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Abstract 13 

Animal detection through DNA present in environmental samples (eDNA) is a valuable tool for 14 

detecting rare species, that are difficult to observe and monitor. eDNA-based tools are 15 

underpinned by molecular evolutionary principles, which are key to devising tools to efficiently 16 

single out a targeted species from an environmental sample, using carefully chosen marker 17 

regions and customized primers. Here, we present a comprehensive review of the use of eDNA-18 

based methods for the detection of targeted animal species, such as rare, endangered, or invasive 19 

species, through the analysis of 460 publications (2008-2022). Aquatic ecosystems have been 20 

the most surveyed, in particular, freshwaters (75%), and to a less extent marine (14%) and 21 

terrestrial systems (10%). Vertebrates, in particular, fish (38%), and endangered species, have 22 

been the most focused in these studies, and Cytb and COI are the most employed markers. 23 

Among invertebrates, assays have been mainly designed for Mollusca and Crustacea species 24 

(22%), in particular, to target invasive species, and COI has been the most employed marker. 25 
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Targeted molecular approaches, in particular qPCR, have been the most adopted (73%), while 26 

eDNA metabarcoding has been rarely used to target single or few species (approx. 5%). 27 

However, less attention has been given in these studies to the effects of environmental factors 28 

on the amount of shed DNA, the differential amount of shed DNA among species, or the 29 

sensitivity of the markers developed, which may impact the design of the assays, particularly to 30 

warrant the required detection level and avoid false negatives and positives. The accuracy of the 31 

assays will also depend on the availability of genetic data from closely related species to assess 32 

both marker and primers’ specificity. In addition, eDNA-based assays developed for a particular 33 

species may have to be refined taking into account site-specific populations, as well as any 34 

intraspecific variation. 35 

 36 

Keywords: eDNA-based tools; endangered and invasive species; species-specific assays; 37 

environmental factors effects 38 

 39 

1. Introduction 40 

Biodiversity plays a key role in maintaining the integrity of ecosystems, by providing important 41 

services such as buffering extreme climate events, regulating hydrological cycles and 42 

temperature in urban areas, protecting soils, economic diversification, and reducing food 43 

insecurity (Naeem et al., 2016). Biodiversity monitoring is, thus, essential for assessing 44 

ecosystem health, in particular, to signal endemic endangered species or to early detect invasive 45 

species, which are all crucial to provide guidelines for more effective management of natural 46 

resources (Navarro et al., 2017).  47 

Species monitoring has been relying customarily on species visualization or capture and 48 

identification of specimens through diagnostic morphological characters (Qu and Stewart, 49 

2019). For instance, aquatic vertebrates’ surveillance programs traditionally employ nets or 50 

electrofishing gear (Goldberg et al., 2011; Jerde et al., 2011). However, this is a process that can 51 

be laborious, time-consuming, and deficient in taxonomic discrimination capacity, in particular 52 

for organisms low on distinctive morphological features, such as the case of some invertebrate 53 

fauna. In addition, when the targets are rare species, i.e., species with small populations sizes, or 54 

elusive species, the detection probabilities are typically low in any ecosystem and a greater 55 

sampling effort is needed to maximize the chances of species detection, which is not always 56 

feasible (Delgado, 2022; Goldberg et al., 2011; Jerde et al., 2011; Ma et al., 2022; Sgarbi et al., 57 

2020). Although the term “rare species” is commonly associated with indigenous endangered 58 

species, non-indigenous species can be considered rare species as well, namely early in the 59 

invasion process when their population sizes are still small (Ficetola et al., 2008; Goldberg et 60 

al., 2011; Jerde et al., 2011).  61 
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The adoption of more sensitive and non-invasive methods, with higher detection capacity, can 62 

be particularly advantageous in the case of rare species detection. Methods that rely on the use 63 

of environmental DNA (eDNA) have been placed at the forefront for their great potential in 64 

biodiversity monitoring (Ficetola et al., 2008; Jerde et al., 2011; Leese et al., 2016, 2018). In 65 

addition, contrarily to customary invasive approaches, eDNA sampling minimizes or avoids any 66 

disturbance to the target and co-occurring species and sampled habitat. Environmental DNA is 67 

obtained directly from environmental samples (i.e., water, soil, sediments, air) and can exist 68 

mainly in two forms: either contained in cells of small organisms such as microbes, single-69 

celled algae, meiofauna, and zooplankton or in free-form that is released by larger organisms 70 

into the environment through faeces, urine, mucous, gametes, skin cells, among other particles 71 

(Pawlowski et al., 2020; Thomsen et al., 2012). Once eDNA is shed into the environment, its 72 

persistence may vary from hours to weeks in temperate waters, to several months or years in 73 

soil, caves, permafrost, or sediments (Baillie et al., 2019; Barnes et al., 2014). However, eDNA 74 

is still presumed to be the predominant source of organismal DNA and indicative of the 75 

organism’s recent presence, but it can be also highly dependent on the system under analysis 76 

(Thomsen and Willerslev, 2015).  77 

Species detection through eDNA has been mainly achieved using two following approaches: i) 78 

targeted species detection or active surveillance, where specific primers are used for detection of 79 

single or few species using a PCR platform  (Ficetola et al., 2008; Goldberg et al., 2011; Jerde 80 

et al., 2011; Wood et al., 2019b) and ii) community-level detection, or passive surveillance, 81 

where a complete inventory of the species, within a given ecosystem or habitat, is accomplished 82 

using either broad-spectrum or taxonomic group�specific primers, in combination with high 83 

throughput sequencing (HTS), .i.e., eDNA metabarcoding (Taberlet et al., 2012a, 2012b). In the 84 

latter case, abundant, rare, endangered, and invasive species or the diversity of a specific taxon 85 

(e.g., fish) will be concurrently assessed. The high sensitivity of eDNA-based detection and the 86 

greater probability of tracking rare species in their habitat, typically results in higher species 87 

richness estimates, associated with lower sampling costs and survey times, compared with 88 

classical surveys (Belle et al., 2019; Coble et al., 2019; Pawlowski et al., 2018; Taberlet et al., 89 

2012a, 2012b; Xia et al., 2021). In addition, species that are present even at low abundances, 90 

such as the case of rare species, can be efficiently detected (Thomsen and Willerslev, 2015).  91 

While the application of eDNA metabarcoding is increasing significantly, whereas studies 92 

applying single species detection are declining (Schenekar, 2023), targeted species detection is 93 

still the best strategic approach for detecting one or a few species at a specific location and time, 94 

increasing the likelihood of detection (Morisette et al., 2020). In addition, targeted detection is 95 

particularly advantageous for “finding the needle in the haystack” and when the target is of high 96 

risk if it goes undetected (Harper et al., 2018b; Morisette et al., 2020). For instance, to detect an 97 

invasive species early in the invasion process, knowing the characteristics of the target species 98 
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and being in the right place, at the right time, and using the most appropriate tools increases the 99 

chances of successfully addressing a bioinvasion, in an effective and cost-efficient manner 100 

(Morisette et al., 2020). In addition, when using community-level assessments such as eDNA 101 

metabarcoding, the co-occurrence of abundant species can reduce the probabilities of rare 102 

species detection (Gargan et al., 2022; Harper et al., 2018b; Rojahn et al., 2021).  103 

Since the pioneer studies of Ficetola (2008), Goldberg (2011), Jerde and co-authors (2011), 104 

among others, consisting on the targeted detection of invasive and rare animal species, that the 105 

employment of eDNA-based tools for monitoring species of conservation interest has been 106 

rising dramatically (Belle et al., 2019; Bohmann et al., 2014; Rees et al., 2014; Thomsen et al., 107 

