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Abstract

In this work, we begin by demonstrating that attractors, both
periodic and aperiodic, of the one-parameter family of complex
quadratic maps x2 + c, where c is a complex number, maintain
their stability when we transition from the complex plane C to the
coquaternions Hcoq as the map’s phase space. Next, we investi-
gate the same question for a different family of quadratic maps,
x2+bx, and find that this is not the case. In fact, the situation for
this family of maps turns out to be quite complicated. Our results
show that there are complex attractors that undergo changes in
their stability, while others maintain it. However, the most intrigu-
ing result is that certain regions of the parameter space, known
as bulbs, which correspond to the existence of attracting cycles of
some fixed period n, exhibit a mixture of stability behavior when
we consider coquaternionic quadratics.

1 Introduction

The iteration of complex quadratic polynomials has a singular feature: it can be demonstrated that a map
a2x

2 + a1x+ a0 is dynamically equivalent to a much simpler quadratic x2 + c. This result offers an apparent
advantage: all complex quadratic dynamics can be comprehended by analyzing the dynamics of the family of
quadratics x2 + c.

However, there is another side to the story. Despite the wonderful results obtained for the dynamics of
the one-parameter family of complex maps x2 + c, see, for example, [5], there is an inevitable sense of lack of
diversity. After all, it all boils down to one family of quadratics.

In 2012, we began studying the iteration of quadratic coquaternionic maps with the aim of exploring how
their dynamics differ from those of quadratic complex maps. First, in [2], the authors demonstrated that the
family of quadratic coquaternionic maps x2 + c possesses non-isolated sets of coquaternionic fixed points and
non-isolated sets of periodic coquaternionic points of period two, something that was only possible, see [1], for
a much complicated map.
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Subsequently, in [3], the authors established that attractor coexistence is possible for the same family of
coquaternionic maps, which is known to be untrue for complex quadratics.

Finally, in [4], the authors computed the coquaternionic fixed points for a distinct family of coquaternionic
quadratics, x2+ bx, and determined that this family of coquaternionic quadratics is not dynamically conjugate
to x2 + c.

In summary, although dealing with coquaternionic functions presents inherent challenges, we can confidently
state that the study of coquaternionic quadratic maps has already revealed a remarkable diversity in admissible
dynamics, making it one of the most captivating and intriguing topics in the theory of dynamical systems.

2 Basic results

To ensure completeness, we provide a brief overview of the main concepts and results related to the algebra of
coquaternions, which are also referred to as split-quaternions in the literature. This overview is necessary for
the remaining sections of the paper.

Let {1, i, j, k} be an orthonormal basis of the Euclidean vector space R4 with a product given according to
the following rules: {

i2 = −1, j2 = k2 = 1,

ij = −ji = k.
(1)

A simple computation allows us to prove that this product generates an associative but non-commutative
algebra over R, denoted by Hcoq, whose elements will be called real coquaternions. It is important to observe
that, contrary to what happens in the case of Hamiltonian quaternions, Hcoq is not a division algebra. In fact,
Hcoq contains zero divisors and nilpotent elements: for example, we have (1 + j)(1− j) = 0 and (i+ j)2 = 0.
In the following, we will identify the space R4 with Hcoq by associating the element (q0, q1, q2, q3) ∈ R4 with
the coquaternion q0 + q1i+ q2j+ q3k.

Given q = q0 + q1i+ q2j+ q3k ∈ Hcoq, its conjugate q is defined as

q = q0 − q1i− q2j− q3k;

the number q0 is called the real part of q and is denoted by re q and the vector part of q, denoted by vec q,
is vec q = q1i + q2j + q3k. In analogy with the complex case, we will identify the set of coquaternions whose
vector part is zero with the set R of real numbers.

It is easy to see that the algebra of coquaternions is isomorphic to the algebra of real 2× 2 matrices, with
the map Φ : Hcoq → M2(R) defined by

Φ(q0 + q1i+ q2j+ q3k) =

(
q0 + q3 q1 + q2

q1 − q2 q0 − q3

)
establishing the isomorphism. We call the determinant of q, and denote by det q, the quantity given by the
determinant of the matrix representative of q, i.e.

det q = q20 + q21 − q22 − q23 .

It is a straightforward exercise to demonstrate that the determinant of a coquaternion q can be expressed as
det q = q q.

Finally, it can be shown that a coquaternion q is invertible if and only if its determinant is different from
zero. In that case, the expression for the inverse is given by

q−1 =
q

det q
.

