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Abstract  23 

Encapsulation technology is used to incorporate a wide range of compounds, which is beneficial for 24 

protecting and improving the bioactivity of plant extracts. In this study, the objectives were to develop 25 

hydroxypropyl methylcellulose microcapsules containing two different extracts from Rhus microphylla fruit 26 

namely RmA (obtained by conventional agitation) and RmO (obtained by ohmic heating) using 27 

electrohydrodynamic processing. The microcapsules were then characterized through Scanning Electron 28 

Microscopy (SEM), ATR-Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and 29 

thermogravimetric analysis (TGA). Additionally, the study aimed to evaluate their influence on strawberry 30 

quality. Spherical microcapsules with a particle size of 2.05-2.41 µm were successfully obtained, and FTIR 31 

analysis confirmed the proper incorporation of the extracts. The microcapsules containing RmA extract 32 

(MC-RmA) exhibited superior antioxidant and antifungal activities in vitro. Consequently, their efficacy in 33 

preserving the quality of strawberry fruits during storage at 4±1 °C and 85% relative humidity (RH) was 34 

evaluated at concentrations of 0.25% and 0.50% (w/v). After 14 days, the MC-RmA-treated fruits showed 35 

reduced weight loss, improved firmness, and unchanged color. Additionally, the gradual release of 36 

antifungal activity from MC-RmA suggests its potential as a novel solution to mitigate postharvest losses in 37 

strawberry fruits. 38 

 39 

Keywords: Rhus microphylla; electrospraying; microcapsules; strawberry; shelf life 40 
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1. Introduction 48 

Encapsulation is a process where a polymeric matrix surrounds another material, providing an 49 

enhancement and protection of its bioactivity, namely for compounds susceptible to degradation (Machado 50 

et al., 2019). It has been used in solids, liquids, and gaseous compounds (Papoutsis et al., 2018), mainly 51 

for the encapsulation of flavors (Dalmolin et al., 2016), aromas (Sanchez-Reinoso et al., 2017) and, 52 

recently, plant extracts (Pereira et al., 2018), demonstrating the versatility of this technology to be applied 53 

in various industries, such as: pharmaceutical, agri-food, among others. The size, shape, and functionality 54 

of the encapsulates strongly depend on the coating materials used, which can be mostly synthetic polymers 55 

(e.g., polycaprolactone and polyethylene glycol), gums (e.g., arabica gum and xanthan gum), proteins 56 

(e.g., zein and sodium caseinate) and polysaccharides (e.g., starch and maltodextrin) (Danafar, 2017; 57 

Sablania et al., 2018; Liu et al., 2019a). Also, the technique used has an important effect on the 58 

characteristics of the structures produced. Different techniques have been reported for the obtention of 59 

encapsulates, such as: spray-drying (Medina-Torres et al., 2019; Nunes et al., 2020), emulsification (Ishkeh 60 

et al., 2021), layer-by-layer (Pinheiro et al., 2015), coacervation (Ursache et al., 2018), and 61 

electrohydrodynamic processing (Bhushani et al., 2017), which differ in their mechanism and conditions of 62 

use, because there is no universal procedure that covers all core types and combinations of wall materials 63 

(Pellicer et al., 2019). 64 

Electrohydrodynamic processing is a novel technique to produce capsules and fibers in micro and 65 

nanoscale and that can be used in two modes, electrospinning for the production of fibers and 66 

electrospraying to produce particles (Silva et al., 2022). Electrospraying presents some advantages 67 

comparing to others methods; for example, it is possible to encapsulate thermolabile compounds without 68 

affecting their integrity, it has a lower energy consumption, and it also provides greater homogeneity in the 69 

shape and particle size of the structures produced (Gómez-Mascaraque et al., 2017). During 70 

electrospraying process, the polymer solution containing the compounds of interest is atomized into a 71 

collector through a capillary employing a high electric field, where the electric energy promotes the 72 

atomization by a deformation of the droplet at the tip of the capillary nozzle, forming a structure known as 73 

Taylor cone (Silva et al., 2021). Proper atomization and formation of the Taylor cone is ensured by 74 
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employing electrical forces higher than the surface tension forces of the encapsulating solution (Nikoo et 75 

al., 2018). Electrospraying has been used for the microencapsulation of bioactive compounds such as 76 

anthocyanins (Atay et al., 2018), β-carotene (Gómez-Mascaraque et al., 2017), and curcumin (Gómez-77 

Estaca et al., 2017), demonstrating its effectiveness to produce homogeneous structures using different 78 

wall materials and concentrations. 79 

On the other hand, Mexico has a vast biodiversity of plants, being of great interest the plants that grow in 80 

arid and semi-arid zones, due to their phytochemical content (Vega-Ruiz et al., 2021), antioxidant 81 

(Santiago-Mora et al., 2017), antifungal (Charles-Rodríguez et al., 2020), and antiproliferative properties 82 

(López-Romero et al., 2018). Some extracts from Larrea tridentata and Flourensia cernua have shown 83 

noteworthy antifungal effects against Rhizoctonia solani (Castillo et al., 2010), while extracts from 84 

Myrtillocactus geometrizans showed interesting anti-hyperglycemic and anti-inflammatory activities in vitro 85 

(Montiel-Sánchez et al., 2021). The genus Rhus, belonging to the family Anacardiaceae is composed of 86 

about 35 species (Yi et al., 2007). Extracts of some of these species have shown remarkable antioxidant 87 

(Bursal & Köksal, 2011; Wu et al., 2013; Liu et al., 2019b), antifungal (Jasso de Rodríguez et al., 2015; 88 

