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Avaliação in silico e in vitro de novos derivados de purina como agentes anticancerígenos 

As purinas desempenham um papel importante na maioria dos processos biológicos. Por esta 

razão, pesquisas sobre o potencial dos derivados de purina para serem aplicados como agentes 

terapêuticos levaram ao desenvolvimento de vários fármacos. Assim, a síntese de novos análogos de 

purina é uma abordagem valiosa para examinar o efeito dos substituintes na atividade biológica. 

O cancro é uma das principais causas de morte e uma importante barreira para o aumento da 

esperança de vida em todos os países do mundo. A acumulação de adenosina extracelular e de outros 

análogos de purina tem sido reportada em contexto tumoral e tem-se mostrado crucial para o seu 

desenvolvimento. Além disso, outras purinas biológicas como o ATP, também desempenham um papel 

mediador nas vias de sinalização intracelular através da fosforilação de uma variedade de substratos que 

medeiam a divisão celular. Posto isto, novas famílias de análogos de purina foram desenhadas e 

sintetizadas para aplicações no tratamento do cancro. O mecanismo de ação das purinas já conhecidas 

como anticancerígenos foi inicialmente relacionado com a sua integração no DNA mas, presentemente, 

estudos mostram que estas moléculas poderão na verdade comportar-se como agentes 

polifarmacológicos (agentes que atuam em múltiplos alvos). Embora a polifarmacologia costumasse ter 

uma conotação negativa, já que ter efeito sobre mais do que um alvo possa levar a efeitos colaterais 

inesperados, agora a química medicinal tende a desenhar agentes menos seletivos para a terapia. 

Atualmente, os cientistas têm motivos para acreditar que a combinação da terapia polifarmacológica com 

sistemas de drug delivery possa ser a resposta para o tratamento de doenças complexas como o cancro. 

Recentemente, o rápido crescimento de recursos de dados tornou-se um fator determinante para 

capturar aspetos da eficácia de fármacos anticancerígenos. Neste trabalho, ferramentas computacionais 

como inteligência artificial e simulações moleculares foram usadas para avaliar a atividade e o 

mecanismo de ação de novos derivados de purina. O efeito das moléculas na viabilidade celular também 

foi avaliado em duas linhas de células cancerígenas e uma saudável. Foram também realizados testes 

enzimáticos e a capacidade de encapsular as moléculas em nanopartículas lipídicas sólidas. 

Em termos gerais, os resultados mostraram que estas moléculas recém-desenhadas têm 

potencial para serem aplicadas não apenas como agentes anticancerígenos, mas também como agentes 

terapêuticos para outras doenças complexas. Dado o seu perfil polifarmacológico, mais estudos devem 

ser feitos para avaliar plenamente o potencial oculto destes compostos como agentes terapêuticos. 

Palavras chave: cancro, design de fármacos auxiliado computacionalmente, derivados de purina, 

polifarmacologia   
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In silico and in vitro assessment of novel purine derivatives as anticancer agents 

Purines play an important role in most biological processes as components of ATP, cAMP, etc. 

For this reason, research on purine derivative’s potential to be applied as therapeutic agents resulted on 

the continuous development of multiple drugs still used today. Thus, modification of substituents on the 

purine ring is a valuable approach to examine the corresponding effect on biological activity.  

Cancer is a leading cause of death and an important barrier to increasing life expectancy in every 

country in the world. Accumulation of extracellular adenosine and other compounds containing purines 

have been reported in the tumor microenvironment and it has been proven to be crucial to its 

development. Additionally, these types of compounds also mediate intracellular signaling pathways 

through phosphorylation of a range of downstream substrates that mediate cell division. Knowing this, 

novel families of purine analogues have been designed and synthesized for applications in cancer 

treatment. The mechanism of action of known purines as anticancer agents was first thought to be related 

to their integration in DNA, but today, studies have shown that these molecules could actually behave as 

polypharmacological agents. Although polypharmacology has been linked to a negative connotation, as 

having an effect on more than one target could lead to unexpected side effects, now medicinal chemistry 

tends to design less selective agents for therapy. At present, scientists have a reason to believe that 

combining polypharmacological therapy with drug delivery systems might be the answer to treat complex 

diseases such as cancer.  

Recently, the rapid growth of data resources resulted from the application of omics technologies, 

which have become a very determinant factor to capture different aspects of anticancer drug efficacy. In 

the present work, computational tools such as artificial intelligence and molecular simulations have been 

used to assess the activity and mechanism of action of newly designed purine derivatives. The molecules’ 

effect on cell viability was also assessed in two different cancer cell lines and a healthy cell line. In addition 

to the viability assays, enzymatic tests were performed and ability to encapsulate the molecules in solid 

lipid nanoparticles was also assessed.  

Overall, results have shown that these newly designed molecules have the potential to be applied 

not only as anticancer agents, but also as therapeutic agents for other complex diseases. Given their 

polypharmacological profile, further studies should be done to fully assess their lurking potential as 

therapeutic agents. 

Keywords: cancer, computer-aided drug design, polypharmacology, purine derivatives  
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Abbreviation list 

 

AC adenyl cyclase 

ADME absorption, distribution, metabolism 
and excretion  

ADP adenosine diphosphate  

ADSL adenylosuccinate lyase  

AKT protein kinase B  

ALP alkaline phosphatase  

AMP adenosine monophosphate  

ATIC 5-aminoimidazole-4-carboxamide 
ribonucleotide transformylase; inosine 
monophosphate cyclohydrolase  

ATP adenosine triphosphate 

AURK aurora kinase 

CADD computer-aided drug design  

cAMP cyclic adenosine monophosphate 

CDK cyclin-dependent kinase  

cGMP cyclic guanosine monophosphate  

DLS diffusion light scattering 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid  

ECM extracellular matrix  

EGFR endothelial growth factor receptor 

EPR enhanced permeability retention 

FAD flavin adenine nucleotide 

FBS fetal bovine serum 

FDA U.S. Food and Drug Administration 

GART glycinamide ribonucleotide synthetase; 
glycinamide ribonucleotide transformylase; 
aminoimidazole  ribonucleotide synthetase  

GFP green fluorescent protein  

GTP guanosine triphosphate  

HSP90 heat shock protein 90  

IC50 half maximal inhibitory concentration 

IMP inositol monophosphate   

JNK1 c-Jun N-terminal kinase 

MAPK mitogen-activated protein kinase 

MD molecular docking 

MDM2 murine double minute 2 

MEK mitogen-activated extracellular signal-
regulated kinase  

MNA multilevel neighbors of atoms 

MR molecular refractivity 

NAD nicotinamide adenine dinucleotide  

NM II non-muscle myosin II  

PAICS phosphoribosylaminoimidazole 
carboxylase; 
phosphoribosylaminoimidazolesuccinocarboxa
mide synthetase  

PAINS pan-assay interference compounds  

PAP prostatic acid peptidase  

PAPS 3'-Phosphoadenosine-5'-phosphosulfate 

PBS phosphate buffer solution 

PDB protein data bank 

PDGFR platelet-derived growth factor receptor 

PEG polyethylene glicol 

PFAS/FGAS 
phosphoribosylformylglycinamidine synthetase  

PI3K phosphoinositide 3-kinase  

PPAT phosphoribosyl pyrophosphate 
amidotransferase  

PRPP phosphoribosyl pyrophosphate  

QSAR quantitative structure-activity relationship 



ix 
 

R&D research and development 

RT room temperature 

SAR structure-activity relationship 

SLN solid lipid nanoparticle  

TME tumor microenvironment 

TPSA topological polar surface area 

VEGFR vascular endothelial growth factor 
receptor
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1.1 Cancer: state of the art and new findings 

 

The first description of cancer appears in the Edwin Smith Papyrus and dates back to 3000 BC. 

In this copy of a part of an ancient Egyptian textbook, it says that “There is no treatment” for the disease1. 

The origin of the word “cancer” is credited to Greek physician Hippocrates (460-370 BC), considered to 

be the “Father of Medicine”. He used the terms carcinos (tumor), carcinoma (malignant tumor), and 

cancer (nonhealing malignant ulcer) to describe the abnormal growths that resembled a crab, leading to 

the terms2. About 140 years ago, German microscopist Johannes Mueller showed that cancers were 

made of cells, a discovery which began the search for changes that would help pinpoint the differences 

between healthy and cancerous tissues3. Today, we know that cancer is a genetic disorder that results 

from genetic or epigenetic alterations in the somatic cells4. This dysregulated balance of cell proliferation 

and death can lead to the development of a population of cells that can evade tissues and metastasize to 

other sites. If left untreated, it will potentially lead to significant morbidity and ultimately death of the 

patient5 (Figure 1). In the intervening period, a huge amount of information has been acquired about 

cancer cells, their mechanisms of survival and development. In the past decades in particular, rapid 

technological progress has allowed scientists to dissect the cancer genome, transcriptome, proteome and 

interactome, and a variety of new techniques and models to assess anticancer activity have been 

developed. Now that almost anything seems technically possible to observe and perform, the key issue 

for the twenty-first century scientists is to identify the right questions to ask6. 

Cancer is considered to be a leading cause of death and an important barrier to increasing life 

expectancy in every country in the world. According to estimates from GLOBOCAN, 19.3 million new 

cancer cases and almost 10.0 million cancer deaths occurred in 20207. Female breast cancer has 

surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases 

(11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung 

cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed 

by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers7. It is important to 

note that these estimates do not reflect the impact of severe acute respiratory syndrome coronavirus 28, 

as they are based on extrapolations of cancer data collected in earlier years before the pandemic. 

Although the full extent of the impact of the COVID-19 pandemic in different world regions is currently 

unknown, delays in diagnosis and treatment associated with the concerns of individuals, health system 

closures, including suspension of screening programs, and reduced availability of and access to care are 
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expected to cause a decline in cancer incidence followed by increases in advanced-stage diagnoses and 

cancer mortality9–11. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Distribution of cancer deaths for the top 10 most common cancers in 2020 for men and women, according to GLOBOCAN7. 

 

Standard treatments for cancer management involve procedures such as surgery, radiotherapy 

and chemotherapy. One of the main reasons why cancer is so hard to treat is the limitations associated 

with the use of conventional chemotherapeutic agents. For instance, many anticancer drugs provoke 

debilitating temporary or permanent side effects for the patient12 and lowering the dose of these drugs to 

minimize these side effects may significantly reduce their effectiveness13. In addition, many cancer cells 

usually acquire chemoresistance (lack of response to drug-induced growth inhibition), which constitutes 
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a persistent problem during treatment12. Even with the significant progress made in immunotherapy in 

recent years, only a minority of cancer patients benefit from it and many of them relapse during therapy14. 

This, along with the unavailability of effective tools for early cancer diagnosis4, makes the cure for cancer 

the Holy Grail of biomedicine. 

Recently, the rapid growth of data resources resulted from the application of omics technologies 

has become a very determinant factor to capture different aspects of anticancer drug efficacy. 

Computational methods are essential for the analysis of these big data resources to predict drug activity 

and to generate clinically useful results15. Significant advances in machine learning and molecular 

modeling techniques have afforded a variety of tools to effectively identify drug targets and build 

structure−activity relationship models, to map key interactions between ligands and their binding sites, 

and to predict absorption/distribution/metabolism/excretion (ADME) properties of candidate compounds 

leading to the creation of a drug candidate. The properties of novel therapeutic agents can be investigated 

and ultimately optimized via expert science behind medicinal chemistry and methods of computer-aided 

drug design (CADD)16. 

 

1.2 Purine derivatives: applications and possible targets according to literature  

 

 Purines play an important role in most biological processes as components of ATP, GTP, cAMP, 

cGMP, NAD, FAD, PAPS, etc17,18. Thus, modification of substituents on the purine ring is a valuable 

approach to examine the corresponding effect on biological activity. The chemistry of purines allows for 

the manipulation of substituents is a variety of ways and, as a consequence, extensive and diverse 

libraries of purine derivatives have been prepared bearing different types and combinations of 

functionality19. Recent studies have shown advances in exploration of purine-based compounds as 

biological tools and their potential as therapeutic agents to treat an impressively wide range of diseases 

such as cancer, rheumatoid arthritis, asthma, diabetes, Parkinson’s disease and depression19 (Figure 

2). 
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Figure 2: General structure of purine derivatives and potential applications. Combinations of various substituents (1, 2, 3, 4...) on the different 
positions (R1–R7) of the purine ring lead interactions with different targets19. 

  

1.2.1 Extracellular signaling pathways as targets 

 

Accumulation of extracellular ATP often reflects metabolic changes under conditions of cellular 

stress. The enzymes CD39 and CD73 catabolize hydrolysis of extracellular ATP to adenosine. CD39 is a 

two-transmembrane domain-embedded ecto-enzyme that hydrolyzes ATP into AMP in a two-step process, 

whereas CD73 is a GPI-anchored ectoenzyme highly selective for AMP that hydrolyzes it into adenosine20. 

Tissue hypoxia, which is elevated in tumor microenvironments, is an important driver of extracellular 

adenosine accumulation as it promotes transcription regulation of CD7321. Elevated levels of adenosine 

generally reflect high levels of CD73 expression on cancer cells, fibroblasts and/or immune cells. CD73 

constitutes a promising therapeutic target to re-establish anti-tumor immunity dampened by adenosine 

receptors22. Although the CD39/CD73 axis is one of the most highly studied pathways and is thought to 

account for the bulk of adenosine production, alternative pathways are also present. CD38 and CD203a 

are able to sequentially convert NAD+ into AMP, which can again be converted into adenosine via CD73. 

Additionally, adenosine can also be generated through two additional pathways: alkaline phosphatase 

(ALP), which can directly convert AMP, ATP, or ADP into adenosine; and prostatic acid peptidase (PAP), 

which converts AMP into adenosine23 (Figure 4).  
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The multifaceted nature of adenosinergic signaling provides multiple potential targets that have 

been shown to alleviate the immunosuppressive TME in a variety of preclinical models24. Extracellular 

adenosine exerts its biological activity through four G-protein-coupled receptors: A1, A2a, A2b and A325, 

resulting in different effects on the intracellular signaling pathways (Figure 4).  

 

 

 

 

Figure 3: (A) A2a inhibitor ZM24138526 and (B) CD73 inhibitor adenosine 5′-(α,β-methylene)diphosphate27 

In addition to adenosine, other signaling molecules such as growth factors are also present 

extracellularly. These growth factors activate receptor tyrosine kinases (RTKs), leading to the regulation 

of cell division and proliferation28,29 (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Extracellular signalization between cells by adenosine and growth factors. Extracellular adenosine can be formed directly due to the 
action of CD39, CD73, PLP and PAP via ATP dephosphorylation. This adenosine serves as a ligand and interact with adenosine receptors (A2a, A2b, A1 and 
A3). Additionally, growth factors liberated by neighboring cells serve as ligands to RTKs, leading to cell proliferation and division. 

