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Highlights 

 S. aureus inactivation parameters were estimated using the Weibull model. 

 Temperature has an impact on the inactivation kinetics of S. aureus. 

 The omnibus approach showed improved parameter estimation, compared to the two-step 

approach. 

 A quadratic relationship between the Weibull parameters and temperature was observed. 

 Thermisation can be used to reduce the burden of S. aureus in goats’ raw milk. 

 

 

Abstract: In this study, the heat resistance of S. aureus in goats’ raw milk subjected to ther-

misation temperatures was characterised through tests at various temperatures and modelling the 

survival curves using the Weibull model, through a two-step and an omnibus approach, which can 
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model a full dataset covering all experimental conditions in one step. The fitting capacity of the 

secondary models obtained from the two-step approach was reasonable (adj. R
2
 > 0.639) and both 

demonstrated the negative linear effects of temperature on  (p = 0.0004) and  (p = 0.017). 

The fitting capacity of the omnibus model was more satisfactory (adj. R
2
 = 0.996) and also hinted 

at the negative linear effect of temperature on  (p < 0.0001), with the added advantage that, in 

this model, random effects can be used to account for the variability in the parameters. Our study 

estimated the significant inactivation parameters and established a model capable of predicting S. 

aureus behaviour at various temperatures. This information is useful to create time-temperature 

tables to reach target log reductions of S. aureus in goats’ raw milk to be used by artisanal 

cheesemakers; hence providing an opportunity to increase the microbiological safety of cheeses 

made from unpasteurised milk. 

Keywords: Weibull, thermisation, heat treatment, artisanal cheese, inactivation 

1. Introduction 

Artisanal cheeses are highly appreciated by consumers for their unique organoleptic properties, 

particularly their richness of taste, aroma and texture. They are frequently produced from goat 

and/or sheep raw milk due to tradition and the enhanced organoleptic properties attributed, at 

farm level, by small local dairies or by cheese industries working at regional level 

(Gonzales-Barron et al., 2017). 

The use of raw milk in small-scale production plants, where the control of processing variables 

and of environmental parameters may be challenging, implies a potential risk of microbial con-

tamination and growth (Pasquali et al., 2022). Accordingly, S. aureus is among the main bacterial 

pathogens of interest concerning the safety of cheeses, particularly those made from raw milk 

(Engstrom et al., 2021; Gonzales-Barron et al., 2017; Possas et al., 2021). The average incidence 

rates of S. aureus for goats’ raw milk and goats’ raw milk cheeses were estimated to be as high as 

30-40% (Donnelly, 2018; Gonzales-Barron et al., 2017). Moreover, several outbreaks attributed 
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to milk and dairy products (including raw milk cheeses) caused by S. aureus have been reported 

in the past years, and raw milk cheeses have been involved in most of the outbreaks reported in 

relation with staphylococcal enterotoxins (European Food and Safety Authority, 2021; Johler, 

Giannini, et al., 2015; Johler, Weder, et al., 2015). For these reasons, the presence of S. aureus in 

these products appears to remain a public health hazard (Gonzales-Barron et al., 2017). 

To this, milk thermisation has been proposed as a strategy to improve the safety of cheeses made 

from unpasteurised milk (Engstrom et al., 2021; Lindsay et al., 2021). Thermisation is the generic 

description for a range of sub-pasteurisation (< 72 °C) heat treatments of milk prior to pasteuri-

sation and/or cheese manufacture, generally from 57 to 68 °C, with a holding time of 5 seconds up 

to 30 minutes, which may promote a bacterial reduction of 3 to 4 log (Codex Committee on Food 

Hygiene, 2013; Dash et al., 2022; Eugster & Jakob, 2019; Lindsay et al., 2021; Panthi et al., 2017; 

Rukke et al., 2016). This milk treatment markedly reduces the number of spoilage bacteria, and, 

in the case of S. aureus, the log reduction is such that toxin formation in the cheese, which re-

quires a microorganism count greater than 5 log CFU/g, is highly unlikely (Eugster & Jakob, 

2019). Simultaneously, thermisation causes minimum collateral heat damage to milk constituents 

and milk renneting properties, mild effect on the raw milk flora and the functionality of milk 

caseins and salts, and reduced impact on the sensory profile of the final cheeses (Eugster & Jakob, 