2012). Thus, given the considerable amount of information already existing, an appraisal of the 108 

use of eDNA-based targeted detection is timely and much needed. To that end, we conducted a 109 

comprehensive review to analyse what geographic regions and ecosystems have been mostly 110 

surveyed, the taxonomic groups that have been targeted and species status (i.e., endangered or 111 

invasive), the platforms employed, as well as the DNA markers and length, and assays that have 112 

been already implemented by environmental managers to support conservation-related 113 

decisions. In addition, we also assessed potential gaps and biases, as well as the greatest 114 

challenges that are still to be addressed, and recommend future development in the context of 115 

biological conservation. 116 

 117 

2. Methods 118 

We performed a literature search by querying the Web of Science for articles in which eDNA-119 

based tools were used for detecting rare species, on July 1st, 2022. The search was limited to 120 

titles, abstracts, and keywords (search by topic), that contained the terms “environmental DNA” 121 

OR “eDNA” and terms categorizing the target groups, namely “rare” OR “elusive” OR 122 

“endangered” OR “threatened” OR “imperiled” OR “vulnerable” OR “invasive”. The search 123 

retrieved 1,049 articles, published between 2006 and 2022 (until 30th June) (Table S1). After 124 

individual inspection, we retained 460 articles for conducting our analysis, published between 125 

2008 and 2022 (Table S2). Papers that were not primary research articles (e.g., reviews) or 126 

surveyed the biodiversity of whole communities using eDNA metabarcoding were excluded 127 

from the analysis. Furthermore, studies were included in the analysis only if they specified that 128 

the aim was to target one or a few rare/elusive wild species. Since our survey is focused on 129 

animals, studies aiming at other taxonomic groups such as plants, fungi, bacteria, and protists, 130 

among others, were also excluded. 131 

From each selected publication we retrieved the following information: i) the geographic 132 

area/country, ii) the environment (e.g., terrestrial, freshwater, and marine), iii) the type of 133 

environmental sample (e.g., water, sediment, soil, among others), iv) if the study was conducted 134 

in the field or a controlled environment (e.g., aquarium, mesocosms, lab), v) the targeted 135 
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species, the respective taxonomic classification and species category (i.e., endangered, 136 

invasive), vi) the targeted molecular markers and segments length (bp) and vii) the platforms 137 

employed (e.g. cPCR, qPCR) (Table S2). We did not analyse in detail all protocols used 138 

through the analytical chain of eDNA-based targeted detection (i.e., sampling, eDNA capture, 139 

eDNA extraction protocols), since these have been already the target of previous reviews (Doi 140 

et al., 2021; Kumar et al., 2020; Lear et al., 2018; Rees et al., 2014; Shu et al., 2020; Tsuji et al., 141 

2019; Wang et al., 2021). Linear regressions were used to assess the significance of the increase 142 

in the number of papers per year, between the periods of 2008 and 2015 and the periods of 2016 143 

and 2022, using GraphPad Prism v6 (GraphPad Software, Inc.). 144 

 145 

3. Results and Discussion 146 

Most of the original publications retrieved from the initial list belonged to the categories of 147 

Ecology, Biodiversity Conservation, Environmental Sciences, and Marine and Freshwater 148 

Biology (Fig. S1). A detailed analysis of the 460 articles retained, indicated that papers 149 

addressing the use of eDNA-based tools for the targeted detection of rare animal species have 150 

been published in 124 scientific journals (Table S2), but only 25 journals have been selected in 151 

more than 1% of the publications (at least 5 publications) (Fig. S2). The most frequently 152 

selected journal was PLoS ONE (54 publications), followed by Conservation Genetics 153 

Resources (27) and Biological Invasions (22) (Fig. S2, Table S2).  154 

Since the pioneer study of Ficetola and co-authors (Ficetola et al., 2008), which developed a 155 

species-specific assay for detecting the invasive bullfrog using water eDNA collected in French 156 

wetlands, the number of publications addressing eDNA-targeted detection in biological 157 

conservation studies has grown rapidly, with a particularly steep trend from 2016 onwards (Fig. 158 

1). Indeed, the number of publications increased at a rate of 7.2 papers/year between 2008 and 159 

2015 (P=0.04, R2=0.71), while a rate of 61.7 papers/year was found between 2016 and 2022 160 

(P<0.0001, R2=1.0) (Fig. 1), which is congruent with the increasing adoption of eDNA-based 161 

tools in the last few years (e.g. Minamoto, 2022; Nordstrom et al., 2022; Schenekar, 2023). 162 
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 163 

Figure 1. Total number of publications per year (insert) and the cumulative number of 164 

publications using eDNA-based targeted detection of rare animal species (n=460). 165 

 166 

3.1. eDNA-based targeted detection of rare animal species has been applied mainly in 167 

aquatic ecosystems of North America and Europe 168 

Most of the studies analysed in the current review have been conducted in a single geographic 169 

region targeting species with restrictive distributions (e.g. Fukumoto et al., 2015; Neice and 170 

McRae, 2021; Padgett-Stewart et al., 2016; Westhoff et al., 2022; Wilcox et al., 2014) (Fig. 2A, 171 

Table S2). A few have been conducted in multiple countries, but within a single continent 172 

(Agersnap et al., 2017; De Ventura et al., 2017; Rusch et al., 2020; Schneider et al., 2016; 173 

Thomsen et al., 2012), while very few have been intercontinental (Meekan et al., 2017; Ribani 174 

et al., 2020; Takeuchi et al., 2019). Most of the studies have been performed in North America 175 

(47%) and Europe (23%), demonstrating a bias towards the northern hemisphere, in what 176 

respects the adoption of these tools (Fig. 2B, Table S2). The geographic bias towards the 177 

Northern hemisphere has been previously documented before (Belle et al., 2019; Coble et al., 178 

2019; Duarte et al., 2021a, 2021b; Nordstrom et al., 2022; Schenekar, 2023).  179 

It has been pointed out that the lack of studies in the southern hemisphere is mostly due to 180 

socioeconomic constraints and a lack of supporting infrastructures required for eDNA-based 181 

monitoring implementation in global South countries, in particular in African countries (Belle et 182 

al., 2019; Schenekar, 2023). In addition, the higher number of existing legal frameworks in 183 

Northern regions such as the Water Framework Directive (WFD) (Council Directive 184 

2000/60/EC) and Habitats Directive in Europe (Council Directive 92/43/EEC) or the 185 

Endangered Species Act and National Invasive Species Act in North America, requiring regular 186 
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biomonitoring programs, may also help to explain the higher adoption of eDNA-based tools in 187 

these geographic regions. 188 

Aquatic ecosystems have been the most surveyed, in particular, freshwaters (75%), and to a less 189 

extent marine (14%) and terrestrial systems (10%) (Fig. 2C), a pattern that has been found in 190 

the different geographic regions surveyed, with some few exceptions (e.g., in North and South 191 

America and Africa, terrestrial ecosystems have been more surveyed than marine ecosystems), 192 

while multiple typologies of ecosystems have been surveyed only in approximately 2% of the 193 

studies, e.g., freshwaters and marine (Kasai et al., 2020; Lehman et al., 2022); marine and 194 

terrestrial (Farrell et al., 2022; Steinmetz et al., 2021) (Fig. 2). This is not surprising since 195 

freshwater ecosystems are considered the most imperilled habitats in the world (Reid et al., 196 

2019), and at least in temperate regions they have been subject of intensive monitoring due to 197 

legal requirements, as already above-mentioned. In these ecosystems, most studies have been 198 

conducted in rivers and small streams (Castañeda et al., 2020; Ma et al., 2016; Mizumoto et al., 199 

