
Citation: Miranda, J.P.D.; Barros,

L.A.M.; Pinto, J.G. A Review on

Power Electronic Converters for

Modular BMS with Active

Balancing. Energies 2023, 16, 3255.

https://doi.org/10.3390/en16073255

Academic Editors: Danial Karimi

and Amin Hajizadeh

Received: 7 March 2023

Revised: 30 March 2023

Accepted: 4 April 2023

Published: 5 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

A Review on Power Electronic Converters for Modular BMS
with Active Balancing
João P. D. Miranda 1,* , Luis A. M. Barros 1,2 and José Gabriel Pinto 1,2

1 Department of Industrial Electronics, University of Minho, 4800-058 Guimarães, Portugal
2 ALGORITMI Research Centre/LASI, University of Minho, 4800-058 Guimarães, Portugal
* Correspondence: pg47332@alunos.uminho.pt

Abstract: Electric vehicles (EVs) are becoming increasingly popular due to their low emissions,
energy efficiency, and reduced reliance on fossil fuels. One of the most critical components in an
EV is the energy storage and management system, which requires compactness, lightweight, high
efficiency, and superior build quality. Active cell equalization circuits such as those used in battery
management systems (BMS) have been developed to balance the voltage and state of charge (SoC) of
individual cells, ensuring the safety and reliability of the energy storage system. The use of these types
of equalization circuits offers several benefits including improved battery performance, extended
battery life, and enhanced safety, which are essential for the successful adoption of EVs. This paper
provides a comprehensive overview of the research works related to active cell equalization circuits.
This review highlights the important aspects, advantages and disadvantages, and specifications.
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1. Introduction

The development of electric vehicles (EVs) is currently growing and is seen as one of
the main technologies to reduce the environmental impact of transportation [1,2]. With
the increase in the dependence on fossil fuel imports and rising oil prices, the search for
alternatives to the traditional transportation system has become increasingly pressing [3].
The transportation sector is a significant contributor to global greenhouse gas emissions,
accounting for over 25% of total emissions worldwide [4]. Within this sector, private
cars such as passenger cars, sport utility vehicles (SUVs), and small vans are the largest
source of emissions, accounting for roughly 60% of the total [5]. On the other hand, global
greenhouse gas emissions are also increasing due to air traffic, leading to the research and
study of aircraft electrification to improve the management of electrical power onboard
aircraft and reduce gas emissions [6,7]. The replacement of fossil fuel-powered vehicles
with electric vehicles holds the promise of a future with cleaner air and a reduction in the
harm caused by humanity to the environment as well as to meet the Kyoto restrictions,
which aim to limit greenhouse gas emissions and combat climate change [8].

The electronic industry is facing new challenges as the sales of EVs rapidly increase [9].
According to the research described in [10–12], the key focus areas for improvement include
reducing the size of grid-connected battery chargers, developing dc–dc converters for the
interface between sources and the direct current (dc)-bus, and creating new converter
topologies for the traction system. Another crucial factor is energy storage. Energy is
typically stored in a battery pack consisting of several groups of cells connected in se-
ries/parallel [13,14]. To ensure that the batteries operate properly and within safe limits,
they are usually equipped with an electronic battery management system (BMS) [15,16].
However, commercially available BMSs are quite rudimentary and mainly rely on passive
cell balancing (putting a resistor in parallel with the most charged cells to dissipate energy
until they have the same charge level as the other cells in the pack) [17,18]. The energy
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waste of passive BMSs during cell balancing makes all too evident the importance and
opportunity for research and the development of more efficient BMS technologies [19].

