
Efficient tuning of kNN hyperparameters
for indoor positioning with N-TBEA

Raul Montoliu∗, Antoni Pérez-Navarro†, Joaquı́n Torres-Sospedra‡
∗ Institute of New Imaging Technologies, Jaume I University, Castellón, Spain

† Faculty of Computer Sciences, Multimedia and Telecommunication, Universitat Oberta de Catalunya, Barcelona, Spain
‡ Algoritmi Research Centre, University of Minho, Guimarães, Portugal

Abstract—Machine Learning is a very popular approach for
indoor positioning. However, most of models rely on a set of hy-
perparameters, which need to be properly set. When the number
of hyperparameters is large, exploring all the combinations of
values (what is known as brute force) can be computationally
prohibitive, especially in those cases where the training or oper-
ational time is high, such as in the kNN algorithm in fingerprint-
based indoor positioning. This paper introduces N-Tuple Bandit
Evolutionary Algorithm (N-TBEA) to find the hyperparameters in
this last case. N-TBEA is an efficient exploration technique which
evaluates the feasibility of similar combinations of parameters.
The results show that N-TBEA can provide a solution with an
accuracy similar to the best combination of parameters retrieved
using brute force, which shows the potential of N-TBEA to be
used in other advanced machine learning models.

Index Terms—Indoor positioning; Machine learning; Optimum
parameter selection.

I. INTRODUCTION

Localization is enhancing the capabilities of wearables by
helping users navigate or providing clues about users’ inter-
action [1]. Many of these applications make sense in indoor
spaces since humans tend to be 90% of their time indoors.
However, we are still far from having an indoor positioning
similar to what Global Navigation Satellite Systems (GNSS)
are performing outdoors. Nevertheless, there is an indoor posi-
tioning solution that has become very popular: fingerprinting.

A fingerprint is a set of signal intensities received at
a given position. The fundamental hypothesis is that two
similar fingerprints in the feature space are assumed to be
close in physical space, enabling indoor position estimation.
Fingerprinting consists of two steps: an offline (or training)
phase where the radio map is created with samples collected
at well-known points over the operational area, and an online
(or operational) phase where a matching algorithm is used to
compare the fingerprint with the radio map and estimate the
final position. Among many possibilities, the k nearest neigh-
bors (kNN) algorithm is possibly the most used algorithm in
the operational phase [2, 3, 4, 5, 6, 7].

Usually, the performance of the kNN algorithm is assessed
by calculating the averaged positioning error over a test set, a
set of fingerprints that simulates the online phase [2, 8]. Some
recent works go a step further and explore the evaluation over
multiple scenarios [9, 10, 11].

This work has been partially funded by the following projects: RTI2018-
095168-B-C53; H2020-MSCA-IF 101023072; CYTED Network GeoLibero

The kNN has three major drawbacks: first, its computational
cost is very high in terms of vector distance calculations. It
is O(ntr × nts), where ntr is the number of training samples
(radio map), and nts the number of samples in the test set
(operational phase); second, its accuracy strongly depends on
the hyperparameters chosen [12], which in the case of kNN
include the value of k, the distance function used to compare
two fingerprints and the RSSI representation; and third, the
best hyperparameters combination depends on every single
scenario and environment [13].

To get the best combination of hyperparameters, one possi-
bility is to use the inefficient algorithm known as Brute Force
(BF) to evaluate all the possible combinations of hyperparam-
eters. However, the computational load required to extract the
optimal hyperparameter values might be excessive, especially
in big datasets. An alternative is to fix some hyperparameters
and set the best values in two or more stages [12]. Although
this strategy provides reasonable results, several combinations
of hyperparameters are not explored.

In this paper, we propose to use the N-Tuple Bandit Evo-
lutionary Algorithm (N-TBEA) [14] to efficiently obtain the
best combination of hyperparameters in fingerprint-based po-
sitioning. N-TBEA combines evolutionary search techniques
with the use of a data structure, widely used in the field
of game theory, composed of multiple multi-arm bandits. Its
main advantage is that it is able to efficiently explore the
search space, automatically evaluating the most promising
hyperparameter configuration instead of using a predefined
strategy to manually decide which are the ones to be explored.
N-TBEA is able to reach solutions close to the optimum with
a small number of iterations and, therefore, in considerably
less time than the BF method.