2020; Piggott, 2017; Riaz et al., 2020; Rodgers et al., 2020), lentic ponds (Adams et al., 2019; 200 

Geerts et al., 2018; Harper et al., 2018b) and lakes (Johansson et al., 2020; Kamoroff and 201 

Goldberg, 2018), to a small extent in reservoirs and dams (Nakao et al., 2023; Sepulveda et al., 202 

2022, 2019), channels (Beauclerc et al., 2019; Díaz-Ferguson, 2014), caves and springs 203 

(DiStefano et al., 2020; Vörös et al., 2017) and aquacultures (Deutschmann et al., 2019; Ladell 204 

et al., 2019) (Table S2).  205 

Although marine ecosystems and diversity are also under threat, in comparison to freshwaters 206 

these have been much less targeted, in part due to their vastness and inaccessibility, and high 207 

complexity, which made the targeted detection of rare species using eDNA highly challenging 208 

to implement (Suarez-Bregua et al., 2022). In addition, dedicated studies are still needed to 209 

understand how environmental factors (e.g., temperature, currents, tides, depth, stratification, 210 

and salinity) affect eDNA distribution and persistence dynamics in the marine environment, to 211 

optimize/support both sampling and results interpretation (Collins et al., 2018; Suarez-Bregua et 212 

al., 2022). In marine ecosystems, most studies have been conducted in coastal areas or estuaries 213 

(Crane et al., 2021; Ellis et al., 2022; Miralles et al., 2019, 2016; Yip et al., 2021), coastal 214 

lagoons (Ardura et al., 2017; Muñoz-Colmenero et al., 2018), aquacultures (Brand et al., 2022; 215 

Matejusova et al., 2021) and harbours and recreational marinas (Kim et al., 2018; Matejusova et 216 

al., 2021; Wood et al., 2017), whereas fewer have been conducted in the open sea (Catanese et 217 

al., 2022; Gargan et al., 2022; Wada et al., 2020) (Table S2).  218 

Despite eDNA-based monitoring has been highly used in terrestrial ecosystems for assessing 219 

soil microbial communities through metabarcoding, studies are scarce on what concerns eDNA-220 

based targeted detection of rare animal species, as indicated by our review. The surveyed 221 

habitats were variable and included farms (Macgregor et al., 2021; Maslo et al., 2017), 222 

temporary wetlands (Feist et al., 2022; Schumer et al., 2019; Tarof et al., 2021), soil ecosystems 223 
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(Kucherenko et al., 2018; Yasashimoto et al., 2021), bromeliads tanks or tree holes (Barata, 224 

2021; Mullin et al., 2022; Torresdal et al., 2017), among others e.g., honey samples (Utzeri et 225 

al., 2021), roadside drains (Smart et al., 2015) (Table S2).  226 

 227 

 228 

Figure 2. Geographic distribution of the 460 studies, separated by the environment surveyed 229 

(A) and geographic regions (B) and environments surveyed in the 460 publications (C), in %. 230 

FW: freshwater ecosystems, MAR: marine ecosystems, TER: terrestrial ecosystems, MUL: 231 

multiple ecosystems. 232 

 233 

Water has been by far the most sampled in all types of surveyed ecosystems (>80% of the 234 

samples), as a result of most of the assays being designed for aquatic or semi-aquatic species 235 

(Fig. 3, Table S2). In water, eDNA can be distributed both dissolved or attached to suspended 236 

particles, which can eventually settle down into sediment layers. However, sediments have been 237 

less used as a source of eDNA (approx. 3% of the studies, Fig. 3). In terrestrial ecosystems it is 238 

difficult to find equivalent substrate types that effectively can capture rare animal species on 239 

land. In these ecosystems, soil (1.6%) (Matthias et al., 2021; Neice and McRae, 2021; 240 

Yasashimoto et al., 2021), faeces and urine (2.6%) (Steinmetz et al., 2021; Walker et al., 2017) 241 

or surfaces (2.4%), such as from plants or traps (Butterwort et al., 2022; Feist et al., 2022; 242 

Valentin et al., 2020), have been sampled as eDNA sources (Fig. 3). Other less used substrates 243 

include gut contents (Keskin, 2016), blood from invertebrates feeding on vertebrate species 244 

(e.g., leech blood parasiting turtles) (Farrell et al., 2022), air (Serrao et al., 2021) or tracks 245 

samples (Franklin et al., 2019). 246 
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 247 

Figure 3. Types of samples used in the 460 publications using targeted assays for detecting rare 248 

animal species separated by the environment surveyed and % of each sample type used in the 249 

total number of publications (numbers above bars). FW: freshwater ecosystems, MAR: marine 250 

ecosystems, TER: terrestrial ecosystems, MUL: multiple ecosystems. 251 

 252 

3.2. Fish and endangered species have been the main focus of eDNA-based targeted 253 

detection  254 

Among the 460 studies, the taxonomic group for which the majority of targeted detection assays 255 

have been designed or employed is Chordata (approx. 67%) (Fig. 4). The targeted assays within 256 

Chordata have predominantly been adopted for the classes of Actinopterygii (38%) and 257 

Amphibia (14%) (Fig. 4). This is not surprising since a taxonomic bias towards fish has been 258 

previously observed in freshwater eDNA research (Belle et al., 2019), due to the high 259 

socioeconomic value of most species, which include both globally invasive and endangered 260 

species. In comparison, although the importance of several groups in biomonitoring (e.g., 261 

Arthropoda, Mollusca, and Annelida) or as invasive species or pests, invertebrates have been 262 

much less targeted using eDNA-based specific assays. Among invertebrate fauna, assays have 263 

been mainly designed for Mollusca (approx. 12%) and Arthropoda: Crustacea (approx. 10%). In 264 

freshwaters, a previous study on 272 peer�reviewed articles, published between 2005 and 2018, 265 

revealed that the targets of eDNA research about aquatic conservation were dominated by fish, 266 

followed by amphibians and molluscs, while freshwater arthropods were under�represented in 267 

their estimated species richness (Belle et al., 2019), which corroborates well with the results 268 

found in the current review. These findings are also in concordance with the fact that the 269 
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investment per species is much higher for vertebrates in comparison to invertebrates, for 270 

example, in LIFE projects (EU’s funding instrument for the environment and climate action) 271 

(Mammola et al., 2020).  272 

 273 

 274 

Figure 4. Taxonomic groups for which the targeted detection assays have been designed or 275 

employed in the 460 studies for detecting rare animal species, separated by the environment 276 

surveyed and % of each sample type used in the total number of publications (numbers above 277 

bars). FW: freshwater ecosystems, MAR: marine ecosystems, TER: terrestrial ecosystems, 278 

MUL: multiple ecosystems. 279 

 280 

Most studies have designed assays for the detection of species within one single phylum 281 

(>95%), e.g., Chordata: Amphibia (Fukumoto et al., 2015; McKee et al., 2015); Chordata: 282 

Actinopterygii (Clusa and García-Vázquez, 2018; Jerde et al., 2013; Roy et al., 2018); Mollusca 283 

(Cho et al., 2016); Arthropoda: Crustacea (Troth et al., 2020); Chordata: Mammalia (Iso-Touru 284 

et al., 2021); Chordata: Reptilia (Farrell et al., 2022), whereas few have designed assays for 285 

targeting species belonging to multiple taxonomic groups (<5% of the studies) (Bronnenhuber 286 

and Wilson, 2013; Sepulveda et al., 2019; Thomsen et al., 2012; Wood et al., 2019b) (Fig. 4).  287 