A BMS should perform monitoring and protection, contributing to the integrity and
longevity of the batteries. For this, it is necessary to measure parameters such as voltage,
current, and temperature and estimate parameters such as the state of charge (SoC), depth
of discharge (DoD), state of health (SoH), and internal resistance [20–22]. In the interest of
safety, the BMS must prevent each cell from exceeding the maximum voltage, the maximum
temperature, the minimum voltage, and the maximum supported charging and discharge
current. For correct monitoring and protection, it is necessary to take into consideration
the recommendations of the battery manufacturer. If any of these scenarios occur, the BMS
must stop the harmful situation or require it to stop. Figure 1 represents a diagram that
summarizes the functions of a BMS.
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There are several works in the literature presenting various battery equalizer circuits
for VEs [23,24]. More than citing the existing topologies, this work provides a comprehen-
sive technical and theoretical analysis. In addition, it presents a discussion of the various
converter circuits, always applying the same principles, from the first to the last topology,
allowing for a better perception of the main characteristics, advantages, and disadvantages
of each one. Additionally, a helpful and intuitive comparison based on the number of
components and efficiency performance for each topology is provided. The rest of the
paper is organized as follows. In Section 2, an in-depth analysis of active cell equalizer
circuits applied to EVs is presented. In Section 3, a comparison of the active cell equalizer
circuits in terms of the component count and equalizing efficiency is performed. Finally,
Section 4 presents the main conclusions including a critical point of view about the topic.

2. Active Cell Equalizer Circuits Applied to EVs

In the field of electric vehicles, the proper functioning of the battery system is crucial
for its performance and longevity. One of the ways to achieve this is through the use of
cell equalizer circuits in the battery pack to maintain a uniform SoC. This can be achieved
through the use of passive or active cell equalizer circuits. Passive cell equalizer circuits rely
on passive components such as resistors to balance the state of charge among the cells in a
battery pack, but this balancing method has the drawback of energy loss due to dissipation
in the resistors. These methods suffer from energy inefficiency and result in a final SoC
that is equal to that of the cell with the lowest SoC [25,26]. Alternatively, the active cell
equalization method employs active circuits to transfer energy from highly charged cells to
depleted cells, thereby circumventing energy losses, and ensuring the uniformity of the
final SoC across all cells. In this way, they can ensure that the final SoC is the average of
the previous SoCs for all cells [27]. In this paper, the focus was on active cell equalizer
circuits applied to EVs to explore their advantages and limitations as well as the different
approaches used to implement them.
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2.1. Switched-Capacitor

The switched-capacitor (SC) converter allows for active balancing and its main advan-
tages are the absence of bulky magnetic components and simplicity in control since it is
controlled using a fixed frequency and duty cycle. Thus, the converter can be developed
with a reduced size and cost [28]. The conventional structure of the SC converter is present
in Figure 2a. In this structure, the energy only flows between two adjacent cells. The
balancing time is also high, which makes the structure difficult to use with a large number
of cells. The authors in [29] presented a different structure, as demonstrated in Figure 2b,
whose objective was to mitigate the problems of the conventional structure. Analogously to
the conventional method, all the semiconductors are controlled by a pair of complementary
signals with fixed frequency and duty cycle. The main advantage of this converter is the
possibility of energy being transferred from the cell with the highest voltage to the cell
with a lower voltage value. Thus, the balancing time becomes significantly shorter, making
this converter more suitable for a larger number of cells. In addition to this reference, [28]
presented a different converter, but in line with the aforementioned principle. On the other
hand, all of the positive points of the capacitor-based balancing methods are applied, that
is, they depend on the voltage difference between the cells, which may result in a greater
imbalance due to the differences in the internal resistances of the cells [30]. Finally, another
issue of the SC is that the cell voltages cannot be balanced due to the voltage drop on the
controlled semiconductors.
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Figure 2. Switched-capacitor converter: (a) conventional version; (b) improved version proposed
in [29].

From the analysis of Figure 2b, for a battery formed by n cells in series, n capacitors, Cn,
and 4n−3 controlled semiconductors, Sx, are needed, where x is the index of the controlled
semiconductor. Regarding the controlled semiconductors, Sn, they are divided into two
groups, S1 and S2. The control of the SC converter is carried out with the help of a pair of
complementary signals with a short dead time between them in order to prevent a short
circuit to the voltage source, as presented in Figure 3. It is important to note that if the
capacitors are initially discharged, the duty cycle must be gradually increased to prevent
excessively high currents.
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To analyze the behavior of the converter presented in Figure 2b, it is possible to divide
the operation into two stages, as shown in Figure 4. The first stage, T1, begins with the
semiconductor S1 closed and S2 open, as illustrated in Figure 4a. In this stage, there are
two possible situations, that is, if the capacitor voltage is higher than the cell voltage, the
capacitor, Cn, will charge the cell. Otherwise, the capacitor, Cn, will charge through the
cell. The variations in the capacitor voltage and current during the charging process of the
capacitors are expressed in the Equations (1) and (2), where VCnmin is the initial voltage
of capacitor Cn. The Vcelln is the voltage of Cell n, r is the sum of the ESR of the capacitor
and ON-resistance of the switches, and C is the capacitor value. In the case the capacitor
has a higher voltage, Cn will discharge to the battery cell. The variations in the capacitor’s
voltage and current during the discharging process are described by Equations (3) and (4),
where VCnmax is the initial voltage of Cn.

