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Abstract The rapid ageing of the worldwide population raises pressing con-
cerns related to ensuring proper healthcare and quality of life for older adults.
A human-like mobile domestic robot, named CHARMIE, is being produced
to aid in these situations by performing household chores, thus increasing the
autonomy of persons with mobility limitations. The present work provides a
valuable contribution to the development of CHARMIE by building a simu-
lation environment that computes the system’s main dynamics. The obtained
environment is used to evaluate the quality of the robot’s control system, to
perform its structural optimization and to allow a proper selection of actua-
tors. The system is tackled as a kinematic tree that starts on the robot’s base
and then splits into three branches at the torso, the left arm, the right arm,
and the head. The multibody model solves the forward kinematics and inverse
dynamics of the main mechanisms by employing two recursive algorithms cen-
tred around the Newton-Euler formulation. A novel, modular, and efficient
seven-step methodology was created to implement these two algorithms and
program a simulator from start to finish. These seven steps include study-
ing the system’s configuration, converting its properties into software inputs,
and computing the phenomena that can’t be automatically addressed by the
two recursive formulations. The presented methodology was fully validated by
comparing its results to those obtained from a commercial software; the two
models produced identical results.
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Fig. 1 Physical prototype (a) and CAD model (b) of the CHARMIE robot.

1 Introduction

One of the most pressing concerns of modern societies is the rapid ageing of
the worldwide population [1]. With the recent developments in robotic tech-
nologies, robots can play a growing role in ensuring the quality of life of older
adults by increasing their autonomy via, for example, performing daily chores
[2]. CHARMIE, a novel human-inspired mobile manipulator (see Figure 1) [3],
has been developed to aid in tackling this issue.

Multibody dynamic simulations are crucial for the research of robotic sys-
tems, namely by allowing the study of the robot’s motion and trajectories, the
efficiency comparison of different control solutions, and the design optimiza-
tion of the mechanism’s bars, joints and actuators [4]. This work focuses on
the development of CHARMIE’s multibody computational model.

The methods for analysing multibody systems can be grouped into two cat-
egories in which: i) a commercial (or open-source) software is used to create
the computational model, or ii) the equations of motion are derived and then
implemented into an integrated development environment. The survey con-
ducted in [5] shows that humanoid robot researchers mostly use method (i),
justifying this decision with the usefulness of the various tools provided by the
software, the quality of the user interfaces, and the ability to tackle complex
systems without requiring in-depth studies. Method (ii) demands a more la-
borious setup stage, but it also provides powerful advantages such as allowing
an optimization of the code to more efficiently tackle specific issues, giving the
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programmer full control over the simulation environment, and producing mod-
els with higher compatibility with external computational tools. The choice of
the best method ultimately depends on the nature of the project and the in-
tended applications of the virtual model. As an example, graphical interfaces
and computer vision problems are easier to deal with using method (i), while
the greater customizability granted by method (ii) allows for quicker paramet-
ric optimization studies. CHARMIE’s multibody model will have three main
uses, namely determining actuator loads, performing parametric optimization
of static balancing mechanisms, and training neural network control solutions
for trajectory control. The two methods are equally valid for the first study,
but the second and third studies benefit greatly from the use of adequately
implemented own code, therefore, this was the chosen methodology for the
CHARMIE project.

The forward kinematics of this system was solved by using the recursive
algorithm presented in [6]. In this method, bodies are first modelled in their
local coordinates, then rotated using rotation matrices defined by Euler angles,
and finally translated into their final positions. The inverse dynamic analysis
is then carried out by using the the recursive Newton-Euler algorithm of [7]
expressed in the mathematical notation of [4]. The present work further adapts
the formulation of [4] to allow it to: tackle tree structure kinematic chains;
integrate formulations that solve closed loop systems; and permit any choice
of axis-orientations, avoiding the limits imposed by the Denavit–Hartenberg
parameters. The aforementioned recursive algorithms are integrated into a
seven-step methodology (Figure 2), which was used to assemble the multibody
model of CHARMIE.

The main contribution of this work is twofold. First, it addresses a pressing
concern in an ongoing project, namely, the need for an in-house optimized code
to achieve the multibody model of CHARMIE, which is required for performing
tests of various control solutions, and to study the optimization of the robot’s
mechanisms. Second, the work describes and validates a systematic seven-step
methodology (see Figure 2) intended to simulate complex articulated robotic
systems. This methodology groups and interconnects mathematical formula-
tions, which are well-known from the literature, to create a complete multibody
simulation from start to finish. The feasibility of the proposed approach was
confirmed by employing it to a specific case study. By comparing the used
methodology with the methods described in the literature, three main advan-
tages were identified: i) It groups a full set of formulations that can be applied
to build a complete dynamics simulator; ii) The obtained simulator has a
high computational efficiency [8]; and iii) The resulting program is extremely
modular and adaptable.

The remainder of this work begins with a Literature Review in Section 2,
where the choice of used mathematical formulations is justified, and the main
available alternatives to tackle the system’s sub-problems are described. The
seven steps of the new proposed methodology are grouped into three main
parts, which correspond to the following sections of the paper: Section 3, con-
structing the multibody model and preparing it by converting its properties
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Fig. 2 Flowchart describing the proposed seven-step method for the multibody computa-
tional analysis.

into the relevant inputs for the recursive algorithms; Section 4, analysing the
forward kinematics, including the geometric study of indirectly actuated joints,
implementing the recursive algorithm for the kinematics analysis, and solving
the kinematics of additional bodies; and Section 5, analysing the inverse dy-
namics, including employing the Newton-Euler recursive algorithm and solving
the dynamics of closed and over-constrained loops. Section 4 does not require
any input from Section 5, allowing the program to be utilized for purely kine-
matic analysis (for example, for trajectory optimization). In Section 6 the de-
veloped methodology is validated by comparing the obtained outcomes with
those produced from a commercial software. Thus, Section 7 concludes the
work by presenting suggestions for future work and concluding remarks re-
garding the methodology’s performance and applications.
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2 Literature Review

The goal of this Literature review is to present alternative notations which
could have been used to model CHARMIE, justify the choice of notation used,
and compare it to the listed alternatives. The forward kinematics will first
be presented, then methodologies for the inverse dynamics, and finally the
multibody problem will be analysed as a whole.