Most studies targeted a single species (approx. 69%) or 2 species (approx. 18%), while few 288 

have targeted more than 5 species (<5%) (Fig. 5A). A total of 404 different species have been 289 

targeted on these publications (Table S2) and the taxonomic groups for which more assays have 290 

been designed are Chordata: Actinopterygii (126 species), Chordata: Amphibia (78 species), 291 

Mollusca (44 species) and Arthropoda: Crustacea (34 species) (Fig. 5B).  292 
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Endangered species (which we considered species classified in the studies as Endangered, 293 

Critically Endangered, Vulnerable, Threatened, Imperilled, and of Special concern) have been 294 

the target of most studies in particular within Actinopterygii, Amphibia, Reptilia, Mammalia, 295 

and Mollusca (207 species) (Fig. 5B, C). The high focus on endangered species can be 296 

explained by the great interest in mapping and understanding their distribution, which is crucial 297 

for conservation management. In addition, most endangered species are often rare, with small 298 

population sizes and patchy distribution patterns; therefore, making these species suitable 299 

targets for the specific detection using eDNA-based assays. eDNA-based targeted detection can 300 

indeed be used as an important supplementary tool, especially in habitats and for species 301 

particularly challenging to survey (e.g., deep and turbid waters, large rivers and fast-flowing 302 

waters, aquatic species that burrow into the substrate, such as freshwater mussels or very elusive 303 

terrestrial animal species, such as wild cats or other carnivores) (Franklin et al., 2019; Parsons et 304 

al., 2018; Stoeckle et al., 2021; Strickland and Roberts, 2019; Sugiura et al., 2021; Williams et 305 

al., 2017) or where monitoring using classical methods are forbidden due to the possibility in 306 

leading to habitat alterations and/or destruction (Boon et al., 2019).  307 

 308 

 309 

Figure 5. Number and % of publications versus the number of targeted species on each 310 

publication (A), number of targeted species and status per taxonomic group surveyed (B) and in 311 

general, in the 460 publications (C), and most targeted species (at least in 5 publications, 312 
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approx. 1%) (D). * Species that have different statuses depending on the geographic region 313 

surveyed (e.g., endangered or invasive). END, endangered; INV, invasive; PAT/PAR, pathogen 314 

or parasite; RAR/ELU, rare or elusive; NA, not specified. 315 

 316 

A high proportion of the species surveyed had the status of Invasive (137 species), in particular 317 

among the invertebrate taxonomic groups (Fig. 5B, C). Top-rank species that have been the 318 

focus of more studies using targeted assays are all invasive species in several regions of the 319 

world, in particular, the silver carp Hypophthalmichthys molitrix (Valenciennes, 1844) and the 320 

bighead carp H. nobilis J. Richardson, 1845, the zebra mussel Dreissena polymorpha Pallas, 321 

1771, the signal crayfish Pacifastacus leniusculus Dana, 1852 and the Asian carp Cyprinus 322 

carpio Lineu, 1758, which have been the focus of more than 10, out of the 460 publications 323 

(Fig. 5D). Cyprinus carpio and D. polymorpha belong to the list of the 100 worst invasive alien 324 

species in the world (e.g., http://www.iucngisd.org/gisd/100_worst.php, accessed on 09th 325 

February 2023), and other species, such as the silver and the bighead carps, are well known for 326 

provoking several negative ecological and economic impacts (e.g., in the Mississippi and 327 

Laurentian Great Lakes in North America).  328 

On the other hand, among invertebrate taxa, a lower number of studies have been targeting 329 

pathogenic or parasitic animals, such as small crustaceans, cnidarians, nematodes, or 330 

Platyhelminthes (Fig. 5B, C). Micro-eukaryotic parasites are particularly challenging to detect 331 

and characterize due to their small size (typically <1 μm), as well as their intracellular or intra-332 

organellar nature, and occurrence at low densities (Bass et al., 2015). DNA-based tools can 333 

indeed circumvent some of these barriers. However, they can also face challenges such as the 334 

fact of parasitic or pathogenic DNA being present in very small amounts in ecosystems, and in 335 

some cases, access to this DNA may require disruption of robust cysts or egg cases (Bass et al., 336 

2015), probably explaining their lower adoption. 337 

 338 

3.3. COI has been the most used genetic marker in the targeted detection of rare animal 339 

species 340 

Most DNA markers in these targeted assays were designed to target regions within the 341 

mitochondrial genome (Fig. 6), namely the cytochrome c oxidase subunit I gene (COI) and the 342 

Cytochrome b gene (Cytb) in vertebrate animals (>300 cases) (Fig. 6A), while within 343 

invertebrate species there was a clear dominance of the use of the COI region for designing the 344 

assays (186 cases) (Fig. 6B). Group specificity of mitochondrial sequences, uniparental nature 345 

of inheritance, lack of recombination, relatively small genome, and a large number of copies in 346 

cells, make the mitochondrial genes well suited for analysing degraded genetic material (Ballard 347 

and Whitlock, 2004; Salas et al., 2007). In addition, oxidative processes that take place in the 348 

mitochondria and the lack of repair mechanisms lead to mutations in mitochondrial DNA. In 349 
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particular, the sequences of the genes that code for elements of the respiratory chain, such as 350 

Cytb and COI, accumulate specific mutations which made them to vary considerably between 351 

species (Blaxter, 2003; Kumar et al., 2019; Linacre and Lee, 2016), which justifies their greater 352 

performance in targeted assays, in comparison to other markers.  353 

Other commonly analysed mitochondrial DNA fragments include the ribosomal 12S RNA and 354 

16S RNA genes and the control region or D-loop, which contain hypervariable regions (Habza-355 

Kowalska et al., 2020) (Fig. 6A). In addition, we also found NADH genes to be widely used in 356 

particular for designing targeted assays for vertebrate animal species (Fig. 6A). These genes 357 

encode the NADH dehydrogenase subunits of respiratory complex I, that catalyse the oxidation 358 

of NADH by ubiquinone, and at least NADH2 has been useful to reveal genetic variation and 359 

diversity within bird species (Astuti and Prijono, 2016) (Fig. 6A).  360 

 361 

 362 

Figure 6. DNA markers that have been mostly employed in eDNA-based targeted detection of 363 

vertebrate (A) and invertebrate (B) animal rare species, in the 460 publications. 364 

 365 

On the other hand, nuclear markers have been much less adopted (Fig. 6). In fact, eukaryotic 366 

cells can contain up to several hundred mitochondria, but only one nucleus, and thus, can carry 367 

thousands of copies of mitochondrial DNA versus only one nuclear genome with only two 368 

copies per nuclear gene. Among nuclear genes, the internal transcribed spacer region (ITS) of 369 

the nuclear ribosomal DNA has been employed for designing a few assays targeting invertebrate 370 

species (Fig. 6B). The ITS region contains two variable non-coding regions nested within the 371 
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rDNA repeat, between the highly conserved small subunit, 5.8S, and the small and large 372 

subunits rRNA genes (Devi et al., 2022). In addition, the nuclear ribosomal DNA repeat is also 373 

available in thousands of copies in the nuclear genome, which facilitates its detection and 374 

amplification and is also a suitable target for the analysis of degraded genetic material. In 375 

particular, the ITS2 region has sufficient variability to distinguish closely related species (Yao 376 

et al., 2010). In the particular case of fish, nuclear DNA markers may be useful as an alternative 377 

or as an additional marker in species identification (Piggott, 2016) and potentially to delineate 378 

species boundaries and detect hybridization, when mitochondrial DNA markers are unable to do 379 

it (Hardy et al., 2011; Ward et al., 2009). 380 

Most developed assays targeted small fragments (<200 bp, Table S2). Since eDNA is usually 381 

degraded, a short amplicon would increase the possibility of detection by PCR. In addition, in 382 

qPCR-based eDNA studies, which as indicated by our review is the most used platform (see 383 

below), the recommended amplicon size for a TaqMan probe is less than 150 bp. Amplicons 384 

that are too short may decrease PCR specificity, hence primer specificity needs to be well 385 

evaluated by testing against sequences from co-occurring and congeneric species (Meusnier et 386 

al., 2008). Increasing marker length may rise primer specificity, but to the detriment of 387 

amplification success (Harper et al., 2020; Valsecchi et al., 2022; Wei et al., 2018). For 388 

instance, Wei and co-authors (Wei et al., 2018) found that the qPCR copy number using a 389 

shorter marker was 12.1 times higher than the obtained using a longer marker within COI 390 

