exactly and heuristically
using data from Sk̊ane, in Sweden. The results showed that the exact solution
method is very time consuming in some cases, and that, in most cases, the
heuristic finds an optimal solution.

Other studies were developed to determine how many and which resources
are available and where and when to act in a given forest fire. In order to reduce
forest fires, it is necessary to contribute with studies and develop support systems
for forest management, using modern techniques for monitoring, detection and
control [1]. Planning how many and which forest firefighting resources are needed
to extinguish a given fire is a very relevant area of study that can lead to damage
reduction and support decision makers in combat actions. A resource dispatch
problem is defined as a problem that simulates where, when and what resources
will act on the ground. This problem when applied to forest firefighting, is based
on knowing which means of combat should be sent for a given fire and when to
send them [2]. The genetic algorithm (GA) is one of the most used metaheuristics
in this type of problem. Several works have been presented, applying the genetic
algorithm to forest firefighting associated problems. A problem using a resource
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for multiple simultaneous ignitions was introduced by [14]. The objective was
to find the optimal sequence of actions in firefighting, minimizing the total fire
damage in the burned areas. They proposed a stochastic formulation to solve
the problem concluding that the approach was effective and efficient.

Baisravan et al. [13] proposed several decision support strategies to minimize
the total burned area. For this, the GA was applied to find the best strategy
in order to reach the objective, using a certain number of resources. The GA
builds an optimal line of fire to reduce the total area burned and provides the
attacking teams with suitable locations for the line of fire to be built before the
fire escapes. A significant decrease in the damage caused was verified. Later,
Baisravan et al. [12] presented a GA-based approach for the development of ef-
ficient strategies in fire building lines, using intelligent dispatch of resources to
minimize total damage to wild areas caused by fires. The approach used a simu-
lation optimization technique where the GA uses advanced wildfire propagation
models based on Huygens principles to evaluate the cost index. Homogeneous
and heterogeneous environmental conditions were considered with uncertainty
in meteorological conditions. Monte-Carlo simulations were used to develop ro-
bust strategies under uncertain conditions. With this approach it was possible
to verify its effectiveness in the dispatch of resources to combat complex forest
fires in uncertain and dynamic conditions. The work developed by Matos et al.
[16] aimed to find an optimal scheduling of a forest firefighting resource in the
combat of multiple ignitions. The goal was to minimize the total burned area,
using GA in a problem with 10 forest fire ignitions located.

This work aims to study a resource dispatch problem for forest firefighting.
It is intended to assign 7 resources of forest firefighting to combat 20 ignitions
of a forest fire. An adapted GA, implemented in Python language, was used to
minimize the total burned area of the ignitions. Furthermore, several GA oper-
ators, crossover, mutation and selection were tested, and a statistical analysis
was carried out to verify which operators to apply in order to obtain the best
results in this problem.

This paper is organized as follows. The genetic algorithm is described in
Sect. 2, which is used to solve the problem presented in Sect. 3. The experimental
results are shown in Sect. 4, where the statistical analysis of the results is also
presented. Finally, the conclusions of this study and future work are exposed in
Sect. 5.

2 Genetic Algorithm

Genetic Algorithms are well-known and commonly used optimization algorithms,
originally proposed by John Holland in 1975 [11]. The genetic algorithm is a
stochastic global optimization algorithm inspired by the evolutionary theory
of species, namely natural selection, survival of the fittest and the inheritance
of traits from parents to offspring by reproduction. The main components of
a GA are the chromosome population, the operators (selection, crossover and
mutation), the fitness function and the algorithm termination [15].
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The GA can be described by the following pseudo-code:

1. Randomly initialize the population of individuals (chromosomes).
2. Compute the fitness function of each individual in the population.
3. Select individuals based on their fitness to serve as parents to form a new

population.
4. Perform crossover and mutation on parents to create offspring to form a new

population.
5. Copy the best individual to the new population (elitism).
6. Repeat steps 2-5 until termination condition is satisfied.

