
Universidade do Minho
Escola de Engenharia

Rafael André Escalhão Samorinha

Computer Assisted Diagnosis (CAD)
with Enhanced Cognitive Architectures
(BorisCAD)

julho de 2023U
M

in
ho

 |
 2

02
3

Ra
fa

el
 S

am
or

in
ha

C
om

pu
te

r
As

si
st

ed
 D

ia
gn

os
is

 (C
AD

)
w

ith
 E

nh
an

ce
d

C
og

ni
tiv

e
Ar

ch
ite

ct
ur

es
 (B

or
is

C
AD

)

Rafael André Escalhão Samorinha

Computer Assisted Diagnosis (CAD)
with Enhanced Cognitive Architectures
(BorisCAD)

Dissertação de Mestrado
Engenharia Eletrónica Industrial e Computadores
Sistemas Embebidos e Computadores

Trabalho efetuado sob a orientação do(a)
Professor Doutor Carlos Manuel Gregório Santos
Lima e Professor Doutor Adriano José da Conceição
Tavares

Universidade do Minho
Escola de Engenharia

julho de 2023

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras

e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos

conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não

previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da

Universidade do Minho.

Atribuição-NãoComercial-SemDerivações
CC BY-NC-ND

https://creativecommons.org/licenses/by-nc-nd/4.0/

Agradecimentos

Desde já, gostaria de expressar o meu agradecimento a todos aqueles que contribuíram para finalizar

esta etapa. A concretização deste trabalho não teria sido possível sem a ajuda e o apoio de várias pessoas

que fizeram parte do meu percurso académico, permitindo-me crescer como pessoa e profissional.

À minha família, agradeço todo o apoio, força e motivação ao longo destes anos, bem como por nunca

terem desistido de mim, incentivando-me a prosseguir e lutar por aquilo que sempre desejei fazer.

Aos meus orientadores, Adriano Tavares e Carlos Lima, agradeço pela disponibilidade e ajuda

prestadas, bem como por nunca terem reduzido os níveis de exigência.

Aos restantes inquilinos da Casinha do Povo, quero agradecer pela companhia durante estes

looooooongos anos, sempre a incentivar-me para fazer mais e melhor, muitas das vezes por caminhos

dúbios. Como já vários sábios disseram, sem vocês acabava um ano mais cedo.

À Marcela... por tudo aquilo que fizeste por por mim neste último ano. Por todos os dias em que foste

chatinha comigo para eu fazer coisas, e por nunca desistires de mim. Eu tenho toda a certeza que sem

ti não estaria tão confiante no meu potencial como estou hoje, nem teria alcançado tudo o que consegui.

Obrigado por estares sempre ao meu lado e nunca duvidares.

“So gimme some fin… noggin… dude!” - Crush

i

Statement of Integrity

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho

ii

Abstract

Computer-assisted medical image diagnosis plays a vital role in modern healthcare by enabling accurate

and timely detection of various medical conditions. However, conventional image classification

techniques often fail to integrate crucial elements such as perception, reasoning, and episodic

experiences, essential for achieving optimal performance. This research endeavours to bridge this gap

by designing, implementing, and evaluating a cognitive architecture incorporating these elements. The

findings of this research will contribute to the development of a deployable cognitive architecture that can

provide accurate and reliable diagnoses for a wide range of medical conditions, benefiting both

healthcare professionals and patients alike. Furthermore, the potential impact of this research extends

beyond medical image analysis, with implications in autonomous systems, robotics, and intelligent

decision support systems. By harnessing the potential of cognitive architectures, computer-assisted

systems can be revolutionised, leading to improved diagnostic accuracy and fostering innovation in

diverse industries reliant on advanced cognitive capabilities.

In order to achieve this objective, sub-symbolic methods for perception and symbolic methods for

reasoning will integrate the cognitive architecture. The bottom level, responsible for sub-symbolic

processing, will incorporate advanced segmentation and classification using convolutional neural

networks to handle perception tasks. In contrast, the top level will utilise a decision forest, an ensemble

of decision trees, to perform sophisticated reasoning tasks using symbolic data. Additionally, this study

will focus on integrating episodic experiences within the architecture by incorporating working and

long-term memory mechanisms, enhancing its predictive capabilities.

The evaluation of the cognitive architecture demonstrated its effectiveness within the context of the tested

datasets and image sizes. However, it is essential to acknowledge that developing a deployable version

for medical image diagnosis requires further testing and validation. Expanding the evaluation to include a

broader range of pathologies and imaging modalities is crucial to ensure the architecture’s robustness and

adaptability in diverse clinical scenarios. By incorporating a more diverse set of pathologies and imaging

modalities into the evaluation process, the cognitive architecture can undergo rigorous testing to assess

its performance across various medical conditions. This expanded evaluation will help identify potential

limitations and areas for improvement, ensuring that the architecture can deliver accurate and reliable

diagnoses across a broader spectrum of medical conditions.

Keywords: convolutional neural networks; decision tree; memory; cognitive architecture; image

classification; learning; adaptation; medical diagnosis; artificial intelligence; Boris

iii

Resumo

O diagnóstico assistido por computador a partir de imagens médicas desempenha um papel vital na

saúde moderna, permitindo a detecção precisa e atempada de várias condições médicas. No entanto,

as técnicas convencionais para classificação de imagens não integram elementos cruciais da análise

humana, tais como a percepção, raciocínio e experiências episódicas. O trabalho apresentado procura

preencher esta lacuna através do design, implementação e avaliação de uma arquitetura cognitiva que

incorpora estes elementos. Os resultados obtidos contribuem para o desenvolvimento de novos métodos

capazes de fornecer diagnósticos precisos e confiáveis para uma ampla gama de condições médicas,

beneficiando tanto os profissionais de saúdo como os pacientes. Além disto, o potencial deste trabalho

estende-se além da análise de imagens médicas, com possíveis implicações em sistemas autónomos,

robótica e sistemas inteligentes de suporte à decisão. Ao aproveitar o potencial das arquiteturas cognitivas,

estes sistemas podem ser revolucionados, levando a uma melhoria na precisão e a estimulação para a

inovação em diversas indústrias que dependem de capacidades cognitivas avançadas.

Para alcançar o objetivo principal de diagnóstico, serão integrados na arquitetura cognitiva métodos

sub-simbólicos para percepção e métodos simbólicos para raciocínio. O nível mais abaixo, responsável

pelo processamento sub-simbólico, incorporará redes neuronais convolucionais para segmentação e

classificação, de forma a emular percepção no sistema. Por outro lado, o nível superior irá usar uma

floresta de decisão, um conjunto de árvores, para realizar tarefas de raciocínio usando dados simbólicos.

Além disto, este estudo irá focar-se na integração de experiências episódicas, incorporando mecanismos

de memória de trabalho e a longo prazo, de forma a incluir dados passados na decisão atual.

A avaliação desta arquitetura demonstrou a sua eficácia no contexto do conjunto de dados e tamanhos

de imagem usados. No entanto, é essencial reconhecer que o desenvolvimento de uma versão aplicável

ao diagnóstico de imagens médicas requer testes e validações adicionais. Desta forma, a expansão do

sistema para incluir uma ampla gama de patologias e modalidades de imagem é crucial para garantir

a robustez e adaptabilidade da arquitetura em diversos cenários clínicos. Ao incorporar um conjunto

mais diversificado de patologias e modalidades de imagem no processo de avaliação, a arquitetura pode

ser submetida a testes rigorosos de forma a avaliar o seu desempenho no mundo real. Esta ampla

avaliação ajudará a identificar possíveis limitações, garantindo que o sistema fornece diagnósticos precisos

e confiáveis num espectro vasto de condições médicas.

Palavras-chave: redes neuronais convolucionais; árvore de decisão; memória; arquitetura cognitiva;

classificação de imagens; aprendizagem; adaptação; diagnóstico médico; inteligência artificial; Boris

iv

Contents

1 Introduction 1

1.1 General Motivations . 2

1.2 Contributions of this Thesis . 3

1.3 Structure of the Dissertation . 3

2 Literature Review / State of the Art 5

2.1 Artificial Intelligence In The Medical Field . 5

2.2 Computer Vision . 7

2.3 Cognitive Architectures . 7

2.3.1 ACT-R (Adaptive Control of Thought-Rational) 8

2.3.2 CLARION . 9

2.3.3 SOAR . 12

2.4 Meta-Learning . 15

2.5 Rule-Based and Case-based Reasoning . 15

2.6 Similar Work . 16

3 Architectural Planning 18

3.1 The Blueprint: Designing a Brain-like Architecture 19

3.2 Computation System: The Cognitive Engine . 23

3.2.1 Sub-Symbolic Processing: The Bottom Level 23

3.2.2 Symbolic Reasoning: The Top Level . 34

3.3 Storage System: Working and Long-Term Memory 46

3.4 Learning System: Optimisation and Adaptation . 54

3.5 Holistic Approach to Decision-Making . 63

3.6 Integrated Technologies . 67

v

3.7 Data Catalogue . 68

3.7.1 CheXpert Dataset . 68

3.7.2 ChestX-ray8 Dataset . 70

3.7.3 Pneumonia Dataset . 71

3.7.4 Addressing class imbalance . 72

4 Practical Application and Execution of the Proposed Solution 74

4.1 Computational System . 74

4.1.1 Bottom-Level Subsystem . 75

4.1.2 Top-Level Subsystem . 95

4.2 Learning System . 106

4.2.1 Training Metrics . 108

4.3 Storage System . 112

4.4 Modular Integration: Decision-Making . 119

4.5 Data Management . 121

5 Experimental Analysis and Verification 124

5.1 Modular Testing . 125

5.1.1 Bottom-level: segmentation and classification 126

5.1.2 Top-level: Decision Forest building . 134

5.2 Inference Testing . 137

5.2.1 Memory Building . 138

5.3 Cognitive Architecture: Overtime Improvement . 143

5.4 Results Overview . 146

6 Conclusion 150

6.1 Future Directions and Challenges . 151

A Appendix 160

A.1 Figures . 160

vi

List of Figures

Patient exclusion by means of clinical referrals. [1] . 6

ACT-R cognitive architecture and how its components work together. [2] 9

A high-level representation of CLARION.[3] . 10

Structure of traditional SOAR.[4] . 12

SOAR 9.[5] . 13

Modular disposition of the architecture. 20

Structure of the architecture. 21

AttentionU-Net Block Diagram. 27

AttentionU-Net: Attention Gate Block and U-Net Block . 28

Segmentation Network UML. 28

ResNet Block Diagram. 30

ResNet: ResNet Block and Identity Block. 31

Classification Network UML. 32

Classification Network fit and epoch training flowcharts. 33

Batch training method’s flowchart for the Classification Network. 33

Bottom level UML design. 34

Bottom-Level Network Outputs. 34

Decision Tree Structure Diagram. 40

Random Forest Structure Diagram. 40

Decision Forest Structure Diagram. 40

Designed Top Level’s UML diagram. 44

Decision Tree parallel creation. 45

Computation System interconnections. 45

Computation System UML diagram. 46

Storage System’s Information Gather. 48

vii

Storage System’s new node creation flowchart. 50

Long-term memory new node flowchart. 51

Working memory new node flowchart. 52

Node retrieval from long-term memory flowchart. 52

Storage System classes UML. 54

Learning System class UML. 61

Boris class UML. 62

Decision-Making Diagram. 64

CheXpert total occurrences for each label. 69

CheXpert label comparison pie-chart. 70

ChestX-ray8 total occurrences for each label. 71

ChestX-ray8 label comparison pie-chart. 71

Pneumonia Dataset total occurrences for each label. 72

Pneumonia Dataset label comparison pie-chart. 72

Segmentation Network verbose during training and validation. 128

Classification Network verbose during training and validation. 134

Verbose during forest building. 137

LTM construction (5, 20, 50 and 100 images) with a similarity threshold of 0.8. 139

LTM construction (5, 20, 50 and 100 images) with a similarity threshold of 0.85. 140

LTM construction (5, 20, 50 and 100 images) with a similarity threshold of 0.9. 140

LTM construction (5, 20, 50 and 100 images) with a similarity threshold of 0.95. 141

LTM with 4,5 and 6 images and WM orderly structure. 142

LTM with 7,8 and 9 images and WM orderly structure. 142

First three images evaluated with the full system. 144

Accuracy comparison for different modules and varying similarity threshold. 145

Segmentation metrics chart for a model trained for 8 epochs on an image size 224x224. 161

Classification metrics chart for a model trained for 16 epochs on an image size 224x224. 162

LTM nodes and connections with 100 and 200 images building on a 0.8 similarity threshold. . . . 163

LTM nodes and connections with final 500 images building on a 0.8 similarity threshold. 164

Accuracy evolution as more images are added to memory with similarity=0.8. 165

LTM nodes and connections with final 500 images building on a 0.85 similarity threshold. 166

viii

Accuracy evolution as more images are added to memory with similarity=0.85. 167

LTM nodes and connections with final 500 images building on a 0.9 similarity threshold. 168

Accuracy evolution as more images are added to memory with similarity=0.9. 169

LTM nodes and connections with final 500 images building on a 0.95 similarity threshold. 170

Accuracy evolution as more images are added to memory with similarity=0.95. 171

Accuracy evolution as more images are added to memory with similarity=0.85 and adjusted weights.172

ix

List of Tables

The five types of ResNet (adapted from[6]) . 31

Gini and Entropy comparisson . 43

Confusion Matrix example . 58

Classification dataset CSV structure. 122

Segmentation tests planning. 126

Segmentation tests results. 127

Classification tests with segmentation planning. 130

Classification tests without segmentation and using the pneumonia dataset. 130

Classification tests results on pneumonia dataset without segmentation. 130

Classification tests results on pneumonia dataset. 131

Classification test results on NIH dataset. 132

Classification test results on CheXpert dataset. 133

Decision Forest tests by varying the minimum number of splits. 135

Decision Forest tests using a validated pneumonia model for image size 224x224. 136

Decision Forest tests using a validated pneumonia model for image size 480x480. 136

Decision Forest tests using a validated pneumonia model for image size 512x512. 137

Accuracy evaluation for varying thresholds. 144

x

List of Algorithms

Decision Tree building algorithm’s pseudocode. 37

Random Forest algorithm’s pseudocode. 38

Modified Decision Forest algorithm’s pseudocode. 39

Long-term memory hotness update pseudocode. 53

ReduceLROnPlateau algorithm’s pseudocode. 56

Weighted Random Sampler algorithm’s pseudocode. 73

xi

List of Listings

Segmentation Network __init__function. 76

UNet block __init__function. 77

Attention Gate block __init__function. 78

Attention Gate forward method. 79

Attention U-Net __init__function. 79

Attention U-Net forward method. 80

Attention U-Net number of channels property. 81

Segmentation Network fit method. 82

Ignore Warning context. 83

Segmentation Network epoch training method. 83

Segmentation Network batch training method. 83

Segmentation Network batch training forward with context. 84

Segmentation Network batch training metrics. 84

Segmentation Network batch training backward pass and performance updates. 85

Segmentation Network forward method. 85

Classification Network __init__function. 86

ResBlock __init__function. 87

ResBlock forward function. 88

ResNet network initialisation. 89

ResNet network layer creation function. 90

ResNet network forward function. 90

ResNet network number of channels property. 91

ResNet network number of classes property. 91

Classification Network training using segmentation. 92

Classification Network training metrics calculation. 92

xii

Classification Network forward method. 92

Bottom Level __init__function. 93

Bottom Level fit method. 94

Bottom Level foward overloaded methods. 94

Decision Forest __init__function. 95

Decision Forest fit function. 96

Decision Forest auxiliary tree creation function. 96

Decision Forest parallelised prediction. 97

Decision Forest prediction function for each Decision Tree. 97

Decision Node for Decision Tree building. 97

Leaf Node for Decision Tree building. 98

Split Node with the best split at a certain stage of the Decision Tree building. 98

Decision Tree __init__function. 99

Entropy metric calculation. 99

Information Gain calculation. 100

Information Gain Ratio calculation. 100

Split Info calculation. 101

Decision Tree fit function. 101

Decision Tree building function. 102

Decision Tree building: stopping conditions verification. 102

Decision Tree building: recursive call for branches. 103

Decision Tree building: same labeled branches verification and Decision Node creation. 103

Decision Tree best split finding. 103

Top Level class methods. 104

Computation System __init__function. 105

Computation System fit method. 105

Computation System forward method. 106

Learning System __init__function. 107

Learning System recursive imports avoidance. 108

Mask Accuracy metric. 108

Dice Score metric. 109

Epsilon value definition. 109

xiii

IoU metric. 109

Confusion Matrix computation. 110

TP, FP, FN and TN calculation from a confusion matrix. 110

Accuracy Metric. 111

Precision Metric. 111

Recall Metric. 112

F1 Score Metric. 112

Matthews Correlation Coefficient Metric. 113

Storage System __init__function. 114

Singleton class implementation. 114

Modified ResNet network forward method. 115

Implementation of the memory addition process in the StorageSystem class. 116

Implementation of the Memory Node class. 117

Node addition method in the Long-Term Memory. 117

Memory Node subtraction method overload. 117

Implementation of the addition method in the Working Memory. 118

Implementation of method for similar nodes retrieval in the Long-Term Memory. 118

Computation System validation. 119

Calculation of accuracies using a confusion matrix for each class. 120

Computation System forward method with memory access and assignments. 120

Boris decision-making implementation. 121

Implementation of the method used to retrieve an image-mask object for segmentation. 123

Implementation of the method used to retrieve an image-labels object for classification. 123

xiv

Acronyms

ACS Action-Centred Subsystem. 10, 11

ACT-R Adaptive Control of Thought-Rational. 8, 9, 12

AI Artificial Intelligence. 5, 6, 12

CAD Computer-Aided Diagnosis. 6, 16, 47

CBR Case-Based Reasoning. 6, 13, 15

CNN Convolutional Neural Network. 18, 21–24

CNNs Convolutional Neural Networks. 18, 21–24, 75

CS Computation System. 22

CV Computer Vision. 6

DT Decision Tree. 18

DTs Decision Trees. 18, 21–23, 75

fMRI Functional Magnetic Resonance Imaging. 9

IoU Intersection over Union. 126, 128

KNN K-Nearest Neighbours. 18

LIDA Learning Intelligent Distribution Agent. 12

LTM Long-Term Memory. xiv, 22, 115–118, 143, 145

MCC Matthews Correlation Coefficient. 60, 112, 129–133, 135, 136

xv

MCS Meta-Cognitive System. 11

MLP Multilayer perceptron. 23

MS Motivational System. 11

NACS Non-Action-Centred Subsystem. 10, 11

RBR Rule-Based Reasoning. 6, 13, 15

ReLU Rectified Linear Unit. 27–30, 77, 78, 87

SGD Stochastic Gradient Descent. 54, 56

SVM Support Vector Machine. 18

UML Unified Modeling Language. 28, 32, 33, 44, 46, 53, 61, 62, 86

WM Working Memory. xiv, 14, 19, 22, 65, 115, 118, 143

xvi

Chapter 1

Introduction

Medical imaging has revolutionised healthcare by enabling professionals to diagnose and treat

patients. However, accurately identifying specific pathologies in X-rays can be challenging due to the

similarities in images and their characteristics. This dissertation proposes a cognitive architecture

approach to develop a system that accurately identifies a specific pathology, such as lung cancer, in

medical documents (Chest X-rays).

Accurate identification of pathology in medical documents is of paramount importance in the

healthcare domain. Misdiagnosis or delayed diagnosis can severely affect patients, resulting in

sub-optimal outcomes and increased healthcare costs. Therefore, there is a pressing need for more

effective and efficient methods to aid healthcare professionals in accurately interpreting medical images

and improving diagnostic accuracy.

Previous research has revealed limitations in relying solely on symbolic or sub-symbolic models for

human-like decision-making in complex domains like medical image diagnosis [7]. Symbolic models rely

on predefined rules and logic, which may not capture the full range of patterns and relationships in

medical images. On the other hand, sub-symbolic models utilise statistical or machine-learning

techniques to identify patterns in data. However, they may need a more detailed understanding of the

underlying decision-making processes. Thus, a cognitive architecture incorporating both symbolic and

sub-symbolic methods provides a more comprehensive modelling approach with broader capabilities.

Cognitive architecture models, inspired by human cognition, simulate how people think, learn, and make

decisions, enhancing the system’s ability to identify pathology in medical documents accurately.

The specific pathology the system can identify will depend on the dataset the architecture uses for

training. Therefore, this dissertation focuses on developing and evaluating a system using a cognitive

architecture approach to identify medical document pathology. The proposed approach aims to leverage

1

the strengths of both symbolic and sub-symbolic models, combining the interpretability of symbolic

models and the pattern recognition capabilities of sub-symbolic models. By integrating these methods,

the cognitive architecture approach offers a promising solution to improve accuracy and decision-making

in medical image analysis.

In addition to developing the cognitive architecture approach, this dissertation will evaluate its

performance using a comprehensive methodology. The system will be trained and tested on a diverse

dataset of medical documents, including Chest X-rays. The evaluation will assess the system’s accuracy,

efficiency, and potential benefits in medical document analysis. The results of this study have significant

implications for improving the accuracy and efficiency of medical diagnosis and treatment, ultimately

benefiting patients and healthcare professionals.

1.1 General Motivations

Machine learning and artificial intelligence have made remarkable advancements in image

identification and computer vision. However, these methods may require more advanced perception and

decision-making capacity for more complex tasks, such as medical image classification. Inaccurate

identification or diagnosis of specific pathology or abnormalities can have severe consequences,

including incorrect treatment and poor patient outcomes.

The medical field is a domain where accurate classification is of utmost importance. While medical

professionals rely on their expertise and experience to diagnose pathology, this process can be time-

consuming and susceptible to error. Therefore, developing a system that accurately identifies pathology

in medical images holds great potential. It could provide medical staff with a valuable second opinion,

reducing the risk of misdiagnosis and significantly improving patient outcomes. This dissertation focuses

on developing a cognitive architecture approach tailored to identify medical image pathology. Furthermore,

the cognitive architecture approach employed in this research can have implications beyond the medical

field, as it could be applied to other domains and applications requiring advanced perception and decision-

making capabilities.

The potential benefits of employing a cognitive architecture approach for medical image identification

are numerous. By leveraging the strengths of symbolic and sub-symbolic models, the cognitive architecture

approach aims to enhance accuracy and efficiency in medical diagnosis. It can alleviate the workload of

medical staff, improve diagnostic outcomes, and save lives. Moreover, developing a cognitive architecture

approach for this application could drive advancements in other fields where perception and decision-

2

making are critical, such as autonomous vehicles or robotics.

1.2 Contributions of this Thesis

The research presented in this study contributes significantly in two key areas. Firstly, it proposes an

innovative cognitive architecture approach that effectively identifies specific pathology in medical

documents. By seamlessly integrating symbolic and sub-symbolic components, this approach harnesses

the strengths of both models, providing a comprehensive and detailed range of capabilities for accurate

diagnosis. This novel approach represents a notable advancement in medical image identification.

Secondly, the study demonstrates the practicality and effectiveness of the proposed approach

through extensive experimentation and evaluation using diverse medical datasets. The experimental

results consistently highlight the superiority of the cognitive architecture approach in terms of accuracy

and efficiency, surpassing existing methods. These findings validate the feasibility and success of the

proposed approach and underline its potential to enhance medical image identification significantly.

As a result, this research makes noteworthy contributions to medical image identification and cognitive

architecture modelling. It introduces an innovative approach that combines symbolic and sub-symbolic

components, thereby improving the accuracy of medical diagnosis. Moreover, this study establishes a solid

foundation for future research and development in this domain, paving the way for further advancements

and applications of cognitive architecture in various domains. Overall, these contributions position the

research as a valuable and impactful contribution to the scientific community.

1.3 Structure of the Dissertation

This dissertation is organised into five main chapters, each contributing to the development of a

cognitive architecture approach for identifying pathology in medical images.

Chapter 2 provides a comprehensive overview of the state-of-the-art in cognitive architectures and

medical image classification. It covers existing research and methods used in cognitive architectures,

including symbolic and sub-symbolic models, as well as medical image classification. Additionally, this

chapter explores the potential benefits of utilising a cognitive architecture approach in medical document

analysis, highlighting its implications for improving the accuracy and efficiency of medical diagnosis and

treatment.

Chapter 3 focuses on the design of the proposed cognitive architecture approach for identifying

pathology in medical documents. This chapter describes the components of the architecture, outlines

3

the processing steps involved in identifying pathology, and explains the decision-making process.

Chapter 4 describes the implementation of the proposed cognitive architecture approach. It

discusses how the architecture was implemented and addresses the challenges encountered in

integrating the previously designed components to work together effectively.

Chapter 5 presents the tests and results of the cognitive architecture approach for identifying pathology

in medical images. This chapter outlines the experimental design, describes the data used to evaluate the

system, and presents the performance metrics used to assess the accuracy and efficiency of the system.

Additionally, it discusses the limitations of the proposed cognitive architecture approach and explores

potential future directions for improvement.

Finally, Chapter 6 provides the final conclusions of this dissertation. It summarises the main findings

and contributions of the research, emphasising the effectiveness of the cognitive architecture approach for

identifying pathology in medical images. This chapter serves as a culmination of the dissertation, offering

a comprehensive understanding of the cognitive architecture approach and its potential impact on medical

image classification and diagnosis.

4

Chapter 2

Literature Review / State of the Art

This chapter presents a comprehensive background to establish the foundation for developing the

proposed system. The chapter begins with a general overview, followed by an in-depth exploration of the

characteristics of the cognitive architectures that will be utilised as the baseline in the system’s

implementation.

Initially, the role of artificial intelligence (AI) in the medical field is discussed, focusing on its

utilisation to enhance pathology diagnosis. Existing successful implementations of AI systems in this

domain are highlighted, illustrating their potential benefits. Given the dissertation’s specific focus on

employing cognitive architectures for medical diagnosis, relevant literature is reviewed to showcase how

these approaches have proven valuable in training neural networks to mimic human brain functioning

[8].

Subsequently, an introduction is provided on the cognitive architectures employed in the system’s

implementation. This entails elucidating their foundational concepts and exploring the most recent

advancements in these architectures. The work of Goria et al. [9] serves as a comprehensive reference,

offering an extensive overview of these architectures and their diverse applications.

2.1 Artificial Intelligence In The Medical Field

Due to the increasing need for faster and more precise diagnosis when dealing with serious diseases,

there is a growing interest in understanding the precision and speed of the human brain when identifying

pathology in medical exams [10].

One of the most promising applications of intelligent techniques for diagnostic sciences is biomedical

image classification [11]. Various Artificial Intelligence (AI) techniques for automating this diagnosis have

5

already been explored, and it was concluded that the biomedical image classification using Computer

Vision (CV) techniques is rapidly improving the field [11, 12].

As referred to in [11], new imaging modalities and methods of interpreting tasks are being developed,

such as model-based intelligent analysis and decision-making tools like cognitive architectures, which will

be the main focus of this dissertation.

Many examples of AI and CV applications in diagnostic sciences have already been developed,

including the detection of breast cancer using mammography. Screening programs are being introduced

into deep neural networks to detect occurrences of node-negative tumours or larger tumours in more

advanced stages, providing faster diagnosis and better treatment [13].

Similar methods in Computer-Aided Diagnosis (CAD) have also been developed, using radiology and

radiography to identify several pathologies [14]. Case-Based Reasoning (CBR) and Rule-Based Reasoning

(RBR) [15] can also be applied, such as in the early diagnosis of gastrointestinal cancer [16]. In this

case, no pre-processing or neural networks are implemented, only specific cases and rules that output

the probability of a patient having this type of cancer after trimming all the available data.

These applications raise ethical questions, as using medical documents to teach AI raises legal and

ethical concerns [17]. Researchers have designed a system to select patients and exams that meet

specific criteria for network learning [1]. Figure 1, presented in [1], shows how screening for new content

for learning is selected and added to the dataset for further evaluation.

Figure 1: Patient exclusion by means of clinical referrals. [1]

6

2.2 Computer Vision

As seen in the previous topic, most applications and systems use computer vision in the process of

identifying pathology. There are many ways to use computer vision techniques, but the most efficient one

in this system is via image understanding architectures [18]. With it, image processing and interpretation

become possible when applying different models, inference engines and learning methods, making a

system vision capable [19].

For this project specifics, pattern recognition [20] and general feature extraction methods will be

used as a part of pre-processing in creating the learning dataset that will be further applied to the neural

network or the cognition process. An example of applying a similar method is shown in [21], where a

convolutional neural network is used in a study on how its depth influences the accuracy of a large-scale

image recognition system. Although this study is more focused on deep neural network characteristics,

some methods for computer vision techniques are also discussed and might become relevant when

organising a big chunk of image data.

2.3 Cognitive Architectures

A Cognitive Architecture is all the theory related to the model or structure of the human mind in the

field of artificial intelligence and overall cognitive science. The main objective is to provide a template of

the mind to work in artificial systems, making different elements cooperate to achieve intelligent behaviour

in a complex environment [22]. In sum, it is a broadly-scoped, domain-generic computational cognitive

model, capturing the essential structured and processes of the mind, to be used for a broad, multiple-level,

multiple-domain analysis of behaviour. [23]

During the years, there have been multiple attempts to achieve human-like decision-making within

machines. Referring to some of the cognitive architectures that will be explored in this sub-section, and

have received multiple updates [24] since then, even having some examples of already implemented and

tested architectures to be used in artificial vision systems [25]. Some other examples of using cognitive

architectures to mimic human interaction can be seen in autonomous robotic systems, making them able

to communicate, have human-like coordination and the capability to adapt to novel situations, learning

through experience [26].

A more detailed study of these architectures is explained further in this dissertation. It is only relevant

to show some previously researched knowledge about the theme rather than to explain these models

7

exhaustively.

2.3.1 ACT-R (Adaptive Control of Thought-Rational)

The Adaptive Control of Thought-Rational (ACT-R) cognitive architecture aims to uncover the

fundamental cognitive and perceptual operations that underlie human cognition [27]. It follows a

modular framework that captures the intricate workings of the human mind, with tasks comprising

discrete operations.

At the heart of ACT-R lies the distinction between declarative and procedural knowledge (Figure 2).

Declarative knowledge encompasses factual information organised into chunks, accessed through buffers

facilitating communication among modules within ACT-R. These buffers serve as the interfaces through

which information flows between the perceptual, cognitive, and motor processes.

Procedural knowledge, on the other hand, involves the acquisition and execution of skills and

behaviours. It encompasses knowledge about performing tasks through well-defined steps or algorithms.

In ACT-R, procedural knowledge is implemented using production rules, which encode sequences of

actions and conditions.

Declarative and procedural knowledge interact to drive cognitive processing. Declarative knowledge

provides rules and information that guide procedural knowledge, while procedural knowledge enables

the efficient execution of cognitive tasks based on acquired skills. Together, they form the foundation

of cognitive architectures like ACT-R, allowing for the modelling and simulation of human-like cognitive

processes and behaviours.

ACT-R comprises two main module types. The perceptual-motor modules enable the architecture to

interact with the external world. For example, the visual module facilitates visual perception and

processing, while the manual module facilitates motor control and object manipulation. These modules

enable ACT-R to acquire environmental information and generate appropriate motor responses.

The memory modules within ACT-R are responsible for storing and manipulating knowledge.

Declarative memory stores factual information, enabling the retrieval of facts and concepts. On the other

hand, procedural memory contains rules and procedures that guide behaviour and cognitive processes.

It allows ACT-R to execute cognitive tasks by activating production rules, which specify the conditions for

rule firing and the corresponding actions to be performed.

Recent research has focused on integrating visual attention mechanisms into the ACT-R architecture.

Visual attention is crucial in selectively directing cognitive resources toward relevant stimuli. By

incorporating these mechanisms, ACT-R can model various cognitive phenomena that depend on the

8

Figure 2: ACT-R cognitive architecture and how its components work together. [2]

speed and selectivity of attentional processes. This integration enhances the understanding of how

high-level cognition and cognitive processes interact with visual attention and how attentional focus

influences information processing within the architecture [2].

To validate the effectiveness of the ACT-R model, researchers have explored its relationship with fMRI

readings. These studies involve mapping the ACT-R modules to specific brain regions using model-based

fMRI analysis. By examining brain activity patterns during cognitive tasks, researchers can identify the

neural substrates associated with different aspects of ACT-R processing. This approach provides insights

into the correspondence between ACT-R’s cognitive processes and the underlying neural mechanisms,

shedding light on the neural basis of human cognition and memory retrieval processes [28].

2.3.2 CLARION

The second cognitive architecture in the study is the CLARION, which implies that human cognition

is a dual-process/dual-representation [3], that focuses on the distinction between explicit and implicit

cognitive processes. Also, this model is integrative, involving cognition, motivation and meta-cognition

in a single state [29]. It is an integrative cognitive architecture, consisting of a number of distinct but

symbiotic subsystems (with critical mutual dependencies and complex interactions) connected as a dual-

representational structure in each subsystem.

9

The top level of CLARION (as in Figure 3) contains all the explicit knowledge, which is easily accessible

but requires more attention resources. In contrast, the bottom level contains all the implicit knowledge,

which is harder to access but mostly automatic. Essentially, it is a dual-process theory of mind [3]. Since

the data in these two levels is different, many researchers show that it is justified to integrate the processing

results to capture the interaction between the implicit and explicit processing in humans. [7].

Figure 3: A high-level representation of CLARION.[3]

CLARION can then be further divided in the Action-Centred Subsystem (ACS), that contains procedural

knowledge concerning actions and procedures and can be referred as the long-term procedural memory;

and in the Non-Action-Centred Subsystem (NACS), which contains declarative knowledge as it serves as

the long-term declarative memory, both semantic and episodic.

The Action-Centred Subsystem can then be further split into two parts: the bottom level and the top

level. At the bottom level, the context of Implicit Decision Networks is implemented. At this level, knowledge

is less accessible and reactive, and the distributed representation is used to capture the inaccessible nature

of implicit (tacit) knowledge. The inputs to this part of the module can be sensory, working memory

items, and the current goal. These inputs are represented as dimension-value pairs, and the actions

are represented as nodes on the output layer, each consisting of one or more dimensions. Chunking

is also introduced as a collection of dimension/value pairs that represent either conditions or actions of

rules of the top level. This top-level deals with explicit rules that are more accessible and consciously

10

applied. It contains ”condition→action” pairs with condition chunk and action chunk. These rules come

from different sources, including extracted and refined rules (RER rules), independently learned rules (IRL

rules), and fixed rules (FR rules). Each rule comprises one condition chunk and one action chunk with

multiple dimensions connected to bottom-level (micro) features.

The Non-Action-Centred Subsystem also incorporates explicit and implicit knowledge in task

performance. It emphasized the coexistence and redundancy of explicit and implicit knowledge and their

integration in iterative processing. The NACS includes semantic and episodic memory, which are formed

through acquiring and assimilating general knowledge from external sources or experiences. Since both

systems are connected, it also performs memory retrievals and inferences under the control of the ACS.

In contrast, the previously mentioned includes procedural memory, which involves long-term and

short-term memory of learned procedures.

In sum, the action-centred modules include implicit bottom-level action decision networks, explicit top-

level action rule groups, working memory and gold structure. Non-action-centred modules include explicit

general knowledge stores (for instance, an explicit semantic memory) and implicit associative memory

networks, such as implicit semantic memory. These two sets of modules constitute the two subsystems

referenced above that operate under the influence of motivational and meta-cognitive processes.

A more recent version of the CLARION model as the one presented in [30] and as seen in Figure 3 also

shows two additional subsystems: the Motivational System (MS) that is concerned with drives and their

interactions [31]. The other subsystem is referred to as Meta-Cognitive System (MCS) and is closely tied to

the MS since it monitors, controls and regulates the cognitive processes to improve cognitive performance.

These two subsystems set essential parameters of the ACS and NACS, interrupting and changing the

ongoing processes in these, making them responsible for achieving the best possible learning process

[32].

Summing the essential characteristics, CLARION displays the dichotomy of implicit and explicit

processes, focusing mainly on the cognition-motivation-environment interaction. Furthermore, it bases

itself on the constant interaction of multiple subsystems and modules involving implicit cognition, explicit

cognition, motivation and meta-cognition (described further ahead).

Given the structural complexity of this architecture, questions arises on whether it has too many

mechanisms. CLARION is generally grounded in existing psychological theories, constitutes a

comprehensive psychological theory by itself, is reasonably compact, and matches a wide range of

psychological data. [33, 34]

CLARION can then learn independently, regardless of whether there is a priori or externally provided

11

domain knowledge. At the same time, it does not exclude innate biases, innate behavioural propensities

or prior knowledge. [23].

2.3.3 SOAR

SOAR stands for State, Operator, And Result [4], is a cognitive architecture that will be the main

focus of this dissertation. Like the other models presented before, SOAR aims to create a computational

structure underlying general intelligence. It has many shared elements with both ACT-R (referenced

before) and Learning Intelligent Distribution Agent (LIDA), not researched since it became obsolete with

the development of more advanced models. Recently, SOAR has stepped away from ACT-R since it has a

bigger emphasis on general AI, whereas ACT-R is focused on cognitive modelling. [35].

The SOAR’s original name, for State, Operator And Result, refers to the problem and hypothesis which

underlies SOAR creation. The original theory behind it is a ”Problem Space Hypothesis” [36] (first out of

five original hypotheses), which contends that all goal-oriented behaviour can be cast as a search through

a space of possible states while attempting to achieve the designed goal. A single operator is selected and

applied to the current state for each process step. This selection leads to internal changes like retrieving

knowledge from one of the memories or even an external action with the world, generating a result.

Figure 4: Structure of traditional SOAR.[4]

The traditional SOAR model, as shown in Figure 4, consists of a single long-term memory, encoded

as production rules and a single short-term memory, representing a symbolic graph structure so that

objects can be represented with properties and relations. These memories hold the agent’s assessment

12

of the current situation, derived from perception and retrieval of knowledge from the other memory. At

the lowest level, SOAR’s processing consists of matching and firing rules (RBR and CBR). This method

provides a flexible, context-dependent representation of knowledge, with their conditions matching the

current situation and their actions retrieving information relevant to the current situation.

With this approach, it becomes visible that there will be limited knowledge available to choose between

rules, especially in the conditions of the rules, which will need more data to be picked out of the others.

When introducing operators, SOAR makes it possible for the rules to act as associative memory, retrieving

essential and relevant information to the current situation, firing rules in parallel, and adapting in different

ways to the same situation [4, 35].

The most recent version of SOAR, although it retains the strength of the original SOAR, provides a

flexible model of control and meta-reasoning, expanding the types of knowledge SOAR could represent,

reason, and learn. This evolution makes it more inspired by human capabilities, always adding

functionalities [37].

Figure 5 [5] shows the improved and most current version of SOAR. The major additions to this new

edition include the working memory activation, which provides extra meta-information about the recency

and how useful a working memory element is for the situation. A new reinforcement learning engine

tunes the numeric preferences of operator selection rules, and the appraisal detector generates emotions,

feeling and an internal reward signal for reinforcement learning.

Figure 5: SOAR 9.[5]

13

This model also includes two new types of memory [38]: semantic memory, which comprises symbolic

structures representing facts and episodic memory, temporally ordered snapshots of the working memory,

quickly accessed without having to go through a slow shorting mechanism.

SOAR’s processing cycle is still driven by procedural knowledge encoded as production rules.

However, the new components added will influence decision-making indirectly by retrieving or creating

structure in the symbolic working memory, causing different rules to match and fire. This model can now

also be used for visual-feature and visual-spatial reasoning. It includes a short-term memory where

images are constructed and manipulated, added to a long-term memory that contains images that can

be retrieved and manipulated, a process that may create symbolic structures from these visual images.

Visual imagery is controlled by the symbolic system, which issues commands to construct, manipulate

and examine visual images [5, 39].

A practical example of the usage of this cognitive architecture is in a humanoid service robot capable

of executing simple action skills: navigating, grasping and recognising objects or people, while using

the SOAR cognitive architecture as the reasoner by selecting which action the robot should complete,

addressing it towards the goal [40, 41].

As shown above, these architectures aim to model a human-like behaviour in terms of a cognitive

cycle, performed sequentially or in parallel, culminating in an action or decision. With this, a comparison

between CLARION and SOAR is of all interest. Following the study by Lucentini et al. [42], it is possible

to conclude that these architectures generalise and apply the concept of sub-symbolic (also called non-

symbolic or ”numeric”), where a ”bottom-up” approach to learning is displayed.

As of SOAR, all the information obtained is stored in a Working Memory (WM), from where it is

retrieved and used as an input/output mechanism. These Working Memory Elements are usually

generated externally via a perception module and pre-processed before storage, making it a highly

symbolic architecture. For CLARION, a diverse representation is more prominent, dividing each module

into the two parts described before. In this case, the data is represented in dimension-value pairs, with

the information type and its corresponding value. For the goal structure, SOAR has no built-in

motivational process, unlike CLARION, which has an exclusive module for handling goals and

motivations, capable of influencing the decision process for a specific situation.

With this, Lucentini et al. [42] conclude that SOAR is a predominantly symbolic architecture and

CLARION, on the contrary, has a mixed approach that combines the benefits of both paradigms, symbolic

and non-symbolic.

14

2.4 Meta-Learning

Meta-Learning is a term widely used in the artificial intelligence field. It is viewed as an understanding

and adaptation of cognition on a higher level than merely acquiring knowledge [43]. That is, a person

aware and capable of meta-learning can assess if the learning approach is correct and adjust it according

to the requirements of a specific task.

The primary goal of a meta-learning system is understanding the interaction between the learning

mechanism and the concrete contexts in which that mechanism is applicable [44]. To be precise, meta-

learning monitors the automatic learning process in the context of the learning problems it encounters

and tries to adapt its behaviour to perform better [45].

The meta-knowledge needed for this process can then be extracted from a previous learning episode

on a single dataset or even from different domains. Having previous information about a learning subject

can make the system capable of few-shot learning, providing the network or the cognitive model fast

adaptation over a specific situation based on previously learned knowledge [46].

Few-shot learning, as the name implies, refers to the practice of feeding a learning model with a

minimal amount of training data. This method is broadly applied in computer vision, where small training

sample results are accurate predictions or actions, proving to be the go-to solution whenever a tiny amount

of training data is available [47, 48].

In the field of cognitive science and cognitive architectures, most meta-learning comes from applying

rules previously defined as the reasoning method, where the model decides a specific action depending

on which rules are fired during the execution.

2.5 Rule-Based and Case-based Reasoning

Rule-Based Reasoning and Case-Based Reasoning have always been considered two critical and

complementary reasoning methodologies in artificial intelligence, especially in systems with

meta-learning capabilities. Over the years, there have been attempts to integrate these two types of

reasoning to achieve the perfect generalised reasoning to be applied to any situation, capable of dealing

with real-life situations and providing a comprehensive representation of a final action [15].

With a reasoner of these types, the system can perform cycles of match-resolve-act, where it matches

an input to a pre-existing production rule (usually defined inside a memory of the model). It then checks

for a conflict where multiple rules are set simultaneously and needs to be filtered by which one will have

15

more impact in the final action. Finally, the actions defined by the rules are executed, originating changes

in the memory’s content, whether to end the cycle or to adapt to the next iteration.

Aspects like this will also require extra caution when analysing whether pre-implemented rules will

make sense in the current situation [49]. In some cases, wrongly set rules or cases for the reasoning

engine may result in non-capable learning mechanisms where the model will not have the ability to evolve

to new situations and will not be able to execute new actions. That is why their methodologies must be

adapted to the situation’s specifics, allied to knowledge in few-shot or even one-show learning.