VCn(t) = Vcelln − (Vcelln − VCnmin)e
− t

rC (1)

iCn(t) =
Vcelln − VCnmin

R
e−

t
rC (2)

VCn(t) = Vcelln + (VCnmax − Vcelln)e−
t

rC (3)

iCn(t) =
VCnmax − Vcelln

R
e−

t
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Regarding the second stage, T2, the semiconductor S1 opens and S2 closes, as can be
seen in Figure 4b. Thus, all the capacitors, Cn, are connected in parallel and the load flows
from the capacitors that have a higher voltage to those that have a lower voltage value. For
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Cn with the initial voltage VCnmin, it will be charged by the constant voltage Vav during T2.
The variation in the capacitor’s voltage and current during the charging process can be
expressed by Equations (5) and (6). Similarly, for Cn with the higher initial voltage, VCnmax,
it will discharge to the constant voltage source Vav and the capacitor voltage and current
are expressed by Equations (7) and (8) [31].

VCn(t) = Vav − (Vav − VCnmin)e
− t

rC (5)

iCn(t) =
Vav − VCnmin

R
e−

t
rC (6)

VCn(t) = Vav + (VCnmax − Vav)e−
t

rC (7)

iCn(t) =
VCnmax − Vav

R
e−

t
rC (8)

2.2. Double-Tiered Switched-Capacitor

The double-tiered switched capacitor (DTSC) converter is a derivation of the SC, as
shown in Figure 2a. The main difference between them is that the DTSC uses two levels
of capacitors for energy reduction, as shown in Figure 5. According to what has been
illustrated, for a battery formed by n cells in series, n capacitors, Cn, and 2n controlled
semiconductors, Sx, are needed, where x is the index of the controlled semiconductor. Anal-
ogously to the SC converter, the control of the DTSC converter was also carried out with
the help of a pair of complementary fixed frequency and duty cycle signals [32]. Having
more layers means more paths between the cells, and consequently, less impedance in the
transport of the charge over a specific distance. With this improvement, the cells that are
not directly connected through the capacitor of the first level now have the opportunity
to exchange energy through the capacitors of the second level. As a result, the balancing
time of the DTSC can be significantly reduced without major hardware or control mod-
ifications [33]. On the other hand, although the balancing time is even shorter, there is
still no possibility of a direct energy exchange between all cells. In addition, the same
disadvantages related to the capacitor of the SC converter also apply to this converter [30].
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To analyze the behavior of the converter, it is possible to divide the operation into two
stages (Figure 6). The first stage, T1, begins with the semiconductor S1 being closed and
S2 open, as illustrated in Figure 6a. In this stage, only cells 1 and 2 can exchange energy.
Thus, two cases are possible, that is, if the capacitor voltage is higher than the cell 1 or 2
voltage, the capacitor, Cn, will discharge to charge the cell. Otherwise, the capacitor, Cn,
will charge through the cell. Regarding the second stage, T2, the semiconductor S1 opens
and S2 closes, as can be seen in Figure 6b. In this, only cells 2 and 3 can exchange energy,
with a behavior similar to the first stage [33]. The variation in the capacitor’s voltage and
current during the charging process can be expressed by Equations (9) and (10), where
VCnmax and VCnmin are the initial voltage and final voltage, respectively, and r is the sum of
the ESR of the capacitor and the ON-resistance of the switches.