Charles-Rodríguez et al., 2020), and anticancer properties (Kim et al., 2019). Nonetheless, the use of crude 89 

plant extracts is limited because they tend to be highly susceptible to degradation under certain 90 

environmental conditions, such as extreme temperatures, humidity, and light (Muhoza et al., 2019; Al-91 

Maqtari et al., 2021). In this context, encapsulation has proven to be an excellent tool to protect the integrity 92 

and activity of bioactive compounds (e.g., phenolic compounds) and plant extracts by the formation of 93 

micro- or nanocapsules that have been effective in extending the shelf life of some fruits, such as avocado 94 

(Correa-Pacheco et al., 2017), bell pepper (González-Saucedo et al., 2019), tomato (Gutiérrez-Molina et 95 

al., 2021), and strawberry (Hesami et al., 2021), among others.  96 

Strawberry (Fragaria × ananassa) is a widely consumed and appreciated worldwide fruit for its flavor and 97 

multiple nutritional benefits (e.g., antioxidant, anti-aging, and anti-tumor properties), representing a valuable 98 

economic market, with Mexico being the third largest exporter of fresh strawberries (Müller et al., 2010; 99 

Morales-Mora et al., 2019; Li et al., 2020). However, strawberries are highly perishable during postharvest 100 

due to their sensitivity to injuries and fungal infections, which affect their quality (e.g., firmness, color, flavor), 101 
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thus causing important product losses (Chu et al., 2020). The application of new technologies, such as the 102 

development of encapsulates containing bioactive plant extracts through electrospraying, emerges as an 103 

alternative to improve the postharvest quality of fruits and vegetables. Therefore, the aims of the present 104 

study were to develop and characterize microcapsules containing R. microphylla fruit extracts using food-105 

grade hydroxypropyl-methylcellulose (HPMC), by means of electrospraying, and to evaluate their effect on 106 

the postharvest decay of strawberries, as model fruit. It is noteworthy that this is the first report about the 107 

development of HPMC microcapsules through electrospray containing R. microphylla fruit extract and the 108 

study of their effect on strawberry preservation. 109 

2. Materials and methods 110 

2.1. Materials and reagents 111 

Hydroxypropyl-methylcellulose (methoxyl 28-30 %, hydroxypropyl 7-12 %, viscosity 2 % aqueous solution, 112 

viscosity range of 40-60 mPa/s, at 20 °C, 90kDa, CAS 9004-65-3) was purchased from Alfa Aesar GmbH 113 

& Co KG (Karlsruhe, Germany). Folin-Ciocalteu reagent (FC), 2,2-diphenyl-1-picryl hydrazyl (DPPH, CAS 114 

1898-66-4), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, CAS 30931-67-115 

0), 2,4,6-tri(2-pyridyl)-striazine (TPTZ, CAS 3682-35-7), iron (III) chloride hexa-hydrate (CAS 10025-77-1), 116 

ascorbic acid (AA, CAS 50-81-7), potassium persulfate (K2S2O8, CAS 7727-21-1), sodium carbonate 117 

(Na2CO3, CAS 497-19-8) and gallic acid monohydrate (GA, CAS 5995-86-8) were purchased from Sigma-118 

Aldrich (Steinheim, Germany). Absolute ethanol (>99.5%, CAS 64-17-5) was purchased from Honeywell 119 

(North Carolina, USA) and Sabouraud dextrose broth (SDB) was purchased from PanReac AppliChem 120 

(Darmstadt, Germany).  121 

Strawberries (Fragaria x ananassa) var. Festival were obtained from local market (Saltillo, Coahuila, 122 

Mexico), twelve hours after harvesting and immediately transported to the laboratory of the Universidad 123 

Autónoma Agraria Antonio Narro (UAAAN). Fruit with uniform color and size, without physical damage or 124 

fungal infection were selected. 125 
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In this work, two hydroalcoholic R. microphylla fruit (Rm) extracts obtained by conventional agitation (RmA) 126 

and ohmic heating (RmO) were used for encapsulation tests, selected based on their outstanding 127 

antioxidant and antifungal capacities determined in previous work (Guía-García et al., 2021). 128 

2.2. Preparation of polymer solutions containing Rm extracts and electrospraying conditions 129 

For the selection of the most appropriate encapsulation conditions, different amounts of extracts and 130 

ethanol concentrations were tested (Table 1). The HPMC concentration (3.0 %, w/v) was selected based 131 

on a preliminary study (Silva et al., 2021). The work solutions were prepared by dissolving the specific 132 

amount of extract in the ethanol solution, then, HPMC was slowly added and mixed. 133 

The equipment used for the electrospraying process was a Fluidnatek® LE-50 (Bioinicia S.L, Valencia, 134 

Spain) equipped with a variable high voltage power supply (0-30 kV). The solutions were placed in 10 mL 135 

plastic syringes (TERUMO®, Leuven, Belgium) coupled to a digitally controlled syringe pump and 136 

connected by a polytetrafluoroethylene tube to a blunt stainless-steel needle with a diameter of 0.60 mm 137 

(20 ga, FISNAR®, Glasgow, United Kingdom). The electrospraying process was performed in horizontal 138 

mode with a temperature and relative humidity (RH) maintained in a range between 20-25 °C and 45-65 139 

%, respectively. The flowrate and the distance between the needle and the collector were constant in all 140 

experiments based on preliminary tests (0.5 mL/h and 17 cm, data not shown). Voltage varied between 12-141 

