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Abstract 

Anomalous normalised permeability as a ratio of permeability to square of particle size 
for snow, diatomite, kieselgel was considered using Kozeny-Carman model and 
tortuosity factor defined as the square of average tortuosity pathway. Since the  
Kozeny-Carman model is based on the geometrical models of a capillary tube, the 
model adopted for high porous media with shaped particles (often with fractal 
properties) becomes complex. To show how the problem of permeability may be 
complex, two types of particles are analysed in porous media: snowflakes and 
diatomite and kieselguhrs. Snowflakes are typical fractal particles, whereas diatomite 
and kieselguhr can form pores with fractal tortuosity. Based on theoretical investigation 
a model including fractal measurements for void and solid phases and dependence of 
tortuosity on packing porosity is proposed. The obtained results show that within the 
developed model we can describe a wide range of porous media with different fractality 
and tortuosity. Based on presented numerous examples it was concluded that further 
experimental investigation should be useful to improve the model and validate the 
application range. 
 
1. Introduction 

Highly porous media play a significant role in many practical applications including 
nanotechnology, biomedicine, fuel cells, catalysis etc. However, the interpretation of 
experimental permeability data is difficult whenever the particle shape or particle 
arrangement becomes significantly different of conventional granular packing.  
In this case conventional Kozeny-Carman model (1) does not satisfy experimental 
conditions 

   (1) 

where k  is the permeability, 1/m; S  is the specific surface area based on the solid 
volume; Sd /6=  is the equivalent spherical particle size; ε  is the porosity; 2

0τK  
includes tortuosity τ  (ratio of average pathway to the porous medium thickness) and 

0K  - a coefficient dependent on the pore cross-section shape (for cylindrical pores 0K  
= 2). In particular cases model (1) may be used in the form 

])1(180[/)( 232 εε −= dk     (1a) 

As Kozeny-Carman model is based on the geometrical models of a capillary tube, then 
the model adopted for high porous media with shaped particles (often with fractal 
properties) becomes complex (see Figs. 1 - 2). 
In some cases porous media with fractal wall surface do not have a fractal tortuosity of 
pore channels, as in Fig. 1 (a-b) or, in contrary, display a fractal dimension dependent 
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on a channel topology, as in Fig. 1 (c-e). In theses examples two fractal curves with 
different fractal dimension were used to built the pore channels: (a) von Koch 
snowflake curve, fractal dimension 1.26, has 4 levels of structure, each level with   
tortuosity iτ  = 4/3, and the overall tortuosity of the curve is ≈τ  3.16, Fig. 1a; the (b) 
curve has fractal dimension 1.5, 3 levels of structure, each level with a tortuosity iτ  = 2, 
and overall tortuosity of the curve is τ  = 8, Fig. 1b. The case in Fig. 1 (a-b) 
corresponds to the symmetrical pore channel with fractal perimeter (contour) where a 
centreline geometrical tortuosity is equal to 1. 
In the case of non-symmetrical pore channels, Fig. 1 (c) and (d), built by fractal curves 
of types (a) and (b), they have a centreline tortuosity of τ  = 1.97 and 2.62 with a fractal 
dimension of 1.01 and 1.03. In turn, in case (e), tortuosity is much higher, τ  = 8, and 
the fractal dimension of pore channel walls is 1.5. Moreover, the porous medium fractal 
dimension is dependent on porosity and on the particle shape. 
 

 
(a)       (b)   (c)     (d)        (e) 
 

Figure 1. Two symmetrical pore channels built by fractal curves (See text) having the 
average geometrical tortuosity τ  = 1.0, case (a) and (b). Non-symmetrical pore 
channels built by fractal curves, cases (c-d). 
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Figure 2. Fractal dimension aD  vs. D2ε  for regular packing of discs: 1 – square 
packing; 2 – hexagonal packing; 3 – discs square arrangement of two sizes (space 
between large size square packing filled by inscribed discs). I – correlation function. 
 