VCn(t) = (VCnmax − VCnmin)
(

1 − e−
t

rC

)
+ VCnmax (9)

iCn(t) =
VCnmax − VCnmin

R
e−

t
rC (10)
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2.3. Switched Capacitor–Inductor

The switched capacitor–inductor (SCI) or resonant switched-capacitor converter, as
represented in Figure 7, uses two energy-storing elements. This converter presents a scheme
similar to the SC, but an inductor is added in series with the capacitor. The main problem
of the switched capacitor topology, as above-mentioned, is that the cell voltages cannot be
balanced due to the voltage drop on the controlled semiconductors [34]. Therefore, this
converter emerged with the same operating principle and with zero-current switching
(ZCS) to balance the cell voltage automatically. This scheme solves a disadvantage of the SC
converter, since the inductive element opposes sudden changes in the current. Therefore,
current peaks are avoided when switching. However, it is difficult to apply this topology to
systems with a low voltage between cells. This is, if the voltage difference between the col-
lector and the emitter is lower than the forward voltage drop, the controlled semiconductor
will not conduct, resulting in a residual voltage between cells. Furthermore, the compen-
sation current becomes smaller as the voltage difference becomes smaller, resulting in a
higher balancing time. The architecture consists of n cells connected in series, 2n controlled
semiconductors, Sx, n−1 capacitors, Cy, and n−1 inductors, Ly, where x and y are the index
of the controlled semiconductor and capacitors and inductors, respectively [35].
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To analyze the SCI behavior, it is possible to divide the operation into two stages
(Figure 8). The first stage, T1, starts with the semiconductor S1 closed and S2 open, as
illustrated in Figure 8a. In this stage, only cells 1 and 2 can make energy exchanges. Thus,
two cases are possible, that is, if the capacitor voltage is higher than the cell 1 or 2 voltages,
the capacitor Cy and inductor Ly will discharge to charge the cell. Otherwise, the capacitor
Cy and inductor Ly will charge through the cell. The state equations for stage 1 are present in
Equations (11) and (12), and the equations that characterize the voltage across the capacitor
and the resonant current are Equations (13) and (14). ∆Vy is the amplitude of VCy and Im is
the amplitude of the resonant current ir. ω is the resonant angular frequency and is equal
to 1/

√
LyCy, and ϕ is the initial angle of the resonant state.

ir(t) = Cy
dVCy

dt
(11)

Ln
dir
dt

+ VCy = Vcelln (12)

VCy(t) = Vcelln + ∆Vy cos(ωt + ϕ) (13)

ir(t) = Im sin(ωt + ϕ) (14)

Regarding the second stage, T2, the semiconductor S1 opens and S2 closes, as can be
seen in Figure 8b. In this stage, only cells 2 and 3 can make energy exchanges, with the
behavior being similar to the first stage [34]. The equations that characterize the voltage
across the capacitor and the resonant current are shown as (15) and (16).

VCn(t) = Vcelln − ∆Vn cos(ωt + ϕ) (15)

ir(t) = −Im sin(ωt + ϕ) (16)

To change the operation state of the power semiconductor when the current passes
through zero, Equation (17) determines the system’s frequency, f, where R is the circuit’s
resistance (includes the internal resistance of the power semiconductor, inductor, and capaci-
tor), L is the value of the inductor’s inductance, and C is the value of the capacitor’s capacity.

f =
1

2π

√
4L − R2C

4L2C
(17)
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2.4. Single Inductor

The single inductor (SI) converter belongs to the family of converters whose balance is
carried out using inductive elements. In this case, only one inductor is used for balancing.
Thus, the positive terminals of each cell are connected to one inductor terminal, while the
cells’ negative terminals are connected to the other inductor terminal. In addition, as illus-
trated in Figure 9, for a battery formed by n cells in series, 2n + 2 controlled semiconductors,
Sxy, and 2n + 2 diodes, Dxy, are necessary, where x represents the conduction orientation and
considering the image can be 1 or 2. and y identifies the number of arms and considering
the image can be a, b, c, or d. This converter presents advantages such as high efficiency in
balancing, a modular design, and the possibility of transferring energy not only between
adjacent cells but between all of them. The main disadvantage is related to the balancing
process since the energy is only transferred to the cell with the lowest voltage in the second
part of the period [36]. In addition, it requires more hardware, specifically diodes, PWM
channels, and voltage sensors.
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To analyze the SI behavior, it is possible to divide the operation into two stages, as
illustrated in Figure 10. For example, it was assumed that cell 1 has a higher voltage than
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cell 2, and therefore, cell 1 will have to discharge while cell 2 has to charge. To allow
cell 1 to discharge, in the first stage, T1, the semiconductors S1a and S2b close, and all
the others remain open, as illustrated in Figure 10a. The current flowing through the
inductor iL and the energy transferred by the cell can be calculated using Equations (18)
and (19), respectively, where T is the period, D is the duty cycle, and Vcell is the cell voltage.
Regarding the second stage, T2, cell 2 will charge, since the semiconductors S2b and S1c
close and all the others remain open, as illustrated in Figure 10b. The current flowing
through the inductor decreases with a constant slope and can be calculated using Equation
(20). Regarding the energy transferred, as there is only an exchange between two cells, the
equation for calculating is the same (Equation (19)) [37].