2019; Giaccone et al., 2016; Panthi et al., 2017; Rukke et al., 2016; Samelis et al., 2009). For 

example, since the heat load is lower compared to that used in pasteurisation, enzymes involved 

in cheese flavour development, such as lipoprotein lipase, are less inactivated, thus avoiding 

changes in ripening and in aroma and flavour improvement of the cheese (Eugster & Jakob, 

2019). Pasteurisation of milk, on the other hand, modifies the biochemistry and the microbiology 

of ripening to a greater extent, as well as the flavour and texture of the cheese. This does not allow 

for the characteristic and desirable special features of raw milk cheeses to emerge; thus, making 

this heat treatment inappropriate for such a product, unlike thermisation (Grappin & Beuvier, 

1997).  

To our knowledge, there is no literature available describing the effects of thermisation temper-

atures against S. aureus in goats’ raw milk. Only one study has reported on S. aureus populations 
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after thermisation, but in a composite raw milk consisting of 90% ewes’ and 10% goats’ milk 

(Samelis et al., 2009). As a result, the temperature and time combinations needed to enhance the 

safety of goats’ raw milk and reduce S. aureus counts are not characterised. 

For this, a range of mathematical models can be used to estimate kinetic parameters from con-

stant-temperature inactivation experiments, where microbial counts are modelled as a function of 

time (primary models). If properly formulated and validated, in conjunction with secondary 

models (which describe the effects of environmental factors, such as temperature, on the primary 

model parameters), these models facilitate prediction of the effects of a treatment regime and can 

be used for the design of thermal inactivation processes (Condron et al., 2015).  

Frequently, primary and secondary models are fitted sequentially (two-step modelling) (Pennone 

et al., 2021). However, using a mixed-effects nonlinear regression approach (also known as 

omnibus or global modelling), a full dataset covering all experimental conditions can be modelled 

at once, fitting the primary and secondary models simultaneously (Juneja et al., 2015; Juneja et 

al., 2016; Pennone et al., 2021; Saraiva et al., 2016). The omnibus method has advantages com-

pared to the two-step modelling as there is no loss of information associated with the uncertainty 

of the primary model kinetic parameters, and random effects can be used to account for the var-

iability in parameters that environmental conditions may not explain (Pennone et al., 2021). 

In this context, the aim of our research was to characterise the heat resistance of S. aureus in 

goats’ raw milk at sub-pasteurisation temperatures and to compare the standard two-step model-

ling approach with the omnibus modelling. 

Through these models, it was possible to estimate the significant inactivation parameters and to 

determine the heat resistance of S. aureus at various temperatures, information that is valuable 

and can be employed to derive time/temperature tables to reach target S. aureus log reductions, 

which can be used by artisanal cheesemakers and improve the microbiological safety of cheeses 

made from unpasteurised milk. 

2. Materials and Methods 

2.1. Inoculum preparation 
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Staphylococcus aureus ATCC 6538, obtained from the Polytechnic Institute of Bragança stock 

collection, was used. A loop of culture kept on Nutrient Agar slant was inoculated in 10 mL of 

Mueller Hinton broth (Ref. 4017412, Biolife, Italia). Broth tubes were incubated at 37 °C for 24 h, 

to achieve a concentration of approximately 8 log CFU/mL, verified by measurement of the 

absorbance at 600 nm using a spectrophotometer (Peak Instruments Inc., Version 1701). 

2.2. Sample inoculation and heat treatment 

The heat treatment trials were performed as described by Engstrom et al. (2021) with some 

modifications. Fifty mL of raw goat’s milk was pipetted into a sterile centrifuge tube and inoc-

ulated at 1% (v/v) with S. aureus to yield approximately 7 log CFU/mL. After vortexing, five mL 

aliquots of inoculated milk was pipetted into sterile sample bags, which were flattened to a uni-

form thickness.  