 

A B 
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1.2.2 Intracellular signaling pathways 

 

Proliferation, differentiation, and survival are all tightly regulated by the RAS/PI3K/AKT and 

RAS/PKA/ERK/MAPK pathways. These pathways are induced as a result of ligand-activated RTKs, which 

are a family of cell surface receptors that serve as receptors for external signaling molecules such as 

growth factors, hormones, cytokines, neurotrophic factors, and others28. The RTK family comprises various 

classes of receptors, such as endothelial growth factor receptor (EGFR), vascular endothelial growth factor 

receptors (VEGFR), platelet-derived growth factor receptors (PDGFR), among others29. These pathways 

consist of an intracellular signal transduction mechanism that regulate metabolism, proliferation, cell 

survival, growth and angiogenesis in response to extracellular signals. This is mediated through serine 

and/or threonine phosphorylation of a range of downstream substrates30 (Figure 8). As single agents, 

most inhibitors are cytostatic rather than cytotoxic to cancer cells31. However, using strategies for multi-

targeted kinase inhibition may be more effective than inhibiting either target alone32. Preclinical 

experiments support this idea, and drugs such as PP121 (Figure 5F) that target multiple steps in this 

pathway have been designed33. When adenyl cyclase (AC) activity is induced by RTK or AR signaling, the 

enzyme transforms ATP into cAMP, and allows for the transfer of a phosphate group to next substrate, 

resulting in a cascade signaling effect. One of these substrates, EPAC, plays a crucial role in cell division. 

Recently, studies have found that EPAC-specific inhibitor treatment or silencing the EPAC gene expression 

rendered cells resistant to viral infection34.  

 

 

 

 

 

 

 

 

 

 

Figure 5: (A) VEGFR inhibitor tivozanib35, (B) AC inhibitor TDI1022936, (C) EPAC inhibitor ESI-0937,38, (D) PKA inhibitor (2S)-1-(1H-indol-3-

yl)-3-[5-(3-methyl-1H-indazol-5-yl)pyridin-3-yl]oxy-propan-2-amine39, (E) HCK protein tyrosin kinase 1-ter-butyl-3-p-tolyl-1H-pyrazolo[3,4-

d]pyrimidin-4-ylamine40 and (F) PP12133. 

B A C 

D E F 
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The p53 proteins (originally thought to be, and often spoken of as, a single protein) are crucial in 

vertebrates, where they prevent cancer formation41. As such, p53 is classified as a tumor suppressor gene 

and has been described as "the guardian of the genome”42–46. AKT mediates control of P53 levels through 

enhancing MDM2 (murine double minute 2)-mediated targeting of p53 for degradation47. Multiple 

phosphorylation events trigger the tetrameric transcription factor p53's activation in response to cellular 

stress. This activation causes overexpression or repression of genes involved in cell-cycle arrest, DNA 

repair, apoptosis, and senescence depending on the type of stress(48). P53 induces the expression of 

p21, an inhibitor of the cyclin dependent kinases (CDKs)2, 3, 4 and 6 (Figure 8) (49).  

CDKs  are  the  catalytic  subunits  of  a  family  of  mammalian  heterodimeric  serine/threonine  

kinases  that  are  implicated  in  the control  of  cell-cycle  progression,  transcription  and neuronal  

function48,49. The dysregulation of cell cycle control in cancer has been studied for many years and, 

consequently, the central role played by CDKs has led them to be investigated as drug targets50,51. Many 

malignancies overexpress CDKs, ultimately leading to the development of CDK inhibitors.  

The 2,6,9-trisubstituted purines, such as roscovitine (Figure 6A), were among the first low 

molecular weight inhibitors of CDKs. However, its short half-life and rapid metabolism to inactive 

derivatives, its rather weak potency on CDKs and, consequently, the large quantities required to treat 

patients, constitutes a limiting factor in its clinical use. Therefore, analogues of roscovitine are quite 

desirable. CR8 (Figure 6B), an optimized compound, induces apoptotic cell death with about 50-fold 

enhanced potency compared to roscovitine52,53. Olomoucine (Figure 6C) has only weak cytotoxic 

activity in comparison to olomoucine II (Figure 6D), which is more potent in vitro against tumor cells54. 

In previous studies, structure-based design was used to optimize the ATP-competitive inhibition of CDK1 

and CDK2 by O6-cyclohexylmethylguanines. The resulting optimized compound, NU6102 (Figure 6E), 

demonstrated inhibition of cell growth and target protein phosphorylation, consistent with CDK1 and 

CDK2 inhibition39. This compound is selective and one of the most active CDK2 inhibitors described so 

far. 
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Figure 6: Examples of purine derivatives as CDK inhibitors. (A) roscovitine, (B) CR8, (C) olomoucine, (D) olomoucine II and (E) NU6102. 

 

Serine/threonine kinase mammalian Aurores (Aurora-A, -B, and -C) are the most prevalent mitotic 

progression regulators and are often abundantly expressed in human cancers. Recent evidence suggests 

that the Aurora A and B (the two major types of Aurora kinase), tend to play a key role in the regulation 

of chromatid divergence55,56 (Figure 8). More specifically, it allows the splitting cell to provide its daughter 

cell with its genetic material55,57–59. Inadequacies genetic instability, strongly linked to tumorigenesis can 

occur in this segregation60. A temporary spindle checkpoint-dependent mitotic arrest results from 

abnormalities in mitotic spindle assembly caused by Aurora-A inhibition. As a result, Aurora-A inhibited 

cells exit from mitosis and undergo apoptosis either by inducing a G1 arrest followed by apoptosis or by 

a p53-independent mechanism. Contrarily, blocking Aurora-B disrupts the normal alignment of the 

chromosomes during mitosis and overcomes the mitotic spindle checkpoint, leading to polyploidy, the 

failure of cytokinesis, and endoreduplication, which is followed by cell death after more than 48 hours61,62.  

Thus, the development of Aurora oncogenic inhibitors may boost cancer patients’ clinical 

outcomes. In previous studies63,64, it has been shown that purine derivatives could potentially be used as 

Aurora kinase (AURK) inhibitors (Figure 7). 

 

 

 

A B C 

D E 
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Figure 7: Aurora kinase inhibitors (A) CCT13769062,64 and (B) 9-chloro-7-(2,6-difluorophenyl)-N-{4-[(4-methylpiperazin-1-

yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine65. 

 

Although targeted therapies often elicit profound initial patient responses, these effects are 

transient due to residual disease leading to acquired resistance. How tumors transition between drug 

responsiveness, tolerance and resistance, remains unclear. In EGFR-mutant lung adenocarcinoma cells, 

residual disease and acquired resistance in response to EGFR inhibitors requires AURKA activity. Aurora 

kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR 

inhibitor response in preclinical models66. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: As a result of activation through A2a and A2b receptors, adenylate cyclase leads to dephosphorylation and conversion of ATP to cAMP.  
Then, this second messenger engages pathways that control transcription, which are essential for cell survival. Ras can be activated by growth factor signaling 
via RTKs to further increase adenyl cyclase activity, despite the mechanisms underlying the RTK-mediated enhancement of AC function remaining unclear(86). 
These intracellular signaling pathways can influence how p53 functions, a focal protein that inhibits CDK activity. In reaction to both internal and external 
influences, CDKs are responsible for regulating and ensuring proper cell cycle progression. 

A 
B 
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1.2.3 Using purine derivatives to target metabolic pathways and DNA synthesis 

 

Reprogrammed metabolic pathways are essential for cancer cell survival and growth. These 

reprogrammed activities allow tumor cells to take up nutrients and use them to produce ATP, generate 

biosynthetic precursors and macromolecules, and tolerate stresses associated with malignancy (for 

example, redox stress and hypoxia)67,68. 

In cancer cells, high concentrations of purine metabolites have been indicated, and this discovery 

led to the development of the earliest antitumor drugs – purine antimetabolites69. These molecules are 

chemical analogues that share similar structures to the metabolites within the purine metabolism. This 

allows them to compete with purine nucleotides to be incorporated into DNA during cell cycle, inhibiting 

rapid division and proliferation70,71. Currently, many antimetabolites have been approved for cancer 

treatment, such as 6-thioguanine72,73 (Figure 9A) and 6-mercaptopurine73–75 (Figure 9B).   

 

 

 

 

Figure 9: Purine derivatives as antimetabolites: (A) 6-thioguanine and (B) 6-mercaptopurine. 

 

 Under cellular conditions of high purine demand, the de novo  purine biosynthetic enzymes 

cluster near mitochondria and microtubules to form dynamic multienzyme complexes called 

purinosomes76 (Figure 10). These purinosomes have been identified within purine metabolism, and 

since they are closely related to the cell cycle77,78, these results provide a novel therapeutic strategy for 

cancers by targeting purinosome assembly. In numerous cancers, specific pathway enzymes are usually 

upregulated, reflecting its importance  in tumorigenesis79,80. Mutations of these enzymes may affect 

purinosome formation, which is likely to mediate cell cycle and enhance sensitivity to cancer 

chemotherapeutics80. In addition to mutations, purinosome disassembly can also be induced by inhibition 

of microtubule polymerization and purine supplementation81.  

Studies have shown that microtubule depolymerization induced by nocodazole resulted in the 

loss of purinosome-mitochondria colocalization, suggesting that the association of purinosomes with 

A B 
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mitochondria is facilitated by microtubule-directed transport, and thereby supporting the notion of an 

interdependency between these two components in order to maximize purine production82. The use of 

HSP90 inhibitors to treat cancer can also be advantageous, since their therapeutic effect may result from 

the combined effects on multiple oncogenic proteins that are responsible for tumor progression, including 

the ones that form the purinosome83. 

 

 

 

 

 

Figure 10: Images of the purinosome and purinosome multienzyme complex. The pathway enzyme FGAMS (also known as PFAS) was fused 
with green fluorescent protein (GFP). (A) Purinosomes formed in HeLa cells transiently transfected with FGAMS-GFP in purine-depleted medium. (B) Diffuse 
fluorescence signal of FGAMS-GFP in HeLa cells in purine-rich medium. Reversible formation of clusters by FGAMS-GFP is shown in (C)–(E). (C) Purinosome 
formed when HeLa cells are cultured in purine-depleted medium. (D) Purinosomes disperse within 2 hours upon incubation with purine-rich medium. (E) 
Purinosomes reformed after returning to purine-depleted medium for 1 hour (Scale bar, 10 mm)81. (F) Six enzymes are involved in de novo purine synthesis 
and the purinosome complex: PPAT, the trifunctional enzyme GART, PFAS, the bifunctional enzyme PAICS, ADSL, and the bifunctional enzyme ATIC84. 

 

 

1.3 Computer-aided drug design: using artificial intelligence techniques for activity and 

multi-target prediction 

 

The development of a chemical entity and its testing, evaluation, and authorization to become a 

marketed drug is a laborious and expensive process that is prone to failure85.Indeed, it is estimated that 

just 5 in 5000 drug candidates make it through preclinical testing to human testing and just one of those 

tested in humans reaches the market 86.The discovery of novel chemical entities with the desired biological 

activity is crucial to keep the discovery pipeline going87. Thus, the design of novel molecular structures for 

F 
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synthesis and in vitro testing is vital for the development of novel therapeutics for future patients. CADD  

methods  have  become  a  powerful  tool  in the process of drug discovery and development88.  These 

methods include structure-based design such as molecular docking and dynamics, and ligand-based 

design such as quantitative structure–activity relationships (QSAR) and pharmacophore modeling. 

Molecular modeling and cheminformatics have made notable contributions to drug discovery89. Several 

important drugs have been developed with computational methods, including imatinib (a kinase inhibitor 

used to treat certain types of cancer)90,91. 

Cheminformatics is the application of computational methods to chemical problems, with 

particular emphasis on the manipulation of structural information. Cheminformatics is a relatively new 

field of information technology that focuses on the collection, storage, analysis, and manipulation of 

chemical data92. The chemical data of interest typically includes information on small molecule formulas, 

structures, properties, and biological activities, which can then be used in drug design or other 

applications.  

The origins of the biological activity of interest's mechanism of action have been uncovered in 

large part thanks to QSAR. This field determines the crucial chemical characteristics that lead to good or 

bad biological activity by using historical data on biological activity to predict the activity of novel 

substances93–95. The concept of structure-activity cliffs demonstrated that even a minor change in the 

chemical structure such as addition or deletion of functional groups or the stereoisomeric placement of 

those groups may be a deciding factor whether the compound can or cannot bind to a specific target, 

which can give rise to significant alteration in activity96,97. The SAR can be quantified by using a machine 

learning approach. Machine learning is an evolving branch of algorithms that are designed to emulate 

human intelligence by learning from the surrounding environment. These techniques have been applied 

in diverse fields ranging from pattern recognition, engineering, finance, entertainment, and computational 

biology including biomedical and medical applications98.  In drug design, the algorithm can learn from a 

training dataset comprising previously studied molecules, their structure, properties and biological 

activity. After the learning stage, the algorithm is then tested using a different set of molecules and its 

predictions/labels are evaluated and validated. Then, the final algorithm can be used to predict labels of 

new cases based on what it has previously “learned” (Figure 11). 
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This approach can be used not only to predict the biological activity of compounds that have 

already been studied or approved to pave the way for drug repurposing, but also to give leads on the 

targets of newly designed molecules. It’s important to note that, since the algorithm makes predictions 

based on previously known information, when it is introduced to a new compound that is of contrastive 

structure and properties included in the training dataset, the predictions made might not be the most 

confident. This means that, if a molecule is too “novel”, the algorithm might not be so sure of the 

molecule’s activity or target. In addition, most open-source algorithms for drug activity prediction are only 

based on 2D structure and therefore, the compounds’ 3D structure does not weigh on the algorithms’ 

decision-making. For these reasons, the results obtained by using machine learning tools designed for 

understanding chemical-biological interactions should always be complemented with molecular docking 

studies and experimental results.  

 

Figure 11: Using machine learning approaches to predict compound activity. First, data about active and inactive compounds for various targets 
are extracted from public databases (like ChEMBL, PubChem, etc) and literature. This data is then balanced, processed, and divided into a training dataset 
and a testing dataset. The first one will be used to “train” the algorithm and the second one to see if the algorithm is making accurate predictions based on 
what it “learned” from its training. The final model can then be used to predict the activity or targets for new compounds, paving the way for structure and 
experimental optimization. 