Porous media porosity is one of the most important characteristics involved in all 
models of mass and heat transfer. Dependence of the 2D porous media fractal 
properties on porosity ( D2ε ) is shown in Fig. 2, where a disc type porous structures are 
presented. Increasing porous media complexity (the structure deviates from uniformity) 
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renders the topological properties of the system (fractal dimension) dominant. 
As can be seen, porosity and tortuosity are interrelated and both connected with fractal 
properties of porous media and properties interplay gives different results. For 
instance, a carbon felt (Le Carbone Lorraine, RVC 4002) for electrodes has the 
porosity 0.98 and tortuosity 5 – 6, (González-Garcia et al., 1999); α -alumina catalyst 
pellet, ε  = 0.68, average tortuosity 4.0,(Dogu et al. ,1989); iron-based Fischer-Tropsch 
catalyst, ε  = 0.628, tortuosity ~ 6.0, (Eaton et al. , 1995); mica (powdered) and 
vermiculite at porosity 0.85 – 0.9 have tortuosity over 2.0, (Currie ,1960). 
2. Theoretical background 

To show how the problem may be complex, two types of particles are considered 
below: snowflake and diatomite/kieselguhr. 
Jordan et al. (1999) summarised and analysed published and own experimental data 
on snow permeability by using Kozeny-Carman model in the form (1a) and an 
approach of the form 

))1(0078.0exp(077.0 2 ερ −−= idk     (2) 

where iρ = 917 is ice density, kg/m3

Normalised experimental snow permeability 

. 
2/ dk  together with models (1a) and (2) 

are shown in Fig. 3, where some data for low-density snow are below theoretical 
predictions for a granular bed (curve 1) as well as for a model (2), curve 2.  
 

 
Figure 3. Reduced permeability 2/ dk  vs. ice fraction εφ −= 1  as presented by Jordan 
(1999) in fig. 7. I – Shimizu, Ishido and Shimizu data; II – Sommerfeild and Rocchio 
data; III - Jordan data. 1 – granular bed model, equation (1a); 2 – approach, equation 
(2). 
 
According to snow classification by solid fraction and permeability (Jordan , 1999), the 
main part of snow samples which does not fit to the above mentioned models belong to 
wind-packed (dense) and new snow (low density) which leads to consider particle 
shape as an important parameter of the permeability behaviour. However, in (2) we can 
speculate that )1( ε−  is accounted for in fractal properties as well. 

For non-spherical particle the model (1) may be partially corrected by introducing a 
sphericity factor Φ  of a particle as the ratio of the surface area of a sphere S  (with the 
same volume as the given particle) to the surface area of the particle pS , pSS /=Φ , 

hence, dSSd pp Φ=Φ== /6/6 . In this case, fractal behaviour may affect all or part 
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of variables (Xu and Yu, 2008): pore space (ε ), solid ( ε−1 ) or ratio )1/( εε − , and 
tortuosity (τ ). 
In general, the tortuosity depends on porosity and may be presented in the form 

na ετ /=  ( ≥n  0; ≥a  1, conventionally a  = 1). By substituting τ  and Φ  in (1) and 
introducing the normalised permeability we have the following 

)])-(1)/(36/([)/(/ 223
0

22 εεε naKdk ⋅Φ= . The value of 0K  depends on a pore cross-
section configuration that, in turn, reflects the particles shape. Since the exact relations 
between Φ , 0K  and ε  are unknown, complex )/( 2

0
2 aKΦ  can be considered as the 

fitting coefficient A/1 .  
If we assume that in porous media structure particles are generated from sub-units of 
smallest scale, as shown in Fig. 4, then external and internal factors may yield 
substantial particle transformation. In the case of snow, primary snowflake melting 
results in porous media compaction and in structural degradation, with loss of fractal 
properties and an approach to granular packing.  

 
Figure 4. Simplified representation of a complex primary particle structure build by sub-
units. 
 
Structural properties based upon fractal analysis must be introduced in normalised 
permeability under the form of D∆  and )(1 εϕ⋅∆ D  as fractal measures for void and 
solid phases, where 10 ≤∆≤ D , 10 1 ≤∆≤ D , and )(εϕ  is  a function accounting for 
deviation of porous media from granular packing. Finally, dependence of normalised 
permeability on porosity becomes 
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3. Discussion 

Two types of particles are presented in Fig. 5: snowflakes (shaded area occupied by 
data of Jordan et al. (1999)), diatomite (I), from Yoon et al. (1992) and kieselguhrs (II), 
Mota et al. (2000, 2003). Snow represents fractal particles, whereas diatomite and 
kieselguhr can form pores with a significant fractal tortuosity.  
Application of relation (1a) and model (2) as proposed for the snow layer (Fig. 5), gives 
rise to curves 1 and 2, respectively.  Ignoring dependence of τ  on ε  does not allow 
covering the whole region of experimental data. Conventional model (1) has as upper 
limit τ  = 1.0 and curve 1´ is far from the experimental bounds.  