The main contribution of this article is the use of the N-
TBEA algorithm to efficiently obtain a good combination of
hyperparameters of the kNN algorithm for fingerprinting. In
particular, 4 hyperparameters have been tested: 1) 10 different
values for k ([1, 3, . . . , 19]); 2) 3 ways of calculating the
position when k > 1; 3) 4 functions to estimate the distance
between two fingerprints (Euclidean, City block, Sorensen and
Neyman); and 4) 4 different data representation from raw RSSI
values (Positive, Normalized, Exponential and Powed). Thus,
we have 10 × 3 × 4 × 4 = 480 possible combinations of the
hyperparameters. To the best of our knowledge, this is the first
work using N-TBEA for indoor positioning models.

II. MATERIALS AND METHODS

A. Fingerprinting-based indoor positioning

As previously said, fingerprinting has two phases: offline
and online. We explain the fundamentals of both phases here.

1) Offline (or training) phase: Let’s suppose there are nq

different access points (APs) in the scenario where the indoor
positioning system is going to be deployed. The set of all APs
is Ω =

{
ω1, . . . , ωnq

}
.

The training database (or radio map) Dtr is made up of a
set of fingerprint and their positions:

Dtr = {Ftr,Ltr} (1)

where tr indicates training, Ftr is the set of fingerprints
obtained and Ltr their positions. The set Ftr is made up of
ntr fingerprints, saved as ntr vectors of RSSI measures:

Ftr =
{
λtr
1 , ..., λtr

ntr

}
(2)

and each fingerprint has nq RSSI values:

λtr
i =

{
ρtr1,i, ..., ρ

tr
nq,i

}
, i ∈ [1, ..., ntr] (3)

The set Ftr can be viewed, from the point of view of machine
learning algorithms, as a training database where the rows are
the samples and the columns are the features.

On the other hand, Ltr is made up of ntr positions, stored as
vectors, representing the position associated with each sample:

Ltr =
{
τ tr1 , ..., τ trntr

}
(4)

where each position is often provided with just a pair of
coordinates (often longitude and latitude). In complex large
environments the position may also include the building, floor,
or room labels. The coordinates and the other labels, ν, give
the number of dimensions, nl, of the position vector, τ , then:

τ tri =
{
νtr1,i, ..., ν

tr
nl,i

}
, i ∈ [1, ..., ntr] (5)

Note that, ρtrr,i (r ∈ [1, . . . , nq]) is the RSSI value obtained
for AP ωr at position τ tri , i.e. ρtrr,i = RSSI(ωr, τ

tr
i).

2) Online (operational/test) phase: In this phase, the device
captures a fingerprint λts

j (in this case ts indicates test) that
will be compared with the radio map Dtr to generate an
estimate of its position τ tsj . If we assume that nts fingerprints
are obtained, the test database can be defined as:

Dts = {Fts,Lts} (6)

where
Fts =

{
λts
1 , ..., λts

nts

}
(7)

Lts =
{
τ ts1 , ..., τ tsnts

}
(8)

In order to be able to compare a test sample with the training
ones, the number of RSSI values of the respective fingerprints
must be the same and the position in the RSSI vector must
represent the same AP in both databases. Therefore, each of
the nts test samples must be composed of a fingerprint with
nq RSSI values:

λts
j =

{
ρts1,j , ..., ρ

ts
nq,j

}
, j ∈ [1, ..., nts] (9)

and the position vector must have the same dimensions as its
training counterparts:

τ tsj =
{
νts1,j , ..., ν

ts
nl,j

}
, j ∈ [1, ..., nts] (10)

In this case, ρtsr,j is the RSSI value obtained for AP wr at
position τ tsj , i.e. ρtsr,j = RSSI(ωr, τ

ts
j).

B. The kNN algorithm for indoor positioning

The kNN algorithm is a popular machine learning classifier
based on the concept of distance that compares the current
sample with all the samples in the training database. In the
simplest case (k = 1), the label of the current test sample
will be the label of the closest training sample according to a
distance function.

