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Abstract: Optical chemosensors are a practical tool for the detection and quantification of impor-
tant analytes in biological and environmental fields, such as Cu2+ and Fe3+. To the best of our
knowledge, a BODIPY derivative capable of detecting Cu2+ and Fe3+ simultaneously through a
colorimetric response has not yet been described in the literature. In this work, a meso-triphenylamine-
BODIPY derivative is reported for the highly selective detection of Cu2+ and Fe3+. In the preliminary
chemosensing study, this compound showed a significant color change from yellow to blue–green in
the presence of Cu2+ and Fe3+. With only one equivalent of cation, a change in the absorption band
of the compound and the appearance of a new band around 700 nm were observed. Furthermore,
only 10 equivalents of Cu2+/Fe3+ were needed to reach the absorption plateau in the UV-visible
titrations. Compound 1 showed excellent sensitivity toward Cu2+ and Fe3+ detection, with LODs of
0.63 µM and 1.06 µM, respectively. The binding constant calculation indicated a strong complexation
between compound 1 and Cu2+/Fe3+ ions. The 1H and 19F NMR titrations showed that an increasing
concentration of cations induced a broadening and shifting of the aromatic region peaks, as well
as the disappearance of the original fluorine peaks of the BODIPY core, which suggests that the
ligand–metal (1:2) interaction may occur through the triphenylamino group and the BODIPY core.

Keywords: BODIPY derivative; colorimetric chemosensor; Fe3+; Cu2+

1. Introduction

Metal ions play a crucial role in several biological processes, nutrient cycling, and the
functioning of the ecosystem. However, the deregulation of ionic concentrations represents
a potential risk to living organisms and the ecosystem, leading to health problems and
environmental pollution [1–3]. Concerning biological systems, metal ions are considered
important elements that regulate and participate in several extra- and intra-cellular pro-
cesses, such as osmotic pressure regulation, cell signaling (e.g., neurotransmission and
muscle contraction), protein and enzyme activity required for oxygen transport, energy
production, the regulation of gene expression, and the synthesis of essential molecules [4].

Among several other ions, Cu2+ and Fe3+ play an important role in various biochem-
ical processes; however, the deregulation of the homeostasis of these cations has been
identified as the primary cause of many diseases. For example, high levels of Cu2+ can lead
to a higher production of reactive oxygen species (ROS) which contributes to the develop-
ment of different pathologies, such as cancer and neurodegenerative diseases, including
Menkes, Wilson, and Alzheimer’s. Moreover, studies have shown that copper levels in
the blood serum of cancer patients are considerably above normal values. In contrast, iron
deficiency is also associated with several diseases, such as anemia, diabetes, Parkinson’s,
and dysfunction of the heart, pancreas, and liver [5–8]. Apart from that, these elements are
non-biodegradable, which is an increased risk for the environment and human health. In
this sense, the detection of these two important cations has been a major goal [9–11].

Colorimetric sensors are a practical tool for the detection and quantification of these
analytes with biological and environmental importance. Compared to other analytical
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techniques, optical chemosensing displays advantages, including simplicity, speed of
response, easy and direct visualization of the results, non-expensive equipment, and high
selectivity and sensitivity. For those reasons, investment has been made in the design
and synthesis of colorimetric sensors for the detection of these cations of interest. Several
chemosensors based on rhodamine, aldazine, carbazole, tetrathiafulvalene spirooxazine,
triarylimidazopyridine, and Schiff base core have been developed for the detection of Cu2+

and Fe3+ [9,10,12–19].
4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene, also known as BODIPY, has been recog-

nized as a remarkable chromophore scaffold due to its excellent photophysical properties,
such as high molar absorptivity coefficients, narrow and intense absorption bands in the
visible range, and great photostability. Furthermore, the core of BODIPY can be functional-
ized in order to improve its photophysical properties for its intended applications [20,21].
Although several chemosensors based on a BODIPY core have been reported for the detec-
tion of Cu2+ and Fe3+, these sensors detect these cations separately [22–24]. Most of these
chemosensors also display a fluorimetric response which requires specialized equipment
for the visualization of the results. In contrast, chemosensors that are based on a colorimet-
ric response provide direct and real-time detection and identification of the target analyte.
To the best of our knowledge, a BODIPY derivative capable of detecting Cu2+ and Fe3+