 

Molecular docking is a key tool in computer-aided drug design, which consists of a computer 

simulation procedure to predict the lowest energy conformation of a ligand in a receptor- ligand complex. 

The goal of ligand-protein docking is to predict the predominant binding mode(s) of a ligand with a protein 



24 
 

of known three-dimensional structure99,100. Additionally, these tools can predict the final binding energy and 

inhibition constants of a molecular conformation, which is modeled in terms of dispersion and repulsion, 

hydrogen bond, desolvation, electrostatic, torsion free energy, final total internal energy and unbound 

systems’ energy. Therefore, detailed understanding of the principles that contribute to the predicted 

binding free energy provides information about the nature of ligand-protein interactions101. 

 

1.4 Purine derivatives as polypharmacological agents: multitarget drug discovery for the 

future 

 

Multitargeting compounds comprising activity on more than a single biological target have gained 

remarkable relevance in drug discovery owing to the complexity of multifactorial diseases such as cancer, 

inflammation, or the metabolic syndrome. The concept of polypharmacology is related to the interaction 

of drug molecules with multiple targets, which may interfere with a single or multiple disease pathways102. 

Polypharmacological drug profiles can produce additive or synergistic effects while reducing side effects 

and significantly contribute to the high therapeutic success of indispensable drugs. While their 

identification has long been the result of serendipity, medicinal chemistry now tends to design 

polypharmacology. Studies have concluded that despite some characteristic challenges remain 

unresolved, designing polypharmacology and multitargeting compounds holds enormous potential to 

secure future therapeutic innovation103. 

As purines are involved in most essential biological processes, it is important to note that novel 

purine derivatives might be able to interact with different targets. Different investigations have firmly 

established that many active compounds interact with multiple targets and that in most cases, targets of 

promiscuous compounds are related to each other (compound promiscuity across different target families 

is rare)104. Multi-target activities of drugs provide the basis for polypharmacological effects, which are 

frequently responsible for therapeutic efficacy, with protein kinase inhibitors used in oncology being a 

paradigmatic example 32. In this case, PP121 (Figure 12A) was shown to target both tyrosine kinases 

and PI3K family members. Reversine (Figure 12B), in addition to inhibiting MEK, also has an inhibitory 

effect on receptors from different families, such as JNK1 (a protein kinase involved in various processes 

such as cell proliferation, differentiation, migration, transformation and programmed cell death)105, NM II 

(non-muscle myiosin II, an actin-binding protein that controls cell protrusion, adhesion and polarity)106 and 

AUKRB107. 
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Figure 12: Purine derivatives as polypharmacological agents: (A) PP121 and (B) reversine. 

 

Molecules with polypharmacological effects were considered for many years to be a "double-

edged sword", since unintended polypharmacology can lead to adverse and unexpected effects as the 

compounds progress in clinical trials. However, improved understanding of signaling pathways and other 

biological mechanisms that are crucial for cellular survival are leading scientists to believe that multitarget 

compound development is the key for future drug discovery. For example, the first purine derivatives to 

be developed as kinase inhibitors were initially thought to elicit their therapeutic effect by inhibiting a 

particular kinase, but nowadays, scientists have found that these compounds actually owe their success 

to a more complex pattern of activities. 

The molecular and genetic complexity of advanced-stage diseases such as cancer suggests that 

targeting a single oncogenic pathway may not be sufficient to achieve durable remissions in patients108. 

Accordingly, novel drug discovery and development strategies are focusing on targeting multiple signaling 

pathways, either with drug combinations or through the design and development of a single compound 

able to target multiple oncoproteins109. Since purine derivatives comprehend a wide range of modifications 

and targets, it is necessary to characterize the different signaling pathways that are hyperactive in the 

TME, in order to design and optimize new compounds for a specific target or a multi-target strategy, 

according to its SAR. 

The general structure of purines has a wide range of possible modifications and their derivatives 

are involved in most biological mechanisms essential for the survival of cells and tissues. For this reason, 

and in combination with new and effective biological assessment techniques, the study of molecules 

derived from purines has an enormous impact in drug design and treatment not only of cancer, but also 

of other complex pathologies, paving the way for drug repurposing. Scientists now have the reason to 

believe that important therapeutic applications of newly designed and optimized purine derivatives are on 

the edge of being discovered. 

A B 
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Figure 13: Possible target pathways for anticancer purine derivatives, according to literature. Purine derivatives may interfere with these pathways by, for instance, acting as adenosine or ATP agonists or as inhibitors of different 
receptors, according to the literature. 
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1.5 Drug formulations: solid lipid nanoparticles (SLNs) as drug delivery systems 
 

Over the past three decades, significant advances have been made in drug delivery technology. 

Drug delivery technologies represent a vast, vital area of R&D of pharmaceuticals and the demand for 

innovative drug delivery systems continues to grow110. A drug delivery system is defined as a formulation 

or a device that allows the introduction of a therapeutic compound in the cell and improves its 

effectiveness and safety by controlling the rate, time and place of release111. Depending on the 

characteristics of the active compounds to be administered, it may be possible to insert them in drug 

delivery systems such as encapsulation. After verifying whether the molecules can be encapsulated, the 

release and internalization of the therapeutic molecules in the cell can be evaluated and the cytotoxic 

effects of the free vs encapsulated drug can be compared. In this way, it is possible to improve the 

therapeutic efficacy of the molecules, not by optimizing the structure of the compounds themselves, but 

by improving their internalization and cell localization system. 

Solid lipid nanoparticles (SLNs) are colloidal nanoparticles composed of a lipid matrix (solid at 

both room and body temperatures112), and surfactants used as stabilizing and solvating agents 113.  Different 

lipid and surfactant compositions can have an impact on the formulations’ size, polydispersity, surface 

charge, stability, and drug release profile114. Frequently, waxes, fatty alcohols, and fatty acids like mono-, 

di-, and triglycerides are utilized to prepare SLNs115. The small size of the formulations (ranging from 10 

to 1000 nm) and the high drug encapsulation efficiency are the key advantages of SLNs. Additionally, by 

enhancing their bioavailability and regulating the drug release rate116 (avoiding the “burst effect”117, which 

is a major drawback of the drug delivery systems since they could expose the patient to a drug overdose118), 

these formulations can enhance the therapeutic efficacy of hydrophobic agents. SLNs can also 

accumulate in the tumor regions through active delivery mechanisms: the surface of the SLNs is 

functionalized with ligands that can specifically identify overexpressed receptors on the surface of cancer 

cells and, ultimately, be translocated into the cells. (Figure 14). Passive mechanisms of targeting include 

different charges or PEGylation119,120. 
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Figure 14: Main applications and advantages of SLNs (Adapted from121). 

 

When the SLNs deliver the medicine specifically to its site of action, the therapeutic impact of the 

encapsulated drug is expected to be more effective. However, in addition to the physicochemical qualities 

of the nanoparticles, the effective accumulation of nanoparticles in solid tumors also depends on the 

characteristics of the tumors' microenvironment. Since tumors have increased vascular permeability and 

poor lymphatic drainage, it has been argued that the enhanced permeability and retention (EPR) effect 

might theoretically lead to the passive accumulation of nanoparticles, liposomes, or other carriers and 

macromolecules in tumors122. The EPR effect is a term used to describe  a universal pathophysiological 

phenomenon and mechanism in which macromolecular compounds (above 40 kDa) can gradually 

accumulate in the tumor vascularized area, allowing for the targeted delivery and retention of anticancer 

agents into solid tumor tissue123. This high vascularization of the tumor results from the own tumor's 

development requirements, which demands a high and constant supply of nutrients and oxygen to be 

able to sustain its uncontrolled proliferation. The process of inducing new blood vessels is known as 

angiogenesis, and it is carried out by malignant cells secreting proteins and growth factors124. The rapid 

formation of new capillaries combined with the absence of the basal membrane, which serves as the 

vasculature's support tissue, can result in the formation of aberrant vascular architecture with 
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endothelium gaps that range in size from 200 nm to 2 μm125. Due to their characteristically small sizes 

compared to pore size, circulating nanoparticles can now easily enter the tumor location through the gaps 

seen in the surrounding blood vessels119,122,125–127. Due to a lack of the lymphatic system, an elevated 

retention can be seen in conjugation with an enhanced permeability. This is because the increased 

hydrodynamic size of the nanoparticles prevents them from returning to the nearby capillaries, which 

ultimately lengthens their retention time in the tumor119,120,128 (Figure 15).  

 

 
 

 

 

 

 

 

Figure 15: The EPR effect and the absorption of nanoparticles across cancerous tissues are shown schematically. Due to the leaky vasculature 

in the tumor location and the malfunctioning lymphatic system, the EPR effect encourages an enhanced concentration of nanoparticles in cancer cells in 

contrast to normal cells (Adapted from 121). 

 

1.6 Previous work 

 

A novel class of purine derivatives has been prepared as new anticancer agents at the University 

of Minho Chemistry Centre. The synthesis of 6,8-diaminopurine class compounds has been described in 

previous studies129. Additionally, the compounds were screened against HCT116 and p53-wt cell lines 

previously130. In the present work, the top 4 compounds with the best IC50 values determined previously 

in HCT116 cell lines were chosen for further studies (Table 1). Additionally, the compounds’ molecular 

properties were calculated using SwissADME131 and all molecules passed Lipinski, Ghose, Egan, Veben 

and Muegge drug-likeliness filters132–136 with 0 violations. 

Based on these results, these compounds are expected to be promising candidates for drug 

development as anticancer agents. However, there is still a need to screen and evaluate these molecules 

on different human tumor cell lines and healthy cell lines. 
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Table 2: Purine derivatives used in biological studies and their molecular properties. 

Compound 

# 

Structure LogP MW 

(g/mol) 

MR Heavy 

atoms 

Rotatable 

bonds 

Fraction 

Csp3 

Num. H 

acceptors 

Num. H 

donors 

TPSA 

(Å2) 

1 

 

2.61 312.15 87.61 23 3 0.31 4 2 81.65 

2 

 

3.82 392.46 120.46 30 5 0.04 3 2 81.65 

3 

 

4.13 410.45 120.41 27 5 0.04 4 2 81.65 

5 

 

2.92 326.37 92.41 24 3 0.35 4 2 81.65 

 

 

 

 

  



31 
 

 

 

 

 

 

 

2 Work relevance and objectives 
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A study conducted by Hofmarcher et al.137 presents evidence on the economic burden of cancer 

in Europe, considering health expenditure on cancer care, cancer drugs expenditure (not including funding 

for cancer research), informal costs of time forgone by relatives and friends to provide upaid care, and 

costs from productivity loss from premature mortality and morbidity. Altogether, cancer caused an 

estimated cost of 199 billion € to society in Europe in 2018. According to the Special Committee on 

Beating Cancer of the European Parliament’s background note on cancer research of 2020138, the rising 

number of cancer cases combined with the predicted increase in advanced-stage diagnoses and cancer 

mortality caused by the pandemic9–11, makes basic cancer research crucial for the continuous 

advancement in cancer prevention, diagnosis, treatment and follow-up care. 

As previously mentioned, research on purine derivative’s potential as therapeutic agents since 

the 1950’s resulted on the continuous development of multiple drugs still used today, not only to treat 

cancer, but also other diseases. The ability of these compounds to interact with different targets, resulting 

in polypharmacological effects, makes them strong candidates to treat not only complex diseases such 

as cancer, but to also be used in drug-repurposing. This means that, even if a specific class of purine 

derivatives has no positive anticancer effect, its study is still relevant as the compounds may be useful in 

other applications.  

However, it is known that drug development is expensive and time-consuming. In a recent study, 

which included new therapeutic drugs and biologic agents approved by the U.S. Food and Drug 

Administration (FDA) between 2009 and 2018, estimated that the mean cost of developing a new drug 

ranges from $314 million to $2.8 billion139. Additionally, according to the FDA drug approval process, the 

full research, development and approval process can take an average of 12 years140. To overcome this 

problem, it is crucial to use and develop new artificial intelligence (AI) and other informatic techniques. 

Machine learning is an application or subset of AI that allows machines to learn from data, and its growing 

use in patient diagnosis and drug development, optimization and discovery is changing the future of 

medical sciences141. When it comes to drug development, these techniques can be used to filter the best 

candidates for in vitro and in vivo assessments by predicting their activity and mechanism of action, to 

select the best models for clinical research based on their insertion in the interactome, to optimize the 

therapeutic agents to be studied, and to facilitate data management and interpretation, which may lead 

to a tremendous decrease in drug development duration and cost. 

In addition to informatic tool application, the use of models that better mimic the diseases’ 

physiology (in this case, the tumor microenvironment) is a very important aspect that is crucial to obtain 
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realistic results. In combination with newly developed drug delivery techniques, it allows for a more precise 

and effective treatment, reducing the side effects that are commonly described in cancer treatment and 

other diseases. According to results of some studies, the addition of computer-aided design techniques, 

including docking studies, cheminformatics and bioinformatics, to the R&D could lead to a reduction in 

the cost of new drug development by up to 50%142. 

Taking all of the previous aspects into consideration, the present work aims to: 

• Use machine learning and other informatic tools to predict the activity and targets of the 

novel purine derivatives and plan future options for drug repurposing; 

• Assess their effect on healthy and cancer cell lines using 2D in vitro models; 

• Evaluate the ability to encapsulate the compounds into drug delivery systems. 
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3 Materials and methods 
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3.1 Prediction of biological activity spectrum of purine derivatives 

 

The biological activity spectrum of the selected compounds was predicted using the PASS 

(Prediction of Activity Spectra for Substances) online server143. PASS is a software product used as a tool 

to determine the biological potential of a given organic drug-like molecule, prior to their biological testing. 

Prediction of biological activity is based on the analysis of SAR of more than 250000 biologically active 

substances (including drugs, drug candidates, lead and toxic compounds) compiled in a single training 

dataset. The approach used in PASS is based on the assumption that Activity=f(Structure). Thus, by 

"comparing" the structure of a new compound with structures of well-known biologically active substance, 

it is possible to estimate if a new compound may have a particular biological effect. It uses 2D molecular 

fragments known as multilevel neighbors of atoms (MNA) descriptors and attributes to each compound 

tested a value of probability to be active (Pa) and probability to be inactive (Pi). According to its developers, 

the PASS tool may be useful in: 

• Drug repurposing: revealing new effects and mechanisms of action for the old substances in 

corporate and private data bases. 

• Providing the basis for selection of the most prospective compounds for high throughput 

screening from the set of available samples. 