Sample bags were then attached to a sampling rack to ensure their even distribution within the 

water bath and to allow for simultaneous and efficient immersion. A stirred 30 L water bath 

(Clifton Range, United Kingdom) was used, to reduce heat transfer delays. The sampling rack 

was submerged in the water bath heated to 55 °C, 56.5 °C, 58 °C, 61 °C, 62.5 °C and 64 °C, and 

samples were removed at six appropriate pre-defined time intervals, according to preliminary 

trials conducted to ensure that a minimum of 20 colonies could be counted when performing S. 

aureus quantification. At each sampling point, sample bags were removed and promptly im-

mersed into an ice bath to reach approximately 15 °C. Chilled sample bags were removed from 

the ice bath, dried, and sanitised (on the outside) with ethanol 70% (v/v) before opening.  

Determination of S. aureus counts was then performed. For every treatment, two runs (two sets of 

sample bags) were conducted. 

2.3. Quantification of S. aureus 

For every test unit, appropriate serial dilutions were prepared by homogenising the heat-treated 

milk in 45 mL of buffered peptone water (Ref. 414944.1210, PanReac AppliChem, Spain) for 30 

seconds in a stomacher (BagMixer 400, Interscience, France). To determine S. aureus concen-
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tration, 0.1-mL aliquot of the dilutions was plated on Baird-Parker agar (Ref. 4011162, Biolife, 

Italy), supplemented with Egg Yolk Tellurite (Ref. FD046-100MLX5VL, HiMedia, India), fol-

lowing ISO 6888-1:2001 (International Organization of Standardization, 2021). Typical colonies 

were counted after 48 h after incubation at 37 °C. Microbiological determinations were done in 

duplicate. 

2.4. Statistical analysis 

The statistical analyses described below were performed in R software (version 4.1.0, R Foun-

dation for Statistical Computing, Vienna, Austria) using the ‘nlme’ and ‘stats’ packages. 

2.4.1. Two-step modelling approach 

Primary model. For the survival curves obtained at 55 °C, 58 °C, 61 °C and 64 °C, S. aureus 

behaviour was modelled using the three-parameter Weibull equation as the primary model (i.e., a 

model describing microbial concentration as a function of time), defined as: 

            (1) 

where  and  represent the logarithms of microbial concentrations (log CFU/mL) at an 

initial time point (  = 0) and actual time  minutes, respectively; and  and  are the scale and 

shape parameters of the underlying Weibull distribution, respectively. The scale parameter  

indicates the time for first decimal reduction (minutes), whereas the shape parameter accounts for 

upward concavity of a survival curve (  < 1), a linear survival curve (  = 1), or a downward 

concavity (  > 1) (Van Boekel, 2002). After separately fitting the Weibull primary model to each 

of the survival curves, the parameters ,  and  were extracted. To ensure that the estimated 

 and  were positive, natural logarithmic transformations of those parameters were used for 

the fitting. 

 

Secondary model. Since the survival experiments were conducted under different temperatures, 

secondary models (i.e., models describing one or more parameters of a primary model as a 
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function of an intrinsic or extrinsic variable) were developed to assess the effects of temperature 

on  and .  

Initially, a log-linear Bigelow model was tested, but the logarithmic transformation produced 

estimates with high errors associated. For that reason, the four estimates of the scale and shape 

parameters from the three-parameter Weibull models underwent a square root transformation (  

and ), which proved to reduce heteroscedasticity and produced estimates with smaller errors 

associated, thus proving to be more adequate. Then, the transformed estimates were plotted 

against the corresponding temperature, and the following equations were adjusted to describe  

and  as a function of temperature: 

          (2) 

          (3) 

 

Model validation: The model was validated by parametric bootstrapping (1000 iterations) (Cox 

et al., 1994), comparing the set of experimental data collected at 56.5 °C with the predicted sur-

vival curve obtained by fitting the primary and secondary models at that temperature. For the 

bootstrapping, it was assumed that the residuals of the model follow a normal distribution with 

mean zero and standard deviation calculated from the square root of the residual sum of squares. 

The confidence intervals were calculated at a significance level of α=0.05. For the evaluation of 

the performance of the model, two statistical internal validation indices were calculated from the 

observed and predicted values: the bias factor (Bf) and the accuracy factor (Af) (Ross, 1996). 

2.4.2. Global modelling approach: omnibus model 

An omnibus model is one that fits the primary and secondary models simultaneously, using all the 

data from the experimental curves and jointly estimating the parameters of both models (Juneja et 

al., 2015, 2016).  