simultaneously through a colorimetric response has not yet been described in the literature.
Additionally, given the paramagnetic behavior of Cu2+ and Fe3+ and, consequently, their
fluorescence quenching effect, optical sensors with an intense colorimetric response for
these analytes are extremely attractive [25,26].

In continuation of the research developed by our group [27–30], we present an eval-
uation of the ion chemosensory ability of a meso-triphenylamine-BODIPY 1 in this work
(TPA-BODIPY, Figure 1), which was recently synthesized by us [31,32]. The chemosensory
ability was investigated by a preliminary study against several cations and anions with
biomedical relevance, followed by spectrophotometric titrations, the Job’s plot method,
and 1H NMR titrations.
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Figure 1. Structure of BODIPY 1.

2. Materials and Methods
2.1. Materials

All absorption measurements were obtained using a Shimadzu UV/3101PC spec-
trophotometer (200–800 nm). 1H NMR analysis was carried out on a Bruker Avance III
apparatus at an operating frequency of 400 MHz at 25 ◦C using the solvent peak as an
internal reference. The deuterated solvent used was DMSO-d6 with 99.8% deuteration
degree which contained <0.02% v/v of water (Euriso-top). All commercial reagents and
solvents were used as received. BODIPY 1 was previously synthesized by our research
group [31,32].

2.2. Synthesis of BODPY Derivative 1

2,4-Dimethylpyrrole (1.0 mmol) and 4-(diphenylamino)-benzaldehyde (1.0 mmol)
were dissolved in dry dichloromethane (DCM) (100 mL) in the presence of a catalytical
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amount of trifluoroacetic acid (TFA). The reaction mixture was stirred at room tempera-
ture for 50 min. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (1.9 mmol) dissolved in dry
DCM (100 mL) was added to the reaction mixture, and the stirring time was extended for
another 50 min. Triethylamine (16 mmol) was added, followed by treatment with BF3.OEt2
(26.8 mmol). After stirring for 30 min, the mixture was evaporated under reduced pres-
sure, and the crude residue was purified by dry flash chromatography using a petroleum
ether/ethyl acetate (4:1) mixture as the eluent. The pure BODIPY derivative 1 (Figure 1)
was obtained as a dark red and orange solid with a 16% yield. 1H NMR (400 MHz, CDCl3):
δ = 1.60 (s, 6H, CH3-1 and CH3-7), 2.57 (s, 6H, CH3-3 and CH3-5), 6.02 (s, 2H, H-2 and H-6),
7.06–7.19 (m, 9H, 9 × Ar-H), and 7.22–7.27 (m, 5H, 5 × Ar-H) ppm. 13C RMN (100.6 MHz,
CDCl3): δ = 14.56, 121.16, 123.30, 123.46, 124.72, 128.881, and 129.45 ppm. MS (ESI) m/z
(%): 493 ([M + 2]+•, 10), 492 ([M + 1]+•, 46), 491 ([M]+•, 100), 419 (13), and 274 (20). HRMS
(ESI) m/z: [M]+• calculated for C31H28BF2N3, 491.2339 was found to be 491.2345.

2.3. Photophysical Characterization of BODIPY Derivative 1

The photophysical characterization of BODIPY derivative 1 in acetonitrile (1 × 10−5 M)
was carried out using a standard quartz cells 1 cm optical path. A 1 × 10−5 M Rhodamine
6G (ΦF = 0.95) solution in ethanol was used as a fluorescence standard [33]. Fluorescence
was measured after excitation of the compound and as the standard at the maximum
absorption wavelength of BODIPY 1. The relative quantum fluorescence yield of BODIPY 1
was calculated using Equation (1).