The model (3) was accepted and deviation from granular packing )(εϕ  was assumed 
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to be εεεϕ −+= 01)( . The function )(εϕ  = 1 when 0εε =  where 0ε  has a value in the 
range 0.3 – 0.45 and is defined as a fitting parameter. 
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Fig. 5. Normalised permeability 2/ dk  vs. porous media porosity. Shaded area is 
occupied by snow data of Jordan et al. (1999). 1 – equation (1a); 1´ – case (1) when τ  
= 1; 2 – relation (2); 3 – fitting relation (2) by model (3). Curves a – e are fitting data of 
mineral porous media: a - Kieselguhr fine; b – Kieselgel; c - Radiolite 600; d - Dialite UND; e 
– Kieselguhr. For curves 4 – 9 see the text. 
 

Table 1. Coefficients of model (3) for curves presented in Figure 5 

Curve D∆  D1∆  n  
0ε  A  

4 0 1 0 0.42 1 
5 0.1 1 0.1 0.45 2 
6 0.3 1 0.5 0.4 2 
3 0.69 1 0.6 0.4 5 
Granular packing 1 1 0.4-0.5 εε =0  2 

e 1 1 0.5 0.35 10.54 
d 1 0.35 0.5 0.35 6.36 
b 1 0.05 1 0.3 8.64 
c 1 0.78 1 0.35 27.8 
a 1 0.8 1 0.38 58.4 
7 0.05 0.25 0.25 0.4 60 
8 0.05 0.25 0.025 0.4 60 
9 0 0 0 -- 60 

 
The obtained results show that within model (3) we can describe a wide range of 
porous media. In particular for snow, correlation (2), curve 2, is well fitted by model 3 
(curve 3) with the following parameters: D∆  = 0.69, n  = 0.6, A  = 5, and 0ε  = 0.4. For 
new snow, in particular, a tendency (Fig. 5, arrow) to increase the permeability was found, when 
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0→∆D  and 11 =∆ D . Curve 4 corresponds to the case 0=∆D , 1=τ , when A  = 1: 
])1(36[/1/ )42.1(22 εε −−=dk . Moreover, model (3) at →ε  1 gives ∞→2/ dk , whereas 

correlation (2) gives finite normalised permeability value. Examples of fitting data of 
mineral porous media by (3) are given by curves a – e and are also presented in Table 
1: a - Kieselguhr fine; b – Kieselgel; c - Radiolite 600; d - Dialite UND; e – Kieselguhr.  

Dependences 7 – 9 are hypothetic and simulate cases of very small D∆ . With decreasing 
D∆  and D1∆  we observe insignificant linear changes in 2/ dk  and in limited case of 
D∆  and D1∆  equal zero dependence (3) becomes constant )36/(1/ 2 Adk = , as seen 

in Fig 5, bottom, curve 9. Even in the hypothetic case of A  = 60 and a  = 1 for Φ  = 0.5 
we have 0K  = 15. Assuming a  = 1.5, 0K  becomes 6.7 and at a  = 2 0K  = 3.75. 
Formally, this situation is related with the degradation of porous media structure when 
tortuosity weakly depends on porosity, which is typical for non-granular porous media. 
For instance, when porous media contain homogeneous pores similar in length the 
porosity totally depends on number of pores on unit area of porous medium. Fractality 
behaviour of such systems is not enough investigated.   
Model (3) allows simulating and predicting permeability or other parameters when 
experimental data are scarce.  
 
4. Conclusion 

Obtained results form the modified Kozeny-Carman model show that application of the 
fractal approach to the porous media void space as well as to solid phase enables to 
extend the model to highly porous media. The obtained results show that within the 
developed model we can describe a wide range of porous media with different fractality 
and tortuosity. In spite of the numerous examples presented, further experimental 
investigation will be useful to improve the model and validate its application range. 
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