Initialization

GA is particularly suitable for exploring the search space of a combinatorial
optimization problem, for example through a permutation representation of the
individuals in population [4]. In this paper, a permutation representation was
adopted to represent a possible solution to the problem of dispatching forest
firefighting resources. In this representation, each chromosome is a sequence of
integer values that can only appear once, that is, each combat resource can fight a
certain number of ignitions at different instants of time, following a certain order
of priority, which represents each chromosome [3]. The number of elements in
the chromosome is given by multiplying the number of resources by the number
of ignitions. An example representation of the permutation with 3 resources
(R1, R2, R3) and 4 ignitions (I1, I2, I3, I4), for each instant of time t, is presented
in Table 1, where the chromosome length is 12. The permutation representation
indicates the order of action of each resource, where the first four elements of
the chromosome show the order of action of resource R1, then from the 5th
to the 8th element gives the order of action of resource R2 and the last four
elements give the order of action of resource R3 in each ignition. Thus, at the
initial instant of time, the chromosome in Table 1 indicates that the resource
R1 goes to ignition I2, the resource R2 goes to ignition I1 and the resource R3

goes to ignition I3. Afterwards, R1 goes to ignition I3, the resource R2 goes to
ignition I2 and the resource R3 goes to ignition I1 and so on.

Table 1. Permutation representation (example)

Resource R1 R2 R3

Chromossome 4 5 2 8 1 9 10 11 7 3 12 6

Ignitions Order I2 I3 I1 I4 I1 I2 I3 I4 I3 I1 I4 I2

Fitness function

The fitness function measures the quality of the chromosome (in terms of so-
lution) and is related to the objective function. In each generation, the fittest
chromosomes in the population are more likely to be selected to generate off-
spring through crossover and mutation genetic operators.
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Operators

The genetic material from the chromosomes is combined to ensure that promis-
ing new regions of the search space are explored. However, genetic operators
must ensure that feasible permutations are maintained during the search. Sev-
eral specialized genetic operators have been developed to meet this requirement
[4]. Thus, the genetic operators that will be explored and tested for the resource
dispatch problem for forest firefighting are shown in Table 2.

Table 2. GA operators explored this work

Crossover Mutation Selection

Edge recombination (ER) Inverse (IM) Tournament (TS)
Exponential (ExpC) Bitflip (BM) Random (RS)
Order-based (OR) Polynomial (PM)
Simulated Binary (SBX)
Uniform (UC)

Edge recombination crossover is a permutation (ordered) chromosome crossover
operator aiming to introduce as few paths as possible between the various ele-
ments. In other words, edge recombination uses an adjacency matrix where there
is a list of neighbors of each element of the parent chromosomes (see example in
Fig. 1).

Fig. 1. Edge recombination crossover

The exponential crossover is similar to the one-point crossover or the two-
points crossover. First, a chromosome position is chosen at random. Then a
given number of consecutive positions are swapped between parents according
to a decreasing exponential distribution [20], as can be seen in Fig. 2.

The order-based crossover is an operator used for permutation representa-
tions with the intention of transmitting information about the relative ordering
to the offprints. An example of application of the order-based crossover can be
visualized in Fig. 3.

The simulated binary crossover operator uses two parent vectors that give
rise to two offspring solutions (see Fig. 4). This involves a parameter, called a
distribution index that is held fixed in a positive value throughout a simulation.
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Fig. 2. Exponential crossover

Fig. 3. Order-based crossover

If the distribution index value is large, then the resulting top-down solutions are
close to the parent solutions. On the other hand, if the value of the distribution
index is a small value, it is likely that the solutions are far from the parents [9].

Fig. 4. Simulated binary crossover

The uniform crossover treats each gene on the chromosome individually, as
can be seen in Fig. 5. In other words, you basically toss a coin to each gene and
decide whether or not it will be included in the offspring.

Fig. 5. Uniform crossover
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The inversion mutation randomly selects some positions within a chromosome
and inverts the genes on the subchromosome between those positions (see an
example in Fig. 6).

Fig. 6. Inversion mutation

The bitflip mutation operator randomly selects a gene from the parent chro-
mosome, with binary encoding, and transforms it from 0 to 1 or vice versa, as
shown in Fig. 7.

