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Abstract: This paper presents an alternative approach to predict rockburst using Machine Learning
(ML) algorithms. The study used the Decision Tree (DT) algorithm and implemented two approaches:
(1) using DT model for each rock type (DT-RT), and (2) developing a single DT model (Unique-DT) for
all rock types. A dataset containing 210 records was collected. Training and testing were performed
on this dataset with 5 input variables, which are: Rock Type, Depth, Brittle Index (BI), Stress Index
(SI), and Elastic Energy Index (EEI). Other ML algorithms, such as Random Forest (RF), Support
Vector Machine (SVM), Artificial Neural Network (ANN), K-Nearest Neighbor (KNN), and Gradient-
Boosting (AdaboostM1), were implemented as a form of comparison to the DT models developed.
The evaluation metrics and relative importance were utilized to examine some characteristics of the
DT methods. The Unique-DT model showed a promising result of the two DT models, giving an
average of (F1 = 0.65) in rockburst condition prediction. Although RF and AdaboostM1 (F1 = 0.66)
performed slightly better, Unique-DT is recommended for predicting rockburst conditions because it
is easier, more effective, and more accurate.

Keywords: rockburst; rockburst condition; decision tree; machine learning algorithms; predictions;
metrics

1. Introduction

Underground activities, such as mining, railway, and road constructions, are complex
geotechnical works. These could be attributed to the limited understanding of the sub-
surface, which makes it difficult for underground constructions, due to the variability of
geology. Even though more effort has been made to perfect underground constructions,
where underground operations at 2000 m below the surface have been common, several
uncertainties do pop up occasionally, which can lead to the wastage of resources (time,
money, and properties) and, sometimes, loss of life. One such uncertainty is the instability
of rock mass, as stated by Askaripour et al. and Aydan et al. [1,2]. Meng et al. [3] and
Zhu et al. [4] explained that the instability of a rock mass in deep excavations depends
on the inherent properties of the rock mass, such as the type of rock, its strength and
brittleness, and external conditions, such as the magnitude of in situ stresses, geological
structures, dynamic perturbations, and excavation sequences during underground opera-
tions. Consequently, based on understanding the above factors and how they influence rock
mass instability, the magnitude of in situ stresses and the rock mass quality have been of
more impact [1,5].

Accordingly, rockburst, which is a dynamic phenomenon, is considered a type of
rock mass failure around deep excavations of hard and brittle rocks and in a high-stress
environment [1,3,6,7]. Rockburst occurs as a result of overstressing the rock mass or intact
brittle rock, when the stresses exceed the compressive strength of the material [1,8–12].
Rockburst can also be defined as sudden and intense movement, accompanied by rock
failure, in underground spaces under high-stress conditions [1,13–16]. Given the fact that
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rockburst is an unexpected mechanism, it poses more problems in terms of vulnerability.
These are the loss of lives of mining personnel, destruction of mining equipment, and, in
some cases, financial loss and time loss. Therefore, it is a must to understand this mechanism
and predict how it is triggered to prevent these vulnerabilities from occurring. Owing to its
complexity, rockburst can be classified into various types, based on its intensity (rockburst
condition), seismicity, the shape of the ejected rock, and others. Rockburst classification is
divided into three groups: first, the type of rockburst (features of failure plane observed
in underground excavation), rockburst intensity, and the mechanism of the rockburst and
evaluation of seismic events [1,8,17]. The present paper uses a rockburst intensity, or
rockburst conditions (RBC), grading system, with four predefined classes based on rock
displacement, damage, and failure characteristics, as shown in Table 1 [18–21].

Table 1. Standard classification of rockburst intensities.

Rockburst
Condition/Intensity Failure Characteristics

None No sound of rockburst and rockburst activities.

Light The surrounding rock is deformed, cracked, or rib spalled, there is a weak sound, and no
ejection phenomenon.