Next, we recall some basic definitions of discrete dynamical systems. Let us consider a coquaternionic map
f : Hcoq → Hcoq. For k ∈ N, we shall denote by fk the k-th iterate of f, inductively defined by{

f0 = idHcoq

fk = f ◦ fk−1.
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For a given initial point q0 ∈ Hcoq, the orbit of q0 under the map f is the sequence

O(q0) :=
(
fk(q0)

)
k∈N0

.

A point q ∈ Hcoq is said to be a periodic point of f, with period n ∈ N, if we have fn(q) = q, with fk(q) ̸= q
for 0 < k < n; in this case, we say that the set

C = {q, f(q), . . . , fn−1(q)}

is a n-cycle for f, usually written as

C : q0
f→ q1

f→ · · · f→ qn−1

with qi = fi(q). Periodic points of period one are called fixed points.
Finally, there is one last definition relevant for the rest of the paper: we say that two coquaternionic maps

f : Hcoq → Hcoq and g : Hcoq → Hcoq are conjugate if there exists an invertible map ϕ : Hcoq → Hcoq such
that

f ◦ ϕ = ϕ ◦ g.
In this case, we say that the corresponding dynamical systems (Hcoq, f) and (Hcoq, g) are dynamically equivalent,
since they share the same dynamical characteristics.

3 Coquaternionic Quadratic Maps q2 + c

We now consider the one-parameter family of coquaternionic quadratic maps

fc : Hcoq → Hcoq

q 7→ q2 + c

with the choice of the parameter c limited to the complex plane C. We will use fc to denote the restriction
of the map fc to the complex plane i.e. fc := fc|C. Since our goal is to study what happens to the stability
of the attractors of fc when changing the phase space from C to Hcoq, it makes sense to use only complex
parameters.

For this family of quadratics fc, we know that

q1 =
1

2
(1−

√
1− 4c) q2 =

1

2
(1 +

√
1− 4c)

are the complex fixed points and

p1 =
1

2
(−1−

√
−3− 4c) p2 =

1

2
(−1 +

√
−3− 4c)

are the complex periodic points of period two. Moreover, from [2], we have that the fixed point q1 and the 2-
cycle {p1, p2} are attractors for the complex map fc for parameter values inside the cardioid |1−

√
1− 4c| = 1,

and inside the circle |c+ 1| = 1/4, respectively.
Since there is no appropriate concept of derivative for coquaternionic maps, the most suitable method to

analyze the stability of a given periodic point of period n is to treat fnc as a function from R4 to R4 and
evaluate the magnitude of the eigenvalues of its corresponding Jacobian matrix. As it is widely recognized,
if all eigenvalues of this matrix have a modulus less than one, then the periodic point is considered to be
attractive.

From the multiplication rules (1), it follows that

fc(q) = (c0 + q20 − q21 + q22 + q23 , c1 + 2q0q1, 2q0q2, 2q0q3)

for q = q0 + q1i+ q2j+ q3k and c = c0 + c1i. Hence, the Jacobian matrix of the map fc, computed at a given
point q = q0 + q1i+ q2j+ q3k, is given by

Jc(q) =


2q0 −2q1 2q2 2q3

2q1 2q0 0 0

2q2 0 2q0 0

2q3 0 0 2q0

 ,



4 The Stability of Complex Dynamics for Two Families of Coquaternionic Quadratic Polynomials

and its four eigenvalues are
λ1(q) = λ2(q) = 2q0

λ3,4(q) = 2q0 ± 2
√

−q21 + q22 + q23 .

Now, we are ready to present our first result.

Theorem 1. The complex fixed point q1 = 1
2 (1−

√
1− 4c) is an attractor for fc, for parameter values inside

the cardioid |1−
√
1− 4c| = 1.

Proof. First, let us remember that the square root of a complex number a+ b i can be written as

√
a+ b i =

1

2

√√
a2 + b2 + a± 1

2

√√
a2 + b2 − a) i (2)

Thus, the real part of the complex fixed point q1 is given by

re q1 =
1

2
− 1

4

√√
(1− 4c0)2 + 16c21 + 1− 4c0

while its vector part, in this case equal to its imaginary part, is given by

vec q1 = ±1

4

√√
(1− 4c0)2 + 16c21 − 1 + 4c0

Then, the first two eigenvalues of the Jacobian matrix evaluated at the fixed point q1 are given by

λ1(q1) = λ2(q1) = 1− 1

2

√√
(1− 4c0)2 + 16c21 + 1− 4c0

After a lengthy computation, we can conclude that for parameter values lying inside the parabola c0 = −3/4+
1/4c21, except for the points on the horizontal half-line from (1/4, 0) to the right, as shown in Fig. 1, the
modulus of the first two eigenvalues of the Jacobian matrix evaluated at q1 is less than one (for the points on
the aforementioned half-line, the eigenvalues have modulus equal to one).