Fig. 7. Bitflip mutation

The polynomial mutation is similar to what occurs in SBX (Fig. 8), that is,
a gene from the parent chromosome is selected and this is transformed into a
random value (among the maximum number of genes on the chromosome) in
the child chromosome.

Fig. 8. Polynomial mutation

In random selection, only two chromosomes (parents) are selected to partici-
pate in mating and they cannot mate more than once, giving rise to offspring. So,
successively, pairs of parents are selected at random without reposition from the
population to generate offspring by the application of crossover and mutation.

Tournament selection, successively, selects at random two or more parent
chromosomes and the one with the highest fitness function value is selected to
generate offspring.

Termination

Termination is the final step of a GA, where the algorithm ends if it reaches
some defined stopping criterion close to the optimal solution. For example, it
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ends when there are no improvements in the solution (the value of the objective
function stagnates), when the maximum number of iterations is reached or when
the objective function value reaches a certain predefined value. If the algorithm
does not end, a new generation is performed where the GA operators (selection,
crossover and mutation) are used to generate a new chromosome. This cycle is
repeated until a certain stopping criterion is satisfied.

3 Problem Description

This work presents a resource dispatch problem for forest firefighting aiming to
know which means of combat and when to send them to fight a fire. The objective
is to minimize the total burned area, assigning 7 combat resources to suppress
20 ignitions of a wildfire. Thus, the goal is to determine, for each instant of time,
which combat resource should go to each ignition, reducing the damage caused
(total burned area).

For solving this problem, some assumptions are considered.

Ignition assumptions:

– Each ignition can only be extinguished once.
– Each ignition can be extinguished by one or more resources.
– The water required to extinguish a given ignition varies over time.
– For each ignition, the fire spreads and therefore the burned area varies over

time.
– The distance between the base and each ignition, and between ignitions is

known.
– Whenever the water capacity of the resources assigned to a given ignition is

sufficient to extinguish it, it is extinguished instantly.

Resource assumptions:

– All resources, in the initial instant of time, are located in the base.
– Each resource has a maximum tank water capacity, that cannot be refilled

when it is empty.
– At the initial instant of time, all resources have full tank water capacity.
– Each resource can only be assigned to one ignition at each instant of time.
– The resources velocity is considered constant.
– The travel time between the base and each ignition and between ignitions is

the same for all resources.

The resource dispatch problem for forest firefighting is described as follows.
The goal of this problem is to minimize the total burned area (TBA), using 7
resources (A, B, C, D, E, F and G) to extinguish 20 ignitions (Ii, i = 1, . . . , 20)
of a fire considering several instants of time. The data used in this work was
generated to simulate a real situation. The resources are vehicles consisting of
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Table 3. Resource capacity

Resource A B C D E F G

Capacity 500 1000 3000 1500 1000 500 1500

water tanks totaling 9000 l of available water, whose capacity (in liters (l)) of
each resource is listed in Table 3.

Table 4 shows the travel times (in minutes) between the location of each igni-
tion and travel time from the base (Base) to each ignition. That is, it corresponds
to the travel time from location where the 7 firefighting means are located at the
beginning (in the Base), and each of the 20 ignitions and between each ignition
(Ii). Travel times range between 10 and 100 minutes, with intervals of every 10
minutes t = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Table 4. Travel time between ignition locations