Various equations were tested to be added as secondary models to the omnibus model, including 

those described by Equations (2) and (3), considering that the parameters of the Weibull model 
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could be expressed as a function of the temperature, as shown by the previous step-

wise-regressions tested. In this sense, several mixed-effects models were assessed, and among all, 

that of Equation 4 fitted significantly better than the others and was the most parsimonious, 

revealing the best goodness-of-fit measures (Akaike Information Criterion and Bayesian Infor-

mation Criterion) and behaviour of the residuals. Therefore, it is the only model presented here. In 

this omnibus approach, the effect of temperature on  was described by a linear model, as it 

was in the two-step approach, whereas  was maintained fixed.  

The log CFU/mL concentration measured at time i when subjected to condition j was estimated 

as: 

          (4) 

          
 

 
 

     

Two random-effects terms, u and v, were added to the expression predicting  and to the 

mean of the intercept  of the expression predicting , respectively. This was done because 

a fraction of the variability in the shape and scale parameters could not be explained solely by 

their fixed-effect predictors. Hence, the random effects u and v were assumed to take in random 

shifts subject to a given condition j defined by the inactivation temperature. The two random 

effects were assumed to follow normal distributions with means zero and covariance matrix 

. The residual error  followed a normal distribution with mean zero and variance 

s
2
.  

 

Model validation. The model was validated with two independent sets of data (external valida-

tion; Schvartzman et al., 2014): one collected at 56.5 °C and another at 62.5 °C. Briefly, the 
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procedure consisted of fitting the omnibus model to each set of data, separately, and calculating 

the mean predicted bacterial concentrations and confidence intervals (at a significance level of 

α=0.05) along the time. The predicted inactivation curves were then compared with the experi-

mental values. Like in the two-step approach, the performance of the omnibus model was eval-

uated by calculating the bias and accuracy factors. 

3. Results and Discussion 

3.1. Two-step modelling approach 

Primary modelling. In the present study, S. aureus survival curves (Figure 1) presented various 

shapes, which may be due to the presence of subpopulations that differ in heat resistance, bacte-

rial clumps (Den Besten et al., 2018; Abee et al., 2016), and/or vital cellular components that are 

being destroyed before inactivation starts (Geeraerd et al., 2000), for example. Since the primary 

model selected had to be flexible to portray the various shapes observed in this study and con-

sidering that the Weibull model can be used to describe nonlinear survival curves and may be 

helpful to pinpoint relevant physiological effects caused by heating (Van Boekel, 2002), the 

three-parameter Weibull equation was considered adequate and representative of all the survival 

curves. Ninety-five percent confidence intervals were calculated and are displayed in Figure 1 to 

account for the uncertainty in the estimates, which may be a result of potential laboratory errors, 

biological variation and stochasticity. 

Table 1 compiles the means and standard errors of the parameters of the Weibull equation 

fitted separately to each of the thermisation temperatures tested. 

S. aureus initial concentrations ( ) were significant (p < 0.05), and a fast decline in their 

numbers with increasing thermisation temperature was observed, as suggested by the decreasing χ 

values. These indicate smaller times for the first decimal reduction as temperature rises: for 

example, at 55 °C, the time needed for one log reduction is around 38 minutes, whereas at 64 °C, 

19.32 seconds achieve the same decrease. 
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The general decrease of the shape parameter (β) values from 55 °C to 64 °C suggests that, as 

temperature increases, more damage and stress is progressively caused to S. aureus, although, 

between them, the values of the shape parameter at 61 °C (0.630) and 64 °C (0.936) are not 

aligned with this descending trend. 

Even though the Weibull model is empirical, the value of β can be somewhat associated with the 

physiological effects of the heat treatment on the bacterial cells (Van Boekel, 2002). According to 

Van Boekel et al. (Van Boekel, 2002), β < 1 suggests cell adaptation and β > 1 alludes to accu-

mulated cell damage. In this sense, our results suggest that, at any point in the inactivation curve, 

the surviving bacteria become increasingly heat-susceptible in all of the temperature-specific 

experimental curves, although at 61 °C this behaviour was less evident.  

 

Secondary modelling. The results from Table 1 show that temperature has an impact on the 

inactivation kinetics of S. aureus. For this reason, the relationships between the transformed 

parameters  and  of the primary model and the thermisation temperatures were explored 

by scatter plots and, subsequently, by separate stepwise regression analyses (i.e., secondary 

models). Parameters of the resulting secondary models predicting  and  as a function of 

temperature are presented in Table 2. 