Figure 1: The regions for which the modulus of the eigenvalues of the Jacobian matrix evaluated at the fixed
point q1 are less than one: the points inside the parabola c0 = −3/4 + 1/4c21, except the horizontal half-line
from the point (1/4, 0) to the right, for the first two, and the points inside the cardioid |1−

√
1− 4c| = 1, for

the others.

On the other hand, the remaining two eigenvalues of the Jacobian matrix evaluated at the fixed point q1
are given by

λ3,4(q1) = 1−
√
2

2

√√
(1− 4c0)2 + 16c21 + 1− 4c0 ±

±
√
2

2

√√
(1− 4c0)2 + 16c21 − 1 + 4c0 i
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for which we can say that their modulus are less than one for parameter values inside the cardioid |1−
√
1− 4c| =

1, see Fig. 1. Therefore, we conclude that all four eigenvalues have modulus less than one for parameter values
inside the cardioid |1−

√
1− 4c| = 1.

Based on these results, we can conclude that the complex fixed point q1 is an attractor for fc precisely for
the same parameter values that it does for the complex map fc, indicating that its stability remains constant
regardless of whether we consider the coquaternion phase space Hcoq.

A similar result can be stated for the complex 2-cycle {p1, p2} of the coquaternionic maps fc.

Theorem 2. The complex 2-cycle {p1, p2}, with p1 = 1
2 (−1 −

√
−3− 4c) and p2 = 1

2 (−1 +
√
−3− 4c), is

an attractor for fc, for parameter values inside the circle |c+ 1| = 1/4.

Proof. In order to evaluate for which parameter values the complex 2-cycle {p1, p2} is an attractor of fc, we
are going to compute the products λi(p1)λi(p2), for i = 1, . . . , 4. From (2), we have

λ1(p1)λ1(p2) = λ2(p1)λ2(p2) = 1 +
1

2

(
3 + 4c0 −

√
(3 + 4c0)2 + 16c21

)
λ3,4(p1)λ3,4(p2) = 1−

√
(3 + 4c0)2 + 16c21 ±

±
√
2
√

3 + 4c0 +
√
(3 + 4c0)2 + 16c21 i.

These expressions allow us to say that all four products λi(p1)λi(p2) have modulus less than one for parameter
values inside the circle |c+ 1| = 1/4, i.e. we conclude that the complex 2-cycle {p1, p2} is an attractor for fc,
for c inside the circle |c+ 1| = 1/4.

From this last theorem, we are able to say that the complex 2-cycle {p1, p2} is an attractor of fc for exactly
the same parameter values for which it is an attractor for fc, i.e. {p1, p2} does not change its stability when
the phase space goes from the complex plane C to the coquaternions Hcoq.

Since the analytic study of the stability of cycles with period longer than two is not feasible, we decided to
investigate computationally whether the results obtained above for the fixed point and the 2-cycle would hold
for other attractors of the complex maps fc. The results of this investigation are now presented in the form of
a conjecture.

Conjecture 1. Every complex attractor, either periodic or aperiodic, for fc is still an attractor for the co-
quaternionic map fc.

This assertion resulted from selecting parameter values from 2,000,000 randomly chosen inside the circle
|c| < 2 that corresponded to maps fc with a periodic or aperiodic attractor. Then, for each parameter value,
we computed the iterate fnc (q), for 100 randomly chosen points q within a small coquaternionic neighborhood
of a point belonging to the complex attractor of fc, for a large value of n. In all instances, we observed that
fnc (q) approached the complex plane and converged to the complex attractor of fc.

The first part of the process described above is easily recognizable as the identification of which of the
randomly chosen parameter values belong to the Mandelbrot set M(fc). If we generalize the definition of
Mandelbrot set for the coquaternionic maps fc as the complex parameter values for which the map possesses
an attractor, either complex or coquaternionic, we have that the conjecture above is equivalent to saying that
the Mandelbrot set M(fc) is contained in the Mandelbrot set, M(fc), for the coquaternionic family fc.