25 kV ensuring correct Taylor cone formation in all experiments. 142 

2.3. Microcapsules characterization and bioactivity 143 

2.3.1. Morphology and particle size of microcapsules 144 

To select the best encapsulation conditions, the surface morphology of the particles obtained was examined 145 

by Scanning Electron Microscope (SEM) (Quanta FEG 650, FEI, USA). Briefly, 1.0-2.0 mg of sample were 146 

deposited on a double-sided conductive carbon tape, then analyzed at an acceleration voltage of 3.0 kV 147 

with a working distance of ~10 mm. After selecting the best treatment for each extract, 1.0-2.0 mg of specific 148 

samples were coated with gold under vacuum for 1 min (EM ACE200, Leica Microsystems Inc. Wetzlar, 149 

Germany) and analyzed in the SEM, with a voltage of 5 kV at the same working distance. The morphology 150 

of at least 150 microcapsules was analyzed using ImageJ software (version 1.53k, Maryland, USA), and 151 
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the particle size and the particle aspect ratio (PAR) were determined. PAR was calculated with the following 152 

equation: 153 

𝑃𝐴𝑅 =
𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ℎ𝑒𝑖𝑔ℎ𝑡

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
                                  (1) 154 

2.3.2. ATR-Fourier transform infrared (FTIR) spectroscopy analysis 155 

FTIR assay was employed to analyze the bonding arrangements and functional groups of the constituents 156 

present in free and encapsulated extracts to determine the possible interactions. For the analyses, a Bruker 157 

FT-IR VERTEX 80/ 80v (Boston, USA) in Attenuated Total Reflectance mode (ATR) with a platinum crystal 158 

was used to obtain the FTIR spectra. The measurements were recorded from 4000 to 400 cm-1 159 

wavenumber range, at a resolution of 4 cm-1 and 32 scans. 160 

2.3.3. X-Ray diffraction analysis (XRD) 161 

XRD assay was performed to determine the presence of crystalline polymorphisms in the samples 162 

employing an X-Ray Diffractometer X Pert PRO MRD system (Malvern Panalytical Ltd., Royston, UK). The 163 

analyses were carried out at room temperature, and samples were observed at a voltage of 45 kV and 164 

40 mA using angular scans from 5.0° to 50° (2θ) with a Cu source, X-ray tube (λ of 1.54056 Å). The 165 

information was collected during 174 s. For 2θ the fine calibration offset was -0.0372°. 166 

2.3.4. Thermogravimetric analysis (TGA) 167 

Measurements were performed using a simultaneous thermal analyzer and a differential scanning 168 

calorimeter (TGA/DSC 3+, Mettler Toledo, Columbus, USA). Each sample (2.5 mg) was placed in the 169 

equipment´s scale on an alumina crucible, and heated at rate of 5 °C/min. The heating was from 30 to 500 170 

°C under a nitrogen atmosphere. 171 

2.3.5. Extract release from microcapsules 172 

To determine the extract release from the microcapsules (MC-RmA and MC-RmO), samples were treated 173 

using two treatments: ultrasound (U) or agitation (A). For the ultrasonic bath release, the methodology of 174 

Šturm et al. (2019) was followed with some modifications. Firstly, 10 mg of microcapsules were placed in 175 

0.5 mL of mili-Q water and sonicated for 5 min. Then, the solutions were centrifuged at 13,300 rpm for 15 176 
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min. In the second method, the same concentration was used, but the solutions were kept in agitation for 1 177 

h. The supernatant of the solutions was used for TPC, DPPH, ABTS, and FRAP assays. 178 

2.3.6. Total phenolic content (TPC) by Folin-Ciocalteu 179 

The TPC released from the microcapsules was determined using the Folin-Ciocalteu (FC) method, following 180 

the methodology of Müller et al. (2010) with minor modifications. Twenty microliters of the supernatant were 181 

mixed with 100 µL of diluted FC solution (1:10 v/v, in water) for 5 min in a 96-well microplate, and 75 µL of 182 

Na2CO3 (7.5 % w/v) were added. The reaction was incubated for 5 min at 40 °C, cooled and kept at room 183 

temperature for 30 min more under dark conditions. The absorbance was measured at 750 nm on a Sinergy 184 

H1 Hybrid Reader microplate equipment (Biotek, Vermont, USA), and the values were compared with a GA 185 

calibration curve (2.5-200 mg/L, R2=0.9994). The results were expressed as mg GA equivalents per gram 186 

of microcapsules (mg GA/g MC). All experiments were performed in quadruplicate. 187 

2.3.7. Radical scavenging capacity 188 

2.3.7.1. DPPH radical scavenging activity 189 

The scavenging capacity for DPPH was measured according to the method described by Guía-García et 190 

al. (2021), with minor modifications. Twenty-five microliters of the supernatant were placed in a 96-well 191 

microplate and mixed with 200 µL of DPPH solution (150 µM, dissolved in absolute ethanol). The reaction 192 

was incubated at room temperature for 30 min under dark conditions. The absorbance was measured at 193 

520 nm in a Sinergy H1 Hybrid Reader microplate equipment (Biotek, Vermont, USA), using absolute 194 

ethanol as control. The scavenging capacity was expressed as percentage of Radical Scavenging Activity 195 

(%RSA), using the following equation: 196 

𝑅𝑆𝐴 (%) = (
𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙− 𝐴𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑐𝑜𝑛𝑡𝑟𝑜𝑙
) 𝑥 100  (2) 197 

where Acontrol= control absorbance and Asample= sample absorbance. All assays were carried out in 198 

quadruplicate. 199 

 200 

 201 
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2.3.7.2. ABTS radical scavenging activity  202 

The ABTS assay was performed based on the method of Jesus et al. (2019), with minor modifications. The 203 