The kinematics of a body is modelled by defining its position and orien-
tation, as well as how these properties vary over time. The most employed
method for the kinematic study of multibody robotic systems is the De-
navit–Hartenberg parameters, in which four scalar variables define a [4x4]
homogeneous transformation matrix that describes the rotation and transla-
tion between two consecutive joints in a serial chain of bodies [9]. Despite
its popularity, this method possesses its own set of drawbacks, such as limit-
ing the choice of orientation for the axes, which can make software outputs
harder to interpret, and using homogeneous transformation matrices that re-
duce the computational efficiency by increasing the number of multiplications
by ones and zeros [10]. This second limitation can be addressed by divid-
ing the translation and rotation operations into two sequential calculations.
Positions and displacements in Euclidean space can be simply defined using
three-dimensional Cartesian coordinates, however, orientations and rotations
provide a more complex problem. Rotation matrices ([3×3] matrices for three-
dimensional space) are commonly utilized to define the rotation between two
references because they are simple to understand, implement and manipulate.
One of the several methods used alongside rotation matrices is the Euler angles,
a set of three predefined rotations that can represent any orientation in space
[11]. Some researchers avoid using Euler angles due to their two well-known
limitations: gimbal lock and the Euler angle singularity [12]. An alternative for
avoiding these limitations is to use quaternions, where rotations are defined
by a vector with four scalars [13]. Quaternions are often favoured for their
high computational efficiency [14]. Another common approach in multibody
systems is screw theory, where two three-dimensional vectors characterize the
Plücker coordinates of a line in space, and the magnitude of a screw and its
pitch, which can be harnessed to describe the position and orientation of a
rigid body [15]. Screw theory may be used alongside Lie Group algebra to ob-
tain general and highly efficient recursive algorithms for spatial algebra [16].
A common application of screw theory within the field of multibody dynam-
ics is the use spatial vector quantities to develop kinematics and dynamic
algorithms based on spatial vector algebra [8,17]. Of the possibilities listed
above (only some of several methodologies), the forward kinematics analysis
of CHARMIE uses Euler angles [6]. Since a constrained system is studied, the
gimbal lock and singularity problems of Euler angles are avoided by choosing
the correct axes orientations [12]. This notation is also advantageous since it
directly outputs the required inputs for the selected dynamic analysis method
[18].
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The goal of the inverse dynamic analysis of multibody systems is to deter-
mine the loads applied by each pair of connected bodies based on the known
kinematics and physical properties of the system. Several main formulations
are applicable for obtaining the equations of motion of dynamic systems: the
Newton-Euler equations [19], the Lagrange equations [20], the Hamilton equa-
tions [21], and the equations from Kane’s method [22]. In robotics, recursive
Newton-Euler algorithms [7] are mainly used due to their simplicity and high
computational efficiency (the number of calculations increases linearly with
the number of bodies in the system) [17]. Recursive Newton-Euler algorithms
are divided into two stages: first, iterations progress from the ground reference
to the end-effectors to obtain the forward kinematics of each body; then, iter-
ations progress from the end-effectors to the ground reference to calculate the
forces and torques applied between each pair of connected bodies. The work
by [23] derives highly efficient recursive Newton-Euler algorithms structured
around screw theory and Lie algebra. In [17], the recursive Newton-Euler al-
gorithm is adapted to work with spatial vector algebra, but the author notes
that this causes a reduction in computational efficiency (in comparison to
the standard notation) since it requires calculating the linear velocity of all
bodies. One of the Newton-Euler notations with the highest computational
efficiency is described in [24]. The efficiency of this notation was matched by
[25], which employs Kane’s equations to solve the dynamics of manipulators
with only revolute or prismatic joints, modeled using the Denhavit-Hartenberg
parameters. Parallel computation based notations are more commonly used for
forward dynamics problems [26,27,28], but they can also be applied to fur-
ther improve the computational effiency of inverse dynamics problems [29].
CHARMIE was modeled using the Newton-Euler formulation of [7] expressed
in the mathematical notation of [4]. This base formulation is quite simple, and
it is expressed as an algorithm which inputs joint properties and the rotation
matrices between consecutive bodies to address serial kinematic systems mod-
elled using Denhavit-Hartenberg parameters. This algorithmn was expanded
in Section 5 of this work to better perform the inverse dynamic analysis of
CHARMIE.

The two aforementioned analyses, direct kinematics and inverse dynamics,
must both be performed to achieve the desired complete multibody model.
These two studies are intertwined, so picking the most computationally ef-
ficient model for each problem independently may result in a non-optimal
solution (due to the required computational effort of converting between nota-
tions). Therefore, several works in the literature are prepared to tackle these
problems as a whole, for example [17] expresses the equations using spatial
vectors algebra, while [30] uses spatial kernel operators (SKO) and spatial
propagation operators (SPO) for the multibody analysis of complex systems.

The analysis of CHARMIE must solve two specific problems, namely tree
structures [31] and closed loops [32]. Diverse methods have been presented to
systematically solve tree like kinematic structures, such as [16,17,30,31]; also,
formulations for tackling serial kinematic chains can be easily extended to ad-
dress tree kinematic structure [8]. Depending on the complexity of the system,
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the solution of closed loops can become a more intricate problem, for example,
the SKO models in [30] have issues in dealing with closed loops. Nonetheless,
authors have described and integrated into their models systematic methods
of dealing with closed loops; the work by [17] describes a set of strategies for
solving closed systems, the work by [32] completes the model it presented in
[31] to allow it to tackle closed chains, in [33] the divide-and-conquer (DCA)
method is extended for the inverse dynamic analysis of open and closed loops,
and [34]uses develops an efficient method for studying the inverse dynamics
of manipulators based on the Newton-Euler equations and the virtual work
principle.

In the present work, the proposed systematic seven-step approach requires
a more in-depth analysis of the target of the study in comparison to more
generalized formulations, which are prepared to deal with any geometry. The
advantages of developing a more specific solution for the required problem is
that a high-efficiency inverse dynamics algorithm could be used [17], and the
closed loops were tackled with more specific notations that result in higher
computational efficiency. The proposed approach integrates the solution of
several key issues in obtaining a multibody simulator, namely tackling tree
structure kinematic chains and closed loops, implementing the equations of
motion and generating a graphical output. The resulting program is highly
modular, which provides three main advantages: other formulations from the
literature review can be tested at a later stage to further increase compu-
tational efficiency; functions can be disabled for more focused studies (such
as performing a trajectory optimization based on kinematics only); and ad-
ditional mathematical notations that interact with the model can be added,
for example, in an ongoing study, CHARMIE’s locomotion has been modeled
using a direct dynamic approach which was fully integrated within this model.

3 Construction and Preparation of the Multibody Model

The initial step for creating the multibody model of CHARMIE is to define
each of the robot’s bodies and joints. First, bodies are labelled according to
their position in the kinematic chain. Then, using information obtained from
the robot’s CAD model, data defining the geometry, mass and inertia of the
bodies and the orientation, type and position of the joints is computed to serve
as input for the recursive algorithms.

3.1 Description of the Multibody Model

CHARMIE’s structure is divided into five main sections. From base to end-
effector they are: i) the omnidirectional base, which includes the suspension
and locomotion systems; ii) the 2-DOF (Degrees of Freedom) articulated lower
and upper body of the robot, responsible for increasing the robot’s workspace;
iii) the left arm and iv) the right arm, each with 6 DOF for their motion, and
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Fig. 3 Kinematic model of the CHARMIE mobile manipulator robot.

an additional one for opening and closing a claw-like end-effector; and v) the
robot’s head with a 2-DOF neck. In the current stage of the virtual model,
the kinematics and dynamics of the locomotion and suspension systems are
simplified, represented as three DOFs that allow the robot to slide and rotate
along the ground plane. This results in a total of 21 DOFs, which are actuated
by 16 revolute motors, two linear actuators, and three additional fictitious
actuators (two linear, and one revolute) to control the locomotion.

The complete assembly of the five sections results in a total of 40 rigid
bodies, interconnected by 34 revolute joints, ten prismatic joints and three rigid
joints (see Figure 3). Bodies with varying lengths, namely linear actuators or
tension springs, are represented as two bodies connected by a prismatic joint.