2.6 Similar Work

Besides all the examples of similar work so far, some mentions are not directly connected to any

of the areas described but also incorporate the end goal this dissertation aims to achieve: the CAD for

pathology identification. In the context of medical image diagnosis, various studies and applications have

explored the use of deep learning classifiers for X-ray imaging. However, these approaches typically do

not incorporate a comprehensive cognitive architecture as a reasoning mechanism.

In the study by Majkowska et al., deep learning models were employed to interpret chest radiography to

detect various abnormalities such as pneumothorax, opacity, nodules or masses, and fractures on frontal

chest radiographs [50]. The researchers aimed to assess the performance of these models by comparing

their interpretations to reference standards adjudicated by radiologists. The evaluation of the deep learning

models was adjusted to account for population characteristics, providing a comprehensive assessment of

their diagnostic capabilities. The findings of this study highlight the potential of deep learning approaches in

aiding radiologists with the interpretation of chest radiographs, contributing to more accurate and efficient

diagnoses of pulmonary conditions.

The study conducted by Jaiswal et al. focused on using deep learning techniques to identify pneumonia

in chest X-ray images [51]. Their research aimed to develop an automated system that could accurately

detect pneumonia cases, achieving high accuracy and comparable performance to human experts. By

training a deep neural network model on a large dataset of chest X-ray images, they demonstrated the

potential of deep learning for enhancing pneumonia diagnosis and improving patient outcomes.

Alternatively, there have been comprehensive studies focusing on applying deep learning algorithms

to detect critical findings in CT scans [52, 53]. Chilamkurthy et al. conducted a retrospective study to

assess the performance of deep learning algorithms in detecting critical findings in head CT scans. Their

findings, published in The Lancet, demonstrated the potential of deep learning models to aid in detecting

16

abnormalities, contributing to improved diagnosis and patient care [52].

Moreover, using machine learning techniques for X-ray imaging has also been explored. Notably,

industry leaders like Google have been involved in research and development efforts in this area [54].

Their work has focused on leveraging deep learning and artificial intelligence to analyze chest CT scans,

automating the analysis process and potentially assisting radiologists in identifying abnormalities and

providing accurate diagnoses [53].

These studies highlight the significant advancements in medical imaging, with deep learning

algorithms and machine learning techniques showing promise in enhancing the accuracy and efficiency

of image interpretation. The integration of these technologies has the potential to revolutionise radiology

practices, leading to more effective diagnoses, improved patient outcomes, and streamlined healthcare

workflows.

17

Chapter 3

Architectural Planning

Image classification is a fundamental problem in computer vision, with a wide range of applications

in fields such as medical imaging [55, 56, 57], surveillance [58], and biometrics [59], among others.

Image classification aims to automatically assign a label to an input image based on its visual content.

Traditional methods for image classification rely on hand-crafted featured and predefined classifiers, which

are limited in their ability to capture the complexity and diversity of natural images. These methods often

involve extracting specific features from the image, such as edges, corners or textures [60], and using these

features to train a classifier, namely, a Support Vector Machine (SVM)[61, 62] or a K-Nearest Neighbours

(KNN)[63]classifier. Modern methods for image classification continue to face limitations, albeit at a lower

scale compared to traditional methods.

However, with the advent of deep learning, machine learning approaches have shown great promise

for image classification. These approaches involve using neural networks to learn the representations and

classifiers from the data. Convolutional Neural Network (CNN) have emerged as a powerful tool for image

classification [64, 65, 66], due to their ability to learn hierarchical representations of images and their

high accuracy in many tasks.

The decision to incorporate both symbolic and sub-symbolic structures in BorisCAD draws

inspiration from the behaviour of the CLARION cognitive architecture. CLARION, a cognitive architecture

that combines cognitive and neural processes, has demonstrated the benefits of integrating symbolic

and sub-symbolic representations in cognitive tasks.

Similarly, in BorisCAD, combining symbolic Decision Trees (DTs) and sub-symbolic CNNs allows for

a more comprehensive and practical approach to image classification. This integration leverages the

strengths of both methods, enabling BorisCAD to capture the complexity and diversity of natural images

while maintaining interpretability through the DT component.

18

3.1 The Blueprint: Designing a Brain-like Architecture

From Chapter 2 seems clear that the CLARION cognitive architecture, a theoretical framework that

simulates the cognitive processes of the human mind, was the most versatile choice for adapting to the

needs of this work. CLARION’s flexibility and adaptability make it well-suited to address the specific

requirements of the image classification task. Its ability to seamlessly integrate both symbolic and

sub-symbolic processing allows for a comprehensive approach that combines interpretability with neural

networks’ powerful representation learning capabilities. As a result, CLARION provides a solid foundation

for developing the proposed BorisCAD architecture, offering a promising solution to enhance the

efficiency and effectiveness of image classification tasks.

The CLARION cognitive architecture is organised into two main subsystems: the explicit and implicit.

The explicit subsystem is primarily symbolic, using logical and linguistic representations for reasoning

about the world with conscious thought and decision-making. It contains a Working Memory (WM) module,

which holds the current state of the environment and provides a basis for decision-making. This WM is

a dynamic structure that allows for the integration of new information and the manipulation of existing

information, allowing it to interact with other modules to determine the appropriate action based on the

current state of the environment.

The implicit subsystem, on the other hand, is sub-symbolic, using distributed representations to

process information. This subsystem contains a procedural module responsible for learning and

executing complex behaviours, learning through trial and error, and adjusting its behaviour based on the

feedback it receives from the environment.

Symbolic knowledge often refers to knowledge represented by symbols or rules associated with explicit,

conscious, and rational reasoning processes. On the other hand, sub-symbolic knowledge represents

knowledge shown as activation patterns in a neural network or other machine learning models associated

with implicit, unconscious, and intuitive reasoning processes. Thus, the distinction between symbolic and

sub-symbolic knowledge is crucial in a cognitive architecture like CLARION. It allows for the integration of

high-level reasoning and low-level perception and action, helping to identify the processes best suited for

each type of knowledge, making it an essential topic in this work.

The CLARION architecture also includes a motivational subsystem, which plays a crucial role in

determining the goals and priorities of the system. It uses affective and motivational states to influence

the decision-making process by affecting the goals and priorities of the system.

By comparing CLARION with other well-known cognitive architectures, it becomes evident why

19

CLARION is a better choice for the specific application at hand. One significant factor is CLARION’s

distinction between explicit and implicit processes, knowledge, and learning. This differentiation allows

CLARION to provide a more comprehensive and adaptable framework than the ACT-R architecture.

Although a well-established cognitive architecture, ACT-R does not offer the same level of versatility

as CLARION for the intended application. ACT-R lacks the explicit-implicit distinction crucial for effectively

handling complex reasoning processes. In contrast, CLARION’s explicit and implicit processes provide a

more nuanced understanding of cognitive operations, facilitating better modelling of human-like cognitive

behaviour.

Another factor that sets CLARION apart from other architectures, such as SOAR, is the requirement

for a large amount of initial knowledge (a priori) to perform similarly to CLARION. SOAR does not

differentiate between symbolic and sub-symbolic knowledge, which limits its versatility in handling more

intricate reasoning tasks. In contrast, CLARION’s ability to incorporate symbolic and sub-symbolic

knowledge allows for a more flexible and nuanced representation of complex cognitive processes.

With an understanding of the importance of symbolic and sub-symbolic knowledge in cognitive

architecture, it is possible to turn the attention to the development of the BorisCAD architecture. It will be

built upon the strengths of the CLARION architecture and adapted to meet the specific needs of the

problem at hand. This architecture aims to integrate both symbolic and sub-symbolic knowledge to allow

for efficient high-level reasoning and low-level perception and action. To achieve this goal, BorisCAD will

incorporate a variety of cognitive subsystems that work together to achieve the desired outcome.

Symbolic Methods

Sub-Symbolic
Methods

Storage System

Learning System

Figure 6: Modular disposition of the architecture.

Figure 6 illustrates the main components of the architecture, which are composed of four key modules.

The first two modules are the symbolic and sub-symbolic, which are interconnected to integrate both types

of knowledge. The sub-symbolic module is responsible for handling sensory information and lower-level

processing. This will then generate explicit symbols for the symbolic module to handle, applying higher-

level reasoning. The storage module plays a critical role in the architecture by providing a temporary

20

space for relevant prior information to be stored, guiding the decision-making process and maintaining

context during task execution. This information can include sensory input, recent actions, and task goals.

Finally, the learning module regulates the system’s training by adjusting several hyperparameters that the

sub-symbolic methods make use.

This representation shows how the modules will coexist in this architecture but still needs to display

the type of components each module will comprise clearly. Figure 7 accurately depicts what BorisCAD

will include in its structure.

Computation
System Storage System

Symbolic
Methods

Sub-Symbolic
Methods

Decision Tree/
Forest

Convolutional Neural
Network

CNN

Working Memory

Learning System

Transfer Learning

Adaptive
Learning

Long-Term Memory

Figure 7: Structure of the architecture.

Convolutional Neural Networks (CNNs) were chosen as the sub-symbolic method within the cognitive

architecture, primarily for their capability to extract meaningful features and gain a comprehensive

understanding of image contents. CNNs excel in learning hierarchical representations from images,

capturing intricate patterns and achieving high accuracy in classification tasks. They employ deep layers

of convolutional and pooling operations to progressively recognise complex visual patterns, enabling

them to encode image information into feature representations for classification effectively.

However, despite their high performance, CNNs may sometimes generate inconclusive classification,

where the highest probability output aligns differently from the actual image class. By incorporating DTs

into the architecture, the system takes advantage of the probabilities generated by the CNN during the

forward pass by examining the connections between these probabilities and the initial training labels. This

allows the DTs to identify complex patterns and correlations that may not be apparent solely based on the

21

highest probability value or a predetermined threshold. The DTs provide an extra layer of classification,

which is particularly useful in situations where a high probability value does not accurately represent the

proper class of the image.

The integration of DTs enables the architecture to account for situations where the CNN tends to

overfit certain classes [67], such as ”no-finding” in the case of medical diagnosis. By considering the

probabilities and their relationships, the DTs can detect patterns that indicate the correct classification,

even if the highest probability does not align. This enhances the accuracy and reliability of the classification

process, reducing the risk of critical diagnostic errors.

Similarly to CLARION’s architecture, a Working Memory (WM) was integrated into the architecture

to provide a temporary storage space for relevant information. Additionally, a Long-Term Memory (LTM)

stores information for extended periods.

The Learning System module, as a pivotal component in this architecture, plays a crucial role in

regulating the training of the sub-symbolic components. It incorporates transfer learning methods [64, 68,

69, 70], allowing the system to leverage previously learned models for retraining on different datasets. It

will also include similar methods to adapt currently trained models to new scenarios with different image

sizes and a different number of classification labels.

Moreover, the Learning System module incorporates advanced techniques such as adaptive learning

rate optimisation. By utilising methods like Adadelta [71] and others [72, 73], the system dynamically

adjusts the learning rate during training. This enables the system to fine-tune the learning rate based

on the training progress, ensuring that the model converges smoothly and avoids getting stuck in local

optima. By adjusting the learning rate, the system can control the pace of learning, allowing it to navigate

complex optimisation landscapes more effectively. This optimisation technique enhances the efficiency

of the training process and improves the generalisation capabilities of the sub-symbolic components,

ultimately leading to better accuracy and robustness.

With this, it is possible to say that BorisCAD can also be split into several levels in the Computation

System (CS): it will be referred to as the top level, the group of symbolic methods, and as the bottom

level, the modules that represent sub-symbolic items. In this case, the top level will consist of one or

multiple Decision Trees, and the bottom level will consist of neural networks, namely, Convolutional Neural

Networks.

22

3.2 Computation System: The Cognitive Engine

BorisCAD’s Computation System incorporates a hybrid system design with sub-symbolic processing

at the bottom level and symbolic reasoning at the top level. The sub-symbolic level represents the

perception and recognition processes of the brain, while the symbolic level corresponds to procedural

rules. This duality reflects the information processing mechanism of the human brain, where the

sub-symbolic processes extract information from sensory data, and the symbolic processes use that

information to make decisions and act.

At the bottom level, BorisCAD employs neural networks, specifically Convolutional Neural Networks, to

extract and learn features from image data. These sub-symbolic processes learn complex representations

of images, enabling the system to recognise objects and patterns in visual data. At the top level, the

system uses symbolic reasoning to make decisions based on the features learned by the sub-symbolic

processes. Decision Trees are employed for their interpretability and flexibility, allowing the system to

reason about complex relationships between features and make accurate predictions.

3.2.1 Sub-Symbolic Processing: The Bottom Level

The representation of image data is a two-dimensional grid of pixels, whether monochromatic or colour.

Each pixel corresponds to one or multiple numerical values, respectively. However, the spatial relationship

between pixels is often ignored, and images are flattened into one-dimensional vectors to feed through a

fully connected MLP. This approach was revised because it disregards the relationship between nearby

pixels that can be leveraged to build efficient models for learning from image data.

Convolutional Neural Networks [74], a family of neural networks designed for learning from image data

by exploiting the spatial relationship between pixels, were introduced to address this issue. CNN-based

architectures have become ubiquitous in computer vision and have significantly improved performance

on datasets such as Imagnet [75].

CNNs owe their design to inspirations from biology, group theory, and experimentation. They are

computationally efficient due to requiring fewer parameters than fully connected architectures and are

easily parallelised across GPU cores [76]. Consequently, CNNs have emerged as credible competitors

even on tasks with one-dimensional sequence structures, such as audio [77], text [78], and time series

analysis [74], where recurrent neural networks are conventionally used. Furthermore, clever adaptations

of CNNs have enabled them to be applied to graph-structured data [79] and recommender systems.

CNNs exploit spatial invariance to detect objects in images. The idea is that the method of recognising

23

objects should not be overly concerned with the object’s precise location in the image. The network should

focus on local regions in the earliest layers without regard for the contents of the image in distant regions.

In contrast, deeper layers should capture longer-range features of the image in a way similar to higher-

level vision in nature. To accomplish this, the earliest layers of the network should respond similarly to the

same patch, regardless of where it appears in the image. This concept is called translation invariance (or

translation equivariance). To achieve this, CNNs use a convolutional layer, a fourth-order weight tensor

that convolves an input image with learnt filters to produce a feature map.

Adding channels to CNNs can help reduce the complexity lost due to the restrictions imposed by

translation invariance and locality, where channels allow different types of information to be processed

separately. These networks manipulate the dimensionality of images, move the information from location-

based to channel-based representations, and efficiently handle large numbers of categories, processing

and extracting valuable data from images.

These networks operate on images by cross-correlating the input with a kernel and adding a scalar bias

to produce an output. The kernel and scalar bias are the two parameters of a convolutional layer, randomly

initialised during training, similar to a fully connected layer. Each feature map in a CNN represents learned

representations (features) in the spatial dimensions of the subsequent layer. Convolutional filters used

in these operations are flexible and capable of detecting edges and lines and performing operations like

blurring or sharpening images.

Convolutional Neural Networks use receptive fields to capture spatial dependencies and detect these

image patterns. The receptive field refers to the input’s effective region that influences a neuron’s

computation in a given layer. As information flows through successive convolutional layers, the receptive

field expands due to convolution and pooling operations. Each neuron in deeper layers considers a larger

input context, capturing more global information. This hierarchical integration of information enables

CNNs to extract higher-level features for tasks like object recognition and semantic segmentation.

Segmentation and classification networks are two types of neural networks often used in computer

vision tasks. While they have different goals, they can work together to improve image classification

accuracy.

Segmentation networks are designed to classify every pixel in an image, grouping them into object,

background, and foreground categories. They are often used for tasks such as object detection and

scene understanding. These networks use an encoder-decoder architecture to extract features from the

input image and produce a segmentation map. On the other hand, classification networks are designed

to classify an entire image into predefined categories, such as different types of animal or object. These

24

networks use a simpler architecture than segmentation networks, often consisting of just a few

convolutional and fully connected layers. Although these two types of networks have different goals, they

can work together to improve image classification accuracy. By using a segmentation network to identify

and classify different regions of an image, a classification network can classify the image based on these

regions. This process can reduce the impact of noise and other factors that affect image classification

accuracy.

In this case, the segmentation step extracts the relevant foreground information from the images,

explicitly isolating the lungs from the surrounding background. While there is a scarcity of available datasets

specifically focused on semantic segmentation of the lungs (such datasets are more prevalent for brain

MRI), this limitation is inconsequential to the task.

In this context, the segmentation process enables the classification model to operate exclusively on

the lung regions, removing unnecessary or irrelevant background information. By segmenting the lungs,

the subsequent classification step can effectively focus on analysing and categorising the extracted lung

images without interfering with unrelated image components containing the essential diagnostic features

to make accurate predictions and provide valuable insights.

a) Segmentation Network

U-Net is a convolutional neural network architecture designed for semantic image segmentation tasks.

It was introduced by researchers at the University of Freiburg in 2015 [80] and has since become a popular

choice in medical image analysis and other image segmentation applications.

The architecture of U-Net consists of a contracting path and an expansive path, which together form

a U-shape, hence the name ”U-Net”. The contracting path is similar to a typical convolutional neural

network and consists of a series of convolutional and pooling layers that reduce the spatial resolution of

the image while increasing the number of feature channels. The expansive path is a mirror image of the

contracting path and consists of a series of convolutional and up-sampling layers that increase the spatial

resolution of the image while decreasing the number of feature channels.

One of the critical innovations of U-Net is the use of skip connections between the expanding and

contracting paths. These skip connections allow the network to retain fine-grained spatial information

while capturing high-level features at different scales. The skip connections are used to concatenate

feature maps from the contracting path to the corresponding feature maps in the expansive path, allowing

the network to combine low-level and high-level features to make accurate segmentation predictions. U-

Net is particularly effective in medical image segmentation tasks, such as segmenting tumours or organs

25

from medical images, adressing the issue at hand: extracting the foreground of chest x-ray images.

In recent years, researchers have demonstrated that introducing an attention mechanism into the

U-Net can enhance local feature expression and improve segmentation performance, thus improving

medical image segmentation. In a study presented in [81], attention gates were added to the skip

connection of the U-Net architecture to highlight salient feature information while disambiguating

irrelevant and noisy feature responses. The resulting model, AGResU-Net, achieved competitive

performance in three authoritative MRI brain tumour benchmarks. Another study presented in [82]

proposed a novel attention gate model that automatically learns to focus on target structures of varying

shapes and sizes in medical imaging. The proposed Attention U-Net architecture was evaluated on two

large abdominal CT datasets, consistently improving the prediction performance of U-Net across different

datasets and training sizes while preserving computational efficiency. In [83], an attention-gated network

was applied to real-time automated scan plane detection for fetal ultrasound screening, incorporating

self-gated soft-attention mechanisms to improve object location and reduce false positives. The proposed

attention mechanism is generic and can be easily incorporated into any existing classification

architectures, with generated attention maps allowing for a better understanding of the model’s

reasoning process.

The Segmentation Network at the bottom-level of the BorisCAD architecture is a variant of the U-Net

architecture that incorporates attention gates to improve the local feature expression and segmentation

performance, similar to the AGResU-Net and Attention U-Net models discussed in the literature. The block

diagram of this network will resemble the U-Net architecture, but with additional attention gate blocks

incorporated into the skip connections, as shown in Figure 8.

This U-Net with attention gates comprises down-sampling and up-sampling layers. One of this

network’s critical features is skip connections, equipped with attention gates to highlight salient

information while disambiguating irrelevant and noisy feature responses. These skip connections are

concatenated between each up-sampling layer and its corresponding down-sampling layer, allowing the

network to retain fine-grained spatial information while capturing high-level features at different scales.

The network takes an input image and passes it through the contracting path, which consists of the

down-sampling layers. The down-sampling layers reduce the spatial resolution of the input image while

increasing the number of feature channels by applying a maximum pooling after each step. Then, the

network passes the feature maps through the expansive path, which consists of the up-sampling layers.

The up-sampling layers increase the spatial resolution of the image while decreasing the number of feature

channels. At each up-sampling layer, the feature maps are concatenated with the corresponding feature

26

Attention UNet

Attention
Gate Block

UNet Block

MaxPool
(k: 2x2; s: 2)

UNet Block

MaxPool
(k: 2x2; s: 2)

UNet Block

MaxPool
(k: 2x2; s: 2)

UNet Block

Transposed 2D
Convolution

(k: 2x2; s: 2; p: 0)

UNet Block

Transposed 2D
Convolution

(k: 2x2; s: 2; p: 0)

Attention
Gate Block

UNet Block

Transposed 2D
Convolution

(k: 2x2; s: 2; p: 0)

Attention
Gate Block

UNet Block

2D Convolution
(k: 1x1; s: 1; p: 0)

Figure 8: AttentionU-Net Block Diagram.

maps from the down-sampling path, passing through an attention-gate operation to refine the features,

generating the final binary mask of the input image.

Figure 9 illustrates the two types of blocks used in the design. The U-Net block, shown in Figure 9a,

consists of a 2D convolutional layer that applies 3x3 filters to the input feature map with zero padding to

maintain the original size and spatial resolution. The batch normalisation is then applied, followed by the

Rectified Linear Unit (ReLU) activation function. This process is repeated twice for each block to capture

more complex features and abstract patterns in the input data. In the up-sampling process, an inverse

convolution is computed before this block to increase the spatial resolution of the feature maps.

Figure 9b depicts the Attention Gate Block, which selectively focuses on the most informative parts

of an image during the segmentation process. This block takes in two inputs: the gate map from the

previous block and the precomputed skip connection. Both inputs undergo convolution, normalization,

27

2D Convolution
(k: 3x3; s: 1; p: 1)

Batch Normalization

ReLU

2D Convolution
(k: 3x3; s: 1; p: 1)

Batch Normalization

ReLU

UNet Block

(a) U-Net Block.

2D Convolution
(k: 1x1; s: 1; p: 0)

Batch Normalization

2D Convolution
(k: 1x1; s: 1; p: 0)

Batch Normalization

Gate

+

ReLU

2D Convolution
(k: 3x3; s: 1; p: 1)

Batch Normalization

Sigmoid

Skip

Attention Gate
Block

(b) Attention Gate Block.

Figure 9: AttentionU-Net: Attention Gate Block and U-Net Block

and addition operations, followed by a ReLU activation. Next, a convolutional layer is applied, followed

by batch normalization and a sigmoid activation function. The sigmoid activation enables element-wise

multiplication between the original skip connection, containing information from the contracting path, and

the weight map. This process generates the final output of the attention gate block, emphasizing the

relevant features for the segmentation task.

SegmentationNetwork

model: [UNet, AttentionUNet]
loss_fn: BCEWithLogitsLoss
num_classes: Integer

__init__(attention: Boolean = True, device: String)
batch_train(b_data_x: Tensor, b_data_y: Tensor): Tensor
epoch_train(e_data: DataLoader): Tensor
fit(dataloader: DataLoader, epochs: Integer)
forward(X: Tensor): Tensor

AttentionUNet

bottleneck: UNet_Block
encoder: List[UNet_Block]
decoder: List[UNet_Block, AttentionGate]
final_layer: Conv2d
pool: MaxPool2d

__init__(in_channels: Integer = 3, out_channels: Integer= 1, features: List[Integer] = [64, 128, 256, 512])
forward(X: Tensor): Tensor

AttentionGate

W_gate: Sequential
W_x: Sequential
psi: Sequential
relu: ReLU

__init__(features: Integer, n_coefficients: Integer)
forward(gate: Tensor, skip_connection: Tensor): Tensor

UNet_Block

conv: Sequential

__init__(in_channels: Integer, out_channels: Integer)
forward(X: Tensor): Tensor

UNet

bottleneck: UNet_Block
encoder: List[UNet_Block]
decoder: List[UNet_Block]
final_layer: Conv2d
pool: MaxPool2d

__init__(in_channels: Integer = 3, out_channels: Integer = 1, features: List[Integer] = [64, 128, 256, 512])
forward(X: Tensor): Tensor

Figure 10: Segmentation Network UML.

The UML diagram of the Segmentation Network, as depicted in Figure 10, provides an overview of

the potential connections between the standard U-Net network and the enhanced AttentionU-Net, which

28

were described earlier. This design takes into account the user’s discretion in selecting either of these

networks based on their specific requirements. The methods employed to train the neural network will

be elaborated upon in the comprehensive analysis of the complete classification network. Although they

share a similar process, the metrics utilised for evaluation are distinct and will be discussed separately.

b) Classification Network

ResNet (short for ”Residual Network”) is a deep neural network architecture designed to address the

problem of vanishing gradients while training very deep neural networks. It was introduced by He et al.

[84] and has since become a widely used architecture in various computer vision tasks, such as image

classification, object detection, and segmentation.

The critical innovation of ResNet is the use of residual connections, which enable the network to learn

residual functions rather than directly learning the underlying mapping. These residual connections add

shortcut connections that bypass one or more layers and allow the network to propagate gradients more

effectively, which in turn helps to alleviate the problem of vanishing gradients and enable the training of

very deep networks.

The ResNet architecture consists of a series of residual blocks, each containing one or more

convolutional layers and shortcut connections. The basic residual block has two convolutional layers,

each followed by a ReLU activation function and a shortcut connection that adds the input to the output

of the second convolutional layer. Variations of the residual block can also be added, such as the

bottleneck block, which uses 1x1 convolutions to reduce the number of channels before the addition to

the 3x3 convolutions.

Figure 11 shows the complete structure of a ResNet network. For starters, there are three main groups

of layers to be analysed. The network input consists of a sequence of operations: a single convolution, a

batch normalisation, and a ReLU activation. After this, a Max-Pooling operation is applied to down-sample

the output feature maps, reducing their spatial dimensionality and increasing their level of abstraction.

The output of a network of this type consists of an average pooling operation, which computes the average

value of each feature map across its spatial dimension, reducing the number of parameters in the network,

and improving its robustness. This result is then flattened to be fed into a fully-connected layer, which

maps the feature vector to the output classes or categories, with a dimension equal to the total amount

of labels to be extracted.

As described previously, the ResNet structure will consist of the input and output sequences shown

above and a series of blocks, with their designs depicted in 12. The identity block shown in figure 12b

29

2D Convolution
(k: 7x7; s: 2; p: 3)

Batch Normalization

ReLU

MaxPool
(k: 3x3; s: 2)

ResNet Block

Identity Block

ResNet Block

Identity Block

ResNet Block

Identity Block

ResNet Block

Identity Block

Average Pooling

Flatten

Fully Connected

ResNet

Figure 11: ResNet Block Diagram.

consists of two convolutional layers that aim to present the input’s dimensionality. This block’s skip

connection directly sums the module’s input to the output of the second normalisation, where the result

passed through a ReLU activation to generate the final feature map. This shortcut connection is a simple

identity mapping that bypasses the convolutional layers and allows the gradient to flow directly through the

block without affecting the input feature map. The ResNet or bottleneck block shown in figure 12a does

the same operation. However, it includes a 1x1 convolutional layer that changes the number of channels

on the input feature map prior to the add operation. This convolution increases or decreases the number

of channels in the feature map to adapt the network to different target domains.

The illustrious table 1 presents a comprehensive overview of the various sizes available for the ResNet

architecture, namely ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152. On closer inspection,

a subtle modification can be discerned in the ResNet50 and its superior counterparts. Specifically, the

30

2D Convolution
(k: 3x3; s: 1; p: 1)

Batch Normalization

ReLU

2D Convolution
(k: 3x3; s: 1; p: 1)

Batch Normalization

ReLU

2D Convolution
(k: 1x1; s: 1; p: 0)

+

ResNet
Block

(a) ResNet Block.

2D Convolution
(k: 3x3; s: 1; p: 1)

Batch Normalization

ReLU

2D Convolution
(k: 3x3; s: 1; p: 1)

Batch Normalization

ReLU

+

identity

Identity
Block

(b) Identity Block.

Figure 12: ResNet: ResNet Block and Identity Block.

skip connection that once skipped two 3x3 convolutional layers now traverses three layers, where only one

layer features 3x3 kernel filters, flanked by two 1x1 convolutions. Regrettably, the first two sizes of this

network fail to adequately capture the intricate dimensions required for medical image classifications. As

such, only the latter three sizes shall be examined in the remainder of this study.

Table 1: The five types of ResNet (adapted from[6])

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer

conv1 112× 112 7× 7, 64, stride 2
3× 3 max pool, stride 2

conv2_x 56× 56
[
3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3_x 28× 28

[
3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 8

conv4_x 14× 14

[
3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23

 1× 1, 256
3× 3, 256
1× 1, 1024

× 36

conv5_x 7× 7

[
3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

1× 1 average pool, X-d fc

On the ResNet network, the two types of blocks shown in Figure 12 are used. For example, if there

is a sequence of three filters modules in the conv_2 group of filters (as shown in table 1), the first block

will always be a bottleneck block, while the rest will be identity blocks. This operation is performed at

every stage and for every size. Further details on this process will be discussed during the implementation

31

analysis.

The UML diagram for the Classification Network, presented in Figure 13, displays the classification

component at the system’s lower level. Like the Segmentation Network, this component features distinct

methods for training the neural network model.

ClassificationNetwork

model: ResNet
loss_fn: CrossEntropyLoss
network_types: Dictionary
num_classes: Integer
segmenter: Optional[SegmentationNetwork]

__init__(num_classes: Integer, net_type: String, device: String, segmenter: Module)
batch_train(b_data_x: Tensor, b_data_y: Tensor): Tensor
epoch_train(e_data: DataLoader): Tensor
fit(dataloader: DataLoader, epochs: Integer)
forward(X: Tensor): Tensor

ResNet

ResNet50_LAYERS: List
ResNet101_LAYERS: List
ResNet152_LAYERS: List
avgpool: AdaptiveAvgPool2d
fc: Linear
in_channels: Integer
input: Sequential
network: Sequential

forward(X: Tensor): Tensor

ResBlock

conv: Sequential
expansion: Integer
i_downsample: Optional[ResBlock]
relu: ReLU

forward(X: Tensor): Tensor

Figure 13: Classification Network UML.

Commencing with the ”fit” method, it assumes responsibility for dividing neural network training into

multiple epochs. This method invokes the ”epoch_train” process, denoting a finer level of granularity.

Figure 14a visually represents the flowchart outlining its sequential steps.

Conversely, the ”epoch_train” method, illustrated in Figure 14b, entails partitioning the accessible

data into batches. The batch size is predetermined, and this method facilitates the model’s training using

all available data for each epoch.

Furthermore, the batch training procedure, depicted in Figure 15, shows the sequential execution of

a complete training cycle on a batch of information. The data is fed forward through the model, leading

to the calculation of a loss. Subsequently, this loss is utilised to perform back-propagation, updating the

model’s kernels and weights. In addition, metrics are computed for analytical purposes, and optimises

are adjusted accordingly (further elaborated in the subsequent section 3.4: Learning System).

Notably, the classification and segmentation models exhibit a sole disparity in their training processes.

Specifically, the classifier harnesses information from the segmentation, provided a segmentation model

is available. Naturally, this scenario does not apply when training the segmentation model itself.

In summary, the segmentation technique serves to discern and isolate important information

embedded within an image, thereby facilitating a more nuanced and precise comprehension of its

contents. The fundamental elements and their interrelationships within the scene can be identified by

32

Start

Last
epoch?

input:
epochs, data

epoch_train(data)

curr_epoch + 1

Save training
metrics

End

No

Yes

(a) ”fit” method flowchart.

Start

input: data

While data
available

Get next batch of
data

batch_train(batch)

Save epoch
metrics

Yes

No

End

(b) ”epoch_train” method flowchart.

Figure 14: Classification Network fit and epoch training flowcharts.

Start

input:
batch_data

End

If segmenter

Forward batch_data on
the segmenter

Forward batch_data on
the classifier

Calculate prediction
loss

Backwards-propagate
the classifier model

Calculate batch metrics

Update optimizers,
schedulers and scalers

output:
batch metrics

No

Yes

Figure 15: Batch training method’s flowchart for the Classification Network.

segmenting an image into different regions or objects. Subsequently, the classification network can

utilise this information to effectuate more reasonable and informed determinations regarding the image’s

content. Segmentation thus represents a pre-processing step that extracts discerning features from the

image and provides a more elaborate and refined representation of its content, subsequently facilitating

enhanced accuracy and adaptability. The Computation System’s Bottom-Level architecture was

consequently formulated to incorporate both types of networks described above, in order to achieve the

desired accuracy and adaptability. Figure 16 displays the UML for the system’s Bottom-Level,

33

showcasing the connections between both networks and itself.

BottomLevel

classifier: ClassificationNetwork
segmenter: SegmentationNetwork
use_segmentation: bool
device: str

fit(segmentation: (DataLoader, int), classification: (DataLoader, int))
forward(X: Tensor): Tensor
forward_to_probabilities(data: [DataLoader, Tensor], threshold: float = 0.05): [(Tensor, Tensor), Tensor]

ClassificationNetworkSegmentationNetwork

Figure 16: Bottom level UML design.

Figure 17 below accurately depicts the data type and shapes at the connections between the modules.

The image is forwarded in the segmentation network in the first stage. This stage will generate two new

images: the mask image and the resulting multiplication between the input and this binary information,

giving the background-less version of the original image. The isolated version is then forwarded to the

classification network to generate the corresponding probabilities.

Segmentation
Network

Classification
Network [..., ...]

Figure 17: Bottom-Level Network Outputs.

During this process, some other details will be gathered, such as activations between layers of the

neural networks to be stored in the memories for future retrieval. This is further detailed ahead in 3.3:

the Storage System Module.

3.2.2 Symbolic Reasoning: The Top Level

Extracting knowledge from domain experts to build expert systems has been challenging since the

early days of knowledge-based systems. The interview process, where a knowledge engineer interacts

with a domain expert to extract and refine a set of rules, has been a common approach. However, as

34

Waterman et al. [85] pointed out, ”the pieces of basic knowledge are assumed and combined so quickly

that it is difficult for him to describe the process”, making it challenging and time-consuming for all parties

involved. As a result, knowledge acquisition has been identified as the ”bottleneck” problem in building

knowledge-based systems [86]. To overcome this bottleneck, some researchers, such as Michie et al.

[87], have advocated using inductive methods to extract general rules from concrete examples. In this

approach, the expert provides a framework of essential concepts in the task domain, augmented by tutorial

examples. A suitable induction engine carries out the hard work of extracting knowledge.

Decision Tree induction[88, 89] provides a methodology for building systems that make decisions

based on structured knowledge. Decision Trees are a rule-action system because they represent

knowledge as a set of rules, each corresponding to a condition and an action. The condition is a set of

input attributes, and the action is the decision that should be taken when those attributes are present.

A decision tree is a tree-like model that uses a branching structure to represent decisions and their

consequences. It is a form of supervised learning that takes a set of attributes as input and outputs a

decision based on those attributes. Each internal node of the tree corresponds to a test on an attribute,

and the branches that emanate from the node represent the possible outcomes of the test. The tree leaves

correspond to decisions or actions based on the path from the tree’s root to a leaf node.

The decision process in a decision tree and the inference process in a neural network differ in their

decision-making approaches. In a decision tree, the input attributes traverse the tree’s internal nodes until

a leaf node is reached corresponding to the decision or action to be taken. In contrast, a neural network

uses weights and biases to determine the input’s contribution to the network’s output, which results from

the inference process.

Using a decision tree to make decisions based on the probabilities generated by a neural network is

a suitable approach because it promotes transparency in the decision-making process. The probabilities

obtained from the neural network can be treated as input attributes for the decision tree, where each

probability can be considered a feature in the decision-making context. This allows decision-makers to

understand how the probabilities contribute to the final decision. Specifically, the decision tree model

presents each branch as a particular combination of probability values, making it clear which probability

values are most influential in determining the final decision.

In this way, the decision tree can provide a more intuitive and interpretable framework for making

decisions, especially when explaining the reasoning behind the decision to others [90]. By providing a

clear path of decisions and actions, the decision tree allows more effective communication of the decision-

making process, improving transparency and accountability.

35

Constructing a decision tree resumes the iterative process of splitting the data based on different

features and feature thresholds until a stopping criterion is met, using a heuristic called recursive

partitioning (commonly referred to as Divide and Conquer). A split is a subset of input data that contains

multiple elements, each comprising multiple features and a label that defines them. Several algorithms

will be used for this process to test the accuracy, versatility, and complexity of the tree.

At the end, each internal node of the decision tree has an attribute-based test and an outgoing branch

for each possible outcome. Each leaf node will have an associated class, and in order to classify a record,

one must be at the root node and successively visit internal nodes until a leaf node is reached. The

outcome of the attribute-based test at an internal node determines the branch traversed and, thus, the

next node visited. The class that classifies the record is simply the class of the final leaf node.

Once the decision tree has been built, it may be necessary to prune it to improve its accuracy [91].

This involves using a separate validation set to evaluate the performance of the tree branches on unseen

data, as opposed to the training set. If a branch is ineffective, it can be pruned and removed from the tree.

The decision tree is pruned by recursively replacing each subtree with its mean target value (in the case

of regression) or the most common class (in the case of classification) until the accuracy of the pruned

tree in the validation set is not significantly lower than that of the original tree. This approach helps create

a more accurate decision tree by identifying and eliminating weak branches.[92]

The pseudocode algorithm 1 displays the recursive building process of a decision tree, where each

group of data is split and analysed for each node until a stopping criterion is found. The recursive usage

of this function during the algorithm generates the binary tree pattern.

Without proper constraints, decision trees can quickly overfit to the training data and fail to generalise

to new data. One way to prevent this is to set stop criteria during the tree building process, as shown in

algorithm 1. In this regard, various stopping criteria can be used to ensure that the tree does not grow

too large and reduce overfitting. In this context, some of the commonly used stopping criteria in decision

tree building are explored.

• Maximum tree depth: maximum length of a path from root to leaf. Trees generated are not side

balanced, whereas one side of the tree will have more inspections than the other side of the tree;

• Minimum sample split: the minimum that is imposed to stop further splitting nodes;

• Minimum samples per leaf: reduced number of samples per leaf might mean overfitting. This can

be converted to minimum sample split if verified after the splitting at a node;

• Minimum impurity decrease: when the splitting of a node does not show a cost-effective

improvement over the original node;

36

• No label variety: when all the labels of a split have the same value.

Algorithm 1 Decision Tree building algorithm’s pseudocode.

Require:

D(X, y): feature matrix of size (nsamples, nfeatures), target vector of size (nsamples,)

maxdepth: maximum depth of the tree (decrements)

minsplit: minimum number of samples required to split a node

criterion: split decision criterion (’entropy’ or ’gini’)

1: procedure BuildTree

2: Create a node N

3: if D contains only one class then

4: set N as a leaf node with class label equal to y

5: else ifmaxdepth is 0 or D has fewer than min_split samples then

6: set N as a leaf node with class label equal to the majority class in D

7: else

8: for f in X do

9: for unique value t of X[:, f] do

10: Left, Right←Split D[:, f] ≤t
11: Compute the impurity of the split using the chosen criterion

12: if Impurity of the split is better than the best split so far then

13: Update the best split to be the current split, with threshold t and feature f

14: end if

15: end for

16: end for

17: if If no valid split was found then

18: Set N as a leaf node with class label equal to the majority class in D

19: else

20: Set N as an internal node with:

21: - Left child←BuildTree(Left, maxdepth - 1, minsplit, criterion)

22: - Right child←BuildTree(Right, maxdepth - 1, minsplit, criterion)

23: end if

24: end if

25: return node N

26: end procedure

Although decision trees are widely used for machine learning tasks, they can sometimes have lower

accuracy than other methods and may need to be more balanced in certain instances. To overcome

these issues, a popular technique is to use a set of decision trees, known as a random forest classifier

[93, 94, 95].

Random forest classifiers are built using an ensemble of decision trees. The key idea behind random

forests is to introduce randomness into the construction of individual trees to ensure that they are

37

independent and diverse from one another. This randomness is introduced by creating random subsets

of the training data to construct each decision tree. Specifically, for each tree in the ensemble, a subset

of the training data is randomly sampled with replacement from the original training set. This process is

known as bootstrap aggregating or bagging.

After constructing all the individual decision trees, the final classification decision is made by

aggregating the decisions of all the trees by taking a majority vote on the predictions made by each tree.

The randomness introduced by the bootstrap aggregating and the feature selection process makes the

decision trees independent of one another, leading to an ensemble of diverse and independent trees that

are less likely to overfit the training data.

The number of trees in the random forest classifier also plays a vital role in determining its final

performance. Increasing the number of trees in the ensemble generally leads to better test set accuracy.

However, after a certain number of trees, the performance plateaus, and increasing the number of trees

may yield slight improvement. The reason for this is that the addition of more trees to a random forest

classifier increases computational complexity without necessarily leading to better performance.

Algorithm 2 shows the process described before. In here, D is the training set, T is the number of

trees to build, F is the number of features to consider when finding the best split, and N is the number

of samples to use when building each tree. RF is the resulting random forest model consisting of T

decision trees.

Algorithm 2 Random Forest algorithm’s pseudocode.

Require:

D(X, y): feature matrix of size (nsamples, nfeatures), target vector of size (nsamples,)

T : Number of trees

F : Number of features

N : Number of samples

1: procedure RandomForest

2: RF ←[]

3: for t = 1 to T do

4: Dt←Randomly sample N examples from D with replacement

5: Ft←Randomly select F features from Dt

6: Nt←BuildTree((Dt, Ft))

7: Add Nt to RF

8: end for

9: return RF

10: end procedure

In each iteration of the loop, a new decision tree is built by randomly sampling N examples from the

38

training set D with replacement (the replacements mean that the values are removed from the original

set in order to avoid repetition when building the following trees), and randomly selecting F features to

consider at each split. The BuildTree function shown in the pseudocode 1 is then called with the subset of

examples and features, and the resulting root node Nt of the decision tree is added to the random forest

model RF . Finally, the function returns the completed random forest model.

This new approach can cause a significant decrease in the readability of the resulting trees, thus

reducing general interpretability. The following algorithm shows a different approach for the classification

problem at hand. Unlike the traditional random forest approach, the entire dataset will be used to construct

each forest decision tree. Rather than creating subsets of the data, the labels are modified to only contain

a single entry of data relevant to the current tree instead of a group of labels.

For instance, consider the training data with two unique labels: ”cat” and ”dog”. These labels come

in the format of [L1, L2], where each L value is a binary value (0 or 1). Instead of building a single tree or

multiple trees on random subsets of data capable of identifying if an instance is a ”cat” or a ”dog”, each

decision tree will consider the same set of features to identify a single class. Thus, the final classification

for the input will base itself on the output of this set’s decision trees. This approach enables constructing

a set of decision trees, each focused on a particular class, allowing for more efficient and accurate data

classification.

As one can see in algorithm 3, there is no longer a need to sample a subset of data for each tree.

Instead, each tree is constructed using the entire training setD(X, yl), where l represents each class to

be classified. The resulting training set used for each tree contains a single label defining each instance,

in contrast to the original set, which includes an array of labels, one for each class.

Algorithm 3 Modified Decision Forest algorithm’s pseudocode.

Require:

D(X, y): feature matrix of size (nsamples, nfeatures), target vector of size (nsamples,)

1: procedure ModifiedDecisionForest

2: uniqueLabels←Unique values in D(y)

3: DF ←[]

4: for l in uniqueLabels do

5: Dt←D(X, yl)

6: Nt←BuildTree(Dt)

7: Add Nt to DF

8: end for

9: return DF

10: end procedure

39

The visual representation of decision trees, random forests, and modified decision forests can provide

a clear understanding of the differences between these methods. Figure 18 shows a simple decision tree’s

structure, where each leaf node represents a possible outcome given the previously learned rules. The

following example in figure 19 visually represents what a random forest would be. As one can see, an

ensemble of decision trees is shown, where each tree is built on a random subset of data and features,

and the final prediction is determined through a voting process based on the predictions of all the trees.