In the case of indoor positioning [2], the samples are the
fingerprints and the labels are the positions. In the simplest
case (k = 1), the position of the current test fingerprint will be
the position of the closest training fingerprint in feature space.
When k > 1, the final position corresponds to the centroid
(weighted or not) of the positions associated with the closest
k fingerprints in the feature space. In this case, the centroid
position of the k nearest neighbors is calculated as follows:

τ tsj =

∑k
h=1 τ

tr
nn(h) · wh∑k

h=1 wh

(11)

with
wh =

1

distance(λts
j , λtr

nn(h))
δ

(12)

where τ tsj is the localization of the j−th test sample to be es-
timated and nn(h) is a function that, given the h−th neighbor,
returns the index of the training sample that corresponds to the
h-th nearest neighbor. Finally, δ is a parameter to control the
importance in the calculation of the centroid of the nearest
training samples. With δ = 0, all the samples have the same
importance (i.e. wh = 1 for all samples). When increasing δ,
the nearest samples will have higher weights and, therefore,
more relevance in the calculation of the centroid.

C. Distance functions

We have tested four different distance functions: Euclidean
(Eq. 13), City block (Eq. 14), Sørensen (Eq. 15) and Neyman
(Eq. 16). They can be used to estimate the distance between
two fingerprints λtr

i and λts
j as follows:

dEuclidean(λ
tr
i , λts

j) =

√√√√ nq∑
q=1

(λtr
i (q)− λts

j (q))2 (13)

dCityblock(λ
tr
i , λts

j) =

nq∑
i=q

|λtr
i (q)− λts

j (q)| (14)

dSørensen(λ
tr
i , λts

j) =

∑nq

q=1(λ
tr
i (q)− λts

j (q))2∑nq

q=1(λ
tr
i (q) + λts

j (q))
(15)

dNeyman(λ
tr
i , λts

j) =

nq∑
q=1

(λtr
i (q)− λts

j (q))2

λtr
i (q)

(16)

D. Data representations

Other important hyperparameter that can affect to the accu-
racy of the kNN algorithm is how RSSI data is represented
when estimating the distance between two fingerprints. Four
alternative data representations have been tested: Positive (Eq.
17), Normalized (Eq. 18), Exponential (Eq. 19) and Powed
(Eq. 20). Given a RSS value ρ = ρtrr,i corresponding to the
AP ωr of i − th fingerprint of the training set (this can also
be applied to the test set, i.e. ρ can be also ρtsr,j), and with
min and max being the minimum and maximum RSS values
in the training dataset, the four data representations can be
calculated as follows:

Positive(ρ) =

{
ρ−min if ρ is valid

0 otherwise
(17)

Normalized(ρ) =
Positive(ρ)

max
(18)

Exponential(ρ) =
exp(Positive(ρ)

α)

exp(−min
α)

(19)

Powed(ρ) =
(Positive(ρ))ξ

(−min)ξ
(20)

In this paper, we have used α = 24 (eq.19) and ξ = e
(eq.20) as in [13].

E. N-TBEA algorithm

N-TBEA is an optimization algorithm that combines
searches optimized by an evolutionary algorithm, with the use
of game theory data structures such as Multi-Armed bandits.

In game theory, the problem of the multi-armed bandit is
when a player, faced with a set of slot machines (bandit refers
to the first slot machines in Las Vegas) has to decide the
machine to play next. When he/she plays, the chosen machine
returns a reward. The player’s objective is to maximize the
sum of the rewards obtained by playing multiple times.

In the field of artificial intelligence, bandits are used to
decide which is the best action for an agent to play (e.g., in
the Monte Carlo Tree Search algorithm [15]). In this case, the
actions correspond to each of the machines that make up the
multi-armed bandit. For each possible action a, the sum of the
rewards obtained (sa) and the number of times that action has
been selected (na) will be saved. This choice is commonly
made using the UCB formula, which balances exploitation
(prioritizing action that has accumulated better rewards in the
past) with exploration (prioritizing less explored actions). The
formula UCBβ for a given multi arm bandit β is expressed
as follows:

UCBβ(a) = sa + c

√
lnN

na + ϵ
(21)

where a is one of the possible actions that can be chosen in
the multi-armed bandit, sa is the average of the rewards that
have been obtained in the past by choosing the action a, N is
the total number of times an action has had to be chosen, na

is the number of times the action a has been taken, and c is a
constant that balances both concepts of the equation (usually
c =
√
2). The ϵ value is a small number (e.g. ϵ = 0.5) that

is used to avoid having to divide by zero in the equation. In
those cases, i.e. when an action has never been chosen before,
the value obtained will be very high to give the opportunity
to explore, at least once, all possible actions.