(126�bp versus 358�bp), targeting a benthic amphipod on sediment eDNA. Similar 391 

conclusions were reached by Harper and co-authors (Harper et al., 2020) when targeting green 392 

turtle eDNA in water (253 bp versus 488 bp, for D-loop) or by Valsecchi and co-authors 393 

(Valsecchi et al., 2022) (71 and 146 bp versus 216 bp, within 12S and 16S rRNA genes, 394 

respectively), for Mediterranean monk seal eDNA obtained from several sources. The use of 395 

small DNA fragments (90-120 bp) has been previously recommended to reach higher copy 396 

numbers (Rees et al., 2014; Saito and Doi, 2021), since eDNA degradation is accelerated in 397 

longer segments. On the other hand, no difference in performance was found when comparing 398 

12 species-specific primer pairs producing amplicons from the Cytb gene of the Yangtze finless 399 

porpoise, ranging from 76 to 249 bp (Ma et al., 2016) or by Piggot (Piggott, 2016) (78-390 bp) 400 

on the detection of the endangered Macquarie perch in water eDNA. In the latter, since a closed 401 

system was surveyed (i.e., dams), the effect of the marker length may be smoother, contrarily to 402 

environments where eDNA can be more exposed to degradation, such as rivers or streams. In 403 

addition, for systems where organismal densities or biomasses are higher, the effect of marker 404 

length might also be lower (Piggott, 2016).  405 

 406 

3.4. Quantitative PCR has been the most adopted platform in rare animal species 407 

detection 408 
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Three main platforms have been adopted in studies aiming at the targeted detection of rare 409 

animal species: quantitative PCR (qPCR), conventional PCR (cPCR), and digital droplet PCR 410 

(ddPCR). Quantitative PCR was used in more than half of the publications (>300 publications, 411 

approx. 73%), followed by conventional PCR, which has been employed in particular in earlier 412 

studies (Dejean et al., 2011; Ficetola et al., 2008; Goldberg et al., 2011; Jerde et al., 2011) and 413 

digital droplet PCR, adopted in more recent publications (Brand et al., 2022; Thalinger et al., 414 

2019; Wood et al., 2020, 2019b) (Fig. 7). However, it should be noted that the period of 415 

availability of the ddPCR technology is much shorter than the other two platforms (only since 416 

2011). Whereas cPCR based-assays strictly test for the presence or absence of a species, through 417 

the visualization of the expected PCR-amplicon band in an agarose gel, both qPCR and ddPCR 418 

provide also a quantitative estimate, enabling the quantification of the amount of the target 419 

species DNA in the environmental sample. In qPCR, the amplification products are 420 

continuously detected in the course of the reaction, due to the intercalation of a fluorescent dye 421 

or a specific probe labelled fluorescently (i.e., species-specific) in the amplification process. The 422 

amount of DNA is estimated through the use of a standard curve (using known amounts of 423 

target DNA), where the qPCR signal measurement is based on a Ct value (threshold cycle), 424 

corresponding to the point where the fluorescent signal exceeds a threshold. On the other hand, 425 

the microfluidics-based ddPCR consists of the partition of the PCR solution containing the 426 

DNA template into thousands of discrete droplets, where a PCR reaction occurs (Whale et al., 427 

2012). Each droplet can contain either DNA molecules of the target (“1”) or not (“0”), which 428 

will lead respectively to the presence or absence of a fluorescent signal. After multiple cycles, 429 

samples are checked for fluorescence and the positive fraction recorded (the sum of all “1”) 430 

accurately indicates the initial amount of template DNA.  431 
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 432 

Figure 7. Platforms employed in eDNA-based targeted detection of rare animal species in the 433 

460 publications examined. 434 

 435 

In our review, we found that few studies have directly compared the sensitivity of the three 436 

platforms in the detection of rare animal species (Mauvisseau et al., 2019; Nathan et al., 2014; 437 

Qu and Stewart, 2019). While conventional PCR is the less sensitive platform, it has the 438 

advantage of being much cheaper, faster, and simpler, it can be carried out in any laboratory 439 

supplied with basic molecular biology equipment (i.e., a standard thermocycler, and a gel 440 

casting system) (Amberg et al., 2015; De Ventura et al., 2017; Nathan et al., 2014; Qu and 441 

Stewart, 2019; Valsecchi et al., 2022; Wilcox et al., 2013; Williams et al., 2017; Xia et al., 442 

2018a). In addition, it may be sufficient, and reliable as well, in situations where researchers 443 

and/or environmental managers only require data on the presence or absence of target species or 444 

in places with limited infrastructures (De Ventura et al., 2017; Nathan et al., 2014). For 445 

instance, De Ventura and co-authors (De Ventura et al., 2017) found cPCR less prone to false 446 

positives and negatives (since it has lower sensitivity) than qPCR.  447 

While both qPCR and ddPCR have been found to produce either similar estimates of DNA 448 

concentrations (Nathan et al., 2014) or strong relationships between marker copy numbers and 449 

abundances (Wood et al., 2019b), most studies found ddPCR more sensitive than qPCR. This 450 

may be because in ddPCR each sample is partitioned into 15,000–20,000 microfluidic droplets 451 

(see above), where the amplification reaction occurs independently and concentrations of PCR 452 

inhibitors can be strongly reduced  (Banks et al., 2021; Brys et al., 2021; Doi et al., 2015; 453 
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Hunter et al., 2017; Jerde et al., 2016; Mauvisseau et al., 2019; Williams et al., 2017; Wood et 454 

al., 2019a).  455 

On the other hand, eDNA metabarcoding has been rarely employed in the targeted detection of 456 

rare animal species (Aylward et al., 2018; Balasingham et al., 2018; Crane et al., 2021; Marshall 457 

et al., 2022; Peterson et al., 2022; Rojahn et al., 2021; Stepien et al., 2019). In this approach, 458 

sequences belonging to multiple species are obtained from complex environmental samples via 459 

HTS, using short regions of one or a few marker genes, which are targeted with broad-spectrum 460 

or group-specific primers (Deiner et al., 2017; Taberlet et al., 2012a). Comparisons between 461 

metabarcoding and targeted approaches indicated that qPCR or cPCR or ddPCR are more 462 

sensitive in the detection of single species or a small set of species, in particular when the target 463 

DNA occurs at low densities (Banks et al., 2021; Blackman et al., 2020, 2018; Harper et al., 464 