Moderate
The surrounding rock is deformed and fractured, and there is a considerable number of rock

chip ejections, loose and sudden destruction, accompanied by crisp cracking, and often
presented in the local cavern of surrounding rock.

Strong
The surrounding rock is busted severely, and suddenly thrown out or ejected into the

tunnel, accompanied by a strong burst and roaring sound, air spray, and storm phenomena,
with continuity that rapidly expands to the deep, surrounding rock.

Rockburst mechanisms and their predictions have been under serious research over
the years, and have achieved thoughtful and profound results, as shown by the works pro-
duced by several authors. Among the rockburst forecasting methods, including laboratory,
numerical, analytical, and empirical, the empirical approach is the most commonly used,
due to its low cost, fast procedure, and simplicity [22].

Recent studies focusing on Machine Leaning (ML) algorithms are reviewed in Table 2,
and results suggest that different methods have varying performances, and some methods
have shown better accuracy in predicting rockburst occurrence than others [23]. There-
fore, improving the accuracy of rockburst prediction is essential for mitigating risks and
enhancing mining safety during the preliminary design phase [24]. These models have
successfully operated using sets of input and output data from historical rockburst cases,
affirming their capability in this context [24].

Table 2. Summary of previous studies on ML predictions on rockburst conditions with input variables
and results.

Reference Number of Data Input Variables Algorithm Results/Description

J. Zhou et al. [20] 132 D(m), σt, σc, σθ, σθ/σc,
σc/σt, EEI SVM

The results indicated that SVM was
feasible for rockburst conditions by

indicating an average accuracy of 80%

Dong et al. [25] 46 σt, σc, σθ, EEI RF, ANN and SVM

The results showed that the RF
rockburst prediction model

outperformed those of SVM and ANN,
based on the misjudgment ratios

Adoko et al. [26] 174 σt, σc, σθ, σθ/σc,
σc/σt, EEI FIS, ANFIS

The performance of ANFIS, based on
the metrics adopted, was better in

predicting rockburst conditions

Liu et al. [27] 164 σθ/σc, σc/σt, EEI cloud modelling, MLR, ANN

The cloud model adopted performed
better than MLR, but has superior

generalization ability of the ANN in
rockburst prediction
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Table 2. Cont.

Reference Number of Data Input Variables Algorithm Results/Description

J. Zhou et al. [28] 254 PPV, SCF, GSSC, ES, GS stochastic
gradient-boosting (SGB)

The SGB showed an average
accuracy of 0.61 and a

kappa of 0.43, indicating a very good
performance in predicting

rockburst conditions

K. Zhou et al. [29] 209 D(m), σt, σc, σθ, σθ/σc,
σc/σt, EEI

cloud calculation and
entropy weight,
KNN, BN, RF

The results obtained from the
considered model showed high

performance of this model compared
to the other ML algorithms

J. Zhou et al. [30] 246 D(m), σt, σc, σθ, σθ/σc,
σc/σt, EEI

ANN, SVM, RF, GBM,
LDA, QDA,

NB, KNN, CT, PLSDA

The accuracy and Cohen’s kappa
revealed that GBM and RF

performed better than the others in
predicting rockburst conditions

Li et al. [31] 137 D(m), σt, σc, σθ, EEI BN with NB classifier

The result suggests that the error
rate of the proposed BN is the lowest
among traditional criteria, and it can

resolve incomplete data

Ribeiro e Sousa et al. [10] TSUP, K, σc, Deq, ORIENT BN classifiers
The results revealed high accuracy

and good relationships between
variables to be identified

Adoko and Zvarivada [32] 174 σt, σc, σθ, EEI BN classifiers
Overall, the results indicate that BN

performs well in predicting
rockburst intensity

Li and Jimenez [33] 135 D(m), σt, σc, σθ, EEI Logistic Regression
classifier (LRC)