ABTS solution was prepared at concentration of 7 mM in milli-Q water and mixed with a potassium 204 

persulfate solution (2.45 mM) (1:1), the mixture was kept during 14-16 h at 4 °C under dark conditions to 205 

complete the reaction. Then, 10 µL of the supernatant were mixed with 200 µL of ABTS solution (adjusted 206 

with ethanol at 20 % to an absorbance of 0.700 ± 0.010 at 734 nm) in a 96-well microplate and incubated 207 

for 10 min under dark conditions at room temperature. The absorbance was measured at 734 nm in a 208 

Sinergy H1 Hybrid Reader microplate equipment (Biotek, Vermont, USA), using water as control. The 209 

results were expressed as %RSA as described in section 2.2.7.1 according to Equation 2. All experiments 210 

were conducted by quadruplicate. 211 

2.3.7.3. Ferric reducing capacity by FRAP assay 212 

The ferric reducing capacity of the microcapsules content was evaluated following the method described 213 

by Guo & Jauregi (2018), with minor modifications. In a microcentrifuge tube was added 5 µL of the 214 

supernatant and mixed for 15 s with 150 µL of FRAP reagent (83.33 % of acetate buffer (300 mM), 8.33 % 215 

of TPTZ (10 mM) in HCl 40 mM, and 8.33 % of ferric chloride hexahydrate aqueous solution (20 mM)). 216 

Then, 100 µL were transferred to a 96-well microplate and the absorbance was measured at 595 nm in a 217 

Sinergy H1 Hybrid Reader microplate equipment (Biotek, Vermont, USA). The results were expressed as 218 

ascorbic acid equivalents (AA), using an ascorbic acid standard curve (1.5-400 mg/L, R2=0.9992). All 219 

assays were made by quadruplicate. 220 

2.3.8. Antifungal properties 221 

2.3.8.1. Fungal strains 222 

The Fusarium oxysporum strain (NCBI, accession no. MT001892) was acquired by CICY (Yucatan Center 223 

for Scientific Research, Yucatan, Mexico) and Rhizopus stolonifer strain (CDBC accession no. 1384) was 224 

purchased from CINVESTAV (Center for Research and Advanced Studies of the National Polytechnic 225 

Institute, CDMX, Mexico). 226 

 227 
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2.3.8.2. Microdilution assay 228 

The antifungal activity was made following the method report by Flores-López et al. (2016) with minor 229 

modifications. First, spore’s suspensions of each strain were prepared by pouring a sterile Tween-80 230 

solution (0.1%, w/w) onto a Petri dish containing 7-day-old fungi to release the spores. Then, the 231 

suspensions were mixed, and the spores were counted using a Neubauer chamber. Subsequently, sterile 232 

broth was added to the spore suspension to obtain the desired concentration of 104 spores/mL. After this, 233 

different amounts of microcapsules (0.10, 0.20, 0.30, 0.40, 0.50, and 0.60 %, w/v) were diluted with 100 µL 234 

of SDB and placed in a sterile 96-well microplate, followed by the addition of 100 µL of a spore’s suspension 235 

of each strain. A positive control of 100 µL of SDB and 100 µL of spore’s suspension was used. The samples 236 

were mixed and incubated at 25 ± 2 °C for 36 h, the fungal growth was measured by changes in the optical 237 

density (OD) at 530 nm in a Sinergy H1 Hybrid Reader microplate equipment (Biotek, Vermont, USA). The 238 

percentage of growth inhibition (%) was calculated through Equation 3: 239 

𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 (%) = (
𝑂𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑂𝐷𝑠𝑎𝑚𝑝𝑙𝑒

𝑂𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙
) 𝑥100                  (3) 240 

where ODcontrol, represents the optical density of the control and ODsample represents the optical density of 241 

each treatment. All experiments were carried out in triplicate. 242 

2.4. Effect of microencapsulated extracts on strawberry fruit decay 243 

To evaluate the effect on strawberry fruit decay, only the microcapsules containing RmA were selected, as 244 

they presented the best in vitro results of antioxidant and antifungal activities.  245 

A coating containing microcapsules (RmA) was prepared using a structured water vehicle, previously 246 

optimized for application in berries: 0.24 % (w/v) of lyophilized chia mucilage, 0.15 % (w/v) CaCl2 and 247 

0.05 % (w/v) glycerol (Charles-Rodríguez et al., 2021). Three treatments were evaluated: uncoated 248 

(control); coating with 0.25 % (w/v) and coating with 0.50 % (w/v) of microcapsules containing RmA, 249 

respectively. The treatments were applied on strawberry fruit by aspersion and left to dry in a convection 250 

oven at 25 °C for 25 min (Biobase Biodustry Shandong Co, Ltd., Jinan, SHG, China). For each treatment, 251 

three repetitions of 10 strawberries were evaluated (n=30, per treatment), the fruits were placed in 252 
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performed polypropylene plastic trays and stored at 4 ± 1 °C and 85 % RH for 14 d. Physicochemical and 253 

decay evaluations were analyzed at regular intervals (0, 2, 4, 6, 8, 10, 12, and 14 d).  254 

2.5. Physicochemical analyses 255 

2.5.1. Weight loss 256 

Weight loss of strawberries (n=30, per treatment) during storage was evaluated by means of the mass 257 

changing every two days in each fruit using an analytical balance (Ohaus, New Jersey, USA), and the 258 

results were expressed as percentage using the following equation: 259 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑙𝑜𝑠𝑠 (%) =  
𝑊0−𝑊𝑑

𝑊0
𝑥100             (4) 260 

where W0 is the initial weight, and Wd is the respective weight of every test day. 261 

2.5.2. Texture analyses 262 

The firmness of fruit was measured two times at different center region of seven fruit per replicate of each 263 

treatment at day 0 and 14 of the experiment. A texture analyzer CT3 (Brookfield, USA), equipped with a 6 264 

mm diameter size cylindrical probe was used. The conditions were the following: trigger force of 0.05 N, 265 

penetration depth of 5.0 mm and test speed of 5.0 mm/s. The results were expressed in Newtons (N). 266 