From Table 2, the positive intercept estimates (40.59, p = 0.0003 for ; 4.776, p = 0.006 

for ) and the negative linear effects of temperature (-0.638, p = 0.0004 for ; -0.062, p = 

0.017 for ) were anticipated considering the results of χ and  from Table 1, and since higher 

temperatures should lead to shorter inactivation times.  

The fitting capacity of the secondary models was reasonable, as shown by the adjusted R
2
 

values, 0.895 and 0.639, thus supporting the robustness of the models. Nonetheless, these R
2
 

values indicate that the models could not account for all the variability in the results, and that 

some of it remains unexplained. For both models, to further assess the quality of the fitting, the 

relationship between residuals and predicted values was assessed through scatter plots, which 

showed that the spread of the residuals over the fitted values was randomly distributed around the 
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zero of the horizontal axis (plots not shown). Such results additionally corroborated the fitting 

quality of the models. Nevertheless, it is worth mentioning that the model should not be extrap-

olated for temperatures below 55 ºC or beyond 64 ºC, since the behaviour of  at those tem-

perature ranges is not accounted for in our model. 

The plots in Figure 2 illustrate the change in  and  taking into account the impact of 

temperature, as described by the linear models built. Visual inspection of the plots further sup-

ports the agreement between the observed data and the predicted values suggested by the adjusted 

R
2
, as most experimental values lay well within the 95% confidence bands. 

 

Model validation. The inactivation curve displayed in Figure 3 was obtained by iteratively 

(N=10000) calculating the values of χ and β for the temperature of 56.5 °C using the secondary 

models, considering that χ and β parameters follow a normal distribution with zero mean and 

constant variance, and placing such estimates of χ and β on the Weibull equation to obtain pre-

dicted S. aureus counts. From this iteration process, confidence intervals and predictions intervals 

could also be calculated and are presented in Figure 3. 

From this bootstrapping approach, using both primary and secondary models, it was pos-

sible to adequately describe the inactivation curve for the temperature of 56.5 °C, considering that 

it provided a good coverage of the experimental data points (all the observations are well within 

the 95% prediction bands), as shown in Figure 3.  

The agreement between the predicted survival curve and the observed data was also verified 

by calculating the accuracy factor, Af = 1.06, and bias factor, Bf = 0.96. The Af is a measure of 

average deviation that indicates the spread of the results about the predictions (Ross, 1996) and, in 

this case, the Af value suggests that, on average, predictions are 1.06 factors of difference with 

respect to observations. The Bf, in turn, is a measure of the agreement between the predictions 

made by the model and the actual observations (Ross, 1996). In this case, the Bf value suggests 

that the model may tend to underestimate the microbial concentrations by approximately 10%, 

and, for that reason, may be deemed as “fail-dangerous”. 
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3.2. Global modelling approach: omnibus model 

Omnibus model. The final omnibus model presented a total of seven parameters (Equation 4), 

from which four were fixed effects or predictors of ,  and , and two were vari-

ances of the random effects and the residual error. This global approach allowed a good descrip-

tion of all the inactivation curves. Table 3 compiles the parameter estimates for the omnibus 

model.  

The positive intercept  and the negative linear effect of temperature on  (reflected by ) 

observed in the two-step modelling approach were also observed in the omnibus model. With 

regards to the model’s random effects, the two variances  and  were significant (p < 0.05). 

Analysing the standard errors of the predictors of  , it can be stated that the omnibus model 

reduced the error associated with those parameters, when comparing with the standard errors 

obtained by the two-step modelling approach (Table 2). These results indicate that, by simulta-

neously fitting both primary and secondary models, this global approach minimises the error 

propagation that occurs when using the two-step methodology and, thus, improves parameter 

estimation. This is further supported by the fitting capacity of the model, given by the adjusted R
2
 

of 0.996, which is higher than those of the secondary models of the two-step approach. 

 

Model validation. The omnibus model was successfully validated with the separate data sets 

obtained. Predictions for two temperatures (56.5 and 62.5 °C) are shown in Figure 4, and, in both 

cases, the plots reveal a good agreement between the predicted survival curve for each tempera-

ture and its observed data (i.e., all the observations lay well within the 95% confidence bands). 