The results, based on AUC and error
rates, indicate that LRC is effective in

predicting rockburst intensity

Xu et al. [34] 60 σθ, σθ/σc, σc/σt, EEI ideal-point method
The results revealed minimum error
rate and a very high prediction for

rockburst intensity

Pu et al. [35] 108 σt, σc, σθ, EEI Decision Tree (DT)

The results show that moderate
rockburst intensity has the best

agreement with the
actual circumstances

Faradonbeh and Taheri [36] 134 σt, σc, σθ, EEI ENN, GEP, DT

The results showed the high
accuracy and applicability of all
three new models. However, the
GA-ENN and the GEP methods
outperformed the C4.5 method

Afraei et al. [37] 188 D(m), σt, σc, σθ, σθ/σc,
σc/σt, EEI NB, DT, SVM, ANN, KNN

The developed models show a high
performance compared to the

previous application of the
empirical criteria

Pu et al. [38] 246 D(m), σt, σc, σθ, σθ/σc,
σc/σt, EEI

Support Vector Classifier
(SVC)

Promising results in forecasting the
rockburst intensity at the Kimberlite

mine in Canada were achieved

Kadkhodaei and
Ghasemi [39] 174 σθ/σc, σc/σt, EEI DT The results show the significantly

high performance of the models

J. Zhou et al. [21] 196 σt, σc, σθ, σθ/σc,
σc/σt, EEI FA, ANN, and (FA-ANN)

The results show a significantly high
performance for all three models,

based on RMSE and R2

J. Zhou et al. [24] 102 σt, σc, σθ, σθ/σc,
σc/σt, EEI CART, Boosting, and Bagging

The results, based on accuracy,
indicated that the ensemble

techniques proved better for the
prediction, especially the bagging

NB.: σθ is the maximum tangential stress of the surrounding rock, MPa, σc is the uniaxial compressive strength
of the surrounding rock, MPa, σt is the tensile strength of the rock, MPa, EEI is the Elastic Energy Index,
Brittle index (BI) = (σc/σt), Stress index/Stress Concentration Factor (SI/SCF) = (σθ/σc), Peak Particle Velocity
(PPV), Ground Support System Capacity (GSSC), Excavation Span (ES), Geological Structure (GS), Type of
Support (TSUP), horizontal vs vertical stress ratio (K), equivalent diameter (Deq), orientation of the burst in the
periphery of the excavation, Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network
(ANN), Fuzzy Inference System (FIS), Adaptive-Neuro Fuzzy Inference System (ANFIS), K-Nearest Neighbor
(KNN), Bayesian Network (BN), Naïve Bayes (NB), Decision Tree (DT), Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), Multilinear Regression (MLR), Partial Least-squares Discriminant
Analysis (PLSDA), Gradient-boosting Machine (GBM), Classification Tree (CT), Emotional Neural Network
(ENN), Gene Expression Programming (GEP), Firefly Algorithm (FA).

While these methods have demonstrated satisfactory results in predicting rockburst
conditions, they are not without limitations. For instance, ANN may suffer a slow learn-
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ing rate and the risk of getting trapped in local minima [24,25,40]; ANFIS can be time-
consuming, due to the need for tuning optimal functions and rules [24,26,41,42]; SVM
classifiers require extensive computations and storage, while the KNN algorithm can be
computationally intensive [24,35,43,44]. Despite the existence of numerous methods for
predicting rockburst conditions and their respective accuracies, developing a reliable and
precise method for rockburst-prone zones remains a challenge [24].

This paper explores the use of ML algorithms, especially decision trees (DT), to predict
rockburst conditions in different rock types. The goal is to develop a unique model that can
effectively predict rockburst conditions, regardless of the rock type. Two distinct approaches
employing decision trees are developed, and their performance metrics are compared.

Other ML algorithms, such as ANN, SVM, RF, and AdaBoostM1, are also utilized. The
study is based on a dataset of rockburst and a predefined classification scale of four levels
(Table 1). The report is divided into Data Characterization (the database used for training
and the characterization of testing the models), Methodology (a brief description of models
and evaluation), Results, and Discussion (summary of main results and observations).