2018a; Moss et al., 2022; Roy et al., 2018). For instance, qPCR was highly effective in 465 

detecting the invasive tunicate Didemnum vexillum Kott, 2002 from seawater eDNA, whereas 466 

metabarcoding was unable to recover it, even at locations where it is known to be present, but 467 

detected several other established invasive species (Gargan et al., 2022). DNA metabarcoding 468 

prime application is for characterizing the taxonomic composition of whole communities, which 469 

can be particularly advantageous when several target species need to be simultaneously detected 470 

and identified (Roy et al., 2018; Thomsen et al., 2012), but it is less effective for sensitive and 471 

cost-effective screening of specific species (Roy et al., 2018). The choice between active versus 472 

passive surveillance for rare species depends on the study-specific aims. Active surveillance is 473 

highly sensitive in detecting rare DNA, while passive surveillance has the potential to identify 474 

unforeseen species, including early detection of invasive species. Therefore, employing a 475 

combination of active and passive surveillance using the same eDNA sample can provide 476 

significant advantages in invasive species management (Blackman et al., 2020; Simmons et al., 477 

2016). Nevertheless, a few targeted metabarcoding assays have been already employed to 478 

simultaneously identify and distinguish closely related species [e.g., D. polymorpha and D. 479 

rostriformis (Deshayes, 1838)], as well as their phylogenetically-close relatives, and even to 480 

probe their population genetic structure across temporal and spatial scales (Marshall and 481 

Stepien, 2019). 482 

Multiplex approaches have been less adopted but can be more cost-effective than DNA 483 

metabarcoding when the target is a few a priori well-known species (Jo et al., 2020; King et al., 484 

2022; Robinson et al., 2018b, 2018a; Rodgers et al., 2020; Tsuji et al., 2018; Wozney and 485 

Wilson, 2017) (Table S2). The use of multiplex designs can allow the simultaneous detection of 486 

numerous species, reducing processing and handling times, as well as the risk of contamination, 487 

lowering costs and reducing the amount of DNA extract required for testing (Rodgers et al., 488 

2020; Wozney and Wilson, 2017). For instance, Robinson and co-authors (Robinson et al., 489 

2018a) developed a multiplex assay for the simultaneous detection of the invasive signal 490 
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crayfish, the endangered white-clawed crayfish, and the crayfish plague pathogen using eDNA, 491 

allowing to assess of potential contributing factors to native crayfish decline with greater 492 

sensitivity, specificity, and efficiency than trapping, or single-species assays. Multiplex assays 493 

may also involve the use of different genetic markers, which may significantly improve the 494 

specificity of the assay and organism detection (Evans et al., 2016) or to better differentiate 495 

highly genetically similar species (Catanese et al., 2022). For example, Farrington and co-496 

authors (Farrington et al., 2015) showed that the use of multiple highly sensitive markers 497 

maximized detection rates of the invasive silver and bighead carps, greatly improving the 498 

resolution of already implemented assays in eDNA-based surveillance programs.  499 

 500 

3.5. Challenges for detecting rare animal species through eDNA-based targeted surveys  501 

3.5.1. Environmental factors effects 502 

Most of the experiments dedicated to the targeted detection of rare animal species have been 503 

conducted in the field  (>70%) (Fukumoto et al., 2015; Miralles et al., 2016; Sepulveda et al., 504 

2019; Wood et al., 2019a) (Fig. 8, Table S2). On the other hand, only 17% of the studies were 505 

performed both in the field and also under controlled environments (i.e. mesocosms, aquariums, 506 

lab tanks, and artificial ponds, among others) (Dejean et al., 2011; Ito and Shibaike, 2021; 507 

Ladell et al., 2019; Matejusova et al., 2021; Mauvisseau et al., 2018; Mizumoto et al., 2018; 508 

Takeuchi et al., 2019; Troth et al., 2020; Turner et al., 2015; Yoshitake et al., 2019), and an 509 

even lower percentage was conducted exclusively under controlled conditions (8.7%) (Jerde et 510 

al., 2016; Mizumoto et al., 2018; Seymour et al., 2018; Stoeckle et al., 2017) (Fig. 8, Table S2).  511 

Experiments conducted under controlled conditions are extremely important to analyse in more 512 

detail: i) the amount and integrity of shed DNA; ii) dynamics of eDNA persistence, degradation, 513 

and transport, and iii) how taxa, sample type (i.e., water, soil or sediment) and ecosystem-514 

specific factors (e.g., temperature, UV radiation, pH, presence of PCR inhibitors, salinity, 515 

among others) can affect i) and ii) (Table S3). 516 
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 517 

Figure 8. Type of study in publications using targeted assays for detecting rare animal species 518 

separated by the environment surveyed and % of publications using each type of study 519 

(numbers above bars) (A) and taxonomic groups that have been addressed in controlled studies 520 

(B). FW: freshwater ecosystems, MAR: marine ecosystems, TER: terrestrial ecosystems, MUL: 521 

multiple ecosystems, NA: not specified. 522 

 523 

Few studies have directly measured how much eDNA an organism sheds into the environment 524 

over time (Klymus et al., 2015; Sassoubre et al., 2016; Thomsen et al., 2012), and most of these 525 

studies have been focussed on freshwater ecosystems (Fig. 8A) and fish species (Fig. 8B, Table 526 

S3). eDNA shedding rates have been found to depend on several factors (Fig. 9, Table S3), 527 

such as:  528 

i) type of organism or characteristics of the species under analysis (Goldberg et al., 2011; 529 

Thomsen et al., 2012), with animals with a hard or keratinized carapace or low-secretion taxa 530 

(e.g., reptiles, large invertebrates with exoskeletons or shells, mussels with closed valves) 531 

shedding less eDNA than animals with semipermeable skins or outer layers or higher-secretion 532 

taxa (e.g., amphibians, fish) (Adams et al., 2019; Danziger et al., 2022; Danziger and Frederich, 533 

2022; Nordstrom et al., 2022), which might in part explain the higher adoption of these tools for 534 

the detection of fish and amphibians (Fig. 4 and 5). For instance, in controlled experiments, the 535 

water eDNA of the painted turtle was amplified only in the highest-density treatments, 536 

suggesting that detection in field samples using eDNA may be particularly difficult (Adams et 537 

al., 2019; Raemy and Ursenbacher, 2018).  538 

ii) number/density or biomass of organisms, with numerous authors finding positive 539 

correlations between species biomass, density and detection probability and efficiency, e.g., fish 540 

(Brys et al., 2021; Dejean et al., 2011; Díaz-Ferguson, 2014; Mizumoto et al., 2018; Robinson 541 

et al., 2019; Sassoubre et al., 2016; Schloesser, 2018); amphibians (Dejean et al., 2011; 542 
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Goldberg et al., 2011); reptiles (Adams et al., 2019; Tarof et al., 2021); molluscs (Blackman et 543 

al., 2020; Goldberg et al., 2013; Ito and Shibaike, 2021; Mauvisseau et al., 2017; Miralles et al., 544 

2019; Xia et al., 2018b) or crustaceans (Baudry et al., 2021; Harper et al., 2018a); but with no 545 

correlations being also found in some other studies, e.g., reptiles (Raemy and Ursenbacher, 546 

2018) and crustaceans (Danziger et al., 2022);  547 

iii) organism size and developmental stage, with fish eDNA release rates being found to be 548 

higher in adults than in juveniles (Maruyama et al., 2014; Mizumoto et al., 2018), but no effect 549 

was found when eDNA concentration is adjusted taking into account total biomass (Mizumoto 550 

et al., 2018). For crustaceans, the presence of eggs increased eDNA concentrations per unit of 551 

mass (Crane et al., 2021; Dunn et al., 2017). In addition, the eDNA amount of a species can 552 

increase during its breeding period (Spear et al., 2015) and may vary considerably through time 553 

among individuals maintained under the same conditions (Klymus et al., 2015; Pilliod et al., 554 