iL(t) =
Vcell1

L
t (18)

E =
1
2

iLDT (19)

iL(t) =
Vcell1

L
DT −

Vcell2
L

t (20)
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Table 1 summarizes the actions of the controlled semiconductors considering the
voltage of each cell and comparing them with the others. The value of inductance, L, can
be calculated using Equation (21).

L ≤ Vcell D2T
2(n − 1)iL

(21)

Table 1. Actions of the controlled semiconductors, Sxy.

Vcell1 > Vcell2 Vcell1 > Vcell3 Vcell2 > Vcell1 Vcell2 > Vcell3 Vcell3 > Vcell1 Vcell3 > Vcell2

Ton S1a − S2b S1a − S2b S1b − S2c S1b − S2c S1c − S2d S1c − S2d
Toff = T − Ton S2b − S1c S2c − S1d S2c − S1d S2a − S1b S2a − S1b S2b − S1c

2.5. Switched Inductor

The switched inductor (SwI) converter, also often referred to as a buck-boost converter,
belongs to the family of converters whose balance is carried out using inductive elements.
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In the converter present in Figure 11, an inductor was connected between two adjacent
cells, allowing for the exchange of energy between the cell with a higher voltage value
and the cell with a lower voltage value. It requires 2(n − 1) controlled semiconductors,
Sx, and n − 1 inductors, Ly, where x and y are the index of the controlled semiconductor
and inductors, respectively, to balance the n cells [38]. The advantage of this converter is
the high balancing current, thus allowing for faster balancing, greater efficiency than the
capacitor-based topology, and lower production cost than the transformer-based topologies.
On the other hand, this balancing circuit has a higher cost than the capacitor-based topology
and a slower balancing than the transformer-based topologies. In addition, a filter capacitor
may be required due to the high switching frequency [39].
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The principle of the SwI converter operation can be divided into two phases. In order
to analyze the converter, three cells were considered. Thus, there were four controlled
semiconductors, S1, S2, S3 and S4 (S1 and S2 are complementary to S3 and S4, respectively),
two inductors L1 and L2, and the current in each inductor iL1 and iL2. In the first phase, the
controlled semiconductors S1 and S2 close in order to allow the cells with a higher voltage
to transfer energy to the inductors, while the controlled semiconductors S3 and S4 remain
open, as can be seen in Figure 12a.
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In the second phase, the controlled semiconductors S1 and S2 open, while the con-
trolled semiconductors S3 and S4 will close, allowing the stored energy to flow from the
inductors to the adjacent cells, as represented in Figure 12b.

If the voltage of cell 1 is higher than the voltage of cell 2, the controlled semiconductor
S1 closes while the controlled semiconductor S3 remains open, as can be seen in Figure 13a.
The current flowing through L1 can be calculated through Equation (22).

iL1(t) =
Vcell1

L1
t (22)Energies 2023, 16, x FOR PEER REVIEW 12 of 22 
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Thus, when the controlled semiconductor S1 opens, the current flows through the
antiparallel diode of the controlled semiconductor S3 to charge cell 2, as represented in
Figure 13b [23]. The current flowing through L1 can be calculated through Equation (23).

iL1(t) =
Vcell1

L1
DT −

Vcell2
L1

t (23)

2.6. Cuk

The Cuk type power converters can be applied in the balancing of cells in a battery.
The main advantage of balance using Cuk converters is the control of the input current and
the current delivered to each cell. In this way, none of the cells presents a pulsating current.
However, they are expensive because they have more components, and the design can be
complex [23].

