**EUROBIOFILMS 2019** 

Glasgow, UK

September 5, 2019



# Viable but non-culturable state: a strategy for Staphylococcus aureus survivable in dual-species biofilms with Pseudomonas aeruginosa ?

Andreia Patrícia Magalhães, Tânia Grainha, Ana Margarida Sousa, Ângela França,

Nuno Cerca and Maria Olivia Pereira







uminho Bi@filM





3

# **Polymicrobial Biofilm Infections**

uminho BissfilM





uminho Bi@filM





uminho BisfilM





uminho BisfilM





#### Cystic Fibrosis related-infections

uminho Bi**s**filM



Cystic Fibrosis Annual Data Report 2017



#### Cystic Fibrosis related-infections

uminho BisfilM



Cystic Fibrosis Annual Data Report 2017

#### Staphylococcus aureus

- Prevalent among people with and without CF
  - $\sim$  20 % of strains are multidrug-resistant



#### Pseudomonas aeruginosa

- A leading cause of airway infection
- Associated with a decline in lung function
- ~18 % of strains are multidrug-resistant





### AIM:

To investigate the community dynamics of *Pseudomonas aeruginosa* and *Staphylococcus* 

aureus, two common co-infecting pathogens in cystic fibrosis infections, growing as dual-

species biofilms.





## AIM:

To investigate the community dynamics of *Pseudomonas aeruginosa* and *Staphylococcus* 

aureus, two common co-infecting pathogens in cystic fibrosis infections, growing as dual-

species biofilms.



- Biofilm structure
- Microbial composition
- Gene expression profile





uminho Bi@filM







uminho BissfilM

GROUP







uminho BissfilM

GROUP.







uminho Bi**®**filM

GROUP







uminho BissfilM

GROUP.





Results



# **Biofilm structure: SEM analysis**

Magnification 2750 x











# **Biofilm structure: SEM analysis**



24-h-old







## **Biofilm structure: SEM analysis**

Magnification 2750 x





Mature biofilms producing a thickness of co-aggregated cells surrounded by extracellular biofilm matrix







## Effect of secreted compounds produced by P. aeruginosa





Only 1 log of cell reduction (for
 10<sup>5</sup> and 10<sup>7</sup> CFU/mL) was observed





# Effect of secreted compounds produced by P. aeruginosa







Results



# **Biofilm bulk fluid quantification**







Dual-species biofilms

Single-species biofilm



Results



# **Biofilm bulk fluid quantification**







×

()iversidade do Minho

#### Quantitative assessment of individual populations within dual-species biofilms

Results





23



#### Results



#### Quantitative assessment of individual populations within dual-species biofilms





For 24-h biofilms similar counts
 were detected by both methods





#### Quantitative assessment of individual populations within dual-species biofilms

Results









#### Quantitative assessment of individual populations within dual-species biofilms



(A) P. aeruginosa 362668 mucoid and S. aureus ATCC 25923 (C) P. aeruginosa 362668 non-mucoid and S. aureus ATCC 25923 (B) P. aeruginosa 362668 mucoid and S. aureus 352845 (D) P. aeruginosa PA14 and S. aureus 352845.



uminho Bi**s**filM



#### Quantitative assessment of individual populations within dual-species biofilms



(A) P. aeruginosa 362668 mucoid and S. aureus ATCC 25923 (C) P. aeruginosa 362668 non-mucoid and S. aureus ATCC 25923 (B) P. aeruginosa 362668 mucoid and S. aureus 352845 (D) P. aeruginosa PA14 and S. aureus 352845. 27

#### Results



#### Quantitative assessment of individual populations within dual-species biofilms



(A) P. aeruginosa 362668 mucoid and S. aureus ATCC 25923
(C) P. aeruginosa 362668 non-mucoid and S. aureus ATCC 25923

uminho Bi@filM

(B) P. aeruginosa 362668 mucoid and S. aureus 352845(D) P. aeruginosa PA14 and S. aureus 352845.