2. Data Characterization

The rockburst database is collected according to the studies performed by many
authors [20,21,28–30,33,35,36,39,45]. Several empirical methods have been introduced
to evaluate rockburst phenomena [1,20]. Founded on empirical methods proposed for
rockburst, the input database was selected [20,24,30,46,47]. The input variables consist of
depth, uniaxial compressive strength (σc), tensile strength (σt), maximum tangential stress
(σθ), and the elastic energy index (EEI), which are converted to four variables, namely,
depth, EEI, BI—(σc/σt), and SI—(σθ/σc), for the prediction of rockburst condition. The
depth was chosen because it influences the size of the in-situ stress, distribution, and
direction. Uniaxial compressive strength (σc), tensile strength (σt), and the elastic energy
index (EEI) [15] reflect the properties of the surrounding rock, and the maximum tangential
stress (σθ) reflects the virgin geostatic stress condition and the influence of the shape and
dimension of the underground space on rockburst. The Stress Index (σθ/σc) and Brittle
Index (σc/σt) were selected because, when the BI value is small, rockburst occurs intensely,
and when large, it is light. Whereas, SI relates directly to BI through Ks [20].

This paper uses a rockburst dataset with 210 records and predefined classes (Table 1)
to predict rockburst using a classification approach. Table 3, Figures 1 and 2 provide the
input variables and statistics. In summary, the statistical analysis of the dataset revealed
that the weight distribution and variance are high, indicating a wide distribution of data,
which may be caused by outliers.

• Rock type (Igneous—IG, Metamorphic—MT, and Sedimentary—SD)
• Depth (m)
• Brittle Index (BI)
• Stress Index (SI)
• Elastic Energy Index (EEI)

Table 3. Statistics of main input variables considered in this study.

Variables Minimum Maximum Mean Std. Deviation Median Skew

Depth (m) 100 2520 730.03 354.85 700 1.56
SI (σθ/σc) 0.1 5 0.65 0.78 0.48 3.52
BI (σc/σt) 0.26 80 19.91 14.8 14.73 2.14

EEI 0.81 30 5.23 4.44 4.4 3.05
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Figure 1. Matrix scatter plots (SPLOM) for each variable in the prediction of rockburst condition-
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Figure 1. Matrix scatter plots (SPLOM) for each variable in the prediction of rockburst condition-RBC
(with bivariate scatter plots below the diagonal, histograms on the diagonal, Pearson correlation
above the diagonal, and boxplots for each RBC based on the input variables).
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3. Methods

This paper discusses the use of data mining (DM) techniques in predicting rockburst
conditions. The focus is on decision trees (J48), using a nominal classification approach.
The R statistical environment and the Rweka [48] package are used to execute various
DM algorithms, including J48 [23,49,50], ANN [21,51], SVM [37,51], RF [30,51], and Ad-
aboostM1 [30,51]. The modelling approach and hyperparameters used for the algorithms
are detailed in Table 4, and a cross-validation approach (KFOLD = 10) is used for val-
idation purposes. Below is a brief overview of the modelling approaches used in this
paper. Interested readers are encouraged to read the references for a more comprehensive
understanding of ML algorithms.

Table 4. Modelling Approach with Hyperparameters for the ML Algorithms.