In the case of the N-TBEA algorithm, multiarm bandits will
be used to select the best combination of hyperparameters from
a set of combinations. To do this, a bandit will be created for
each existing hyperparameter in the problem and will have
as many actions as possible values of the hyperparameter.
Assuming that the problem has mp hyperparameters, there
will be mp one-dimensional bandits. Furthermore, and this
is the key of the method, bandits will be created for all pos-
sible combinations of two parameters, i.e. (mp×(mp−1))

2 two-
dimensional bandits will be created. In this case, the actions
of a two-dimensional bandit will be all possible combinations
of the values of those two parameters. Depending on the
problem, it is possible to continue creating bandits with more
dimensions. We call model Π the set of all bandits used.

Algorithm 1 N-TBEA
Require: f : function to be evaluated
Require: mp ∈ N+: Number of hyperparameters
Require: mv ∈ N+: Number of neighbors
Require: ϕ ∈ (0, 1): Mutation probability
Require: mt ∈ N+: Number of initial evaluations
Require: mi: Number of iterations
Ensure: solution: best hyperparameters configuration found

1: Π← CreateModel(mp)
2: current← Initialization(f,mt)
3: Υ← [current]
4: iter ← 0
5: while iter < mi do
6: Population← GetNeighbors(current,mv, ϕ)
7: current← argmaxx∈PopulationTUCB(x)
8: Υ← Υ

⋃
current

9: reward← f(current)
10: UpdateModel(Π, current, reward)
11: iter ← iter + 1
12: end while
13: solution = GetBestSolution(Υ,Π,mv)

The N-TBEA procedure is described in Algorithm 1. To
make it easier to understand, we assume that the number of
dimensions of the problem is mp = 3 with 4 possible actions
([0, 1, 2, 3]) in each dimension. If we use one-dimensional and
two-dimensional bandits, the model will be composed of 3
one-dimensional bandits (β1, β2 and β3) and (3×2)

2 = 3 two-
dimensional ones (β1,2, β1,3 and β2,3). Therefore, the model
Π = [β1, β2, β3, β1,2, β1,3, β2,3].

The process starts creating the model Π (line 1) and with an
initialization step (line 2), where mt individuals are randomly
created. An individual, using the terminology of evolutionary
algorithms, is a possible combination of hyperparameters.

For example, a possible individual could be the combination
[1, 3, 0]. That is, for the first hyperparameter the value 1 is
chosen, for the second the value 3 is chosen and for the third
the value 0. Each individual is evaluated using the function
f , obtaining a value that indicates how good or bad that
combination is. The use of f is expensive in processing time
since, in the case of fingerprinting, it requires executing the
full kNN algorithm.

The next step is updating each bandit belonging to the
model Π. The update consists of adding the reward obtained
by evaluating the individual to the value sa corresponding to
the action to be evaluated. It will also be incremented by one
na, to increment the number of times that the action a has
been chosen. For example, if the individual is [1, 3, 0], the
bandit β1 will update action 1 with the reward obtained by
evaluating that individual with the function f , β2 the action 3
and β3 the action 0. In addition, the bandit β1,2 will update the
action [1, 3], β1,3 the action [1, 0] and β2,3 the action [3, 0]. The
objective of this initialization is to fill the model with relevant
information. At the end of initialization, the individual with
the best reward is defined as current individual.