ΦFcomp =
As × Fcomp × n2

s

Acomp × Fs × n2
comp

× ΦFs (1)

where As and Acomp, Fs and Fcomp, and ns and ncomp correspond to the absorbances, areas
under the fluorescence curve, and refractive index value of the solvent of the standard and
compound 1, respectively.

2.4. Preliminary Chemosensory Tests

The preliminary study of the chemosensory capacity of the BODIPY 1 (1 × 10−5 M)
was carried out in acetonitrile (ACN). The cation solutions (Ag+, K+, Li+, Na+, Cu+, TBT+,
Cs2+, Hg2+, Ca2+, Co2+, Pb2+, Mn2+, Fe2+, Zn2+, Ni2+, Cd2+, Cu2+, Pd2+, Sn2+, Fe3+, and
Al3+) in the form of perchlorate salts, except for Pd2+ and Li+ whose counter-ion was
tetrafluoroborate, were prepared in ACN with a concentration of 1 × 10−2 M. These ions
were selected due to their biological and environmental interest. Then, 50 equivalents
(equiv.) of each ion were added to the solution of the compound, and the color variation
of the solutions was visualized under natural light and the fluorescence variation under
UV radiation at λmax = 312 nm. The absorption spectrum of BODIPY 1 in the presence
of all cations was obtained using 3 mL of BODIPY 1 solution in ACN (1 × 10−5 M) and
10 equivalents (30 µL) of each cation in acetonitrile (1 × 10−2 M).

2.5. Spectrophotometric Titrations, Limit of Detection, and Binding Constant

Spectrophotometric titrations were carried out for Cu2+ and Fe3+ since these ions
induced a relevant optical response. The titrations were performed at room temperature
using the solution of 1 in ACN (1 × 10−5 M) and the solutions of Cu2+ and Fe3+ in
acetonitrile (1 × 10−2 M). A successive addition of each cation was made to 3 mL of
compound 1 solution in a standard quartz cuvette. The absorption graphs were collected
until the absorbance reached a plateau.

The limit of detection (LOD) for Cu2+ and Fe3+ was calculated using the slope of the
linear zone of absorbance versus the ion concentration graph and the standard deviation of
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5 replicates of absorbance measurements of the analyte-free solution. According to these
data, the LOD was calculated by the following equation (Equation (2)) [25]:

LOD =
3σ

k
(2)

where σ is the standard deviation of the absorbance of the chemosensor without analyte
and k is the slope of the linear fitting of the calibration curve.

The binding constant of both complexes was determined using UV-vis titration data
and the Benesi–Hildebrand equation (Equation (3)) [34,35]:

1
A − A0

=
1

Ka(Amax − A0)[Ion]n
+

1
Amax − A0

(3)

where A0 is the absorbance of 1 in the absence of ion, A is the absorbance of 1 with different
concentrations of ion, Amax is the absorbance of 1 at the complete interaction with ion, n
is the binding stoichiometry of metal, and Ka is the binding constant value. This Ka value
was calculated using the ratio of the intercept to the slope of the straight line from the
Benesi–Hildebrand plot.

2.6. Job’s Plot

The binding stoichiometry of the complexes 1-Cu2+ and 1-Fe3+ was determined using
the Job’s plot method. The solutions of both ions and compound 1 were prepared in ACN
with a final concentration of 5 × 10−5 M. Then, 0.3–2.7 mL of the compound 1 solution
was transferred to vials, and the Cu2+ and Fe3+ solutions were added to each solution of 1
prepared previously to complete a final volume of 3 mL per vial. The UV-vis spectrum of
the different samples was recorded at 697/700 nm, and the absorbance values against the
molar fractions of each cation—Cu2+ and Fe3+—were plotted.

2.7. 1H and 19F NMR Titration

NMR titrations were accomplished using a similar sequential addition of ion equiv-
alents to the compound solution. For this process, an NMR glass tube with 1 (2.53 mg)
dissolved in 600 µL of DMSO-d6 or ACN-d3 and a Cu2+ solution (3 × 10−1 M) in 1000 µL
of DMSO-d6 or ACN-d3 were prepared. Then, 0–5 equivalents of Cu2+ were sequentially
added to the NMR glass tube, and the 1H NMR spectrum was recorded after each addition.