Let us conclude this section with a comment regarding the Mandelbrot sets associated with these families
of maps: in [2], the authors showed that

P8 =

{
−1

2
+

c1
2
i+ q2j+ q3k : q22 + q23 =

c21 − 4c0 − 3

4

}
,

corresponding to the choice of a complex parameter c = c0 + c1i, with c21 > 4c0 + 3, is a set of attractive
coquaternionic points of period 2, for parameter values inside the ellipse 16(c0 + 1)2 + 2c21 = 1. This means
that, for parameter values inside the circle |c+ 1| = 1/4, the map fc has a complex 2-cycle attractor but also
a coquaternionic attracting 2-cycle. Moreover, one can easily observe that there are parameter values inside
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the ellipse given above for which fc has coquaternionic attracting 2-cycles but fc has no attractor. Therefore,
we conclude that the Mandelbrot set for the coquaternionic family fc contains the Mandelbrot set for the
corresponding complex family fc, but does not coincide with it.

4 Coquaternionic Quadratic Maps q2 + b q

The results presented in the previous section, which allowed us to claim that any attractor of x2+c, periodic or
aperiodic, does not alter its stability by changing the phase space from complex numbers C to the coquaternions
Hcoq, may actually seem trivial, but let us see what happens when we pose the exact same question for a different
family of coquaternionic quadratics maps.

Consider the one-parameter family of coquaternionic quadratic maps

fb : Hcoq → Hcoq

q 7→ q2 + b q

with b ∈ C, such that re b ≥ 1. Again, it will be useful to introduce the complex map obtained by restricting
fb to the complex plane fb := fb|C. A straightforward computation, see [4], allows us to say that fb has two
complex fixed points,

q1 = 0 q2 = 1− b

and two complex periodic points of period two

p1 = 1
2 (−1− b+

√
−3− 2b+ b2)

p2 = 1
2 (−1− b−

√
−3− 2b+ b2).

Since this family fb of complex quadratic maps is conjugated to the simpler complex family z2 + c, its
Mandelbrot set is, to the best of our knowledge, not often depicted in the literature. Therefore, we found
appropriate to show it here.

Figure 2: The Mandelbrot set M(fb), for the complex quadratic maps fb(z) = z2 + b z, with b ∈ C, such that
re b ≥ 1.

In the graphical representation of the Mandelbrot set M(fb) given in Fig. 2, we can easily identify both discs
|b− 2| ≤ 1 and |b− (2+

√
3/2)| ≤

√
3/2− 1 corresponding to parameters values for which the complex fixed

point q2 and the complex 2-cycle {p1, p2} are attractors, respectively.
In [4], the authors proved the following result.

Theorem 3. The complex fixed point q2 = 1 − b is an attractor for fb, for parameter values inside the circle
|b− 2| = 1.
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In the same paper, the authors claimed to have computational evidence for the following statement.

Conjecture 2. The complex 2-cycle {p1, p2}, with p1 = 1
2 (−1− b+

√
−3− 2b+ b2) and p2 = 1

2 (−1− b−√
−3− 2b+ b2), is an attractor for fb, for parameter values inside the circle |b− (2 +

√
3/2)| =

√
3/2− 1.

Both these results mean that, in agreement with what was stated before for the simpler family of quadratic
maps, there is no change in the stability of the complex fixed point and the 2-cycle attractors, when we consider
the family of coquaternionic quadratic maps fb. The point now is whether this is also true for other complex
attractors of fb, e.g. the complex 3-cycle which is an attractor for parameter values in the bulb tangent to the
circle |b− 2| = 1.

In Fig. 3, we show a zoom of the Mandelbrot set M(fb) where we highlighted three bulbs, B4, B3, and B5,
tangent to the main circle |c− 2| = 1, corresponding to parameter values for which fb has a 4-cycle, a 3-cycle,
and a 5-cycle attractor, respectively.

Figure 3: A zoom of the Mandelbrot set M(fb) for the complex quadratic maps fb(z) = z2 + b z, with b ∈ C,
where the bulbs tangent to the main circle corresponding to the existence of a 4-cycle, a 3-cycle, and a 5-cycle
complex attractors are marked.

For the first two bulbs, B4 and B3, we have computational evidence to claim the following statements.

Conjecture 3. For every parameter value b ∈ B4, the complex 4-cycle, which was an attractor for fb, is not
an attractor for fb.