Cuk is a non-isolated dc–dc converter, whose main characteristic is to present an
inverse voltage at the output. The conventional circuit of the Cuk converter is represented
in Figure 14. The Cuk converter presents a bidirectional energy transfer capacity with
high efficiency. This requires 2(n − 1) controlled semiconductors and inductors and n − 1
capacitors to balance n cells. The presence of inductive elements at the input and the
output stage allows for the regulation of the current in the cells involved in the energy
transfer. However, since a converter is required for each pair of adjacent cells, it becomes
an implementation with a high cost. The control is very similar to the switched inductor
topology. This converter can be analyzed as a cascaded buck-boost converter and the
operating principle is divided into two stages [23].
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To analyze the SI behavior, it is possible to divide the operation into two stages, as
illustrated in Figure 15. Initially, the controlled semiconductors S1 and S2 are turned on,
while the others remain open, as shown in Figure 15a. In the next stage, the controlled
semiconductors S3 and S4 close, while the others remain open (Figure 15b) [40]. The
operating principle was simplified for three cells to investigate the circuit.

Energies 2023, 16, x FOR PEER REVIEW 13 of 22 
 

 

To analyze the SI behavior, it is possible to divide the operation into two stages, as 

illustrated in Error! Reference source not found.. Initially, the controlled semiconductors 

S1 and S2 are turned on, while the others remain open, as shown in Error! Reference source 

not found.a. In the next stage, the controlled semiconductors S3 and S4 close, while the 

others remain open (Error! Reference source not found.b) [40]. The operating principle 

was simplified for three cells to investigate the circuit. 

  
(a) (b) 

Figure 15. Operating modes of the Cuk converter: (a) first stage, T1; (b) second stage, T2. 

In the first mode, S1 is closed and S2 is open, as can be seen in Error! Reference source 

not found.a. The equations that allow us to calculate the voltage in each cell are shown as 

Error! Reference source not found. and Error! Reference source not found.: 

𝑉𝑐𝑒𝑙𝑙1
(𝑡) = 𝐿1

𝑑𝑖𝐿1

𝑑𝑡
 (24) 

𝑉𝑐𝑒𝑙𝑙2
(𝑡) = −𝐿2

𝑑𝑖𝐿2

𝑑𝑡
+  𝑉𝐶1 (25) 

In the next mode, S1 is open and the diode in anti-parallel to the controlled semicon-

ductor S2 conducts, as represented in Error! Reference source not found.b. The equations 

that allow for the calculation of the voltage in each cell are shown as Error! Reference 

source not found. and Error! Reference source not found.: 

𝑉𝑐𝑒𝑙𝑙1
(𝑡) = 𝐿1

𝑑𝑖𝐿1

𝑑𝑡
+ 𝑉𝐶1 (26) 

𝑉𝑐𝑒𝑙𝑙2
(𝑡) = −𝐿2

𝑑𝑖𝐿2

𝑑𝑡
 (27) 

The expression for the average current in the inductor can be obtained from the load 

balancing of capacitor C1 is Equation Error! Reference source not found., where D is the 

duty cycle and T is the period [41]. 

𝑖𝐿1(1 − 𝐷)𝑇 − 𝑖𝐿2𝐷𝑇 = 0 (28) 

 

Figure 15. Operating modes of the Cuk converter: (a) first stage, T1; (b) second stage, T2.

In the first mode, S1 is closed and S2 is open, as can be seen in Figure 16a. The
equations that allow us to calculate the voltage in each cell are shown as (24) and (25):

Vcell1(t) = L1
diL1

dt
(24)

Vcell2(t) = −L2
diL2

dt
+ VC1 (25)
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In the next mode, S1 is open and the diode in anti-parallel to the controlled semi-
conductor S2 conducts, as represented in Figure 16b. The equations that allow for the
calculation of the voltage in each cell are shown as (26) and (27):

Vcell1(t) = L1
diL1

dt
+ VC1 (26)

Vcell2(t) = −L2
diL2

dt
(27)

The expression for the average current in the inductor can be obtained from the load
balancing of capacitor C1 is Equation (28), where D is the duty cycle and T is the period [41].

iL1(1 − D)T − iL2DT = 0 (28)

2.7. Single Flyback

The single flyback (SF) converter, which is represented in Figure 17, uses a transformer
to balance the cells. The single transformer balancing method shares the same topology
as the SI. Thus, as illustrated in Figure 17, for a battery formed by n series cells, 2n + 2
controlled semiconductors, Sxy, and 2n + 2 diodes, Dxy, are required, where x represents
the conduction orientation and considering the image can be 1 or 2, and y identifies the
number of arms and considering the image can be a, b, c, or d. This converter allows for
faster balancing than the capacitor and inductor-based topologies. On the other hand, it
has a higher cost and lower efficiency [39].