2.5.3. Color 267 

The change in color parameters (L*, a* and b*) of the strawberry surface was measured using a Minolta 268 

colorimeter (CR-400, Minolta, Tokyo, Japan) every two days. The readings were made in two different 269 

points on the fruit surface. The results were reported in function of chromaticity (C*), hue angle (H*) and 270 

redness values (a*/b*), calculated by the following equations (Quintana et al., 2021; Salas-Méndez et al., 271 

2019): 272 

𝐶∗ =  √(𝑎∗2) + (𝑏∗2)          (5) 273 

𝐻∗ =  𝑡𝑎𝑛−1 (
𝑏∗

𝑎∗
)       (6) 274 

𝑅𝑒𝑑𝑛𝑒𝑠𝑠 = (
𝑎∗

𝑏∗
)       (7) 275 
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2.5.4. Fungal decay 276 

For fungal decay evaluation, the stored strawberries (n=30) were visually inspected for the presence of 277 

mold growth every 2 d, and any fruit with visible spoilage was considered affected. The following equation 278 

was used to calculate the fungal decay percentage in each treatment (Quintana et al., 2021): 279 

𝐹𝑢𝑛𝑔𝑎𝑙 𝑑𝑒𝑐𝑎𝑦 (%) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑎𝑦 𝑓𝑟𝑢𝑖𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑢𝑖𝑡
𝑥100           (8) 280 

2.6. Statistical analysis 281 

The results were expressed as means ± standard deviations. Minitab software version 17.0 (State College, 282 

PA, USA) and GraphPad Prism version 8.0.1 (La Jolla California, USA) were used for data analyses. One-283 

way analyses of variance (ANOVA) were used to detect any significant differences followed by Tukey’s 284 

mean comparison test (p<0.05). 285 

3. Results and discussion 286 

3.1. Morphology and particle size of microcapsules 287 

The ethanol and the extract amount were determining factors in the selection of the encapsulation 288 

conditions; the use of 50 % ethanol did not allow a correct evaporation of the solvent, leading to droplets, 289 

and the use of higher extract concentrations increased the presence of droplets in the samples (data not 290 

shown). On the other hand, with a concentration of 75 % ethanol and 1 mg/mL of extract and voltage of 14 291 

and 17 kV, the best structures were obtained for both the RmA and RmO extracts (T4 and T8, respectively). 292 

Fig. 1 shows that these processing conditions allowed to produce homogeneous and spherical structures 293 

with a smooth surface. This was confirmed by the PAR results (Table 2), where structures with values 294 

closer to 1 are more closely related to spherical shapes for the encapsulates (Silva et al., 2021). On the 295 

other hand, the particle size ranged from 2.05 to 2.41 µm as indicated in Table 2. This size range classifies 296 

the samples as microcapsules, given that they fall within the typical range of 1-1000 µm (Shishir et al., 297 

2018). The significative differences in the particle size between MC-RmA and MC-RmO could be explained 298 

by their components which can influence in the conductivity of the solutions and affect the particle size 299 

(Bhushani et al., 2017). These results are in agreement with those obtained in the encapsulation of ferulic 300 
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acid, where spherical microcapsules were obtained through spray-drying using HPMC as wall material, 301 

having a suitable incorporation of phenolic acid within the structures (Yu et al., 2021).  302 

3.2. ATR-FTIR analyses 303 

In Fig. 2 is shown the FTIR spectra of HPMC powder, empty MC-HPMC, and the free (RmA and RmO) and 304 

encapsulated extracts (MC-RmA and MC-RmO). For the HPMC powder and MC-HPMC, the peak around 305 

3460 cm-1 corresponds to the —OH stretching vibration, and the presence of —CH aliphatic stretching 306 

vibrations was confirmed by the absorption peak at 2908 cm-1, while the two absorption peaks of 1454 and 307 

1371 cm-1 could be attributed to the —CH3 asymmetric vibrations (Sheng et al., 2021). Besides, it was 308 

observed a strong peak around 1060-1020 cm-1 corresponding to the —CO stretching vibrations in all the 309 

samples (Wang et al., 2021). On the other hand, for unencapsulated extracts (RmA and RmO), the region 310 

around 3270-3300 cm-1 indicated the —OH stretching vibrations from phenolic compounds and ethanol 311 

(extraction solvent), whereas the absorption peak of 2926 cm-1 corresponds to the symmetric aliphatic 312 

stretching vibrations (—CH2) (Hu et al., 2019). The absorption peak at 1709 cm-1 is related to the —C=O 313 

stretching, and in the region of 1590 cm-1 the absorption peak corresponds to the aromatic ring stretching 314 

(Zhao et al., 2022). However, in the microcapsules containing RmA and RmO some minor changes in the 315 

spectra occurred, as the absorption peaks (1590-1700 cm-1) of extracts were covered, indicating that 316 

extracts were correctly incorporated within the microcapsules (Sheng et al., 2021). Moreover, the intensity 317 

of the absorption peak around 3270-3330 cm-1 (presented in the extracts) decreased, and it was displaced 318 

to the spectral area of 3460 cm-1. This could be explained by the hydrophobic interactions or hydrogen 319 

bonds formation between the polymer and the phenolic compounds from the extracts (Moreno et al., 2018). 320 

The FTIR results confirm the correct encapsulation of extracts inside the HPMC microcapsules produced 321 

by electrospray, providing protection, and reducing their susceptibility to environmental conditions. 322 