The proposed methodology requires identifying the main kinematic chains
of the studied system. These chains progress from base to end-effector; links
i− 1 are considered as preceding link i, while links i + 1 are succeeding link i.
In CHARMIE’s case, the bodies from the floor plane to the robot’s upper
body (links 1-5) constitute a single serial kinematic chain. This main chain is
then split into three that represent the left arm (links 6a-13a), the right arm
(links 6b-13b), and the head (links 6c-8c) respectively. The indirect actuation
and static balancing systems placed between the body pairs 3-4, and 4-5,
create closed and over-constrained loops that must be tackled separately in
the dynamic analysis. Figure 3 distinguishes the bodies that belong to the
main kinematic chains from those that are auxiliary by labelling the main
ones with bold letters.
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3.2 Conversion of the Body Properties into Software Inputs

The recursive algorithms for the kinematics and dynamics analyses require two
main types of inputs. The first type is the position, velocity and acceleration
of each actuator. These spatial properties are defined by the robot’s trajectory
planning and control (which can either be predetermined or updated during
the execution of the simulation). The second type of input is the physical
and geometrical properties of the robot, which include each body’s dimension,
shape, mass, and inertia, as well as the type, position and orientation of all
joints. All these characteristics must be completely defined for bodies belonging
to the main kinematic chains.

The first defined property was the shape of each body. This process is
started by associating a local coordinate axis with origin Oi to body i. Then,
a point cloud is used to describe the required shapes. At this stage, a reduced
number of points were defined manually to convey the key information of
the geometries. Bodies are modelled in the point cloud choosing the most
convenient axis direction to simplify the robot’s assembly and description (for
example, for the robot’s arms, the z axis represents the length of all parts). In
the equations throughout this work, these points can be expressed regarding
different coordinate axis using the following notation:

– P′
i: the coordinates of point P of body i expressed in the local axis of i.

– P′′
i : the coordinates of point P of body i expressed in an auxiliary axis

that represents body i rotated around O′
i to its current global orientation

considering the configuration of the robot.
– Pi: the coordinates of point P of body i expressed in the global coordinate

axis.
– P′j

i : the coordinates of point P of body i expressed in the local axis of
body j.

Besides the origin, a set of important points must be identified and kept
coherent for all bodies so that the equations are simpler to implement. Of these
points, Ai always indicates the connection between body i and its predecessor
in the kinematic chain. If a revolute joint precedes body i, point Ai is fixed
and overlaps with Oi. If a prismatic joint precedes i, the position of Ai in local
coordinates is calculated using:

A′
i = O′

i + dizi (1)

where di is the displacement between the origin of the body and the contact
point between body i and its predecessor in the kinematic chain, and zi is the
unit vector defining the orientation of the joint preceding i expressed in local
coordinates (better defined in Equation 28).

The algorithms also require defining points Bi, which describe the position
of the joints between body i and its successors in the kinematic chain, and
points Ci, which represent the coordinates of the centre of mass of body i
(determined using the CAD model). Points Oi, Ai, Bi, and Ci are sufficient to



10 Fernando Gonçalves 1,2 et al.

Table 1 Point coordinates defining the geometry of CHARMIE’s body 5, whose visual
representation is shown in Figure 4.

Point
Coordinates [mm]
x y z

O′
5 0.0 0.0 0.0

A′
5 0.0 0.0 0.0

Ba′5 −200.0 −2.0 460.0
Bb′

5 200.0 −2.0 460.0
Bc′5 0.0 0.0 495.0
C′

5 0.0 −5.7 338.5
D′

5 0.0 0.0 −15.0
E′
5 0.0 0.0 85.0

F′
5 0.0 0.0 397.2

G′
5 0.0 56.0 397.2

H′
5 0.0 0.0 460.0

I′5 0.0 −20.0 460.0
J′
5 200.0 −20.0 460.0

K′
5 −200.0 −20.0 460.0

Fig. 4 (a) CAD model of CHARMIE’s body 5, and (b) CHARMIE’s body 5 in the simu-
lation environment depicted in local coordinates by the key points described in Table 1.

fully define geometries for executing the recursive algorithms. Any number of
additional points can be used to better describe each body’s shape. Table 1
and Figure 4 represent the points used for modelling CHARMIE’s body 5.

With the shapes fully characterized, the focus then becomes the joints
between them. Each joint was described using three variables. JTi defines the
joint preceding body i as P—Prismatic, R—Revolute, or F—Fixed. The axis
this joint revolves around, or slides along, is then identified with variable JOi.
Finally, using information from the body’s geometry, vector riAi,Bi expresses
the displacement between the preceding and succeeding joints of body i in
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Table 2 Description of CHARMIE’s joints by type (JTi), orientation

(JOi) and position (riAi,Bi).

Body i JTi JOi
riAi,Bi [mm]

x y z

1 P x d1 0.0 0.0
2 P y 0.0 d2 0.0
3 R z 0.0 0.0 290.0
4 P z 0.0 0.0 438.0 −d4
5 (a) R x −200.0 −2.0 460.0

(b) R x 200.0 −2.0 460.0
(c) R x 0.0 0.0 495.0

6a=b F — 0.0 0.0 30.0
7a=b R z 0.0 0.0 61.5
8a=b R x 0.0 0.0 145.0
9a=b R z 0.0 0.0 145.0
10a=b R x 0.0 0.0 140.0
11a=b R z 0.0 0.0 140.0
12a=b (1) R x 0.0 0.0 52.3

(2) R x 0.0 0.0 52.3
13a1=b1 R y — — —
13a2=b2 R y — — —
6c R — 0.0 0.0 46.3
7c R z 14.8 −5.3 18.3
8c R x — — —

its local coordinates. The values of these three variables for all main joints of
CHARMIE are shown in Table 2.

Three fixed joints were introduced into body 5 of CHARMIE to perform
constant rotations, allowing more natural choices of axes orientations for the
sub-kinematic chains a, b, and c. The changes in orientation were defined as
intrinsic ZXZ Euler rotations (see Equation 17) as shown in Equations 2-4.

R5
6a = ZXZEuler(π/2,−π/2,π) (2)

R5
6b = ZXZEuler(π/2,π/2, 0) (3)

R5
6c = ZXZEuler(0, 0, 0) (4)

The aforementioned variables are sufficient to study the kinematics of the
robot. For the dynamic analysis, it is also necessary to define the masses mi

(Table 3) and inertia matrices Ī
i
i (Table 4). To simplify the system, bodies

that don’t belong to the main kinematic chains were considered massless.
The system’s total mass was maintained by adding the removed masses into
adjacent bodies of the main kinematic chains. The positions of the centres of
mass were defined in the local coordinates of each body i using vector riAi,Ci,
which expresses the displacement between the body’s joint with its preceding
link and its centre of mass.

The definition of all inputs listed above concludes the preparatory stages
for the robot’s multibody simulation.
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Table 3 Mass (mi) and centre of mass position (riAi,Ci) of CHARMIE’s bodies.

Body i mi[kg]
riAi,Ci [mm]

x y z

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 45.7 −0.5 16.5 88.7
4 7.8 0.0 21.0 330−d4
5 2.2 0.0 −5.7 338.5
6a=b 0.3 0.0 0.0 15.0
7a=b 0.3 0.0 0.0 30.8
8a=b 0.4 0.0 0.0 72.5
9a=b 0.4 0.0 0.0 72.5
10a=b 0.4 0.0 0.0 70
11a=b 0.4 0.0 0.0 70
12a=b 0.2 0.0 11.6 28.4
13a1=b1 0.1 −24.7 0.0 17.8
13a2=b2 0.1 24.7 0.0 17.8
6c 0.3 0.0 −1.3 5.1
7c 0.4 −0.8 7.1 9
8c 0.8 −11.8 15.2 75.7

Table 4 Physical properties defining the inertia matrices (Ī
i
i) of CHARMIE’s bodies.