Model Approach Model Hyperparameters Dataset Used

DT-RT J48 (Default)
Confidence Factor: 0.25

reduced Error Pruning: T
minNumObj: 2

Individual Rock types

Unique-DT J48 (Default)
Confidence Factor: 0.25

reduced Error Pruning: T
minNumObj: 3

All Rock types

Multiple ML

RF (Default)
I = 200 (Number of trees)

K = 10 (Number of features)
depth = 10 (Max depth of each tree)

All Rock types

KNN (Default) K = 1 (number of neighbors to use)

AdaBoostM1
Default base learner: J48

P = 10 (number of iterations)
L = 0.1 (learning rate)

SVM (Default)

Kernel: RBF
C = 1 (complexity constant)

L = 1.0e-12 (tolerance parameter)
P = 1.0e-10 (epsilon)

ANN

L = 0.2 (Learning rate)
M = 0.3 (Momentum)

N = 500 (Number of epochs)
H = 1 (Number of hidden layers)

Sigmoid (Activation function)

3.1. Modelling Approach
3.1.1. Decision Tree Approach

The decision tree is a popular ML algorithm used for both classification and regression
tasks. It is a tree-like model, where each internal node represents a test on an attribute, each
branch represents the outcome of the test, and each leaf node represents a class label or a
numeric value. The algorithm works by recursively splitting the data based on the most
important attribute at each level of the tree, thus forming a decision path from the root of
the leaf node.

Two approaches based on decision trees are described: the DT-RT approach pre-
dicts rockburst conditions for each rock type i.e., Igneous (103 cases), Metamorphic
(58 cases), and Sedimentary (49 cases) using DT (J48), while the Unique-DT approach uses
all datasets (210 cases) to predict rockburst conditions, reduce analysis work, and improve
accuracy. Both approaches aim to improve the effectiveness of the algorithm in predicting
rockburst conditions.
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3.1.2. Multiple Algorithm Approach

This approach employs ANN, SVM, KNN, RF, and AdaboostM1 to predict rockburst
conditions, using a dataset of 210 records. The goal is to compare the results based on
performance metrics with other approaches.

3.2. Data Evaluation

A key problem with ML algorithms is their complexity. Thus, according to different
proposals, ML algorithms are assessed by relying on accuracy. The confusion matrix
is a classification process that contains the evaluation metrics, such as recall, F1, and
precision. This makes it easier to access and more reliable. The performance of different
distinct data-driven models will be evaluated and compared using seven metrics: Recall,
Precision, F1, Accuracy (ACC), Specificity (SP), Matthew Correlation Coefficient (MCC),
and Area Under the Receiving Operating Characteristic (ROC) Curve (AUC). Additionally,
the interpretability of the models is assessed through sensitivity analysis—the relative
importance of input variables to the output variable—rockburst condition. The equations
and definitions of the metrics are as follows.

The recall measures the proportion of cases of a certain class correctly identified by
the model. Therefore, recall is given by:

recall =
TruePositive (TP)

TruePositive (TP) + FalseNegative(FN)
(1)

On the other hand, precision measures the correctness of the model when it predicts a
certain class. Precision is given by:

precision =
TruePositive (TP)

TruePositive (TP) + FalsePositive(FP)
(2)

The harmonic mean of precision and recall is a class of F1 score (F1). It is also a
measure of the performance of the model’s classification ability. The F1 score is considered
a better indicator of the classifier’s performance than the regular accuracy measure.

F1 = 2· precision·recall
precision + recall

(3)

Furthermore, the accuracy criterion defines the percentage of the data in the correct
place. The closer the value is to one, the higher the accuracy and reliability.

ACC =
TP + FN

TP + TN + FP + FN
(4)

Specificity can be defined as the algorithm’s ability to predict the True Negative of
each category available. It is also known as the True Negative Rate (TNR).

SP =
TN

FP + TN
(5)

MCC =
(TP·TN)− (FP·FN)√

(TP + FP)·(TP + FN)·(TN + FP)·(TN + FN)
(6)

AUC calculates the area under the ROC curve. The higher the AUC, the better the
model classifier. Therefore, the AUC for a perfect classifier is 1. In all, the higher the
metric values, the better the prediction. This goes for all the metrics selected. MCC
ranges in the interval −1, +1, with extreme values –1 and +1 reached in the case of perfect
misclassification and perfect classification, respectively, while MCC = 0 is the expected
value for the coin-tossing classifier.
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4. Discussion

This section summarizes the main results achieved in rockburst condition prediction
through the application of ML techniques. These algorithms are analyzed through the
accuracy criteria—metrics, and the results are according to the modelling approach adopted
in this study.