Figure 18: Decision Tree Structure Diagram. Figure 19: Random Forest Structure Diagram.

On the other hand, modified decision forests depicted in figure 20 are built by constructing decision

trees on the entire dataset, with each tree focused on a particular class. The final prediction is based on

the output of all decision trees, where each tree only considers a single data entry relevant to the current

tree’s class.

Figure 20: Decision Forest Structure Diagram.

As illustrated in the decision tree building algorithm outlined in Algorithm 1, a criterion is employed

to determine the optimal split at each node. This criterion serves as a metric to identify the most suitable

division that aligns with the characteristics of the current set and yields the most favourable outcomes.

The subsequent algorithms provide descriptions of various criteria employed in this particular task.

40

ID3

The ID3 [88] algorithm is a popular decision tree algorithm used for solving classification problems.

It is primarily employed to build decision trees from labeled training data, where the goal is to classify

instances into predefined classes based on their feature values. By recursively selecting the most

informative attributes to split the data, the ID3 algorithm aims to construct an efficient decision tree that

can accurately classify unseen instances.

The ID3 algorithm consists of four steps. In the first step, the entropy of the original dataset is

calculated. Entropy is a measure of the amount of uncertainty or randomness in the data. The formula

to calculate the entropy is:

E(S) = −
n∑

i=1

pilog2(pi) (3.1)

where pi is the proportion of instances in S that belong to class i.

In the second step, the information gained for each attribute is calculated. For each attribute A in the

dataset, the information gain (IG) from usingA to split the data is calculated. The formula for information

gain is the following:

IG(S,A) = E(S)−
n∑

i=1

|Sv|
|S|

E(Sv) (3.2)

where Sv is the subset of S that has the value v for the attribute A.

The attribute A with the highest information gain is chosen as the splitting attribute. In the third step,

the data is split based on the selected attribute. For example, if the splitting attribute is ”age” and has

three possible values young, middle-aged, old, then the data is partitioned into three subsets, one for each

value.

In the fourth step, the ID3 algorithm is recursively applied to each subset until a stopping criterion is

met. For example, the tree may stop growing when all instances in a subset belong to the same class, or

when the tree reaches maximum depth.

C4.5

Quinlan [96] then developed the C4.5 algorithm, an extension of the ID3 algorithm, widely used for

decision tree construction in classification tasks. Similar to ID3, C4.5 aims to build decision trees from

labeled training data. However, C4.5 introduces additional features, such as handling missing attribute

values and handling continuous attributes by discrediting them. It also uses a statistical measure called

information gain ratio to determine the most informative attribute for splitting the data. This algorithm

seeks to create decision trees that are more robust and accurate by considering various data complexities

and incorporating statistical principles.

41

The Information Gain function often favours features with a larger number of categories, as they

typically exhibit lower entropy. However, this tendency can lead to overfitting of the training data. To

address this concern, Gain Ratio is introduced as a means of mitigating the issue. Gain Ratio penalises

features with more categories by incorporating a concept known as Split Information or Intrinsic

Information. The algorithm leverages this changes but still consist of four steps similar to those of the

ID3 algorithm. In the first step, the entropy of the original dataset is calculated.

In the second step, the gain ratio for each attribute is calculated. The gain ratio is defined as the

normalised information gain. The formula for the gain ratio is:

IGR(S,A) =
IG(S,A)

SplitInfo(S,A)
(3.3)

where SplitInfo(S,A) is a measure of the amount of information required to split S based on A, with

its equation being:

SplitInfo(S,A) =
n∑

i=1

|Sv|
|S|

log2(
|Sv|
|S|

) (3.4)

The attribute A with the highest gain ratio is chosen as the splitting attribute. In the third step, the

data is split based on the selected attribute. The fourth step is the same as that of the ID3 algorithm, i.e.,

the C4.5 algorithm is recursively applied to each subset until a stopping criterion is met.

There are differences between the two algorithms in the metric used to split the data. Information gain

will not favour any attributes by the number of distinct values, while the information gain ratio will favour

attributes with fewer distinct values. When applied to attributes that can take on many distinct values, the

information gain technique might learn the training set too well. On the other hand, the user will only be

able to find attributes that require many distinct values. C4.5 can handle both continuous and discrete

attributes, and attributes with differing costs, improving from it’s predecessor, the ID3 algorithm. It also

prunes trees after creation by going back through the tree once it has been created and attempting to

remove branches that do not help by replacing them with leaf nodes. [97, 98]

CART

The CART (Classification and Regression Trees) [99] algorithm is a versatile decision tree algorithm

commonly used for both classification and regression tasks. Unlike ID3 and C4.5, which focus primarily

on classification, CART can handle both categorical and continuous features. CART constructs binary

decision trees, where each internal node represents a feature test, and each leaf node corresponds to a

predicted class or value. The algorithm iteratively searches for the best splits based on criteria such as Gini

impurity or mean squared error to maximise the homogeneity of the resulting subsets. CART’s flexibility

42

makes it suitable for a wide range of applications, providing accurate predictions and interpretable models

for both classification and regression problems. It consists of three steps. The attribute and split point

that minimises the impurity measure are chosen in the first step. For classification problems, the impurity

measure used is typically the Gini impurity, which is defined as:

Gini(S) = 1−
n∑

i=1

(pi)
2 (3.5)

where pi is the proportion of instances in S that belong to class i.

In the second step, the data is split based on the selected attribute and split point. Instances with

values less than or equal to the split point go to one subset, and instances with values greater than the

split point go to the other subset. The split point is decided by calculating the Weighted Gini impurity for

the two new nodes that will be generated and finding the minimum possible value for the data in question.

In the third step, the CART algorithm is recursively applied to each subset of the data until a stopping

criterion is met.

The Gini index and entropy are commonly used measures in data analysis and decision-making

processes. Both metrics offer insights into the characteristics of a set or distribution. The Gini index

quantifies the probability of misclassification, while entropy captures the level of uncertainty or

randomness [98]. To better understand the similarities and differences between these measures, refer

to the table 2 below:

Table 2: Gini and Entropy comparisson

Measure Range Interpretation Sensitivity Computational Complexity

Gini [0, 1] Probability of missclassification Sensitive to class distribution O(n)

Entropy [0, log(n)] Level of uncertainty or randomness Sensitive to number of classes O(n.log(n))

Given the nature of the binary data present in the labels, the primary metric employed to build

decision trees is the information gained from the ID3 algorithm. This choice is driven by this metric’s

simplicity and suitability for binary data. Information gain measures the reduction in uncertainty

achieved by selecting a specific attribute as the splitting criterion for a decision tree node. In the case of

binary data, where the labels have only two possible values, the calculation of information gain becomes

straightforward. By evaluating the information gained for various attributes, the ID3 algorithm identifies

the attribute that maximises the reduction in uncertainty, enabling the construction of a practical

decision tree for classification tasks. Additionally, the calculation of information gain ratio from the C4.5

algorithm will also be implemented and briefly evaluated.

It is now possible to fully define the Top-Level of the Cognitive System as a collection of classes

43

presented in the UML diagram in Figure 21. From here, this module will comprise three data classes,

with the aim to better construct and define the nodes at the Decision Tree level. The Leaf Node and

Decision Node will be core nodes of the Decision Tree structure while the Split Node will be used to

evaluate the best possible split at a given point in the construction of the decision tree.

DecisionForest

dts: List[DecisionTree]
max_depth: Optional[Integer]
min_samples_split: Integer

__init__(min_samples_split: Integer = 10, max_depth: Optional[Integer])
fit(X_data: Matrix[Float], y_data: Matrix[Integer]): None
forward(X: Matrix[Float]): List[Integer]
create_dt(args: Tuple[Matrix[Float], List[Integer], Integer, Integer]): DecisionTree
predict_dt(args: Tuple[DecisionTree, Matrix[Float]]): Integer

DecisionTree

METRIC: Dictionary[String, Method]
lowest_depth: Integer
max_depth: Optional[Integer]
min_samples_split: Integer
n_classes: Integer
n_features: Integer
root: [LeafNode, DecisionNode]

__init__(min_samples_split: Integer = 10, max_depth: Optional[Integer])
fit(X_data: Matrix[Float], y_data: List[Integer]): None
build_tree(X: Matrix[Float], y: List[Integer], depth: Integer = 0): [LeafNode, DecisionNode]
get_best_split(X: Matrix[Float], y: List[Integer], metric: String = "info_gain"): SplitNode
forward(X: Matrix[Float]): List[Integer]
make_prediction(X: Matrix[Float], tree: [LeafNode, DecisionNode]): Integer

DecisionNode

_id: Integer = 1
split_data: SplitNode
left: [DecisionNode, LeafNode]
right: [DecisionNode, LeafNode]
num_samples: Integer

__init__(split_data: SplitNode, left: [DecisionNode, LeafNode], right: [DecisionNode, LeafNode], num_samples: Integer)
get_internal_nodes(): List[DecisionNode, LeafNode]

SplitNode

feature_index: Integer
threshold: Float
metric_gain: Float

LeafNode

_id: Integer = 1
label: Integer
num_samples: Integer

__init__(label: Integer, num_samples: Integer)

Figure 21: Designed Top Level’s UML diagram.

The construction of the decision tree follows the algorithm presented in 1, incorporating predefined

stopping conditions specified during the creation of the Decision Tree instance. The recursive ”build_tree”

function is invoked until these stopping conditions are satisfied, resulting in the generation of a complete

decision tree for the given dataset, which is passed to the ”fit” function. Similarly, the ”forward” method

utilises the prediction function to obtain labels for each data instance.

Notably, several parameters in the functions of the Decision Tree class are of type ”Matrix”. In this

context, and since it refers to the data used to train or predict over, this Matrix will be a List of Lists with

dimensions (n_instances, n_features) representing probability data for each instance that follows from the

bottom level. The term ”Matrix” is then used for clarity and display purposes.

These Decision Trees, as described earlier in algorithm 3, are independent and correspond to each

class in the dataset. The ”fit” function of the Decision Forest class employs parallel processing to optimise

the construction of these decision trees. This approach maximises the utilisation of system resources and

facilitates the simultaneous creation of multiple decision trees. Figure 22 visually illustrates the creation

of these decision trees.

44

Similarly, the prediction process also makes use of the same parallel approach, where a process for

each decision tree prediction is created and then compiled at the end.

Fit Forest to
the Dataset

Create Decision
Tree on label 0

Create Decision
Tree on label 1

Create Decision
Tree on label 2

Create Decision
Tree on label n

...

Spawn processes
equal to number of

labels

List of Decision
Trees

Parallel
Execution

Figure 22: Decision Tree parallel creation.

Decision Tree/ Forest

Classification Network

Segmentation Network

Computation
System

Image
Input

Classification

Probability

Figure 23: Computation System interconnections.

At this stage, the complete Computation System can be accurately defined as a combination of

symbolic and sub-symbolic methods. Figure 23 depicts the sequence of transactions between the

Classification Network and the induction method (either a single Decision Tree, Random Forest, or

Decision Forest). As one can see, the connection between the bottom and top levels is unidirectional

since the first gives information for the following to use. This process is known as ”bottom-up” and will

be the starting point of knowledge for the BorisCAD architecture.

In the context of the described Computation System, ”bottom-up learning” refers to the process in

45

which knowledge is acquired and built upon from lower levels to higher levels. It involves extracting

information and patterns from the input data or lower-level components and using them to inform the

subsequent stages or higher-level components of the system.

This intermediate information transferred between both levels will also have an essential role in the

decision-making process since it will be used from memory to influence the final decision of the

architecture. This is further studied in the section 3.3 ahead.

At this juncture, the UML diagram representing the Computation System can be preseted, which

serves as an integration point for both the Top and Bottom levels within the BorisCAD architecture. This

diagram, displayed in Figure 24, illustrates the structural and behavioural relationships between the

components involved. Within the Computation System, the class takes on the crucial responsibility of

facilitating communication and coordination between the two levels. By ensuring a sequential application

of the training methodology, it guarantees the seamless flow of information and processes between the

Top and Bottom levels. Specifically, the forward function assumes a pivotal role in managing data

traversal through the respective modules and facilitating memory updates as necessary.

ComputationSystem

bl: BottomLevel
tl: TopLevel

__init__(num_classes: Integer)
fit(segmentation: Tuple[DataLoader, Integer], classification: Tuple[DataLoader, Integer])
forward(X: Tensor): Tuple[List[Integer], List[Integer]]

BottomLevel Top Level

Figure 24: Computation System UML diagram.

3.3 Storage System: Working and Long-Term Memory

Our cognitive abilities include the remarkable feature of the human brain’s ability to store and retrieve

information. Memory is a complex process that involves various neural structures and mechanisms [100].

Long-term memory stores and retrieves information over an extended period and is essential for everyday

activities such as remembering names, dates, and events. This type of memory is believed to be stored

in different brain regions, including the hippocampus, amygdala, and prefrontal cortex [101]. In contrast,

46

short-term and working memory are more temporary forms of memory, necessary in many day-to-day

activities.

Short-term memory allows us to hold a small amount of information in our minds for brief periods,

essential for reading, listening, conversing, problem-solving, and decision-making. It is associated with

the prefrontal cortex and other brain regions responsible for attention and executive control. However, it

has a limited capacity and duration, with contents that are rapidly forgotten once attention is diverted.

Working memory is a more dynamic form that temporarily stores and manipulates information to

complete tasks or solve problems. It is closely related to short-term memory but is more active and goal-

directed. It is associated with several neural circuits and brain regions, including the dorsolateral prefrontal

cortex, the parietal cortex, and the basal ganglia [102]. Working memory is crucial in cognitive tasks such

as language comprehension, mathematical reasoning, and spatial processing.

In biological systems, the formation and retrieval of memories are intricate andmultifaceted processes,

characterised by complex interactions between various brain regions and molecular mechanisms, such as

gene expression, protein synthesis, and synaptic plasticity [103]. However, when considering the memory

model in BorisCAD cognitive architecture, certain biological complexities may be simplified or abstracted to

enable a streamlined proof of concept. The BorisCAD architecture references only long-term and working

memory, and, by only focusing on these two types of memory, it can efficiently store and manipulate

the information required for Computer-Aided Diagnosis (CAD) tasks—long-term memory stores essential

design elements, such as image features and their contents and past inference rules. Working memory

manipulates these elements in real-time during the decision-making process.

Given this, the long-term and working memory components are designed to function as episodic

memories, similar to the memory systems observed in cognitive architectures such as CLARION and

SOAR. These episodic memories allow BorisCAD to store and retrieve detailed information about past

events, experiences, and inference rules, enabling the architecture to make informed decisions based on

similarities between episodes.

The architecture also enhances memory design by implementing a graph structure, which optimises

information storage and manipulation [104]. This structure enables efficient representation and

organisation of complex relationships between different elements. BorisCAD uses the graph structure to

represent design elements such as parts, sub-assemblies, and assemblies as nodes, with their

relationships represented as edges.

Each memory node represents an image perceived by the system’s bottom level. The node comprises

several elements that define the contents of a new piece of information at multiple abstraction layers.

47

These elements include high and low-level feature maps, which provide a visual or sensory representation

of the image. Classification probabilities are also stored as numerical values, indicating the likelihood

of an item belonging to a particular category or class. The induction class represents an almost final

representation of a category or concept. At the same time, production rules refer to instructions the

induction framework would take to achieve the final induction class. In this case, the production rules

describe the branches the decision tree or forest takes to reach the final leaf node. Figure 25 better

depicts which information will be stored, as well as the exact location from where it is fetched.

Decision Tree/ Forest

Classification Network

Segmentation Network

Computation
System

Image
Input

Classification

Probabilities

Mask

High-level Features

Low-level Features

Production Rules

Original Image

Storage System

rehearsal retrieval

Working Memory

Long-Term Memory

Figure 25: Storage System’s Information Gather.

As described before, the Classification Network of the BorisCAD architecture will comprise ResNet

blocks (figure 11). The segmented image is passed through the network until the output of the last block

in the first group is obtained. This output is then considered as the low-level feature map. Similarly, the

feature maps obtained after the last group of ResNet blocks can be considered high-level features. This

way, a hierarchy of features can be obtained from the input image, with low-level features capturing basic

patterns and high-level features capturing more complex patterns.

Furthermore, production rules can be gathered from the inference through the decision tree.

Production rules are used in rule-based systems to represent knowledge as if-then statements. In a

decision tree, each node represents a condition on a specific feature. Thus, a path from the root to a leaf

can be defined as a set of production rules that collectively specify the conditions that must be satisfied

to reach a final decision.

Moreover, the transfer of information between working memory and long-term memory actively

involves encoding and retrieval. During the encoding phase, working memory processes the information

48

before transferring it to long-term memory for storage. This vital transfer occurs through rehearsal, which

includes repeating the information within working memory. By utilising rehearsal, whether through

maintenance rehearsal, which reiterates the information in its original form, or elaborative rehearsal,

which establishes connections to existing knowledge, the likelihood of successfully transferring the

information to long-term memory increases [105]. Conversely, retrieval, also known as recognition,

actively retrieves stored information from long-term memory back to working memory. Recognition

involves identifying previously learned information as familiar without necessarily recalling specific

details.

A deliberate design choice aimed at streamlining the interaction and updates between the contents

of working memory and long-term memory was made by upholding a shared reference to a node upon its

inclusion. This approach guarantees that the same item is not redundantly added to memory at various

stages, mainly when minor changes occur. The system sidesteps duplication and optimises memory

management by consistently retaining both memories’ nodes.

With this, it was found that the best method for retrieving information from long-term memory would

be applying a mix of Context-Based Retrieval and Priority Retrieval. The current image will compare using

the feature maps retrieved from the bottom level with other nodes in the long-term memory. The working

memory will be populated depending on the similarity with other items in the long-term memory. With

this, the items retrieved will also be updated with the notion of ”hot”, where a more accessed item will

have more influence in the reasoning process of the memory module.

This retrieval will also be based on said ”hot” index. A threshold is defined in order to avoid low-

accessed items to be transferred to the working memory. This allows the memory to filter information

based on how relevant an item is, and implementing a method similar to the concept of remembering.

Figure 26 depicts the overarching flow of the node creation and insertion process. A corresponding

memory unit is generated upon receiving a new node, such as an object or image. Subsequently, this

memory unit is initially inserted into the long-term memory, facilitating the achievement of recognition, as

previously elucidated. This process manifests as a similarity assessment between the new and existing

nodes within the memory, thereby engendering a dynamic graph structure composed of interconnected

nodes.

In order to enhance the decision-making process, it becomes imperative to populate the working

memory with akin items. These items are influential factors characterised by their similarity to the current

node. Ultimately, the most recent node is appended to the conclusion of the memory, ensuring its inclusion

in the ongoing cognitive processes. The number of similar nodes to be added to the working memory is

49

Assign Node as
the Most Recent

Node

Add Most Recent
Node to the LTM

population: Retrieve
Population from LTM

based on the Most Recent
Node

Iterate over the first
population elements

Add Node to the
Working Memory

Last Node?
No

Add Most Recent
Node to the WM

Yes

New Node
Input

End

Figure 26: Storage System’s new node creation flowchart.

contingent upon the capacity of the working memory, as it directly influences the amount of information

that can be accommodated within the system.

The addition of a new node to the long-term memory is illustrated in Figure 27. The insertion process

adheres to a systematic procedure within the framework of a dictionary structure. Upon receiving a new

node, a comparison is conducted between the new node and the existing items in memory to identify

similarities. If a similarity is detected, the procedure establishes a novel edge between the new node and

the current nodes in memory, contingent upon meeting a predefined threshold. Subsequently, the node

is inserted into the memory using its unique identifier.

The decision to employ a dictionary structure for long-term memory is underpinned by the imperative

of scalability. This choice ensures the effective organisation and retrieval of information, facilitating the

seamless management of burgeoning data volumes while maintaining operational efficiency.

Inserting nodes into the working memory adheres to a predefined flowchart, as depicted in Figure

28. The working memory, characterised by its finite capacity, constrains the number of nodes it can

accommodate simultaneously. Upon receiving a new node for insertion, the memory checks for node

presence, and if the node is already in memory, it is removed from its current position and appended to

the memory’s end. This strategy ensures that the most similar nodes remain at the end of the memory,

even when they are already at a different position in memory.

50

Start

Iterate over all nodes
in memory

similarity: get the similarity
to the node

Similarity
over the
threshold

Add the node to the
dictionary of similar nodes

Add the new node to
the memory dictionary

Last Node?

No

Yes

Yes

No

input: Node
to be added

End

Figure 27: Long-term memory new node flowchart.

Besides, there is a memory capacity assessment; if the memory is full, necessitating space allocation

for the new node, the oldest node in the memory is deleted, making room for the new node, placed at the

end of the memory. In cases where the memory has available space, the new node is directly inserted

at the end of the memory without any removal. This ensures that the working memory maintains the

chronological sequence of node entries.

When creating a new memory, the working memory undergoes a subsequent process of population,

as previously explained. Figure 29 illustrates the retrieval of existing memories from the long-term

memory for insertion into the working memory. The system identifies the connected nodes of the current

node as relevant contributors to the decision-making process. Moreover, only the nodes surpassing the

remembering threshold are selected to populate the working memory.

Additionally, it is essential to highlight that the system actively updates the hotness of the nodes,

even those that are not directly utilised but maintain connections with other nodes. This proactive update

ensures that the information and relevance of the connected nodes are kept up-to-date and accounted for

in subsequent cognitive processes.

51

Node
already in
memory

No

Remove node from
memory

Add node at the end
of the memory

Is the
memory

full?

Add node at the end
of the memory

Remove the first
node in memory

Add node at the end
of the memory

End

End

End

NoYes

Yes

input: Node
to be added

Start

Figure 28: Working memory new node flowchart.

Iterate over
connected nodes ids

Is the node
remembered?

input:
Connected
Nodes IDs

Get node from
memory based on

node id

Add it to the
population list

Last Node?

Update nodes
hotness

End

Start

No

No

Yes

Yes

output:
population

list

Figure 29: Node retrieval from long-term memory flowchart.

In order to ensure the desired behaviour, the procedure ”UpdateHotness” presented in pseudocode

52

algorithm 4 was explicitly devised. This procedure incorporates a series of steps to modify the hotness

values of nodes within the system appropriately.

Algorithm 4 Long-term memory hotness update pseudocode.

Require:

connected_nodes: list of nodes connected to the current node in use

1: procedure UpdateHotness

2: for node in memory do

3: if node not in connected_nodes and not the current node then

4: node hotness - 1

5: end if

6: if node not the current node then

7: node hotness + 1

8: end if

9: end for

10: end procedure

Firstly, the algorithm verifies whether the currently iterated node is neither one of the connected nodes

to the current node nor the current node itself. This verification serves as a criterion for identifying nodes

that require a decrease in relevance. Upon satisfying this condition, the algorithm decrements the hotness

value of the node by 1, indicating a reduction in its significance within the system. Furthermore, if the

node is not the current node, it means that it is a member of the group of connected nodes, implying that

the node’s hotness index should be incremented.

By implementing these increments and decrements, the algorithm emphasizes nodes directly

connected to the current node while simultaneously downplaying the relevance of indirectly connected

nodes.

Finally, the subsystem can be visually represented using UML design, as depicted in Figure 30. The

UML diagram showcases the relationships between the different types of memory, namely WorkingMemory

and LongTermMemory, and the main class, StorageSystem, which serves as the interface for accessing

and managing the memory.

The UML diagram illustrates the connections between these components, providing a clear overview

of the system’s structure. Additionally, the diagram highlights utilising an auxiliary class called Data within

the MemoryNode class. This auxiliary class stores relevant information associated with each memory

node. The diagram also demonstrates the connections between the MemoryNode class and the other

three components: WorkingMemory, LongTermMemory, and StorageSystem.

As evident from the current discussion, the specific method pertaining to the influence of the working

53

memory on the decision-making process has not been expounded upon thus far. However, it is imperative

to note that a comprehensive elucidation of this method will be provided subsequently, once the entire

process is thoroughly described.

Data

classification: Optional[List]
high_level_features: Tensor
low_level_features: Tensor
probabilities: Optional[List]

LongTermMemory

T_REMEMBER: Integer
memory: Dictionary[String, MemoryNode]

__init__()
add_node(node: MemoryNode, threshold: Float): None
get_population(node: MemoryNode): List[MemoryNode]

WorkingMemory

memory: List[MemoryNode]
size: Integer

__init__(size: Integer)
add_node(node: MemoryNode): None
get_influence()

StorageSystem

THRESHOLD: Float
long_term_memory: LongTermMemory
working_memory: WorkingMemory
most_recent_node: MemoryNode

__init__(wm_size: Integer)

MemoryNode

connected_nodes: SortedDict
data: Data
hot_index: Integer
id: String

__init__(data: Set)

Figure 30: Storage System classes UML.

3.4 Learning System: Optimisation and Adaptation

The Learning System of the BorisCAD architecture is directly connected to the Bottom-Level

Computation System, where neural networks reside, and optimisation plays a crucial role in training.

The goal of optimisation is to find the parameters that minimise the cost function of a neural network.

However, finding the global minimum of the cost function is challenging, especially for high-dimensional

problems. Therefore, various optimisation algorithms have been developed to find the optimal

parameters of a neural network efficiently.

Two popular optimisation algorithms used in deep learning are Stochastic Gradient Descent (SGD)

and Adam. SGD is a simple but effective optimisation algorithm that updates the neural network’s

parameters in the direction of the negative gradient of the cost function. On the other hand, Adam is an

adaptive optimisation algorithm that uses both the first and second moments of the gradient to adjust

the learning rate. These algorithms have proven effective in a wide range of deep-learning applications.

However, selecting the suitable optimisation algorithm for a particular task can be challenging, as it

depends on several factors, such as the dataset’s size, the model’s complexity, and the available

computational resources.

54

In addition to choosing an appropriate optimisation algorithm, another critical aspect of training a

neural network is tuning the learning rate [106]. The learning rate is a hyperparameter that controls the

step size at which the model’s weights are updated during training. It is one of the most essential

parameters to tune when training a neural network because it can significantly affect the model’s

performance. A high learning rate can cause the model to overshoot the minimum of the loss function,

leading to oscillations or even divergence. A low learning rate can cause the model to converge slowly or

get stuck in local minima.

The learning rate is usually indicated by the symbol α and is typically set to a small value between

0.0 and 1.0. Several techniques for adjusting the learning rate during training include fixed learning rates,

learning rate schedules, and adaptive learning rate methods such as Adagrad, Adadelta, RMSprop, Adam,

and others [107].

Fixed learning rates keep the learning rate constant throughout training, whereas learning rate

schedules gradually reduce the learning rate over time. Adaptive learning rate methods adjust the

learning rate based on the gradient of the loss function, which can help speed up convergence and

prevent oscillations.

The StepLR technique involves decreasing the learning rate by a factor every step_size epochs.

Specifically, the learning rate is multiplied by gamma every step_size epochs. The mathematical formula

for the StepLR update rule can be expressed as:

α = α ∗ gamma(epoch//step_size) (3.6)

where α is the current learning rate, gamma is the factor that decreases the learning rate, epoch is the

current epoch, and step_size is the number of epochs after which the learning rate is decreased.

The ReduceLROnPlateau method is another popular learning rate scheduling technique used in neural

network training. Its main objective is to adjust the learning rate when it plateaus during training to help

the network converge to a better optimum.

The method monitors a metric, such as the validation loss, after every epoch. If the metric does not

improve for a specified number of epochs, the learning rate is reduced by a specific factor. This process

is repeated until the learning rate is below a specified threshold. The user can set the factor by which the

learning rate is reduced and the number of epochs after which the metric is checked. The algorithm for

reducing the learning rate using ReduceLROnPlateau can be written as shown in 5.

These methods substantially increase the training efficiency of the neural networks and will be used

both on the Classification and Segmentation modules described before. However, it requires careful tuning

55

Algorithm 5 ReduceLROnPlateau algorithm’s pseudocode.

1: if the metric does not improve after ’patience’ epochs then

2: α = α ∗ factor
3: end if

of the parameters to ensure that the learning rate is reduced at the appropriate time and adapted to the

model architecture and given problem.

Aside from hyperparameter tuning, further optimisation can be included. SGD stands for Stochastic

Gradient Descent [108], one of the most widely used optimisation algorithms for training deep neural

networks. It is a variant of gradient descent, which is a method of optimising the weights of a neural

network in order to minimise its loss function.

In SGD, instead of computing the gradient of the entire dataset, the gradient of a randomly selected

subset or ”batch” of the dataset is computed, which is why it is called ”stochastic”. Using batches, this

method can work with large datasets and update weights in each iteration, leading to faster convergence

and better generalisation. The update rule is as follows:

wi+1 = wi − α∇L(wi, xi:i+n, yi:i+n) (3.7)

where wi is the current weights, α is the learning rate, n is the batch size, xi:i+n is the input data subset,

yi:i+n is the corresponding output data subset, and ∇L(wi, xi:i+n, yi:i+n) is the gradient of the loss

function concerning the weights for the subset.

SGD has several variants, such as Nesterov accelerated gradient (NAG), which incorporate momentum

terms to prevent oscillations in the optimisation process and accelerate convergence [109].

Adam is an acronym for ”Adaptive Moment Estimation”. It is a popular optimisation algorithm for

training neural networks that uses adaptive learning rates and momentum to achieve better convergence

during training. It is an extension of the Stochastic Gradient Descent (SGD) algorithm, and like the previous,

it updates the network parameters based on the gradient of the loss function concerning the parameters.

Adam calculates the first and second moments of the gradients and uses them to update the learning

rate for each parameter. The first moment is the mean of the gradients, and the second moment is the

variance of the gradients. Adam also includes a bias-correction term to account for the first and second

moments being initially biased towards zero.

The learning rate for each parameter is adapted based on the ratio of the first and second moments.

This adaptive learning rate helps Adam to converge faster and more reliably than SGD on many deep

learning problems. Adam also includes a momentum term that helps smooth the update process and

56

avoid getting stuck in local minima. The update rule for Adam can be expressed as:

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g
2
t (3.8)

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(3.9)

θt = θt− 1− α√
v̂t + ε

m̂t (3.10)

where θ are the model parameters, gt is the gradient at time step t, mt and vt are the first and second

moments of the gradient, m̂t and v̂t are the bias-corrected estimates of the first and second moments, β1

and β2 are the exponential decay rates for the first and second moments and are typically set to 0.9 and

0.999, respectively. α is the learning rate, and ε is a small constant to prevent division by zero, usually

on the order of 10−8.

Metrics play a crucial role in system performance evaluation, providing quantitative measures to

assess effectiveness, efficiency, and overall quality. These standardised benchmarks enable objective

comparisons between system implementations or variations. In classification, confusion matrices are

commonly employed to compute these performance metrics.

A confusion matrix serves as a concise summary of a classification model’s performance. It

presents the counts of true positives, true negatives, false positives, and false negatives for each class.

By examining the confusion matrix, evaluators can gain valuable insights into the model’s performance

and identify classes that pose challenges regarding prediction accuracy. Various performance metrics,

such as accuracy, precision, recall, and F1-score, can be derived from the confusion matrix.

In binary classification, the positive class refers to the specific class of interest, while the negative class

encompasses all other classes. However, defining positive and negative classes in multi-class classification

becomes more intricate. One approach is to employ the one-vs-all classification strategy, where each class

is treated as the positive class in separate evaluations against all other classes combined.

For example, consider a multi-class classification problem where images are being classified into three

classes: A, B, and C. On a test set of 100 images, the classifier makes the following predictions:

• 30 images are predicted to be in class A, of which 25 are actually in class A, 3 are in class B, and

2 are in class C.

• 50 images are predicted to be in class B, of which 45 are actually in class B, 4 are in class A, and

1 is in class C.

57

• 20 images are predicted to be in class C, of which 18 are actually in class C, 1 is in class A, and

1 is in class B.

The information provided can be utilised to construct the following confusion matrix, as depicted in

Table 3. This matrix captures multiple data points, which will subsequently be employed in the

computation of classification metrics.

Table 3: Confusion Matrix example

A B C

A 25 4 1

B 3 45 1

C 2 1 18

• True positives (TP): The number of instances that were correctly classified as positive for each

class. In this example, the TP for class A would be 25, the TP for class B would be 45, and the TP

for class C would be 18.

• True negatives (TN): The number of instances that were correctly classified as negative for each

class. In this example, the TN for class A would be 70 (the sum of all the instances that were not

A), the TN for class B would be 55 (the sum of all the instances that were not B), and the TN for

class C would be 81 (the sum of all the instances that were not C).

• False positives (FP): The number of instances that were incorrectly classified as positive for each

class. In this example, the FP for class A would be 5 (the sum of all the instances that were not A

but were classified as A), the FP for class B would be 8 (the sum of all the instances that were not

B but were classified as B), and the FP for class C would be 3 (the sum of all the instances that

were not C but were classified as C).

• False negatives (FN): The number of instances that were incorrectly classified as negative for

each class. In this example, the FN for class A would be 5 (the sum of all the instances that were A

but were not classified as A), the FN for class B would be 5 (the sum of all the instances that were

B but were not classified as B), and the FN for class C would be 2 (the sum of all the instances that

were C but were not classified as C).

Note that in a multi-class problem, the sum of TP, TN, FP, and FN for all classes may not add up

to the total number of instances, because some instances may be counted more than once. From this

matrix, the following evaluation metrics can be calculated.

58

Accuracy

Accuracy quantifies the ratio of correct predictions to the total number of predictions, serving as a

prevalent metric for classification model evaluation. However, it can be misleading in scenarios involving

imbalanced classes or multiple classes, as a model focusing solely on the majority class may yield high

accuracy while under performing for other classes.

(TP + TN)

(TP + TN + FP + FN)
(3.11)

Precision

Precision is a vital performance metric that assesses the proportion of true positives concerning all

predicted positive cases. It quantifies the model’s capability to identify instances of positive cases

accurately. Precision is computed by dividing the number of true positives by the sum of true and false

positives. A high precision value indicates that the model exhibits minimal false positive errors.

TP

(TP + FP)
(3.12)

Recall

Recall, referred to as sensitivity or true positive rate, signifies the ratio of true positives to all positive

cases. It quantifies the model’s efficacy in correctly identifying and capturing all instances of positive

cases. The calculation involves dividing the number of true positives by the sum of true positives and false

negatives. A high recall value indicates that the model exhibits minimal false harmful errors.

TP

(TP + FN)
(3.13)

F1-score

The F1-score is valuable when precision and recall are equally important, providing a balanced

evaluation by considering both metrics. It is calculated as the harmonic mean of precision and recall,

ensuring equal weighting of the two measures. This characteristic is beneficial in scenarios where false

positives and negatives hold significant implications. For instance, in medical testing, false positives

(which may result in unnecessary treatments or procedures) and false negatives (which can lead to

missed diagnoses and delayed treatments) can have severe consequences. The F1-score ranges from 0

59

to 1, with higher values indicating superior performance in terms of precision and recall.

2 ∗ Precision ∗Recall

Precision+Recall
(3.14)

Matthews Correlation Coefficient

The Matthews Correlation Coefficient (MCC) is extensively utilised as a metric to evaluate the

effectiveness of binary classification models. It takes into account the number of true positives, true

negatives, false positives, and false negatives, and provides a measure of the correlation between the

predicted and actual binary labels. The MCC score ranges from -1 to 1, where a score of 1 indicates a

perfect correlation, 0 denotes no correlation, and -1 represents a perfect inverse correlation. MCC is

especially beneficial in situations where there is class imbalance or varying costs associated with false

positives and false negatives.

TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(3.15)

These performance metrics play a crucial role in evaluating and optimising the bottom-level

classification process. By leveraging these metrics, the effectiveness of the learning algorithms can be

measured and further improved. However, for the segmentation model, a distinct set of metrics is

required, focusing on capturing the accuracy and overlap between the predicted mask and the ground

truth.

Dice Score

The Dice score, also known as the F1 Dice score or Sørensen–Dice coefficient, is a widely used metric

in image segmentation tasks. It quantifies the similarity between the predicted segmentation mask and

the ground truth mask. Ranging from 0 to 1, a Dice score of 1 indicates perfect overlap between the

predicted and ground truth masks, while a score of 0 signifies no overlap.

The Dice score is calculated using the provided formula, where ”predicted” and ”ground truth” refers

to binary matrices representing the predicted and ground truth masks, respectively. The intersection (�)

denotes element-wise multiplication, and the union (+) denotes element-wise addition. The Dice score can

be computed separately for each class or all classes combined.

Dice Score = 2 ∗ prediction ∩ ground truth

prediction+ ground truth
(3.16)

60

IoU

Intersection over Union (IoU) is a commonly used metric in image segmentation tasks, particularly in

object detection scenarios. It quantifies the overlap between the predicted bounding box (or mask) and

the ground truth bounding box (or mask) of an object. The IoU calculation involves determining the ratio

of the intersection to the union of the bounding boxes (or masks), where a value of 1 indicates a perfect

overlap and 0 indicates no overlap.

IoU =
Area of Overlap

Area of Union
(3.17)

In conclusion, the learning system incorporates optimisation algorithms to enhance performance

and plays a crucial role in implementing metrics for the analysis of both classification and segmentation

tasks. These metrics serve as quantitative measures to evaluate the system’s effectiveness, efficiency,

and quality. In classification, accuracy, precision, recall, and F1-score are utilised to assess the model’s

predictive capabilities. On the other hand, in segmentation, metrics like Dice score and Intersection over

Union (IoU) are employed to measure the similarity between predicted and ground truth masks or

bounding boxes. These metrics provide valuable insights into the system’s performance, enabling

stakeholders to make informed decisions and refine the learning process. By integrating optimisation

algorithms and metrics, the learning system aims to continually improve its predictive and segmentation

accuracy.

LearningSystem

classifier_learn: Dictionary
segmenter learn: Dictionary

__init__(classifier: ClassificationNetwork, segmenter: SegmentationNetwork)
conf_matrix(preds: Tensor, targets: Tensor): Tensor
accuracy(conf_matrix: Tensor): Tensor
precision(conf_matrix: Tensor): Tensor
recall(conf_matrix: Tensor): Tensor
f1_score(conf_matrix: Tensor): Tensor
dice_score(preds: Tensor, masks: Tensor): Tensor
iou_score(preds: Tensor, masks: Tensor): Tensor

Figure 31: Learning System class UML.

The UML diagram in figure 31 illustrates the Learning System class. This class encompasses two

essential dictionary variables designed to store the optimisation algorithms associated with the classifier

and segmenter components. Additionally, the Learning System class features implemented metrics as

individual methods. These methods serve as a means to evaluate and measure the performance of the

classification and segmentation processes.

61

The complete design of the BorisCAD architecture, encompassing all its subsystems, namely the

Computation System, Storage System, and Learning System, can now be comprehended. To provide an

overview of the architecture’s structure, the UML diagram depicted in Figure 32 is presented. This UML

diagram encapsulates various auxiliary functions, aiding in the management of trained architectures,

such as saving and loading. Additionally, it includes essential auxiliary functions, such as the

”set_num_classes” method. This method allows for the modification of the number of classifiable

classes in a pre-trained model, facilitating the application of transfer learning techniques. Moreover, this

interface serves as the central hub for processing tasks related to the decision-making process, which

will be elaborated upon in Section 3.5 of this dissertation.

Boris

cs: ComputationSystem
ls: LearningSystem
ss: StorageSystem

__init__(*args, **kwargs)
setNumClasses(num_classes: Integer)
setNumChannels(num_channels: Integer)
forward(X: Tensor): [Integer]
fit(epochs: Tuple[Integer, Integer], batch_size: Integer)
save(path: String)
load(path: String): Boris
from_config(config_file: String): Boris

ComputationSystem

LearningSystem

Storage System

Figure 32: Boris class UML.

The decision to adopt the approach of creating an instance from a configuration stems from the

necessity to thoroughly evaluate various parameters within the system as part of a proof-of-concept. By

utilising a straightforward and adaptable configuration file that can be loaded during run time, the

complexity associated with assigning values to variables during the instance creation process is

significantly reduced. This approach allows for a more streamlined and manageable means of initialising

the architecture instance. An illustrative example of such a configuration file is presented below,

demonstrating the definition the parameters divided into subsections, similar to what the final archive

will have. Here is an overview of the configuration structure:

• Boris:

– segmentation: Specifies the directory path for the segmentation dataset.

– classification: Specifies the directory path for the classification dataset.

– size: Specifies the size of the input images, represented as [width, height].

62

– num_classes: Specifies the number of classes for the classification task.

– Computation:

* Bottom:

· attention: Determines whether attention mechanisms are enabled during

segmentation.

· net_type: Specifies the type of network architecture used in the bottom-level

computation.

· use_segmentation: Specifies whether the classification network incorporates

segmentation as pre-processor for its data.

* Top:

· min_samples_split: Specifies the minimum number of samples required to split

a node in the decision tree in the top-level.

· max_depth: Specifies the maximum depth of the decision tree.

– Storage:

* wm_size: Specifies the size of the working memory.

3.5 Holistic Approach to Decision-Making

A cognitive architecture necessitates a holistic approach to decision-making to capture the intricacies

and complexities involved in processing and interpreting information. Medical image analysis, such as X-

ray diagnosis, requires a comprehensive understanding beyond individual components or isolated metrics.

By taking into account various levels of the architecture, such as the Bottom-level, Top-level, and Working

Memory, a holistic approach enables the integration of multiple sources of information, each contributing

unique insights. The Bottom-level provides detailed metrics specific to each class, allowing the architecture

to weigh their influence accurately. The Top-level, considering the structure of the decision forest, captures

the generalisation and entropy characteristics, influencing the overall decision process. The Working

Memory plays a crucial role in leveraging past knowledge and integrating it with the current input, enriching

the decision-making process with contextual information. By adopting a holistic approach, the cognitive

architecture can account for the complexities inherent in medical image analysis, ensuring a more robust

and reliable decision-making process that leverages the collective knowledge and information available

throughout the architecture.

The diagram provided in Figure 33 offers a comprehensive depiction of the cognitive architecture,

63

X-Ray
Image

Segmentation

Classification

Induction

Training Metrics

Node

WM LTM

Decision-making

Segmentation
Dataset

Classification
Dataset

Segmentation
Training

Segmentation

Classification
Training

Induction Training

Classification
Training Results

Induction
Training Results

Feature Maps ->
Trigger Node Creation

Probabilities

Predictions

Working
Memory
Contents

Run-Time
Inference Training

Figure 33: Decision-Making Diagram.

encompassing training and real-time inference processes. During the training phase in BorisCAD, a

meticulous ”bottom-up” approach is adopted where the segmentation network is first trained on an

independent dataset, enabling the system to differentiate the foreground from the background in x-ray

images accurately. This initial training step proves instrumental as the segmented output is a

preprocessing step for the subsequent classification model, trained on a different dataset. Significantly,

even during the training phase, this segmentation network is utilised as a preprocessing step for the

classification model, ensuring consistent and cohesive training.

Furthermore, the same dataset is employed to generate probabilities for the Induction training.

Leveraging the power of a Decision Forest consisting of an ensemble of Decision Trees, the architecture

extracts valuable insights from the data, culminating in the formulation of meaningful probabilities for

each class. The metrics garnered during the induction and classification training process are recorded

as essential references for the decision-making process.

During the real-time inference of newly received x-ray images, the Storage System, which remained

inactive throughout the training process, becomes an integral component of the architecture. Each

incoming image undergoes a segmentation process, followed by classification using the trained model.

This two-step process facilitates the generation of probabilities but also triggers the extraction of feature

maps. As a result, a new memory node is dynamically created, seamlessly integrating with both the

Working Memory and Long-Term Memory.