• Determining the assays that are more relevant for a particular compound. 

Average accuracy of prediction is estimated using a leave-one-out cross validation procedure for the 

whole PASS training set, which was determined to be about 95%. Since the PASS tool is open access and 

has been used in many studies for several years, there are many publications where PASS predictions 

were confirmed by biological assessments. However, as previously mentioned, PASS cannot predict the 

activity spectrum for essentially new compound if all its descriptors are new and so they don't occur in 

the training set, which means that, if a molecule is too “novel”, it might not be so sure if it’s active. 

Additionally, it makes predictions based only on 2D representation of molecules.  

Novel compounds belonging to five different families (Figure 16) were submitted to the PASS online 

server in SMILES format and their biological activity and targets were predicted. 

Additional methods and details are available at the PASS online website 

http://www.way2drug.com/PASSOnline/index.php.  

 

http://www.way2drug.com/PASSOnline/index.php
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Figure 16: General structure of purine derivatives of different families: (A) Family 1 (6,8-diaminopurines), (B) Family 2 (6,9-substituted adenine), 
(C) Family 3 (6,9-disubstituted 2-aryl purines), (D) Family B6 (amidrazones), and (E) Family B7 (6-hydrazinopurines).  

 

Similarly to the PASS tool, a similar machine learning technique was applied. In this case, the 

datasets used comprised of: 

• Anticancer compounds from 3 different databases (PubChem, CHEMBL and ChemSpider). Due 

to the absence of inactive molecules described in literature and databases, a series of decoys 

were generated using DUD-E144 platform. 

• Experimental purine derivatives according to previous studies, where molecules with IC50 > 30 

μM were considered inactive 

• Mixture of both previously mentioned 

• RTK, AURK, CDK, AR and RAS inhibitors from PubChem and decoys generated with DUD-E for 

every target144. 

Decoys consist of molecules that are designed based on active ones but with certain modifications 

that would assumedly make them inactive. The previously mentioned information was compiled using the 

SMILES notation for every molecule in the dataset, each one labeled as “active” or “inactive”. Using 

RDkit, the next step involved obtaining the molecular fingerprints, transform them into an array and 

concatenate them into the dataset. Molecular fingerprints are a way to represent molecules as 

mathematical objects. By doing this, it is possible to perform statistical analysis and/or machine learning 

techniques on the set of molecules to gain new insights that we could not gain as humans. The fingerprints 

used included: 

• Morgan fingerprints145 

A B C 
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• MACCs keys146 

• Atom pair147 

Next, some of the molecules’ descriptors relevant for drug design 132–136 and have an influence on the 

SAR were calculated: 

• LogP 

• TPSA 

• MW 

• Number of hydrogen acceptors and hydrogen donors 

• Number of rotatable bonds 

• Number of heteroatoms 

• Number of valence electrons 

The entire information of the dataset was then standardized and balanced using a synthetic minority 

oversampling technique (SMOTE), if applicable. In this technique, a random example from the minority 

class (in this case, active molecules) is first chosen. Then k of the nearest neighbors for that example are 

found. k-nearest neighbors is a classifier, which uses proximity to make classifications or predictions 

about the grouping of an individual data point, working off the assumption that similar points can be found 

near one another. In SMOTE, a randomly selected neighbor is chosen and a synthetic example is created 

at a randomly selected point between the two examples in feature space148.With the dataset now complete, 

the information was split into different portions for training and testing and various algorithms were 

applied: 

• XGBoost149 

• Linear regression150 

• Decision trees151 

• Random forest152 

• Naïve Bayes153 

Then, the confusion matrix was obtained (Table 2) and a k-fold cross validation was applied. The 

cross-validation uses a limited sample to estimate how the model is expected to perform in general when 

used to make predictions on data not used during the training of the model. Generally, it results in a less 

biased or less optimistic estimate154. 
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Table 2: Confusion matrix. 

 

 

 

 

 

Additionally, a grid-search was performed in order to find the best model and parameters. Grid-search 

is used to find the optimal hyperparameters of a model, resulting in the most effective predictions155. The 

trained models using different combinations of parameters were evaluated on their scores of precision, 

accuracy, recall and f1 score for each class (active – label 1 - and inactive – label 0): 

• Precision (class) = True (class) / (True (class) + False (class)) 

o This formula as follows: within everything that has been predicted as a positive, 

precision counts the percentage that is correct, and therefore measures the quality 

of a positive prediction made by the model. 

• Accuracy = (True (Class 0) + True (Class 1)) / Total Sample Size 

o Measures the number of predictions that are correct as a percentage of the total 

number of predictions that are made. As an example, if 90% of predictions are 

correct, the accuracy is simply 90%. However, accuracy is not a good metric to use 

when there is class imbalance. For example, if the training dataset has 90 inactive 

and 10 active molecules, the model could be predicting that every molecule tested 

is inactive and therefore, would have 90% accuracy. In this case, accuracy is not a 

good performance metric, since it is high although the model is incorrectly predicting 

all the active molecules. 

• Recall (class) = True (class) / (True (class) + False (class)) 

o When the recall is high, it means that the model accurately classifies all positive 

samples as positive. As a result, the model may be relied on to identify positive 

samples. For example, it is OK to classify a non-cancerous tumor as malignant, 

however, a cancerous growth should not be termed non-cancerous. In this case, 

when making output-sensitive predictions, models must have a high recall. 

• F-1 scores = 2 * (Precision * Recall) / (Precision + Recall) 
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o Especially valuable when working on classification models in which your data set is 

imbalanced, as it combines precision and recall into a single metric. 

Different combinations of the previously mentioned steps were applied in order to obtain the best 

performing model. The final models were saved into a file (“pickling” in Python) to later be used for 

predicting the activity of newly developed purine derivatives. 

 

3.2 Protein-ligand interactions 

 

 Two of the most popular protein-ligand docking programs are AutoDock and Vina. Because these 

tools are free and distributed under an open-source license, they are a popular choice for many users in 

academia. In general, previous results demonstrated that the overall performance of Vina and AutoDock 

in distinguishing between actives and decoys was comparable. The findings, however, differed greatly 

depending on the sort of target. AutoDock performed better at distinguishing ligands and decoys in more 

hydrophobic, poorly polar, and poorly charged pockets, whereas Vina performed better in polar and 

charged binding pockets. The tendency for the type of ligand was the same for both Vina and AutoDock156. 

For this reason, the protein-ligand simulations were performed by using both softwares. 

 The design of the purine derivatives and known ligands was performed by using PyMOL Version 

2.5.2l157. Structure was checked and optimized using Avogadro Version 1.2.0158,159. The crystalline 

structures of the relevant targets and most known inhibitors were extracted from Protein Data Bank (PDB) 

160,161 and docking simulations were carried out using Autodock Vina Version 1.1.2 and AutoDock 4 Version 

1.5.6162 by following the recommended procedure in the user guide163 using AutoDock Tools Version 

1.5.6162 as an auxiliary tool (Figure 17). The grid box was set at the active site and the Lamarckian 

genetic algorithm was used to perform the simulation. The obtained conformations and their respective 

interactions with the surrounding aminoacids were observed ranked by energy and the final images were 

obtained by submitting the results into the Proteins Plus server164,165 and Chimera Version 1.16166. 
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Figure 17: Overview of the docking simulation procedure. Initially, the crystallographic structure of the protein is extracted from PDB, along with its inhibitor, 

if present. If not present, the ligand is designed and optimized using other software. After obtaining their structure, both components are processed (water 

molecules and other undesirable components are removed, charges are attributed, etc.) and checked for errors. Then, the active site where the simulation 

will take place is defined and the calculations begin. As a result, it is possible to study the protein-ligand interactions and their affinity. Illustrative images 

extracted from Autodock Tools and Chimera. 

 

3.3 Test compounds and reagents 

 

All the compounds used in the present work were designed by random screening starting from a 

core of purine ring. All the compounds used in the present work were synthesized in the Chemistry 

Department of the University of Minho by Nádia Senhorães, Soraia Fernandes and Bruna Leite, under the 

supervision of Dr. Alice Dias. 

Stock solutions of each compound with the concentration of 10 mM were made by dissolving the 

compounds into dimethyl sulfoxide (DMSO) and stored at 4ºC.  

Reagents, suppliers, equipment and respective models are listed in supplementary tables 6 and 

7 in Appendix. 

 

3.4 Cell lines and culture conditions 

 

The compounds’ toxicity was assessed in the following cell lines: 
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• HCT-15: cells isolated from the large intestine of a male Dukes C colorectal cancer patient (ATCC 

CCL-225) https://www.atcc.org/products/ccl-225; 

• Hep G2: cells with epithelial-like morphology isolated from a hepatocellular carcinoma of a 15-

year-old, white, male liver cancer patient (ATCC HB-8065) https://www.atcc.org/products/hb-

8065; 

• THLE-3: cell lines were derived from primary normal liver cells by infection with SV40 large T 

antigen (ATCC CRL-11233) https://www.atcc.org/products/crl-11233. 

All cell lines were carefully unfrozen and maintained at 37ºC in a humidified 5% CO2 atmosphere. 

HCT-15 cells were maintained in DMEM 1X base culture medium supplemented with 10% (v/v) fetal 

bovine serum (FBS) and 1% (v/v) penicillin/streptomycin solution; Hep G2 cells were maintained in RPMI 

base culture with the same supplementation; THLE-3 cells were maintained in BEGM medium, also with 

the same supplementation. 

Cancer cells were maintained and grown in T75 cm2 flasks and passaged 3 times a week, while 

normal THLE-3 healthy cells were maintained and grown in T25 cm2 flasks previously coated with 1.5 mL 

of a mixture of 0.01 mg/ml fibronectin, 0.03 mg/ml bovine collagen type I and 0.01 mg/ml bovine serum 

albumin dissolved in BEBM medium. The coated flasks were incubated overnight and the remaining 

mixture was suctioned off before use. The coating solution was stored at 4°C in cold room for up to 3 

months. 

All solutions were heated up to 37ºC and mixed under sterile conditions in laminar flow chambers 

before use. Handling of the cells was also performed in a sterile environment using laminar flow 

chambers. All the cell lines were purchased on ATCC and the reagents, suppliers, equipment used and 

respective models are listed in supplementary tables 1 and 2 in Appendix. 

 

3.5 2D cell plating 

 

At 80% confluence, the culture medium was carefully removed from the culture flasks and the cells 

were washed with 3 mL of phosphate buffer solution (PBS, enough to cover the flask) and the solution 

was immediately discarded. 2.5 mL of trypsin 1% were added ensuring that all the cells were covered 

with the solution and then incubated for 5 minutes in the previously mentioned conditions. After 

incubation, 7.5 mL of previously warmed culture medium was added in order to inactivate the trypsin. A 

https://www.atcc.org/products/ccl-225
https://www.atcc.org/products/hb-8065
https://www.atcc.org/products/hb-8065
https://www.atcc.org/products/crl-11233
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pipette was used to pass the solution and mix it, ensuring that most cells were in solution instead of 

adherent to the flask. The solution was then centrifuged at 1200 rpm for 5 minutes. The supernatant was 

discarded and the cells were resuspended in 3 mL of fresh medium. A portion of this cell suspension was 

used to continue with the cell culture according to the manufacturer’s recommendations. 20 μL of the 

remaining cell suspension were taken and put on the haematocytometer to count the cells using an 

inverted optical microscope. 

All the solutions mentioned were previously warmed at 37ºC before use. Reagents, suppliers, 

equipment used and respective models are listed in supplementary tables 6 and 7 in Appendix. 

 

3.6 Cell viability  

 

Resazurin has been broadly used as indicator of cell viability in several types of assays and it was the 

selection of choice for this work. Resazurin is a redox indicator that is cell permeable and can be used to 

monitor viable cell number. When cells are metabolically active, mitochondrial enzymes are responsible 

for the transference of electrons, reducing resazurin (blue and not fluorescent) to resorufin (pink and 

fluorescent). The quantity of resorufin produced is proportional to the number of viable cells and can be 

quantified using a microplate fluorometer167,168. 

HCT-15 cells were seeded at 6.5x104 cells/mL and Hep G2 cells were seeded at 5x104 cells/mL in 

a 96-well plate and incubated for 24h in the previously mentioned conditions. The medium was then 

removed and new one was added together with the compounds to be tested into each well, with 

concentrations ranging from 10 μM to 100 μM. Controls with 10% DMSO, 1% DMSO, and media only 

were also added. For THLE-3 cells, the wells were previously coated as stated in section 3.4 before 

seeding at 5x104 cells/mL. In this cell line, the treatment was added directly to the well after 24h 

incubation, without removing the media.  The plates were then incubated for 24h and 48h. After each 

time point, 6.97 % (v/v) of resazurine at 10X concentration was added to each well and incubated again 

for 3.5 hours. Fluorescence intensity was measured with 535 nm excitation and 595 nm emission using 

a plate reader (Figure 18).  

Reagents, suppliers, equipment and respective models are listed in supplementary tables 6 and 7 in 

Appendix. 
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Figure 18: 2D cell plating and resazurin viability assay procedure. 

 

3.7 Cell lysis, protein extraction and quantification 

 

 The plated Hep G2 cells were washed with pre-heated PBS and trypsin was added, according to 

section 3.5. After incubation, medium was added, and the cells were collected. The cell suspension was 

then centrifuged at 1200 rpm at 4ºC for 5 minutes to pellet the cells. The supernatant was removed, and 

the pellet was resuspended in 1 mL of ice-cold PBS with 1X protease inhibitor cocktail. This suspension 

was then frozen at -80 ºC for 5 minutes and thawed at room temperature (RT) for 3 cycles. The 

suspension was then centrifuged at 10000 g at 4 ºC for 15 minutes and the supernatant (whole cell 

protein extract) was collected and kept in ice for the steps ahead (Figure 19).  

The protein was quantified using the Bradford method. The whole protein sample was diluted in 

PBS buffer 1:5 and 5 μL of the dilution were added to a microplate. Different concentrations of bovine 

serum albumin (BSA) were used to establish a standard curve. 200 μL of Bradford reagent169 were added 

to each well and the absorbance was read at 595 nm (Figure 19). 

 Reagents, suppliers, equipment and respective models are listed in supplementary tables 6 and 

7 in Appendix. 
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3.8 Measurement of ATPase activity (inorganis phosphate (Pi) quantification) 

 

50 µg of protein was mixed with Y-ATP solution composed of 300 µL of 3 mM ATP, 0.02% Triton 

X-100, 50 mM KCl, 1 mM sodium molybdate, 6 mM MgSO4 in 30 mM Tris pH 8, with 100 µM of test 

compounds. Sample without compound and a sample with 1% DMSO were used as controls. After a 30-

minute incubation at 37ºC with slow agitation (80 rpm), color stop solution was added in a 1:1 proportion. 