After initialization, the iterative process begins (lines 5 to
12). In each iteration, a population of mv similar individuals
(or neighbors) is generated (line 6) and by means of Eq. 22
a value is calculated (line 7) that indicates the preference of
being the next hyperparameter configuration to be evaluated
using f . Note that instead of using the slow f to evaluate the
mv neighbors, the fast Multi arm bandit model Π is used to
obtain the more promising parameter configuration. The best
individual becomes the new current. It is stored in the set of
relevant combinations Υ, is evaluated using f (line 8) and all
the bandits that make up the N-TBEA model Π are updated
using the obtained reward (line 9).

TUCB(x) =
∑
β∈Π

UCBβ(x) (22)

Neighbors are calculated by modifying one of the hyper-
parameters by substituting the existing value for another of
the possible values of that hyperparameter. Furthermore, for
the rest of the hyperparameters there is a probability ϕ of
also being modified by mutation. For example, three possible
neighbors of the individual [1, 3, 0] could be: [1, 4, 0] (by
changing the second), [1, 3, 2] (by changing the third) or
[3, 3, 1] (changing the first and also the third by mutation).

The neighbor with the highest TUCB becomes the new
individual current and will be the one evaluated by f in
the next iteration. As can be seen, in each iteration, a single
evaluation of f (kNN in this paper) is performed, and mv

evaluations are performed using TUCB .
The use of this algorithm will make sense whenever the

evaluation using f is much more expensive, in processing
time, than its equivalent using TUCB . In the case of kNN,
O(ntr×nts) vector distance calculations are required, but the
evaluation of TUCB is much faster since it just requires a few
one-dimensional algebraic operations.

After the iterative process, a population with mv neighbors
is generated for the individuals that have been current one in
each iteration (i.e. the ones in Υ) and they are fast evaluated
using the N-TBEA model (line 13). The one with the best
TUCB will be the proposed solution. This step is necessary
because the algorithm cannot ensure that any of the evaluated
individuals (those in Υ) is optimal, but it can ensure that one
of them or its neighbors will be very close to the optimal.

F. Proposed method
In this work, the N-TBEA algorithm is proposed to find

the best combination of the kNN algorithm hyperparameters,
where best means the one that provides the lowest mean
positioning error for the test samples included in Dts, using
Dtr as radio map. Therefore, the evaluation function f will
be the execution of the algorithm kNN to obtain the position
of the test samples and the subsequent calculation of the error
of the estimated position versus the real one.

Here, an individual is a combination of the kNN hyperpa-
rameters and an action for a specific bandit, will be the choice
of a certain value for a hyperparameter.

III. EXPERIMENTS AND RESULTS

A. Data
The data under study consists of a series of databases

that reflect the signal strength of the several Wi-Fi or BLE
signals detected in a set of points located in indoor spaces.
In particular, we have used DSI1–DSI2 [16], MAN1–MAN2
[17, 18], TUT1–TUT2 [19] and UEXB1–UEXB3 [20].

We adopt the experimental setup from [13], which includes
nine datasets with diversity in the location, technology, radio
map size, density of evaluation and number of detected APs .
For instance, MAN1 WiFi dataset has 14300 training samples,
460 test samples and 28 APs, whereas UEXB3 BLE dataset
has 240 test samples, 60 evaluation samples and 30 APs.

B. Experimental set up
The following mp = 4 parameters γi (with i ∈ [1, . . . , 4])

of the kNN algorithm have been selected:
• γ1: Number of neighbors k. 10 possible values,

from 0 to 9, are taken which correspond to k =
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19] respectively;

• γ2: This hyperparameter corresponds with δ (see equation
12). 3 possible values, from 0 to 2, are taken which
correspond to δ = [0, 1, 2] respectively;

• γ3: Distance functions (see Section II-C). 4 possible
values, from 0 to 3, are taken which correspond to Eu-
clidean [0], City Block [1], Sørensen [2] and Neyman [3];

• γ4: Data representation (see Section II-D). 4 possible
values, from 0 to 3, are taken which correspond to Posi-
tive [0], Normalized [1], Exponential [2] and Powed [3].

As an illustrative example, the individual x = [3, 2, 1, 0]
identifies the use of a k-NN algorithm with k = 7, and δ = 2,
City Block distance and Positive data representation.

The configuration proposed for this article provides 480
(10×3×4×4) possible combinations of the 4 hyperparameters.
In this way, we can compare BF to N-TBEA.