3.3. XRD analyses 323 

The XRD analysis is useful to identify the degree of crystallinity in samples, where a crystalline material 324 

exhibits specific and well-defined peaks in the diffractogram, while an amorphous material shows a rounded 325 
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and diffuse peak (Papoutsis et al., 2018). Amorphous materials have higher water-solubility and 326 

hygroscopicity compared with crystalline materials (Botrel et al., 2014).  327 

Fig. 3A shows the X-ray diffractograms of the HPMC microcapsules and those containing RmA and RmO 328 

extracts. In general, all samples exhibited a diffuse peak around 2θ=8° and, according to the shape of the 329 

peak in the diffractograms (i.e., long and flattened), all samples also showed an amorphous structure. 330 

These results are in agreement with Yu et al. (2021) that encapsulated ferulic acid using HPMC by spray-331 

drying, observing a single diffuse and broad peak, representative of amorphous materials. These types of 332 

structures are desirable, as amorphous structures usually have higher fluidity and solubility (Dalmolin et al., 333 

2016); meanwhile, crystalline structures dissolve more slowly because only the surface exposed to the 334 

solvent tends to dissolve first (Ban et al., 2020).  335 

3.4. TGA analyses  336 

Commonly, the bioactive compounds present in plant extracts are thermally unstable; in specific, 337 

polyphenols are very sensitive to high temperatures, which can cause the breakdown of the glucosyl moiety 338 

of the aglycone present in these compounds, altering the bioactivity and bioavailability of the natural 339 

compound (Bedrníček et al., 2020).  340 

Thermal analysis can provide information about the thermal stability of the samples and shows the amount 341 

of moisture and volatile compounds present in microparticles; and also, the thermal breakdown of the wall 342 

polymers (İnan & Özçimen, 2021). In Fig. 3B, the stage of major degradation occurred between 300-360 °C, 343 

and it is associated with the depolymerization and thermal breakdown of the polymer (Cho et al., 2019). 344 

The results demonstrated that the HPMC polymer can effectively protect the R. microphylla extracts from 345 

high temperatures, thereby preventing their thermal degradation. 346 

3.5. TPC and antioxidant capacity of microcapsules 347 

The different bioactive properties of microcapsules containing Rm extract depend on the effective release 348 

of the compounds from the polymeric matrix, since an unsuccessful release could cause a decrease in their 349 

bioactivity. Several works have reported the correlation between the TPC and the antioxidant capacity of 350 

plant extracts, as phenolic compounds present functional groups able to interact with the corresponding 351 
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molecules in each antioxidant assay (DPPH, ABTS, FRAP, etc.) (Xu et al., 2007; López-Romero et al., 352 

2018).  353 

Two treatments (ultrasound and agitation) were conducted to allow the release of the content of the 354 

microcapsules, and the results are presented in Table 3. In the case of MC-RmA, there were no significant 355 

differences between the treatments used for TPC and antioxidant capacity. However, for MC-RmO, the 356 

samples using only agitation presented a higher TPC and better antioxidant capacities (p<0.05) compared 357 

with the microcapsules treated with ultrasounds. This difference might be caused by the effect of sonication 358 

on phenolic compounds, because the cavitation may cause a slight degradation generating hydroxyl 359 

radicals (Aguilar-Villalva et al., 2021; Kaderides et al., 2019; Martins Strieder et al., 2019). In addition, MC-360 

RmA showed the higher values of TPC and the highest RSA values for DPPH and ABTS assays. As 361 

previously reported by Guía-García et al. (2021), RmA extract is composed of a more complex structure 362 

(gallic acid, p-cumaric+epicatechin, catechin, ferulic acid, ellagic acid and resveratrol) than RmO (gallic 363 

acid and ellagic acid), which could partially explain the differences in release behavior.  364 

3.6. Antifungal activity of microcapsules 365 

Phytopathogenic fungi cause important losses in fruit and vegetables. F. oxysporum is an important fungus 366 

involved in preharvest losses in berries, causing the Fusarium wilt in strawberry crops, a disease that affects 367 

the whole plant system (Henry et al., 2017). In addition, R. stolonifer is a fastest-growing fungus and its 368 

invasion causes the development of a cottony mycelium with characteristic black spores in many fruits and 369 

vegetables during pre and postharvest stages, including the berries (Bautista-Baños et al., 2014). Plant 370 

extracts have recently been shown to successfully inhibit the development of phytopathogenic fungi, in vitro 371 

(Mahdi et al., 2021; Wang et al., 2018). The inhibition percentages of the microcapsules against 372 

F. oxysporum and R. stolonifer are shown in Fig. 4. The results evidenced that the MC-RmA had the best 373 

(p<0.05) antifungal activity against both fungi compared with MC-RmO, with inhibition percentages of 374 

56.4±4.2 % and 46.3±1.2 % against F. oxysporum (Fig. 5a) and R. stolonifer (Fig. 5b), respectively. The 375 

two highest concentrations tested (0.50 and 0.60 %, w/v) did not show a significant difference in both cases. 376 

The higher antifungal effect of MC-RmA could be attributed to their antioxidant capacity previously reported, 377 

and a major number of phenolic compounds in the extract, both characteristics associated with the 378 
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promotion of antifungal activity (Jasso de Rodríguez et al., 2017). Since the MC-RmA exhibited higher 379 

antioxidant and antifungal properties, it was selected to evaluate its effect on the shelf life of strawberry 380 

fruit. 381 

3.7. Effect of microcapsules containing RmA on strawberry fruit 382 

3.7.1. Weight loss and firmness 383 

Fruit weight loss is mainly associated with the respiration rate and the release of water into the environment 384 