Conjecture 4. For every parameter value b ∈ B3, the complex 3-cycle, which was an attractor for fb, is not
an attractor for fb.

Both these claims are the result of selecting which parameter values, from 1,000,000 randomly chosen inside
circles containing each bulb, corresponded to the existence of attracting cycles of fb. Then, for all these values,
we computed the iterate fnb (q), for a randomly chosen point q in a small coquaternionic neighborhood of a
point of the attractor, again for a large choice of n, and confirmed that it did not converged to the complex
plane.

These results are quite different from everything we had before: for parameter values inside B4 and B3,
the complex cycle is no longer an attractor for the coquaternionic map fb, i.e. the cycles change their stability
with the phase space going from C to Hcoq. Next, we asked the same question for parameter values inside the
bulb B5 and the answer we obtained was quite unexpected.

Conjecture 5. For parameter values b ∈ B5, the complex attracting 5-cycles for fb exhibit a mixture of stability
behavior when we consider the coquaternionic quadratics fb.

For parameter values belonging to B5, our computational results are summarized in Fig. 4: in blue we have
values such that the attracting complex 5-cycle for fb is still an attractor for the coquaternionic map fb, while
in orange we have values such that the complex 5-cycle attractor for fb is not an attractor for fb.

After obtaining these results, the subsequent inquiry was to determine the specific points on the Mandelbrot
set M(fb) that correspond to the existence of complex attractors, periodic or aperiodic, of the coquaternionic
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Figure 4: The bulb from the Mandelbrot set M(fb) tangent to the main circle corresponding to the existence
of attracting complex 5-cycles: in blue we represent parameter values such that the 5-cycle is an attractor
for the coquaternionic map fb, while in orange we represent parameter values such that the 5-cycle is not an
attractor for fb.

quadratic map fb. It is worth noting that this task is highly demanding in terms of computation, and therefore,
the results presented should be interpreted with caution, as they represent a work in progress.

Our computational results are summarized in Fig. 5, where the values b ∈ C such that the coquaternionic
map fb has a complex attractor are represented in blue, while in red are represented parameter values such that
fb has no complex attractor.

Upon examining Fig. 5, one might be inclined to assume that only the bulbs tangent the main circle, corre-
sponding to parameter values b = b0 + b1 i with b1’s modulus exceeding a certain threshold, correspond to
coquaternionic maps lacking a complex attractor. However, upon closer inspection of the zoomed-in Fig. 4,
we can conclude that this is not the case.

To conclude this section, we will take a closer look at the parameter space region where there is a secondary
bulb B13, tangent to the B6 bulb, corresponding to coquaternionic maps that exhibit a mixture of stability
behavior. Our computational results for this region are summarized in Fig. 6.

Through this example, we aim to emphasize that the criteria for determining which coquaternionic maps fb
have complex attractors are not expected to be simple.

5 Conclusions

In this work, we begin by showing that attractors, both periodic and aperiodic, of the one-parameter family of
complex quadratic maps x2+c, where c is a complex number, maintain their stability when we change the map’s
phase space from the complex plane C to the coquaternions Hcoq. Next, we investigate the same question for
the one-parameter family of quadratic maps, x2 + bx, and find that this is not the case. In fact, the situation
for this family of maps turns out to be quite complicated, since we show that there are complex attractors that
undergo changes in their stability, while others maintain it. However, the most intriguing result is that certain
regions of the parameter space, known as bulbs, which correspond to the existence of attracting cycles of some
fixed period n, exhibit a mixture of stability behavior when we consider coquaternionic quadratics. Finally, we
present the result of our investigation regarding the stability of all complex attracting cycles of fb when we
consider the coquaternionic quadratic maps fb.

To finish, we would like to emphasize that this study represents the initial step towards investigating the
Mandelbrot set for coquaternionic families of quadratics, including x2 + c and x2 + bx. Future work will build
upon these findings.
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Figure 5: The parameter space b ∈ C, with re b > 1, where blue points represent values such that the
coquaternionic map fb has a complex attractor, and red points represent values such that fb has no complex
attractor.

Figure 6: A detail of the parameter space b ∈ C, where it is shown a secondary bulb B13, corresponding to
values such that fb has an attracting 13-cycle, for which the coquaternionic map fb exhibit a mixture of stability
behavior: blue points represent values such that fb has a complex attractor, and orange points represent values
such that fb has no complex attractor.
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