3. Results and Discussion
3.1. Synthesis of BODIPY 1

BODIPY derivative 1 functionalized at the meso position with the triphenylamino
(TPA) group (Figure 1) was previously synthesized by our research group through two
reactional steps at room temperature. The first step involved a condensation reaction of 2,4-
dimethylpyrrole and 4-(diphenylamino)-benzaldehyde in dichloromethane (DCM) in the
presence of a catalytic amount of trifluoroacetic acid (TFA) to form the dipyrromethane core.
The second reactional step consisted of the oxidation of dipyrromethane to dipyrromethene
through the addition of a solution of 2,3-dichloro-5,6-diciano-p-benzoquinone (DDQ) fol-
lowed by a complexation reaction with BF3.OEt2 in the presence of triethylamine (Scheme 1).
Finally, the crude residue was purified using petroleum ether/ethyl acetate (4:1) as eluent
through a dry flash chromatography column, and the pure compound was obtained as an
orange solid with a 16% yield. Through the 1H NMR spectrum, it was possible to confirm
the presence of the triphenylamine group at the meso position of the BODIPY core, with the
characteristic proton signals appearing in the aromatic zone of the spectrum. Additionally,
the signals in the 13C NMR spectrum and the obtained data from mass spectrometry were
in agreement with the expected structure [31,32].
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The D-π-A BODIPY molecule comprises a signaling subunit based on the BODIPY
core, as an electron acceptor chromophore that is functionalized at position eight with a
recognition subunit based on a TPA group which functions as the electron-donating moiety.
Additionally, TPA has been previously reported as the binding site of Fe3+ through the N
atom [36].

3.2. Photophysical Characterization of BODIPY Derivative 1

The spectroscopic characterization of BODIPY 1 was carried out in acetonitrile solution
(1 × 10−5 M). The derivative 1 exhibited an intense absorption band (logε = 3.96) at 497 nm,
and upon excitation, it showed an emission band at 519 nm. The relative fluorescence
quantum yield, which was determined by using Rhodamine 6G in ethanol as a standard
(ΦF = 0.95), was found to be quite low (ΦF = 0.005), probably due to the rotational freedom
and the higher probability of the occurrence of non-radiative relaxation. The Stokes’ shift
of BODIPY derivative 1 was relatively short (22 nm, 454,545.45 cm−1), which is usual for
this class of compounds [37].

3.3. Preliminary Chemosensing Study

This preliminary chemosensory study is a simple and quick approach to evaluate the
possible interaction between BODIPY 1 and different ions. In this sense, the colorimetric
and fluorimetric behavior of BODIPY 1 was studied in acetonitrile (ACN) by the addition
of 50 equivalents of biologically and environmentally important cations (Ag+, K+, Li+, Na+,
Cu+, TBT+, Cs2+, Hg2+, Ca2+, Co2+, Pb2+, Mn2+, Fe2+, Zn2+, Ni2+, Cd2+, Cu2+, Pd2+, Sn2+,
Fe3+, and Al3+) to the compound’s solution. Acetonitrile was used as solvent for this study
since it is an aprotic solvent which cannot establish hydrogen bonds and interfere with the
recognition system.