(Yang et al., 2019). The effect of functionalized microcapsules on weight loss is presented in Fig. 5a. The 385 

highest weight loss (p<0.05) was in control fruit (uncoated) during all storage period. Besides, the uncoated 386 

fruit showed a significant difference (p<0.05) in weight loss on each day evaluated. At the end of the storage 387 

(14 d), the strawberries treated with 0.25 % (20.35±1.36 %) and 0.50 % (19.18±0.38 %) of MC-RmA had 388 

significantly (p<0.05) less weight loss than uncoated strawberries (40.86±1.64 %). This results confirm that 389 

the use of MC-RmA treatment provided a barrier capable to reduce the water loss by acting as a coating 390 

on the fruit surface (Salas-Méndez et al., 2019). On the other hand, there was no significant difference 391 

between the amount of MC-RmA used. These results are consistent with a previous study of Guerreiro et 392 

al. (2015), in which edible coatings containing 0.1 and 0.2 % eugenol did not show significant differences, 393 

but both were an effective barrier to water loss during the storage of strawberries for 14 d at 0.5 °C. In 394 

addition, the use of HPMC as an encapsulating agent in synergy with the use of chia mucilage based 395 

coating as vehicle, could favor the formation of a semi-permeable matrix (Gol et al., 2013; Urbizo-Reyes et 396 

al., 2020). Gol et al. (2013) reported a lower weight loss in strawberries treated with an HPMC edible coating 397 

at day 12 of storage at 11 ± 1 °C, associating this effect to the formation of the barrier on the surface of the 398 

fruit.  399 

The strawberries’ firmness is an important quality parameter for consumers, and its decrease is related to 400 

the loss of cell wall strength caused by the degradation of the middle lamella of cortical parenchyma cells, 401 

and also by the loss of turgidity due to the activity of degrading enzymes (e.g., pectinamethylesterase and 402 

polygalacturonase) (Oliveira et al., 2021). In this study, the fruits treated with MC-RmA showed a significant 403 

less decrease of their initial firmness (MC-RmA 0.25%: 5.26±1.10% of decrease; MC-RmA 0.50%: 404 

6.98±1.14% of decrease) in comparison with uncoated strawberries (64.17±0.61% of decrease) at the end 405 
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of storage, being consistent with the results of weight loss. Similarly, Li et al. (2020) reported that the active 406 

film of microcapsules containing oregano essential oil allowed the highest firmness values in strawberries 407 

due to the decrease in the moisture content surrounding the fruit surface. In addition, the coatings act as a 408 

barrier to O2 uptake and metabolic activity is slowed down (Sogvar et al., 2016). The MC-RmA showed to 409 

have a positive effect on fruit firmness, resulting in improved fruit quality by reducing their softness during 410 

the storage. 411 

3.7.2. Color 412 

Color significantly influences the acceptability of strawberry fruits, and it is related to their ripening process 413 

(Gol et al., 2013). Color change in fruits was monitored by means of chroma, Hue angle, and redness 414 

values (Fig. 6). For chroma and redness there was a significant reduction from day 0 to day 14 in all 415 

treatments (p<0.05), which results in a loss of fruit brightness and changes in the fruit color. Nevertheless, 416 

treated fruit showed no significant changes compared to untreated fruit in terms of C*, H* and redness on 417 

each day of evaluation. Similarly, Guerreiro et al. (2015) found no differences between untreated 418 

strawberries and those treated with a pectin coating containing essential oils. This phenomenon is also 419 

reported in other studies, where slight changes in fruit color are considered a natural occurrence due to 420 

factors such as loss of freshness, oxidative processes, and microbial contamination during storage (Fan et 421 

al., 2009; Liguori et al., 2021; Pinzon et al., 2020; Valenzuela et al., 2015). These results are important 422 

because significant changes in fruit color induced by the treatments could affect consumer acceptability; 423 

and, in this study it is demonstrated that it is possible to incorporate the bioactive properties of MC-RmA 424 

without negatively altering the color of the fruit. 425 

 426 

3.7.3. Fungal decay 427 

Decay in strawberries is mainly caused by their high susceptibility to postharvest fungal attack, mainly by 428 

R. stolonifer, Botrytis cinerea, Penicillium spp., and Colletotrichum spp. (Feliziani & Romanazzi, 2016). The 429 

results of fungal decay are shown in Fig. 5b, and it can be observed that after day 8, the coated fruit started 430 

to show a significant less fungal decay compared with uncoated fruits and during the following days, the 431 
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decay was faster and more significant in the control treatment. This behavior demonstrates the particularity 432 

of MC-RmA to gradually release their content (Kittitheeranun et al., 2015). Besides, a concentration-433 

dependent effect was observed at 14 d of storage, as the fruits treated with 0.25 % MC-RmA presented a 434 

higher (p<0.05) fungal decay compared to those treated with 0.50 %. Likewise, Fan et al. (2019) reported 435 

that a higher amount of lotus leaf extract incorporated in coatings significantly reduces decay in goji berries 436 

due to the presence of a higher amount of bioactive compounds. 437 

Fig. 7 shows the visual evolution of the strawberry fruits during the storage period, in which it can be 438 

observed that fungal development was faster in the control group. A similar behavior was previously 439 

reported by Liu et al. (2021), as coated strawberries (containing asparagus waste extract)  showed better 440 

control of P. italicum, than uncoated fruit after 8 d of storage at 25 °C and 80% RH. Other works have also 441 

reported interesting results on the antifungal effect of coatings or microcapsules containing plant extracts 442 

on strawberry fruits (Sangsuwan et al., 2016; Oliveira et al., 2021; Saleh & Abu-Dieyeh, 2022), which is an 443 

indicator of the potential of these technologies to extend the shelf life of these fruits. These results prove 444 

that the use of MC-RmA effectively reduces the decay of strawberry fruits due to their bioactive compounds 445 

with antifungal properties, besides, the encapsulation provides a slow release of its content, thus extending 446 

their activity. 447 

4. Conclusions 448 

Microcapsules containing extracts from R. microphylla fruit were developed using electrospray technique 449 

and HPMC as encapsulating agent, which showed a spheric shape and particle size between 2.05-2.41 µm. 450 