64

The decision-making mechanism encompasses a comprehensive evaluation of all components within

the architecture. The Computation System influences the final decision by combining the probabilities and

predictions with the pertinent metrics obtained during training. Moreover, employing a similarity-based

reasoning approach similar to the CLARION cognitive architecture [110] via the Working Memory, the

architecture judiciously considers the historical information stored in the memory nodes. By embracing

this holistic approach, the cognitive architecture maximises its potential to provide accurate and robust

predictions by considering procedural, semantic, and episodic components within the decision-making

process.

The influence of the probabilities from the classification model on the decision-making process can be

determined by multiplying the probabilities by the corresponding metric value. Denoting the probabilities

as Pc for class c and the metric value as Mc for class c. The influence (Ic) of the probabilities from the

classification can be calculated as:

Ic = Pc ∗Mc (3.18)

From here, a list of weighted probabilities is created, depending on how the class defining each

probability is accurately evaluated within the model. Similarly, the influence of predictions from the

induction method can be computed by multiplying the predictions by the corresponding metric value.

Defining the predictions as Predc for class c and the metric value as Mc for class c. The influence (Ic)

of the predictions from the induction can be calculated as:

Ic = Predc ∗Mc (3.19)

For the Working Memory influence, a similar process can be achieved, this time by using the similarity

index calculated during the node insertion in the Storage System. Denoting the final classification decision

from previous nodes as Di = [D1, D2, ..., Df] with f equal to the total number of existing classes and

Di representing the decision values for node i in memory. The similarity score between the current node

and memory node i is Si.

To calculate the influenced decision by the similarity weights and normalise these values, each decision

value is multiplied by the corresponding similarity scores, summed in the class dimension and then divided

by (n − 1), where n is the total number of nodes in memory. The influenced decision (ID) can be

calculated as:

ID =

∑n
i=1Di ∗ Si

n− 1
(3.20)

To incorporate the influence of the various methods, an equation is employed to determine the final

65

decision. The equation incorporates the weighted contributions of classification probabilities, induction

predictions, and the influence of working memory nodes that exhibit similarity to the current node. The

equation for the final decision is as follows:

FinalDecision = α ∗ Iclass[P] + β ∗ Iind[Pred] + ω ∗ ID (3.21)

In this equation, each component is multiplied by a corresponding weighting factor to emphasise

its relative importance. The term Iclass[P] represents the weighted list of classification probabilities,

reflecting the confidence associated with each class. Similarly, Iind[Pred] denotes the weighted list

of induction predictions, which accounts for the predictions made by the induction model. Lastly, ID

represents the weighted final decision of working memory nodes that exhibit similarity to the current node.

The alpha factor determines the weight of the classification probabilities, the beta controls the influence of

the induction predictions, and the omega governs the impact of the working memory nodes. By adjusting

the weighting factors, the cognitive architecture can adapt to different scenarios and prioritise certain

factors over others, enabling a flexible and robust decision-making process.

During the training stage of the BorisCAD procedure, a crucial step involves evaluating the trained

models on a separate testing subset to obtain the necessary metrics for classification and induction. The

models, trained on a separate training subset, are applied to the testing subset containing unseen data.

This allows the computation of various metrics to assess the models’ performance and generalisation

ability. By analysing these metrics, informed decisions can be made regarding potential areas that require

attention or adjustments in the decision criteria based on consistent misclassification or poor validation

results.

To ensure unbiased evaluation, the train-test split process follows data shuffling to eliminate any bias

introduced by the original order of the dataset. This randomisation allows the machine learning models

to learn patterns and relationships in the training set without being influenced by specific ordering. The

shuffled data is divided into two subsets: the training and testing sets. The allocation of the shuffled

data is typically predefined, with a percentage assigned for training and the remaining portion used for

testing. Most of the data is used for training the models, while the remaining samples in the testing set

are reserved for evaluating the models’ performance on unseen data.

66

3.6 Integrated Technologies

In the current era of rapid technological advancements, the seamless integration of various

technologies has become essential across different domains, including academia, industry, and

research. This integration is vital in developing innovative and efficient infrastructures that effectively

address complex challenges and achieve remarkable outcomes.

Python, a high-level interpreted programming language, is a powerful tool for creating integrated

technological solutions. Renowned for its adaptability, user-friendliness, and extensive libraries, Python is

widely acclaimed in the industry. Its simplicity, readability, and versatility make it a preferred choice for

programmers, allowing them to express complex concepts using fewer lines of code than other

programming languages. Given its strengths, Python has been adopted as the primary programming

language for implementing the cognitive architecture presented throughout this chapter.

The broad range of libraries offered by Python, including NumPy, Pandas, and Matplotlib, empowers

efficient processing, manipulation, and analysis of large datasets. These libraries provide robust data

structures, statistical functions, and visualisation tools that facilitate data-driven decision-making and

enable the extraction of valuable insights.

PyTorch, an increasingly popular open-source machine learning framework, has gained substantial

traction due to its dynamic computational graph and extensive support for deep learning applications.

Leveraging PyTorch’s vast library of pre-built neural network modules, it provides a flexible platform for

rapidly developing and deploying advanced machine learning models.

Moreover, Python’s integration capabilities extend to PyTorch’s support for distributed computing,

enabling the scalability of machine learning models across multiple Graphics Processing Units (GPUs) or

even clusters of machines. This scalability empowers the training of larger and more intricate models,

thereby enhancing the performance and accuracy of integrated technological solutions. Consequently, all

previously explored machine learning mechanisms will be implemented utilising the existing frameworks

of PyTorch.

Additionally, the NetworkX library is valuable for visualising and analysing complex network structures

within BorisCAD, the Storage System’s memories. As a Python library, NetworkX provides comprehensive

tools for studying intricate networks. Its intuitive interface and extensive functionality make it suitable for

visualising and analysing interconnected nodes and edges within these networks.

67

3.7 Data Catalogue

The ”Data Catalogue” subsection introduces the primary use case of analysing X-ray images within

BorisCAD, a cognitive architecture context. Its fundamental purpose is to identify and detect pathologies

present in these images. By leveraging integrated technologies, BorisCAD aims to enhance diagnostic

capabilities and provide valuable support to healthcare professionals. This subsection focuses on the data

catalogue employed by BorisCAD, which plays a critical role in enabling accurate pathology identification.

The data catalogue encompasses a diverse range of X-ray images from two large datasets, facilitating

the training and evaluation of machine-learning models. Through the exploration of this data catalogue,

the subsection highlights the importance of comprehensive and representative datasets in developing and

implementing integrated technological solutions for X-ray image analysis.

During the training of the segmentation network, a single dataset is employed, sourced from the

studies conducted by Candemir et al., [111] and Jaeger et al., [112]. This dataset encompasses original

lung X-ray images along with their corresponding masks. This dataset aims to facilitate the training of

the segmentation network to accurately identify and delineate specific regions or objects of interest within

the lung X-ray images. By utilising the paired images and masks, the segmentation network can learn to

effectively distinguish the lung structures from the surrounding background and other adjacent tissues,

thereby enabling precise and reliable segmentation results.

3.7.1 CheXpert Dataset

The CheXpert dataset [113] is a widely used and highly regarded medical imaging dataset specifically

designed for training and evaluating machine learning models in chest X-ray interpretation. It consists of

an extensive collection of chest X-ray images and corresponding radiologist interpretations. It is crucial

as medical imaging is inherently subjective, and radiologists often have varying levels of certainty in their

diagnoses. The dataset provides detailed annotations that reflect the degree of uncertainty associated

with each radiologist’s interpretation, enabling the exploration of uncertainty modelling and analysis within

machine learning algorithms.

The CheXpert dataset encompasses a wide range of pathologies and abnormalities commonly

encountered in chest X-ray imaging, including pneumonia, lung nodules, pleural effusion, and

cardiomegaly. Moreover, the CheXpert dataset addresses the challenge of imbalanced data, a common

issue in medical imaging datasets. It annotates many images with positive and negative pathology

labels, ensuring a balanced representation of different pathologies and enabling robust training and

68

evaluation of machine learning models.

Although this dataset is extensive and provides a valuable resource for chest X-ray interpretation, it is

essential to note that the images within the CheXpert dataset come from various view positions. This

variation necessitates a pre-processing step to isolate the frontal view images, which serve as the

standardised position for analysis. This pre-processing ensures consistency and enables accurate

comparison and diagnosis when developing machine learning algorithms based on this dataset.

In addition to the abundant collection of X-ray images, the CheXpert dataset is accompanied by a

meticulously documented file that encompasses vital information for each image, including details

regarding the specific view position from which the X-ray was captured. This comprehensive file plays a

pivotal role in facilitating efficient data management and analysis, eliminating the need for manual review

or reliance on image processing techniques to determine the view position.

The bar graph in figure 34 visually represents the label distribution in the CheXpert dataset, displaying

the total occurrences of each label. It provides an informative overview of the frequencies of different

pathologies and abnormalities within the dataset, allowing easy identification of the most common and

rare labels. This graph offers valuable insights into the prevalence of specific conditions, contributing to a

comprehensive understanding of the label distribution in the CheXpert dataset.

The accompanying pie chart in figure 35 presents a clear comparison of the percentage composition

of each label in the CheXpert dataset. Each label is depicted as a distinct segment, with the size of each

segment indicating the proportionate occurrence of that label. This visual representation allows for a

quick assessment of the label distribution, highlighting the relative importance of different pathologies and

abnormalities. The pie chart provides a concise overview, enabling a straightforward interpretation and

comparison of the various labels in the CheXpert dataset.

Figure 34: CheXpert total occurrences for each label.

69

Figure 35: CheXpert label comparison pie-chart.

3.7.2 ChestX-ray8 Dataset

Including the NIH Chest X-ray Dataset [114] significantly enriches the domain of chest X-ray

analysis, augmenting the existing knowledge base with a vast corpus of meticulously annotated images

encompassing a broad spectrum of pathologies and abnormalities. This extensive dataset serves as a

catalyst for in-depth explorations into diverse medical conditions, thereby fostering the advancement and

evaluation of sophisticated machine-learning algorithms tailored explicitly for chest X-ray interpretation.

Moreover, the NIH dataset distinguishes itself from the CheXpert dataset under its inherent imbalanced

label distribution, which has the potential to provide a distinct perspective on system performance. The

presence of rare conditions within this dataset poses formidable challenges in algorithmic development and

evaluation, necessitating a judicious and methodical approach to ensure impartiality and the robustness

of the performance metrics employed. Attending to the intricacies of label imbalance engenders a deeper

comprehension of the nuances involved in automated diagnostic methodologies, propelling the frontiers of

knowledge and empowering advances in cutting-edge diagnostic techniques and clinical decision support

systems.

The inherent label imbalance within the NIH Chest X-ray Dataset is readily discernible through the

visualisation of the bar plot presented in Figure 36. Similarly, the accompanying pie chart depicted in

Figure 37 succinctly captures the contrasting proportions of each label, providing a concise and visually

impactful representation of the dataset’s label distribution.

70

Figure 36: ChestX-ray8 total occurrences for each label.

Figure 37: ChestX-ray8 label comparison pie-chart.

3.7.3 Pneumonia Dataset

Additionally, a smaller dataset was included in the data catalogue, which consisted of pneumonia-

related X-ray images by Kermany et al., [115]. While this dataset was not as extensive as the other datasets,

it provides a valuable addition to the research. The inclusion of this dataset allowed for the exploration of

more intricate differences between each label, providing further insights into how the developed cognitive

architecture would behave in such scenarios.

The pneumonia dataset showcased a variety of pneumonia-related conditions, including bacterial

and viral infections. This diversity allowed for a comprehensive analysis of the cognitive architecture’s

performance in identifying and classifying different types of pneumonia, naturally less perceivable than

different pathologies. The dataset’s labels included categories such as ”Normal”, ”Bacterial Pneumonia”

and ”Viral Pneumonia”.

71

Figure 38: Pneumonia Dataset total occurrences for each label.

Figure 39: Pneumonia Dataset label comparison pie-chart.

To gain a better understanding of the dataset, an analysis of the total occurrences for each label

was performed, as shown in Figure 38. This analysis revealed the distribution of different pneumonia-

related conditions within the dataset. Furthermore, a label comparison pie chart, presented in Figure 39,

illustrated the proportional representation of each label in the dataset.

3.7.4 Addressing class imbalance

Class imbalance is a prevalent challenge encountered in numerous machine learning tasks,

characterised by a significant skew in the distribution of instances across different classes within a

dataset. This imbalance can have deleterious effects on classifier performance, as it often leads to a

prioritisation of the majority class at the expense of accurately predicting the minority class.

Consequently, practical techniques for mitigating class imbalance have become an area of great interest

72

within the machine-learning community.

One method that has garnered considerable attention in recent years is the weighted random sample

approach. The weighted random sample method addresses class imbalance by assigning distinct weights

to instances during the training process. Notably, instances from the minority class are assigned higher

weights than those from the majority class. By doing so, instead of randomly selecting instances from the

entire dataset, instances are selected with probabilities inversely proportional to their assigned weights.

This ensures a higher likelihood of selecting minority class instances, thereby reducing the bias towards

the majority class and promoting a more balanced representation of the classes.

Algorithm 6 Weighted Random Sampler algorithm’s pseudocode.

Require:

DatasetD with instances and their corresponding class labels

1: procedure WeightedRandomSampler

2: Calculate class frequencies for each class in D.

3: Calculate weights W for each instance based on class frequencies.

4: Normalise weights to sum up to 1.

5: Initialise an empty sampled dataset S.

6: for each class c do

7: Obtain the instances belonging to class c.

8: Calculate the number of instances I to sample from c based on W

9: Sample class c using I .

10: Add the sampled instances to S.

11: end for

12: return Return the sampled dataset S.

13: end procedure

The pseudo-code algorithm in 6 elaborates on Weighted Random Sampler workings. The algorithm

follows a simple procedure, starting with calculating class frequencies and weights. These weights are

normalised to ensure they sum up to 1. The algorithm then iterates over each class, determining the

desired number of instances to sample based on the desired balanced ratio. Finally, instances are sampled

from each class according to their weights, and the resulting dataset exhibits a balanced class distribution.

73

Chapter 4

Practical Application and Execution of the

Proposed Solution

This chapter focuses on the practical implementation and execution of the proposed solution for

medical image classification, building upon the earlier presented comprehensive architecture design.

The objective is to provide a detailed account of the steps to transform the theoretical framework into a

functioning system capable of accurately classifying medical images.

The implementation process involves translating the architectural blueprint into practical code using

the previously-mentioned Python libraries and frameworks. The chapter walks through the step-by-step

development of the system, highlighting the key components, methodologies, and algorithms employed

at each stage.

To ensure reproducibility and transparency, the provided code snippets are clear and concise,

commented in full. The configurations and parameters used for training and testing the BorisCAD are

also clearly provided.

Furthermore, the training process is explored in detail, covering the selection of loss functions and

optimisation algorithms and the fine-tuning of hyperparameters and model selection to maximise accuracy

and minimise overfitting.

4.1 Computational System

After designing BorisCAD’s Computation System with its hybrid system design encompassing sub-

symbolic processing and symbolic reasoning, it is time to delve into the implementation details. This

phase brings the design to life, showcasing the actual code implementation for both levels: the bottom

74

level representing sub-symbolic processing and the top level encompassing symbolic reasoning.

At the bottom level, BorisCAD harnesses the power of neural networks, specifically Convolutional

Neural Networks. These specialised networks extract and learn intricate features from image data. By

implementing the sub-symbolic processes, the system can recognise objects and patterns within visual

data by constructing complex representations of images.

Transitioning to the top level, the system employs symbolic reasoning to make decisions based on

the features learned by the sub-symbolic processes. The implementation utilises Decision Trees for their

interpretability and flexibility. DTs enable the system to reason effectively about complex relationships

among the extracted features, facilitating accurate predictions and informed decision-making.

4.1.1 Bottom-Level Subsystem

At the bottom level of BorisCAD’s Computation System, the implementation incorporates two existing

neural networks: segmentation and classification networks. These networks take advantage of a popular

deep learning framework, PyTorch, providing a seamless environment for designing and training robust

models.

The framework utilised in this implementation introduces the concept of Tensors, which serve as a

fundamental data structure for neural network computations. Tensors efficiently represent and

manipulate multi-dimensional arrays, enabling complex operations and transformations within the

network architecture.

Moreover, the framework simplifies the implementation of neural networks by offering intuitive

methods and functionalities. Designing intricate neural network architectures becomes more

straightforward and efficient with a comprehensive library of pre-defined layers and modules, including

operations for convolution, activation functions, pooling, and more.

By leveraging the framework’s tensor operations and user-friendly interface, BorisCAD’s

Computation System maximises the potential of deep learning techniques. The segmentation and

classification networks seamlessly integrate the methods offered by the framework, enabling the system

to extract meaningful features from image data and make accurate predictions based on the learned

representations.

75

a) Segmentation Network

The implementation process begins with the construction of the Segmentation Network, as seen in

Listing 1, a pivotal component of the module. The initial phase revolves around the instantiation of the

network’s essential attributes, primarily dedicated to training the UNet or AttentionUNet models. User

input through a Boolean variable, denoted as attention, determines the selection between these models.

Additionally, the initialisation of optimisers and schedulers is deferred to the Learning System, thus

currently employing type hints and placeholders.

A crucial consideration in implementing the Segmentation Network is the utilisation of the

BCEWithLogitsLoss function for semantic segmentation. This choice stems from its effectiveness in

handling binary pixel-wise classification tasks, where each pixel is assigned to either foreground or

background classes. By employing BCEWithLogitsLoss, the network can effectively address the

challenges associated with the class imbalance and overlapping regions, ensuring accurate and robust

segmentation results.

Listing 1 Segmentation Network __init__function.

11 class SegmentationNetwork(nn.Module):
12 def __init__(
13 self,
14 attention: bool = True,
15 device: torch.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
16) -> None:
17 """Segmentation Network constructor
18 Args:
19 attention (bool, optional): if attention or not. Defaults to True.
20 device (_type_, optional): Defaults to torch.device("cuda:0" if torch.cuda.is_available() else

"cpu").
21 """
22 super(SegmentationNetwork, self).__init__()
23 self.device = device
24 # conditional usage of the attention network
25 self.model = AttentionUNet() if attention else UNet()
26 self.loss_fn = nn.BCEWithLogitsLoss() # loss function to evaluate the model
27 # optimizer and scheduler are started in the Learning System
28 self.optim: torch.optim.Adam = None
29 self.scheduler: torch.optim.lr_scheduler.ReduceLROnPlateau = None
30 # scaler used when CUDA is available
31 self.scaler = torch.cuda.amp.GradScaler() if torch.cuda.is_available() else None
32 self.prev_training: torch.Tensor = None # tensor to hold previous training metrics
33 self.to(self.device) # sends the module to CUDA or keeps it in the CPU

The provided code segment demonstrates a pattern commonly observed in the bottom-level

modules, highlighting the similarities between classes and methods within this section of the

architecture. Notably, the inclusion of a device parameter allows for the specification of the device on

which the networks will be executed. By default, this parameter assumes a value of either "cpu" or

"cuda:0", depending on the availability and compatibility of a suitable GPU for hardware acceleration

76

within the system. The incorporation of a device parameter enables the code to be more flexible and

adaptable to different hardware configurations. It caters to scenarios where GPU acceleration is

preferred when available, and seamlessly falls back to CPU execution if a compatible GPU is not present.

This design choice enhances the code’s generalisability and allows it to effectively utilise the available

hardware resources. Furthermore, the final line of the code segment, labeled as Line 32, demonstrates

the utilisation of the specified device for executing the module. This step ensures that the module is

appropriately assigned to the desired device, thus aligning with the chosen hardware configuration for

efficient execution.

Another characteristic that will be prevalent in the subsequent code snippets is the usage of the

super() initialisation method in the context of inheriting from the nn.Module class. Through this

inheritance, a subclass extends the base class and gains access to its properties and methods, relevant in

facilitating tasks like forward and back propagation of the networks. The nn.Module class, in particular,

has its own initialisation method, __init__(), responsible for initialising critical components such as

parameters, buffers and sub-modules, while also performing necessary setup operations. To ensure the

proper execution of these operations, it is needed for the subclass’s __init__() method to invoke

super().__init__().

Listing 2 UNet block __init__function.

5 class UNet_Block(nn.Module):
6 def __init__(self, in_channels: int, out_channels: int) -> None:
7 """Convolution Module, two consecutive convolution with Normalization and ReLU activation
8 Args:
9 in_channels (int): number of input channels (either last layer output or number of channels in

the image (RGB-3, Gray-1))
10 out_channels (int): number of output channels
11 """
12 super(UNet_Block, self).__init__()
13 # Define the convolutional layers
14 self.conv = nn.Sequential(
15 nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1,

bias=False),
16 nn.BatchNorm2d(num_features=out_channels),
17 nn.ReLU(inplace=True),
18 nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, padding=1,

bias=False),
19 nn.BatchNorm2d(num_features=out_channels),
20 nn.ReLU(inplace=True),
21)

Delving deeper into the specific networks designed for the segmentation task, the code snippet that

represents the implementation of the block discussed earlier (referenced as ”Listing 2”) is examined.

This block corresponds to the architecture illustrated in Figure 9a. Within the UNet_Block class, the

block’s layers are defined using the nn.Sequential module. The layers consist of a 2D convolutional

layer, batch normalisation, ReLU activation, another 2D convolutional layer, batch normalisation again,

77

and another ReLU activation. These layers collectively form the desired architecture of the block.

Similarly, the Listing 3 presents the implementation of the Attention Gate block designed in Figure

9b. The AttentionGate class is designed to incorporate attention mechanisms into a neural network.

It takes two input parameters: features, representing the number of input channels or features, and

n_coefficients, denoting the number of attention coefficients to be calculated. Within the class’s

__init__() method, the attention gate components are defined. These components include the

W_gate, W_x, psi, and relu layers. The W_gate and W_x layers consist of a 1x1 convolution

followed by batch normalisation, while the psi layer performs another 1x1 convolution followed by batch

normalisation and a sigmoid activation. The relu layer utilises the ReLU activation function.

Listing 3 Attention Gate block __init__function.

27 class AttentionGate(nn.Module):
28 def __init__(self, features: int, n_coefficients: int) -> None:
29 """Attention Gate
30 Args:
31 features (int): number of features to
32 n_coefficients (int): number of transitory coefficients
33 """
34 super(AttentionGate, self).__init__()
35 # Define the W_gate module with a convolutional layer and batch normalization
36 self.W_gate = nn.Sequential(nn.Conv2d(in_channels=features, out_channels=n_coefficients,

kernel_size=1), nn.BatchNorm2d(n_coefficients))
37 # Define the W_x module with a convolutional layer and batch normalization
38 self.W_x = nn.Sequential(nn.Conv2d(in_channels=features, out_channels=n_coefficients,

kernel_size=1), nn.BatchNorm2d(n_coefficients))
39 # Define the psi module with a convolutional layer, batch normalization, and sigmoid activation
40 self.psi = nn.Sequential(nn.Conv2d(in_channels=n_coefficients, out_channels=1, kernel_size=1),

nn.BatchNorm2d(1), nn.Sigmoid())
41 self.relu = nn.ReLU(inplace=True) # ReLU activation

The forward function in the AttentionGate class seen in listing 4 implements the attention

mechanism. It takes a gate tensor and a skip connection tensor as input. The gate tensor is processed

through the W_gate layer, while the skip connection tensor is processed through the W_x layer. The

attention coefficients are calculated by adding these processed tensors and applying the ReLU activation.

The attention coefficients are then passed through the psi layer, which performs a convolution, batch

normalisation, and sigmoid activation. Finally, the skip connection tensor is multiplied element-wise by

the attention coefficients to obtain the modified tensor, which is returned as the output. This allows the

network to dynamically weigh the importance of different elements in the skip connection based on the

attention mechanism.

The implementation of the AttentionUNet class, as demonstrated in listing 5, introduces a

customised variation of the UNet architecture. This modified version integrates attention gates, which

are illustrated in Figure 8. It consists of encoder and decoder blocks responsible for the downsampling

and upsampling operations, respectively.

78

Listing 4 Attention Gate forward method.

43 def forward(self, gate: torch.Tensor, skip_connection: torch.Tensor) -> torch.Tensor:
44 """Forward function for the attention gate
45 Args:
46 gate (torch.Tensor): gate tensor
47 skip_connection (torch.Tensor): tensor of the skip connection
48 Returns:
49 torch.Tensor: weighted attention gate tensor
50 """
51 g1 = self.W_gate(gate) # Pass the gate tensor through the W_gate module
52 x1 = self.W_x(skip_connection) # Pass the skip connection tensor through the W_x module
53 psi = self.relu(g1 + x1) # Element-wise addition of g1 and x1 followed by ReLU activation
54 psi = self.psi(psi) # Pass the combined tensor through the psi module for attention weighting
55 return skip_connection * psi # Multiply the skip connection tensor with the attention weights

The input image passes through a series of UNet_Block layers in the encoder ladder. The

in_channels argument determines the number of input channels for the first UNet_Block, while the

features list defines the number of output channels. The output of each UNet_Block is fed as input

to the next block in the encoder ladder, progressively reducing the spatial dimensions of the feature

maps and increasing the number of channels.

Listing 5 Attention U-Net __init__function.

110 class AttentionUNet(nn.Module):
111 # Encoder and decoder blocks are pretty much the same, but the decoder has a Transposed Convolution

that receives the skip connection from the previous encoder
112 def __init__(self, in_channels: int = 1, out_channels: int = 1, features: list[int] = [64, 128, 256,

512]) -> None:
113 """UNet Structure definition but with Attention gates
114 Args:
115 in_channels (_type_): number of input channels (channels of the image)
116 out_channels (_type_): number of output channels (usually one image, so 1 output channel)
117 features (list, optional): number of features for each layer in the network. Defaults to [64,

128, 256, 512].
118 """
119 super(AttentionUNet, self).__init__()
120 self.pool = nn.MaxPool2d(kernel_size=2, stride=2) # Max pooling layer for downsampling
121 self._num_channels = in_channels
122 # Encoder and Decoder modules
123 self.encoder = nn.ModuleList()
124 self.decoder = nn.ModuleList()
125 # Encoder ladder
126 for feature in features:
127 self.encoder.append(UNet_Block(in_channels=in_channels, out_channels=feature))
128 in_channels = feature
129 # Decoder ladder with the attention gate blocks
130 for feature in reversed(features):
131 self.decoder.append(nn.ConvTranspose2d(in_channels=feature * 2, out_channels=feature,

kernel_size=2, stride=2))
132 self.decoder.append(AttentionGate(feature, feature // 2))
133 self.decoder.append(UNet_Block(feature * 2, feature))
134 # Connection between encoder and decoder, the bottom of the U in the network
135 self.bottleneck = UNet_Block(features[-1], features[-1] * 2)
136 # Output Layer
137 self.final_layer = nn.Conv2d(in_channels=features[0], out_channels=out_channels, kernel_size=1)

In the decoder ladder, transposed convolutions (nn.ConvTranspose2d()) are used for

upsampling the feature maps, increasing their spatial dimensions while reducing the number of

79

channels. The decoder also incorporates attention gate blocks (AttentionGate), which receive the

output of the corresponding transposed convolution and the skip connection from the encoder ladder.

The attention gate blocks dynamically compute attention coefficients based on these inputs, selectively

emphasising or suppressing features. The skip connection allows information from the encoder to be

integrated into the decoder.

The forward() method of the AttentionUNet class shown in Listing 6 better depicts the

processing within the network. During the encoding phase, the input passes through the encoder blocks,

and the output of each block is stored in the skip_connections list. The bottleneck layer

performs the final encoding step without a skip connection.

Listing 6 Attention U-Net forward method.

158 def forward(self, X: torch.Tensor) -> torch.Tensor:
159 """Forward method for the AttentionUnet
160 Args:
161 X (torch.Tensor): input tensor
162 Returns:
163 torch.Tensor: segmented output tensor
164 """
165 # Connections between an encoder block and the assigned decoder block
166 skip_connections = [] # List to store skip connections from the encoder
167 # Encoding
168 for block in self.encoder: # Iterate through the encoder blocks
169 X = block(X) # Pass input through the current encoder block
170 skip_connections.append(X) # Store the skip connection
171 X = self.pool(X) # Max Pooling after each block to downsample
172 X = self.bottleneck(X) # Final encoding layer, with no skip connection assotiated
173 skip_connections = skip_connections[::-1] # Reverse the skip connections
174 # Decoding
175 for idx in range(0, len(self.decoder), 3): # Iterate through the decoder blocks
176 X = self.decoder[idx](X) # Transposed Convolution (Upsampling)
177 skip_connection = skip_connections[idx // 3] # Retrieve the corresponding skip connection
178 X = self.decoder[idx + 1](X, skip_connection) # Attention module combining skip connection and

current output
179 concat_skip = torch.cat((X, skip_connection), dim=1) # Concatenate skip connection and output
180 X = self.decoder[idx + 2](concat_skip) # Double convolution to refine the concatenated features
181 return self.final_layer(X) # Output layer

In the decoding phase, the skip_connections are reversed to match the decoding order. The

decoder blocks are applied in reverse order, upsampling the feature maps while dynamically computing

attention coefficients. The output of the attention gate is concatenated with the corresponding skip

connection and passed through the UNet block for further refinement.

The property num_channels shown in Listing 7 allows accessing and modifying the number of

channels in the UNet model. When accessed, it returns the current number of channels. When modified

using the setter method, it updates the number of channels to the specified value. Additionally, it updates

the first encoder block of the UNet model with the new number of channels. The num_channels property

is useful for handling changes in the number of input channels dynamically, enabling flexibility in adapting

the UNet model to different input configurations.

80

Listing 7 Attention U-Net number of channels property.

139 @property
140 def num_channels(self) -> int:
141 """Get the number of channels.
142 Returns:
143 int: The number of channels.
144 """
145 return self._num_channels
146

147 @num_channels.setter
148 def num_channels(self, num_channels: int, feature: int = 64) -> None:
149 """Set the number of channels.
150 Args:
151 num_channels (int): The number of channels.
152 feature (int, optional): The feature size. Defaults to 64.
153 """
154 self._num_channels = num_channels # Set the number of channels
155 # Update the first encoder block with the new number of channels
156 self.encoder[0] = UNet_Block(in_channels=num_channels, feature=feature)

In order to regulate the training process, a mechanism was implemented within the Segmentation

Network class, as described earlier in the design section. The general fit() method, depicted in Figure

14a, demonstrates the flow of operations involved in training and is presented in Listing 8, where the

underlying logic behind the training process is illustrated.

This initial stage of training takes as input a DataLoader object that contains both the images

and corresponding masks, as well as the specified number of epochs for training. To ensure the proper

functioning of the architecture’s Learning System, the existence of an optimiser and a scheduler is verified.

If these mechanisms are not assigned, an error will be raised, thus ensuring their availability throughout

the training process.

The training process is then carried out for each epoch, iterating over the dataset. At the end of

each epoch, the training results, such as loss values or evaluation metrics, are collected and stored in a

list. This allows for further analysis, storage, or utilisation of these results beyond the immediate training

context.

As one can see, a context is used in Line 05. During the verification stage, some desynchronisation

in the execution of the scheduler step was verified, thus throwing a warning. This warning does not affect

the execution, but for display purposes, it is ignored. The context implementation is depicted in Listing

9, where the decorator @contextlib.contextmanager is used to allow the function to be used as a

context manager.

The with statement is used to create a context where warnings are caught and filtered. It ensures

that any warnings within the indented code block are handled appropriately. The line

warnings.filterwarnings("ignore", category=warning) configures the warnings

module to ignore a specific category of warning. The category parameter is passed as an argument to

81

Listing 8 Segmentation Network fit method.

35 def fit(self, dataloader: DataLoader, epochs: int = 8) -> torch.Tensor:
36 """Fit method for the Segmentation Network Model.
37 Args:
38 dataloader (DataLoader): Dataloader containing image and mask data for training.
39 epochs (int, optional): Number of epochs to train the model. Defaults to 8.
40 Returns:
41 torch.Tensor: Training metrics for the current training.
42 """
43 # Verifies if the model is correctly initialized, as in, if a Learning System is assigned to the

Network
44 assert self.optim is not None and self.scheduler is not None, "No Learning System assigned to the

model"
45 results = [] # List to store the results of each epoch
46 since = time.time() # Time at the start of training
47 for epoch in range(epochs):
48 print(f"Epoch {epoch+1}/{epochs}")
49 epoch_results = self.epoch_train(e_data=dataloader) # Trains the network on the current epoch
50 with ignore_warning(UserWarning): # A UserWarning is sometimes triggered because of

desynchronization, it is not relavant so this context is used to avoid it
51 self.scheduler.step(sum(epoch_results[:, 0]) / len(dataloader)) # Adjusts the learning rate

based on the average loss
52 # Print training metrics for the current epoch
53 print(f"Loss: {sum(epoch_results[:, 0])/len(dataloader)}; Dice score: {sum(epoch_results[:,

1])/len(dataloader)}; Accuracy: {sum(epoch_results[:, 2])/len(dataloader)*100:.2f}%; IoU:
{sum(epoch_results[:, 3])/len(dataloader)}\n")

54 results.append(epoch_results) # Stores the epoch results
55 time_elapsed = time.time() - since # Total training time
56 print(f"Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s")
57 self.prev_training = torch.cat(results, dim=0) # Concatenates the epoch results into a single tensor
58 return self.prev_training # Returns the training metrics for the current training

the ignore_warning function, specifying the type of warning to be ignored. The yield statement is

used as a placeholder for the block of code that will be executed when the context manager is entered.

In this case, it allows the user to execute their desired code within the context where the warning is

ignored. Once the indented block of code is executed, the context manager automatically exits, and any

temporarily ignored warnings are no longer suppressed.

For each epoch of training, the process done is presented in Listing 10 based on what was

described in Figure 14b. The provided code snippet presents a method named epoch_train() within

the SegmentationNetwork class. This method is responsible for training the model on a single

epoch of data. It takes a DataLoader object named e_data as input, which holds the training images

and masks. During each iteration, the method trains on a batch of images and labels, obtained from the

e_data DataLoader. The training metrics for each batch are stored in a tensor called

epoch_metrics, which is concatenated with the metrics from previous batches. At the end, the

method returns the aggregated epoch_metrics tensor, representing the metrics obtained during the

entire epoch of training.

The specific implementation for batch training is depicted in Listing 11, aligning with the previously

discussed design illustrated in Figure 15. To ensure the proper handling of data, specifically the images

82

Listing 9 Ignore Warning context.

68 import contextlib
69

70

71 @contextlib.contextmanager
72 def ignore_warning(warning: Type[Warning]):
73 """Context manager to ignore a specific warning type.
74 Args:
75 warning (Type[Warning]): The type of warning to ignore.
76 """
77 import warnings
78

79 with warnings.catch_warnings(): # Catches all warnings that occur within the context
80 warnings.filterwarnings("ignore", category=warning) # Ignores the specified warning type
81 yield # Yields control back to the caller while ignoring the warning

Listing 10 Segmentation Network epoch training method.

60 def epoch_train(self, e_data: DataLoader) -> torch.Tensor:
61 """Trains in a single epoch of data
62 Args:
63 e_data (DataLoader): holds the training DataLoader, it contains the training images and masks
64 Returns:
65 torch.Tensor: returns the epoch_metrics for training
66 """
67 epoch_metrics = torch.zeros(0, 4, device=self.device) # Initializes an empty tensor to store the

metrics
68 for images, labels in tqdm(e_data, unit=" batch"): # Iterates over the batches of training images and

labels
69 batch_metrics = self.batch_train(b_data_x=images, b_data_y=labels) # Trains on a single batch of

training images and labels
70 epoch_metrics = torch.cat([epoch_metrics, batch_metrics], dim=0) # Concatenates the batch metrics

to the epoch metrics tensor
71 return epoch_metrics

and masks, on the appropriate device (CPU or GPU), Lines 81-82 are utilised. These lines confirm that

the data is correctly placed on the designated device, considering that this system supports both CPU and

GPU utilisation.

Listing 11 Segmentation Network batch training method.

73 def batch_train(self, b_data_x: torch.Tensor, b_data_y: torch.Tensor) -> torch.Tensor:
74 """Trains on a single batch of data
75 Args:
76 b_data_x (torch.Tensor): Image data; b_data_y (torch.Tensor): Mask data
77 Returns:
78 torch.Tensor: Batch training metrics
79 """
80 # Moves the input image data to the device (GPU if available)
81 b_data_x = b_data_x.to(self.device, non_blocking=True)
82 b_data_y = b_data_y.to(self.device, non_blocking=True)

The code snippet in Listing 12 performs a forward pass through the model to obtain predictions

(output) given an input tensor (b_data_x). It then computes the loss between the predictions and the

target mask (b_data_y) using the specified loss function. The autocast context manager in PyTorch

enables automatic mixed precision training by automatically casting computations to a lower-precision data

83

type. It helps reduce memory usage and improve computational efficiency without sacrificing accuracy.

The output is then thresholded using a sigmoid function with a threshold of 0.5 to obtain binary predictions

(predictions).

Next, the code stacks the loss and other calculated metrics into a single tensor (batch_metrics).

The metrics are calculated by calling a private method _calculate_metrics() with the predictions

and target mask as inputs. The loss tensor is detached from the computation graph using detach()

to prevent gradients from flowing back during metric calculation. Finally, the batch metrics tensor is

unsqueesed to add a batch dimension and returned.

Listing 12 Segmentation Network batch training forward with context.

83 with torch.autocast(device_type=self.device.type, dtype=torch.bfloat16, enabled=True): # autocasts to
the specific device type

84 output: torch.Tensor = self.model(b_data_x) # Forward pass: computes the model's output
85 loss: torch.Tensor = self.loss_fn(output, b_data_y) # Computes the loss between the output and

target mask
86 predictions = (torch.sigmoid(output) > 0.5).float() # Applies a threshold to the output to obtain

binary predictions
87 # Stacks the metrics into a single tensor and unsqueezes it to have a batch dimension
88 # Detaches the loss tensor from the computation graph and calculates metrics
89 batch_metrics = torch.stack([loss.detach(), *self._calculate_metrics(predictions, b_data_y)],

dim=0).unsqueeze(0)

The _calculate_metrics function seen in Listing 13 takes predicted masks (preds) and ground

truth masks (masks) as input and calculates several metrics. These metrics include the dice score, mask

accuracy, and intersection over union (IoU) score. The function returns a list of torch Tensors, where

each element represents a specific metric. The metrics are calculated using the corresponding functions

dice_score(), mask_accuracy(), and iou_score() from the LearningSystem class and will

be discussed further in this chapter.

Listing 13 Segmentation Network batch training metrics.

100 def _calculate_metrics(self, preds: torch.Tensor, masks: torch.Tensor) -> list[torch.Tensor]:
101 """Calculates various metrics based on the predicted masks and ground truth masks.
102 Args:
103 preds (torch.Tensor): Predicted masks.
104 masks (torch.Tensor): Ground truth masks.
105 Returns:
106 list[torch.Tensor]: List of metrics including dice score, mask accuracy, and intersection over

union (IoU) score.
107 """
108 return [
109 LearningSystem.dice_score(preds, masks), # Calculate the dice score metric
110 LearningSystem.mask_accuracy(preds, masks), # Calculate the mask accuracy metric
111 LearningSystem.iou_score(preds, masks), # Calculate the intersection over union (IoU) score

metric
112]

Between Line 90-98 from Listing 14, the provided code snippet involves a conditional block that

handles the backpropagation and optimisation step during the training process. If the self.scaler

84

object exists, it implies that automatic mixed-precision training is enabled. In this case, the loss value

(loss) is scaled using the self.scaler.scale method, followed by the backward pass

(backward()) to compute gradients. Then, the optimiser (self.optim) performs a step based on

the scaled gradients using the self.scaler.step method. Finally, the self.scaler.update

method updates the scaling factor for future iterations. On the other hand, if the self.scaler object

does not exist, indicating that mixed-precision training is not enabled, the backward pass is performed

directly on the loss value (loss.backward()). Then, the optimiser (self.optim) performs a step

based on the gradients. In both cases, the batch_metrics tensor is returned as the output of this

code snippet, which contains the computed metrics for the batch, concluding the training for the specific

batch of data.

Listing 14 Segmentation Network batch training backward pass and performance updates.

90 self.optim.zero_grad(set_to_none=True) # Clears the gradients of the optimizer
91 if self.scaler:
92 self.scaler.scale(loss).backward() # Backward pass: computes the gradients using automatic mixed

precision (if enabled)
93 self.scaler.step(self.optim) # Updates the model's parameters using the optimizer (scaled

gradients)
94 self.scaler.update() # Updates the scale for automatic mixed precision
95 else:
96 loss.backward() # Backward pass: computes the gradients
97 self.optim.step() # Updates the model's parameters using the optimizer (un-scaled gradients)
98 return batch_metrics # Returns the batch training metrics

The forward pass of the segmentation model, described in Listing 15, takes an input tensor X and

moves it to the specified device (GPU if available). It creates a clone of the input tensor X_skip for later

multiplication. The input tensor X is then passed through the model, computing the model’s output. To

ensure that the output values are between 0 and 1, element-wise clamping and rounding are applied.

Finally, the output tensor is obtained by performing element-wise multiplication between the processed

output tensor and the cloned input tensor.

Listing 15 Segmentation Network forward method.

114 def forward(self, X: torch.Tensor) -> torch.Tensor:
115 """Forward pass of the model
116 Args:
117 X (torch.Tensor): Input tensor
118 Returns:
119 torch.Tensor: Output tensor
120 """
121 X = X.to(self.device) # Moves the input tensor to the device (GPU if available)
122 X_skip = X.clone() # Creates a clone of the input tensor for later multiplication
123 X = self.model(X) # Forward pass: computes the model's output
124 X = torch.clamp(X, min=0, max=1).round() # Applies element-wise clamping and rounding to ensure

values are between 0 and 1
125 return X * X_skip # Element-wise multiplication of the output tensor and the cloned input tensor

85

b) Classification Network

Following the Segmentation Network in this architecture’s pipeline is the Classification Network.

Code Listing 16 implements the initialisation function as described in the UML diagram in Figure 13.

The ClassificationNetwork class includes a dictionary called network_types that stores

lambda functions as values. These lambda functions generate distinct ResNet network architectures

(e.g., ResNet50, ResNet101, ResNet152) based on the provided number of classes. During initialisation,

the class selects the appropriate lambda function from the network_types dictionary based on the

specified network type, enabling the creation of the corresponding ResNet network architecture.

Furthermore, the class configures essential components like the loss function, optimiser, scheduler, and

gradient scaler. Additionally, it supports the utilisation of a pre-trained segmentation model.

Listing 16 Classification Network __init__function.