Body i
Inertia[kg.mm2]

Ixx Iyy Izz Ixy Ixz Iyz

1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 1.3E+6 1.5E+6 1.8E+6 1.4E+2 4.7E+3 −5.3E+6
4 1.4E+5 1.9E+5 9.1E+4 2.9E+1 − 7.3E+1 −2.4E+4
5 5.4E+4 6.6E+4 1.3E+4 1.2E+0 −1.2E+1 1.87+3
6a=b 3.2E+1 3.2E+1 2.0E+1 0.0 0.0 0.0
7a=b 1.0E+2 1.0E+2 2.0E+1 0.0 0.0 0.0
8a=b 7.1E+2 7.1E+2 2.6E+1 0.0 0.0 0.0
9a=b 7.1E+2 7.1E+2 2.6E+1 0.0 0.0 0.0
10a=b 6.6E+2 6.6E+2 2.6E+1 0.0 0.0 0.0
11a=b 6.6E+2 6.6E+2 2.6E+1 0.0 0.0 0.0
12a=b 7.5E+1 5.6E+1 3.3E+1 0.0 0.0 −1.8E+1
13a1=b1 4.2E+1 6.2E+1 2.7E+1 0.0 2.0E+1 0.0
13a2=b2 4.2E+1 6.2E+1 2.7E+1 0.0 −2.0E+1 0.0
6c 1.5E+2 1.3E+2 2.5E+2 0.0 0.0 4.7E+0
7c 3.0E+2 2.6E+2 5.2E+2 2.6E+0 −0.8E−1 6.8E+0
8c 8.5E+3 7.2E+2 4.9E+3 3.2E+1 1.4E+2 −2.2E+2

4 Forward Kinematics Analysis

The forward kinematics analysis uses the actuator positions, velocities, and
accelerations defined by the trajectory, as well as the inputs that describe the
shape of the bodies and joints, to determine the motion of the robot over
time. Since the used recursive algorithm [6] requires the configuration of the
joints, not the actuators, this analysis is initialized by studying the behaviour
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Fig. 5 Geometric parameters required for the analysis of CHARMIE’s indirectly actuated
joints, namely (a) the joint preceding body 4, and (b) the joint preceding body 5.

of the indirectly actuated joints. Subsequently, the recursive algorithm can be
utilized to obtain the kinematics of the main bodies. Finally, the motion of
the additional bodies, such as springs and linear actuators, is determined to
fully characterize the robot’s kinematics.

4.1 Geometric Analysis of the Indirectly Actuated Joints

In this section, a geometric approach is used to study the two indirectly actu-
ated joints of CHARMIE, which are placed preceding bodies 4 and 5. At this
stage of the methodology, each body is defined in local coordinates, but the full
model is yet to be assembled. Since distinct references are being considered,
the distance between points from different bodies can’t be used.

The joint preceding body 4 is a prismatic joint controlled by a linear actu-
ator. The goal is to determine the joint displacement d4 as a function of the
actuator length act4 (see Figure 5a). Since the two bodies only move linearly
along the z axis, coordinates in the two local y axes can be compared directly.
The joint displacement is expressed as:

d4 = A′
4z −O′

4z (5)

A′
4z can’t be determined in its local coordinates without the joint displace-

ment but, by expressing both A′
4z and O′

4z in relation to body 3, it is possible
to establish d4 as a function of act4. A

′
4z in body 3’s reference corresponds

directly to point B′
3z. The coordinates of O′

4z can then be determined by
starting in point D3 and adding the vertical displacement caused by the lin-
ear actuator (obtained using the Pythagorean theorem), then subtracting the
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vertical displacement between point E4 and point O4, defined by the constant
geometry of body 4. This results in Equation 6.

d4 = B′
3z −

(
D′

3z +
√
act4

2 − (E′
3y −D′

3y)
2 − (E′

4z −O′
4z)

)
(6)

This expression solves the required kinematic relation for the joint preced-
ing body 4.

The joint preceding body 5 is a revolute joint controlled by a linear actu-
ator. The goal is to determine the joint angular rotation ϑ5 as a function of
the actuator length act5 (see Figure 5b). The value of ϑ5 can be obtained with
the auxiliary angles α4 and β5 using the expression:

ϑ5 = α4 + β5 −
π

2
(7)

Angle β5 is constant, defined by the geometry of body 5 as:

β5 = arctan

(
G′

5y −A′
5y

G′
5z −A′

5z

)
(8)

Angle α4 varies over time with the configuration of the linear actuator. By
expressing the coordinates of its endpoint G5 in the reference of body 4 (G4),
this angle can be formulated as:

α5 = arctan

(
G′

4z −B′
4z

G′
4y −B′

4y

)
(9)

The local coordinates of B4 are defined by the geometry of body 4. The
position of G4 is calculated as the intersection between two circumferences,
one with centre F4 and radius act5, and the other with centre B4 and radius
equal to the distance between B4 and G4. To determine the circumferences’
intersections, three auxiliary parameters, e4, l4, and h4, are calculated:

e4 =
√

(F ′
4y −B′

4y)
2 + (F ′

4z −B′
4z)

2 (10)

l4 =
act5

2 −
[
(G′

5y −A′
5y)

2 + (G′
5z −A′

5z)
2
]
+ e4

2

2e4
(11)

h4 =

√
act5

2 − l4
2 (12)

It then becomes possible to determine the coordinates of G4 using Equa-
tions 13-14.

G′
4y =

l4
e4

(B′
4y − F ′

4y) +
h4

e4
(B′

4z − F ′
4z) + F ′

4y (13)
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G′
4z =

l4
e4

(B′
4z − F ′

4z) +
h4

e4
(B′

4y − F ′
4y) + F ′

4z (14)

By combining Equations 7-14, the relation between the configuration of
the joint preceding body 5 and its linear actuator is established.

4.2 Recursive algorithm for the forward kinematics analysis of the main
bodies

The forward recursive algorithm determines the position and orientation of all
bodies that are a part of the main kinematic chains of CHARMIE by using
the joint position, orientation, type and configuration. The algorithm models
one body at a time, starting on the robot’s base (body 1), and progressing
along the kinematic chain until the end-effectors (bodies 13a, 13b and 8c) are
reached. Each body is modelled following three sequential steps.

The first step is creating a model of body i in its local coordinates. For
CHARMIE, these models were obtained using the coordinates of key points
as explained in Section 3.2.

The second step is rotating body i around its origin (Point Oi) so it assumes
its current orientation concerning the global reference. This is achieved using
the expression:

P′′
i = R0

i P
′
i (15)

where each point Pi is rotated using the R0
i rotation matrix that defines the

orientation of body i.
TheR0

i rotation matrix is calculated from the combination of two rotations:
matrix R0

i−1 that describes the orientation of the body preceding i (obtained

in the previous iteration of the recursive algorithm); and matrix Ri−1
i that

defines the rotation between the preceding body and the current body. This
process is formulated as:

R0
i = R0

i−1R
i−1
i (16)

The rotations between consecutive bodies are expressed using intrinsic ZXZ
Euler angles. The rotation matrix corresponding to a specific set of angles is
obtained using the following function [11]:

ZXZEuler(Z1, X2, Z3) =

c1c3 − s1c2s3 −c1s3 − s1c2c3 s1s3
s1c3 + c1c2s3 c1c2c3 − s1s3 −c1s2

s2s3 s2c3 c2

 (17)

where c and s represent the cosine and sine functions respectively, and the
sub-indices 1, 2, and 3 refer to the three considered Euler angles.