In order to study the behavior of the converter, it was possible to divide the operation
into two stages (Figure 18). As an example, it was assumed that cell 1 had a higher voltage
than cell 2, and, therefore cell 1 will have to discharge and cell 2 will have to charge. In
order to allow the cell to discharge, in the first stage, T1, the semiconductors S1a and S2b
close, and all the others remain open, as illustrated in Figure 18a. Thus, the current in the
transformer increases to the upper limit, according to Equation (29), meaning that energy is
transferred from cell 1 to the transformer. Lm is the magnetizing inductance and iLm is the
magnetizing current.

iLm(t) =
Vcell
Lm

(t − T1) (29)
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Regarding the second stage, T2, cell 2 will charge, since the semiconductors S2b and
S2c close and all the others remain open, allowing the energy stored in the transformer
to charge the cells, as illustrated in Figure 18b. The Dxy diodes are used to protect the
cells from possible short circuits [42]. It is possible to calculate the current ipack using
Equation (30), where k is the turn’s ratio of the secondary winding of the transformer
and ipk is the maximum value of the iLm. Table 1, as for the single inductor converter,
summarizes the actions of the controlled semiconductors considering the voltage of each
cell and comparing it with the others [43].

ipack(t) =
1
n
(ipk −

Vpack

nLm
(t − T2)) (30)

2.8. Multi-Winding Transformer

The multi-winding transformer (MWT) based balancing method, represented in
Figure 19, has advantages such as fast balancing and simple control techniques. On the
other hand, the circuit presents complexity in the design of the MWT and has a limited
number of windings due to the correspondence of the parameters for the turn’s ratio and
leakage inductance, especially for a large number of cells [44]. The circuit consists of n cells
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connected in series. Each cell is associated with a primary winding of transformer T and a
controlled semiconductor Sn. The diode on the secondary side allows for discharging the
magnetization inductance of the secondary. The MWT converter balances by switching the
controlled semiconductor Sn with a constant frequency and duty cycle [45].
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The operation of the MWT converter can be divided into two stages, as shown in
Figure 20. In Stage 1, all three controlled semiconductors (S1, S2, and S3) are closed
simultaneously, as seen in Figure 20a. During this stage, energy is transferred from the
cells with higher voltage to the cells with lower voltage through transformer T. The voltage
across L can be calculated through Equation (31).
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Figure 20. Operating modes of the MWT converter: (a) first stage, T1; (b) second stage, T2.

Assuming a higher voltage in cells 2 and 3, and a lower voltage in cell 1, the cur-
rents ic2 and ic3 flow from the cells to the transformer, while the current ic1 flows from
the transformer to the cell. The voltage and current across L can be calculated through
Equations (31) and (32), respectively.

VL(t) = L
diL
dt

(31)
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iL = ic1 + ic2 + ic3 (32)

In Stage 2, two modes of operation are possible. Initially, S1, S2, and S3 are open
simultaneously, as seen in Figure 20b. This causes the voltage on inductor L to become
negative and the current to flow through the diode, discharging L. When the current iD
reaches zero, the converter enters the second mode of operation, known as discontinuous
conduction mode (DCM) [46]. The voltage across L can be calculated using Equation (33).

VL = −(Vcell1 + Vcell2 + Vcell3) (33)

3. Discussion

This section compares the converters presented and described above in terms of
components and performance. This comparative analysis took into consideration a BMS
consisting of three cells. Thus, if BMS for a larger number of cells is required, an inter-
polation would be necessary and the method presented here can be used to identify the
best solution.