2014; Strickler et al., 2015);  555 

iv) water temperature; in general, high temperatures have been reported to either produce 556 

higher eDNA shedding rates for fish species (35ºC versus 23 and 29ºC) (Robson et al., 2016) or 557 

to not have any effect (19 versus 25 versus 31ºC) (Klymus et al., 2015); 558 

v) other factors, that although less studied, have been shown to influence eDNA shedding 559 

rates. For instance, exposure to stress (Pilliod et al., 2014) or feeding activity (Klymus et al., 560 

2015) have been found to increase eDNA shedding rates in amphibians and fish, respectively. 561 

Therefore, high eDNA shedding rates might be also found in seasons of higher nutrition 562 

(summer and spring). On the other hand, the presence of natural substances and substrates such 563 

as humic acids, sediments (Stoeckle et al., 2017), clay or topsoil (Buxton et al., 2017), the 564 

presence of other organisms (e.g., algae) (Stoeckle et al., 2017), filter-feeders (Mächler et al., 565 

2018), the water pH (Tsuji et al., 2017) and current velocity (Malekian et al., 2018) can delay 566 

eDNA release or reduce the detection probability of the target organisms.  567 

 568 
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 569 

Figure 9. Factors affecting species detectability through eDNA. 570 

 571 

Seymour and co-authors (Seymour et al., 2018) defined eDNA persistence dynamics as the 572 

relationship between physical, abiotic, or biotic factors and the degradation and localized 573 

detection of eDNA in natural ecosystems. In addition, detection probability depends on the ratio 574 

between the DNA released by the organism, and the DNA degraded by environmental factors 575 

(Dejean et al., 2011) and settled, such as temperature (Kasai et al., 2020; Lance et al., 2017; 576 

Nevers et al., 2018; Strickler et al., 2015), water conductivity and dissolved solids (Tarof et al., 577 

2021); UV radiation (Day et al., 2019; Strickler et al., 2015), acidity (Seymour et al., 2018), 578 

microbial load (Lance et al., 2017), which have been found to reduce eDNA half-life and 579 

accelerate degradation (Fig. 9, Table S3). In addition, the environmental sample type chosen 580 

can also strongly influence species detectability. For instance, target eDNA concentrations have 581 

been found to be higher in sediments than in water (Kusanke et al., 2020; Nevers et al., 2020; 582 

Turner et al., 2015) (Table S3). In addition, sediment sampling may greatly increase the 583 

chances of detecting benthic-dwelling organisms, spending most of their life near the bottom of 584 

water bodies, e.g., Weatherfish (Kusanke et al., 2020) or sea lamprey larvae (Baltazar�Soares 585 

et al., 2022). However, eDNA has been found also to persist for longer periods in sediments, 586 

than DNA that is dissolved or suspended in water, mostly due to particle settling and/or retarded 587 

degradation of sediment-adsorbed DNA molecules (Turner et al., 2015). One way to increase 588 

the chances of benthic species detection may be to sample water near the bottom (Lor et al., 589 

2020; Xia et al., 2018b), while surface sampling might be more adequate to detect species 590 

spending most of their life cycle at the surface (Moyer et al., 2014). In terrestrial samples, the 591 

choice of the sample type can be also very critical when dealing with rare species, probably due 592 

to a patchier distribution of eDNA. For instance, although eDNA from the terrestrial and small-593 
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bodied eastern red-backed salamander was positively detected in skin swabs and faecal samples, 594 

no eDNA was found in soil samples collected directly underneath wild-caught living 595 

salamanders (Walker et al., 2017). 596 

Although in most controlled studies eDNA detectability has been found to decrease with time 597 

after removal of the source DNA species, the rate of subsequent eDNA decay might be highly 598 

variable among different animals: up to 7 days for the signal crayfish (Harper et al., 2018a); 21 599 

to 44 days for the New Zealand mud snail (Goldberg et al., 2013); less than 1 month for the 600 

American bullfrog and the Siberian sturgeon (Dejean et al., 2011); at least 1 month for the 601 

Bighead carp (after carcasses deposition) (Table S3). However, eDNA persistence has been also 602 

shown to be highly dependent on organisms’ density (Dejean et al., 2011; Goldberg et al., 2013; 603 

Harper et al., 2018a). For instance, Harper and co-authors (Harper et al., 2018a) were able to 604 

detect signal crayfish DNA 7 days after organisms’ removal in high-density tanks, but only after 605 

72 hours in low-density tanks. In addition, controlled studies indicated that positive eDNA 606 

detections can also be achieved with dead organisms: fish carcasses (Kamoroff and Goldberg, 607 

2018); crustaceans’ carcasses (Curtis and Larson, 2020) or molluscs empty shells (Rasmussen et 608 

al., 2021), but the distance from the source seems to reduce the chances of detection, decreasing 609 

the probability of getting false positives (experiments with fish species in cages and with 610 

molluscs) (Dunker et al., 2016; Robinson et al., 2019; Xia et al., 2018a). The study by 611 

Blackman and co-authors (Blackman et al., 2020) found that the most significant predictor of 612 

quagga mussel DNA copy number and relative read count was the distance from the source 613 

population, even more than density. Even so, previous findings pointed out that for non-benthic 614 

species eDNA can be patchily distributed horizontally, even at a small spatial scale of tens to 615 

hundreds of meters (Eichmiller et al., 2014) and persist over relatively large distances from the 616 

established populations of the target organisms in natural river systems (up to 10 km for the 617 

cladoceran freshwater water flea) (Deiner and Altermatt, 2014). For example, Lamarie and co-618 

authors (Laramie et al., 2015) did not find any consistent relationship between stream distance 619 

and eDNA concentrations of the chinook salmon. In addition, the transport of eDNA via 620 

predatory species (e.g., piscivorous birds) or deposition in slime residues and predator faeces 621 

can also be effective sources of eDNA, eventually leading to false positives in unpopulated 622 

habitats (Guilfoyle et al., 2017; Merkes et al., 2014).  623 

In marine and terrestrial systems, controlled studies on eDNA persistence have been rarer. 624 

Marine systems present a set of features that differ from freshwaters, in what respects eDNA 625 

stability. Several studies indicate that eDNA degrades generally faster in marine systems 626 

(Sassoubre et al., 2016; Thomsen et al., 2012), however, DNA of the Mediterranean fanworm 627 

and the club tunicate was still detectable up to 94 hours, after organisms’ removal in controlled 628 

aquarium experiments (Wood et al., 2020). On the other hand, experiments with terrestrial 629 

snakes also demonstrated that eDNA declined up to approximately one week after organism 630 
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removal (Kucherenko et al., 2018; Ratsch et al., 2020; Walker et al., 2017), but was still 631 

amplifiable after 7 days in controlled experiments with DNA from a terrestrial small bodied 632 

salamander (Walker et al., 2017). 633 

 634 

3.5.2. Closely related and co-occurring species, species hybridization and intra-genetic 635 

variation  636 

The accuracy of the targeted assays for detecting rare animal species strongly depends on the 637 

availability of genetic data from closely related co-occurring species. Such data is crucial to 638 

assess assays’ genetic markers and primers’ specificity.  Lack of sufficient specificity can result 639 

in both false positive and negative results, particularly in the presence of abundant and related 640 

species (Wilcox et al., 2014). In addition, closely-related species may hybridize (Antognazza et 641 

al., 2019; Farley et al., 2018; Fukumoto et al., 2015), which can further complicate the design of 642 

specific assays able to distinguish hybrids from non-hybrids, because of the maternal 643 

inheritance of mitochondrial DNA. This might be circumvented by using nuclear genes, but 644 

often the most popular nuclear targets currently available have an insufficient taxonomic 645 

resolution. The case is even more problematic when the target endemic species is closely related 646 

to an invasive exotic species (Fukumoto et al., 2015). For instance, a DNA-based survey for 647 

giant salamanders Andrias japonicus (Temminck, 1836) in the Katsura River basin performed 648 

by the Kyoto City Government in 2012, revealed that only 25 out of 125 captured individuals 649 

were pure endemic species, 6 were exotic [Chinese giant salamander, Andrias davidianus 650 