Combining the joint parameters with Equation 17, the Ri-1
i rotation ma-

trices can be directly determined as:
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Fig. 6 3D model of CHARMIE’s resulting from the recursive algorithm for forward kine-
matics. Only bodies that are a part of the main kinematic chains are represented.

Ri-1
i =


ZXZEuler(0, ϑi, 0) ∀JTi = R ∧ JOi = x

ZXZEuler
(
π
2 , ϑi,−π

2

)
∀JTi = R ∧ JOi = y

ZXZEuler(0, 0, ϑi) ∀JTi = R ∧ JOi = z

ZXZEuler(0, 0, 0) ∀JTi = P

(18)

This expression defines all rotations between the consecutive bodies of
CHARMIE, which in turn is used to determine the orientation of all bodies,
concluding step two of the kinematics recursive algorithm.

The third and final step is moving the body to its current position in the
global coordinate reference. This is achieved by moving point Ai of the current
body to point Bi−1 contained in its predecessor in the kinematic chain (whose
position in the global coordinates is determined in the previous iteration). This
process guarantees cohesion between the joints of the assembly. By moving
all Pi points along this same path, body i is fully translated into its actual
position, as described by the formulation:

Pi = P′′
i + (Bi−1 −A′′

i−1) (19)

The three steps are repeated for all bodies of the main kinematic chains,
determining their positions and orientations in the global reference. By con-
cluding the recursive algorithm for the forward kinematics analysis, and im-
plementing it into the CHARMIE robot, the model shown in Figure 6 was
obtained.

4.3 Kinematics of Additional Bodies

The recursive algorithm solves only the placement of links that are a part of
the main kinematic branches. In the CHARMIE robot, there are additional
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components placed between bodies 3, 4, and 5 that constitute closed loops,
namely linear actuators, extensions springs, and the auxiliary bars of a static
balancing mechanism.

In the particular case where the two ends of an auxiliary body are points
incorporated within main bodies, such is the case for both linear actuators
and the extensions springs between links 4 and 5, the position and orientation
can be fully defined from the coordinates of points established in the recur-
sive algorithm. The length ls of these auxiliary bodies is calculated with the
expression:

ls =

√
(Six− Sjx)

2
+ (Siy − Sjy)

2
+ (Siz − Sjz)

2
(20)

where Si and Sj are the two ends of the considered body.
The orientation is then determined using the law of cosines. A new point,

Ri, is added to one of the adjacent main bodies. Ri must be aligned along
one of the local axes with the connection point Si. Points Ri, Si, and Sj now
form a triangle whose sides have lengths ls, as and bs. These lengths can all be
calculated using Equation 20. The rotation αs between the chosen local axis
of the main body, and the corresponding local axis of the auxiliary body, is
then determined using the expression:

αs =
ls
2 + bs

2 − as
2

2lsbs
(21)

where as is the side of the triangle opposite to the calculated internal angle.
The mechanism responsible for the static balancing of the squatting motion

of CHARMIE, placed between links 3 and 4, contains all bodies that can’t
be directly analysed with the method described above. This mechanism is
composed of two symmetrical halves, so, for simplification, only the left side
(bodies 4sla, 4slb, and 4slc of Figure 3) will be studied. The coordinates of
three points, B4sla, B4slb, and B4slc (see Figure 7), must be determined to
fully characterise the required bodies.

At this stage, all main bodies have been modelled, so points from both
links 3 and 4 can be expressed in the local coordinates of link 3. The altitude
of B4slc can be directly determined since:

B′3
4slcz = H ′3

4 z (22)

Equations 23-24 can then be used to determine the coordinates of B4sla:

B′3
4slaz = B′3

4slcz − c4slc (23)

B′3
4slax = F ′3

3 x−
√
b4sla

2 − (B′3
4slaz − F ′3

3 z)
2

(24)

Point B4slc can subsequently be fully defined using:

B′3
4slcx = B′3

4slcx (25)
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Fig. 7 Geometric parameters required for the kinematics analysis of CHARMIE’s auxiliary
bodies responsible for the static balancing of the motion between links 3 and 4.

Fig. 8 Complete model of CHARMIE assembled in the simulation environment as a result
of the forward kinematic analysis.

The coordinates of the last point, B4slb, are calculated using the triangle
proportionality theorem as follows:

B′3
4slbx = F ′3

3 x+
a4sla
b4sla

(
B′3

4slax− F ′3
3 x

)
(26)

B′3
4slbz = F ′3

3 z +
a4sla
b4sla

(
B′3

4slaz − F ′3
3 z

)
(27)

The points obtained from Equations 22-27 are expressed regarding the
local reference of body 3. The global coordinates of the auxiliary bodies are
determined by applying to these points the same rotation and translation that
body 3 undergoes during the iterations of the recursive algorithm.

With the full definition of all auxiliary bodies, the forward kinematics
analysis of CHARMIE is concluded, resulting in the model shown in Figure 8.
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5 Inverse Dynamics Analysis

The inverse dynamics analysis processes the joint position, velocities and accel-
erations from the robot’s trajectories, the rotation matrices from the recursive
kinematics algorithm, and the physical properties of the robot’s bodies and
joints, to compute the forces and torques applied in each pair of connected
bodies.

The approach used for the study of the dynamics revolves around the recur-
sive Newton-Euler algorithm of [7]. The used formulation is based on the algo-
rithm presented in [4], which solves the dynamics of bodies assembled in serial
chains modelled using the Denavit–Hartenberg parameters. The present work
modifies this algorithm to allow it: to automatically tackle tree structure kine-
matic chains, to integrate other formulations to solve closed loops, and to use
any axes orientation (instead of limiting them due to the Denavit–Hartenberg
notation). At this stage, some physical effects, such as the internal inertia of
each motor, were neglected to increase computational efficiency.

By using this adapted formulation, the inverse dynamics analysis was di-
vided into two main parts. The first is completely running the recursive al-
gorithm for all branched components of the open kinematic chain. The latter
is computing the additional formulations which tackle the closed systems be-
tween CHARMIE’s bodies 3, 4 and 5.

5.1 Recursive Algorithm for the Inverse Dynamics Analysis of the Main
Bodies

The recursive algorithm that studies the inverse dynamics is divided into two
stages. The first stage, referred to as the forward iterations, is preparatory.
Progressing from the robot’s base to the end-effectors, each iteration uses in-
formation regarding the previous body in the kinematic chain, and data defin-
ing the preceding joint, to determine the angular velocity and acceleration of
the current body, as well as the linear acceleration of its key points (centre of
mass and joints). With the first stage concluded, the second stage, referred to
as the backwards iterations, starts the calculations on the end-effectors and
progresses towards the base of the robot. The algorithm uses information from
the forward iterations, along with the body mass and inertia properties, to cal-
culate the sum of forces and reactions applied on each body by its predecessors
in the kinematic chain. If a body possesses only a single link preceding it, this
sum automatically defines the forces and torques applied by it. On all equa-
tions in this section of the work, the superscript next to a variable denotes the
coordinate reference it is expressed on.