The first comparison was based on the number of capacitors, inductors, diodes, MOS-
FET, and transformers in a three-cell converter. The comparison is shown in Figure 21. As
can be seen, the SC used the higher number of MOSFETs (nine in total). This converter
also requires more capacitors (three in total), as does the SCI converter (also three in total).
Regarding the use of diodes, both the SI and SF converters used eight diodes. In terms of
the use of inductors, it was the Cuk converter that had the most (four in total). Regarding
the transformers, only the SF and MWT topologies used one, but the first one only used one
primary and one secondary, while the second one used as many primaries as the number
of cells. Considering the sum of all variants (capacitors, inductors, diodes, MOSFETs, and
transformers), the SI and SF topologies required the most elements (17 in total), and the
MWT converter required the least (six in total).
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Figure 21. Comparison of the CC–CC converters for active balancing.

In addition to the constitution, which will have a direct impact on the cost, size, and
weight of the BMS, the performance must also be considered. The efficiency is a critical
aspect when it comes to active cell equalization circuits. The efficiency of these circuits
plays a significant role in determining the overall performance of the energy storage and
management system of EVs. By incorporating features such as low resistance components,
high switching frequencies, and advanced control techniques, the efficiency of these circuits
can be improved, which leads to improved battery performance, extended battery life,
and enhanced range in EVs. In order to implement a metric about the circuit balancing
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efficiency, the comparison of active and passive balancing strategies is demonstrated in
Figure 22. Figure 22a shows the cells’ initial SoC, a significant unbalance being visible.
Figure 22b shows the cells’ SoC after an ideal passive balancing, with all the cells keeping
the same SoC equal to the lowest cells’ SoC before balancing. Finally, Figure 22c shows
the cells’ SoC after an ideal active balancing with all the cells presenting the same SoC,
equal to the average SoC of the cells before balancing. In this theoretical scenario, all
of the reusable energy (Ereusable) was redistributed by the cells (Ereused) without losses,
corresponding to a 100% efficiency calculated by Equation (34). In practice, the converters
used to balance the cells presented some losses, so the efficiency will always be less than
100%. The worst scenario corresponded to the passive balancing where all the energy was
dissipated (Ereused = 0), corresponding to 0% efficiency.

η =
Ereused

Ereusable
× 100 (34)
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Figure 22. Comparison of the two types of balancing: (a) initial cells’ SoC; (b) final cells’ SoC with
passive balance; (c) final cells’ SoC with active balance.

Table 2 presents a comparative analysis of the efficiency of some active balancing
converter efficiencies found in the literature. As it is possible to see, various converter
topologies presented an efficiency greater than 90%, with the best performance of 99.7%
being achieved with the 14 cell SwI topology.

Table 2. Comparison of the CC–CC converters for active balancing.

Balancer Type Switch
Amounts

Cell
Amounts

Cell
Type

Cell
Capacity Efficiency

Switched-capacitor [47] 4n − 3 8 Li-on 15.5 Ah 97.73%
Double-tiered capacitor [32] 2n 1 Li-on 12 Ah 99%

Switched capacitor-inductor [35] 2n - - - 89.1%
Single-inductor [36] 2(n + 1) 1 Li-on 10 Ah 91.5%

Switched-inductor [48] 2(n − 1) 14 LiFePO4 3.35Ah 99.7%
Cuk [41] 2(n − 1) 1 LiPo 1 Ah 94%

Single flyback [49] 2(n + 1) 1 LiFePO4 2.65 Ah 88%
Multi-winding flyback [46] n 4 Li-on 2.6 Ah 73.5%

4. Conclusions

In this paper, the concept of active cell equalization was investigated. Active cell
equalization circuits are an important aspect of the design and operation of a BMS for
electric vehicles. These circuits serve to regulate the SoC of each cell within the battery
pack to ensure its longevity and prevent harmful situations. Through the transfer of energy
from cells with high charge to cells with low charge, the active equalization method helps
to keep the battery pack operating at peak performance and increases its overall efficiency.
This makes active cell equalization circuits an essential component in electric vehicles, and
as the popularity of EVs continues to grow, it is likely that the importance of this technology
will also continue to grow.
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All the presented and discussed converter topologies have their own advantages
and disadvantages and can be applied to different scenarios depending on the specific
requirements. A study on the performance of active balancing converters revealed various
topologies with an energy efficiency higher than 90%, very promising data that support
that the active balancing of cells can represent significant energy savings, which is why the
study and development of these solutions is of great importance.
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