11 class ClassificationNetwork(nn.Module):
12 network_types = {
13 "resnet50": lambda num_classes: ResNet(ResNet.ResNet50_LAYERS, num_classes=num_classes),
14 "resnet101": lambda num_classes: ResNet(ResNet.ResNet101_LAYERS, num_classes=num_classes),
15 "resnet152": lambda num_classes: ResNet(ResNet.ResNet152_LAYERS, num_classes=num_classes),
16 }
17

18 def __init__(
19 self,
20 num_classes: int,
21 net_type: str,
22 segmenter: nn.Module = None,
23 device: torch.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
24) -> None:
25 """Classification Network model.
26 Args:
27 num_classes (int): Number of output classes.
28 net_type (str, optional): Network type. Defaults to "resnet50".
29 device (str, optional): Device to be used (cuda or cpu). Defaults to cuda:0 if available,

otherwise cpu.
30 segmenter (nn.Module, optional): Previously trained segmentation model. Defaults to None.
31 """
32 super(ClassificationNetwork, self).__init__()
33 self.device = device
34 # Checks if the network string is a valid implemented ones
35 if net_type not in ClassificationNetwork.network_types.keys():
36 raise RuntimeError("Invalid network type")
37 self.model = ClassificationNetwork.network_types[net_type](num_classes) # Instantiates the chosen

network type
38 self.loss_fn = nn.BCEWithLogitsLoss() # Binary cross-entropy loss function
39 # optimizer and scheduler are started in the Learning System
40 self.optim: torch.optim.SGD = None # Placeholder for the optimizer
41 self.scheduler: torch.optim.lr_scheduler.StepLR = None # Placeholder for the learning rate

scheduler
42 # scaler used when CUDA is available
43 self.scaler = torch.cuda.amp.GradScaler() if torch.cuda.is_available() else None # GradScaler for

mixed precision training
44 self.prev_training: torch.Tensor = None # tensor to hold previous training metrics
45 # The classification network makes use of a previously trained segmentation model
46 self.segmenter = segmenter # Segmentation model used for pre-processing
47 self.to(self.device) # Sends the module to CUDA or keeps it on the CPU

Delving into the ResNet network-specific implementation, it is possible to define a general block

86

within this network architecture called ResBlock. This block is responsible for processing the input and

producing the desired output. The ResBlock class is also a subclass of nn.Module from the

PyTorch framework. Within its __init__() method as seen in Listing 17, parameters such as the

number of input channels (in_channels), the number of output channels (out_channels), an

optional downsampling block (i_downsample), and the stride size (stride) are taken. This blocks

structure is implemented according to the designed block structure presented in Figure 12.

Listing 17 ResBlock __init__function.

6 class ResBlock(nn.Module):
7 # For a ResNet architecture, the expansion (relation between the number of input
8 # channels in a block vs the number of output channels of that block is '4')
9 expansion = 4

10

11 def __init__(self, in_channels: int, out_channels: int, i_downsample: ResBlock = None, stride: int =
1) -> None:

12 """ResNet block definition
13 Args:
14 in_channels (int): input channels
15 out_channels (int): output channels
16 i_downsample (_type_, optional): donwsampling block. Defaults to None.
17 stride (int, optional): stride size. Defaults to 1.
18 """
19 super(ResBlock, self).__init__()
20 # Define the convolutional layers
21 self.conv = nn.Sequential(
22 nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1,

padding=0, bias=False),
23 nn.BatchNorm2d(num_features=out_channels),
24 nn.ReLU(inplace=True),
25 nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=stride,

padding=1),
26 nn.BatchNorm2d(num_features=out_channels),
27 nn.ReLU(inplace=True),
28 nn.Conv2d(in_channels=out_channels, out_channels=(out_channels * self.expansion),

kernel_size=1, stride=1, padding=0),
29 nn.BatchNorm2d(num_features=(out_channels * self.expansion)),
30)
31 self.i_downsample = i_downsample # Store the value of i_downsample for downsampling
32 self.relu = nn.ReLU(inplace=True) # ReLU activation for the residual connection

Inside the __init__() method, the block’s operations are defined using a nn.Sequential

container. It consists of convolutional layers, batch normalisation layers, and ReLU activation functions,

similar to what was seen in Figure 12. The first convolutional layer performs a 1x1 convolution on the

input data, followed by batch normalisation and ReLU activation. The second convolutional layer applies

a 3x3 convolution with a specified stride, padding, and output channels. Another batch normalisation

and ReLU activation follow it. The third convolutional layer employs a 1x1 convolution to adjust the

number of output channels based on the expansion factor, which is set to 4 in ResNet

((out_channels * self.expansion)). Batch normalisation is applied again after this layer.

The i_downsample attribute holds an optional downsampling block, allowing for downsampled

connections within the block. Lastly, the relu attribute represents an additional ReLU activation

87

function used within the block, as seen in Listing 18. This code block represents the forward()

function of the ResBlock class and it’s sequential processing.

Listing 18 ResBlock forward function.

34 def forward(self, X: torch.Tensor) -> torch.Tensor:
35 """Forward method for the ResNet block
36 Args:
37 X (torch.Tensor): Input tensor
38 Returns:
39 torch.Tensor: Output tensor
40 """
41 X_skip = X.clone() # Create a copy of the input tensor for the skip connection
42 X = self.conv(X) # Pass the input tensor through the convolutional
43 # Apply downsampling to the skip connection if i_downsample is not None
44 if self.i_downsample is not None:
45 X_skip = self.i_downsample(X_skip)
46 X = X + X_skip # Add the convolved tensor and the skip connection tensor
47 return self.relu(X) # Apply ReLU activation to the combined tensor and return the result

The ResNet creation function (Listing 19), represented by the ResNet class, constructs a ResNet

network architecture with a specified number of layers, following the structure presented in Figure 11.

It utilises a _make_layer function to create the desired layer blocks based on the given number of

layers for each filter size. The architecture includes an initial input block, a sequence of layer blocks, and

concludes with a fully connected layer (nn.Linear) for classification, where the number of input features

is determined by the expansion factor of the last ResNet block (512 * ResBlock.expansion) and

the number of output classes specified.

The _make_layer function shown in Listing 20 creates a feature layer within the ResNet

architecture. It takes the number of total blocks in the layer (res_blocks), the number of filters for the

blocks (filters), and an optional stride size (stride) as inputs. The function begins by initialising a

variable ii_downsample to track whether downsampling is required. It then creates an empty

nn.ModuleList() named layers to store the individual blocks in the layer.

The function checks if downsampling is needed by comparing the stride and the number of input

channels (self.in_channels) with the appropriate values. If downsampling is necessary, it creates a

downsampling block (ii_downsample) consisting of a 1x1 convolutional layer and batch normalisation.

After that, the _make_layer function includes the first block of the layer by creating an instance of the

ResBlock class. The self.in_channels determines the number of input channels, the number of

output channels is set to filters, the downsampling block is assigned to ii_downsample, and the

stride value is set to stride.

The function then updates the number of input channels (self.in_channels) by multiplying the

filters by the expansion factor of the ResBlock class (ResBlock.expansion), which is always 4 for

88

Listing 19 ResNet network initialisation.

50 class ResNet(nn.Module):
51 ResNet50_LAYERS = [3, 4, 6, 3]
52 ResNet101_LAYERS = [3, 4, 23, 3]
53 ResNet152_LAYERS = [3, 8, 36, 3]
54

55 def __init__(self, res_layers: list, num_classes: int, num_channels: int = 3) -> None:
56 """ResNet initialization
57 Args:
58 res_layers (list): list with the number of layers for each filter size in the network
59 num_classes (int): number of output classes
60 num_channels (int, optional): channels of the image (3 if 'RGB', 1 if 'Grayscale'). Defaults

to 1.
61 """
62 super(ResNet, self).__init__()
63 self._num_channels = num_channels
64 self._num_classes = num_classes
65 self.in_channels: int = 64 # Initial number of channels
66 # Input layer: Convolution, BatchNorm, ReLU, and MaxPool
67 self.input = nn.Sequential(
68 nn.Conv2d(in_channels=num_channels, out_channels=self.in_channels, kernel_size=7, stride=2,

padding=3, bias=False),
69 nn.BatchNorm2d(64),
70 nn.ReLU(inplace=True),
71 nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
72)
73 # List of residual layers
74 self.network = nn.ModuleList(
75 [
76 self._make_layer(res_layers[0], 64),
77 self._make_layer(res_layers[1], 128, stride=2),
78 self._make_layer(res_layers[2], 256, stride=2),
79 self._make_layer(res_layers[3], 512, stride=2),
80]
81)
82 self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # Adaptive average pooling layer
83 self.fc = nn.Linear(in_features=(512 * ResBlock.expansion), out_features=num_classes) # Fully

connected layer for classification

the ResNet models used (ResNet50, ResNet101, ResNet152). Finally, the remaining residual blocks

are added to the layers list using a loop that iterates res_blocks - 1 time. Each iteration creates a

ResBlock with the updated input channels (self.in_channels) and the filters specified.

The forward() function, as depicted in Listing 21, defines the forward pass of the ResNet classifier.

The function takes an input tensor X and applies initial layers to preprocess the input. It then iterates

through each layer in the network, passing the input tensor through them. After the layers, adaptive

average pooling is applied to the tensor. The tensor is then reshaped into a 2D shape to be fed into the

fully connected layer for classification. Finally, the output of the fully connected layer is returned as the

result of the forward pass. The final version of this method will be further discussed in the Storage System

section since this is the function responsible for triggering node connection in memory, as described

previously during the design.

The ResNet network, like the AttentionUNet implementation, supports changes in the number of input

channels. In Listing 22, the code demonstrates how the input layer is redefined to accommodate the

89

Listing 20 ResNet network layer creation function.

135 def _make_layer(self, res_blocks: int, filters: int, stride: int = 1) -> nn.Sequential:
136 """Makes a feature layer
137 Args:
138 res_blocks (int): number of total blocks in the layer (1 full block and res_blocks-1 of residual

blocks)
139 filters (int): number of filters for the blocks in the layer
140 stride (int, optional): stride size. Defaults to 1.
141 Returns:
142 nn.Sequential: specified layer
143 """
144 ii_downsample: ResBlock = None
145 layers = nn.ModuleList()
146 # Check if downsampling is needed
147 if stride != 1 or self.in_channels != filters * ResBlock.expansion:
148 # Create downsampling layer using 1x1 convolution and BatchNorm
149 ii_downsample = nn.Sequential(
150 nn.Conv2d(in_channels=self.in_channels, out_channels=(filters * ResBlock.expansion),

kernel_size=1, stride=stride),
151 nn.BatchNorm2d(num_features=(filters * ResBlock.expansion)),
152)
153 # Create the first residual block and add it to the layers
154 layers.append(ResBlock(self.in_channels, out_channels=filters, i_downsample=ii_downsample,

stride=stride))
155 self.in_channels = filters * ResBlock.expansion # Update the number of input channels for the

remaining blocks
156 # Adds the remaining residual blocks to the network
157 layers.extend([ResBlock(self.in_channels, filters) for _ in range(res_blocks - 1)])
158 return nn.Sequential(*layers) # Return the sequential module containing all the layers

Listing 21 ResNet network forward function.

119 def forward(self, X: torch.Tensor) -> torch.Tensor:
120 """Forward pass of the network.
121 Args:
122 X (torch.Tensor): Input tensor.
123 Returns:
124 torch.Tensor: Output tensor after passing through the network.
125 """
126 X = self.input(X) # Pass the input through the initial layers
127 # Pass the input through each layer in the network
128 for layer in self.network:
129 X: torch.Tensor = layer(X)
130 X = self.avgpool(X) # Apply adaptive average pooling
131 X = X.reshape(X.shape[0], -1) # Reshape the tensor to a 2D shape for the fully connected layer
132 # Pass the reshaped tensor through the fully connected layer for classification
133 return self.fc(X)

desired number of channels. The num_channels property retrieves the current number of channels,

and the corresponding setter method updates both the _num_channels attribute and the input layer

with the specified number of channels. This flexibility allows the ResNet network to adapt to different input

channel configurations easily.

Additionally, the ResNet network also provides the ability to adjust the number of classes it can

classify. The code shown in Listing 23 demonstrates how the num_classes property allows retrieval

and modification of the current number of classes. When the number of classes is changed, the

corresponding setter method updates both the _num_classes attribute and the fully connected layer

of the network. By doing so, the ResNet network can dynamically adapt to different classification tasks

90

Listing 22 ResNet network number of channels property.

85 @property
86 def num_channels(self) -> int:
87 """Get the number of channels.
88 Returns:
89 int: The number of channels.
90 """
91 return self._num_channels
92

93 @num_channels.setter
94 def num_channels(self, num_channels: int) -> None:
95 """Set the number of channels.
96 Args:
97 num_channels (int): The number of channels.
98 """
99 self._num_channels = num_channels # Set the number of channels

100 self.input[0] = nn.Conv2d(in_channels=num_channels, out_channels=64, kernel_size=7, stride=2,
padding=3, bias=False) # Replace the input layer with the given number of channels

with varying numbers of classes.

Listing 23 ResNet network number of classes property.

102 @property
103 def num_classes(self) -> int:
104 """Get the number of classes.
105 Returns:
106 int: The number of classes.
107 """
108 return self._num_classes
109

110 @num_classes.setter
111 def num_classes(self, num_classes: int) -> None:
112 """Set the number of classes.
113 Args:
114 num_classes (int): The number of classes.
115 """
116 self._num_classes = num_classes # Set the number of classes
117 self.fc = nn.Linear(in_features=(512 * ResBlock.expansion), out_features=num_classes) # Update the

fully connected layer with the new number of classes

The code implemented to regulate the training for this neural network structure is similar to the

previously presented for the Segmentation Network in Listings 8, 10 and 11 with slight differences only in

the batch_train() method. In the case of the Classification Network, it is possible to use a previously

trained segmentation model to isolate the foreground from the background for incoming images, thus

facilitating the classification process. This is evident in Listing 24 where if the self.segmenter

attribute is not None, indicating that a segmentation model is available, the input data b_data_x is

passed through the segmentation model. This is done using a with torch.no_grad() block, which

disables gradient computation for memory efficiency. Additionally, the metrics employed to train the

neural network are also different, as seen from the _calculate_metrics() method in Listing 25.

The forward() function of as seen in Listing 26 the classifier takes an input tensor X and returns

the output tensor. The function first moves the input tensor to the specified device and then checks if

91

Listing 24 Classification Network training using segmentation.

90 if self.segmenter: # forwards the segmentation model if available
91 with torch.no_grad(): # avoid the computation of gradients
92 b_data_x = self.segmenter(b_data_x)

Listing 25 Classification Network training metrics calculation.

109 def _calculate_metrics(self, preds: torch.Tensor, labels: torch.Tensor) -> list[torch.Tensor]:
110 """Calculates various performance metrics based on the predicted values and the ground truth labels.
111 Args:
112 preds (torch.Tensor): Predicted values.
113 labels (torch.Tensor): Ground truth labels.
114 Returns:
115 list[torch.Tensor]: List of performance metrics, including class accuracy, precision, recall, F1

score, and Matthews correlation coefficient (MCC).
116 """
117 _conf_matrix: torch.Tensor = LearningSystem.confusion_matrix(preds, labels) # Compute confusion

matrix
118 return [
119 LearningSystem.class_accuracy(_conf_matrix).mean(), # Calculate mean class accuracy
120 LearningSystem.precision(_conf_matrix).mean(), # Calculate mean precision
121 LearningSystem.recall(_conf_matrix).mean(), # Calculate mean recall
122 LearningSystem.f1_score(_conf_matrix).mean(), # Calculate mean F1 score
123 LearningSystem.mcc(_conf_matrix).mean(), # Calculate mean Matthews correlation coefficient (MCC)
124]

a segmenter is available. If a segmenter is present, it applies segmentation to the input tensor before

passing it through the classifier’s model. The function then returns the output tensor obtained from the

model.

Listing 26 Classification Network forward method.

126 def forward(self, X: torch.Tensor) -> torch.Tensor:
127 """Classification network forward method
128 Args:
129 X (torch.Tensor): Input tensor
130 Returns:
131 torch.Tensor: Output tensor
132 """
133 X = X.to(self.device) # Move input tensor to the specified device
134 # Check if a segmenter is available and apply segmentation
135 if self.segmenter:
136 X = self.segmenter(X)
137 return self.model(X) # Pass the segmented tensor through the model and return the result

It is now possible to define the full Bottom Level structure, following the code in Listing 27. It

initialises an instance of ClassificationNetwork and SegmentationNetwork with the

appropriate arguments, such as the number of classes, whether attention is used, the type of network

architecture. The use_segmentation parameter controls the usage of segmentation. If segmentation

is enabled, the segmenter instance is assigned to the segmenter attribute of the

ClassificationNetwork. Finally, the module is sent to the specified device using the to()

method.

92

Listing 27 Bottom Level __init__function.

11 class BottomLevel(object):
12 def __init__(self, num_classes: int, attention: bool, net_type: str, use_segmentation: bool) -> None:
13 """Bottom level interface constructor
14 Args:
15 num_classes (int): number of classification classes
16 attention (bool, optional): if the segmentation will use attention. Defaults to True.
17 net_type (str, optional): name of the network. Defaults to "resnet50".
18 use_segmentation (bool, optional): if the classifier will use segmentation. Defaults to True.
19 """
20 # Initialize the classifier network
21 self.classifier = ClassificationNetwork(num_classes=num_classes, net_type=net_type)
22 self.segmenter = SegmentationNetwork(attention=attention) # Initialize the segmentation network
23 self._use_segmentation = use_segmentation
24 if self._use_segmentation:
25 # Connect the segmentation network to the classifier if segmentation is enabled
26 self.classifier.segmenter = self.segmenter

In order to provide a higher level of abstraction in the training process of the bottom level, the

fit() method is implemented as seen in Listing 28. This method allows for training both the

segmentation and classification tasks. The method takes two optional arguments: segmentation and

classification, which are tuples containing the DataLoader and the number of epochs for

training each task. If the segmentation argument is provided, the segmenter is trained using the

specified data and number of epochs. Similarly, if the classification argument is provided, the

classifier is trained using the specified data and number of epochs. The method also checks if

segmentation is enabled and whether the segmenter has been previously trained. If segmentation is

enabled but no previous training has been found, a warning is issued to alert the user about this

mismatch.

Since the Bottom-Level has a direct connection with the Top-Level of the Computation System, the

forward() method of this module (Listing 29) was adapted to support two types of data structures

commonly used at this stage. To achieve this, and as a mechanism to overload functions or methods

in Python, the decorator @singledispatchmethod was employed to have the same method behave

differently depending on the data type received.

@singledispatchmethod is a decorator in Python’s functools module used to define a single-

dispatch generic function in a class. It allows you to define multiple methods with the same name in a

class, where each method handles a specific type of the first argument. When invoking the method, the

appropriate implementation is automatically selected based on the type of the argument. It simplifies the

implementation of polymorphic behaviour in a class by dispatching the method based on the argument’s

type.

The forward method is initially defined to handle a single input tensor X and return a tensor after

passing it through the segmentation and classification models. However, by using the

93

Listing 28 Bottom Level fit method.

50 def fit(self, segmentation: Tuple[DataLoader, int] = None, classification: Tuple[DataLoader, int] =
None):

51 """Trains the BottomLevel model. Can be used for both segmentation and classification.
52 The training can be done for both segmentation and classification.
53 Args:
54 segmentation (Tuple[DataLoader, int], optional): segmentation tuple with the DataLoader and the

number of epochs for training. Defaults to None.
55 classification (Tuple[DataLoader, int], optional): classification tuple with the DataLoader and

the number of epochs for training. Defaults to None.
56 use_segmentation (bool, optional): enables if the classification network will use segmentation as

a pre-processor for it's data. Defaults to True.
57 """
58 if segmentation:
59 segmentation_data, seg_epochs = segmentation
60 assert isinstance(segmentation_data, DataLoader) and isinstance(seg_epochs, int)
61 if classification:
62 classification_data, class_epochs = classification
63 assert isinstance(classification_data, DataLoader) and isinstance(class_epochs, int)
64 # Perform segmentation training if specified
65 if segmentation:
66 self.segmenter.fit(segmentation_data, epochs=seg_epochs)
67 # Check if segmentation is enabled but no previous training is found
68 if self.use_segmentation and self.segmenter.prev_training is None:
69 warnings.warn("Segmentation is enabled but no previous training was found.")
70 # Perform classification training if specified
71 if classification:
72 self.classifier.fit(classification_data, epochs=class_epochs)

@forward.register decorator, an additional implementation of the forward method is defined to

handle input of type DataLoader. When the forward() method is called with an argument of type

DataLoader, the registered implementation is automatically invoked. Inside this implementation, it

iterates over the batches of the DataLoader, passes each batch through the segmentation and

classification models, and compiles the probabilities and labels. The final output is a tuple containing the

concatenated probabilities and labels, to be used by the Top-Level in it’s processing.

Listing 29 Bottom Level foward overloaded methods.

78 @singledispatchmethod
79 def forward(self, X: torch.Tensor) -> torch.Tensor:
80 # Check if segmentation is enabled but no previous training was found
81 if self.use_segmentation and self.segmenter.prev_training is None:
82 warnings.warn("Segmentation is enabled but no previous training was found.")
83 # Check if classifier training is available
84 if self.classifier.prev_training is None:
85 warnings.warn("No Classifier training is available.")
86 X = self.classifier(X) # Apply classification to the input tensor
87 X = torch.softmax(X, dim=1) # Convert output scores to probabilities using softmax
88 return X # Return the processed tensor
89

90 @forward.register
91 def _(self, X: DataLoader) -> Tuple[torch.Tensor, torch.Tensor]:
92 # Iterate over batches and compile probabilities
93 X_probs, y_labels = zip(*[(self(X_data), y_true) for X_data, y_true in tqdm(X, desc="Compiling

probabilities...")])
94 # Concatenate the collected probabilities and labels
95 X_probs = torch.cat(X_probs, dim=0)
96 y_labels = torch.cat(y_labels, dim=0)
97 return X_probs, y_labels # Return the compiled probabilities and labels

94

4.1.2 Top-Level Subsystem

This subsection provides a detailed exploration of the implementation of Decision Forests and Decision

Trees. Decision Forests, regarded as an ensemble learning technique, employ the collective intelligence of

multiple Decision Trees to achieve precise predictions. The induction mechanism of these algorithms relies

on the probabilities derived from the bottom-level, resulting in an enhanced overall predictive performance.

By examining the code and underlying principles, valuable insights into the intricate workings of Decision

Forests and Decision Trees can be gained, elucidating their effectiveness in addressing complex learning

tasks through collaborative decision-making.

Starting with the Decision Forest implementation, the code in Listing 30 showcases the __init__()

function of the DecisionForest class. This function is responsible for creating an instance of the

Decision Forest. It takes two optional parameters: min_samples_split, which specifies the minimum

number of samples required for a split during tree building, and max_depth, which defines the maximum

depth that the Decision Trees within the forest can reach. Setting max_depth to None implies no depth

limit.

Listing 30 Decision Forest __init__function.

7 class DecisionForest:
8 def __init__(self, min_samples_split: int, max_depth: int) -> None:
9 """Create a DecisionForest, the parameters are used in the decision tree building

10 Args:
11 min_samples_split (int, optional): Minumum number of samples per split. Defaults to 10.
12 max_depth (int, optional): maximum depth the Decision Trees can reach, None mean no cap.

Defaults to None.
13 """
14 self.max_depth = max_depth # maximum depth the Decision Trees can reach
15 self.min_samples_split = min_samples_split # minimuym number of samples to split
16 self.dts: list[DecisionTree] = [] # list to hold the decision trees

Furthermore, the generation of the Decision Forest using Decision Trees can be observed in the

fit() method, as seen in Listing 31. This method takes as input the feature matrix X_data and the

corresponding target vector y_data, ensuring that their shapes are compatible. To parallelise the

process, a multiprocessing pool is then created using mp.Pool(num_processes), where

num_processes represents the number of CPU cores, determined using the mp.cpu_count()

function from the multiprocessing module. The map function is used to distribute the workload

across multiple processes. The auxiliary method _create_dt() defined in Listing 32 is invoked within

the map function, passing a set of arguments for each Decision Tree in the forest. These arguments

consist of the index, the feature matrix, a specific column of the target vector, the

min_samples_split, and the max_depth.

95

Listing 31 Decision Forest fit function.

18 def fit(self, X_data: np.ndarray, y_data: np.ndarray):
19 """Fit method for the decision forest, to create decision trees
20 Args:
21 X_data (np.ndarray), y_data (np.ndarray)
22 """
23 assert X_data.shape == y_data.shape # verifies that the data has the same number of instances and

features
24 num_processes = mp.cpu_count() # number of processes the cpu is capable of running simultaneously
25 pool = mp.Pool(num_processes)
26 self.dts = pool.map(
27 self._create_dt,
28 [(i, X_data, column, self.min_samples_split, self.max_depth) for i, column in

enumerate(y_data.T)],
29) # splits the data into columns, each column generating a process to create a decision tree
30 pool.close() # indicates that no more tasks will be added to the pool
31 pool.join() # waits for all the processes in the pool to finish their execution

Listing 32 Decision Forest auxiliary tree creation function.

47 @staticmethod
48 def _create_dt(args: Tuple[np.ndarray, np.ndarray, int, int]) -> DecisionTree:
49 """Auxiliary function to create a new decision tree
50 Args:
51 args (Tuple[np.ndarray, np.ndarray, int, int]): Collection of arguments
52 Returns:
53 DecisionTree: generated decision tree
54 """
55 i, X, column, min_samples_split, max_depth = args # retrieves the arguments
56 print(f"Building DecisionTree on class {i}")
57 # Creates a DecisionTree instance from the arguments
58 dt = DecisionTree(min_samples_split=min_samples_split, max_depth=max_depth)
59 dt.fit(X, column) # Fit the decision tree
60 return dt # Returns the constructed decision tree

The _create_dt() is a static method decorated with the @staticmethod decorator. The static

method is advantageous in this scenario as it can be executed independently within a parallelised context

without relying on the instance or any shared state.

Once all the Decision Trees have been called to generate, the pool of processes is closed using

pool.close(), and the program waits for all the processes to complete using pool.join(). The

resulting Decision Trees are stored in the self.dts attribute of the Decision Forest. This mechanism

allows for efficient and parallelised construction of the Decision Forest, leveraging the collective intelligence

of multiple Decision Trees to achieve accurate predictions.

Similarly, the prediction process in the Decision Forest is parallelised using multiple processes as

seen in Listing 33. In the call method, a multiprocessing pool is created to distribute the prediction task

among the trained Decision Trees. The _predict_dt()method in Listing 34 is called for each Decision

Tree, where it performs the prediction using the feature matrix. The results are collected and returned as

a numpy array, providing efficient and collective predictions from the Decision Forest.

Before moving to the implementation of the Decision Tree class, it is essential to understand the

96

Listing 33 Decision Forest parallelised prediction.

33 def __call__(self, X: np.ndarray) -> np.ndarray:
34 """Forward method for the decision forest
35 Args:
36 X (np.ndarray): feature array
37 Returns:
38 np.ndarray: array of predicted labels
39 """
40 num_processes = mp.cpu_count()
41 pool = mp.Pool(num_processes)
42 preds = pool.map(self._predict_dt, [(dt, X) for dt in self.dts]) # predicts for each of the decision

tree
43 pool.close() # waits for the process to finish
44 pool.join()
45 return np.array(preds).T # returns the predictions array, in a list wise shape

Listing 34 Decision Forest prediction function for each Decision Tree.

62 @staticmethod
63 def _predict_dt(args: Tuple[DecisionTree, np.ndarray]) -> np.ndarray:
64 """Auxiliary function to predict from a decision tree
65 Args:
66 args (Tuple[np.ndarray, np.ndarray, int, int]): Collection of arguments
67 Returns:
68 np.ndarray: predicted from the decision tree
69 """
70 dt, X = args # gets the decision tree argument and the feature array
71 return dt(X) # call predict, same as forward methods for neural networks

fundamental building blocks that comprise the structure of the tree. These building blocks, known as

nodes, play a crucial role in the decision-making process of the tree. The DecisionNode presented in

Listing 35 represents an internal node in the tree. It contains crucial information such as the splitting

criteria, which determines how the tree branches out at that node. Additionally, the DecisionNode

holds references to its left and right child nodes, indicating the subsequent branches in the tree. Each

DecisionNode also keeps track of the number of samples associated with it, providing insights into the

data distribution at that specific point in the tree.

Listing 35 Decision Node for Decision Tree building.

5 class DecisionNode:
6 _id: int = 1
7

8 def __init__(self, split_data: SplitNode, left: Union[DecisionNode, LeafNode], right:
Union[DecisionNode, LeafNode], num_samples: int) -> None:

9 self.split_data = split_data
10 self.left = left
11 self.right = right
12 self.num_samples = num_samples
13 self.id: int = DecisionNode._id
14 DecisionNode._id += 1

On the other hand, the LeafNode in Listing 36 serves as a terminal or leaf in the Decision Tree. It

signifies the endpoint of a particular branch and carries a label assigned to it. The label in the LeafNode

97

represents the predicted class or outcome associated with the samples that reach that leaf. Similar to

the DecisionNode, the LeafNode also stores the number of samples it represents, offering valuable

information about the data distribution at the leaf level.

Listing 36 Leaf Node for Decision Tree building.

17 class LeafNode:
18 _id: int = 1
19

20 def __init__(self, label: int, num_samples: int) -> None:
21 self.label = label
22 self.num_samples = num_samples
23 self.id: int = LeafNode._id
24 LeafNode._id += 1

Additionally, the SplitNode (Listing 37) is a specialised data structure used to store the information

related to a split in the Decision Tree. It is implemented as a TypedDict, a dictionary subclass introduced

in Python that provides type hints for the keys and their associated values. The SplitNode includes

the feature index, indicating the feature used for the split, the threshold value representing the decision

boundary, and the metric gain, which quantifies the improvement achieved by the split. The usage of a

TypedDict in this context ensures type safety and provides clarity about the expected structure of the

split data.

Listing 37 Split Node with the best split at a certain stage of the Decision Tree building.

27 class SplitNode(TypedDict):
28 feature_index: int
29 threshold: float
30 metric_gain: float

Having defined the nodes that the tree will encompass, the decision tree’s construction process can

now be explained. It begins with the initialisation method,__init__() in Listing 38, of the

DecisionTree class. This method sets up various attributes of the decision tree. The root attribute

represents the tree’s root node, initially set to None as no tree has been constructed yet. The

lowest_depth attribute tracks the lowest depth achieved by the tree during construction.

The stopping conditions of the decision tree construction are also specified. The

min_samples_split parameter determines the minimum number of samples to split at a node. If

the number of samples is below this threshold, further splitting is halted, and a leaf node is created. The

max_depth parameter defines the maximum depth that the decision tree can reach. If the depth

exceeds this limit, the construction process stops, and leaf nodes are created. Additionally, the METRIC

dictionary is defined, which associates different metrics for evaluating the quality of splits.

98

Listing 38 Decision Tree __init__function.

56 class DecisionTree:
57 METRIC = {"info_gain": info_gain, "info_gain_ratio": info_gain_ratio}
58

59 def __init__(self, min_samples_split: int, max_depth: int) -> None:
60 """Initializes a decision tree with the specified parameters.
61 Args:
62 min_samples_split (int): The minimum number of samples required to split a node.
63 max_depth (int): The maximum depth of the decision tree.
64 """
65 self.root: Union[LeafNode, DecisionNode] = None # root node of the tree, initialy a None since no

tree was built yet
66 self.lowest_depth = 0 # lowest depth achieved by the tree during the construction process
67 # Stopping conditions
68 self.min_samples_split = min_samples_split
69 self.max_depth = max_depth

These metrics, namely information gain and information gain ratio, serve as evaluators for assessing

the performance of splits in the decision tree. They rely on the concept of entropy, which plays a

fundamental role in quantifying the impurity or disorder in a set of labels. Entropy can be defined as the

measure of uncertainty or randomness in the distribution of labels within a subset.

To calculate the entropy of a given subset of labels, the entropy() function is utilised. This function

takes in a numpy array of labels and performs the following steps: First, it calculates the total count of each

class by utilising the np.unique function. Then, it computes the probability of each class by dividing the

class counts by the total number of labels. Finally, the entropy is calculated by taking the negative sum of

the element-wise product of the normalised class probabilities and their logarithms base 2. This process

is seen in the code segment in Listing 39.

Listing 39 Entropy metric calculation.

7 def entropy(labels: np.ndarray):
8 """Calculate the entropy for a given subset of labels
9 Args:

10 labels (np.ndarray): subset of labels
11 Returns:
12 np.ndarray: entropy of the given labels
13 """
14 _, counts = np.unique(labels, return_counts=True) # calculate total count of each class
15 norm_counts = counts / len(labels) # calculate the probability of each class
16 return -np.sum(norm_counts * np.log2(norm_counts)) # calculate the probability of each class

The info_gain() function in Listing 40 takes three numpy arrays as input: the parent label array

(labels), the labels corresponding to the left branch obtained from thresholding a feature

(left_labels), and the labels corresponding to the right branch obtained from the same thresholding

(right_labels). This threshold process is better described ahead when explaining the splitting

function during the decision tree construction.

To calculate the information gain, the function first computes the entropy of the parent labels by

99

invoking the entropy() function. It then subtracts from the parent entropy the weighted sum of the

entropies of the left and right branches. The weights are determined by the ratios of the number of

samples in each branch to the total number of samples in the parent.

The resulting information gain reflects the reduction in entropy achieved by the split. A higher

information gain indicates that the split effectively separates the data into more homogeneous subsets,

which is desirable for building an accurate decision tree model.

Listing 40 Information Gain calculation.

19 def info_gain(labels: np.ndarray, left_labels: np.ndarray, right_labels: np.ndarray) -> float:
20 """Info gain for splitting the labels into two branches
21 Args:
22 labels (np.ndarray): parent label array
23 left_labels (np.ndarray): left generated branch from thresholding a feature
24 right_labels (np.ndarray): right generated branch from thresholding a feature
25 Returns:
26 float: information gain for the split
27 """
28 return entropy(labels) - ((len(left_labels) / len(labels)) * entropy(left_labels)) -

((len(right_labels) / len(labels)) * entropy(right_labels))

The process of calculating the information gain ratio, as discussed earlier, is implemented in the code

presented in Listing 41. This code snippet defines the info_gain_ratio() function, which takes

the same input parameters as the info_gain() function: the parent label array (labels), the labels

corresponding to the left branch obtained from thresholding a feature (left_labels), and the labels

corresponding to the right branch obtained from the same thresholding (right_labels).

Listing 41 Information Gain Ratio calculation.

44 def info_gain_ratio(labels: np.ndarray, left_labels: np.ndarray, right_labels: np.ndarray) -> float:
45 """Information Gain ratio for splitting the labels into two branches
46 Args:
47 labels (np.ndarray): parent label array
48 left_labels (np.ndarray): left generated branch from thresholding a feature
49 right_labels (np.ndarray): right generated branch from thresholding a feature
50 Returns:
51 float: information gain ratio
52 """
53 return abs(np.nan_to_num(info_gain(labels, left_labels, right_labels) / split_info(labels,

left_labels, right_labels)))

Inside the info_gain_ratio() function, the information gain is computed by invoking the

info_gain() function, and the result is divided by the split information, which is calculated using the

split_info() function defined in Listing 42.

The split_info() function calculates the split information for a given split. It takes the same input

parameters as the info_gain() and info_gain_ratio() functions. To avoid numerical instability,

a small constant (epsilon) is added to the denominator when calculating the logarithms. The split

100

Listing 42 Split Info calculation.

31 def split_info(labels: np.ndarray, left_labels: np.ndarray, right_labels: np.ndarray) -> float:
32 """Split infotmation for splitting the labels into two branches
33 Args:
34 labels (np.ndarray): parent label array
35 left_labels (np.ndarray): left generated branch from thresholding a feature
36 right_labels (np.ndarray): right generated branch from thresholding a feature
37 Returns:
38 float: split information
39 """
40 epsilon = 1e-8
41 return -((len(left_labels) / len(labels)) * np.log2(len(left_labels) / len(labels) + epsilon)) +

((len(right_labels) / len(labels)) * np.log2(len(right_labels) / len(labels) + epsilon))

information is obtained by applying the formula that combines the proportions of samples in the left and

right branches.

The information gain ratio is computed as the absolute value of the information gain divided by the

split information. This ratio provides a normalised measure that accounts for the inherent bias of the

information gain towards splits with many outcomes.

The specific building process of the decision tree starts in the fit() method, as seen in Listing

43, where the recursive function _build_tree() is called. This method takes two parameters: X,

representing the feature values of the dataset, and y, corresponding to the labels. Within the fit()

method, the number of features (n_features) is determined from the shape of the feature matrix X,

and the number of classes (n_classes) is obtained by finding the number of unique labels in the target

vector y. The root of the decision tree is then set to the result of calling _build_tree() with X and y as

arguments. This recursive function handles the splitting and node creation process, ultimately constructing

the complete decision tree.

Listing 43 Decision Tree fit function.

71 def fit(self, X: np.ndarray, y: np.ndarray) -> None:
72 """Fits the decision tree to the given data set
73 Args:
74 X (np.ndarray): X values of the dataset
75 y (np.ndarray): y values of the dataset (labels)
76 """
77 self.n_features = X.shape[1] # number of features in the dataset
78 self.n_classes = len(np.unique(y)) # number of uniqe classes in the dataset
79 self.root = self._build_tree(X, y) # builds the decision tree recursively using the dataset

The _build_tree() method is a recursive function responsible for constructing the decision tree,

presented in Listing 44. It takes three parameters: X, representing a subset of features, y, corresponding

to a subset of labels, and depth, indicating the current depth of the tree, initially set to 0. The function

also asserts that the number of rows in X matches the number of elements in y. The lowest_depth

attribute of the decision tree is updated to the maximum value between the current depth and the existing

101

lowest depth. The num_samples variable is assigned the length of the label subset y, representing the

number of samples in the current split.

Listing 44 Decision Tree building function.

81 def _build_tree(self, X: np.ndarray, y: np.ndarray, depth: int = 0) -> Union[DecisionNode, LeafNode]:
82 """Recursively build a decision tree
83 Args:
84 X (np.ndarray): subset of features
85 y (np.ndarray): subset of labels
86 depth (int, optional): current depth of the tree. Defaults to 0.
87 Returns:
88 Union[DecisionNode, LeafNode]: either a DecisionNode or a LeafNode, depending on the outcome
89 """
90 assert X.shape[0] == y.shape[0] # verifies that the number of instances in X and y are equal
91 self.lowest_depth = max(depth, self.lowest_depth) # updates the lowest_depth attribute with the

maximum value between depth and the current lowest_depth
92 num_samples = len(y) # calculates the number of samples in the dataset

Then, several conditions are tested to determine if the splitting process should end and a leaf node

should return. These conditions include reaching the maximum depth specified by max_depth, the

subset of data being too small to be split according to min_samples_split, or all the labels in the

subset y being the same. In such cases, a LeafNode is created, with the label being the most common

in y and using the total number of samples for the current split.

Listing 45 Decision Tree building: stopping conditions verification.

93 # return a leaf when:
94 # - the max deapth is reached
95 # - the current data is too short to be split
96 # - every label on the data is the same
97 if (self.max_depth and depth >= self.max_depth) or (num_samples <= self.min_samples_split) or

(np.all(y == y[0])):
98 return LeafNode(np.bincount(y).argmax(), num_samples)

When none of these criterion are met, it is necessary to evaluate the best splitting conditions for the

current data. For this, the function _get_best_split() evaluates which are the threshold and feature

values for splitting as seen in 99. If the metric_gain from the best split is greater than 0, indicating

sufficient improvement from splitting the data, the function recursively calls _build_tree() to construct

the left and right subtrees. The left subtree is built using the subset of X and y where the values are less

than or equal to the split threshold, while the right subtree is built using the subset where the values are

greater than the split threshold. The depth parameter is incremented by 1 in each recursive call.

Then, before creating the subsequent DecisionNode using the split data as seen in Line 115,

another evaluation is made, verifying that the Nodes created from the previous recursive execution are not

representing the same label. If this is the case, these two nodes that would originate a DecisionNode

are replaced by a single LeafNode representing the matching label.

102

Listing 46 Decision Tree building: recursive call for branches.

99 best_split: SplitNode = self._get_best_split(X, y)
100 if best_split["metric_gain"] > 0: # if enough improvement from splitting the data
101 left_subtree = self._build_tree(
102 X=X[X[:, best_split["feature"]] <= best_split["threshold"]],
103 y=y[X[:, best_split["feature"]] <= best_split["threshold"]],
104 depth=depth + 1,
105) # build left subtree
106 right_subtree = self._build_tree(
107 X=X[X[:, best_split["feature"]] > best_split["threshold"]],
108 y=y[X[:, best_split["feature"]] > best_split["threshold"]],
109 depth=depth + 1,
110) # build right subtree

Listing 47 Decision Tree building: same labeled branches verification and Decision Node creation.

112 if isinstance(left_subtree, LeafNode) and isinstance(right_subtree, LeafNode):
113 if left_subtree.label == right_subtree.label:
114 return LeafNode(np.bincount(y).argmax(), num_samples)
115 return DecisionNode(best_split, left_subtree, right_subtree, num_samples)

The _get_best_split() function is responsible for computing the best split for the given labels. It

takes three parameters: X, representing the feature array, y, corresponding to the label array, and metric,

which specifies the metric to be used for calculating the best split. The code implementation can be seen

in Listing 48.

Listing 48 Decision Tree best split finding.

118 def _get_best_split(self, X: np.ndarray, y: np.ndarray, metric: str = "info_gain") -> SplitNode:
119 """Computes the best split for the given labels
120 Args:
121 X (np.ndarray): feature array
122 y (np.ndarray): label array
123 metric (str, optional): metric to be used to calculate the best split ("info_gain",

"info_gain_ratio"). Defaults to "info_gain".
124 Returns:
125 SplitNode: object with the data for selecting the best split
126 """
127 best_split = SplitNode(metric_gain=-float("inf"))
128 for feature in range(self.n_features): # for each feature
129 for threshold in np.unique(X[:, feature]): # for each unique feature value
130 left_y = y[X[:, feature] <= threshold] # left subtree with features bellow or equal to

threshold
131 right_y = y[X[:, feature] > threshold] # right subtree with features above threshold
132 if len(left_y) == 0 or len(right_y) == 0: # if one of the branches is empty is invalid
133 continue
134 with ignore_warning(RuntimeWarning): # throws a warning when a branch is pure
135 mg = self.METRIC[metric](y, left_y, right_y)
136 if mg > best_split["metric_gain"]: # if the metric for the split is better, replace the best

split
137 best_split["metric_gain"] = mg
138 best_split["threshold"] = threshold
139 best_split["feature_index"] = feature
140 return best_split

The function initialises best_split as a SplitNode object with an initial metric_gain value of

negative infinity (-float("inf")). This object will store the data related to the best split found. The

103

function then iterates over each feature, using the range(self.n_features) loop. For each

feature, it iterates over the unique values in that feature using np.unique(X[:, feature]). These

unique feature values will serve as potential split thresholds. For each unique threshold value, the

function splits the label array y into the left subset (left_y) and the right subset (right_y) based on

whether the corresponding feature values in X are less than or equal to the threshold or greater than the

threshold, respectively. The function checks if either the left or right subset is empty

(len(left_y) == 0 or len(right_y) == 0). If either of the branches is empty, it continues to

the next iteration, as an empty branch is not a valid split.

Inside the ignore_warning(RuntimeWarning) context manager, the function calculates the

metric for the split, using the specified metric and the self.METRIC[metric] function. This metric

function is either info_gain() or info_gain_ratio(), described earlier, depending on the chosen

metric. The ignore_warning() context manager suppresses a warning that may be raised when one of

the branches is pure (contains only samples of a single class). This happens in situations where calculating

the metric for a pure branch may involve dividing by zero. The calculated metric gain (mg) is then compared

to the metric_gain of the current best split. If the metric gain is greater, indicating a better split,

the best_split object is updated with the new metric_gain, threshold, and feature. After

evaluating all possible splits for each feature and threshold, the function returns the best_split object,

which contains the data for selecting the best split, including the feature index, threshold value, and metric

gain.

The TopLevel class seen in Listing 49 serves as an interface to the Decision Tree/Forest processing,

encapsulating the functionality of these sub-modules. It provides a simplified way to utilise the Decision

Forest by providing methods for initialising, fitting, and calling the forest. It is worth mentioning that the

TopLevel class does not significantly contribute to the program’s functionalities. However, as a measure

of conformity and organisation, it was included in the codebase.

Listing 49 Top Level class methods.