Before beginning the algorithm, the unit vector zi characterising the joint
orientation preceding body i must be defined using Equation 28.
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zi =


[1, 0, 0]T ∀JOi = x

[0, 1, 0]T ∀JOi = y

[0, 0, 1]T ∀JOi = z

(28)

The forward iterations start by calculating the angular velocity ωi
i of the

current body with Equation 29.

ωi
i =

{
Ri−1T

i ωi−1
i−1 ∀JTi = P

Ri−1T
i

(
ωi−1

i−1 + ϑ̇izi

)
∀JTi = R

(29)

where Ri−1T
i is the rotation matrix used to convert data expressed regarding

the preceding body to the reference of the current body, ωi−1
i−1 is the angular

velocity of the preceding body in its reference, and ϑ̇i is the rotation velocity
of the revolute joint preceding body i.

The angular acceleration ω̇i
i of body i can then be determined using:

ω̇i
i =

{
Ri−1T

i ω̇i−1
i−1 ∀JTi = P

Ri−1T
i

(
ω̇i−1

i−1 + ϑ̈izi + ϑ̇iω̇
i−1
i−1 × zi

)
∀JTi = R

(30)

where ω̇i−1
i−1 is the angular acceleration of the preceding body expressed in its

reference axis, and ϑ̈i the angular acceleration of the revolute joint preceding
body i.

With the angular velocity and acceleration of the body determined, it is
then possible to calculate the linear acceleration of its key points. These accel-
erations must include the Coriolis, Euler and centrifugal effects for the poste-
rior force and torque calculations. The p̈i

Bi linear acceleration of the Bi points
connecting body i to its succeeding bodies are computed as:

p̈i
Bi =


Ri−1T

i

(
p̈i−1
Bi−1 + d̈izi

)
+ ω̇i

i × riAi,Bi

+ωi
i ×

(
ωi

i × riAi,Bi

)
+ 2ḋiω

i
i ×Ri−1T

i zi
∀JTi = P

Ri−1T
i p̈i−1

Bi−1 + ω̇i
i × riAi,Bi +ωi

i ×
(
ωi

i × riAi,Bi

)
∀JTi = R

(31)

where p̈i−1
Bi−1 is the linear acceleration of point Ai expressed in the reference

of the preceding body, ḋi and d̈i are the velocity and acceleration of the linear
actuator preceding body i, and riAi,Bi is the vector pointing from the preceding
joint Ai to the succeeding joint Bi.

The forward iterations of the recursive algorithm are finished by determin-
ing the linear acceleration of the centre of mass p̈i

Ci using the expression:

p̈i
Ci = p̈i

Bi + ω̇i
i ×

(
riAi,Ci − riAi,Bi

)
+ωi

i ×
(
ωi

i ×
(
riAi,Ci − riAi,Bi

))
(32)

where riAi,Ci is the vector pointing from the preceding joint Ai to the center of
mass Ci.
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The backwards iterations commence by first determining the sum of the
f ija forces applied by the na preceding bodies on the current body i using the
formulation:

na∑
ja=1

f ija = mip̈
i
Ci +

nb∑
jb=1

(
Ri

jb
f
jb
jb

)
(33)

where ja is the pointer selecting each preceding body for the sum, nb is the
number of succeeding bodies, jb the pointer for each succeeding body, mi the

mass of the current body being studied, f
jb
jb

the force applied by the current

body on the jb succeeding body expressed in the coordinates of jb, and Ri
jb

the rotation matrix used for converting the local reference of each body jb into
the reference of body i.

The sum of the µ i
ja

torques applied by the na preceding bodies is then
determined by the expression:

na∑
ja=1

µ i
ja
= Ī

i
iω̇

i
i +ωi

i ×
(
Ī
i
iω

i
i

)
+

na∑
ja=1

(
−f ija × riAja,Ci

)
+

nb∑
jb=1

(
Ri

jb
f
jb
jb
×
(
riAi,Ci − riAi,Bjb

)
+Ri

jb
µ
jb
jb

) (34)

where Ī
i
i is the inertia matrix of body i, riAi,Bjb the vector pointing from joint

Ai to the joint with link jb, and µ
jb
jb

the torque applied by the current body i
on the succeding body jb expressed in the coordinates of jb.

When applying this algorithm to the CHARMIE robot, the forward itera-
tions can be completed for all of the links. However, since link 5 is preceded by
a closed and overconstrained loop, the backwards iterations must stop upon
reaching this body. To fully characterize the dynamics of links 4 and 5, ad-
ditional formulations are required that define how the obtained sum of forces
and torques is distributed along each of the preceding bodies.

5.2 Analysis of the Closed and Overconstrained Loops

The multibody dynamics analysis of overconstrained systems is a complex and
continuously discussed problem in the literature. Several high-fidelity methods
have been presented for dealing with these systems, such as in [35,36]. In
the study of CHARMIE, the simplicity of the mechanisms, and the level of
accuracy required from the results, allow some simplifications that permit a
direct algebraic approach, solving these systems with minimal computational
resources.

This section tackles the force and torque distribution in two of CHARMIE’s
links, body 4 and body 5 (see Figure 9). Since this study is a part of the
backwards iterations of the recursive algorithm, body 5 must be tackled first.
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Fig. 9 Free body diagram of CHARMIE’s (a) body 5, and (b) body 4. The known forces
and torque at the beginning of the study of each body are coloured in green hues, while
unknown variables which will be calculated are coloured in orange hues.

Figure 9a shows the three links applying unknown forces and torques on
body 5, namely the linear actuator 5d, the extension spring 5s, and the pre-
ceding link (body 4). The forces must be studied first since they influence the
balance of torques.

The extension spring only applies a tangential force, which depends solely
on its extension and orientation. The intensity F5s of this force is determined
with Equation 35.

F5s = ks(L0 − Ls) + F0s (35)

where ks is the spring constant, L0 the spring’s free length, Ls the spring’s
current length and F0s the force originating from the pretension applied during
the spring’s manufacturing. The current spring length Ls and the orientation
of the force can be determined using Equations 20-21.

From this point onward, to simplify the expressions, the force applied by
spring 5s is treated similarly to those applied by succeeding bodies. To obtain
the remaining forces, the following three conditions were taken into account:

– Since the joints of both the linear actuator and body 4 are revolute around
the x axis, their applied forces must guarantee the x torque equilibrium;

– The force applied by the linear actuator in the yz plane is tangential to
the orientation of the actuator;

– Due to the similar construction of both joints, it was estimated that the
linear actuator and body 4 apply half of the force reaction on the x axis.

By equating these three conditions, and combining them with the sum of
forces determined with Equation 33, Equation 36 was obtained.
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a1
a2
a3
a4
0
0

 =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 r5A5d,C5ẑ −r5A5d,C5ŷ 0 r5A4,C5ẑ −r5A4,C5ŷ

0 cos(α5d) −sin(α5d) 0 0 0
−1 0 0 1 0 0




f 55dx̂

f55dŷ
f 55dẑ
f 54x̂

f54ŷ
f 54ẑ

 (36)

where x̂, ŷ, and ẑ are unit vectors related to the three axes, r5A5d,C5 is the
vector representing the displacement from the joint of the linear actuator A5d

to the centre of mass C5, r
5
A4,C5 is the vector representing the displacement

from the joint with body 4, A4, to the centre of mass C5, and α5d is the angle
defining the rotation of the linear actuator in relation to body 5 around the
x5 axis. The left side of the equation system is defined by the variables:

a1 =

2∑
ja=1

f 5ja x̂, a2 =

2∑
ja=1

f 5ja ŷ, a3 =

2∑
ja=1

f 5ja ẑ,

a4 = Ī
5
5ω̇

5
5x̂+ω5

5 ×
(
Ī
5
5ω

5
5

)
x̂−

(
f 55s × r5A5s,C5

)
x̂

+

4∑
jb=1

[
R5

jb
f
jb
jb
×
(
r5A5,C5 − r5A5,Bjb

)
+R5

jb
µ
jb
jb

]
x̂

(37)

where a1, a2, and a3 represent the sum of the two unknown forces in the x, y,
and z axis calculated by using Equation 33 (including the spring force in the
right side of the equation), and a4 is the sum of torques of the system around
the x axis not considering the forces from the linear actuator and body 4.