Ii Base 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Base 0 20 20 20 20 20 20 10 20 10 20 30 30 30 20 20 30 20 30 30 20
1 20 0 20 10 20 20 10 10 10 30 30 20 20 20 30 20 20 10 30 30 30
2 20 20 0 20 10 20 20 20 10 20 10 20 30 10 10 10 30 30 30 20 30
3 20 10 20 0 20 30 30 20 30 30 20 10 20 10 20 30 20 20 30 30 20
4 20 20 10 20 0 20 30 10 20 20 10 20 30 30 30 30 30 20 20 10 20
5 20 20 20 30 20 0 20 10 10 30 20 20 10 10 30 20 20 20 10 10 20
6 20 10 20 30 30 20 0 20 20 10 30 30 10 20 20 20 20 30 10 30 10
7 10 10 20 20 10 10 20 0 20 20 20 30 10 30 20 30 10 30 20 10 20
8 20 10 10 30 20 10 20 20 0 10 10 30 20 20 10 20 20 30 20 20 20
9 10 30 20 30 20 30 10 20 10 0 10 20 20 20 30 20 30 20 20 20 30
10 20 30 10 20 10 20 30 20 10 10 0 10 30 20 20 10 10 20 20 10 10
11 30 20 20 10 20 20 30 30 30 20 10 0 20 20 20 30 10 10 20 10 20
12 30 20 30 20 30 10 10 10 20 20 30 20 0 10 20 20 20 10 10 20 20
13 30 20 10 10 30 10 20 30 20 20 20 20 10 0 10 30 10 20 20 30 20
14 20 30 10 20 30 30 20 20 10 30 20 20 20 10 0 10 20 10 30 20 30
15 20 20 10 30 30 20 20 30 20 20 10 30 20 30 10 0 30 30 10 10 30
16 30 20 30 20 30 20 20 10 20 30 10 10 20 10 20 30 0 10 20 10 30
17 20 10 30 20 20 20 30 30 30 20 20 10 10 20 10 30 10 0 10 20 20
18 30 30 30 30 20 10 10 20 20 20 20 20 10 20 30 10 20 10 0 20 30
19 30 30 20 30 10 10 30 10 20 20 10 10 20 30 20 10 10 20 20 0 20
20 20 30 30 20 20 20 10 20 20 30 10 20 20 20 30 30 30 20 30 20 0

The burned area (in ha) of each ignition for each instant of time is shown
in Table 5. The rows refer to each ignition Ii and the columns correspond to
the instant of time t (in minutes). In each ignition, over time, the burned area
increases, and for some ignitions the growth rate is lower than in others.

The amount of water (in liters) required to extinguish each ignition Ii at
each instant of time t is shown in Table 6. For each instant of time, the larger
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Table 5. Burned area for each ignition i at each instant of time t

aaaa
Ii t 10 20 30 40 50 60 70 80 90 100

1 5.0 7.4 10.1 13.1 16.4 20.1 24.1 28.5 33.5 38.9
2 10.0 12.4 15.1 18.1 21.4 25.1 29.1 33.5 38.5 43.9
3 7.0 8.4 10.6 14.3 20.4 30.4 47.0 74.3 119.3 193.5
4 11.0 14.9 20.3 27.9 38.5 53.3 73.9 102.7 142.9 198.9
5 9.0 11.7 16.2 23.6 35.8 55.9 89.0 143.6 233.6 382.0
6 60.0 62.7 67.2 74.6 86.8 106.9 140.0 194.6 284.6 433.0
7 20.0 27.5 36.6 47.7 61.3 77.9 98.2 122.9 153.2 190.1
8 50.0 57.5 66.6 77.7 91.3 107.9 128.2 152.9 183.2 220.1
9 80.0 82.7 87.2 94.6 106.8 126.9 160.0 214.6 304.6 453.0
10 100.0 102.2 105.5 110.5 117.9 128.9 145.4 169.9 206.5 261.1
11 46.0 53.5 62.6 73.7 87.3 103.9 124.2 148.9 179.2 216.1
12 20.0 20.4 21.1 22.6 25.4 30.8 41.5 62.2 102.5 181.1
13 40.0 41.2 42.6 44.5 47.0 50.1 54.1 59.3 66.0 74.5
14 30.0 32.2 35.5 40.5 47.9 58.9 75.4 99.9 136.5 191.1
15 180.0 187.0 195.2 205.0 216.5 230.1 246.1 265.1 287.5 314.0
16 170.0 172.7 177.2 184.6 196.8 216.9 250.0 304.6 394.6 543.0
17 40.0 43.1 47.5 53.5 62.0 73.8 90.3 113.4 145.5 190.3
18 90.0 92.3 95.6 100.2 106.5 115.4 127.7 145.0 169.1 202.8
19 35.0 38.3 43.5 51.5 63.8 82.8 112.2 157.5 227.6 335.8
20 50.0 52.2 55.3 60.0 66.8 76.9 91.6 113.3 145.2 192.0

the burned area, the greater the amount of water needed to extinguish a given
ignition.