(Blanchard, 1871)], and 76 were hybrids (Fukumoto et al., 2015).  651 

Designing highly species-specific primers for closely related species can be challenging since 652 

they can share high homology in the mitochondrial sequences. One way of increasing 653 

specificity is to use blocking primers (Wilcox et al., 2014). For instance, the addition of a 654 

blocking primer substantially increased assay specificity, without compromising sensitivity or 655 

quantification ability in a study using a purpose-designed TaqMan assay for eDNA detection of 656 

the endangered bull trout (Salvelinus confluentus Suckley, 1859) in the presence of the closely 657 

related and more abundant lake trout [S. namaycush (Walbaum, 1792)] (Wilcox et al., 2014) 658 

Other issues that can further complicate the design of species-specific eDNA assays are the 659 

intraspecific polymorphism and ambiguous taxonomic status of the target species (Dugal et al., 660 

2022; Serrao et al., 2021; Utzeri et al., 2021; Wilcox et al., 2015; Yoshitake et al., 2019). 661 

Wilcox and co-authors (Wilcox et al., 2015) developed qPCR assays to distinguish westslope 662 

cutthroat trout [Oncorhynchus clarkii lewsi (G. Suckley, 1856)], Yellowstone cutthroat trout [O. 663 

clarkii bouvieri (Jordan & Gilbert, 1883)], and rainbow trout (O. mykiss Walbaum, 1792), 664 

which are of conservation interest both as native species and as invasive species across each 665 

other’s native ranges. The authors found that local polymorphisms within westslope cutthroat 666 

trout and rainbow trout posed a challenge to designing eDNA-based assays that are generally 667 
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employed across the range of these widely-distributed species. In addition, in Europe, the 668 

existence of different genetic lineages within the Louisiana crawfish (Oficialdegui et al., 2019) 669 

was probably the main reason that led to the failure of eDNA probes to detect target populations 670 

in France (Mauvisseau et al., 2018; Tréguier et al., 2014) and that had previously worked well 671 

with the less variable Chinese populations (Cai et al., 2017). For instance, to take into account 672 

intra-specific genetic variability, Serrao and co-authors (Serrao et al., 2021) developed three 673 

assays to detect big brown bats eDNA for eastern, western, and southern North America and 674 

were highly successful in detecting very low concentrations of bat eDNA from air, water, and 675 

soil in different geographic regions. In addition, previously developed assays that work at a 676 

particular geographic location could be unsuitable for species detection at other places due to 677 

matches with the sequences of co-occurring species (Ogata et al., 2022). Thus, these case 678 

studies reveal that eDNA-based assays developed for a particular species may have to be refined 679 

taking into account site-specific genotypes.  680 

 681 

4. Final considerations 682 

As demonstrated by the current review, thanks to the high sensitivity in the detection of rare and 683 

elusive animal species, eDNA-based approaches evolved rapidly, and have been extensively 684 

applied for conservation and management purposes. Indeed, studies made so far have shown the 685 

great potential of eDNA-based species-specific detection to: i) increase and improve the data 686 

available on the presence/absence or occurrence of rare species (i.e., site occupancy), leading to 687 

a better understanding of present and historical patterns of species distribution (Boyd et al., 688 

2020; Collins et al., 2019; Macgregor et al., 2021; Pitt et al., 2017; Sigsgaard et al., 2015; 689 

Tingley et al., 2019; Turner et al., 2015), ii) evaluate the success of restoration implementation 690 

efforts of endangered species (Budd et al., 2021; Feist et al., 2022; Goldberg et al., 2018; 691 

Hempel et al., 2020; Hossack et al., 2022; Kamoroff & Goldberg, 2018; Wineland et al., 2019), 692 

iii) early detect non-indigenous and invasive species (Créach et al., 2022; Koel et al., 2020; 693 

Sepulveda et al., 2019), iv) confirm eradication of invaders, namely where positive eDNA 694 

detections can trigger more in-depth sampling to find invasive specimens and remove them 695 

before native species reintroductions, or to postpone native species re-introductions, while 696 

invasives are still in place (Bylemans et al., 2016; Carim et al., 2020; Dunker et al., 2016; 697 

Furlan et al., 2019; García-Díaz et al., 2017; Miralles et al., 2016; Robinson et al., 2019; 698 

Schumer et al., 2019); v) construct exclusion barriers to prevent invasives spread (Bylemans et 699 

al., 2016; Carim et al., 2020; Hunter et al., 2019; Miralles et al., 2016) and vi) better estimate 700 

range limits, of both endangered or invasive species (e.g. Gargan et al., 2022; Rose et al., 2019; 701 

Westhoff et al., 2022). However, it remains less clear how results have been translated into 702 

management actions (Sepulveda et al., 2019), but for some species eDNA-based detection is 703 

already in place, aiding in decision-making (Biggs et al., 2015; Laramie et al., 2015). For 704 
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instance, DNA-based protocols have been employed as a trigger in the surveillance of the 705 

bighead and silver carps H. nobilis and H. molitrix, in the Great Lakes region (USA and 706 

Canada), where positive eDNA detections that follow a standard and very rigorous operating 707 

procedure prompt intensive molecular and nonmolecular monitoring to locate the fish 708 

populations. In addition, the great crested newt Triturus cristatus (Laurenti, 1768) is the first 709 

species to be routinely monitored using eDNA (approved by Natural England in 2014), with the 710 

specific assay being offered as a commercial service by several ecological consultancies in the 711 

UK. Indeed, developers can even be prohibited from interventions in wetlands where there have 712 

been positive eDNA detections of the great crested newt (Harper et al., 2018b).  713 

The relatively large proportion of methodological development studies we recorded, highlights 714 

the suboptimal status of many assays and reinforces the continuing need for further adjustment, 715 

validation, and optimization of eDNA techniques, from sampling, through laboratory protocols 716 

and up to data analyses. Among other precautions, it is fundamental to take into account the 717 

particular characteristics of the target species and survey sites since the dynamics of eDNA 718 

might differ drastically among taxa, study systems, and across climatic zones, and therefore, 719 

thinly customized system-specific assays are required (Harper et al., 2019; Sales et al., 2021). In 720 

addition, beyond testing specificity, sensitivity (minimum eDNA concentration required for the 721 

species to be detected) of newly developed assays must also be optimized and verified in natural 722 

conditions to reduce the detection uncertainty. However, in a recent review Xia and co-authors 723 

(Xia et al., 2021) found that for most studies using newly designed markers (82.4%), 724 

researchers do not screen their chosen markers for sensitivity, with almost half of the studies not 725 

reporting the limit of detection of the assays. Indeed, for legal implementation end-users need to 726 

recognize the power and limitations of existing tools, to know how eDNA-based targeted 727 

detection works, what are the limitations, and what can offer to environmental managers in 728 

comparison with well�established monitoring methods (Darling, 2019). It is also vital that 729 

managers know how to use the tool in the most appropriate way, how to interpret the results, 730 

and how these can influence decisions. To this end, the availability of well-established manuals 731 

on best practices and decision-support frameworks, that account for error minimization and 732 

quantification (Bruce et al., 2021; Darling, 2019; Sepulveda et al., 2020), will contribute to 733 

higher adoption and implementation of these tools in regular monitoring, and ultimately for 734 

more accurate monitoring and conservation of rare animal species. 735 
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