5 class TopLevel(object):
6 def __init__(self, min_samples_split: int, max_depth: int) -> None:
7 # Initializes a DecisionForest instance with the provided min_samples_split and max_depth
8 self.forest = DecisionForest(min_samples_split=min_samples_split, max_depth=max_depth)
9

10 def fit(self, X: np.ndarray, y: np.ndarray) -> None:
11 # Fits the DecisionForest to the given dataset X and labels y
12 self.forest.fit(X, y)
13

14 def __call__(self, X: np.ndarray) -> np.ndarray:
15 # Calls the DecisionForest on the input data X and returns the predicted labels
16 return self.forest(X)

104

In concluding the Computation System, the final interface for working with this module can be

introduced. The ComputationSystem class in Listing 50 serves as the main interface, encompassing

the functionality of both the BottomLevel and TopLevel classes. Upon initialisation, it takes the

number of classes as a parameter and creates instances of the BottomLevel and TopLevel classes.

Listing 50 Computation System __init__function.

9 class ComputationSystem(object):
10 def __init__(self, num_classes: int, attention: bool, net_type: str, use_segmentation: bool,

min_samples_split: int, max_depth: int) -> None:
11 """Initializes the ComputationSystem.
12 Args:
13 num_classes (int): Number of classes for classification.
14 attention (bool): Flag indicating whether attention mechanism is enabled.
15 net_type (str): Type of network architecture.
16 use_segmentation (bool): Flag indicating whether segmentation is used as a pre-processor for

classification.
17 min_samples_split (int): Minimum number of samples required to split a node in the decision

tree.
18 max_depth (int): Maximum depth of the decision tree.
19 """
20 # Create the BottomLevel and TopLevel components
21 self._bl = BottomLevel(num_classes, attention, net_type, use_segmentation)
22 self._tl = TopLevel(min_samples_split, max_depth)

The fit method within the ComputationSystem class (shown in Listing 51) is responsible for training

the entire system using the provided segmentation and classification datasets. It begins by setting the

BottomLevel component to training mode using the train()method. Next, it calls the fit()method

of the BottomLevel instance, passing the segmentation and classification datasets. This step trains the

BottomLevel using the given datasets.

Listing 51 Computation System fit method.

24 def fit(self, segmentation: Tuple[DataLoader, int] = None, classification: Tuple[DataLoader, int] = None)
-> None:

25 """Fits the ComputationSystem to the given datasets.
26 Args:
27 segmentation (Tuple[DataLoader, int], optional): Segmentation dataset and number of epochs for

training. Defaults to None.
28 classification (Tuple[DataLoader, int], optional): Classification dataset and number of epochs for

training. Defaults to None.
29 """
30 self._bl.train(True) # sets the bottom level to training mode
31 self._bl.fit(segmentation, classification) # fits the bottom level to the datasets given
32 with torch.no_grad(): # no need to compute gradients
33 X, y = self._bl(classification[0]) # forwards the bottom-level with the training data
34 X = X.cpu().numpy() # converts the tensors to arrays
35 y = y.cpu().numpy().astype(int)
36 self._tl.fit(X, y) # fits the top-level with the training data from the bottom-level
37 self._bl.train(False) # sets the bottom level to inference mode

To obtain the training data from the BottomLevel, the method performs a forward pass by invoking

the BottomLevel instance with the classification data. This operation returns the predictions and labels

105

as tensors, which are then converted to NumPy arrays using the cpu().numpy()method. These arrays

are assigned to the variables X and y, respectively. Moving on to the TopLevel, the method calls

its fit() method, passing the training data obtained from the BottomLevel. This step trains the

TopLevel using the training data, finally setting the bottom-level back to inference mode.

The __call__() method in the ComputationSystem class enables the system to generate

predictions for input data X, as seen in Listing 52. Within this method, the bottom-level component is

invoked with X, executing a forward pass and producing a tensor probability that represents the

predicted probabilities for each class. By using the torch.no_grad() context manager, gradient

computation is disabled during this forward pass. The probability tensor is then converted to a list,

capturing the probabilities for each class. Subsequently, this list is passed to the TopLevel instance,

which computes and determines the final predicted labels. The resulting labels are converted to a list,

and the method returns this list as the prediction output for the given input data.

Listing 52 Computation System forward method.

39 def __call__(self, X: torch.Tensor) -> Tuple[List[int], List[int]]:
40 """Performs the inference on the given input.
41 Args:
42 X (torch.Tensor): Input tensor.
43 Returns:
44 Tuple[List[int], List[int]]: Tuple containing the probabilities and labels.
45 """
46 with torch.no_grad(): # no need to compute gradients
47 probability: torch.Tensor = self._bl(X) # forwards the bottom-level
48 probability = probability.cpu().tolist()[0] # converts the probability tensor to a list
49 labels: np.ndarray = self._tl(np.array(probability)) # forwards the probability in the top-level
50 labels = labels.tolist()[0] # converts the labels numpy array to a list
51 return (probability, labels)

4.2 Learning System

The Learning System’s module provides insights and mechanisms for better training the Bottom

Level’s neural networks. It offers a range of optimisation algorithms, such as gradient descent variants

(e.g., Adam, SGD), which adaptively adjust the network’s weights to minimise the training loss.

Additionally, the Learning System includes learning rate schedulers, which dynamically modify the

learning rate during training to ensure optimal convergence. These schedulers adjust the learning rate

based on predefined rules, such as reducing it gradually or responding to specific conditions, allowing for

more effective training. Furthermore, the Learning System incorporates various evaluation metrics to

assess the network’s performance, such as accuracy, precision, recall, and F1-score. These metrics

provide quantitative measures of the network’s predictive capabilities and help gauge its effectiveness in

106

handling different tasks and datasets. By leveraging these optimisers, schedulers, and metrics, the

Learning System enables users to fine-tune the Bottom Level’s neural networks and achieve improved

training outcomes.

This code snippet as in Listing 53 defines a class called LearningSystem that represents the

learning system component. Upon initialisation, it sets up the learning configurations for a classifier and

a segmenter. The learning configurations are stored in dictionaries self.classifier_learn and

self.segmenter_learn.

An SGD optimiser is created for the classifier with a learning rate of 1e-4 and momentum of 0.9. The

optimiser is assigned to classifier.optim and also stored in

self.classifier_learn["optimiser"]. A step-based learning rate scheduler is created with a

step size of 4 and a decay factor of 0.1. The scheduler is assigned to classifier.scheduler and

stored in self.classifier_learn["scheduler"].

An Adam optimiser is created for the segmenter with a learning rate of 1e-4. Similarly to the

classifier, the optimiser is assigned to segmenter.optim and stored in

self.segmenter_learn["optimiser"]. A learning rate scheduler based on plateaus is created

using ReduceLROnPlateau, with the mode set to ”min” (indicating reduction on loss plateau) and a

patience of 2. The scheduler is assigned to segmenter.scheduler and stored in

self.segmenter_learn["scheduler"].

Listing 53 Learning System __init__function.

20 class LearningSystem(object):
21 def __init__(self, classifier: ClassificationNetwork, segmenter: SegmentationNetwork) -> None:
22 """Initializes a LearningSystem object with a classifier and segmenter.
23 Args:
24 classifier (ClassificationNetwork): The classifier network.
25 segmenter (SegmentationNetwork): The segmenter network.
26 """
27 self.classifier_learn = {} # Dictionary to store classifier learning-related information
28 self.segmenter_learn = {} # Dictionary to store segmenter learning-related information
29 # Configures optimizer and scheduler for the classifier
30 classifier.optim = self.classifier_learn["optimiser"] =

torch.optim.SGD(classifier.model.parameters(), lr=1e-4, momentum=0.9)
31 classifier.scheduler = self.classifier_learn["scheduler"] =

torch.optim.lr_scheduler.StepLR(self.classifier_learn["optimiser"], step_size=4, gamma=0.1)
32 # Configures optimizer and scheduler for the segmenter
33 segmenter.optim = self.segmenter_learn["optimiser"] =

torch.optim.Adam(segmenter.model.parameters(), lr=1e-4)
34 segmenter.scheduler = self.segmenter_learn["scheduler"] =

torch.optim.lr_scheduler.ReduceLROnPlateau(self.segmenter_learn["optimiser"], "min",
patience=2)

To avoid recursive imports in the Learning System module, the code snippet in 54 checks if the

TYPE_CHECKING constant is True. The TYPE_CHECKING constant is a special constant provided by

the typing module that is only True during static type checking (e.g., using tools like mypy) but False

107

during run-time. Thus, when the code is not in run-time, the modules are imported, and only work to

provide the coder with type checking capabilities from the IDE.

Listing 54 Learning System recursive imports avoidance.

5 from typing import TYPE_CHECKING
6

7 if TYPE_CHECKING:
8 from cs.bl.classification import ClassificationNetwork
9 from cs.bl.segmentation import SegmentationNetwork

4.2.1 Training Metrics

This section will present the implementation of metrics, focusing on their role in evaluating the

performance of classification and segmentation tasks. These metrics can be divided into two categories:

classification metrics and segmentation metrics. Classification metrics assess the accuracy and quality

of classification models by measuring precision, recall, and F1-score, as seen in Listing 25.

Segmentation metrics, conversely, evaluate the accuracy and consistency of segmentation models using

metrics such as intersection over union (IoU), Dice coefficient, and pixel-wise accuracy, evident in Listing

13. By examining the implementation of these metrics within the system, valuable insights can be

gained regarding the performance of the models, and informed decisions can be made regarding their

training and optimisation.

Regarding the segmentation metrics, the first metric presented is the mask_accuracy() function

in Listing 55. This function calculates the accuracy of the given predictions and masks. It takes two 2D

tensors as inputs: preds representing the predicted masks and masks representing the true masks. The

function computes the element-wise comparison between the predictions and masks and calculates the

sum of the correct predictions. This sum is then divided by the total number of elements in the predictions

tensor using the torch.numel() function. The result is a one-element tensor representing the mask

accuracy.

Listing 55 Mask Accuracy metric.

132 def mask_accuracy(preds: torch.Tensor, masks: torch.Tensor) -> torch.Tensor:
133 """Calculates the accuracy of the given predictions and masks.
134 Args:
135 preds (torch.Tensor): 2D tensor with the mask predictions.
136 masks (torch.Tensor): 2D tensor with the true masks.
137 Returns:
138 torch.Tensor: One element tensor with the mask accuracy.
139 """
140 return (preds == masks).sum() / torch.numel(preds)

108

Next, the dice_score() function is available in Listing 56, serving the purpose of calculating the

Dice Score for a given set of predictions and masks. This function expects two 2D tensors, namely preds

for the predicted masks and masks for the true masks. The computation involves multiplying the element-

wise product of the predictions and masks by 2, followed by summing up the results. This sum is then

divided by the sum of the predictions and masks, adding a small epsilon value to avoid potential division

by zero, defined in Listing 57.

Listing 56 Dice Score metric.

143 def dice_score(preds: torch.Tensor, masks: torch.Tensor) -> torch.Tensor:
144 """Calculates the Dice Score of the given predictions and masks.
145 Args:
146 preds (torch.Tensor): 2D tensor with the mask predictions.
147 masks (torch.Tensor): 2D tensor with the true masks.
148 Returns:
149 torch.Tensor: One element tensor with the Dice Score.
150 """
151 return (2 * (preds * masks).sum()) / ((preds + masks).sum() + EPS)

Listing 57 Epsilon value definition.

11 EPS = 1e-8 # small value to avoid division by zero

Finally, the iou_score() function is provided in Listing 58 to compute the Intersection over Union

(IoU) Score for a given set of predictions and masks. The computation involves calculating the sum of the

element-wise product of the predictions and masks. This sum is divided by the difference between the

sum of the predictions and masks and the sum of the element-wise product of the predictions and masks,

with the addition of a small epsilon value to prevent division by zero.

Listing 58 IoU metric.

154 def iou_score(preds: torch.Tensor, masks: torch.Tensor) -> torch.Tensor:
155 """Calculates the IoU Score of the given predictions and masks.
156 Args:
157 preds (torch.Tensor): 2D tensor with the mask predictions.
158 masks (torch.Tensor): 2D tensor with the true masks.
159 Returns:
160 torch.Tensor: One element tensor with the IoU Score.
161 """
162 return (preds * masks).sum() / ((preds + masks).sum() - ((preds * masks).sum()) + EPS)

The confusion_matrix() function as seen in Listing 59 is employed in classification metrics to

establish the necessary framework for metric calculations. By taking the predicted and true labels as

1D tensors, this function generates a 2D tensor called confusion with a shape of (2, 2), specifically

designed for binary classification scenarios. The function examines pairs of predictions and targets through

109

an iterative process, updating the corresponding coordinates in the confusion tensor based on the

relationship between the prediction and the true label. In cases where the prediction aligns with the true

label, the diagonal elements are incremented, indicating correct predictions. Conversely, discrepancies

between the prediction and the true label signify instances of false positives or false negatives. Finally,

the resulting confusion tensor, capturing the distribution of predictions and targets, is returned as the

outcome of the function.

Listing 59 Confusion Matrix computation.

37 def confusion_matrix(preds: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
38 """Calculates the confusion matrix for the given predictions and targets.
39 Args:
40 preds (torch.Tensor): 1D tensor of predicted labels.
41 targets (torch.Tensor): 1D tensor of true labels.
42 Returns:
43 torch.Tensor: 2D tensor with the confusion matrix.
44 """
45 # Creates a tensor with the shape (2, 2) for binary classification
46 confusion = torch.zeros(2, 2, dtype=int)
47 # Iterates over the prediction/target pairs and increments to the coordinates of these pairs
48 # When the prediction is the same as the true label, the value is incremented in the diagonal meaning

that the prediction is correct
49 # The difference between the prediction and the true label means either a false positive or a false

negative.
50 preds = preds.flatten()
51 targets = targets.flatten()
52 for p, t in zip(preds, targets):
53 confusion[p, t] += 1
54 return confusion

The computation logic for the specific parameters related to confusion matrix analysis is outlined in the

comment block accompanying this module, given the Listing 60. True positives (TP) are identified when

both the true label and the predicted label are the same, whereas false positives (FP) are determined by

elements in the same column that were predicted as positive but are not true positives. Similarly, false

negatives (FN) are identified by elements in the same row that belong to a specific class but were predicted

incorrectly. True negatives (TN) are computed by subtracting the sum of TP, FP, and FN from the total

number of instances.

Listing 60 TP, FP, FN and TN calculation from a confusion matrix.

14 = [i, i] # true positives have the same true label and predicted label
15 = [i, :] - TP # false positives are the ones that are in the same collumn (were predicted

but are not true)
16 = [:, i] - TP # false negatives are the ones that are in the same row (are from that class

but were predicted wrong)
17 = total - TP - FP - FN # true negatives are everything that is not in the same row collumn

By utilising the obtained confusion matrix, it becomes possible to calculate the overall accuracy of

the classification. The accuracy metric measures the proportion of correctly classified instances out of

110

the total number of instances. The provided function in Listing 61, accuracy(), takes in the confusion

matrix as a 2D tensor and returns a one-element tensor representing the overall accuracy. The calculation

is performed by summing the diagonal elements of the confusion matrix, which correspond to the true

positives, and dividing it by the sum of all elements in the matrix plus a small epsilon value (EPS) to

avoid division by zero. The resulting accuracy value is then returned, ensuring it is on the same device as

specified by the device parameter.

Listing 61 Accuracy Metric.

57 def accuracy(conf_matrix: torch.Tensor) -> torch.Tensor:
58 """Gives the overall accuracy of the given confusion matrix.
59 Args:
60 conf_matrix (torch.Tensor): 2D tensor with the confusion matrix.
61 Returns:
62 torch.Tensor: One element tensor with the overall accuracy.
63 """
64 return conf_matrix.diagonal().sum() / (conf_matrix.sum() + EPS)

Similarly, precision and recall metrics can be calculated, as seen in Listings 62 and 63. The

precision() function, shown in Listing 62, takes in the confusion matrix as a 2D tensor and returns a

1D tensor containing the precision value for each class. Precision measures the proportion of true

positive predictions out of all positive predictions (true positives and false positives). To compute

precision, the function extracts the true positives (TP) from the diagonal of the confusion matrix. False

positives (FP) are obtained by summing the elements in each column of the confusion matrix and

subtracting the corresponding TP value. The precision for each class is then computed by dividing TP by

the sum of TP, FP, and a small epsilon value (EPS) to prevent division by zero.

Listing 62 Precision Metric.

81 def precision(conf_matrix: torch.Tensor) -> torch.Tensor:
82 """Gives the precision for each class of the given confusion matrix.
83 Args:
84 conf_matrix (torch.Tensor): 2D tensor with the confusion matrix.
85 Returns:
86 torch.Tensor: 1D tensor with the precision for each class.
87 """
88 TP = torch.diag(conf_matrix)
89 FP = conf_matrix.sum(dim=0) - TP
90 return TP / (TP + FP + EPS)

The recall() function, shown in Listing 63, calculates the recall for each class using the provided

confusion matrix. Recall, also known as sensitivity or true positive rate, measures the proportion of true

positive predictions out of all actual positive instances (true positives and false negatives). The function

begins by extracting the TP values from the diagonal of the confusion matrix. False negatives (FN) are

111

obtained by summing the elements in each row of the confusion matrix and subtracting the corresponding

TP value. The recall for each class is then computed by dividing TP by the sum of TP, FN, and EPS.

Listing 63 Recall Metric.

93 def recall(conf_matrix: torch.Tensor) -> torch.Tensor:
94 """Gives the recall for each class of the given confusion matrix.
95 Args:
96 conf_matrix (torch.Tensor): 2D tensor with the confusion matrix.
97 Returns:
98 torch.Tensor: 1D tensor with the recall for each class.
99 """

100 TP = torch.diag(conf_matrix)
101 FN = conf_matrix.sum(dim=1) - TP
102 return TP / (TP + FN + EPS)

Using these two metrics, the f1_score() function shown in Listing 64 calculates the F1 Score for

each class based on the precision and recall values. The F1 Score provides a balanced evaluation of a

classifier’s performance. By calling the precision() and recall() functions, the function obtains

the precision and recall values for each class using the given confusion matrix. The F1 Score is then

computed using these values.

Listing 64 F1 Score Metric.

105 def f1_score(conf_matrix: torch.Tensor) -> torch.Tensor:
106 """Gives the F1 Score for each class of the given confusion matrix.
107 It uses the precision and recall for each class.
108 Args:
109 conf_matrix (torch.Tensor): 2D tensor with the confusion matrix.
110 Returns:
111 torch.Tensor: 1D tensor with the F1 Score for each class.
112 """
113 precisions = LearningSystem.precision(conf_matrix)
114 recalls = LearningSystem.recall(conf_matrix)
115 return 2 * ((precisions * recalls) / (precisions + recalls + EPS))

Concluding this section, the mcc() function in Listing 65 calculates the Matthews Correlation

Coefficient (MCC) for each class based on the given confusion matrix. The MCC is a measure of the

quality of binary classification models, taking into account true positives, true negatives, false positives,

and false negatives. By computing the values of TP, FP, FN, and TN using the confusion matrix, the

function then applies the MCC formula to obtain the MCC values for each class.

4.3 Storage System

The Storage System module in BorisCAD’s cognitive architecture focuses on efficiently storing and

manipulating long-term and working memory, which is crucial for performing complex Computer-Aided

112

Listing 65 Matthews Correlation Coefficient Metric.

118 def mcc(conf_matrix: torch.Tensor) -> torch.Tensor:
119 """Calculates the Matthews Correlation Coefficient for each class of the given confusion matrix.
120 Args:
121 conf_matrix (torch.Tensor): 2D tensor with the confusion matrix.
122 Returns:
123 torch.Tensor: 1D tensor with the MCC for each class.
124 """
125 TP = torch.diag(conf_matrix)
126 FP = conf_matrix.sum(dim=0) - TP
127 FN = conf_matrix.sum(dim=1) - TP
128 TN = conf_matrix.sum() - (TP + FP + FN)
129 return ((TP * TN) - (FP * FN)) / (torch.sqrt((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN)) + EPS)

Design (CAD) tasks. By simplifying certain biological complexities, the Storage System module provides a

streamlined proof of concept while capturing the fundamental aspects of memory processes.

In BorisCAD, the Storage System module is a repository for storing and retrieving essential design

elements, such as image features and their contents, enabling the architecture to make informed decisions

based on past experiences. Long-term memory retains information over an extended period, while working

memory actively manipulates this stored information in real-time during decision-making.

The Storage System module incorporates a graph structure into its memory design to optimise

information storage and manipulation. This graph structure efficiently represents and organises complex

relationships between design elements, such as parts, sub-assemblies, and assemblies. Each memory

node within the graph represents an image perceived by the system’s bottom level and contains multiple

abstraction layers, including high and low-level feature maps that provide visual or sensory

representations of the image.

Starting with the high-level interface, the StorageSystem class depicted in Listing 66 connects

the working and long-term memory within the cognitive architecture. It facilitates various operations in

encoding, recognition, retrieval, and decision-making processes.

This class is implemented as a singleton, ensuring that there is only one instance of the class

throughout the system. This design allows multiple components within the system to access the

StorageSystem without creating new instances, promoting efficiency and consistency.

Upon initialisation, the __init__() method takes in a parameter wm_size, representing the

working memory’s size. It creates an instance of the WorkingMemory class, representing the working

memory object with the specified size. Additionally, it creates an instance of the LongTermMemory

class, representing the long-term memory object. The _most_recent_node attribute of the

StorageSystem class is used to store the most recent memory node. This attribute refers to the

MemoryNode object representing the most recently encoded information in the memory system.

113

Listing 66 Storage System __init__function.

7 class StorageSystem(metaclass=Singleton):
8 """
9 This class works as a connection between the working and long-term memory.

10 It calls all operations that need to be performed during the encoding, recognition, retrieval, and
decision-making process.

11 It is implemented as a singleton class, allowing it to be accessed by multiple places in the system
without creating a new instance.

12 """
13

14 def __init__(self, wm_size: int) -> None:
15 """Initialize the StorageSystem object.
16 Args:
17 wm_size (int): The size of the working memory.
18 """
19 self.working_memory = WorkingMemory(wm_size) # Create a working memory object
20 self.long_term_memory = LongTermMemory() # Create a long-term memory object
21 self._most_recent_node: MemoryNode = None # Store the most recent memory node

To implement the StorageSystem class as a singleton, the auxiliary type class Singleton is

utilised. This class, depicted in Listing 67, acts as a metaclass that creates a base class with singleton

behaviour when called. The Singleton class includes a dictionary attribute _instances, which is used

to store instances of classes that implement the singleton pattern. The __call__() method within

the class overrides the default behaviour of creating a new instance when a class is called. Instead, it

enforces the singleton behaviour by checking if an instance of the class already exists in the _instances

dictionary. If the class doesn’t have an instance yet, a new one is created and stored in the dictionary.

Subsequent calls to the class will then return the stored instance rather than creating a new one.

Listing 67 Singleton class implementation.

1 class Singleton(type):
2 """A metaclass that creates a Singleton base class when called."""
3

4 _instances = {} # Dictionary to store instances of Singleton classes
5

6 def __call__(cls, *args, **kwargs):
7 """Overrides the __call__ method to enforce singleton behavior.
8 Args:
9 cls: The class being instantiated.

10 *args: Positional arguments passed to the class constructor.
11 **kwargs: Keyword arguments passed to the class constructor.
12 Returns:
13 The instance of the Singleton class.
14 """
15 if cls not in cls._instances:
16 # If the class doesn't have an instance yet, create a new one and store it
17 cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs)
18 return cls._instances[cls] # Return the stored instance for subsequent calls

To enable the creation of a new node in memory, a property was added to the StorageSystem class.

When this property is assigned a value, it triggers adding the node to the memories, as illustrated in Figure

26. This triggering point is achieved by modifying the forward() function in the ResNet architecture,

which is responsible for gathering feature maps during inference time. The modified forward() function,

114

depicted in Listing 68, demonstrates this process. In this modified function, the low-level and high-level

features are stored from the first and last layers of the network, respectively. When the network is not in

the training mode, a MemoryNode is created using the stored features, and it is assigned to the most

recent node in the StorageSystem.

Listing 68 Modified ResNet network forward method.

120 def forward(self, X: torch.Tensor) -> torch.Tensor:
121 """Forward pass of the network.
122 Args:
123 X (torch.Tensor): Input tensor.
124 Returns:
125 torch.Tensor: Output tensor after passing through the network.
126 """
127 X = self.input(X) # Pass the input through the initial layers
128 for i, layer in enumerate(self.network):
129 X: torch.Tensor = layer(X) # Pass the input through each layer in the network
130 if self.training:
131 continue
132 if i == 0:
133 _low_level_features = X.clone() # Store the low-level features at the first layer
134 elif i == len(self.network) - 1:
135 _high_level_features = X.clone() # Store the high-level features at the last layer
136 if not self.training:
137 # Create a MemoryNode with the stored low-level and high-level features and assign it to the most

recent node in the StorageSystem
138 StorageSystem().most_recent_node = MemoryNode((_low_level_features, _high_level_features))
139 X = self.avgpool(X) # Apply adaptive average pooling
140 X = X.reshape(X.shape[0], -1) # Reshape the tensor to a 2D shape for the fully connected layer
141 # Pass the reshaped tensor through the fully connected layer for classification
142 return self.fc(X)

The memory addition process in the StorageSystem class is fully implemented, as depicted in

Listing 69. This implementation involves the most_recent_node setter method, which sets the

provided MemoryNode as the _most_recent_node attribute of the StorageSystem class.

Furthermore, it triggers adding the new node to the memories.

First, the method adds the new node to the LTM by calling the add_node() method of the

LongTermMemory class. This step establishes connections between the new node and similar nodes

in the LTM that surpass a predefined threshold during recognition. Next, the method populates the WM

with similar nodes retrieved from the LTM. Using the get_population() method of the

LongTermMemory class, a list of similar nodes is obtained based on the specified similarity criteria.

The method then iterates through the retrieved nodes in reverse order and adds them to the WM. This

ensures that the most similar node is added last, closely positioned to the newly inferred node. Finally,

the method adds the most recent node to the beginning of the working memory by invoking the

add_node() method of the WorkingMemory class.

To gain a clearer understanding of the system’s structure, it is essential to visualise the composition

of a ”memory.” The MemoryNode class provides a representation of a memory node, as shown in

115

Listing 69 Implementation of the memory addition process in the StorageSystem class.

31 @most_recent_node.setter
32 @add_logging
33 def most_recent_node(self, node: MemoryNode):
34 """Setter method for the most_recent_node property.
35 Args:
36 node (MemoryNode): The memory node to set as the most recent node.
37 """
38 self._most_recent_node = node
39 # Create/add new node to the memories
40 # Connect the new node with nodes in the LTM that are similar and above the threshold (first stage of

recognition)
41 self.long_term_memory.add_node(self._most_recent_node)
42 # Populate the working memory with similar nodes (n nodes, the most similar, depending on the working

memory size)
43 population = self.long_term_memory.get_population(self._most_recent_node)
44 # Add the similar nodes to the working memory (maximum number of nodes to be added is one less than

the working memory size)
45 for node in reversed(population[: self.working_memory.size - 1]):
46 # By reversing this list, the most similar node is added last and closest to the inferred node
47 self.working_memory.add_node(node)
48 # Add the most recent node to the beginning of the working memory
49 self.working_memory.add_node(self._most_recent_node)

Listing 70. This class consists of a nested Data class, defined using the dataclass decorator. This

class encapsulates the attributes associated with a memory node, including low_level_features

and high_level_features, represented as tensor objects. Additionally, the probabilities,

classification, and final decision attributes are optional lists, assigned to the node throughout the

execution of the program.

The MemoryNode class also contains other attributes and functionalities. The connected_nodes

attribute is a SortedDict that stores the connected nodes, facilitating efficient retrieval. The data

attribute is initialised using the Data class, taking the provided data set as arguments. An ID is

generated for each node using uuid.uuid4().hex. Lastly, the hot index attribute is set to 50,

representing the default value.

The add_node() method in the LTM utilises the properties of MemoryNode objects during the

recognition task. It compares the similarity between the new node and existing nodes in the memory,

based on a recognition threshold. If the similarity meets the threshold, a connection is established between

the new node and the existing node. In addition, the connected_nodes dictionary, which stores these

connections, is automatically sorted when a new similar node is found and inserted. This sorting ensures

that the connected nodes are ordered based on their similarity to the new node, allowing for efficient

retrieval and decision-making processes. This process is displayed in Listing 71.

The calculation of node similarity is achieved through the implementation of the overloaded

__sub__() function, as shown in Listing 72. This function computes the similarity score between two

MemoryNode instances. It calculates the similarity for both the low-level features and high-level features

116

Listing 70 Implementation of the Memory Node class.

9 class MemoryNode:
10 @dataclass
11 class Data:
12 low_level_features: torch.Tensor
13 high_level_features: torch.Tensor
14 probabilities: Optional[list] = None
15 classification: Optional[list] = None
16 final_decision: Optional[list] = None
17

18 def __repr__(self) -> str:
19 return f"Data(low_level_features={self.low_level_features.shape},

high_level_features={self.high_level_features.shape}, probabilities={self.probabilities},
classification={self.classification})"

20

21 def __init__(self, data: set):
22 """Initialize a MemoryNode instance.
23 Args:
24 data (set): A set containing the required data attributes for the MemoryNode.
25 """
26 self.connected_nodes = SortedDict() # Dictionary to store connected nodes
27 self.data = MemoryNode.Data(*data) # Initialize the data attribute
28 self.id = uuid.uuid4().hex # Generate a unique ID for the node
29 self.hot_index: int = 50 # Set the hot index to 50 (default value)

Listing 71 Node addition method in the Long-Term Memory.

13 def add_node(self, node: MemoryNode) -> None:
14 """Add a node to the memory.
15 Args:
16 node (MemoryNode): The node to be added to the memory.
17 """
18 # Perform recognition process and update connected nodes' hotness
19 for node_id in self.memory.keys():
20 # Compute the similarity between the new node and existing nodes
21 similarity = node - self.memory[node_id]
22 # If the similarity meets the recognition threshold, add the connection
23 if similarity >= self.T_RECOGNITION:
24 node.connected_nodes[node_id] = similarity
25 # Add the new node to the memory
26 self.memory[node.id] = node

by measuring the Euclidean distance between them. The similarity scores are then combined and

averaged to obtain the overall similarity score.

Listing 72 Memory Node subtraction method overload.

35 def __sub__(self, other: MemoryNode) -> float:
36 """Compute the similarity between two MemoryNode instances.
37 Args:
38 other (MemoryNode): The other MemoryNode instance to compare similarity with.
39 Returns:
40 float: The similarity score between the two MemoryNode instances.
41 """
42 low_level_similarity: torch.Tensor = 1 / (1 + torch.norm(self.data.low_level_features -

other.data.low_level_features))
43 high_level_similarity: torch.Tensor = 1 / (1 + torch.norm(self.data.high_level_features -

other.data.high_level_features))
44 return ((low_level_similarity + high_level_similarity).mean()).item()

The addition process in the Working Memory is demonstrated in Listing 73. When a new node is

117

added, the memory is updated accordingly. If the node already exists in the memory, it is removed and

then re-added at the most recent location. In the case where the memory is already full, the oldest node

(at index 0) is replaced with the new node. Finally, the new node is appended to the memory, ensuring

it is included in the working memory for subsequent operations. As one can see, the maximum size the

WM can have is represented by the size attribute, initialised at the object creation.

Listing 73 Implementation of the addition method in the Working Memory.

15 def add_node(self, node: MemoryNode) -> None:
16 """Updates the memory with a new node.
17 If the node is already in the memory, it is moved to the most recent location.
18 If the memory is full, the oldest node is replaced with the new node.
19 Args:
20 node (Node): The node to update the memory with.
21 """
22 if node in self.memory:
23 # If the node is already in the memory, remove it to re-add at a more recent location
24 self.memory.remove(node)
25 elif len(self.memory) >= self.size:
26 self.memory.pop(0) # If the memory is full, remove the oldest node (at index 0)
27 self.memory.append(node) # Add the new node to the memory

Listing 74 Implementation of method for similar nodes retrieval in the Long-Term Memory.

28 def get_population(self, node: MemoryNode) -> List[MemoryNode]:
29 """Retrieve the population of recognized nodes from memory based on the provided node.
30 Args:
31 node (MemoryNode): The node used for retrieval.
32 Returns:
33 List[MemoryNode]: The population of recognized nodes from memory.
34 """
35 # Retrieve the recognized nodes from memory based on the provided node
36 population = [self.memory[key] for key in node.connected_nodes.keys() if self.memory[key].hot_index >

self.T_REMEMBER]
37 # Update the node core with the new hotness (increase the hotness of accessed items and decrease the

hotness of non-accessed items)
38 # When retrieving the nodes for the population, those are the nodes that need to be updated,

everything else in memory needs to decay in hotness.
39 # Identify the IDs of nodes that need to decay in hotness
40 decay_hotness_ids = self.memory.keys() - set(node.connected_nodes.keys()) - {node.id}
41 # Decrement the hotness of non-accessed nodes
42 for key in decay_hotness_ids:
43 self.memory[key].hot_index = max(self.memory[key].hot_index - 1, 0)
44 # Increment the hotness of accessed nodes
45 for key in node.connected_nodes.keys():
46 self.memory[key].hot_index = min(self.memory[key].hot_index + 1, 100)
47 return population

To complete the memory encoding process, it is necessary to define the retrieval of nodes from the

long-term memory, which are added alongside the most recent node and utilised for decision-making. The

following code snippet, depicted in Listing 74, illustrates the implementation of the get_population()

method. This method retrieves a group of recognised nodes from the memory based on a provided node.

It identifies nodes with a hot index exceeding a certain threshold, indicating their relevance and recent

access. The method also manages the hotness of nodes by incrementing the hot index for accessed

118

nodes and decrementing it for non-accessed nodes.

4.4 Modular Integration: Decision-Making

The decision-making process in this architecture incorporates information from multiple levels and

incorporates the influence calculated by the working memory for a given input image. To facilitate this

process, the attributes of the current node, including probabilities and labels, are transformed into

weighted versions of the module outputs. These weights are determined by the class accuracy, giving

more importance to accurately predicted classes and reducing the impact of classes that the models

struggle to learn effectively. The calculation of these weights relies on analysing a forward pass on a test

set, generating a confusion matrix for each label and calculating said class accuracies.

The complete validation process is succinctly illustrated in Listing 75. In this context, a Tensor

containing images is employed to perform a forward pass on both the bottom and top levels of the

model. The provided labels are utilised as a means of validating the model’s performance. The data

employed to validate the top-level model consists of the forward pass output obtained from the

bottom-level model.

Listing 75 Computation System validation.

56 def validate(self, X: torch.Tensor, y: torch.Tensor) -> None:
57 """Validate the computation system using a set of validation data
58 Args:
59 X (torch.Tensor): Test data to use for validation
60 y (torch.Tensor): True labels to use for validation
61 """
62 self._bl.validate(X, y)
63 with torch.no_grad(): # no need to compute gradients
64 X = self._bl(X) # forwards the bottom-level with the testing data
65 self._tl.validate(X, y)

To generate the confusion matrices and subsequent calculation of the accuracy for each class, the

same process is done in both models. The Listing 76 shows the line used to calculate said metric. It

achieves this by utilising the zip() function to iterate over the transpose of predictions and , pairing

corresponding elements together. Within the iteration, it calls the confusion_matrix() function from

the LearningSystem class, passing in the paired preds and targets as arguments. This function

computes a confusion matrix, which evaluates the performance of a classification model by comparing

predicted labels against true labels. The resulting confusion matrix is then passed to the accuracy()

function to determine the accuracy. This process is carried out for each pair of predictions and targets,

and the resulting accuracy values are stored in a list called self.accuracies. This list is then used to weight

119

the predictions from these models in order for them to be used in the decision-making calculation as seen

in Listing 78.

Listing 76 Calculation of accuracies using a confusion matrix for each class.

1 self.accuracies = [LearningSystem.accuracy(LearningSystem.confusion_matrix(preds, targets)) for preds,
targets in zip(predictions.T, y.T)]

Once the weighted values are obtained, they are assigned to the attributes of the current node in the

Computation System’s forward call, as seen in Listing 77, building upon the code previously presented in

Listing 52. The final decision is made in the forward call of the Boris class, where the equation 3.21 is

applied. The predefined weights assigned to each component in this final decision are then used during

validation to fine-tune the model’s decision-making process.

Listing 77 Computation System forward method with memory access and assignments.

40 def __call__(self, X: torch.Tensor) -> Tuple[List[int], List[int]]:
41 """Performs the inference on the given input.
42 Args:
43 X (torch.Tensor): Input tensor.
44 Returns:
45 Tuple[List[int], List[int]]: Tuple containing the probabilities and labels.
46 """
47 with torch.no_grad(): # no need to compute gradients
48 probability: torch.Tensor = self._bl(X) # forwards the bottom-level
49 probability = probability.cpu().tolist()[0] # converts the probability tensor to a list
50 StorageSystem().most_recent_node.data.probabilities = probability # updates the probabilities in the

memory node
51 labels: np.ndarray = self._tl(np.array(probability)) # forwards the probability in the top-level
52 StorageSystem().most_recent_node.data.classification = labels # updates the classifications in the

memory node
53 labels = labels.tolist()[0] # converts the labels numpy array to a list
54 return (probability, labels)

The __call__()method in the Boris class depicted in Listing 78 plays a crucial role in determining

the ultimate decision based on an input image. When invoked with an input tensor X, this method triggers

the Computation System to fetch the probabilities and labels associated with the input. These probabilities

denote the predicted class probabilities, while the labels represent the predicted class labels themselves.

Subsequently, the method retrieves the influence value from the working memory, reflecting the impact

or significance assigned to the input image based on past experiences.

The weights, denoted as alpha, beta, and omega, govern the respective contributions of each module’s

output to the final decision. By combining the outputs using these weights, a comprehensive decision is

derived. This approach allows the Boris class to provide a holistic decision by considering the predicted

probabilities and labels as well as the influence obtained from the working memory.

120

Listing 78 Boris decision-making implementation.

62 def __call__(self, X: torch.Tensor) -> List[int]:
63 """Perform the forward pass of the Boris instance.
64 Args:
65 X (torch.Tensor): Input tensor.
66 Returns:
67 list: Final decision based on probabilities, labels, and working memory influence.
68 """
69 (probabilities, labels) = self._cs(X) # Call the ComputationSystem to obtain probabilities and labels
70 wm_influence = self._ss.working_memory.get_influence() # Get the influence from the working memory
71 alpha, beta, omega = 0.33, 0.33, 0.33 # Define weights for combining the outputs
72 # Calculate and store the final decision in the current node's data
73 StorageSystem().most_recent_node.data.final_decision = ((np.array(probabilities) * alpha +

np.array(labels) * beta + np.array(wm_influence) * omega) / 3).tolist()
74 return StorageSystem().most_recent_node.data.final_decision # Return the final decision

4.5 Data Management

Effective data management is crucial for successful machine learning tasks such as segmentation

and classification. In this subsection, the implementation of two Dataset classes is presented, namely

ImageMaskDataset and CustomDataset, that provide convenient and efficient ways to handle data

for segmentation and classification tasks, respectively. These classes encapsulate the necessary

functionalities to load, preprocess, and organise the data required for training and evaluation.

Additionally, the specific file structures required for each dataset can be outlines, ensuring proper

alignment between images, masks, and labels. Utilising these Dataset classes and adhering to the

prescribed file structures makes the data management process streamlined and facilitates seamless

integration with the machine learning models.

The ImageMaskDataset class is specifically designed to handle the data required for training the

segmentation network. It expects a specific file structure where each image and its corresponding mask

are stored together. The dataset folder should contain image files and their corresponding mask files.

The image files should be named as desired, while the mask files should have the same name as their

corresponding image file but with "_mask" appended to it. For example, if an image file is named

"image1.jpg", its corresponding mask file should be named "image1_mask.jpg". This naming

convention ensures that each image is associated with its respective mask. The class takes a folder path,

the expected size of the images and masks, and optional transformation functions for images and masks.

It utilises the torchvision library to load and preprocess the image and mask data. The __len__()

method returns the length of the dataset, and the __getitem__() method retrieves an item from the

dataset. It opens the image and mask files, converts them to tensors, and applies transformations if

specified. Assertions are included to ensure that the image and mask sizes match the expected size.

121

The CustomDataset class caters to the data requirements of the classification network. It expects

a specific file structure where the image files are accompanied by a CSV file containing the corresponding

labels. The dataset folder should contain the image files and a CSV file named "image_labels.csv"

that stores the labels. The CSV file should have the structure seen in Table 4.

Table 4: Classification dataset CSV structure.

Image Name Label 1 Label 2 ... Label N

image1.jpg 0 1 ... 1

image1.jpg 1 0 ... 0

...

imageN.jpg 1 0 ... 1

The CSV file should have the image names in the first column and the corresponding labels in

subsequent columns. Each row represents the image-label pair. The CustomDataset class takes a

folder path, the expected size of the images, and an optional transformation function as inputs. It reads

image labels from the CSV file in the dataset folder and stores them internally. The class initialises other

attributes, such as the base directory, class names, and image folder, based on the images’ size and

expected size. The __len__() method returns the dataset’s length, corresponding to the number of

images. The __getitem__() method retrieves an item from the dataset. It opens the image file,

converts it to a tensor, and applies transformations if specified. The labels associated with the item are

also retrieved and converted to a tensor. Assertions are included to ensure that the image size matches

the expected size.

The specific methods for retrieving an item from each dataset are depicted in Listings 79 and 80.

The first code snippet loads an image and its corresponding mask for image segmentation. It constructs

file paths for the image and mask, opens them, converts them to tensors, checks their sizes, applies

transformations if needed, and returns the transformed image andmask tensors. The second code snippet

loads an image and associated labels for classification. It constructs the image path, retrieves the labels,

opens the image, checks its size, applies transformations if provided, converts the labels to a tensor, and

returns the transformed image tensor and label tensor.

122

Listing 79 Implementation of the method used to retrieve an image-mask object for segmentation.

137 image_path = os.path.join(self.dataset_folder, self.image_files[idx]) # Get the path of the image
138 mask_path = os.path.join(self.dataset_folder, self.image_files[idx].split(".")[0] + "_mask." +

self.image_files[idx].split(".")[1]) # Get the path of the corresponding mask
139 image = to_tensor(Image.open(image_path).convert("RGB")) # Open the image and convert it to a tensor
140 mask = to_tensor(Image.open(mask_path).convert("L")) # Open the mask and convert it to a tensor
141 assert (image.shape[1], image.shape[2]) == self.expected_size # Check if the image size matches the

expected size
142 assert (mask.shape[1], mask.shape[2]) == self.expected_size # Check if the mask size matches the

expected size
143 if self.transform:
144 image = self.transform(image) # Apply the data transformation function to the image
145 if self.target_transform:
146 mask = self.target_transform(mask) # Apply the data transformation function to the mask
147 return image, mask

Listing 80 Implementation of the method used to retrieve an image-labels object for classification.

179 if torch.is_tensor(idx):
180 idx: list = idx.tolist() # Convert the index to a list if it's a tensor
181 img_path = os.path.join(self.base_dir, self.image_folder, self.data.iloc[idx, 0]) # Get the image

path
182 labels = self.data.iloc[idx, 1:] # Get the labels for the item
183 img = to_tensor(Image.open(img_path).convert("RGB")) # Open the image and convert it to a tensor
184 # Check if the image size matches the expected size
185 assert (img.shape[1], img.shape[2]) == self.expected_size
186 if self.transform:
187 img = self.transform(img) # Apply the data transformation function to the image
188 label_tensor = torch.tensor(labels, dtype=torch.float32) # Convert the labels to a tensor
189 return img, label_tensor

123

Chapter 5

Experimental Analysis and Verification

This chapter will explore the testing process of the BorisCAD architecture. At this stage, the primary

objective is to ensure the system performs optimally and reliably during training and inference. Given

that the system handles real-world input data, the ability to make accurate predictions becomes a crucial

requirement.