4 Experimental Results

In this work, GA is implemented in the Python language, after being adapted
from the pymoo framework: Single-objective Optimization in Python [5]. First,
a permutation representation is used so that the solution to the problem takes
the form of the order in which a sequence of events should occur, as described
in Sect. 2. The permutations represent solutions of the problem, where an array
with size equal to the number of resources times the number of ignitions was
generated. Then the array is ranked in descending order of combat priority of
ignitions for each resource. Finally, a reordering was applied to the resources that
still have sufficient capacity to extinguish ignitions. Then, some GA operators are
tested to determine the configuration that best performed in solving the problem
of dispatching forest firefighting resources. Finally, a statistical analysis is carried
out between the different tests of the GA operators (crossover, mutation and
selection) to support the decision of which are the best operators to use to
obtain the best solution for this problem. At the end, a discussion will be held
on the results obtained.

Regarding the parameters used by GA, the population size was set to 20,
and the GA default values for the maximum number of generations and the



Title Suppressed Due to Excessive Length 11

Table 6. Water required for extinguish each ignition Ii at each instant of time t

aaaa
Ii t 10 20 30 40 50 60 70 80 90 100

1 79.3 96.7 112.9 128.4 143.7 158.8 174.0 189.4 205.1 221.1
2 112.1 125.0 137.9 150.9 164.1 177.5 191.2 205.3 219.9 234.9
3 93.8 102.5 115.4 134.0 160.1 195.5 243.0 305.5 387.2 493.1
4 117.6 136.8 159.8 187.3 220.0 258.8 304.8 359.2 423.7 500.0
5 106.3 121.3 142.7 172.2 212.0 264.9 334.4 424.8 541.8 692.8
6 274.6 280.7 290.6 306.2 330.2 366.4 419.4 494.5 598.0 737.6
7 158.5 185.8 214.4 244.8 277.5 312.9 351.2 393.0 438.7 488.8
8 250.7 268.7 289.2 312.5 338.7 368.2 401.3 438.4 479.8 525.9
9 317.1 322.4 331.0 344.8 366.3 399.3 448.4 519.3 618.7 754.5
10 354.5 358.4 364.2 372.6 384.9 402.5 427.4 462.0 509.4 572.8
11 240.4 259.2 280.4 304.3 331.2 361.3 395.0 432.6 474.5 521.1
12 158.5 160.0 162.9 168.4 178.5 196.8 228.2 279.5 358.9 477.0
13 224.2 227.4 231.5 236.6 243.0 251.0 260.9 273.0 287.9 306.0
14 194.2 201.2 211.3 225.6 245.3 272.1 307.7 354.3 414.1 490.0
15 475.6 484.7 495.3 507.5 521.6 537.7 556.1 577.2 601.1 628.1
16 462.2 465.9 471.9 481.6 497.3 522.0 560.5 618.7 704.2 826.0
17 224.2 232.8 244.2 259.4 279.1 304.6 336.9 377.4 427.6 489.1
18 336.3 340.6 346.6 354.8 365.8 380.8 400.7 426.9 461.0 504.8
19 209.7 219.5 233.8 254.3 283.1 322.6 375.4 444.9 534.8 649.6
20 250.7 256.0 263.7 274.6 289.8 310.8 339.4 377.4 427.2 491.2

maximum number of function evaluations were 1000 and 100000, respectively.
As GA is a stochastic algorithm, 30 independent runs were performed in order
to statistically analyze its performance.

The numerical experiments were carried out on a PC 11th Gen Intel(R)
Core(TM) i7-1165G7 @ 2.80GHz, 2803 Mhz, 4 Nucleus(s), 8 Processor(s) Logic(s),
16 Gb RAM. The code was implemented in python (version 3.9.13) using VScode
(Version 1.77).

4.1 Testing GA Operators

The strategy used for testing the GA operators presented in Table 2 was as
follows. First, keeping the default selection and mutation operators of the pymoo
framework (Tournament Selection and Inverse Mutation), the crossover operator
was varied. Then, for the crossover operator that obtained the best performance
in terms of total burned area, the Tournament Selection was maintained and the
mutation operator was varied. Finally, for the crossover and mutation operator
that obtained the best result, the other selection operator (Random Selection)
was tested.