Solving this equation system fully defines all forces applied in body 5. To
calculate the unknown torques, one simplification was considered:

– Since the joints of the linear actuator and body 4 are similar, it was esti-
mated that each applies half of the reaction torques around the y and z
axes.

This simplification is expressed in two equations which, alongside the sum
of torques around the y and z axis determined with Equation 34, result in the
following formulation:

∑2
ja=1 µ

5
jaŷ∑2

ja=1 µ
5
jaẑ

0
0

 =


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1



µ5
5dŷ

µ5
5dẑ
µ5
4ŷ

µ5
4ẑ

 (38)

By solving these systems of equations, the distribution of forces and torques
for all bodies connected to link 5 is fully characterized.



24 Fernando Gonçalves 1,2 et al.

Fig. 10 Free body diagram of CHARMIE’s body 4sra to study the forces applied by the
static balancing system between links 3 and 4.

Body 4 of CHARMIE has four sets of unknown forces and torques applied
to it (see Figure 9b), which are exerted by the linear actuator 4d, the symmetric
components of the static balancing mechanisms 4src and 4slc, and the preceding
link (body 3).

The dynamics of body 4 were analysed by first independently addressing
the static balancing mechanism (see Figure 10). This study is possible since
this mechanism’s forces depend only on the geometrical configuration of its
spring and bars. Only the right side of the mechanism is illustrated, but the
presented expressions are valid for both halves (the change in the direction of
vectors automatically adjusts the equation for the respective side).

Force F4srb is applied by an extension spring. The tangential component of
this force is calculated using Equations 20 and 35. In turn, the rotation α4 of
the spring around the y axis in relation to body 4’s reference is obtained using
Equation 21. It is now possible to express the force applied by the spring in
body 4sra as:

f 44sb =
[
FT4sbsin(α4), 0, FT4scos(α4)

]
(39)

where FT4sb is the tangential force applied by the extension spring.
The unknown forces in the static balancing system can now all be deter-

mined from the balance of forces in the x and z axes, together with the balance
of torques around the y axis. It should be noted that accelerations are not rel-
evant for this balance, since auxiliary bodies were simplified as being massless.
These considerations result in the following formulation:f 44srbx̂f 44srbẑ

a5

 =

 0 1 0
−1 0 1

−r4A4sra,B4srax̂ 0 0

f 44srcẑf 43srax̂
f 43sraẑ

 (40)

where r4A4sra,B4sra is the vector representing the displacement between the
connecting points of body 4sra with links 3 and 4. The variable a5 on the left
side of Equation 40 is defined as:

a5 =
(
f 34srbẑ

) (
r3A4sra,B4srbx̂

)
−

(
f 34srbx̂

) (
r3A4sra,B4srbẑ

)
(41)
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where r3A4sra,B4srb is the vector representing the displacement between the
connecting points of body 4sra with link 3 and the extension spring 4srb.

Regarding the study of torques, body 4sra only transmits the torque applied
to it around the z axis directly from link 4 into link 3.

With the analysis of the static balancing mechanism concluded, the remain-
ing forces and torques applied on body 4 can be approached. The following
simplifications were taken into account:

– Actuator 4d applies a tangential force in the yz plane aligned with the
orientation of the actuator;

– The joint between bodies 4 and 3 possesses a much tighter tolerance than
the static balancing mechanism, so it was estimated that this joint applies
all undetermined reaction forces in the x and y axis.

This set of simplifications allows determining the currently unknown forces
applied by both the linear actuator 4d, and body 3, using the formulation:

∑2
ja=1 f

4
jax̂∑2

ja=1 f
4
jaŷ∑2

ja=1 f
4
jaẑ

0

 =


0 0 1 0
1 0 0 1
0 1 0 0

cos(α4d) −sin(α4d) 0 0



f 44dŷ

f44dẑ
f 43x̂
f 43ŷ

 (42)

where the sum of unknown forces is obtained using Equation 33 (considering
the static balancing forces on the right side of the equation), and α4d is the
angle between the linear actuator and body 4 around the x4 axis.

It is then possible to study the unknown torques applied in body 4. The
following simplifications were taken into account:

– The joint between body 4 and 3 possesses a tighter tolerance than the
static balancing mechanism and linear actuator, so it was estimated that
this joint applies all undetermined reaction torques in the x and y axes;

– Since the joint with body 3 cannot apply any torque around the z axis,
and the static balancing mechanism joints are more rigid than the linear
actuator ones, it was estimated that each of these joints applies half of the
torque reaction in the z axis.

These conditions result in the following system of equations:
∑2

ja=1 µ
4
jax̂∑2

ja=1 µ
4
jaŷ∑2

ja=1 µ
4
jaẑ

0

 =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 −1




µ4
3x̂

µ4
3ŷ

µ4
3slrẑ

µ4
3slcẑ

 (43)

where the sum of torques are determined using Equation 34. With this analysis,
the forces and torques applied to link 4 are determined.

With the distribution of all forces and torques applied on bodies 4 and 5 es-
tablished, the recursive algorithm can conclude its iterations for the remaining
bodies, finishing the full dynamic analysis of the CHARMIE robot.
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Table 5 Comparison of the average computational time required for 1000 timesteps of
simulation (including the code initialization) for different models under the same conditions.
Studies a) were conducted with no graphical interface, while studies b) illustrated the robot’s
motion over time.

Model 2-DOF Arm [s] 4-DOF Arm [s] 6-DOF Arm [s] CHARMIE [s]

Kinematic a) 0.211 ± 0.002 0.269 ± 0.006 0.325 ± 0.006 2.409 ± 0.110
Dynamic a) 0.482 ± 0.002 0.715 ± 0.003 0.947 ± 0.002 7.856 ± 0.047
Kinematic b) 35.810 ± 0.194 36.955 ± 0.441 37.672 ± 0.086 328.254 ± 2.084
Dynamic b) 36.140 ± 0.239 37.838 ± 0.288 38.080 ± 0.191 334.150 ± 1.683

6 Results and Discussion

The algorithms and mathematical equations described in this work were im-
plemented into Python. The numpy library was used to assist in mathematical
and algebraic operations, and the matplotlib library allowed the generation of
graphics showing data and 3D plots representing the robot’s motion. The re-
sulting code is hardware independent and can be implemented into the robot’s
embedded computer.

Four different models were prepared to evaluate the algorithm’s compu-
tational efficiency: a 2-DOF Arm, a 4-DOF Arm, a 6-DOF Arm and the
CHARMIE Robot. These models were simulated in PyCharm on a computer
with an AMD Ryzen 5 5600X 6-Core Processor 3.70 GHz. Each model was
simulated by analysing either only the kinematic, or both kinematic and dy-
namic properties. The animation of the motion was activated and deactivated
to evaluate its computational weight, producing the results shown in Table 5.