0

100

200

300

400

500

DSI1 DSI2 MAN1 MAN2 TUT1 TUT2

Ti
m

e
in

 s
ec

on
ds

Database

BF Time N-TBEA Time

0

1.1

2.2

3.3

4.4

5.5

UEXB1 UEXB2 UEXB3

Ti
m

e
in

 s
ec

on
ds

Database

BF Time N-TBEA Time

Fig. 1. Processing time in minutes of each algorithm for DSI1–2, MAN1–2, and TUT1–2 databases (left) and UEXB1–3 databases (right)

C. Experiments

Two experiments have been carried out. In the first, the kNN
algorithm has been tested for all proposed databases using a
BF technique, i.e. testing all of the 480 existing combinations
for the 4 hyperparameters. The result of each evaluation is
the mean positioning error of the samples in the test set.
i.e., the Euclidean distance between the position estimated
by the kNN algorithm and the actual position. In the second
experiment, the N-TBEA algorithm has been used where the
evaluation function f , for a hyperparameter configuration, is
the execution of the kNN algorithm using that hyperparameter
configuration. The value obtained in each evaluation will be
the mean positioning error of the samples of the test set, as in
Experiment 1.

The N-TBEA algorithm has been configured to initialize
the model with mt = 20 random individuals. Subsequently,
the algorithm will start the process with the best combination
of the previous ones and will perform only mI = 10 iterations.
Therefore, the total number of evaluations of a combination
using the kNN will be just 30 compared to the 480 execution
runs required for BF in Experiment 1. The parameters of the
N-TBEA algorithm also include: number of neighbors mv =
50, mutation probability ϕ = 20% and c =

√
2. Since the

proposed N-TBEA based algorithm has a random component,
the whole process has been repeated 10 times with different
random initialization to obtain generalizable results.

All the experiments were run on a computer with Intel
Core i7-4790 processor, 16GB of RAM and Ubuntu 20.04.4.
Datasets and developed algorithms in Python 3 are available in
https://github.com/montoliu/MontoliuPerezTorresICUMT22.

D. Results

Table I shows the results of BF and N-TBEA for all
databases (see also Figs. 1–2). The columns labelled with Best
provides the lowest mean positioning error over all evaluation
samples of all combinations in BF and 10 runs of N-TBEA.
Similarly, the columns labelled with Worst provides the highest
mean positioning error. For N-TBEA, the average and standard
deviation of the mean positioning error over the 10 runs
are also provided. Columns labelled with Time report the
execution time of BF and N-TBEA.

TABLE I
RESULTS (POSITIONING ERROR AND EXECUTION TIME) OF THE

EXPERIMENTS FOR EACH DATABASE.

BF N-TBEA

Dataset Best [m] Worst [m] Time [min] Mean [m] Best [m] Worst [m] Time [min]

DSI1 3.7 6.4 117.3 3.8 (0.2) 3.7 4.3 7.9
DSI2 3.6 8.1 49.3 3.7 (0.1) 3.6 3.8 3.2
MAN1 2.1 3.1 480.0 2.2 (0.1) 2.1 2.3 31.6
MAN2 1.8 2.6 44.0 1.9 (0.1) 1.8 2.1 2.9
TUT1 4.7 12.9 318.6 4.9 (0.1) 4.7 5.1 20.4
TUT2 7.7 20.0 50.9 8.7 (0.7) 7.8 9.8 3.7
UEXB1 3.0 6.3 3.0 3.1 (0.1) 3.0 3.4 0.2
UEXB2 4.0 5.8 5.4 4.3 (0.2) 4.0 4.6 0.3
UEXB3 6.1 13.0 1.0 6.1 (0.0) 6.1 6.2 0.1

According to the mean positioning errors reported in Table I,
the selection of the hyperparameters strongly affect the accu-
racy of kNN. In TUT2 dataset the difference between the worst
combination and the best one in terms of mean positioning
erorr is 13.3 m. Although the difference between the worst
combination and the best one is just 0.8 m in MAN2, the
relative increase is around 50%. The mean of this difference
across all databases studied is 4.6 m.