Table 7 shows the average solution values, among the 30 runs, for the total
burned area (TBAav), the number of objective function evaluations (nfeav), the
total remaining water (RWav), the total water used (UWav) and the execution
time (Timeav), in seconds. In addition, the standard deviation (St dev) is also
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reported. The solution with the smallest average value of the total burned area
found is marked in bold.

Table 7. Average solution values for different crossover, mutation and selection oper-
ators

Selection Crossover Mutation TBAav RWav UWav St dev nfeav Timeav

TS ER IM 1322.1 2781.2 6218.8 26.8 620.0 11.1
TS ExpC IM 1277.4 2847.9 6152.1 27.1 620.0 6.7
TS OR IM 1306.8 2718.6 6281.4 24.1 620.0 5.4
TS SBX IM 1306.5 2786.7 6213.3 30.0 620.0 4.1
TS UC IM 1303.9 2992.0 6008.0 27.1 620.0 3.6
TS ExpC BM 1272.4 3065.0 5935.0 35.4 628.7 5.3
TS ExpC PM 1249.9 3108.8 5891.2 36.2 1584.7 16.1
RS ExpC PM 1251.8 3027.4 5972.6 30.6 1540.7 21.1

In a first approach, a statistical analysis was performed among the GA
crossover operators. Thus, the crossover operator, with the lowest value of the
total burned area, was chosen (Exponential, ExpC). Then, the GA mutation
operators IM and PM were tested. Finally, the best mutation operator was cho-
sen (Polynomial, PM), and GA selection operator RM was also tested. For the
statistical analysis, a one-tailed paired sample t-student test was used, where
the p-values and the differences between the TBA values of each operator are
presented in the next tables. In all tests, a significance level of 5% was considered.

Testing Crossover

As mentioned earlier, the several GA crossover operators were tested by setting
the default operators of pymoo for selection and mutation (TS and IM). Table 8
shows the p-values, in the lower triangular part of the table, and average differ-
ences between the TBA values of the crossover operators, in the upper triangular
part of the table.

Table 8. Statistical analysis for crossover operator

ExpC ER OR SBX UC

ExpC - -44.789 -29.446 -29.169 -26.561

ER <0.001 - 15.343 15.620 18.228

OR <0.001 0.012 - 0.277 2.886

SBX <0.001 0.019 0.484 - 2.608

UC <0.001 0.006 0.332 0.363 -

With the crossover operator ExpC, the best result was obtained, when com-
pared to all other crossover operators, since the TBA values were negative. On
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the other hand, the ER was the worst operator compared to the others (OR,
SBX and UC crossovers), where the difference between the TBA values of the
various operators was positive. The statistical analysis showed that there were
significant differences between the crossover operator ExpC and the others, since
the p-value was less than 0.05. When comparing the p-values of the ER crossover
with those OR, SBX and UC, the statistical analysis indicates that the differ-
ences are significant, since p-values are less than 0.05. Finally, comparing the
crossovers OR with SBX, OR with UC and SBX with UC, it is possible to no-
tice that there were no significant differences between these operators, as the
p-values were greater than 0.05. Therefore, the best operator was ExpC.

Testing Mutation

Then, the previously chosen crossover operator (ExpC) was fixed and the TS
was maintained, a statistical analysis was performed between the GA mutation
operators. As can be seen in Table 9 there were no significant differences between
IM and BM operators, as the p-value is greater than the 0.05. In addition, it was
also possible to observe that the PM operator stood out from the IM and BM
operators, since the p-value was less than 0.05, showing significant differences
between them. Thus, it was possible to conclude that the best GA mutation
operator was the PM.

Table 9. Statistical analysis for mutation operator

IM BM PM

IM - 4.962 27.413

BM 0.272 - 22.451

PM <0.001 0.009 -

Testing Selection

Finally, after the best crossover and mutation operators had been previously
chosen (ExpC and PM), a statistical analysis was performed between the RS
and TS operators. In Table 10, it can be seen that there were no significant
differences (p-value greater than 0.05), which means that it is indifferent to use
RS or TS.