This solution is meant to stop the enzymatic reaction and acts as a coloring agent, turning the samples 

with more Pi into a bright yellow color. The color stop reagent was prepared previously by mixing 25 mL 

ammonium molybdate solution [10 g ammonium molybdate, 90 mL: distilled water, 1 mL NH3 (25 %) 

adjusted to 100 ml] with 25 mL ammonium vanadate solution (0.235 g ammonium vanadate, 40 ml 

distilled water at 60 °C, slowly adding 2 mL nitric acid before adjustment to 100 mL with distilled water) 

and then slowly adding 16.5 mL nitric acid (65%).  Then, the samples were centrifuged at 2400 g for 5 

minutes at RT. 200 μL of supernatant was collected and transferred to a 96-well plate, in order to measure 

the absorbance at 415 nm using a blank control performed without protein and NaH2PO4 as standard to 

establish a calibration curve (Figure 19)170,171. 

Reagents, suppliers, equipment and respective models are listed in supplementary tables 6 and 7 in 

Appendix. 
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Figure 19: Pi quantification assay procedure. 

 

 

3.8 Drug encapsulation using SLNs 

 

 100 mg of carnauba wax were in the water bath at around 90ºC. After melting, 10 mg of 

compound were added to the carnauba wax and mixed with a hot spatula. Tween-80 solution at 25 

mg/mL was preheated at the same temperature in the water bath. 0,5 mL of this solution and 1,75 mL 

MiliQ water (also pre-heated) were added to the wax/drug mixture. The sample was then sonicated for 6 

on/off cycles of 20 seconds with 25% amplitude. The samples were left to cool down on running water 

before collecting the supernatant by centrifugation. After a 10-minute centrifugation at 3000 rpm, the 

supernatant was collected and kept in the fridge. The final formulation was then analyzed using dynamic 

light scattering (DLS) by diluting the samples 1:100 and using a 6 mm carbon electrode cell (particle 

refractive index = 1.460-0.000i; refractive index of the dispersion medium = 1.333; duration = 90 

seconds; number of repeated measurements = 3). 
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DLS is an optical technique used for analyzing dynamic properties and size distribution of a broad 

variety of physical, chemical and biological materials suspended in a liquid, which could be colloidal 

particles, bubbles, droplets or macromolecules. DLS measures the speed of the particles in suspension 

undergoing Brownian motion to obtain a translational diffusion coefficient. Brownian motion is the random 

movement of particles due to their collision with solvent molecules that surround them. The particles’ 

size is dependent on diffusion speed: small particles diffuse faster, while larger particles diffuse slower. 

The instrumental setup involves the illumination of the sample by a laser beam. The particles scatter the 

light and the interference of scattered waves generate scattered light intensity signals. Since the 

suspended particles undergo Brownian motion, it results in fluctuations of the scattered light intensity. As 

a result, plots are obtained showing intensity changes with time (slower fluctuations for larger particles 

and rapid for smaller). The systems’ correlator takes rapid snapshots of scattered light and allows 

diffusion coefficient calculation, which can later be used to calculate the particles’ hydrodynamic diameter 

according to the Stokes-Einstein equation172.  

In a colloidal system, dispersed particles have two layers of oppositely charged ions on the 

surface, called the stern and double layers. The zeta potential is defined as the voltage at the edge of the 

double layer. If two particles have high enough zeta potentials of the same sign, they will not agglomerate 

because of those like charges repelling each other. One important use of the zeta potential is to predict 

the long-term stability of particles: if zeta is less than -60 mV or above +60 mV, the particles have excellent 

stability. Conversely, zeta potentials between -10 and +10 mV are likely to agglomerate173 (PEG ligands 

can protect them sterically, avoiding agglomeration174). 

Reagents, suppliers, equipment and respective models are listed in supplementary tables 6 and 7 in 

Appendix. 

 

3.9 Statistical analysis 

 

 For the viability assay, the mean of the fluorescence intensity values for the cell control (0 μM) 

and medium only control were calculated using Excel. Then, for each of the replicates of each condition, 

the percentage of viability was calculated using the following formula: 

% 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 100 ∗  
𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛−𝑀𝑒𝑑𝑖𝑢𝑚

𝐶𝑒𝑙𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑚𝑒𝑑𝑖𝑢𝑚
 , where “Condition” is equal to the fluorescence intensity 

of every replicate for every condition, “Medium” is equal to the mean of the fluorescence intensity values 
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for the wells containing medium only, and “Cell control” is equal to the mean of the fluorescence intensity 

values for the wells containing no testing compound. After normalization, the concentrations were 

converted into log (M) and a non-linear fit curve was obtained for calculation of IC50. 

 For the ATPase activity assay, the absorbance value for each condition without compound was 

subtracted to the sample in the same condition with testing compound, to remove the absorbance caused 

by spontaneous hydrolysis of ATP to ADP + Pi. This way, only the Pi formation caused by the presence of 

the testing compound is considered. The results for each condition were the converted to % and compared 

to the control samples (corresponding to 100% activity). 

For all tests, a minimum of 3 independent replicates with 3 technical replicates were performed. 

The values obtained were then inserted into GraphPad Prism 9 Version 9.3.0. This software was used to 

normalize the data and perform an ordinary ANOVA and checking for significance and to identify outliers 

for every condition of every test. 

 

  



48 
 

 

 

 

 

 

 

4 Results and discussion  
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4.1 Prediction of activity and targets 
 

 The complete list of predicted activities for each family is listed on supplementary tables 1 to 5 

in appendix. Overall, according to the PASS online server (considering Pa<0,4 and Pa>Pi), the types of 

targets and biological activity seem to depend on the purine family. This means that, when the position 

and type of substituent groups change, so does the activity. In general, results show that: 

• Families 1 (6,8-diaminopurines) and 2 (6,9-substituted adenine) were the ones with more 

predicted targets related to cancer and other inflammatory diseases, and also antimicrobial 

activity. 

• All the compounds tested belonging to family 1 were predicted to have both antineoplastic activity 

(non-Hodgkin's lymphoma) and to be CDK9/cyclin T1 inhibitors. 

• Family 2 was the only family to hit on adenosine 2 receptors. 

• Family B7 (6-hydrazinopurines) were the one with more predicted activity related to neurological 

or heart diseases by targeting adenosine 1 receptors. 

 

The attempt to build a more accurate machine learning model optimized for purine derivatives 

described in section 3.1 was most successful when using a more restrictive dataset comprised of known 

inhibitors and generated decoys from literature, namely RTK, AURK, CDK, AR and RAS. In this attempt, 

the dataset included 48 active inhibitors and 300 decoys (approximately 50 for each target), labeled as 

active (corresponding to label 1) or inactive (label 0). Then, every structure was converted into a Morgan 

molecular fingerprint with radius 2. The previously mentioned descriptors were calculated and 

concatenated into the fingerprints. The dataset was then standardized and split into training and tested 

datasets in a 80%/20% proportion. Given the unbalanced data (more inactive samples than active 

samples), SMOTE was applied. This technique significantly improved the model’s final recall metric. The 

resampled training dataset was then used to train the XGBoost algorithm. Finally, a k-fold cross validation 

and grid search were performed. The metrics for this procedure are represented on tables 3 and 4. 
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Tables 3 and 4: Confusion matrix (left) and respective metrics (right) obtained. 

According to the metrics, it is possible to infer that the final model has a high accuracy, as 96% of 

the data is correctly labeled. Additionally, each type of prediction is very precise, reflecting the quality of 

the model’s predictions. However, the percentage of recall for the inactive class is higher than the active 

class (100 vs 70%). This means that the model is more likely to correctly classify inactive molecules than 

active ones. As we can see, the model incorrectly classified 3 active molecules as inactive, leading to a 

lower recall value. 

Taken these metrics into account, the model was saved using pickle and then used to predict the 

activity of the novel purine derivatives. The dataset containing all the purine derivatives and the respective 

SMILES notation was treated the same way as the train/test dataset and their predictions were obtained. 

Out of a total of 67 novel purine derivatives tested, 64 of them were predicted as active. None of the 3 

molecules predicted as inactive were part of the ones used in biological assays.  

It is important to note that, given the nature of the dataset used to train the model, it only allows for 

prediction of activity. Therefore, it does not allow us to take conclusions about the specific targets it might 

be interacting with. Since the data was composed of information about active and inactive molecules 

against the five proteins (RTK, AURK, CDK, AR and RAS), it means that the molecules predicted as active, 

are likely to be active in these proteins overall. 

The attempt to build a machine learning model using other datasets was not successful. The various 

combinations of different methods used (such as molecular fingerprints, algorithms, databases, etc) did 

not lead to a final model that was capable of predicting already existing anticancer agents’ or novel agents’ 

activity precisely. This could be the result of the lack of inactive compounds described in literature, as 

without that information, the model is not able to establish a correlation between the molecules’ 

characteristics and its activity. Therefore, it was unable to determine a QSAR value. The use of the 

generated decoys is not the most reliable method as they are generated automatically and are not 

experimentally validated as inactive. This means that, when using decoys, we cannot know for certain if 

they are good examples of inactive molecules. Another reason that could be leading to the model’s 
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inefficiency could be the dataset itself: using a wide range of targets and their respective inhibitors as 

examples to train the model could be an obstacle to establish a correlation between molecular descriptors 

and activity. For example, if a cancer protein requires a drug with big bulky groups in a certain position 

to be inhibited, but another protein target does not, the model cannot use this criterion to determine if a 

compound can be labeled as an anticancer agent. If this happens when considering other molecular 

descriptors, it will lead to an inaccurate model. This is especially relevant in the case of developing a 

model whose goal is to predict the activity of a molecule in the treatment of complex diseases, such as 

cancer. Since there are so many diverse targets to be considered, it is particularly difficult to build a “one 

size fits all” algorithm. Additionally, it is important to consider that if the novel molecules whose label is 

being predicted are very contrasting in terms of structure and properties when compared to other 

molecules described in databases, any model will most likely perceive them with a lower probability of 

being active. In these cases, in particular, the use of machine learning methods might not be the best 

approach to determine a novel molecular entity’s activity. However, by restricting the training dataset to 

be composed of targets already known to interact with purine derivatives, it was possible to to predict the 

novel compounds’ activity effectively. 

 Although the PASSonline predictions did match the probable targets found in literature for these 

new molecules, the method used is not described clearly. For this reason, although public access tools 

like PASS could in fact give an indication of a target pathway, it should not be considered as an accurate 

or definite result. These predictions should always be compared to previous literature search, and the 

targets’ interactions with the molecules being studied should be assessed through molecular simulations 

in order to determine which molecules should be used in further biological assays. 

As aforestated, compounds from family 1 (Figure 19A) has been previously tested on HCT 116 cell 

line, and the target predictions for this family seem to be mainly related to the same signaling pathway. 

This “homogenous” prediction makes the compounds belonging to this family the best candidates for 

docking studies. 

 

4.2 Protein-compound interactions 

  

The novel purine derivatives’ interactions with some of their predicted targets have been studied using 

Autodock 4 and Autodock Vina and the results obtained were compared with those for known inhibitors 

using the same protocol. The molecules used for these studies were: 
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• Cyclin-dependent kinase 2 (CDK2) and inhibitor roscovitine (Figure 6A) (PDB entry 2a4l)  

• Protein tyrosine kinase HCK and inhibitor 1-ter-butyl-3-p-tolyl-1H-pyrazolo[3,4-

d]pyrimidin-4-ylamine (Figure 5E) (PDB entry 1qcf) 

• Aurora kinase A (AURKA) and inhibitor 9-chloro-7-(2,6-difluorophenyl)-N-{4-[(4-

methylpiperazin-1-yl)carbonyl]phenyl}-5H-pyrimido[5,4-d][2]benzazepin-2-amine 

(Figure 7B) (PDB entry 3h10) 

• PKA and inhibitor  (2S)-1-(1I-indol-3-yl)-3-[5-(3-methyl-1I-indazol-5-yl)pyridin-3-

yl]oxy-propan-2-amine (Figure 5D) (PDB entry 2jds) 

• AC and inhibitor TDI1022936 (Figure 5B) (PDB entry 7ovd) 

• EPAC and inhibitor ESI-0937 (Figure 5C) (PDB entry 3cf6) 

• VEGFR2 and inhibitor tivozanib (Figure 5A) (PDB entry 4ase) 

• Adenosine receptor A2a and inhibitor ZM241385 (Figure 2A) (PDB entry 2ydv) 

It is important to note that a more negative value of binding energy corresponds to a more 

favorable ligand-protein interaction. The smaller the inhibition constant (Ki), the greater the binding affinity 

and the smaller amount of ligand needed in order to inhibit the activity of that enzyme. Knowing this, the 

results of the docking simulations indicate that these compounds might be interacting strongly with the 

targets, validating the predicted results using the PASS server and therefore confirming that compounds 

belonging to this family are good candidates for further biological assays (Tables 5 and 6). 

Table 5: Autodock Vina results. 

 Lowest binding energy (Kcal/mol) 

               Ligand 

Receptor 

Known inhibitor 1 2 3 5 

PKA -10.0 -8.8 -10.3 -10.6 -9.1 

AC -10.6 -9.5 -10.1 -9.9 -9.3 

EPAC -8.3 -9.2 -7.0 -8.8 -9.0 

CDK2 -7.5 -8.6 -10.0 -9.8 -9.1 

AURKA -10.0 -7.9 -9.0 -8.7 -8.4 

HCK -9.0 -8.9 -10.7 -9.1 -9.4 

VEGFR -10.3 -8.1 -9.1 -10.6 -7.6 

A2a -9.3 -8.5 -10.8 -11.2 -9.2 
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Table 6: Autodock 4 results. 

 Lowest binding energy (Kcal/mol) 

               Ligand 

Receptor 

Known inhibitor 1 2 3 5 

PKA -11.07 -7.6 -10.14 -10.09 -8.59 

AC -11.34 -9.83 -10.82 -11.16 -10.07 

EPAC -9.3 -7.97 -10.07 -7.82 -8.37 

CDK2 -7.87 -7.43 -8.62 -8.65 -7.88 

AURKA -10.26 -7.25 -8.62 -7.92 -7.3 

HCK -7.89 -8.18 -9.62 -9.22 -8.77 

VEGFR -11.55 -9.08 -12.14 -10.62 -9.31 

A2a -9.3 -8.2 -10.05 -9.59 -8.68 

 

Overall, most compounds tested have a similar binding energy compared to known inhibitors. In 

some cases, the binding energy is even more negative than the one predicted for the known inhibitor, 

which means they could have a greater inhibitory effect. Notably, the best performing molecule was 

compound 2, which complexed with VEGFR is able to form 3 hydrogen bonds in the binding pocket with 

the residues of valine, alanine and glutamine and interact hydrophobically with 11 other residues. These 

interactions combined, result in a noteworthy binding energy of -12.14 Kcal/mol (Figure 20).  