In terms of efficiency, the execution time of the kNN models
depends on the radio map size, the number of evaluation
samples and the number of APs. With a moderate-size dataset
such as MAN1, BF requires 480 min (8 h) to evaluate all
combinations. In bigger datasets, covering bigger multi-floor
areas and/or with hundreds of thousands of samples (see,
for instance, [5]), the execution time of evaluating all the
combinations with BF might be prohibitive.

Fig. 1 shows the time needed (in minutes) to run BF
and N-TBEA in all datasets. N-TBEA is approximately 15
times faster than the BF algorithm. Note that N-TBEA only
evaluates 30 times using the full kNN algorithm whereas
the BF algorithm performs 480 evaluations. For instance, in
TUT1 database, the BF algorithm needed more than 300 min
to obtain the best hyperparameters combination. However,
the proposed N-TBEA based needed just 20 min to obtain a
solution that, on average, is only 0.2 m worse. Even in the
worst case of N-TBEA, the value obtained is only 0.4 m worse
than the best possible combination. In some repetitions, the
proposed N-TBEA provides the same error as BF.

https://github.com/montoliu/MontoliuPerezTorresICUMT22

0

4

8

12

16

20

DSI1 DSI2 MAN1 MAN2 TUT1 TUT2 UEXB1 UEXB2 UEXB3

Ac
cu

ra
cy

 in
 m

et
er

s

Database

BF Best N-TBEA Mean BF Worst

0

4

8

12

16

20

DSI1 DSI2 MAN1 MAN2 TUT1 TUT2 UEXB1 UEXB2 UEXB3

Ac
cu

ra
cy

 in
 m

et
er

s

Database

BF Best N-TBEA Worst BF Worst

Fig. 2. Results obtained for the combination of parameters tested that give the minimum and the maximum positioning error. Left: comparison between
mean N-TBEA results and Best and Worst BF results. Right: comparison between worst N-TBEA results and Best and Worst BF results.

Fig. 2 (left) shows, for each dataset, the best (blue) and
worst (red) mean positioning error obtained using the BF
algorithm, and the mean value (green) obtained from the 10
repetitions of the proposed N-TBEA based algorithm. Fig. 2
(right) shows, instead of the mean, the worst value obtained
using N-TBEA among the 10 repetitions (yellow). The dif-
ference between N-TBEA Mean and BF Best is on average
0.2 m, with only one dataset, TUT2, with more than 0.5 m of
difference. In the worst-case scenario, the difference between
the worst N-TBEA combination and the best combination is
on average 0.6 m, being below 0.5 m in 6 datasets. The worst
result is obtained for TUT2 where the difference is 2.1 m.
Furthermore, the performance of the overall best and worst
cases depend on the dataset. Although the overall worst error
is significantly high in some datasets, above 12 m in TUT1,
TUT2, UEXB3, the worst combination provided by N-TBEA
performs similarly to the best overall combination, almost
matching the best performance for TUT1 and UEXB3.

The results show the potential of N-TBEA to efficiently
retrieve a good combination of parameters, which is of utmost
relevance in huge radio maps.

IV. CONCLUSIONS

This work has presented a method to efficiently obtain a
good configuration of the hyperparameters of the kNN algo-
rithm to solve an indoor positioning problem. The proposed
method is based on the use of the N-TBEA technique, which
has the main advantage of obtaining solutions similar to the
optimal one in a very short processing time.

The performance of our proposal has been verified both,
in terms of accuracy of the best combination obtained and
in processing time, compared to the case of using a Brute
Force algorithm that calculates all possible combinations. The
proposed hyperparameter search algorithm presents a good
trade-off between performance (positioning error) and effi-
ciency (execution time required to retrieve the hyperparameter
values), being 15 times faster than Brute Force and really close
to the overall best configuration in several datasets.

Future work will focus on testing the proposed method on
more complex databases and considering more hyperparame-
ters. We consider N-TBEA has the potential to be used with
any Machine Learning model for indoor positioning.

REFERENCES

[1] A. Ometov et al., “A survey on wearable technology: History, state-of-
the-art and current challenges,” Computer Networks, vol. 193, 2021.

[2] P. Bahl and V. Padmanabhan, “RADAR: An in-building rf-based user
location and tracking system,” in Proceedings IEEE INFOCOM, 2000.