As shown in Figure 2, the compound 1 solution displays a light yellow color in the
absence of any cation. However, upon the addition of 50 equivalents of each ion to the
compound solution, a clear color change of the solution from light yellow to blue–green in
the presence of Cu2+ and Fe3+ was observed, while other cations were unable to induce a
perceptible color change. In contrast, compound 1 did not exhibit fluorescence emission
variation in the presence of any cation. Additionally, the preliminary chemosensory study
of compound 1 in the presence of different anions (H2PO4

−, CH3COO−, NO3
−, ClO4

−,
HSO4

−, BzO−, Br−, CN−, I−, F−) was also tested, but no optical response was detected.
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In addition, the absorption spectrum of the compound was plotted in the absence
and presence of 10 equivalents of each cation. As depicted in Figure 3A, compound 1 in
the absence of ions (in black) shows a maximum absorption band at 497 nm, which corre-
sponds to the light yellow of the compound solution in ACN, and another band at 305 nm,
corresponding to the absorption of the TPA moiety [38,39]. The characteristic absorption
spectrum of compound 1 suffered significant changes in the presence of 10 equivalents of
Cu2+ and Fe3+, with the appearance of a new band around 670 nm. In contrast, the other
cations induced either no or a slight change in the compound’s absorption spectrum. In
the case of Cu+, the presence of the cation induced the appearance of a new absorption
band around 670 nm; however, it does not show a significant absorbance intensity change
when compared to Cu2+ and Fe3+ (Figure 3B), which is in agreement with the results from
the preliminary chemosensory ability (Figure 2) where no significant change in the color
of the solution of compound 1 was observed in the presence of 50 equivalents of Cu+.
Moreover, the absorption band that appears around 355 nm in the presence of Fe3+ (in
green) corresponds to the self-absorption of Fe3+ [40]. Based on these results, compound 1
shows an interesting potential as a selective colorimetric chemosensor of Cu2+ and Fe3+.
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3.4. Spectrophotometric Titrations

According to the results obtained in the preliminary evaluation of the chemosensory
capacity of BODIPY 1, spectrophotometric titrations in acetonitrile were carried out to
further investigate the efficiency of BODIPY 1 toward Cu2+ and Fe3+ detection. Thus,
increasing amounts of each cation (0–10 equivalents) were added to the compound’s
solution; simultaneously, the corresponding absorption spectrum was obtained.

The titration graphs allowed us to follow the changes in the compound’s absorption
bands while the number of equivalents of each cation was increasing. After the addition
of increasing amounts of Cu2+ and Fe3+, a progressive decrease in the absorption band
of 305 nm was observed, while a new red-shifted band appeared at 697 nm and 700 nm
for Cu2+ and Fe3+, respectively. This reflects a color change in the compound’s solution
from light yellow to blue–green (Figures 4A and 5A). Moreover, the appearance of a new
absorption band around 700 nm in the presence of these cations can be attributed to the
complex formation between 1 and Cu2+/Fe3+ ion. These results indicate that Cu2+ and
Fe3+ may have identical coordination behavior with compound 1. Concerning the peak
at 492 nm, the decrease was significantly more prominent in the titration with Fe3+ when
compared to Cu2+. The complexation between cation-ligand 1 reached the maximum
variation of the absorption band intensity with only 10 equivalents of each cation which
proved the high sensitivity of BODIPY 1 toward Cu2+ and Fe3+.
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Additionally, the corresponding absorbance calibration curve was obtained as a func-
tion of the Cu2+ and Fe3+ concentration (Figures 4B and 5B). Both calibration curves of Cu2+

and Fe3+ exhibited good linear relationships, with correlation coefficients of R2 = 0.9804
and 0.9591, respectively.

Therefore, Cu2+ and Fe3+ can be quantified within this range. According to these data,
the limit of detection (LOD) was calculated using the slope of the linear zone of absorbance
versus the ion concentration graph.