With both concentrations of MC-RmA evaluated (0.25 and 0.5 %, w/v), the treated fruits showed a decrease 451 

in weight loss, fungal decay, and firmness, compared with the uncoated fruits. Therefore, the effectiveness 452 

of MC-RmA in extending the shelf life of strawberry fruits under the test storage conditions (4 °C for 14 d 453 

and 85 % HR) was confirmed. The results are promising and demonstrate the positive effect of the 454 

functionalized microcapsules on the quality of strawberries. They provide a novel biorational alternative for 455 

use in the postharvest stage, where the use of synthetic product is avoided due to the proximity of the final 456 

product to the consumer. This technology could help to reduce the product losses while maintaining quality 457 

Jo
urn

al 
Pre-

pro
of



19 

 

attributes. However, it is important to evaluate feasible application methods, as well as to design appropriate 458 

vehicles to improve the use of this technology.  459 
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Figures Captions 

 

 

Fig. 1. SEM images of the developed microcapsules and their particle diameter distribution. A) MC-HPMC 

(T2); b) MC-RmA (T4); and c) MC-RmO (T8). 

Fig. 2. FTIR spectra of free extracts and encapsulated extracts. a) HPMC powder; b) MC-HPMC; c) RmA; 

d) MC-RmA; e) RmO; f) MC-RmO. 

Fig. 3. X-ray diffractograms (A) and TGA curves (B) of developed microcapsules. a) MC-HPMC; b) MC-

RmA; and c) MC-RmO. 

Fig. 4. Mean inhibition percentage of microcapsules containing RmA and RmO against (a) F. oxysporum 

and (b) R. stolonifer. Different uppercase letters indicate statistical differences between treatments in each 

concentration (p<0.05). Different lowercase letters indicate statistical differences between concentrations 

in each treatment (p<0.05). 

Fig. 5. Influence of MC-RmA at different concentrations on strawberry fruits stored at 4±1 °C and 85 % HR. 

(a) Weight loss percentage, and (b) fungal decay percentage. Different uppercase letters indicate statistical 

differences between days for each treatment (p<0.05). Different lowercase letters indicate statistical 

differences between treatments in each day (p<0.05). 

Fig. 6. Changes in color parameters of control (uncoated) and treated strawberries with MC-RmA at 

different concentrations and stored at 4±1 °C and 85 % HR. a) Chroma, b) Hue angle, c) redness. 

Fig. 7. Appearance changes of strawberries treated with HPMC microcapsules containing RmA (0.25 and 

0.50 %, w/v) and control, stored at 4±1 °C and 85 % HR. 
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Table 1.  

Electrospraying testing conditions. 

Treatment Extract 
Extract 
concentration  
(mg/mL) 

Ethanol concentration 
(%, v/v) 

Voltage 
(kV) 

T1 Blank (HPMC) 3.0 % 50 10 

T2 Blank (HPMC) 3.0 % 75 10 

T3 RmA 1.0 50 16 

T4 RmA 1.0 75 14 

T5 RmA 2.5 50 18 

T6 RmA 2.5 75 15 

T7 RmO 1.0 50 19 

T8 RmO 1.0 75 17 

T9 RmO 2.5 50 25 

T10 RmO 2.5 75 ** 

** The extract could not be solubilized. 
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Table 2.  

Particle size and particle aspect ratio of selected samples. 

Sample Particle Size (µm) PAR 

MC-HPMC 2.31±0.62a 1.10±0.08a 

MC-RmA 2.41±0.57a 1.08±0.07a 

MC-RmO 2.05±0.50b 1.08±0.06a 

Different letters in the same column indicate statistical differences 

(p<0.05). 
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Table 3.  

Total phenolic content (TPC) and antioxidant capacity of HPMC microcapsules with 

and without RmA and RmO. 

 

Assay Treatment 

Sample 

MC-RmA MC-RmO MC-HPMC 

TPC (mg GA/g MC) Ultrasound 3.08±0.30a 0.51±0.08b n.d. 

Agitation 2.94±0.39a 1.45±0.21a n.d. 

DPPH (mg/mL, %RSA) Ultrasound 17.15±0.36a 3.61±0.77b n.d. 

Agitation 16.52±0.39a 10.46±0.62a n.d. 

ABTS (mg/mL, %RSA) Ultrasound 16.20±0.82a 2.87±0.74b n.d. 

Agitation 15.24±1.35a 7.23±0.93a n.d. 

FRAP (mg AA/g MC) Ultrasound 4.04±0.17a 0.52±0.09b n.d. 

Agitation 3.99±0.92a 1.30±0.16a n.d. 

Different uppercase letters in the same row indicate statistical differences (p<0.05) between release 

treatments for each assay.  

n.d. not detected. 

 

Jo
urn

al 
Pre-

pro
of



Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jo
urn

al 
Pre-

pro
of



Fig. 1. 
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Fig. 2. 

 

  

Jo
urn

al 
Pre-

pro
of



Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Fig. 7. 
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Highlights 

 

• Spherical-microcapsules with R. microphylla extracts were obtained by electrospray  

• HPMC and electrospray enabled extract incorporation into microcapsules 

• Functionalized microcapsules delay fungal decay and weight loss in strawberries 

• Microcapsules with R. microphylla extracts are a novel postharvest technology 
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