[3] J. Hu et al., “Experimental analysis on weight k-nearest neighbor
indoor fingerprint positioning,” IEEE Internet of Things J, vol. 6, 2019.

[4] M. T. Hoang et al., “A soft range limited k-nearest neighbors algorithm
for indoor localization enhancement,” IEEE Sensors Journal, vol. 18,
no. 24, pp. 10 208–10 216, 2018.

[5] M. Aernouts et al., “Sigfox and lorawan datasets for fingerprint
localization in large urban and rural areas,” Data, vol. 3, no. 2, 2018.

[6] Z. Zhao et al., “I-wknn: Fast-speed and high-accuracy wifi positioning
for intelligent sports stadiums,” Computers & Electrical Engineering,
vol. 98, 2022.

[7] S. Liu, R. De Lacerda, and J. Fiorina, “Performance analysis of
adaptive k for weighted k-nearest neighbor based indoor positioning,”
in 2022 IEEE 95th Vehicular Technology Conference, 2022.

[8] “ISO/IEC 18305:2016 Information technology - Real time locating
systems - Test and evaluation of localization and tracking systems,”

[9] N. Saccomanno, A. Brunello, and A. Montanari, “What you sense is
not where you are: On the relationships between fingerprints and spatial
knowledge in indoor positioning,” IEEE Sensors Journal, vol. 22, no. 6,
pp. 4951–4961, 2022.

[10] J. Torres-Sospedra et al., “A comprehensive and reproducible com-
parison of clustering and optimization rules in wi-fi fingerprinting,”
English, IEEE Transactions on Mobile Computing, vol. 21, no. 3,
pp. 769–782, Mar. 2021.

[11] A. Brunello, A. Montanari, and N. Saccomanno, “A genetic program-
ming approach to wifi fingerprint meta-distance learning,” Pervasive
and Mobile Computing, vol. 85, p. 101 681, 2022.

[12] J. Torres-Sospedra et al., “Comprehensive analysis of distance and sim-
ilarity measures for wi-fi fingerprinting indoor positioning systems,”
Expert Systems with Applications, vol. 42, no. 23, 2015.

[13] C. Rodriguez-Martinez and J. Torres-Sospedra, “Revisiting the analysis
of hyperparameters in k-nn for wi-fi and ble fingerprinting: Current
status and general results,” in 2021 Inter. Conf. on Indoor Positioning
and Indoor Navigation (IPIN’21), 2021.

[14] S. M. Lucas, J. Liu, and D. Perez-Liebana, “The N-Tuple Bandit
Evolutionary Algorithm for Game Agent Optimisation,” in 2018 IEEE
Congress on Evolutionary Computation (CEC’18), IEEE, 2018.

[15] C. B. Browne et al., “A survey of mcts methods,” IEEE Trans. on
Comp. Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43, 2012.

[16] A. Moreira, I. Silva, and J. Torres-Sospedra, The dsi dataset for wi-fi
fingerprinting using mobile devices, version 1.0, Zenodo, Apr. 2020.

[17] T. King et al., “Distribution of fingerprints for 802.11-based position-
ing systems,” in Int. Conf. on Mobile Data Management, 2007.

[18] T. King et al., Crawdad dataset mannheim/compass (v. 2008-04-11),
[available] https://crawdad.org/mannheim/compass/20080411, 2008.

[19] S. Shrestha, J. Talvitie, and E. S. Lohan, “Deconvolution-based indoor
localization with wlan signals and unknown access point locations,” in
Proc. of 2013 Int. Conf. on Localization and GNSS, 2013.

[20] F. J. Aranda et al., “Multi-slot ble raw database for accurate positioning
in mixed indoor/outdoor environments,” Data, vol. 5, no. 3, 2020.

	Introduction
	Materials and Methods
	Fingerprinting-based indoor positioning
	Offline (or training) phase
	Online (operational/test) phase

	The kNN algorithm for indoor positioning
	Distance functions
	Data representations
	N-TBEA algorithm
	Proposed method

	Experiments and results
	Data
	Experimental set up
	Experiments
	Results

	Conclusions