4.1. DT-RT

The performance metric and DT representation of the DT-RT approach are indicated
in Table 5 and Figures 3–5 below. The model showed promising results for each rock type,
based on the evaluation metrics. The metamorphic DT algorithm performed the best, in
terms of F1 score (0.74), indicating better classifier performance. However, the sedimentary
model performed the worst, which may be due to the complexity of the geological material
involved and the limited amount of data.

Table 5. Metrics of DT-RT.

IGNEOUS

Rockburst Condition Precision Recall F1 AUC ACC SP MCC

None 0.61 0.65 0.63 0.83 0.87 0.92 0.55
Light 0.56 0.56 0.56 0.68 0.71 0.78 0.34

Moderate 0.64 0.68 0.66 0.72 0.77 0.81 0.48
Strong 0.67 0.56 0.61 0.78 0.87 0.94 0.53

Average 0.62 0.61 0.62 0.75 0.81 0.86 0.48

METAMORPHIC

None 0.88 0.78 0.82 0.98 0.95 0.98 0.8
Light 0.73 0.67 0.7 0.88 0.88 0.93 0.62

Moderate 0.67 0.7 0.68 0.8 0.78 0.82 0.51
Strong 0.72 0.76 0.74 0.9 0.84 0.88 0.63

Average 0.75 0.73 0.74 0.89 0.86 0.9 0.64

SEDIMENTARY

None 0.45 0.45 0.45 0.72 0.76 0.84 0.3
Light 0.45 0.63 0.53 0.63 0.63 0.64 0.25

Moderate 0.46 0.35 0.4 0.56 0.63 0.78 0.14
Strong 0 0 0 0.54 0.84 0.93 −0.09

Average 0.34 0.36 0.35 0.61 0.72 0.8 0.15

NB.: Best Value in Bold.

4.2. Unique-DT

This section describes the results of using the Unique-DT approach for predicting
rockburst conditions. Table 6 and Figure 6 present the performance metrics and DT diagram,
respectively. The DT-RT model for metamorphic rocks leads to the best results, with an
F1 score of 0.74 and an accuracy of 0.86. However, this model is restricted to a single
rock type, whereas the Unique-DT model includes all rock types and showed a promising
performance, with an F1 score of 0.65 and an accuracy of 0.82. The other performance
metrics indicated also showed high performance. It should be stressed that the two other
DT-RT models showed poorer performances than Unique-DT.
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Table 6. Metrics for Unique-DT Model.

Rockburst Condition Precision Recall F1 AUC ACC SP MCC

None 0.70 0.57 0.63 0.83 0.88 0.95 0.61
Light 0.57 0.63 0.60 0.75 0.75 0.80 0.41

Moderate 0.64 0.69 0.66 0.75 0.76 0.80 0.37
Strong 0.77 0.68 0.72 0.86 0.90 0.95 0.52

Average 0.67 0.64 0.65 0.80 0.82 0.88 0.48

NB.: Best Value in Bold.
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4.3. Multiple ML Algorithms

The evaluation results of several ML algorithms, such as ANN, KNN, RF, SVM,
AdaboostM1, and Unique-DT, were compared and presented in Table 7. RF, AdaboostM1,
unique-DT, ANN, and KNN were found to perform well in predicting rockburst conditions,
while SVM showed poorer performance. F1 and accuracy metrics for RF, Unique-DT, and
AdaboostM1 were similar, with RF having a slight advantage. The study suggests that the
Unique-DT model is a good alternative to other ML algorithms for predicting rockburst
conditions. In addition, the ML algorithms used in this study are compared with some
from other studies (Table 8).
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Table 7. Metrics for Multiple ML algorithms.