Moreover, the maximum acceptable copper and iron level (20.5 µM and 5.4 µM,
respectively) in drinking water, as stated by the World Health Organization (WHO) and the
U.S. Environmental Protection Agency (EPA), and the normal range of copper and iron in
whole blood is between 13–21 µM and 7–29 µM, respectively [41–44]. These reference values
are higher than the LOD values of 1 for Cu2+ (0.63 µM) and Fe3+ (0.82 µM) and are within
the linear range of the calibration curve. The BODIPY derivative 1, like other chemosensors,
has a low limit of detection for Cu2+ (LOD = 0.63 µM) and Fe3+ (LOD = 0.82 µM). However,
many reported colorimetric sensors in the literature display a detection signal for these
cations at a lower absorption wavelength (ranging from 292 to 570 nm) [12,19,45–50],
whereas our compound has a detection signal around 700 nm. This feature is an advantage
for the potential quantitative monitoring of Cu2+ and Fe3+ ions in environmental/biological
samples since water and some biomolecules have a strong self-absorption ranging from
250 to 580 nm [51,52]. Thus, these interferences may be avoided at longer wavelengths,
resulting in a higher sensitivity detection of the target cations. These results suggest a good
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potential of compound 1 as a colorimetric chemosensor for these cations in environmental
and biological samples.

3.5. Binding Stoichiometry and Constant

The binding stoichiometry of the complexes 1-Cu2+ and 1-Fe3+ was determined using a
Job’s plot [53] with absorption bands at 697 nm and 700 nm, respectively. The corresponding
absorbance was plotted as a function of the mole fraction of the cation (Figures 6A and 7A).
In both cases, the highest absorbance was reached at cation 0.7 mole fraction, indicating the
formation of a 1:2 complex between ligand 1 and metal.
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The binding constant values were determined by the Benesi–Hildebrand method
using the UV-vis titration data. The absorbance variations in the presence of Cu2+ and
Fe3+ (697 nm and 700 nm, respectively) (1/(A − A0)) were plotted as a function of 1/[ion]2,
and the binding constant (Ka) was calculated using the ratio of the intercept to the slope of
the graph.

As shown in Figures 6B and 7B, both Benesi–Hildebrand plots exhibited good linear
relationships with correlation coefficients of R2 = 0.9998 and 0.998. This good fitting
confirms the 1:2 complex formation and corroborates the Job’s plot results. The Ka of
1-Cu2+ and 1-Fe3+ was calculated to be 7.825 × 106 M−1 and 9.546 × 107 M−1, respectively,
indicating a strong complexation between compound 1 and Fe3+/ Cu2+ ions and a higher
binding affinity of Fe3+ toward 1 than Cu2+.
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3.6. 1H and 19F NMR Titrations

To corroborate the previous findings and investigate the binding site of Cu2+ and
Fe3+, the 1H and 19F NMR titrations of 1 with Cu2+ and Fe3+ were carried out. In this
study, the concentration of compound 1 was fixed, while the concentration of the cation
was gradually increased (0–5 eq.), and the 1H and 19F NMR spectra were recorded. As
depicted in Figure 8, the proton peaks in the aromatic region ascribed to the TPA moiety
became broader, and the proton signal at 7.36–7.04 ppm shifts to 7.28–6.98 ppm upon the
sequential addition of Cu2+. Considering that the paramagnetic behavior of Cu2+ and
Fe3+ affects the relaxation times of protons, and consequently, the frequency of protons
near the ions’ binding region, these results point to an interaction with the TPA moiety,
which can possibly occur through the coordination of the cations with the N atom of the
triphenylamino group [36].

Sensors 2023, 23, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 7. (A) Job’s plot of 1-Cu2+ in ACN. The absorbance was recorded at 700 nm. (B) Benesi–
Hildebrand diagram from spectrophotometric titration of 1 with Cu2+ at 700 nm. 

3.6. 1H and 19F NMR Titrations 
To corroborate the previous findings and investigate the binding site of Cu2+ and 

Fe3+, the 1H and 19F NMR titrations of 1 with Cu2+ and Fe3+ were carried out. In this study, 
the concentration of compound 1 was fixed, while the concentration of the cation was 
gradually increased (0–5 eq.), and the 1H and 19F NMR spectra were recorded. As de-
picted in Figure 8, the proton peaks in the aromatic region ascribed to the TPA moiety 
became broader, and the proton signal at 7.36–7.04 ppm shifts to 7.28–6.98 ppm upon the 
sequential addition of Cu2+. Considering that the paramagnetic behavior of Cu2+ and Fe3+ 
affects the relaxation times of protons, and consequently, the frequency of protons near 
the ions’ binding region, these results point to an interaction with the TPA moiety, which 
can possibly occur through the coordination of the cations with the N atom of the tri-
phenylamino group [36]. 