Given these results, we can see that compounds 1 and 5 seem to present similar binding modes 

in each protein target (Supplementary figure 1). Generally, compound 5 presents a more negative 

binding energy, possibly due to the presence of the bulkier cycloalkyl chain in the N3 position of the 

purine ring, revealing the determining effects of Van der Waals interactions between ligand and protein. 

Compounds 2 and 3 seem to bind to the targets in dissimilar ways due to the different position of the 

biphenyl substituent, suggesting that its presence is important to the interactions in the binding site. 

It is also possible to infer that the compounds have the potential to be exerting their effect by 

inhibiting kinase activity, specially VEGFR, which seems to be the targets with the best binding affinities 

towards the compounds in general. Kinases are enzymes that catalyze the transfer of phosphate groups 

from high energy molecules (such as ATP) to a substrate175. If kinases are inhibited, a decrease in ATP 

dephosphorylation should be observed. Further enzymatic studies should be conducted to confirm the 

interaction between the purine derivatives studied and their possible targets and their effect of ATP 

dephosphorylation and consequent inorganic phosphate formation. 
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Additional figures displaying predicted interactions of ligands and proteins are shown in Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: (A1 and A2) Less energetic docking pose predicted of the VEGFR–compound 2 complex in the active binding site. The surface of 

VEGFR is displayed in different tones from red to blue depending on residue lipophobicity (more lipophilic residues are shown in blue and less lipophilic 

residues are shown in red), whereas compound 3 is displayed as in green. Hydrogen bonds are displayed as yellow lines. (B) Predicted binding mode and 

interactions between compound 3 and the surrounding residues in the active cleft. Figures A1 and A2 ware obtained using Chimera Version 1.16 (139) and 

figure B was obtained through the Protein-Plus Server(137,138). 

 

 

4.3 2D in vitro assessments 
 

Results have shown that the purine derivatives tested have a greater effect in Hep G2 

hepatocarcinoma cell line than in HCT-15 colorectal cancer cell line after a 24- and 48-hour incubation 

period. In the hepatocarcinoma cell line in particular, it is possible to observe a reduction of the 

percentage of viable cells compared to the control without treatment as the compound concentration 

increases and establish a dose-response curve (Figure 21C and 21D). Additionally, relatively to this 

cell line, it was also possible to determine IC50 values (Table 7).  

A1 A2 

B 
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Figure 21: Effect on cell viability in HCT-15 and Hep G2 cell lines after 24h and 48h of incubation with purine derivatives: (A) HCT-15 24h 
incubation, (B) HCT-15 48h incubation, (C) Hep G2 24h incubation, and (D) Hep G2 48h incubation with compounds 1 (blue circle), 2 (red 
square), 3 (green upwards triangle) and 5 (purple downwards triangle). 

 

Table 7: IC50 for each compound tested in different cell lines (*R2<0,4).  

 

 IC50 (μM) 

             Compound 
Cell line 

1 2 3 5 

HCT-15 24h * 

HCT-15 48h 

Hep G2 24h 75.63 99.96 * 58.30 

Hep G2 48h 64.52 74.19 92.19 35.52 

 

 

In both cell lines, it is possible to observe changes in the cells’ normal morphology: naturally, 

HCT-15 cells appear to have a flat shape, while Hep G2 usually seem slightly more elongated. However, 

when exposed to both the compounds and 10% DMSO controls, the cells of both hepatocarcinoma and 

A B 

C D 
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colorectal cancer cell lines shrink and become more spherical in shape, suggesting cell death by 

apoptosis176 (Figure 22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Changes in Hep G2 (A) and HCT-15 (B) cell morphology before (1) and after treatment (2) with 100 μM of compound 1 after 

48h (B). In both cell lines, the cells become spherical in shape, suggesting apoptosis. The same tendency is observed for all compounds 

tested. Scale bars = 100 μm. 

 

Although the compounds studied have shown an IC50 value between 30 and 100 μM, which 

profiles them as moderately active177, it is important to note that using 2D cell models to assess the effect 

of newly developed drugs might not represent their full potential. By using a 3D approach using cell 

spheroids and organoids, it is possible to better mimic the tumor’s microenvironment and cell conditions. 

In these models, it is possible to observe gradients of O2, CO2, nutrients, growth factors, cytokines, pH 

and waste products, which could affect the drug’s performance. In moderately soluble drugs, like these 

novel molecules, having an increased pH could increase their solubility and consequent availability for 

cells, resulting in a better IC50 value. Further, as we can see by comparing the results in both cell lines, 

the type of cell line used has a great influence on the compound’s IC50. This means that it is of extreme 

A1 A2 

B1 B2 
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importance to keep testing the molecules’ effect on different cell lines to fully take conclusions on their 

application as anticancer drugs, as a molecule could be effective on only certain types of cancers. 

Additionally, by using drug delivery systems such as SLNs, it could be possible to improve the 

drugs efficiency. For this reason, the synthesis of deliverers should be performed, and the effect of the 

free drug should be compared with the effect of the encapsulated drug in different cancer models. 

In addition to these studies, it is important to verify the occurrence of apoptosis and assess the 

phase of the cell cycle stop induced by these novel compounds. This can be achieved with flow cytometry 

and multimodal holographic microscopy176 and can give further information on the action mechanism of 

this family of purine derivatives. 

 
 

4.4 Insertion in drug delivery systems 

 
Carnauba wax is produced in Brazil from leaves of the palm tree Copernica cerifera and it is 

considered as generally regarded as safe (GRAS) substance. In its composition there a predominance of 

various types of esters, free carboxylic acids, and fatty alcohols, which are mostly inert and stable 

components178. Due to its physico-chemical characteristics, this wax is commonly used in food, usually in 

coating formulations for fruits and vegetables179. 

During SLN synthesis, it was observed that the Carnauba wax became solid after the compound 

addition, forming lumps of compound/wax aggregations upon mixing. The addition of hot Tween solution 

and water did not change the wax’s state, and after sonication and cooling, it was still possible to observe 

solid wax lumps and flakes. The solidification of the wax could be occurring as a result of decrease in 

temperature. On a different note, it is possible that the nanoparticles are not observed in the DLS, or that 

the reaction did not take place as expected. This can be related to the establishment of strong 

intermolecular interactions between the wax and the compound, or it could mean that the compound 

reacts with some of the components of the wax, in particular the carboxylic acids. 

Consequently, a different lipid core composition should be tried instead of carnauba wax. New 

forms of encapsulation might be also tested to perform encapsulation of these molecules. 
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4.5 Pi quantification 
 

 Results regarding the quantification of Pi in a protein sample after incubation with novel purine 

derivatives show that these molecules do not have a significant effect on Pi depletion or increase 

compared to controls (Figure 23). 
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Figure 23: Percentage of ATPase activity in Hep G2 whole protein extracts after treatment with 100 μM of test compounds and 1% DMSO 

relative to control, where the control with no treatment corresponds to 100% of activity. 

 

These results lead to the conclusion that the compounds do not significantly inhibit enzymes that 

produce Pi, like, for example, proton pumps. However, it is important to note that in a whole cell extract, 

phosphatases are also present. Contrarily to kinases, phosphatases are enzymes that catalyze the 

hydrolysis of phospho-ester bonds in organic P-containing substrates releasing Pi180. In that case, the 

hypothesis that the compounds tested could actually be inhibiting these phosphatases should not be 

ruled out. Additionally, it should be pointed out that the action of the predicted targets for the novel 

compounds, namely protein kinases, do not result in Pi formation but rather in its transfer to the next 

substrate on the signaling cascade. Therefore, it is only possible to conclude that the presence of the 

novel compounds at the concentration mentioned does not result in inhibition of Pi formation within the 

cell’s proteome. 

In addition to these studies, other enzymatic assays should be performed to assess the true 

effectiveness of the compounds on a specific protein. Further assessment on quantification of specific 

proteins and the confirmation of their activity within the protein extract should also be performed. 
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5 Concluding remarks and future perspectives 
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New anticancer drug approval rates are 5%181–183, despite significant investments in cancer 

research, drug discovery and development184. Most of the published data regarding known cell-based 

processes is derived from experiments performed in two-dimensional (2D) conditions where cells are 

grown as one single layer on a rigid surface. These conventional cell monolayer cultures, grown under 

simplified and unrealistic conditions, do not fully reflect the essential physiology of real tissues: they 

modify the tissue-specific architecture (forced polarity, flattened cell shape), mechanical/biochemical 

signals, and subsequent cell-to-cell communication185. Despite these drawbacks, 2D cultures remain very 

attractive for laboratory purposes because of their simplicity and low cost186. One strategy to improve the 

success rate of new anticancer drugs transitioning into the clinic would be to more closely align the 

cellular models used in the early lead discovery with pre-clinical animal models and patient tumors. For 

solid tumors, the development and implementation of three-dimensional (3D) in vitro tumor models that 

more accurately replicate human solid tumor architecture and biology could be the answer (Table 8). 

Recent advances in tissue engineering and regenerative medicine have provided new techniques for 3D 

spheroid generation and a variety of in vitro 3D cancer models are being explored for cancer drug 

discovery184. 

 

Table 8: Comparison between a monolayer (2D) tumor cell culture and a 3D tumor spheroid and main features187. 

Model 2D 3D 

Cell interactions Not able to reproduce cell-cell and cell-ECM 
interactions 

Cell-cell and cell-ECM interactions preserved 

Tumor architecture Not able to replicate a 3D mass Reproduction of a real tumor structure 

Cell morphology and 
polarity 

Changes cell morphology and polarity Cell morphology and polarity is preserved 

Molecular mechanisms High differences in gene expression compared to 
in vivo tumors 

Gene expression profile is similar to in vivo tumors 

Gradients Unlimited access to O2, nutrients and metabolites Gradients of O2, CO2, nutrients, growth factors, 
cytokines, pH and waste products 

Biological zones Unable to form proliferative, quiescent and 
necrotic zones. 

Able to form proliferative, quiescent and necrotic 
zones. 

Cost and complexity Cheaper and less complex to perform and analyze More expensive, complex analysis 

Cell lines Suitable for most cell lines Most suitable for solid tumor cell lines 
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Tumor cells cultured in 3D microenvironments are exposed to a variety of biological stimuli that 

affect their responses and behaviors. The cell-cell interactions, cell-ECM interactions and local gradients 

of nutrients, growth factors, secreted factors and oxygen regulate cell function188–192. This microenvironment 

alters numerous cellular and functional activities including morphology, signal transduction, histone 

acetylation, gene expression, protein expression, drug metabolism, differential zones of proliferation, 

viability, hypoxia, pH, differentiation, migration, and drug sensitivity188–190,192–200. Additionally, cells in 3D 

cultures are exposed to different adhesive, topographical and mechanical forces than cells growing in 

2D188,189,192,195,197,198, and the cell-cell and cell-ECM interactions of cells in multi-layer tumor spheroids constitute 

a permeability barrier through which therapeutic agents must penetrate188–190,192–200 (Figure 24). 

 

Figure 24: 3D tumor model microenvironment184. 

 

 As previously mentioned, purine derivatives play a role in most biological processes in normal 

conditions. This means that they don’t only have a potential to act as anticancer drugs, where the 

metabolism and proliferation are overactive, but also in the context of other complex diseases such as 

Parkinson’s, Alzheimer’s and inflammatory disease. For example, adenosine receptors, which might be 

one of the targets of action of novel purine derivatives according to results, modulate neuronal and 

synaptic function in a range of ways that may make them relevant to the occurrence, development and 

treatment of brain ischemic damage and degenerative disorders201. In cardiac tissue, adenosine acts as 

an autacoid that plays a critical role in regulating cardiac function, including heart rate, contractility, and 

coronary flow202. Adenosine's combined effects on neuronal viability and inflammatory processes have 

also prompted researchers to think about how they might contribute to the development of diseases like 

Lesch-Nyhan syndrome, Creutzfeldt-Jakob disease, Huntington's disease, multiple sclerosis, and brain 
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damage brought on by stroke. Adenosine receptors may have pathological significance, and serious 

efforts are being made to develop ligands that would target adenosine receptors as therapeutic agents to 

treat some of these conditions201. 

 . The increasing popularity of gene-modified models with targeted deletion or overexpression of 

a single protein subtype has helped to elucidate the roles of each receptor subtype202. Knowing this, and 

despite the only moderate effect demonstrated by the cell viability assays, it is of extreme importance to 

test these novel compounds not only in the context of other types of cancer, but also in neuronal and 

healthy tissues, micro-organisms, and viruses. By using gene-editing tools, it is possible to better 

understand the roles of each target and the effect on their inhibition. Further, using natural and genetically 

modified proteins, it is possible to better understand the effect of a compound on a specific enzyme. 

Over the past three decades, significant advances have been made in drug delivery technology. 

Drug delivery technologies represent a vast, vital area of research and development in pharmaceuticals 

and the demand for innovative drug delivery systems continues to grow110. A drug delivery system is 

defined as a formulation or a device that allows the introduction of a therapeutic compound in the cell 

and improves its effectiveness and safety by controlling the rate, time and place of release111. Depending 

on the characteristics of the active compounds to be administered, it may be possible to incorporate them 

in drug delivery systems of different nature (lipidic, polymeric, etc). After verifying whether the molecules 

can be encapsulated, the release and internalization of the therapeutic molecules in the cell can be 

evaluated and the cytotoxic effects of the free vs encapsulated drug can be compared. In this way, it is 

possible to improve the therapeutic efficacy of the molecules, not by optimizing the structure of the 

compounds themselves, but by improving their internalization and cell localization system. Further studies 

are needed in order to better understand the physicochemical properties of the compounds and to design 

a more appropriate technology and carrier that allows its incorporation into a delivery system. Even if the 

compound is hydrophobic, we hypothesize that some chemical interaction with some of the components 

of the carnauba wax could be hampering the formation of the SLNs. Other wax compositions or carriers 

of different nature (lipid or polymeric) could be explored. 