RF

Rockburst Condition Precision Recall F1 AUC ACC SP MCC

None 0.64 0.68 0.66 0.94 0.88 0.92 0.58
Light 0.6 0.53 0.56 0.85 0.76 0.85 0.4

Moderate 0.64 0.75 0.69 0.86 0.77 0.78 0.51
Strong 0.79 0.65 0.71 0.93 0.9 0.96 0.66

Average 0.67 0.65 0.66 0.9 0.83 0.88 0.54

KNN

None 0.53 0.62 0.58 0.75 0.84 0.88 0.48
Light 0.52 0.44 0.47 0.63 0.71 0.83 0.28

Moderate 0.58 0.63 0.61 0.7 0.72 0.77 0.4
Strong 0.68 0.65 0.67 0.79 0.88 0.93 0.59

Average 0.58 0.59 0.58 0.72 0.79 0.85 0.44

SVM

None 0.64 0.19 0.29 0.77 0.84 0.98 0.28
Light 0.27 0.39 0.32 0.52 0.5 0.55 -0.05

Moderate 0.35 0.42 0.38 0.53 0.54 0.6 0.03
Strong 0.88 0.53 0.66 0.87 0.9 0.98 0.63

Average 0.54 0.38 0.41 0.67 0.7 0.78 0.22

ANN

None 0.74 0.62 0.68 0.88 0.9 0.95 0.62
Light 0.48 0.5 0.49 0.71 0.7 0.78 0.27

Moderate 0.51 0.52 0.51 0.72 0.61 0.67 0.19
Strong 0.67 0.7 0.68 0.91 0.88 0.92 0.61

Average 0.6 0.59 0.59 0.81 0.77 0.83 0.42

AdaboostM1

None 0.72 0.7 0.71 0.92 0.9 0.94 0.65
Light 0.58 0.52 0.55 0.77 0.75 0.84 0.37

Moderate 0.62 0.7 0.66 0.8 0.71 0.71 0.41
Strong 0.74 0.7 0.72 0.9 0.9 0.94 0.65

Average 0.67 0.66 0.66 0.85 0.82 0.86 0.52

Unique-DT

None 0.7 0.57 0.63 0.83 0.88 0.95 0.61
Light 0.57 0.63 0.6 0.75 0.75 0.8 0.41

Moderate 0.64 0.69 0.66 0.75 0.76 0.8 0.37
Strong 0.77 0.68 0.72 0.86 0.9 0.95 0.52

Average 0.67 0.64 0.65 0.8 0.82 0.88 0.48

NB.: Best Value in Bold.

Table 8. Summary of some ML algorithms available in the literature, used for comparison with the
proposed models.

REF. Algorithms Accuracy REF. Algorithms Accuracy

KNN [30] 53.2–67.2% GEP [36] 85.16%
GBM [30] 61.22% DT [36] 81.48%
NB [30] 53.9–67.2% Cloud [29] 71.05%
DT [35] 73–93% GSM-SVM [20] 66.67–88.9%

LRC [33] 80.2–90.9% GA-SVM [20] 66.67–80%
BN [31] 91.75% PSO-SVM [20] 66.67–90%

ENN [36] 85.19% ANFIS [26] 66.5–95.6%
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This section highlights the importance of interpretability in explaining ML algorithms,
particularly sensitivity analysis of DT algorithms. The aim was to identify the relevant
variables (inputs) that contribute to the prediction of rockburst conditions. Figure 7 was
generated to help understand what was learned by the algorithms and compare it to
empirical knowledge.
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Figure 7. ML algorithms identify the most contributing variables for rockburst prediction through
relative importance.