Table 10. Statistical analysis for selection operator

RS TS

RS - 1.905

TS 0.413 -
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After the statistical analysis, it was found that the best operators for this
problem were ExpC and PM. Concerning the selection operator, the TS operator
was selected due to the lowest average value of TBA (marked in bold in Table 7).

4.2 Best Result Analysis

The best solution found by GA, among the 30 runs, when using the best oper-
ators previously chosen, ExpC, PM and TS, is presented in Table 11. It shows
the optimal value obtained for TBA, the number of function evaluations (nfe)
and the execution time (Time). The table also shows the values of the remaining
water (RW) and the used water (UW) in that best solution.

Table 11. Best solution found using ExpC, PM and TS operators

TBA RW UW nfe Time

Best Solution 1236.2 3976.0 5024.0 1900.0 19.5

Table 12 shows the best solution found by GA in terms of the instant of time
each resource is assigned to each ignition. The symbol → represents that the
resource of combat is traveling.

Table 12. Best solution found by GA for TBA = 1236.2 ha

aaaa
R t 10 20 30 40 50

A Base → I4 I19
B Base → I3 I11 → I20
C Base I9 → I15 I2 I13
D Base I7 I1 I6 I18 I12
E Base → I16 I5 I10
F Base → I8 → I20
G Base → I14 I17

In the beginning, all the resources are at the Base. At t = 10, resources C
and D are assigned to ignitions I9 and I7, respectively. At t = 20 resources A,
B, D, E, F and G are assigned to extinguish ignitions I4, I3, I1, I16, I8 and I14,
respectively. In addition, resource C is assigned to ignition I15, but the trip from
I9 to I15 takes 20 minutes (see Table 4), so at t = 20 it is traveling. The ignitions
I19, I11, I15, I6, I5 and I17 are extinguished in the instant of time t = 30. At this
instant of time, resource A is not assigned to any further ignitions, as it does
not have enough water capacity to extinguish any still active ignition (remain
water of resource A is 129.4 l). At the instant of time t = 40, resources C, D
and E are dispatched to ignitions I2, I18 and I10, respectively, extinguishing
them. Resource F is assigned to ignition I20, but does not have enough water to
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extinguish this ignition by itself, running out of water. At this time (t = 40) the
ignition I20 requires 274.6 l of water (see Table 6), but resource F only has 231.3
l of water. Since resource F cannot extinguish I20 alone, resource B is assigned
to support extinguishing this ignition at time t = 50. At this time, I13 and I12
are extinguished by resources C and D, respectively. Note that resource F has
used all of its water tank capacity. Although some resources were low on water,
or even without water, a total of 3976.0 l of water still remained. Thus, at time
t = 50 all ignitions were extinguished and the total water used was 5024.0 l.

5 Conclusions and Future Work

The occurrence of forest fires has increased in recent years and is essentially due
to natural or human factors. Therefore, it is necessary to look for solutions that
can manage fire suppression, such as optimizing firefighting actions.

In this work, a resource dispatch problem for forest firefighting was addressed.
The problem was based on 7 resources that would have to be assigned to 20 ig-
nitions in order to extinguish them, minimizing the total burned area. For this,
the metaheuristic GA from the pymoo framework was used, and adapted with
permutation representation to obtain the optimal solution of the problem. Fur-
thermore, several GA operators, crossover, mutation and selection were tested,
and a statistical analysis was carried out to verify which operators to apply in
order to obtain the best results in this problem. After this analysis, it was found
that the best operators were ExpC crossover, PM mutation and TS selection.
Then, the optimal solution found in terms of total burned area was TBA =
1236.2 ha using the best GA operators. By analyzing this solution, it was possi-
ble to identify at what instant of time each resource goes to each ignition. With
this approach it was possible to realize that the strategy was effective and fast.

In the future, it is intended to deal with this problem but using real data. A
multi-objective approach can also be applied to the resource dispatch problem
for forest firefighting, minimizing simultaneously the total burned area and the
used water.
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