In order to fully complete the protein-ligand interactions, simulations using molecular dynamics 

should also be performed. In this case, simulations are performed using even bigger systems with more 

realistic boundary conditions and better sampling due to longer sampling times. Recently, realistic 

simulations of systems as complex as transmembrane channels have become possible to perform203. 

Based on a general model of the physics driving interatomic interactions, molecular dynamics (MD) 
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simulations predict how each atom in a protein or other molecular system would move over time204. These 

simulations may capture a wide range of critical biomolecular processes, such as conformational change, 

ligand binding, and protein folding, and disclose the positions of all atoms with femtosecond temporal 

resolution. Importantly, such simulations may also anticipate how biomolecules will respond to 

perturbations like mutation, phosphorylation, protonation, or the addition or removal of a ligand at the 

atomic level205. 

Finally, when it comes to using machine learning methods to assess the activity of novel or 

already known compounds for drug repurposing, there is a wide range of techniques and algorithms that 

could be implemented in order to develop a more accurate model. In the future, we aim to build a tool 

that is able to process much more information about anticancer agents in general (not just purine 

derivatives) and to correlate that information with the compounds’ activity. Recently, due to the COVID-

19 pandemic, researchers have been able to demonstrate that the integration of extensive interactions, 

deep neural networks, and multiple evidence can facilitate the rapid identification of candidate drugs for 

COVID-19 treatment206. In a different study, it was demonstrated that deep learning methods and the 

results are useful for the study of signatures and markers of drug response207. The main goal of using 

machine learning in the context of drug design is to build better, more effective, open-access tools and 

platforms that can be used for multiple purposes, ultimately leading to the implementations of novel 

therapeutic agents. 

To summarize, and taking into account the polypharmacological profile of purine derivatives, it is 

of extreme relevance to continue with studies regarding these novel molecules, as we have demonstrated 

that they have the potential to be used not only as theurapeutic agents in the context of cancer, but also 

as antivirals (as we’ve seen that, for example, EPAC inhibition induces cell resistance to viral infections34), 

antimicrobial agents208, among others. Having a dual antimicrobial and anticancer effect is of special 

importance, as evidence shows that intratumoral bacteria are characteristic for each tumor type, resulting 

in a “microbial signature” for each cancer type. A dysbiotic microbiota predisposes the body to develop 

cancer by inducing genetic instability, initiating DNA damage and proliferation of the damaged progeny, 

eliciting favorable immune response, metabolic dysregulation and altered response to therapy. Designing 

a single agent that is able to act in both aspects, and on top of that using drug delivery systems, is one 

of the main goals for future assessments.  
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In the present work, we were able to develop an appropriate working methodology by coming into 

contact with several emerging technologies of interest in the field of drug development in other to confirm 

the potential of novel purine derivatives as therapeutic agents. 
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Supplementary table 1: Predicted activity for a total of 13 compounds belonging to family 1. 

Predicted activity Number of hit 
compounds 

Frequency (%) 

Abl kinase inhibitor  3 23 

Adenosine receptor antagonist  3 23 

Adenylate cyclase V inhibitor  4 31 

ADP-thymidine kinase inhibitor  8 62 

Aldehyde oxidase substrate  6 46 

Alopecia treatment  5 36 

Antiischemic, cerebral 1 8 

Antineoplastic  5 36 

Antineoplastic (multiple myeloma)  5 36 

Antineoplastic (non-Hodgkin's lymphoma)  13 100 

Antineoplastic (solid tumors)  3 23 

Antiprotozoal (Trypanosoma)  11 86 

Antipsoriatic  1 8 

Antiviral (Adenovirus)  1 8 

Antiviral (Hepatitis B)  8 62 

Antiviral (Herpes) 7 54 

Antiviral (Picornavirus)  7 54 

Antiviral (Poxvirus)  8 62 

Apyrase inhibitor  3 23 

Benzoate-CoA ligase inhibitor  1 8 

CDK9/cyclin T1 inhibitor  13 100 

Cyclic AMP agonist  8 62 

Cyclin-dependent kinase 1 inhibitor  1 8 

Cyclin-dependent kinase 2 inhibitor  1 8 

Cyclin-dependent kinase 5 inhibitor  1 8 

Cyclin-dependent kinase inhibitor  1 8 

DNA directed DNA polymerase inhibitor  1 8 

DNA synthesis inhibitor  3 23 

DNA-3-methyladenine glycosylase I inhibitor  5 36 

Epidermal growth factor receptor kinase inhibitor  1 8 

Erythropoiesis stimulant  2 15 

Fibroblast growth factor agonist  2 15 

Glutamate-5-semialdehyde dehydrogenase inhibitor  2 15 

Glyceryl-ether monooxygenase inhibitor  1 8 

Immunomodulator  3 23 

Immunostimulant  1 8 

Immunosuppressant  10 77 

Intermittent claudication treatment  3 23 

Janus tyrosine kinase 2 inhibitor  6 46 

Kidney function stimulant  5 36 

Lck kinase inhibitor  2 12 

Macrophage stimulant  1 8 

Mannotetraose 2-alpha-N-acetylglucosaminyltransferase inhibitor  2 15 

Na+-transporting two-sector ATPase inhibitor 3 3 23 

Nootropic  1 8 

p21-activated kinase 4 inhibitor  1 8 

p21-activated kinase inhibitor  2 15 

Polarisation stimulant 4 31 

Prenyl-diphosphatase inhibitor  1 8 

Protein kinase inhibitor  8 62 

Protein-tyrosine kinase (PTK, not ETK, WZC) inhibitor  3 23 

Pterin deaminase inhibitor  1 8 

Serum-glucocorticoid regulated kinase 1 inhibitor 8 62 

Signal transduction pathways inhibitor  8 62 

TP53 expression enhancer  12 92 

Transcription factor NF kappa A inhibitor  5 38 

Tyrosine kinase inhibitor  8 62 

Vasodilator, peripheral  1 8 
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Supplementary table 2: Predicted activity for a total of 15 compounds belonging to family 2. 

Predicted activity Number of hit 
compounds 

Frequency (%) 

1-Acylglycerol-3-phosphate O-acyltransferase inhibitor 3 20 

2-Dehydropantoate 2-reductase inhibitor 7 47 

3'-Demethylstaurosporine O-methyltransferase inhibitor 7 47 

3'-Nucleotidase inhibitor 1 7 

4-Coumarate-CoA ligase inhibitor 1 7 

4-Hydroxyphenylacetate 3-monooxygenase inhibitor 6 40 

5 Hydroxytryptamine release inhibitor 2 13 

Abl kinase inhibitor 7 47 

Acrocylindropepsin inhibitor 1 7 

Adenine deaminase inhibitor 1 7 

Adenosine receptor antagonist 2 13 

Adenosine regulator 13 87 

Adenylate cyclase V inhibitor 4 27 

Adenylyl-sulfate reductase inhibitor 7 47 

ADP-thymidine kinase inhibitor 8 53 

Alcohol dehydrogenase (acceptor) inhibitor 6 40 

Aldehyde oxidase inhibitor 1 7 

Aldehyde oxidase substrate 1 7 

Alpha-1,6-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase 
inhibitor 

2 13 

Alpha-Methylacyl-CoA racemase inhibitor 1 7 

Angiogenesis inhibitor 3 20 

Antiepileptic 5 33 

Antineoplastic 10 67 

Antineoplastic (multiple myeloma) 5 33 

Antineoplastic (non-Hodgkin's lymphoma) 12 80 

Antineoplastic (solid tumors) 9 60 

Antineurotic 3 20 

Antiprotozoal (Trypanosoma) 12 80 

Antiviral (Adenovirus) 1 7 

Antiviral (Hepatitis B) 1 7 

Antiviral (Herpes) 1 7 

Antiviral (Picornavirus) 4 27 

Antiviral (Poxvirus) 4 27 

APOA1 expression enhancer 2 13 

Apyrase inhibitor 9 60 

Aryl sulfotransferase inhibitor 1 7 

Aryl-acylamidase inhibitor 1 7 

Aspergillus nuclease S1 inhibitor 3 20 

Aspulvinone dimethylallyltransferase inhibitor 3 20 

ATP phosphoribosyltransferase inhibitor 4 27 

Benzoate-CoA ligase inhibitor 4 27 

Biotinidase inhibitor 6 40 

Cardioprotectant 3 20 

CDK9/cyclin T1 inhibitor 8 53 

CDP-glycerol glycerophosphotransferase inhibitor 1 7 

Channel-conductance-controlling ATPase inhibitor 7 47 

Chaperonin ATPase inhibitor 5 33 

Chloride peroxidase inhibitor 4 27 

Chymosin inhibitor 1 7 

Cyclic AMP agonist 9 60 

Cyclic AMP modulator 1 7 

Cyclic AMP phosphodiesterase inhibitor 9 60 

Cyclin-dependent kinase 1 inhibitor 1 7 

Cyclin-dependent kinase inhibitor 1 7 

Cyclohexanone monooxygenase inhibitor 6 40 
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CYP2A1 substrate 1 7 

CYP2C19 inhibitor 2 13 

CYP2D16 substrate 1 7 

CYP2H substrate 1 7 

Cytochrome-b5 reductase inhibitor 2 13 

Diamine N-acetyltransferase inhibitor 1 13 

DNA-(apurinic or apyrimidinic site) lyase inhibitor 6 40 

DNA-3-methyladenine glycosylase I inhibitor 5 33 

Dynein ATPase inhibitor 2 13 

Ecdysone 20-monooxygenase inhibitor 1 7 

Endothelial growth factor antagonist 8 53 

Epidermal growth factor receptor kinase inhibitor 7 47 

ErbB-1 antagonist 7 47 

Fibroblast growth factor agonist 1 7 

Focal adhesion kinase 2 inhibitor 1 7 

Formaldehyde dehydrogenase (glutathione) inhibitor 1 7 

Formate-dihydrofolate ligase inhibitor 7 47 

General pump inhibitor 1 7 

Gluconate 2-dehydrogenase (acceptor) inhibitor 6 40 

Glucose oxidase inhibitor 8 53 

Glutamate-5-semialdehyde dehydrogenase inhibitor 9 60 

Glutamate-tRNA ligase inhibitor 1 7 

Glutaminyl-peptide cyclotransferase inhibitor 1 7 

Glutathione peroxidase inhibitor 1 7 

Glycine-tRNA ligase inhibitor 1 7 

Growth factor agonist 7 47 

Growth factor antagonist 8 53 

Guanidinoacetate kinase inhibitor 1 7 

Guanidinoacetate N-methyltransferase inhibitor 3 20 

H+-transporting two-sector ATPase inhibitor 9 60 

HIF1A expression inhibitor 4 27 

Histidine N-acetyltransferase inhibitor 5 33 

Imidazoline I1 receptor agonist 4 27 

Immunosuppressant 8 53 

Inosine nucleosidase inhibitor 4 27 

Isopenicillin-N epimerase inhibitor 2 13 

Janus tyrosine kinase 2 inhibitor 9 60 

Janus tyrosine kinase inhibitor 5 33 

Kidney function stimulant 7 47 

Kinase inhibitor 2 13 

Lck kinase inhibitor 9 60 

Leukopoiesis stimulant 4 27 

L-threonine 3-dehydrogenase inhibitor 1 7 

Lysase inhibitor 9 60 

Lysine 2,3-aminomutase inhibitor 7 47 

Macrophage stimulant 1 7 

Malate dehydrogenase (acceptor) inhibitor 8 53 

Malate oxidase inhibitor 8 53 

Methylenetetrahydrofolate dehydrogenase (NADP+) inhibitor 7 47 

Mitochondrial processing peptidase inhibitor 1 7 

Myosin ATPase inhibitor 1 7 

N6-methyl-lysine oxidase inhibitor 1 7 

Na+-transporting two-sector ATPase inhibitor 10 66 

N-acetylneuraminate 4-O-acetyltransferase inhibitor 1 7 

N-acetylneuraminate 7-O(or 9-O)-acetyltransferase inhibitor 7 47 

NAD(P)+-arginine ADP-ribosyltransferase inhibitor 7 47 

NADPH peroxidase inhibitor 6 40 

NADPH-ferrihemoprotein reductase inhibitor 2 13 

N-hydroxyarylamine O-acetyltransferase inhibitor 3 20 

Nicotinic alpha2beta2 receptor antagonist 1 7 

Nicotinic alpha6beta3beta4alpha5 receptor antagonist 1 7 
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Nitrate reductase inhibitor 1 7 

Nitrite reductase [NAD(P)H] inhibitor 3 20 

Nucleoside oxidase (H2O2-forming) inhibitor 8 53 

Nucleoside-diphosphatase inhibitor 2 13 

Nucleotide metabolism regulator 8 53 

Octopamine antagonist 1 7 

Pancreatic ribonuclease inhibitor 1 7 

Para amino benzoic acid antagonist 2 13 

P-benzoquinone reductase (NADPH) inhibitor 1 7 

Phosphodiesterase II inhibitor 1 7 

Phospholipid-translocating ATPase inhibitor 4 27 

Phthalate 4,5-dioxygenase inhibitor 4 27 

Preneoplastic conditions treatment 3 20 

Prenyl-diphosphatase inhibitor 2 13 

Protein kinase inhibitor 11 73 

Protein-tyrosine kinase (PTK, not ETK, WZC) inhibitor 7 47 

Protein-tyrosine kinase Lyn inhibitor 2 13 

Proto-oncogene tyrosine-protein kinase Fgr inhibitor 11 73 

Pyroglutamyl-peptidase II inhibitor 1 7 

RELA expression inhibitor 1 7 

Respiratory distress syndrome treatment 2 13 

Retinoic acid metabolism inhibitor 4 27 

Rubredoxin-NAD+ reductase inhibitor 4 27 

Saccharopepsin inhibitor 1 7 

Serum-glucocorticoid regulated kinase 1 inhibitor 6 40 

Signal transduction pathways inhibitor 13 87 

Sphinganine kinase inhibitor 7 47 

Src kinase inhibitor 6 40 

Succinate-semialdehyde dehydrogenase [NAD(P)+] inhibitor 2 13 

Sulfate adenylyltransferase (ADP) inhibitor 1 7 

Sulfite dehydrogenase inhibitor 5 33 

Sulfur dioxygenase inhibitor 1 7 

Thiamine-triphosphatase inhibitor 2 13 

Thiopurine S-methyltransferase inhibitor 1 7 

Thromboxane B2 antagonist 2 13 

TP53 expression enhancer 13 87 

Trans-acenaphthene-1,2-diol dehydrogenase inhibitor 10 67 

Transcription factor NF kappa A inhibitor 1 7 

Transplant rejection treatment 6 40 

tRNA adenylyltransferase inhibitor 1 7 

Tyrosine kinase inhibitor 13 87 

Vanilloid 1 agonist 1 7 

Vascular endothelial growth factor 2 antagonist 2 13 

Vascular endothelial growth factor antagonist 2 13 

Vasodilator 1 7 

Vasodilator, coronary 6 40 

Vasodilator, peripheral 4 27 

Venom exonuclease inhibitor 4 27 

Wound healing agent 1 7 

X-methyl-His dipeptidase inhibitor 2 13 

 

Supplementary table 3: Predicted activity for a total of 5 compounds belonging to family 3. 