# Virulence expression in dual-species biofilms

*P. aeruginosa* virulence-related genes:

uminho Bi**sfilM** 

| Gene | Function                                |
|------|-----------------------------------------|
| pqsE | НОИО                                    |
| rhlR | Virulence Regulator<br>(Quorum sensing) |
| pvdE | Pyoverdine                              |
| toxA | Exotoxin A                              |
| lasl | Virulence Regulator<br>(Quorum sensing) |
| algD | Alginate                                |



48 h



# Virulence expression in dual-species biofilms



uminho Bi**s**filM



| Gene | Function                                |
|------|-----------------------------------------|
| pqsE | ΗQNO                                    |
| rhlR | Virulence Regulator<br>(Quorum sensing) |
| pvdE | Pyoverdine                              |
| toxA | Exotoxin A                              |
| lasl | Virulence Regulator<br>(Quorum sensing) |
| algD | Alginate                                |



48 h



# Virulence expression in dual-species biofilms



uminho Bi**s**filM

CENTRE OF BIOLOGICAL ENGINEERING



| Gene | Function                                |
|------|-----------------------------------------|
| pqsE | НОИО                                    |
| rhlR | Virulence Regulator<br>(Quorum sensing) |
| pvdE | Pyoverdine                              |
| toxA | Exotoxin A                              |
| lasl | Virulence Regulator<br>(Quorum sensing) |
| algD | Alginate                                |



48 h



# Virulence expression in dual-species biofilms



uminho Bi**s**filM



| Gene | Function                                |
|------|-----------------------------------------|
| pqsE | ΗQNO                                    |
| rhlR | Virulence Regulator<br>(Quorum sensing) |
| pvdE | Pyoverdine                              |
| toxA | Exotoxin A                              |
| lasl | Virulence Regulator<br>(Quorum sensing) |
| algD | Alginate                                |





## Virulence expression in dual-species biofilms

S. aureus virulence-related genes:

| Gene | Function                                |
|------|-----------------------------------------|
| sodA | Stress Response                         |
| sarA | Virulence Regulator<br>(Quorum sensing) |
| agrB | Virulence Regulator<br>(Quorum sensing) |
| hld  | Virulence Regulator<br>(Quorum sensing) |
| icaA | Biofilm formation<br>(PNAG production)  |
| hla  | Alfa-hemolysin                          |
| uspA | Stress Response                         |



48 h



# Virulence expression in dual-species biofilms

#### S. aureus virulence-related genes:



| Gene | Function                                |
|------|-----------------------------------------|
| sodA | Stress Response                         |
| sarA | Virulence Regulator<br>(Quorum sensing) |
| agrB | Virulence Regulator<br>(Quorum sensing) |
| hld  | Virulence Regulator<br>(Quorum sensing) |
| icaA | Biofilm formation<br>(PNAG production)  |
| hla  | Alfa-hemolysin                          |
| uspA | Stress Response                         |

34



48 h



# Virulence expression in dual-species biofilms

#### S. aureus virulence-related genes:



| Gene | Function                                |
|------|-----------------------------------------|
| sodA | Stress Response                         |
| sarA | Virulence Regulator<br>(Quorum sensing) |
| agrB | Virulence Regulator<br>(Quorum sensing) |
| hld  | Virulence Regulator<br>(Quorum sensing) |
| icaA | Biofilm formation<br>(PNAG production)  |
| hla  | Alfa-hemolysin                          |
| uspA | Stress Response                         |



48 h



# Virulence expression in dual-species biofilms

#### S. aureus virulence-related genes:



| Gene | Function                                |
|------|-----------------------------------------|
| sodA | Stress Response                         |
| sarA | Virulence Regulator<br>(Quorum sensing) |
| agrB | Virulence Regulator<br>(Quorum sensing) |
| hld  | Virulence Regulator<br>(Quorum sensing) |
| icaA | Biofilm formation<br>(PNAG production)  |
| hla  | Alfa-hemolysin                          |
| uspA | Stress Response                         |















- ✓ Time-dependent interaction between *P. aeruginosa-S. aureus* in dual-species biofilms.
- ✓ The dual-species consortia dominated by *P. aeruginosa*
- ✓ The presence of S. aureus in high numbers in dual-species biofilms with P. aeruginosa in a VBNC state.

#### Conclusions





CENTRE OF BIOLOGICAL ENGINEERING

uminho Bi**s**filM

#### Conclusions





uminho Bi@filM

Overall, our results underline the importance of select appropriate methodologies to elucidate the

microbial interactions occurring within the dual-species biofilm consortia.





#### Supervisors : Maria Olivia Pereira (CEB, University of Minho, Portugal)

**Nuno Cerca** (CEB, University of Minho, Portugal)

MOP Team



NC Team



This work was supported by the: Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2019 unit; European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte for the BioTecNorte operation (NORTE-01-0145-FEDER-000004); COMPETE2020 and FCT for the project POCI-01-0145-FEDER-029841. The authors also thank FCT for the PhD Grant of Andreia Patrícia Magalhães [grant number SFRH/BD/132165/2017]





Fundo Europeu de Desenvolvimento Regiona



# Thank you!

uminho Bi**®**filM

GROUP

Andreia Magalhães

amagalhaes@ceb.uminho.pt