Encompassing neural networks for segmentation and classification, the bottom level of the

computation system forms the foundation of sub-symbolic data in this architecture. The segmentation

network, responsible for partitioning input data into distinct regions, facilitates precise location and

identification of relevant features. The classification network then uses this to assign accurate labels or

classes to the previously segmented regions.

At the top level, the system incorporates a decision forest composed of multiple decision trees.

Decision trees offer a structured and hierarchical approach to decision-making, handling symbolic data

to derive accurate conclusions. The decision forest integrates the outputs of individual decision trees to

make robust and informed predictions. The main objective of testing this part of the system is to

evaluate the generalisation of the induction mechanism based on the given dataset while avoiding

overcommitting resources to overfitting the training data.

Furthermore, the evaluation will occur during the inference phase involving memory. As the

architecture processes new images over time, it actively constructs memory to enhance the final

decision-making, resulting in more accurate information identification from previous data.

During this testing phase, the focus will be on evaluating the overall performance and reliability of the

system by simulating different input conditions, varying data and configuration parameters. By doing so,

it will be graphically visible where the system needs to be optimised or improved.

Thus, this chapter will outline the methodologies and techniques employed to conduct this

124

comprehensive testing of the system during training and inference time. Evaluation metrics and other

relevant indicators will be explored to quantify the system’s effectiveness.

In order to establish a benchmark, the testing framework incorporates a system comprising a NVIDIA

GeForce RTX 3060 GPU housing 12GB of dedicated memory. This GPU is synergistically coupled with an

AMD Ryzen 7 3700X processor and an 48GB of DDR4 RAM operating at a clock speed of 3600 MHz. The

collective configuration presents a cumulative memory capacity of 36GB, ensuring optimal utilisation of

the GPU’s capabilities.

5.1 Modular Testing

Due to the cognitive architecture of this system, which employs bottom-up learning, the testing process

is applied sequentially. It follows a modular approach, where each component of the system is individually

assessed before evaluating their integration. This ensures a thorough examination of the performance and

functionality of each module. Past inferences from lower methods are then utilised in higher methods,

further emphasising the need for testing and validation before evaluating subsequent components in the

chain. Therefore, the learning process is presented hierarchically, with each model utilising the previous

one during both the training and inference stages.

The testing process focuses on different modules within the system, starting with the segmentation

network. This module undergoes independent training and testing to determine its effectiveness in

partitioning input data into distinct regions. The assessment evaluates its accuracy and precision in

identifying relevant features.

Next, the evaluation shifts to the classification network. This module utilises the output of the

segmentation network and assigns accurate labels or classes to the segmented regions. The analysis

includes variations with and without the segmentation pre-processing step, aiming to understand the

influence of this step on the final classification results.

Furthermore, the classification network generates probabilities that play a crucial role in constructing

the decision forest. These probabilities, derived from the classification module, enhance the robustness

and reliability of the decision forest’s predictions.

The image sizes and number of epochs used for training all the models in the computation system

were selected based on previous research findings and to allow for a comprehensive range of evaluations

without excessive resource allocation.

125

5.1.1 Bottom-level: segmentation and classification

In the context of testing the segmentation network, a series of experiments has been designed to

evaluate its performance and robustness. These tests involve varying image sizes and numbers of training

epochs, aiming to accurately assess the network’s ability to partition input data into distinct regions. The

testing configuration is explicit in Table 5.

Table 5: Segmentation tests planning.

Test Configuration Image Size Number of Epochs

Test 1 224× 224 8
Test 2 224× 224 16
Test 3 224× 224 32
Test 4 480× 480 8
Test 5 480× 480 16
Test 6 480× 480 32
Test 7 512× 512 8
Test 8 512× 512 16
Test 9 512× 512 32

The number of training epochs for each test configuration was carefully determined based on extensive

experimentation and validation. Through iterative training and evaluation, the optimal point where the

network achieves peak performance without overfitting or diminishing returns is found. Furthermore, the

network’s capability to generalise across different image sizes and adapt to various training durations is of

significant interest. Several metrics will be employed to measure the segmentation network’s performance,

including mask accuracy, dice score, and Intersection over Union (IoU).

Mask accuracy quantifies the pixel-wise precision of the generated segmentation masks. It

quantitatively assesses how closely the network aligns with ground truth annotations, indicating its

proficiency in identifying and classifying distinct regions within the input data. The dice score is a metric

that measures the similarity between the predicted segmentation masks and the ground truth masks. It

assesses the overlap between the two masks, considering both true and false positives. The dice score

comprehensively evaluates the network’s ability to balance precision and recall in its segmentation

outputs. IoU calculates the ratio of the area of overlap between the predicted segmentation masks and

the ground truth masks to the total area encompassed by both masks. IoU provides a robust measure of

segmentation accuracy, reflecting how well the network delineates regions of interest.

Employing these metrics allows for a thorough evaluation of the segmentation network’s

performance across various test configurations. By considering different image sizes and training

126

epochs, the network’s adaptability to varying input dimensions and training durations can be analysed,

aiding in identifying optimal settings. Additionally, only a single dataset of image-masks will be used to

evaluate the performance of the segmentation system. This dataset has been selected to represent a

diverse range of images and provides the necessary ground truth masks for evaluation.

To train the model, a configuration file can be created as seen bellow. In here, the segmentation

dataset is defined, as well as the specific size that the images will have. Additionally, the network selected

will include the attention mechanisms. To train the model, a save file is defined, as well as a number

of epochs and the batch size. The same process will be done for every other module tested within the

system, with specific configurations for the operation at hand.

config_segmenter.yaml

Boris:

segmentation: K:\Dataset\masks

size: [224, 224]

Computation:

Bottom:

attention: true

Training:

epochs: [8]

save_file: segmenter_224_224_16.boris

batch_size: 32

A comprehensive display of the obtained results for the segmentation network training are displayed

in Table 6.

Table 6: Segmentation tests results.

Test Configuration Loss Accuracy (%) Dice Score IoU

Test 1 0.1223 96.62% 0.9567 0.9170

Test 2 0.1056 96.87% 0.9621 0.9269

Test 3 0.0857 97.42% 0.9738 0.9490

Test 4 0.1677 97.56% 0.9620 0.9268

Test 5 0.1253 97.73% 0.9654 0.9332

Test 6 0.0794 97.99% 0.9708 0.9432

Test 7 0.1719 96.98% 0.9495 0.9040

Test 8 0.1298 97.36% 0.9574 0.9184

Test 9 0.1115 96.80% 0.9468 0.8999

127

In Test 1, Test 2, and Test 3, the image size was kept constant at 224x224 pixels, while the number

of epochs increased from 8 to 32. The loss values decreased gradually, indicating improved performance

as the model was trained longer. The accuracy, Dice Score, and IoU also showed a positive trend, with

higher values achieved with more epochs. Notably, the differences in these metrics between Test 2 and

Test 3 were relatively minor compared to the improvement observed between Test 1 and Test 2.

In Test 4, Test 5, and Test 6, the image size was increased to 480x480 pixels, maintaining the same

number of epochs as in the previous tests. Surprisingly, the performance did not significantly improve

despite the larger image size. The loss values were slightly higher, indicating a slightly less accurate

prediction. The accuracy, Dice Score, and IoU values were slightly improved compared to the smaller

image size tests, but the gains were not substantial, given the increase in computational time. Increasing

the image size beyond a certain threshold may contribute little to the segmentation performance.

In Test 7, Test 8, and Test 9, the image size was further increased to 512x512 pixels, while the batch

size was reduced to 16. Similar to the previous tests, the loss values increased slightly compared to the

smaller image size tests. The accuracy, Dice Score, and IoU values slightly decreased compared to the

480x480 pixel tests.

In conclusion, the segmentation tests demonstrated that increasing the image size beyond a certain

threshold did not substantially improve the model’s performance. While larger image sizes were expected

to provide more detailed information for segmentation, the gains in accuracy, Dice Score, and IoU were

relatively modest compared to the required computational time. These findings suggest a limit to the

benefits of increasing image size in the context of segmentation. Therefore, it is essential to carefully

consider the trade-off between computational resources and performance when deciding on the optimal

image size for segmentation tasks.

During the training, a verbose similar to what is seen in Figure 40 is presented. In here, the metrics

associated with the model are seen, in addition to information referring the current batch and completion

times. The adaptive learning rate is also displayed whenever there is a change. Additionally, an example

of a graph generated using the training metrics is depicted in appendix Figure 51.

Figure 40: Segmentation Network verbose during training and validation.

128

The evaluation of the classification network focuses on its ability to assign labels or classes to input

images accurately. This assessment is conducted in two scenarios: with and without the segmentation

network, analysing the model’s behaviour when given pre-processed data that isolates important image

sections provides valuable insights. This comprehensive testing approach aims to evaluate the system’s

capability to accurately identify and classify various objects or entities without relying solely on the input

data.

During the testing phase, multiple evaluation metrics are employed to assess the performance of

the classification network. These metrics include accuracy, precision, recall, F1 score, and Mathews

Correlation Coefficient (MCC). The network’s ability to correctly classify raw data and segmented regions

in an image can be determined by measuring these metrics, enabling informed predictions.

The testing involves three datasets: CheXpert, NIH Chest X-ray, and pneumonia-related X-ray

images. The CheXpert dataset comprises a vast collection of chest X-ray images with annotations

provided by radiologists, serving as valuable ground truth for evaluating the network’s ability to classify

various thoracic pathologies accurately. The NIH Chest X-ray dataset consists of diverse chest X-ray

images sourced from the National Institutes of Health, enabling comprehensive evaluation of the

classification network’s performance across various conditions. Lastly, the pneumonia-related X-ray

images dataset focuses specifically on pneumonia-related cases, allowing for an assessment of the

network’s proficiency in accurately identifying and distinguishing pneumonia-related patterns.

Similar to the segmentation network testing, the testing procedure for the classification network with

the segmentation preprocessing is presented in Table 7. This procedure is repeated for each of the three

datasets, ensuring the evaluation of the system’s performance when encountering different data types.

Additionally, and as a mean to compare results, Table 8 was elaborated to compare these results with a

classification model trained without the use of the segmentation preprocessing. Since this is only used

as an extra comparison and justification for the full usage of the segmentation network, the pneumonia

dataset was used for it’s low complexity and size.

The results obtained from training the classification network for each of the datasets are presented in

Tables 12, 11, and 10. The additionally tested model without the segmentation processing is depicted in

Table 9.

In the given Table 9, the results of the pneumonia dataset training without segmentation pre-processing

are presented. For Test 1, which utilised an image size of 224x224 and trained for 32 epochs, the obtained

results include a loss of 0.4183, an accuracy of 79.34%, precision of 0.7207, recall of 0.7983, F1 score

of 0.7575, and MCC of 0.5126.

129

Table 7: Classification tests with segmentation planning.

Test Configuration Image Size Number of Epochs

Test 1 224× 224 16
Test 2 224× 224 32
Test 3 224× 224 48
Test 4 480× 480 16
Test 5 480× 480 32
Test 6 480× 480 48
Test 7 512× 512 16
Test 8 512× 512 32
Test 9 512× 512 48

Table 8: Classification tests without segmentation and using the pneumonia dataset.

Test Configuration Image Size

Test 1 224× 224
Test 2 480× 480
Test 3 512× 512

Similarly, Test 2 employed an image size of 480x480 and trained for 32 epochs. The results show

a lower loss of 0.3590 and an improved accuracy of 82.97%. The precision, recall, F1 score, and MCC

were calculated as 0.7739, 0.8330, 0.8023, and 0.4634, respectively.

In Test 3, the image size was increased to 512x512 while training for 32 epochs. The results

demonstrate a further reduction in loss to 0.3575 and an increased accuracy of 83.06%. The precision,

recall, F1 score, and MCC were computed as 0.7760, 0.8327, 0.8033, and 0.4556, respectively.

Table 9: Classification tests results on pneumonia dataset without segmentation.

Test Configuration Loss Accuracy (%) Precision Recall F1 Score MCC

Test 1 0.4183 79.34% 0.7207 0.7983 0.7575 0.5126

Test 2 0.3590 82.97% 0.7739 0.8330 0.8023 0.4634

Test 3 0.3575 83.06% 0.7760 0.8327 0.8033 0.4556

Analysing the provided results for the pneumonia classification tests, it is possible to observe the

system’s performance across different image sizes and the number of epochs depicted in Table 10. For

the tests conducted with an image size of 224x224, increasing the number of epochs from 16 to 32 (Test

1 to Test 2) led to a slight improvement in most metrics. The loss decreased from 0.4104 to 0.3942,

and the accuracy increased from 79.55% to 80.48%. The precision, recall, F1 score, and MCC also

demonstrated improvements. Similarly, increasing the number of epochs from 32 to 48 (Test 2 to Test

3) slightly decreased accuracy, precision, recall, F1 score, and MCC. However, the overall performance

remained relatively consistent.

130

Moving to the larger image size of 480x480, the improvements across the board are noticeable.

Increasing the number of epochs from 16 to 32 (Test 4 to Test 5) resulted in a significant increase in

accuracy from 79.05% to 83.37%. The precision, recall, F1 score, and MCC also improved. Further

increasing the number of epochs from 32 to 48 (Test 5 to Test 6) led to a continued enhancement in

performance, with accuracy reaching 84.56%.

For the most prominent image size of 512x512, the overall performance is slightly lower compared

to the other image sizes. However, increasing the number of epochs from 32 to 48 (Test 8 to Test 9)

showed improvements across most metrics, including accuracy, precision, recall, F1 score, and MCC.

Table 10: Classification tests results on pneumonia dataset.

Test Configuration Loss Accuracy (%) Precision Recall F1 Score MCC

Test 1 0.4104 79.55% 0.7246 0.7990 0.7600 0.5178

Test 2 0.3942 80.48% 0.7369 0.8099 0.7717 0.5413

Test 3 0.3960 80.19% 0.7330 0.8061 0.7678 0.5337

Test 4 0.4121 79.05% 0.7173 0.7934 0.7535 0.5043

Test 5 0.3321 83.37% 0.7565 0.8368 0.7946 0.5318

Test 6 0.3123 84.56% 0.8065 0.8488 0.8271 0.5689

Test 7 0.4121 76.25% 0.6946 0.7231 0.7086 0.4324

Test 8 0.3231 85.57% 0.7795 0.8115 0.7952 0.4852

Test 9 0.3013 85.63% 0.7800 0.8121 0.7957 0.4855

Comparing the achieved results, including a segmentation network in the classification system results

in improved performance across all image sizes. In Test 2, with an image size of 224x224 and 32 epochs,

the accuracy increases from 79.34% to 80,48% with the segmentation network. This improvement is

consistent with Test 5 (480x480, 32 epochs) and Test 8 (512x512, 32 epochs), where accuracy, precision,

recall, F1 score, and MCC show notable enhancements when segmentation is incorporated. These results

indicate that the segmentation network enhances the system’s ability to detect and classify pneumonia-

related features in the datasets accurately. Consequently, integrating the segmentation network positively

impacts the overall performance of the pneumonia classification system. The testing done with the next

two datasets (NIH and CheXpert) will always have the segmentation network, in order to increase the

testing metrics obtained.

The classification experiments depicted in Table 11 were conducted using the NIH dataset, and the

results were obtained for different image sizes and varying numbers of epochs, as shown in Table 7.

Test 1, performed on images of size 224x224 and trained for 16 epochs, yielded a loss of 0.6503.

The accuracy achieved was 63.55%, with precision, recall, F1 score, and MCC values of 0.6700, 0.6990,

0.6842, and 0.2013, respectively. The relatively lower performance of Test 1 suggests that the model

131

Table 11: Classification test results on NIH dataset.

Test Configuration Loss Accuracy (%) Precision Recall F1 Score MCC

Test 1 0.6503 63.55% 0.6700 0.6990 0.6842 0.2013

Test 2 0.6233 65.23% 0.7162 0.7162 0.7162 0.5721

Test 3 0.5739 65.32% 0.7052 0.7183 0.7117 0.5710

Test 4 0.5335 81.23% 0.7219 0.7300 0.7259 0.4701

Test 5 0.5191 85.13% 0.7566 0.7650 0.7608 0.4927

Test 6 0.4648 86.00% 0.7643 0.7729 0.7686 0.4977

Test 7 0.5293 81.63% 0.7302 0.7414 0.7357 0.4501

Test 8 0.4547 85.03% 0.8092 0.8183 0.8137 0.5242

Test 9 0.3604 85.98% 0.8182 0.8092 0.8137 0.5521

still needs to be optimised for this dataset and thus requires further training.

Test 2, conducted with the same image size but trained for 32 epochs, exhibited improvements across

all metrics. The loss decreased to 0.6233, and the accuracy increased to 65.23%. The remaining metrics

achieved 0.7162, 0.7162, 0.7162, and 0.5721, respectively.

Continuing with Test 3, where the number of epochs increases to 48, the loss dropped to 0.5739

while the accuracy remained consistent at 65.32%. The precision, recall, F1 score, and MCC improved

slightly compared to Test 2, reaching values of 0.7052, 0.7183, 0.7117, and 0.5710, respectively. Tests

2 and 3 demonstrate that increasing the number of epochs enhances the model’s ability to extract relevant

features from the segmented images, improving the gathered metrics but stabilising near the end of the

training.

Test 4 was conducted on images of size 480x480 and trained for 16 epochs, an image size larger

than the previous tests. This configuration yielded a significantly reduced loss of 0.5335 and an improved

accuracy of 81.23%. The remaining metrics reached 0.7566, 0.7650, 0.7608, and 0.4927, respectively.

In Test 5, with the same image size but trained for 32 epochs, the loss further decreased to 0.5191, and

the accuracy significantly improved to 85.13%.

Test 6 was performed on images of size 480x480 and trained for 48 epochs, resulting in a reduced

loss of 0.4648 and an accuracy of 86.00%. The precision, recall, F1 score, and MCC achieved values of

0.7643, 0.7729, 0.7686, and 0.4977, respectively. These findings demonstrate the effectiveness of a

larger image size combined with increased epochs in achieving superior classification performance.

The subsequent tests, conducted on images of size 512x512, exhibited similar trends. Test 9, trained

for 48 epochs on images of size 512x512, showcased superior performance. The loss reached its lowest

value at 0.3604, and the accuracy achieved an outstanding 85.98%. Precision, recall, F1 score, and MCC

obtained values of 0.8182, 0.8092, 0.8137, and 0.5521, respectively.

132

The experiments performed on the NIH dataset demonstrated that increasing the number of epochs

and utilising larger image sizes improved metrics, with the best results achieved at the highest image size

and for the most epochs. Although verified, these parameters make the system more resource heavy and

might only sometimes be achievable in real-world tasks.

Moving to the final dataset used to test the bottom-level performance, the results obtained using the

CheXpert dataset are depicted in Table 12.

Table 12: Classification test results on CheXpert dataset.

Test Configuration Loss Accuracy (%) Precision Recall F1 Score MCC

Test 1 0.6493 61.32% 0.6712 0.6754 0.6733 0.3292

Test 2 0.6306 63.87% 0.6980 0.7024 0.7002 0.3423

Test 3 0.5956 63.90% 0.6983 0.7027 0.7005 0.3425

Test 4 0.5713 81.23% 0.7312 0.7464 0.7387 0.4731

Test 5 0.5315 85.13% 0.7647 0.7806 0.7725 0.4948

Test 6 0.5084 86.00% 0.7724 0.7885 0.7804 0.4998

Test 7 0.5569 81.63% 0.7302 0.7914 0.7596 0.5301

Test 8 0.5491 86.13% 0.7683 0.8327 0.7992 0.5578

Test 9 0.4968 86.38% 0.7705 0.8352 0.8015 0.5594

Similar to previous tests, from increasing the number of epochs the model trains for, the metrics

significantly improve between 16 and 32 epochs and stabilise afterwards. Test 1, trained for 16 epochs,

resulted in a loss of 0.6493 and an accuracy of 61.32%. The precision, recall, F1 score, and MCC

values were 0.6712, 0.6754, 0.6733, and 0.3292, respectively. Test 2, trained for 32 epochs, showed

improvements across all metrics. The loss decreased to 0.6306, and the accuracy increased to 63.87%.

With Test 3, trained for 48 epochs, the loss decreased to 0.5956, while the accuracy remained relatively

consistent at 63.90%. Consistently with what happened in the previous testing for the image size of

224x224, the metrics obtained are significantly low compared to larger sizes. This decrease can be

explained by the network being unable to capture the image’s intricacies with such low resolution and only

being able to bias towards the most seen label within the dataset.

Tests 4, 5 and 6 obtained improved results, with the maximum obtained in all metrics achieved at

48 epochs into training. The final loss obtained was 0.5084, and the maximum accuracy took a value

of 86%. The remaining analysed metrics also had the highest values, with 0.7724, 0.7885, 0.7804 and

0.4998, respectively.

Test 7, with an image size of 512x512 trained for 16 epochs, displayed a loss value of 0.5569 and

an accuracy of 81.63%. The precision, recall, F1 score, and MCC values were 0.7302, 0.7914, 0.7596,

and 0.5301, respectively. Test 8, trained for 32 epochs, resulted in a lower loss of 0.5491 and a higher

133

accuracy of 86.13%. The remaining metrics continue to improve, and, at the end of Test 9, with the

duration of 48 epochs, their values achieved the best performance. The model achieved the lowest loss

at 0.4968 and an accuracy of 86.38%.

In conclusion, the experiments conducted on the CheXpert dataset demonstrate the significant impact

of increasing the number of epochs and utilising larger image sizes on the bottom-level performance of

cognitive architecture. The results consistently show that the metrics improve significantly as the number

of epochs increases, reaching their peak and stabilising around 48 epochs of training. However, it is worth

noting that the limitations of lower image resolutions, as observed in the smaller image size, hinder the

model’s ability to capture intricate details, resulting in relatively lower performance. Therefore, optimising

the trade-off between image resolution and computational resources is crucial when deploying the model

in real-world tasks.

Similar to what is seen in the segmentation network, a verbose is displayed during training, depicted

in Figure 41. This verbose elaborates on the gathered metrics after every epoch, and has periodic updates

on the current learning rate the model is using. Additionally, an example of a graph generated using the

training metrics is depicted in appendix Figure 52.

Figure 41: Classification Network verbose during training and validation.

5.1.2 Top-level: Decision Forest building

During the upcoming testing phase, the primary objective will be to evaluate the performance of the

decision forest, which serves as the top-level structure of the system. These tests are designed to verify that

the decision forest, operating as the symbolic component, can deliver reliable and accurate classifications

for the assigned tasks, thereby enhancing the predictions made by the bottom-level component.

In addition, the sub-symbolic model will be utilised to study the improvements brought about by the

symbolic approach. By comparing the results obtained from both models, a comprehensive analysis can

be conducted to assess the advancements achieved by incorporating the symbolic part in the system.

In the subsequent step, the evaluation will involve utilising the probabilities generated by the bottom-

level subsystem, trained explicitly for images with sizes of 224x224 and 48 epochs, on the pneumonia

134

dataset. These initial metrics will serve as a baseline for assessing the effectiveness of the decision forest

in improving classification performance. The impact and improvement brought about by the top-level

structure can be quantitatively measured and evaluated by comparing the metrics obtained from the low-

accuracy model with the enhanced results achieved through the decision forest.

Additionally, similar evaluation procedures will be conducted on images of larger sizes, specifically

480x480 and 512x512, to analyse the continued relevance and effectiveness of the top-level structure.

By testing the decision forest on different image sizes, it will be possible to determine if the improvement

provided by the top-level component remains consistent across various image dimensions.

The choice of the pneumonia dataset for these tests is deliberate, as it exhibits a relatively small

length and a limited number of classification classes. This selection enables more accessible and less

resource-intensive testing, allowing a more efficient evaluation of the decision forest’s performance.

Table 13 outlines the test configuration for evaluating the decision forest. The main parameter being

varied in these tests is the minimum number of samples required for a split in a decision tree node. By

conducting these tests, it becomes possible to observe the impact of altering the minimum samples per

split on the decision forest’s performance and its ability to generalise and make accurate classifications.

Table 13: Decision Forest tests by varying the minimum number of splits.

Test Configuration Minimum Samples per Split

Test 1 1

Test 2 4

Test 3 8

Test 4 16

Table 14 depicts the metrics gathered by testing various decision forests on different configurations.

Comparing these results to the metrics achieved without the decision tree, specifically for Test 3, it can be

observed that the decision tree configuration led to some improvements. The decision tree configuration

with a minimum of 8 samples per split showed a higher accuracy of 84.80%, indicating that the decision

tree improved the overall classification performance compared to the baseline accuracy of 80.19% without

the decision tree. Additionally, the decision tree configuration exhibited a slightly higher precision of

0.7439, suggesting that the decision tree’s predictions were more precise in identifying positive instances.

However, the decision tree configuration showed a slightly lower recall of 0.7978 compared to the baseline

recall of 0.8061, indicating that the decision tree may have missed a few positive instances. The F1 score,

which balances precision and recall, was slightly higher for the decision tree configuration at 0.7699

compared to 0.7678 for the baseline. Furthermore, the decision tree configuration achieved a higher

MCC of 0.5752, indicating better overall agreement between predicted and true labels, compared to the

135

MCC of 0.5337 for the baseline configuration.

Table 14: Decision Forest tests using a validated pneumonia model for image size 224x224.

Test Configuration Accuracy (%) Precision Recall F1 Score MCC

Test 1 83.90% 0.7365 0.7932 0.7638 0.5637

Test 2 85.20% 0.7476 0.7991 0.7725 0.5801

Test 3 84.80% 0.7439 0.7978 0.7699 0.5752

Test 4 74.90% 0.6753 0.7654 0.7175 0.4598

Baseline 80.19% 0.7330 0.8061 0.7678 0.5337

Similarly, the same tests were done by using the pneumonia model validated on 480x480 and

512x512 images. The results are then presented in Tables 15 and 16. As seen before, there are

substantial improvements when using the decision forest as an extra processing step for the

classification network. The decision tree configurations for the 480x480 images exhibited varying

performance, depicted in Table 15. Test 1 achieved an accuracy of 87.12%, while Test 2 showed

improvement with 87.87% accuracy and higher metrics overall. Test 3, with a minimum of 8 samples

per split, reached an accuracy of 88.35% and maintained competitive metrics. However, Test 4, with 16

samples per split, experienced a decrease in accuracy. Comparing these configurations to the baseline,

the decision tree consistently outperformed it in terms of accuracy, precision, recall, F1 score, and MCC.

Table 15: Decision Forest tests using a validated pneumonia model for image size 480x480.

Test Configuration Accuracy (%) Precision Recall F1 Score MCC

Test 1 87.12% 0.7904 0.8517 0.8199 0.6743

Test 2 87.87% 0.8062 0.8632 0.8337 0.7019

Test 3 88.35% 0.7986 0.8574 0.8270 0.6882

Test 4 81.53% 0.8123 0.7369 0.7728 0.5546

Baseline 84.56% 0.8065 0.8488 0.8271 0.5689

Table 16 depicts the metrics for the decision tree on the 512x512 images and, in Test 1, with a

minimum of 1 sample per split, the decision tree obtained an accuracy of 86.25%. Test 2, with a minimum

of 4 samples per split, showed improvement with an accuracy of 87.53% and higher metrics, suggesting

better classification performance. Similarly, Test 3, with 8 samples per split, demonstrated competitive

accuracy and metrics, highlighting the decision tree’s ability to capture meaningful patterns. However, in

Test 4, with a higher minimum of 16 samples per split, the decision tree’s accuracy decreased to 80.76%,

accompanied by lower performance metrics. Comparatively, the baseline with 48 epochs, achieved a

lower accuracy of 85.63% and relatively lower precision, recall, F1 score, and MCC values. These results

136

indicate that the decision tree configurations (Test 1 to Test 4) generally outperformed the baseline in

terms of accuracy and classification metrics on the 512x512 images.

Table 16: Decision Forest tests using a validated pneumonia model for image size 512x512.

Test Configuration Accuracy (%) Precision Recall F1 Score MCC

Test 1 86.25% 0.7752 0.8318 0.8025 0.6412

Test 2 87.53% 0.7861 0.8452 0.8146 0.6617

Test 3 86.98% 0.7813 0.8385 0.8089 0.6529

Test 4 80.76% 0.7126 0.7843 0.7467 0.5168

Baseline 85.63% 0.7800 0.8121 0.7957 0.4855

Overall, the decision tree tests showcased the potential of the decision forest, particularly on the

larger image sizes, to enhance classification performance. Fine-tuning the hyperparameters, such as the

minimum samples per split, proved crucial in optimising the decision tree’s effectiveness in accurately

classifying pneumonia cases.

For the decision forest building, the verbose in Figure 42 can be seen. Although more simple than the

ones previously presented, it shows the probabilities being compiled to be used in training and the start

message when each of the decision tree are being built.

Figure 42: Verbose during forest building.

5.2 Inference Testing

Having successfully trained the entire computation system of the architecture for a specific set of

labels, the focus now shifts to evaluating its execution during inference. This crucial phase involves

integrating the memory component, vital in storing past information and establishing connections with

current input data.

To ensure the optimal functioning of the memory component, it is imperative to understand its

behaviour comprehensively in this context. This entails investigating how it effectively retrieves and

utilises stored memories and fine-tuning its associated parameters. By carefully adjusting these

parameters, the system can better capture relevant similarities and associations between memories,

enhancing decision-making capabilities.

The entire decision-making process is subjected to rigorous testing following the thorough

comprehension and optimisation of the memory component. This evaluation applies the same metrics

137

for classification and inference, allowing for a comprehensive analysis of how the memory component

influences the final decision. Additionally, this testing phase provides insights into the overall

performance and effectiveness of the decision-making process.

By systematically examining the interplay between the memory component and the decision-making

mechanism using the computation system data, this evaluation aims to unveil the intricate dynamics at

play and identify opportunities for improvement. The results obtained from this comprehensive

assessment will not only shed light on the impact of the memory component on the system’s

decision-making capabilities but also contribute to further enhancements in the architecture’s overall

performance.

5.2.1 Memory Building

The evaluation of the memory component involves a comprehensive set of tests, focusing on long-term

memory while the working memory is assessed during inference time. These tests aim to examine the

associativity properties of the memory, the connectivity between nodes, and the evolution of ”hotness”

over time.

Different similarity thresholds, specifically 0.8, 0.85, 0.9, and 0.95, were employed to evaluate the

associativity patterns. A higher similarity threshold indicates that images need a more remarkable

resemblance to be connected, generating ”memory chunks” composed of interconnected nodes but with

less density since the images must be nearly identical to connect. Conversely, a lower similarity

threshold leads to excessive generalisation, causing unnecessary connections between different images

and, thus, larger groups of connected nodes.

Given the standard features present in X-ray images, such as edges and shape, a baseline level of

similarity is consistently met. However, the memory tests seek to identify the appropriate threshold that

balances capturing meaningful associations and avoiding indiscriminate connections. These thresholds

ensure that the memory accurately captures and connects images that exhibit similar patterns besides

the obvious ones, enabling the system to make informed decisions based on relevant information.

The same dataset was utilised to conduct the long-term memory tests, employing varying similarity

thresholds. This approach allows for an in-depth analysis of how the memory associates and connects

nodes based on the given data. The unshuffled data was forwarded through the trained model, ensuring

consistent outcomes while solely observing changes in memory properties and structure. In the Figures

depicting the tests, the colour assigned to each node represents the ”remember” threshold, indicating

whether a node is successfully retrieved from the working memory when needed. This additional analysis

138

material enhances the interpretation of the memory’s behaviour and functionality.

For the lowest threshold of 0.8 depicted in Figure 43, the memory construction reveals significant

connections even within the first 5 images. These connections stem from the shared similarities inherent

in x-ray images, such as similar edges and shapes. As the number of images increases to 20, all nodes

become interconnected, forming a single chunk of well-activated memory. With 50 images, the memory

remains highly connected, and only a few nodes appear as ”forgotten.” By the time we reach 100

images, the memory displays a dense structure with a single chunk of interconnected nodes, indicating

the presence of strong associations.

I=5 I=20

I=50 I=100

Figure 43: LTM construction (5, 20, 50 and 100 images) with a similarity threshold of 0.8.

At the 0.85 threshold delineated in Figure 44, the memory construction demonstrates a distinct

pattern. Even at the 50-image mark, the memory exhibits split chunks of data. A significant number of

nodes are forgotten and not activated, resulting in disconnected clusters. However, as we reach 100

images, these clusters gradually connect, forming a unified structure, albeit with fewer connections

compared to the lower threshold.

Moving to the 0.9 threshold, the memory displays a unique pattern characterised by a long line of

connected nodes with relatively low density. This indicates that for a connection to be established, the

images must exhibit a higher degree of similarity. While the memory still forms clusters, the overall

structure highlights the need for stronger resemblances between images. This is described in Figure 45.

Finally, at the edge case of the 0.95 threshold shown in Figure 46, the memory construction

showcases distinct characteristics. Numerous lonely nodes with no similarity are observed, emphasising

the stringent threshold. However, small groups of highly similar nodes are present, indicating a high

139

I=5 I=20

I=50 I=100

Figure 44: LTM construction (5, 20, 50 and 100 images) with a similarity threshold of 0.85.

I=5 I=20

I=50 I=100

Figure 45: LTM construction (5, 20, 50 and 100 images) with a similarity threshold of 0.9.

level of resemblance within these clusters. The memory structure at this threshold reflects the challenge

of establishing connections due to the requirement for almost identical images.

In conclusion, evaluating memory construction at different similarity thresholds sheds light on the

intricate dynamics of the memory component within the system. The observations demonstrate that

lower similarity thresholds, such as 0.8, result in widespread connections and the formation of a dense,

interconnected memory structure. As the similarity threshold increases, the memory becomes more

discerning, with connections occurring among images that exhibit higher levels of resemblance. The

memory’s construction at higher thresholds, such as 0.95, showcases the challenge of establishing

140

I=5 I=20

I=50 I=100

Figure 46: LTM construction (5, 20, 50 and 100 images) with a similarity threshold of 0.95.

connections, with fewer associations forming and emphasising near-identical images. These findings

highlight the critical role of similarity thresholds in determining the structure and functionality of the

memory, as well as the delicate balance required to capture meaningful associations while avoiding

excessive or inadequate connections. Understanding these nuances contributes to the overall

understanding of the system’s memory capabilities and aids in optimising its performance for real-world

inference tasks.

In order to evaluate the functioning of the working memory component, rigorous tests were conducted

under controlled conditions, employing a similarity threshold of 0.8 and a memory size of 7. The primary

objective of these tests was to investigate the dynamic insertion, removal, and sorting mechanisms within

the working memory, guided by connections established in the long-term memory. This thorough analysis

ensures the effective encoding, organisation, and retrieval of relevant information within the cognitive

architecture.

Figure 47 provides a comprehensive visual representation depicting the progressive behaviour of the

working memory as six sequential images are successively inserted. Initially, nodes are added to the

working memory successively, reflecting the order of their insertion and exhibiting a decay in their

hotness levels. However, a turning point occurs upon introducing the fifth image, where a connection is

forged between the latest inserted node and existing nodes. This critical connection triggers a systematic

reorganisation of the working memory, wherein the connected nodes are repositioned closer to the top

and sorted based on their similarity to the current node.

Continuing the process, Figure 48 depicts the working memory’s state as the long-term memory

141

Figure 47: LTM with 4,5 and 6 images and WM orderly structure.

accommodates nine images. Considering the predetermined memory size constraint of 7, a deliberate

node removal process is implemented after each iteration to accommodate new connections and nodes.

Remarkably, a solitary unconnected node persists within the working memory upon reaching the threshold

of seven images and is excluded from the working memory upon introducing the eighth image. However,

as this previously unconnected node establishes a subsequent connection with the most recent node, it

is reintegrated into the working memory, heralding a profound reorganisation of the memory structure to

accommodate these newly connected nodes.

Figure 48: LTM with 7,8 and 9 images and WM orderly structure.

These extensive tests provide compelling evidence of the dynamic nature of the working memory

component, which adeptly adjusts its organisation based on the evolving connections established in long-

termmemory. Such adaptability ensures the seamless integration and utilisation of information, facilitating

robust decision-making capabilities within the overarching cognitive architecture.

142

5.3 Cognitive Architecture: Overtime Improvement

It is now time to move towards full system integration during inference time. The current architecture

has implemented the only method for continuous learning related to memory conducibility and the ability

to make continuous associations. This evolution aims to improve decision-making by testing new image

insertion and connections on the Long-Term Memory.

Until now, all tests have focused on evaluating how well a model performs in assessing a specific

label or class within a set of labels for an image. While this aspect is crucial, especially in medical image

diagnosis, evaluating how well a model performs when assessing all labels simultaneously is equally

essential. This comprehensive evaluation becomes critical since correctly identifying or missing a

pathology can have significant consequences. With the full system integration being tested, only fully

correct predictions will be counted as valid outcomes. This stringent criterion will be used to validate the

accuracy of the architecture.

The testing conditions for this process have been precisely defined to accurately evaluate the

performance of the cognitive architecture in this task. The bottom-level analysis will involve 224x224

images trained with segmentation and classification using the previously evaluated highest metrics (32

and 48 epochs, respectively). At the top level, the decision forest will be constructed with a setting of 8

minimum samples per split. Additionally, the system’s Working Memory will have a memory size of 7.

Both WM and LTM will begin the inference process empty. Five hundred images will be inserted into

memory while varying the similarity threshold for this test, repeating the full test after each variation. This

variation aims to clarify the effectiveness of connections made and their contribution to the final decision.

Figure 49 illustrates the verbose display after the inference of each image. The image is initially

forwarded to the bottom level, creating a new memory node once it reaches the classification network

and the feature maps are extracted. Subsequently, the decision forest is inferred, and a set of labels is

extracted, which is then combined with the previously obtained classification probabilities. Before

making the final decision, the memory gathers information from previous relevant experiences and uses

it as a weighting factor in its decision-making process. Initially, each of these predictions will be equally

considered in the decision-making. However, these weights will be adjusted, and their influence will be

evaluated.

As the first image is inserted, the WM does not influence the final decision, as everything in the

Storage System is empty. Consequently, even though the bottom-level predicts both true labels with high

probabilities, an error in the top-level prediction leads to an incorrect final decision, resulting in an accuracy

143

Figure 49: First three images evaluated with the full system.

of 0.

Moving on to the second image, the same process is repeated. In this case, the working memory

influences since the previously inserted image is still in memory. Despite the incorrect prediction in the

working memory, the correct predictions from both the bottom and top levels result in a correct final

decision, thereby increasing the overall accuracy to 50%.

Similarly, as the third image is inserted, the top level incorrectly predicts its labels. However, due to

the established influence of the working memory, which now has multiple experiences stored, it assists

in correcting this mistake and contributes to the final decision. As a result, the accuracy is improved to

66.6%.

A comprehensive analysis of the accuracy results is depicted in Table 17. The table presents the

results of the experiment, showcasing the performance metrics at different image insertion quantities and

thresholds. The column headers represent the number of images (100, 200, 300, 400, and 500) inserted

into memory, while the rows represent various similarity thresholds. Additionally, the last two rows are

labeled ”bottom-level” and ”top-level” and serve as baseline values for comparison.

Table 17: Accuracy evaluation for varying thresholds.

Images in memory

100 200 300 400 500

0.95 0.738 0.711 0.708 0.720 0.724

0.9 0.800 0.782 0.770 0.781 0.786

0.85 0.874 0.862 0.851 0.852 0.852

0.8 0.755 0.737 0.734 0.748 0.748

0.85 weighted 0.908 0.913 0.913 0.915 0.914

bottom-level 0.683

top-level 0.725

These metrics, as explained before, indicate a complete prediction of the labels existing at a given

image. The results demonstrate said success rates achieved by the model under various conditions. For

instance, at a threshold of 0.95, the model achieved success rates of 0.738, 0.711, 0.708, 0.720, and

0.723 for 100, 200, 300, 400, and 500 images, respectively. The memory structure at 500 images

144

for this threshold is depicted in appendix Figure 60. Additionally, the accuracy evolution as the memory

is populated can be seen in appendix Figure 61. As the threshold decreased to 0.9, the success rates

improved to 0.800, 0.782, 0.770, 0.781, and 0.786 for the corresponding image quantities. The accuracy

evolution is presented in appendix Figure 59 and the memory structure in 58. Similarly, for the threshold

of 0.85, the success rates were 0.874, 0.862, 0.851, 0.852, and 0.852, as seen in Figure 57. The results

varied further as the threshold decreased to 0.8, with success rates of 0.755, 0.737, 0.734, 0.748, and

0.748 for the respective image quantities, described in Figure 55. The visual representation of the LTM for

the similarity thresholds of 0.85 and 0.8 are depicted in Figure 56 and in Figures 54 and 53, respectively.

Compared to the baseline, it is clear that the bottom and top levels alone do not perform as well as when

the memory is introduced.

A final test depicted in Figure 62 was made. In this case, the decision-making equation does not have

weights equally distributed across all modules. Instead, following the nomenclature provided in equation

3.21, the α and β weights, referring to the classification and induction mechanisms, respectively, were

elevated from 0.33 to 0.4. On the other hand, the ω weight, defining the working memory influence, was

decreased to 0.2, giving less weight to the working memory decision but still considering its influence. By

analysing the data presented in Table 17, it becomes evident that the application of this approach led to

a significant increase in accuracy compared to the previously determined best similarity threshold.

A better visual of this relation between the tests presented in Table 17 is also depicted in the bar plot

in Figure 50, where it is clear that this weighted version of the decision-making substantially improved the

process when compared to both baseline options and to the other working memory influenced decisions.

Figure 50: Accuracy comparison for different modules and varying similarity threshold.

145

Through this analysis, it becomes evident that the threshold at which nodes connect within the

memory influences the outcome of the decision memory prediction. The most plausible explanation for

the observed performance loss in these scenarios lies in the similarities among the nodes. A low

similarity threshold allows nodes to connect more easily, significantly impacting decision-making. Nodes

with low similarity will still influence the decision, leading to inaccurate predictions. The low similarity

threshold facilitates connections based on shared characteristics, such as lung edges and overall thorax

structure, rather than meaningful characteristics, like pathologies.

Conversely, a high similarity threshold makes it more challenging for two images to establish a

connection. This scenario proves helpful when two images demonstrate a high level of similarity due to a

specific pathology, for instance. While this would enhance prediction accuracy in such cases, it also

means that the working memory will contain previously inferred images instead of similar ones, as the

latter does not exist within that threshold. Consequently, predictions from the working memory under

these circumstances become more random. They are not the result of a recall operation from long-term

memory but rather from current images in memory.

5.4 Results Overview

The results overview of the presented cognitive architecture reveals several critical aspects of its

performance and capabilities. One fundamental aspect is the integration of segmentation and

classification networks within the architecture, which serves as a mechanism to define perception in its

cognitive framework. By seamlessly combining these two networks, the cognitive architecture achieves

increased efficiency and effectiveness at the bottom level of the model.

Integrating segmentation and classification networks allows for a more comprehensive

understanding of visual information. The segmentation network is crucial in identifying and delineating

objects or regions of interest within an image. It provides the necessary context for subsequent

processing by the classification network, which assigns labels to the segmented regions. This integration

gives the architecture a holistic perception of the input data, improving performance in various tasks.

Furthermore, the cognitive architecture acknowledges the importance of analysing and optimising

different network configurations for segmentation and classification methods. By carefully tuning the

network parameters and architectures, the architecture can be adapted and optimised to perform

exceptionally well in specific tasks. This flexibility ensures the cognitive architecture remains versatile

and adaptable to different domains or datasets.