Such agreement was further supported by the bias factors (1.05 and 0.84) and accuracy 

factors (1.23 and 1.25) of each model fitted (56.5 and 62.5 °C, respectively). While the accuracy 

factors suggest that, on average, predictions are 1.23 to 1.25 times the value of observations, i.e., 

there is similar discrepancy between observed and predicted values at different temperatures, the 

values of the bias factors suggest that the ability of the model to accurately estimate the microbial 

concentrations is dependent on the temperature for which the predictions are made. In this case, it 
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seems that when the model was adjusted for a temperature closer to the limits of the range of 

temperatures tested (62.5 °C, in this case), it became less capable of accurately making predic-

tions, and instead, underestimated the microbial concentrations. Nevertheless, it is important to 

note that the omnibus model is capable of making accurate predictions for temperatures that were 

not used to build the model (Figure 4), while the two-step approach revealed some difficulty in 

adequately fitting two of the temperatures included in the data set used to produce the model: 61 

and 64 °C (Figure 1). This fact strongly supports the superiority and advantage of the global 

modelling approach. 

4. Discussion 

Comparing the estimates of Tables 2 and 3, there was general agreement between the outcomes of 

the secondary and the omnibus models. Nonetheless, our work shows that the omnibus approach 

is better at avoiding loss of information and error propagation, as occurs with the two-step 

method, which is reflected in the lower standard errors associated with the model estimates. 

Moreover, the global approach allows to identify potential systematic errors in a dataset from one 

environmental condition and to explore them through an appropriate choice of fixed and random 

effects incorporated in the model (Pennone et al., 2021). 

To our knowledge, this is the first work using modelling to obtain S. aureus kinetics in goats’ raw 

milk at different sub-pasteurisation temperatures, and it contributes to the body of work using 

predictive microbiology to describe pathogen heat-inactivation in milk, which is scarce, partic-

ularly if pasteurisation studies are disregarded. Lehotová et al. (2021) studied the heat resistance 

of S. aureus in the 57–61 °C temperature range using the capillary method and broth containing 

glucose, tryptone and yeast extract. Then, the authors modelled the bacterial survival and esti-

mated the fourth decimal reduction time t4D- and z-values through log-linear Bigelow and 

non-linear Weibull models. Although these models are useful, their accuracy to predict the real 

behaviour of bacteria in foods may be questioned, as using experimental data from homogene-

ously well-mixed broth media implies disregarding the food microstructure and composition 
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(Verheyen et al., 2019). For this reason, in our work, raw milk was chosen over broth media, 

aiming to produce meaningful estimates that may be used in real life applications. 

Other authors have reported on the effects of heat treatments for pathogen inactivation using raw 

milk instead of broth media, but usually the results are conveyed as a comparison of microbial 

populations before and after the treatment, or as decimal reduction values (D-values). Samelis et 

al. (2009), for example, observed an effective reduction of coagulase-positive staphylococci, 

from 3.3 log CFU/mL to < 2 log CFU/mL, when applying thermisation treatments of 60 °C and 67 

°C for 30 seconds to a mixture of ewe’s and goat’s milk (90:10). Zottola et al. (1969) applied 

sub-pasteurisation treatments of 147 to 150 °F (63.8 to 65.6 °C) for 16 to 21 seconds to raw milk, 

and reduced S. aureus concentration to such an extent that the pathogen was undetected. In turn, 

Engstrom et al. (2021) determined and validated D-values for L. monocytogenes and STEC in raw 

milk at thermisation temperatures of 65.6, 62.8 and 60.0 °C (also at 57.2°C for L. monocytogenes 

only). The results from such studies are also valuable and validate the usefulness of thermal 

treatments for pathogen control and improved food safety. However, they do not enable predic-

tions nor interpolations for other temperatures, which is an advantage of using predictive mod-

elling. 

5. Conclusions 

The present study estimated the inactivation parameters of S. aureus in goats’ raw milk at 

several thermisation temperatures using the Weibull model in two distinct approaches: two-step 

modelling vs. omnibus modelling. 