The computational time of both the kinematic and dynamic formulations
increases linearly with the number of bodies of the tested robotic arms, as
expected from a recursive algorithm. This linearity cannot be extrapolated
directly for the CHARMIE robot, since this analysis must also tackle closed
kinematic loops. The animation of the model’s motion, required for validation
and testing by the researcher, but not for employing the simulator in its desired
applications, consumes the greatest amount of computational resources when
enabled, utilizing 99% of the computational time. These results also show that
computational times can be reduced from 60% to 70% (the bigger the model,
the greater the reduction) by disabling the inverse dynamics analysis.

The results from CHARMIE’s kinematics and dynamics analyses were val-
idated by comparing them with those obtained from a commercial software
(Visual Nastran 4D). Figure 11 shows a side-by-side comparison of both stud-
ied models. Two main differences exist between the two simulations: the first
is that in the commercial software, the robot was simplified by removing the
closed and overconstrained loops; the second is that the commercial software
calculates the inertia matrices directly from the primitive shapes and their
associated mass, therefore, these estimated inertia matrices differ from those
implemented in the recursive algorithm calculated from CAD models with
greater detail.
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Fig. 11 Multibody model of the CHARMIE robot in two different computational environ-
ments: (a) in a commercial software (Visual Nastran 4D) for the time frame t = 0s, (b) in
the developed methodology for the time frame t = 1.3 s with red arrows representing the
main directions of motion.

The same 5-second motion was implemented in both systems to allow a
direct comparison of results. The goal of the chosen trajectory was not to be
realistic (it includes impossible configurations in a physical prototype, such as
penetrating bodies), but to be simple to compute and analyse. The movement
starts from a reference position (Figure 11a) where all joints are in their 0
positions (except for the two linear actuators in the robot’s body, with an
initial total extension defined as 400 mm). A reference acceleration was then
associated with all joints: every revolute joint (including the one defining the
robot’s yaw) has an angular acceleration of π/9 rad/s2, the two linear actua-
tors in the robot’s body have an acceleration of 3 mm/s2, and the two linear
actuators controlling the robot’s locomotion have an acceleration of 30 mm/s2.
The acceleration defined over time for each actuator in the simulations cor-
responds to the aforementioned reference accelerations multiplied by a sign
function, which assumes a negative value for the first 2.5 seconds of motion,
and a positive one for the last 2.5 seconds. The robot is fully stopped after its
movement is concluded.

When implementing a recursive algorithm, any error will propagate along
the iterative calculations. The part of the algorithm which defines the kine-
matics begins its analysis on the robot’s base, and finishes in the end-effectors,
therefore, the best point for evaluation will be one contained in the end-
effectors. For this effect, point D12a was added to body 12a with the local
coordinates of [0, 0, 0.1023] m which corresponds to the centre of the end-
effector claw (this point is highlighted with an orange sphere in Figure 11).
Accelerations, velocities, positions and orientations are all interconnected, and
mistakes in the velocities or accelerations would reflect in the results of the
dynamic calculations, therefore, to validate the kinematic model, it is sufficient
to evaluate the position of this point over time. The results from Figure 12
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Fig. 12 Positions of the same point in body 12a (the robot’s left claw) obtained from the
forward kinematics analysis using both a commercial software, and the methodology of the
present study.

Fig. 13 Forces applied by body 2 on body 3 (the robot’s base) obtained from the inverse
dynamic analysis using a commercial software, and the methodology of the present study.

show a complete overlap between the outcomes of both methods. A visual
inspection of both simulations also showed identical behaviours.

The dynamics were studied by applying the same principle of error prop-
agation as for the kinematics analysis. The comparison focuses on the forces
applied by the floor plane on the robot’s base which, considering the simplifica-
tions made to the locomotion system, corresponds to the loads applied by body
2 on body 3. The alterations made to the robot’s configuration in the com-
mercial software (to remove over-constrained loops) cause minimal changes in
these results since they only affect how the forces propagate within the robot,
not how it interacts with the floor plane. The two models are similar, yet not
identical, so their dynamic properties regarding the generated torques cannot
be compared directly. The juxtaposition of results in Figure 13 shows that
both models produced identical results.

With two different sources providing identical results for the system’s anal-
ysis, the implemented recursive algorithms were considered validated, as well
as the seven-step methodology used for the CHARMIE project.
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7 Concluding Remarks

This study presents a novel seven-step methodology for the multibody analysis
of complex articulated robotic systems. This formulation is centered around
two recursive algorithms, one for the forward kinematic analysis, and the other
to model the inverse dynamics, which are well known from the literature. The
methodology is focused on developing models tailored for the system being
analysed, resulting in higher computational efficiency despite a loss in the gen-
eralizability. One of the main advantages of the used method is its modularity,
allowing different mathematical notations to be used, as well as permitting
an easy integration of other formulations to model more specific physical phe-
nomena (such as applying external loads or simulating the locomotion using
forward dynamics).

The seven-step methodology was further detailed by using it to successfully
create the multibody model of the CHARMIE mobile manipulator. The robot’s
relative complexity illustrates the flexibility of the used method. This same
robot was also modelled in a commercial software to confirm and validate the
produced outcomes.

The obtained model is ideal for the current required analyses of CHARMIE.
Nonetheless, a set of future works has been identified to characterise, improve
and further validate the presented methodology. The computational efficiency
of the used method can be further specified by calculating the number of
mathematical operations required from each module of the program. This
process should be accompanied by an optimization of the implementation of
the current code in Python to maximize its computational efficiency. Separate
formulations should be tested and compared within the modular structure of
the seven-step methodology; besides increasing the computational efficiency,
this may also improve the generelizability of the methodology without com-
promising its strengths. To further validate the results and the applicability of
the developed simulator, it will be implemented on the embedded controller of
the CHARMIE robot; the behaviour from the physical model will be compared
with the predictions generated by the mathematical model.

With a finished and validated own-code solution for analysing CHARMIE,
the results are now playing a pivotal role in a set of ongoing studies for the
robot’s development. The ability to alter geometries and properties using a
single variable, which then updates the entire kinematics and dynamics accord-
ingly, is being employed to generate quick automatic parametric optimizations.
The current applications of this method include determining the required ac-
tuator torques for the arms, optimizing the static balancing mechanism as-
sociated with the linear actuators, and training a neural-network solution to
control the robot’s trajectories.
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3. Ribeiro, T., Gonçalves, F., Garcia, I.S., Lopes, G., Ribeiro, A.F.: CHARMIE: A Col-
laborative Healthcare and Home Service and Assistant Robot for Elderly Care (2021).
DOI 10.3390/app11167248

4. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics Modelling, Planning and
Control, 1st edn. Springer-Verlag, London (2009). DOI 10.1007/978-1-84628-642-1

5. Ivaldi, S., Peters, J., Padois, V., Nori, F.: Tools for simulating humanoid robot dy-
namics: A survey based on user feedback. In: 2014 IEEE-RAS International Confer-
ence on Humanoid Robots, vol. 2015-Febru, pp. 842–849. IEEE (2014). DOI 10.1109/
HUMANOIDS.2014.7041462. URL http://ieeexplore.ieee.org/document/7041462/
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