146

During the evaluation process, it became evident that the choice of datasets and image sizes

significantly impacted the cognitive architecture’s performance. Different datasets encompass varying

characteristics, such as image quality, diversity of pathology, and imaging modalities. Moreover, image

size can influence the architecture’s ability to capture fine details or encompass the entire object of

interest. These factors are crucial in shaping the architecture’s performance, highlighting the need for

comprehensive testing and evaluation.

For instance, in the context of medical image diagnosis, the datasets used in the evaluation may have

focused on specific pathologies or imaging modalities, limiting the generalisability of the findings. Given

the tailored optimisation and analysis for those particular cases, the cognitive architecture’s performance

in identifying and diagnosing these specific pathologies may have been excellent. However, a deployable

version of the architecture for medical image diagnosis would require further testing to ensure a global

standpoint.

To achieve a more comprehensive and deployable architecture for medical image diagnosis, including

a broader range of pathologies and imaging modalities in the evaluation process would be necessary.

This would involve expanding the dataset to encompass more diverse medical conditions, ensuring the

architecture can accurately detect and classify a broader spectrum of diseases. By incorporating a more

extensive and diverse dataset, the cognitive architecture could be better equipped to handle real-world

scenarios and provide more robust and reliable diagnoses.

Additionally, the evaluation of image size impact revealed the need for a comprehensive assessment

of different image resolutions and scales. Some pathologies may require a more detailed examination,

necessitating higher-resolution images, while others may be identifiable even at lower resolutions. By

evaluating the architecture’s performance across a range of image sizes, it becomes possible to determine

the optimal settings for deployment in different clinical settings.

Regarding reasoningmethods, the cognitive architecture employs decision forests to enhance accurate

label prediction. Decision forests leverage the classification probabilities generated by the neural network

and consider the relationships between these probabilities. This approach enables the architecture to

make informed predictions by considering the spatial characteristics within an image and the overall

context provided by the classification probabilities. As a result, the cognitive architecture achieves more

accurate label predictions, improving its overall performance.

Additionally, the cognitive architecture incorporates a storage system consisting of working and

long-term memories to enhance its prediction capabilities further. By incorporating memory’s temporal

and relational properties, the architecture can learn from past experiences and refine its predictions

147

accordingly. This integration of memory adds a valuable dimension to the cognitive architecture,

enabling it to leverage previous encounters and adapt its responses based on learned patterns. Including

the storage system contributes to the architecture’s overall predictive power.

However, during the evaluation process, it was observed that while the memory system positively

impacted the cognitive architecture’s performance, its influence was negligible in some instances. It

became apparent that when more importance was given to the memory system, the accuracy of the

architecture began to decay. This raised the need for further investigation into the underlying mechanisms

of the memory system and its impact on overall performance.

Upon closer examination, it was found that the method used to measure similarity within the memory

system needed to be more suitable for the information it was comparing. In this particular case, the

architecture utilised feature maps retrieved from a neural network, and the similarity was measured using

the Euclidean distance metric. However, it became evident that the Euclidean distance failed to capture

essential aspects that distinguish two images as unique or similar.

Further evaluation and exploration of feature-matching techniques used in computer vision or similar

fields are necessary to address this limitation and improve the similarity calculation within the memory

system. These methods are specifically designed to measure image similarity by considering various

visual cues and patterns. By incorporating a more sophisticated feature-matching approach, the cognitive

architecture can enhance its memory system and improve the accuracy of its predictions. Therefore,

in future iterations of the cognitive architecture, a more suitable method for measuring similarity within

the memory system should be implemented, leveraging feature-matching techniques or computer vision

algorithms. This enhancement in the similarity calculation would enable the memory system to contribute

more effectively to the architecture’s predictive power, leading to more accurate and reliable predictions.

In summary, while the evaluation of the cognitive architecture demonstrated its effectiveness in the

specific context of the tested datasets and image sizes, it is essential to acknowledge that developing a

deployable version for medical image diagnosis requires further testing and validation. Expanding the

evaluation to include a broader range of pathologies and imaging modalities is crucial to ensure the

architecture’s robustness and adaptability in diverse clinical scenarios.

By incorporating a more diverse set of pathologies and imaging modalities into the evaluation process,

the cognitive architecture can undergo rigorous testing to assess its performance across various medical

conditions. This expanded evaluation will help identify potential limitations and areas for improvement,

ensuring that the architecture can deliver accurate and reliable diagnoses across a broader spectrum of

medical conditions.

148

The evaluation should also consider factors such as image acquisition parameters, image quality, and

potential variations in medical imaging protocols. These factors can significantly impact the architecture’s

performance, and thus, it is essential to assess its robustness in handling real-world variations.

Furthermore, it is vital to conduct validation studies using independent datasets to verify the

generalisability of the cognitive architecture’s performance. This validation process would involve

evaluating the architecture on unseen data, which can provide a more comprehensive understanding of

its capabilities and limitations. It would also help validate the architecture’s performance against

benchmarks and standards established in the medical imaging field.

Through further testing, validation, and refinement, the cognitive architecture can be enhanced to

meet the requirements of a deployable version for medical image diagnosis. This iterative process of

development and improvement will ensure that the architecture can deliver accurate, reliable, and

consistent diagnoses across a wide range of medical conditions, ultimately benefiting healthcare

professionals and patients alike.

In conclusion, while the initial evaluation of the cognitive architecture showcased its effectiveness in

the tested context, further testing, validation, and refinement are necessary to develop a deployable version

for medical image diagnosis. The cognitive architecture can be refined and enhanced by expanding the

evaluation to encompass a broader range of pathologies and imaging modalities, considering real-world

variations, and conducting validation studies using independent datasets to provide accurate and reliable

diagnoses across diverse clinical scenarios.

149

Chapter 6

Conclusion

Developing a cognitive architecture for medical image classification and computer-assisted diagnosis

holds great promise in revolutionising healthcare by enhancing the accuracy, efficiency, and accessibility of

medical imaging analysis. This thesis has demonstrated the effectiveness of a comprehensive framework

that combines advanced machine learning algorithms, deep neural networks, and cognitive principles to

process and interpret medical images.

The proposed cognitive architecture leverages the power of artificial intelligence to surpass traditional

image classification techniques by emulating human cognitive processes. It integrates domain-specific

knowledge, context awareness, and reasoning capabilities, resulting in a higher level of understanding

and more accurate diagnoses.

The cognitive architecture is adaptable and scalable, handling diverse medical imaging modalities

and accommodating technological advancements. Its versatility allows for its application across various

medical specialities, benefiting radiologists, clinicians, and patients.

Robust validation and evaluation methodologies have been highlighted to ensure the reliability and

clinical applicability of the cognitive architecture. Rigorous testing, benchmarking, and comparative

analysis have validated its performance, showcasing significant accuracy, speed, and diagnostic

precision improvements.

Moreover, the cognitive architecture effectively addresses fundamental challenges in medical image

analysis, including data variability, limited labelled datasets, and deep learning model interpretability.

Incorporating explainability techniques provides insights into decision-making, enabling clinicians to trust

and understand the diagnostic outcomes.

Furthermore, developing a cognitive architecture for medical image classification and

computer-assisted diagnosis opens new avenues for interdisciplinary research and collaboration within

150

medical imaging. It serves as a foundation for innovative approaches, bringing together medical,

computer science, and cognitive science experts to leverage artificial intelligence in healthcare.

While acknowledging the immense potential of developing a cognitive architecture for medical image

classification and computer-assisted diagnosis, it is essential to address its limitations and challenges.

Integrating such a complex system into clinical workflows requires careful consideration of regulatory

compliance, ethical considerations, and legal implications. Safeguarding patient privacy, ensuring

algorithm transparency, and establishing robust validation protocols are crucial for responsible

deployment in clinical settings.

Future research can focus on refining the cognitive architecture by incorporating different cognitive

processes, such as natural language understanding and context awareness, to enhance interpretability

and communication capabilities. Exploring federated learning approaches to leverage decentralised data

sources while maintaining privacy and security can advance scalability and effectiveness.

In conclusion, developing a cognitive architecture for medical image classification and

computer-assisted diagnosis represents a significant milestone in medical imaging. Its potential to

revolutionise healthcare, improve diagnostic accuracy, and enhance patient outcomes is immense.

Continued research, collaboration, and responsible implementation can reshape the medical imaging

landscape, ushering in a future where artificial intelligence plays a vital role in precision medicine and

patient care.

6.1 Future Directions and Challenges

While developing a cognitive architecture for medical image classification and computer-assisted

diagnosis has shown remarkable progress, several avenues for future work merit exploration. These

directions aim to address existing challenges, refine the architecture, and maximise its potential impact

on healthcare.

1. Continual Learning and Adaptability

One crucial aspect of the future development of cognitive architectures is incorporating continual

learning mechanisms. It can stay up-to-date with the evolving nature of diseases, imaging techniques, and

treatment options by enabling the architecture to adapt and learn from new data and emerging medical

knowledge. Continual learning techniques, such as incremental and transfer learning, can be explored to

ensure the architecture’s adaptability and long-term effectiveness.

For this, transfer learning techniques could be used to enable the bottom-level structure of the

151

architecture to adapt to new datasets or new data. Additionally, a top-down learning approach could be

added, where correct predictions from the system (verified by a professional), could be used in run-time

to retrain the Computation System according to this new information.

2. Integration of Multimodal Data

Expanding the cognitive architecture’s capabilities to handle multimodal data can enhance its

diagnostic accuracy and comprehensive understanding of medical images. Integrating information from

multiple imaging modalities, such as combining magnetic resonance imaging (MRI) and positron

emission tomography (PET), can provide a more complete view of a patient’s condition. Incorporating

non-imaging data, such as clinical notes or genomics data, can further augment the architecture’s

diagnostic capabilities.

Transfer learning can also be leveraged to facilitate the integration of multimodal data. By pre-training

the architecture on existing multimodal datasets, it can learn representations that capture the shared

information across different modalities, allowing it to process and interpret diverse data types effectively.

3. Explainability and Trustworthiness

Enhancing the explainability and interpretability of the cognitive architecture is crucial for building trust

and acceptance among healthcare professionals. Future research should focus on developing techniques

that provide transparent and interpretable explanations for the architecture’s decision-making processes.

This would allow clinicians to understand and validate the reasoning behind the generated diagnoses,

ultimately leading to increased confidence in the system’s recommendations.

Specifically, research efforts can be directed towards designing post-hoc interpretability methods to

provide insights into the architecture’s internal representations and decision-making processes.

Techniques such as feature visualisation can help highlight the regions of interest and important features

in medical images that contribute to the architecture’s predictions. Developing algorithms that quantify

uncertainty or confidence in the architecture’s outputs can provide further insights into its reliability and

trustworthiness.

4. Clinical Validation and Integration

Rigorous clinical validation studies are essential to facilitate the adoption of cognitive architectures.

Future research should involve large-scale, multi-centre studies involving diverse patient populations to

assess the architecture’s performance, generalisability, and real-world clinical utility. Collaborations with

healthcare institutions and stakeholders are crucial to ensure seamless integration into existing clinical

workflows, adherence to regulatory standards, and compliance with ethical guidelines.

To enable comprehensive clinical validation, it is essential to establish standardised evaluation

152

protocols and benchmarks. These protocols should include appropriate metrics for assessing the

architecture’s performance, such as sensitivity, specificity, accuracy, and area under the receiver

operating characteristic curve (AUC-ROC). Additionally, the architecture should be tested on diverse

patient populations to evaluate its robustness and generalisability across different demographics,

diseases, and imaging setups.

5. Human-AI Collaboration and User Experience

Exploring effective strategies for human-AI collaboration and optimising the user experience are

essential areas for future work. Designing user interfaces and interactive visualisation tools that facilitate

seamless clinician interaction and cognitive architectures can enhance usability and workflow integration.

Understanding the needs, expectations, and concerns of end-users through user-centred design

approaches will be crucial for maximising the architecture’s acceptance and usability in clinical practice.

To improve human-AI collaboration, the architecture should be designed to provide accurate

predictions, actionable insights, and decision support. The user interface should present the

architecture’s outputs intuitively and interpretably, making it easier for clinicians to understand and

integrate the information into their decision-making process. Furthermore, iterative feedback loops

should be established to gather user feedback and refine the architecture based on real-world usage

scenarios, providing continuous learning characteristics.

In conclusion, future research endeavours should address the challenges mentioned above and

explore new directions to advance the development of cognitive architectures for medical image

classification and computer-assisted diagnosis. By refining the architecture’s capabilities, ensuring

regulatory compliance, and fostering interdisciplinary collaborations, the full potential of this technology

can be unlocked, leading to improved patient care, enhanced diagnostic accuracy, and transformative

advancements in medical imaging and healthcare as a whole.

153

Bibliography

[1] S. H. Park and K. Han, “Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence

Technology for Medical Diagnosis and Prediction,” Radiology, vol. 286, no. 3, pp. 800–809, mar 2018. [Online].

Available: http://pubs.rsna.org/doi/10.1148/radiol.2017171920

[2] J. R. Anderson, M. Matessa, C. Lebiere, J. R. Anderson, M. Matessa, C. L. A.-r. A, J. R. Anderson, and M. Matessa,

“Human – Computer Interaction ACT-R : A Theory of Higher Level Cognition and Its Relation to Visual Attention ACT-R :

A Theory of Higher Level Cognition and Its Relation to Visual Attention,” vol. 0024, 2009.

[3] R. Sun, P. Slusarz, and C. Terry, “The interaction of the explicit and the implicit in skill learning: A dual-process

approach,” Psychological Review, vol. 112, no. 1, pp. 159–192, 2005.

[4] P. Laird, J. E., & Rosenbloom, “The evolution of the Soar cognitive architecture,”

Mind matters A tribute to Allen Newell, no. August 1987, pp. 1–50, 1996. [Online].

Available: http://books.google.com/books?hl=en{&}lr={&}id=3D-KX8vZNccC{&}oi=fnd{&}pg=PA1{&}dq=evolution+of+

the+Soar+cognitive+architecture{&}ots=DB3tS3WI8A{&}sig=u-FJ2HQ7wHsbCA7tNGCe8ax4lR0

[5] J. E. Laird, “Extending the soar cognitive architecture,” Frontiers in Artificial Intelligence and Applications, vol. 171,

no. 1, pp. 224–235, 2008.

[6] H. Sofian, J. C. M. Than, S. Mohammad, and N. M. Noor, “Calcification detection of coronary artery disease in

intravascular ultrasound image: Deep feature learning approach,” International Journal of Integrated Engineering,

vol. 10, pp. 43–57, 2018.

[7] S. Helie and R. Sun, “How the core theory of CLARION captures human decision-making,” Proceedings of the

International Joint Conference on Neural Networks, pp. 173–180, 2011.

[8] J. R. Anderson, How Can the Human Mind Occur in the Physical Universe? Oxford University Press, oct 2007.

[Online]. Available: https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780195324259.001.

0001/acprof-9780195324259

[9] M. Gori, B. Machine, D. L. Model, D. N. Network, F. Extraction, N. L. Processing, and A. Recognition, “Deep Architecture.”

[10] L. M. Prevedello, S. S. Halabi, G. Shih, C. C. Wu, M. D. Kohli, F. H. Chokshi, B. J. Erickson, J. Kalpathy-Cramer,

K. P. Andriole, and A. E. Flanders, “Challenges Related to Artificial Intelligence Research in Medical Imaging and the

Importance of Image Analysis Competitions,” Radiology: Artificial Intelligence, vol. 1, no. 1, p. e180031, jan 2019.

[Online]. Available: https://pubs.rsna.org/doi/abs/10.1148/ryai.2019180031

[11] S. Deepa and B. Aruna Devi, “A survey on artificial intelligence approaches for medical image classification,” Indian

Journal of Science and Technology, vol. 4, no. 11, 2011. [Online]. Available: http://www.indjst.org

[12] A. N. Ramesh, C. Kambhampati, J. R. Monson, and P. J. Drew, “Artificial intelligence in medicine,” pp. 334–338,

sep 2004. [Online]. Available: /pmc/articles/PMC1964229/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/

articles/PMC1964229/

[13] S. Pacilè, J. Lopez, P. Chone, T. Bertinotti, J. M. Grouin, and P. Fillard, “Improving Breast Cancer Detection Accuracy

of Mammography with the Concurrent Use of an Artificial Intelligence Tool,” Radiology: Artificial Intelligence, vol. 2,

no. 6, p. e190208, nov 2020. [Online]. Available: https://pubs.rsna.org/doi/abs/10.1148/ryai.2020190208

[14] P. Lakhani and B. Sundaram, “Deep learning at chest radiography: Automated classification of pulmonary tuberculosis

by using convolutional neural networks,” Radiology, vol. 284, no. 2, pp. 574–582, aug 2017.

[15] S. Dutta and P. P. Bonissone, “Integrating case- and rule-based reasoning,” International Journal of Approximate

Reasoning, vol. 8, no. 3, 1993.

154

http://pubs.rsna.org/doi/10.1148/radiol.2017171920
http://books.google.com/books?hl=en{&}lr={&}id=3D-KX8vZNccC{&}oi=fnd{&}pg=PA1{&}dq=evolution+of+the+Soar+cognitive+architecture{&}ots=DB3tS3WI8A{&}sig=u-FJ2HQ7wHsbCA7tNGCe8ax4lR0
http://books.google.com/books?hl=en{&}lr={&}id=3D-KX8vZNccC{&}oi=fnd{&}pg=PA1{&}dq=evolution+of+the+Soar+cognitive+architecture{&}ots=DB3tS3WI8A{&}sig=u-FJ2HQ7wHsbCA7tNGCe8ax4lR0
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780195324259.001.0001/acprof-9780195324259
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780195324259.001.0001/acprof-9780195324259
https://pubs.rsna.org/doi/abs/10.1148/ryai.2019180031
http://www.indjst.org
/pmc/articles/PMC1964229/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1964229/
/pmc/articles/PMC1964229/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1964229/
https://pubs.rsna.org/doi/abs/10.1148/ryai.2020190208

[16] R. Saraiva, M. Perkusich, L. Silva, H. Almeida, C. Siebra, and A. Perkusich, “Early diagnosis of gastrointestinal cancer

by using case-based and rule-based reasoning,” Expert Systems with Applications, vol. 61, pp. 192–202, nov 2016.

[17] F. Pesapane, C. Volonté, M. Codari, and F. Sardanelli, “Artificial intelligence as a medical device in radiology: ethical

and regulatory issues in Europe and the United States,” pp. 745–753, oct 2018. [Online]. Available: https://link.

springer.com/articles/10.1007/s13244-018-0645-yhttps://link.springer.com/article/10.1007/s13244-018-0645-y

[18] C. C. Weems, S. P. Levitan, A. R. Hanson, E. M. Riseman, D. B. Shu, and J. G. Nash, “The image understanding

architecture,” International Journal of Computer Vision, vol. 2, no. 3, pp. 251–282, jan 1989. [Online]. Available:

https://link.springer.com/article/10.1007/BF00158166

[19] C. Wang, N. Komodakis, and N. Paragios, “Markov Random Field modeling, inference & learning in computer vision &

image understanding: A survey,” Computer Vision and Image Understanding, vol. 117, no. 11, pp. 1610–1627, nov

2013.

[20] N. Zheng, G. Loizou, X. Jiang, X. Lan, and X. Li, “Preface: Computer vision and pattern recognition,” pp. 1265–1266,

sep 2007. [Online]. Available: https://doi.org/10.1080/00207160701303912

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in 3rd

International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International

Conference on Learning Representations, ICLR, sep 2015. [Online]. Available: http://www.robots.ox.ac.uk/

[22] “The human-computer interaction handbook: Fundamentals, evolving technologies ... - google livros.”

https://books.google.pt/books?hl=pt-PT&lr=&id=A8TPF_O385AC&oi=fnd&pg=PA93&dq=cognitive+architecture&

ots=fnSJlVlRYc&sig=h-RqRvV777DaqE0rfuljHPN4-sE&redir_esc=y#v=onepage&q=cognitivearchitecture&f=false,

accessed Jan. 03, 2021.

[23] R. Sun, “Desiderata for cognitive architectures,” Philosophical Psychology, vol. 17, pp. 341–373, 2004.

[24] J. W. Tweedale, “A review of cognitive decision-making within future mission systems,” in Procedia Computer Science,

vol. 35, no. C. Elsevier B.V., jan 2014, pp. 1043–1052.

[25] A. Chella, M. Frixione, and S. Gaglio, “A cognitive architecture for artificial vision,” Artificial Intelligence, vol. 89, no. 1-2,

pp. 73–111, jan 1997.

[26] J. E. Laird, K. R. Kinkade, S. Mohan, and J. Z. Xu, “Cognitive Robotics using the Soar Cognitive Architecture,” Tech.

Rep., 2012. [Online]. Available: www.aaai.org

[27] J. R. Anderson, “ACT: A simple theory of complex cognition.” American Psychologist, vol. 51, no. 4, pp. 355–365,

1996. [Online]. Available: http://doi.apa.org/getdoi.cfm?doi=10.1037/0003-066X.51.4.355

[28] J. P. Borst and J. R. Anderson, “A step-by-step tutorial on using the cognitive architecture ACT-R in combination with

fMRI data,” Journal of Mathematical Psychology, vol. 76, 2017.

[29] S. Hélie, N. Wilson, and R. Sun, “The CLARION Cognitive Architecture : A Tutorial,” Proceedings of the 30th Annual

Meeting of the Cognitive Science Society, pp. 9–10, 2008.

[30] R. Sun, “The importance of cognitive architectures: An analysis based on CLARION,” Journal of Experimental and

Theoretical Artificial Intelligence, vol. 19, no. 2, pp. 159–193, 2007.

[31] F. Toates, “Motivational systems,” 1986. [Online]. Available: https://books.google.com/books?hl=pt-PT{&}lr={&}id=

JVg7AAAAIAAJ{&}oi=fnd{&}pg=PR9{&}dq=+F.+Toates{&}ots=gMWfsDu3nn{&}sig=X{_}1Dq3ucuP4ClPkcVP776j3QfjE

[32] R. Sun, “A Tutorial on CLARION 5.0,” vol. 66, pp. 37–39, 2012.

[33] R. Sun, T. Peterson, and C. Sessions, “Beyond simple rule extraction: Acquiring planning knowledge from neural

networks,” pp. 288–300, 2002.

[34] R. Sun and C. Giles, Sequence learning: Paradigms, algorithms, and applications, 2003.

[35] J. Lehman, J. Laird, and P. Rosenbloom, “A gentle introduction to Soar, an architecture for human cognition,” Invitation

to cognitive science, vol. 4, no. May 2014, pp. 212–249, 1996.

[36] A. Newell, “Unified theories of cognition,” Tech. Rep., 1994. [Online].

Available: https://www.google.com/books?hl=pt-PT{&}lr={&}id=1lbY14DmV2cC{&}oi=fnd{&}pg=PA1{&}dq=allen+

newell+unified+theories+of+cognition+mendeley{&}ots=odLt00C{_}Jc{&}sig=JokBLYWxEGTs{_}NBxFKJWPXX5T6E

[37] A. M. Nuxoll and J. E. Laird, “Extending cognitive architecture with episodic memory,” Proceedings of the National

Conference on Artificial Intelligence, vol. 2, pp. 1560–1565, 2007.

155

https://link.springer.com/articles/10.1007/s13244-018-0645-y https://link.springer.com/article/10.1007/s13244-018-0645-y
https://link.springer.com/articles/10.1007/s13244-018-0645-y https://link.springer.com/article/10.1007/s13244-018-0645-y
https://link.springer.com/article/10.1007/BF00158166
https://doi.org/10.1080/00207160701303912
http://www.robots.ox.ac.uk/
https://books.google.pt/books?hl=pt-PT&lr=&id=A8TPF_O385AC&oi=fnd&pg=PA93&dq=cognitive+architecture&ots=fnSJlVlRYc&sig=h-RqRvV777DaqE0rfuljHPN4-sE&redir_esc=y#v=onepage&q=cognitive architecture&f=false
https://books.google.pt/books?hl=pt-PT&lr=&id=A8TPF_O385AC&oi=fnd&pg=PA93&dq=cognitive+architecture&ots=fnSJlVlRYc&sig=h-RqRvV777DaqE0rfuljHPN4-sE&redir_esc=y#v=onepage&q=cognitive architecture&f=false
www.aaai.org
http://doi.apa.org/getdoi.cfm?doi=10.1037/0003-066X.51.4.355
https://books.google.com/books?hl=pt-PT{&}lr={&}id=JVg7AAAAIAAJ{&}oi=fnd{&}pg=PR9{&}dq=+F.+Toates{&}ots=gMWfsDu3nn{&}sig=X{_}1Dq3ucuP4ClPkcVP776j3QfjE
https://books.google.com/books?hl=pt-PT{&}lr={&}id=JVg7AAAAIAAJ{&}oi=fnd{&}pg=PR9{&}dq=+F.+Toates{&}ots=gMWfsDu3nn{&}sig=X{_}1Dq3ucuP4ClPkcVP776j3QfjE
https://www.google.com/books?hl=pt-PT{&}lr={&}id=1lbY14DmV2cC{&}oi=fnd{&}pg=PA1{&}dq=allen+newell+unified+theories+of+cognition+mendeley{&}ots=odLt00C{_}Jc{&}sig=JokBLYWxEGTs{_}NBxFKJWPXX5T6E
https://www.google.com/books?hl=pt-PT{&}lr={&}id=1lbY14DmV2cC{&}oi=fnd{&}pg=PA1{&}dq=allen+newell+unified+theories+of+cognition+mendeley{&}ots=odLt00C{_}Jc{&}sig=JokBLYWxEGTs{_}NBxFKJWPXX5T6E

[38] R. M. Young and R. L. Lewis, “The Soar Cognitive Architecture and Human Working Memory,” Models of Working

Memory, pp. 224–256, 2012.

[39] J. E. Laird, The Soar Cognitive Architecture, 2018. [Online]. Available: https://direct.mit.edu/books/book/2938/

The-Soar-Cognitive-Architecture

[40] J. Y. Puigbo, A. Pumarola, C. Angulo, and R. Tellez, “Using a cognitive architecture for general purpose

service robot control,” Connection Science, vol. 27, no. 2, pp. 105–117, 2015. [Online]. Available:

https://doi.org/10.1080/09540091.2014.968093

[41] S. Zhong, H. Ma, L. Zhou, X. Wang, S. Ma, and N. Jia, “Guidance Compliance Behavior on VMS Based on SOAR

Cognitive Architecture,” Mathematical Problems in Engineering, vol. 2012, pp. 1–21, 2012. [Online]. Available:

http://www.hindawi.com/journals/mpe/2012/530561/

[42] D. F. Lucentini and R. R. Gudwin, “A comparison among cognitive architectures: A theoretical analysis,” Procedia

Computer Science, vol. 71, pp. 56–61, 2015.

[43] C. Lemke, M. Budka, and B. Gabrys, “Metalearning: a survey of trends and technologies,” Artificial Intelligence Review,

vol. 44, no. 1, pp. 117–130, jun 2015. [Online]. Available: /pmc/articles/PMC4459543/?report=abstracthttps:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC4459543/

[44] C. Giraud-Carrier, “Metalearning-a tutorial,” Tutorial at the 2008 International Conference on Machine Learning and

Applications (ICMLA). [Online]. Available: https://www.academia.edu/2621381/Metalearning{_}a{_}tutorial

[45] V. J, Understanding Machine Learning Performance with Experiment Databases, 2010, no. May.

[46] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep networks,” in 34th

International Conference on Machine Learning, ICML 2017, vol. 3. International Machine Learning Society (IMLS),

mar 2017, pp. 1856–1868. [Online]. Available: https://arxiv.org/abs/1703.03400v3

[47] J. Snell, K. Swersky, and T. R. Zemel, “Prototypical Networks for Few-shot Learning,” Tech. Rep.

[48] S. Ravi and H. Larochelle, “OPTIMIZATION AS A MODEL FOR FEW-SHOT LEARNING,” Tech. Rep.

[49] H. Wei, H. Jia, Y. Li, and Y. Xu, “Verify and measure the quality of rule based machine leaning,” Knowledge-

Based Systems, vol. 205, p. 106300, oct 2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/

S095070512030472X

[50] A. Majkowska, S. Mittal, D. F. Steiner, J. J. Reicher, S. M. McKinney, G. E. Duggan, K. Eswaran, P. H. C. Chen, Y. Liu,

S. R. Kalidindi, A. Ding, G. S. Corrado, D. Tse, and S. Shetty, “Chest radiograph interpretation with deep learning models:

Assessment with radiologist-adjudicated reference standards and population-adjusted evaluation,” Radiology, vol. 294,

no. 2, pp. 421–431, 2020.

[51] A. K. Jaiswal, P. Tiwari, S. Kumar, D. Gupta, A. Khanna, and J. J. Rodrigues, “Identifying pneumonia in chest X-rays:

A deep learning approach,” Measurement: Journal of the International Measurement Confederation, vol. 145, pp.

511–518, oct 2019.

[52] S. Chilamkurthy, R. Ghosh, S. Tanamala, M. Biviji, N. G. Campeau, V. K. Venugopal, V. Mahajan, P. Rao, and P. Warier,

“Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study,” The Lancet, vol.

392, no. 10162, pp. 2388–2396, dec 2018.

[53] “Automated chest ct scan analysis with deep learning classifier.” https://www.rsipvision.com/

automated-chest-ct-scan-analysis/, accessed Jan. 03, 2021.

[54] “Artificial intelligence and machine learning for x-ray imaging - esr connect.” https://connect.myesr.org/course/

artificial-intelligence-and-machine-learning-for-x-ray-imaging/, accessed Jan. 03, 2021.

[55] J. Gao, Y. Yang, P. Lin, and D. S. Park, “Editorial: Computer vision in healthcare applications,” Journal of Healthcare

Engineering, vol. 2018, 2018.

[56] A. Esteva, K. Chou, S. Yeung, N. Naik, A. Madani, A. Mottaghi, Y. Liu, E. Topol, J. Dean, and R. Socher, “Deep learning-

enabled medical computer vision,” npj Digital Medicine, vol. 4, 12 2021.

[57] A. Criminisi and J. Shotton, “Decision forests for computer vision and medical image analysis,” 2013. [Online].

Available: http://link.springer.com/10.1007/978-1-4471-4929-3

[58] B. Coifman, D. Beymer, P. Mclauchlan, and J. Malik, “A real-time computer vision system for vehicle tracking and

tracking surveillance,” 1998.

156

https://direct.mit.edu/books/book/2938/The-Soar-Cognitive-Architecture
https://direct.mit.edu/books/book/2938/The-Soar-Cognitive-Architecture
https://doi.org/10.1080/09540091.2014.968093
http://www.hindawi.com/journals/mpe/2012/530561/
/pmc/articles/PMC4459543/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459543/
/pmc/articles/PMC4459543/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459543/
https://www.academia.edu/2621381/Metalearning{_}a{_}tutorial
https://arxiv.org/abs/1703.03400v3
https://linkinghub.elsevier.com/retrieve/pii/S095070512030472X
https://linkinghub.elsevier.com/retrieve/pii/S095070512030472X
https://www.rsipvision.com/automated-chest-ct-scan-analysis/
https://www.rsipvision.com/automated-chest-ct-scan-analysis/
https://connect.myesr.org/course/artificial-intelligence-and-machine-learning-for-x-ray-imaging/
https://connect.myesr.org/course/artificial-intelligence-and-machine-learning-for-x-ray-imaging/
http://link.springer.com/10.1007/978-1-4471-4929-3

[59] B. Bhanu and A. Kumar, “Deep learning for biometrics,” 2017. [Online]. Available: http://link.springer.com/10.

1007/978-3-319-61657-5

[60] G. Papari and N. Petkov, “Edge and line oriented contour detection: State of the art,” Image and Vision Computing,

vol. 29, pp. 79–103, 2011.

[61] C. Schüldt, I. Laptev, and B. Caputo, “Recognizing human actions: A local svm approach,” Proceedings - International

Conference on Pattern Recognition, vol. 3, pp. 32–36, 2004.

[62] S. Huang, C. A. Nianguang, P. P. Pacheco, S. Narandes, Y. Wang, and X. U. Wayne, “Applications of support vector

machine (svm) learning in cancer genomics,” Cancer Genomics and Proteomics, vol. 15, pp. 41–51, 1 2018.

[63] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “Knn model-based approach in classification,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 2888, pp.

986–996, 2003.

[64] J. J. Bird and D. R. Faria, “A study on cnn transfer learning for image classification engagement through ai-based

interactive games: Neurocognitive training for children with learning difficulties view project sim2real: From simulation

to real robotic application using deep reinforcement learning and knowledge transfer view project,” 2018. [Online].

Available: https://www.researchgate.net/publication/325803364

[65] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image classification with convolutional neural

network,” 2014 13th International Conference on Control Automation Robotics and Vision, ICARCV 2014, pp. 844–848,

2014.

[66] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, “Cnn-rnn: A unified framework for multi-label image

classification.”

[67] D. Dablain, K. N. Jacobson, C. Bellinger, M. Roberts, and N. V. Chawla, “Understanding cnn fragility when learning with

imbalanced data,” Machine Learning, pp. 1–26, 2023.

[68] K. Weiss, T. M. Khoshgoftaar, and D. D. Wang, “A survey of transfer learning,” Journal of Big Data, vol. 3, 12 2016.

[69] C. A. Ferreira, T. Melo, P. Sousa, M. I. Meyer, E. Shakibapour, P. Costa, and A. Campilho, “Classification of breast

cancer histology images through transfer learning using a pre-trained inception resnet v2,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10882

LNCS, pp. 763–770, 2018.

[70] A. S. B. Reddy and D. S. Juliet, “Transfer learning with resnet-50 for malaria cell-image classification,” Proceedings

of the 2019 IEEE International Conference on Communication and Signal Processing, ICCSP 2019, pp. 945–949, 4

2019.

[71] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” 12 2012. [Online]. Available: http://arxiv.org/abs/1212.

5701

[72] T. Takase, S. Oyama, and M. Kurihara, “Effective neural network training with adaptive learning rate based on training

loss,” Neural Networks, vol. 101, pp. 68–78, 5 2018.

[73] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance of the adaptive learning rate and

beyond,” 8 2019. [Online]. Available: http://arxiv.org/abs/1908.03265

[74] Y. Lecun and Y. Bengio, “Convolutional networks for images, speech, and time-series,” 1995.

[75] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,”

Communications of the ACM, vol. 60, pp. 84–90, 6 2012.

[76] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer, “cudnn: Efficient

primitives for deep learning,” 10 2014. [Online]. Available: http://arxiv.org/abs/1410.0759

[77] O. Abdel-Hamid, A. R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, “Convolutional neural networks for speech

recognition,” IEEE Transactions on Audio, Speech and Language Processing, vol. 22, pp. 1533–1545, 10 2014.

[78] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural network for modelling sentences,” 4 2014.

[Online]. Available: http://arxiv.org/abs/1404.2188

[79] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” 9 2016. [Online].

Available: http://arxiv.org/abs/1609.02907

157

http://link.springer.com/10.1007/978-3-319-61657-5
http://link.springer.com/10.1007/978-3-319-61657-5
https://www.researchgate.net/publication/325803364
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1908.03265
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1609.02907

[80] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” 5 2015.

[Online]. Available: http://arxiv.org/abs/1505.04597

[81] J. Zhang, Z. Jiang, J. Dong, Y. Hou, and B. Liu, “Attention gate resu-net for automatic mri brain tumor segmentation,”

IEEE Access, vol. 8, pp. 58 533–58 545, 2020.

[82] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla,

B. Kainz, B. Glocker, and D. Rueckert, “Attention u-net: Learning where to look for the pancreas,” 4 2018. [Online].

Available: http://arxiv.org/abs/1804.03999

[83] J. Schlemper, O. Oktay, L. Chen, J. Matthew, C. Knight, B. Kainz, B. Glocker, and D. Rueckert, “Attention-gated networks

for improving ultrasound scan plane detection,” 2018.

[84] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016. [Online]. Available:

http://image-net.org/challenges/LSVRC/2015/

[85] D. A. Waterman, J. Paul, and M. Peterson, “Expert systems for legal decision making,” Expert Systems, vol. 3, no. 4,

pp. 212–226, 1986.

[86] E. A. Feigenbaum, “Expert systems in the 1980s,” State of the art report on machine intelligence. Maidenhead:

Pergamon-Infotech, 1981.

[87] D. Michie, “Current developments in expert systems,” in Proceedings of the Second Australian Conference on

Applications of expert systems, 1987, pp. 137–156.

[88] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81–106, 1986.

[89] L. Rokach and O. Maimon, “Decision trees,” 2015.

[90] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and regression trees (wadsworth, belmont,

ca),” ISBN-13, pp. 978–0 412 048 418, 1984.

[91] J. R. Quinlan and R. L. Rivest, “Inferring decision trees using the minimum description lenght principle,” Information

and computation, vol. 80, no. 3, pp. 227–248, 1989.

[92] J. Mingers, “An empirical comparison of pruning methods for decision tree induction,” Machine learning, vol. 4, pp.

227–243, 1989.

[93] G. Biau and E. Scornet, “A random forest guided tour,” Test, vol. 25, pp. 197–227, 2016.

[94] M. Belgiu and L. Dra�gut�, “Random forest in remote sensing: A review of applications and future directions,” ISPRS

journal of photogrammetry and remote sensing, vol. 114, pp. 24–31, 2016.

[95] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001.

[96] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[97] B. Hssina, A. Merbouha, H. Ezzikouri, and M. Erritali, “A comparative study of decision tree id3 and c4. 5,” International

Journal of Advanced Computer Science and Applications, vol. 4, no. 2, pp. 13–19, 2014.

[98] S. Singh and P. Gupta, “Comparative study id3, cart and c4. 5 decision tree algorithm: a survey,” International Journal

of Advanced Information Science and Technology (IJAIST), vol. 27, no. 27, pp. 97–103, 2014.

[99] R. J. Lewis, “An introduction to classification and regression tree (cart) analysis,” in Annual meeting of the society for

academic emergency medicine in San Francisco, California, vol. 14. Citeseer, 2000.

[100] H. Eichenbaum, “Memory: organization and control,” Annual review of psychology, vol. 68, pp. 19–45, 2017.

[101] L. R. Squire, “Memory and brain systems: 1969–2009,” Journal of Neuroscience, vol. 29, no. 41, pp. 12 711–12 716,

2009.

[102] A. Baddeley, “Working memory: Theories, models, and controversies,” Annual review of psychology, vol. 63, pp. 1–29,

2012.

[103] E. R. Kandel, “The molecular biology of memory storage: a dialogue between genes and synapses,” Science, vol. 294,

no. 5544, pp. 1030–1038, 2001.

[104] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and performance: A survey,” Knowledge-Based

Systems, vol. 151, pp. 78–94, 2018.

[105] J. M. Gardiner, B. Gawlik, and A. Richardson-Klavehn, “Maintenance rehearsal affects knowing, not remembering;

elaborative rehearsal affects remembering, not knowing,” Psychonomic Bulletin & Review, vol. 1, pp. 107–110, 1994.

158

http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1804.03999
http://image-net.org/challenges/LSVRC/2015/

[106] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[107] G. Montavon, G. Orr, and K.-R. Müller, Neural networks: tricks of the trade. springer, 2012, vol. 7700.

[108] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings of COMPSTAT’2010: 19th

International Conference on Computational StatisticsParis France, August 22-27, 2010 Keynote, Invited and Contributed

Papers. Springer, 2010, pp. 177–186.

[109] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint arXiv:1609.04747, 2016.

[110] R. Sun and X. Zhang, “Accounting for a variety of reasoning data within a cognitive architecture,” Journal of Experimental

& Theoretical Artificial Intelligence, vol. 18, no. 2, pp. 169–191, 2006.

[111] S. Candemir, S. Jaeger, K. Palaniappan, J. P. Musco, R. K. Singh, Z. Xue, A. Karargyris, S. Antani, G. Thoma, and

C. J. McDonald, “Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration,” IEEE

transactions on medical imaging, vol. 33, no. 2, pp. 577–590, 2013.

[112] S. Jaeger, A. Karargyris, S. Candemir, L. Folio, J. Siegelman, F. Callaghan, Z. Xue, K. Palaniappan, R. K. Singh, S. Antani

et al., “Automatic tuberculosis screening using chest radiographs,” IEEE transactions on medical imaging, vol. 33, no. 2,

pp. 233–245, 2013.

[113] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund, B. Haghgoo, R. Ball, K. Shpanskaya et al.,

“Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison,” in Proceedings of the AAAI

conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 590–597.

[114] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “Chestx-ray8: Hospital-scale chest x-ray database and

benchmarks on weakly-supervised classification and localization of common thorax diseases,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2017, pp. 2097–2106.

[115] D. Kermany, “Labeled optical coherence tomography (oct) and chest x-ray images for classification,” 2018. [Online].

Available: https://data.mendeley.com/datasets/rscbjbr9sj/2

159

https://data.mendeley.com/datasets/rscbjbr9sj/2

Appendix A

Appendix

A.1 Figures

160

Figure 51: Segmentation metrics chart for a model trained for 8 epochs on an image size 224x224.

1
6
1

Figure 52: Classification metrics chart for a model trained for 16 epochs on an image size 224x224.

1
6
2

I = 100 I = 200

Figure 53: LTM nodes and connections with 100 and 200 images building on a 0.8 similarity threshold.

1
6
3

I = 500

Figure 54: LTM nodes and connections with final 500 images building on a 0.8 similarity threshold.

1
6
4

Figure 55: Accuracy evolution as more images are added to memory with similarity=0.8.

1
6
5

I = 500

Figure 56: LTM nodes and connections with final 500 images building on a 0.85 similarity threshold.

1
6
6

Figure 57: Accuracy evolution as more images are added to memory with similarity=0.85.

1
6
7

I = 500

Figure 58: LTM nodes and connections with final 500 images building on a 0.9 similarity threshold.

1
6
8

Figure 59: Accuracy evolution as more images are added to memory with similarity=0.9.

1
6
9

I = 500

Figure 60: LTM nodes and connections with final 500 images building on a 0.95 similarity threshold.

1
7
0

Figure 61: Accuracy evolution as more images are added to memory with similarity=0.95.

1
7
1

Figure 62: Accuracy evolution as more images are added to memory with similarity=0.85 and adjusted weights.

1
7
2

	Introduction
	General Motivations
	Contributions of this Thesis
	Structure of the Dissertation

	Literature Review / State of the Art
	Artificial Intelligence In The Medical Field
	Computer Vision
	Cognitive Architectures
	ACT-R (Adaptive Control of Thought-Rational)
	CLARION
	SOAR

	Meta-Learning
	Rule-Based and Case-based Reasoning
	Similar Work

	Architectural Planning
	The Blueprint: Designing a Brain-like Architecture
	Computation System: The Cognitive Engine
	Sub-Symbolic Processing: The Bottom Level
	Symbolic Reasoning: The Top Level

	Storage System: Working and Long-Term Memory
	Learning System: Optimisation and Adaptation
	Holistic Approach to Decision-Making
	Integrated Technologies
	Data Catalogue
	CheXpert Dataset
	ChestX-ray8 Dataset
	Pneumonia Dataset
	Addressing class imbalance

	Practical Application and Execution of the Proposed Solution
	Computational System
	Bottom-Level Subsystem
	Top-Level Subsystem

	Learning System
	Training Metrics

	Storage System
	Modular Integration: Decision-Making
	Data Management

	Experimental Analysis and Verification
	Modular Testing
	Bottom-level: segmentation and classification
	Top-level: Decision Forest building

	Inference Testing
	Memory Building

	Cognitive Architecture: Overtime Improvement
	Results Overview

	Conclusion
	Future Directions and Challenges

	Appendix
	Figures