The results showed that the temperature influenced the time needed for the first decimal 

reduction, as expected, and produced distinct physiological effects on the pathogenic cells, as 

suggested by the different values of the shape parameter β. A quadratic relationship was found 

between each of the parameters of the Weibull model and the temperature, meaning that the effect 

of temperature is not constant over the range tested. 

Validation of the models produced at temperatures within the models’ domain was per-

formed successfully, demonstrating their aptitude to predict inactivation kinetics of S. aureus in 
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goats’ raw milk. Nonetheless, the omnibus approach showed improved parameter estimation, 

considering the reduced standard errors associated, and revealed its value as a complementary 

approach to the traditional two-step modelling by enabling further exploration and insight of the 

experimental inactivation data. 

The models described in this work can be used to design lethality treatments to achieve 

specific reductions of S. aureus in goats’ raw milk, thus contributing to the enhancement of the 

microbiological quality and safety of raw milk cheeses. 
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Table 1. Kinetic parameters of the Weibull decay model describing S. aureus behaviour in goats’ 

raw milk heated at different thermisation temperatures (°C) 

Thermisation temperature (°C)  
1
  

2
  

3
 

55 6.819 ± 0.054 * 37.92 ± 1.036 * 2.241 ± 0.221 * 

58 6.821 ± 0.006 * 9.703 ± 0.301 * 1.145 ± 0.058 
ns

 

61 6.907 ± 0.169 * 0.573 ± 0.076 * 0.630 ± 0.041 
ns

 

64 6.734 ± 0.008 * 0.322 ± 0.017 * 0.936 ± 0.053 
ns

 

1
 Y0: initial counts (log CFU/mL); 

2
 χ: scale parameter (minute); 

3
 β: shape parameter (dimen-

sionless) (these parameters were expressed as means and standard error). Asterisks (*) represent 

the significance of the estimated parameter at p < 0.05; ns: non-significant (p > 0.05).
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Table 2. Parameter estimates of the secondary models predicting the square root transformed 

parameters χ and β in goats’ raw milk as a function of temperature (°C) 

Parameters Mean Standard error Pr > |t| AIC/BIC 

Predictors of  (min
0.5

)     

 (Intercept) 40.59 5.322 0.0003 23.7/24.0 

 (Temperature) -0.638 0.089  0.0004  

Variance     

(residual) 0.615  Adj. R
2
  0.895 

Predictors of      

 (Intercept) 4.776 1.137 0.006 -0.95/-0.71 

 (Temperature) -0.062 0.019 0.017  

Variance     

 (residual) 0.028  Adj. R
2
 0.639 
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Table 3. Parameter estimates of the mixed-effects omnibus model predicting the non-log-linear 

decay of S. aureus in goats’ raw milk as a function of temperature (°C) 

Parameters Mean Standard error Pr > |t| AIC/BIC 

Predictors of  (min
0.5

)     

 (Intercept) 39.62 4.618 0  

 (Temperature) -0.622 0.077 0 71.8/84.0 

b 1.053 0.088 0  

 6.840 0.058 0  

Variances     

 ( ) 0.236    

 ( ) 0.716    

 (residual) 0.181  Adj. R
2
 0.996 
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Figure 1. S. aureus experimental observations (markers), mean predicted values (full line) and 

95% confidence intervals (dashed lines), as obtained by the two-step modelling approach, in 

goats’ raw milk heated at 55, 58, 61 and 64 °C over time. For each temperature, same markers 

represent observations from the same experiment (n=2). 

 

Figure 2. Mean (full line) and 95% confidence intervals (dashed lines) of the effect of 

temperature (°C) on the square root transformed scale parameter χ (left) and shape parameter β 

(right). For each temperature, different markers represent χ values obtained from different 

experiments (n=2). 

 

Figure 3. Mean (full line), 95% confidence intervals (dark grey) and 95% prediction intervals 

(light grey) of the concentration of S. aureus in goats’ raw milk treated at 56.5 °C against time, 

as predicted by the two-step modelling approach. For each time point, a marker represents the 

mean of two replicates (n=2). 

 

Figure 4. Mean and 95% confidence intervals of the concentration of S. aureus in goats’ raw 

milk against time, as predicted by the omnibus model. Model external validation for 

temperatures 56.5 and 62.5 °C is shown (left to right). For each temperature, same markers 

represent observations from the same experiment (n=2). 
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