Predicted activity Number of hit 
compounds 

Frequency (%) 

(R)-6-hydroxynicotine oxidase inhibitor 1 20 

[acyl-carrier-protein] S-acetyltransferase inhibitor 1 20 

1-Acylglycerol-3-phosphate O-acyltransferase inhibitor 1 20 

27-Hydroxycholesterol 7alpha-monooxygenase inhibitor 2 40 

2-Dehydropantoate 2-reductase inhibitor 2 40 

3'-Demethylstaurosporine O-methyltransferase inhibitor 1 20 
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4-Hydroxyphenylacetate 3-monooxygenase inhibitor 2 40 

5 Hydroxytryptamine release inhibitor 2 40 

5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase inhibitor 2 40 

Acute neurologic disorders treatment 1 20 

Adenosine receptor antagonist 2 40 

Adenosine regulator 3 60 

Adenylyl-sulfate reductase inhibitor 2 40 

ADP-thymidine kinase inhibitor 2 40 

Alcohol dehydrogenase (acceptor) inhibitor 1 20 

Alkane 1-monooxygenase inhibitor 1 20 

Alopecia treatment 1 20 

Anticonvulsant 2 40 

Antieczematic 2 40 

Antiepileptic 2 40 

Antiischemic, cerebral 2 40 

Antineoplastic (non-Hodgkin's lymphoma) 3 60 

Antiprotozoal (Trypanosoma) 1 20 

Antiviral (Herpes) 1 20 

Antiviral (Picornavirus) 2 40 

Antiviral (Poxvirus) 3 60 

Apyrase inhibitor 2 40 

Aspergillus nuclease S1 inhibitor 1 20 

Aspulvinone dimethylallyltransferase inhibitor 2 40 

ATP phosphoribosyltransferase inhibitor 1 20 

Benzoate-CoA ligase inhibitor 1 20 

Biotinidase inhibitor 1 20 

CDK9/cyclin T1 inhibitor 1 20 

Channel-conductance-controlling ATPase inhibitor 1 20 

Chaperonin ATPase inhibitor 1 20 

Creatininase inhibitor 1 20 

Cyclic AMP agonist 3 60 

Cyclic AMP modulator 1 20 

Cyclic AMP phosphodiesterase inhibitor 4 80 

Cyclohexanone monooxygenase inhibitor 1 20 

CYP2A1 substrate 1 20 

Cytochrome-b5 reductase inhibitor 1 20 

Diamine N-acetyltransferase inhibitor 1 20 

DNA-(apurinic or apyrimidinic site) lyase inhibitor 2 40 

DNA-3-methyladenine glycosylase I inhibitor 2 40 

Dynein ATPase inhibitor 1 20 

Ecdysone 20-monooxygenase inhibitor 2 40 

Erythropoiesis stimulant 1 20 

Fibroblast growth factor agonist 1 20 

FMO1 substrate 1 20 

Formate-dihydrofolate ligase inhibitor 1 20 

GABA A receptor agonist 1 20 

GABA receptor agonist 1 20 

Glucose oxidase inhibitor 2 40 

Glutamate-5-semialdehyde dehydrogenase inhibitor 2 40 

Glutamyl endopeptidase II inhibitor 2 40 

Guanidinoacetate N-methyltransferase inhibitor 1 20 

H+-transporting two-sector ATPase inhibitor 2 40 

HIF1A expression inhibitor 1 20 

Histamine release inhibitor 3 60 

Histidine N-acetyltransferase inhibitor 2 40 

Immunomodulator 2 40 

Immunosuppressant 2 40 

Insulin promoter 1 20 

Insulysin inhibitor 1 20 

Interferon alpha agonist 1 20 

Isopenicillin-N epimerase inhibitor 2 40 
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Kidney function stimulant 4 80 

Leukopoiesis stimulant 3 60 

L-threonine 3-dehydrogenase inhibitor 1 20 

Lysase inhibitor 1 20 

Lysine 2,3-aminomutase inhibitor 3 60 

Malate dehydrogenase (acceptor) inhibitor 3 60 

Malate oxidase inhibitor 2 40 

Mannotetraose 2-alpha-N-acetylglucosaminyltransferase inhibitor 2 40 

Mediator release inhibitor 1 20 

Membrane permeability inhibitor 1 20 

Methylenetetrahydrofolate reductase (NADPH) inhibitor 3 60 

Mitochondrial processing peptidase inhibitor 2 40 

Myosin ATPase inhibitor 1 20 

Na+-transporting two-sector ATPase inhibitor 2 40 

N-acetylneuraminate 7-O(or 9-O)-acetyltransferase inhibitor 4 80 

NAD(P)+-arginine ADP-ribosyltransferase inhibitor 2 40 

NADPH peroxidase inhibitor 3 60 

N-hydroxyarylamine O-acetyltransferase inhibitor 1 20 

Nicotinic alpha6beta3beta4alpha5 receptor antagonist 1 20 

Nitrate reductase (cytochrome) inhibitor 2 40 

Nitrate reductase inhibitor 1 20 

Nootropic 1 20 

Nucleoside oxidase (H2O2-forming) inhibitor 2 40 

Nucleoside-diphosphatase inhibitor 2 40 

Nucleotide metabolism regulator 5 100 

Octopamine antagonist 1 20 

Omptin inhibitor 1 20 

P-benzoquinone reductase (NADPH) inhibitor 1 20 

Phospholipid-translocating ATPase inhibitor 2 40 

Phthalate 4,5-dioxygenase inhibitor 3 60 

Prenyl-diphosphatase inhibitor 1 20 

Respiratory analeptic 1 20 

Respiratory distress syndrome treatment 1 20 

Rubredoxin-NAD+ reductase inhibitor 1 20 

Sphinganine kinase inhibitor 2 40 

Sulfate adenylyltransferase (ADP) inhibitor 1 20 

Sulfite dehydrogenase inhibitor 2 40 

Tetrahydroxynaphthalene reductase inhibitor 1 20 

Thiamine-triphosphatase inhibitor 1 20 

Thromboxane B2 antagonist 1 20 

TP53 expression enhancer 1 20 

Trans-acenaphthene-1,2-diol dehydrogenase inhibitor 2 40 

Trimethylamine-oxide aldolase inhibitor 1 20 

tRNA adenylyltransferase inhibitor 1 20 

Undecaprenyl-phosphate mannosyltransferase inhibitor 2 40 

Vasodilator 1 20 

Vasodilator, coronary 1 20 

Vasodilator, peripheral 2 40 

Venom exonuclease inhibitor 1 20 

Venombin AB inhibitor 1 20 

X-methyl-His dipeptidase inhibitor 1 20 

 

Supplementary table 4: Predicted activity for a total of 8 compounds belonging to family B6. 

Predicted activity Number of hit 
compounds 

Frequency (%) 

5 Hydroxytryptamine uptake stimulant 2 25 

Adenosine regulator 5 63 

ADP-thymidine kinase inhibitor 1 13 

Albendazole monooxygenase inhibitor 1 13 

Antianginal 6 75 
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Anticonvulsant 1 13 

Antieczematic 1 13 

Antiischemic, cerebral 4 50 

Antineoplastic 2 25 

Antineoplastic (multiple myeloma) 2 25 

Antineurotic 6 75 

Antinociceptive 6 75 

Antiprotozoal 2 25 

Antiprotozoal (Trypanosoma) 1 13 

Antiviral (Adenovirus) 3 38 

Antiviral (Picornavirus) 3 38 

Antiviral (Poxvirus) 3 38 

Autoimmune disorders treatment 3 38 

Biliary tract disorders treatment 3 38 

CDP-glycerol glycerophosphotransferase inhibitor 5 63 

Chloride peroxidase inhibitor 1 13 

CYP2C19 inducer 8 100 

CYP2C8 inducer 1 13 

Dementia treatment 2 25 

DNA-3-methyladenine glycosylase I inhibitor 3 38 

GABA receptor agonist 1 13 

Gluconate 2-dehydrogenase (acceptor) inhibitor 2 25 

Glutamate-5-semialdehyde dehydrogenase inhibitor 1 13 

Heat shock protein 27 antagonist 3 38 

Kidney function stimulant 3 38 

Leukopoiesis inhibitor 4 50 

Lysine 2,3-aminomutase inhibitor 1 13 

Mannotetraose 2-alpha-N-acetylglucosaminyltransferase inhibitor 5 63 

Na+-transporting two-sector ATPase inhibitor 3 38 

NADPH peroxidase inhibitor 2 25 

Nicotinic alpha6beta3beta4alpha5 receptor antagonist 3 38 

Nucleotide metabolism regulator 2 25 

Octopamine antagonist 2 25 

p38 MAP kinase inhibitor 1 13 

Phobic disorders treatment 4 50 

Phospholipid-translocating ATPase inhibitor 4 50 

Phthalate 4,5-dioxygenase inhibitor 1 13 

Platelet adhesion inhibitor 3 38 

Polarisation stimulant 1 13 

Rheumatoid arthritis treatment 2 25 

Taurine-2-oxoglutarate transaminase inhibitor 2 25 

Venombin AB inhibitor 1 13 

 

Supplementary table 5: Predicted activity for a total of 7 compounds belonging to family B7. 

Predicted activity Number of hit 
compounds 

Frequency (%) 

2-Dehydropantoate 2-reductase inhibitor 2 29 

3'-Demethylstaurosporine O-methyltransferase inhibitor 2 29 

5 Hydroxytryptamine uptake stimulant 1 14 

Acute neurologic disorders treatment 5 71 

Adenosine A1 receptor agonist 7 100 

Adenosine regulator 7 100 

Adenylyl-sulfate reductase inhibitor 2 29 

ADP-thymidine kinase inhibitor 6 86 

Alcohol dehydrogenase (acceptor) inhibitor 1 14 

Antianginal 7 100 

Anticonvulsant 7 100 

Antiepileptic 6 86 

Antiischemic 7 100 

Antiischemic, cerebral 7 100 
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Antineoplastic 7 100 

Antineoplastic (lymphocytic leukemia) 2 29 

Antiviral (Picornavirus) 3 43 

Antiviral (Poxvirus) 4 57 

Anxiolytic 7 100 

Apyrase inhibitor 4 57 

CDK9/cyclin T1 inhibitor 1 14 

Channel-conductance-controlling ATPase inhibitor 5 71 

Chloride peroxidase inhibitor 1 14 

Cyclic AMP agonist 1 14 

Cyclic AMP phosphodiesterase inhibitor 4 57 

Cyclohexanone monooxygenase inhibitor 1 14 

CYP2C19 inducer 2 29 

DNA-(apurinic or apyrimidinic site) lyase inhibitor 1 14 

DNA-3-methyladenine glycosylase I inhibitor 3 43 

Glucose oxidase inhibitor 6 86 

Glutamate-5-semialdehyde dehydrogenase inhibitor 7 100 

H+-transporting two-sector ATPase inhibitor 7 100 

Histidine N-acetyltransferase inhibitor 2 29 

HMGCS2 expression enhancer 4 57 

Inosine nucleosidase inhibitor 2 29 

Isopenicillin-N epimerase inhibitor 1 14 

Kidney function stimulant 1 14 

Leukopoiesis stimulant 1 14 

Lysase inhibitor 1 14 

Lysine 2,3-aminomutase inhibitor 6 86 

Macrophage stimulant 1 14 

Malate dehydrogenase (acceptor) inhibitor 1 14 

Malate oxidase inhibitor 3 43 

Na+-transporting two-sector ATPase inhibitor 7 100 

N-acetylneuraminate 7-O(or 9-O)-acetyltransferase inhibitor 1 14 

NAD(P)+-arginine ADP-ribosyltransferase inhibitor 3 43 

Nucleoside oxidase (H2O2-forming) inhibitor 6 86 

Nucleotide metabolism regulator 6 86 

Octopamine antagonist 2 29 

Protein kinase inhibitor 6 86 

Sphinganine kinase inhibitor 2 29 

Stroke treatment 7 100 

Trans-acenaphthene-1,2-diol dehydrogenase inhibitor 6 86 

Tyrosine kinase inhibitor 7 100 

Vasodilator, peripheral 1 14 

X-methyl-His dipeptidase inhibitor 2 29 
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Supplementary table 6: List of reagents used and suppliers. 

Reagent Supplier 

Ammonium molybdate Merk 

Ammonium vanadate Merk 

ATP Sigma 

BEGM medium Lonza 

Bovine collagen serum  Sigma 

Bovine serum albumin Sigma 

Bradford reagent PanReac AppliChem ITW Reagents 

Carnauba wax Sigma 

DMEM 1X medium Gibco 

DMSO Labkem 

FBS Sigma 

Fibronectin Sigma 

KCl Panreac 

MgSO4 Panreac 

NaH2PO4 Merk 

NH3 Sigma 

Nitric acid Sigma 

PBS Sigma 

Penicillin/streptomycin Gibco 

Protease inhibitor cocktail Sigma 

Resazurine Sigma 

RPMI medium Gibco 

Sodium molybdate Sigma 

Tris Carlo Erba 

Triton X-100 Sigma 

Trypsin Merk 

Tween-80 Sigma 

 

Supplementary table 7: List of equipment and model used. 

Equipment Brand and model 

Centrifuge Eppendorf 5810R 
Eppendorf MiniSpin 

DLS Horiba Scientific nanopartica nano particle analyzer 
SZ-100 

Freezer -80ºC Thermoscientific TXS Series 

Incubator Binder 

Inverted microscopes Nikon Eclipse TS2 
Nikon Eclipse TS100 

Microscope camera Nikon Digital Sight DS-Fi1 
Nikon Digital Sight DS-U3 

Plate readers Synergy H1 Hybrid Reader, Biotek 
Thermoscientific Multiscan Sky 

Refrigerator 4ºC Samsung 

Sonicator Branson Digital Sonifier 

Vertical flow chambers Telstar Bio II Advance 

Water baths VWR VWB 12 
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Supplementary figure 1: Predicted ligand-receptor interactions by Autodock 4. Images obtained with ProteinPlus Server. 
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