Each rock type has distinct variables that contribute to determining rockburst con-
ditions, with the Unique-DT model showing the most influence on elastic energy index
(EEI = 36.73%). Other influential input variables include Depth (25.84%), Brittle index
(BI = 16.13%), and Stress Index (SI = 13.85%). The three DT-RT models show varying
importance, based on their input variables. This is indicative of the influence the variable
has on rockburst due to the rock type. The importance of the DT-RT model for sedimentary
(SD) indicates EEI (43.01%) as the most relevant factor, followed by Depth (21.19%), BI
(18.71%), and SI (17.09%), respectively. In the case of IG and MT, BI (27.37%) and SI (32.21%)
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are the most relevant factors, respectively, and EEI is the second-most important variable
for both models.

These findings align with previous studies [21,30,31,33] on rockburst condition pre-
diction, emphasizing the importance of accurately identifying underlying factors through
closer examination of input data. It should be noted that all models assign high importance
to the elastic energy index (EEI), which aligns with Xu and Yu [16] who presented a new
prediction method for rockburst based on this index.

4.4. Limitations

Despite the satisfactory results obtained in predicting rockburst conditions, this work
has certain limitations:

• Due to the relatively small size of the dataset (210), it may not fully capture the
variability of the rockburst conditions across different geological settings. Therefore,
obtaining a larger dataset could provide more robust results.

• The study only considers five input variables, which may not capture all the rele-
vant factors that contribute to rockburst occurrence. Including more variables could
improve the accuracy of the results.

• The study only uses DT, and a few other ML algorithms, for predicting rockburst
conditions. Other approaches, such as physics-based models or hybrid models that
combine data-driven and physics-based approaches, could provide complementary
insights and improve the overall prediction performance.

• The study only uses a nominal classification approach for DT, which may not be
optimal for handling continuous or ordinal variables. Using other classification ap-
proaches, such as binary or multi-class classification, could provide more flexibility
and accuracy in modelling the rockburst conditions.

5. Conclusions

Predicting the rockburst condition plays a vital role in the safety, economy, perfor-
mance, and efficiency of deep underground projects. In this research, a Decision Tree
(DT), which is a simple, efficient, and accurate technique, was utilized to predict rockburst
conditions for different rock types, such as igneous, metamorphic, and sedimentary, both
alone and together. A new model was developed by combining datasets for each rock type
and modelling it, using the DT algorithm, to predict rockburst conditions. Other Machine
Learning (ML) algorithms, such as Random Forest (RF), K-Nearest Neighbor (KNN), Ar-
tificial Neural Network (ANN), Support Vector Machine (SVM), and AdaboostM1 were
also utilized in predicting rockburst condition. Training and testing of the models were
performed on a representative dataset of 210 records containing 5 input variables, required
for forecasting rockburst conditions. The dataset contains 103 igneous rockburst cases,
58 metamorphic, and 49 sedimentary.

The approach, using different DT models for each rock type, is very restrictive, in
comparison with the Unique-DT model, which has a wider domain of application. Among
the DT models, the one related to metamorphic rocks provided the best results. However,
it can only be applied to one type of rock. Furthermore, based on the evaluated metrics,
the Unique-DT (F1 = 0.65) algorithm showed a very promising performance. Although
other ML algorithms were utilized and compared to Unique-DT, RF (F1 =0.66) and Ad-
aboostM1 (F1 = 0.66) were slightly better in performance metrics. Taking into account its
simplicity and effectiveness, the Unique-DT model is suggested to be used in predicting
rockburst conditions.

Subsequently, more focus should be placed on ensemble methods, such as RF and
boosting algorithms, such as AdaboostM1, as they have demonstrated strong performance
in classification tasks. Moreover, to improve prediction accuracy, authors intend to incorpo-
rate additional data—rockburst cases and results obtained from different input variables
and ML methods in future work.



Appl. Sci. 2023, 13, 6655 15 of 17

In summary, the ML algorithms have shown that they can be used for predicting
rockburst conditions if data are available. Also, the use of DT in rockburst prediction based
on depth, elastic energy index, and strength rock parameters has proved effective, and
demonstrated its merit in solving this complex phenomenon—rockburst.
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