 
Figure 8. 1H NMR spectra of 1 in the presence of increased amounts of Fe3+ and Cu2+ in DMSO-d6. Figure 8. 1H NMR spectra of 1 in the presence of increased amounts of Fe3+ and Cu2+ in DMSO-d6.

To avoid the presence of the broad water peak in the protons’ region of the BODIPY
core, we also performed the 1H NMR titrations in deuterated acetonitrile (Figure S1). It
was observed a breadth, decrease of intensity, and shift of the aromatic protons in the
presence of 1 equivalent of Cu2+. Moreover, the proton peaks of the BODIPY core were also
affected by the presence of the cation. As shown in Figure S1, the singlets of H-2 and H-6
at 6.11 ppm and CH3-3 and CH3-5 at 2.48 ppm split in two different peaks, respectively.
In contrast, the singlet of CH3-1 and CH3-7 at 1.59 ppm only suffered a slight shift. These
results may indicate the loss of the BODIPY core’s symmetry.

Additionally, the 19F NMR spectrum was recorded to gain more insight into a possible
interaction between the cations and the BODIPY core. As shown in Figure 9, it was
observed a doublet of quartets for each fluorine atom due to the 19F-19F coupling and
19F-11B coupling [54] in the absence of the cation, whereas in the presence of one equivalent
of Cu2+, a broadening of the peak at −145.69 ppm and a complete disappearance of
the peak at −146.33 ppm was observed. The addition of five equivalents of the cation
induced the appearance of a new peak at −150.68 ppm together with the loss of the peak
at −145.69 ppm. This suggests the formation of a new species of boron and fluoride, not
complexed by the N atom.
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Furthermore, we performed the 19F NMR of BF3OEt2 to compare the fluorine chemical
shifts of a BF species not complexed by N. As shown in Figure S2, two peaks appear
at −150.44 ppm and −151.95 ppm which are similar to the new peak that appears at
−150.68 ppm after the addition of five equivalents of the cation. These data suggest that
the interaction of Cu2+ with the BODIPY core may change the environment around the F
and could be explained by the formation of a BF species dissociated from one of the N or
even from both N.

All these findings suggest the coordination of the cations with BODIPY 1 may be oc-
curring through the nitrogen atom of the TPA moiety and simultaneously with the fluorine
atoms of the BODIPY core [55], which is consistent with the formation of a 1:2 complex
between ligand 1 and the metal proved by the Job’s plot experiment.

4. Conclusions

In this work, a meso-triphenylamine-BODIPY derivative was reported for the highly
selective detection of Cu2+ and Fe3+. In the preliminary chemosensing study, this compound
showed a significant color change from yellow to blue–green in the presence of Cu2+

and Fe3+. With only one equivalent of cation, a change in the absorption band of the
compound and the appearance of a new band around 700 nm were observed. Furthermore,
only 10 equivalents of Cu2+/Fe3+ were needed to reach the absorbance plateau in the UV-
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visible absorption titrations. Compound 1 showed an excellent sensitivity toward Cu2+

and Fe3+ detection with LODs of 0.63 µM and 1.06 µM, respectively. The binding constant
calculation indicated a strong complexation between compound 1 and Cu2+/Fe3+ ions.
The 1H and 19F NMR titrations suggested that the ligand-metal interaction may occur
through the nitrogen atom of the TPA moiety and simultaneously with the fluorine atoms
of the BODIPY core. Hence, BODIPY derivative 1 has demonstrated great potential as a
chemosensor for the rapid, selective, and sensitive detection of Cu2+ and Fe3+.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23156995/s1, Figure S1: 1H NMR spectra of BODIPY 1 in the
absence and presence of one equivalent of Cu2+ in ACN-d3; Figure S2: 19F NMR spectra of BF3OEt2
in ACN-d3.
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