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Resumo

Modelação do metaboloma do cancro e do sistema imunitário
de forma a melhorar resultados imunoterapêuticos

A medicina de precisão busca fornecer terapias para diversas doenças que sejam adequadas para

(grupos de) pacientes específicos. O cancro é uma doença causada por células anormais que se mul-

tiplicam descontroladamente e, dada a sua heterogeneidade e base genética, é um dos desafios mais

relevantes para a medicina de precisão. As imunoterapias podem ser adaptadas para indivíduos espe-

cíficos, fornecendo formas interessantes de combater o cancro, induzindo ou aprimorando as respostas

naturais do sistema imunológico dos pacientes, o que pode traduzir-se em terapias com menos efeitos

colaterais.

Neste trabalho, o objectivo foi o de desenvolver abordagens computacionais baseadas em mineração

de dados ómicos e modelação metabólica que ajudem os esforços personalizados de descoberta de me-

dicamentos com o mínimo de efeitos secundários. Para isso, foram desenvolvidos modelos metabólicos

de células T de tumores e tecidos saudáveis   com base em dados ómicos de single-cell. O single-cell

RNAseq (scRNAseq) é uma ótima ferramenta para a reconstrução de modelos metabólicos específicos

para cada paciente e tipo de célula. No entanto, esta abordagem não foi ainda aproveitada no campo da

imunoterapia tumoral.

Numa fase inicial, construímos um atlas de dados de scRNAseq para cancro colorretal, que foi usado

para reconstruir 196 modelos de vários sub-tipos de células T do micro-ambiente desse tumor. Além disso,

realizou-se uma análise do desempenho de vários métodos de deconvolução do tumor, para permitir que

os dados de bulk RNAseq amplamente disponíveis sejam usados na modelação metabólica de tipos de

células presentes no micro-ambiente do cancro colorretal.

Palavras-chave: Modelos metabólicos, Single-cell RNAseq, Cancro colorectal, Deconvolução de tumores
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Abstract

Systems-level modelling of the cancer and immune metabolome
to improve immunotherapeutic outcomes

Precision medicine seeks to provide therapies for different diseases that are adequate for specific

(groups of) patients. Cancer is a a disease caused by abnormal cells that multiply uncontrollably and

given its heterogeneity and genetic basis, is one of the most relevant challenges for precision medicine.

Immunotherapies can be tailored for specific subjects, providing attractive ways to fight cancer by inducing

or enhancing patients’ natural immune system responses, which can lead to therapies with less side

effects.

In this work, we aimed to develop computational approaches based on omics data mining and metabolic

modelling that could help, in the future, personalised drug discovery efforts with minimum off-target ef-

fects. For this, metabolic models of T-cells from tumour and healthy tissues based on single-cell omics

data were developed. Single-cell RNAseq is a great tool for the reconstruction of metabolic models with

patient- and cell-type- scpecificity. However, this approach has not been exploited in the field of tumour

immunotherapy.

We constructed an atlas of scRNAseq data for colorectal cancer, which was used to reconstruct 196

models of various T-cell subtypes from the micro-environment of this tumour. Furthermore, the bench-

marking of several tumour deconvolution methods was performed to allow the extensively available bulk

RNAseq data to be optimally used in cell-type specific modeling of the colorectal cancer.

Keywords: Metabolic modeling, Single-cell RNAseq, Colorectal cancer, Tumour deconvolution
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Introduction

1.1 Context and Motivation

Cancer is a disease caused by abnormal cells that multiply uncontrollably, which may generate a solid mass

called tumour, and possibly invade the organism. Although tumours are usually portrayed as homogeneous

cell populations, they actually contain a diverse amount of cells beyond cancer cells, including stromal

and immune cells. In fact, the cells in these tumour micro-environments may be shaped by tumour cells

or even by each other to aid tumour proliferation and metastasis, as well as affect responsiveness to

therapeutics.

Although many characteristics span all or most tumours, the heterogeneity in how, when and what

leads these characteristics to manifest are specific to each patient or group of patients. As such, preci-

sion medicine seeks to provide therapies for different diseases, including cancer, that are adequate for

specific (groups of) patients. Besides finding ways of killing only the malignant cells with minimum im-

pact on healthy cells, natural immune system responses can be induced or enhanced to fight cancer

(immunotherapy), which can lead to less side effects.

Besides the large number of genomic changes that promote uncontrollable proliferation, cancer cells

must undergo metabolic changes, when compared to normal cells, to support the acquisition and main-

tenance of malignant properties. For instance, changes in energy metabolism such as the shift to aerobic

glycolysis in cancer cells even under normal oxygen conditions, as observed firstly by Warburg et al [2] in

1958, allows these cells to rapidly proliferate and survive under stressful conditions. Interestingly, many of

the changes observed in the tumour micro-environment are also caused at the metabolic level, providing

an interesting target for cancer and immune therapies.

The discovery and characterisation of the reprogrammed metabolism of cancer cells and of those

in the tumour micro-environment may hence help to study tumour tissue non-invasively, predict tumour

behaviour, and prevent tumour progression.

The recent major advances in high-throughput omics data, such as genomics, transcriptomics and

metabolomics, have allowed modelling the metabolism of several species at a large scale through the

reconstruction of Genome-Scale Metabolic Models (GSMMs). Human metabolic models, when applied
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together with data specific to (groups of) patients, can be important contributors in gaining knowledge

towards a better comprehension of cancer mechanisms. These models can even be essential, in the

future, to find therapies specific for each patient, or group of patients.

Thus, this work focused on developing system-level computational approaches based on omics data

mining and metabolic modelling, so that efficient immunotherapies, complemented with personalised drug

discovery efforts, can be developed in the future with minimum off-target effects. For this, models of T-cells

from tumour and healthy tissues based on patient- and cell-type- specific omics data were developed. To

accomplish this, an atlas of single-cell RNAseq data for colorectal cancer was constructed. Furthermore,

benchmarking of tumour deconvolution methods was performed to allow the extensively available bulk

RNAseq data to be optimally used in cell-type specific modeling of the colorectal cancer.

This will enable the study of the effects of metabolic targets and off-targets on each individual cell-

type/tissue, as well as interactions between the different cell-types in the tumour micro-environment.

1.2 Research Objectives

The main focus of this work is to develop system-level approaches that allow personalised immunother-

apies, which will be materialised by the development of computational tools based on constraint-based

modelling, omics data mining and immunoinformatics.

This work provides innovative contributions along the following axes of research and development:

! Reviewing the state of the art on the metabolism of the immune system, cancer, and the tumour

micro-environment, as well as on constraint-based modelling and its applications in human and

cancer metabolism.

! Development of a single-cell RNAseq atlas of colorectal cancer micro-environment, using publicly

available datasets;

! Development of metabolic models of a set of T-cells, based on the atlas constructed;

! Benchmark tumour deconvolution methods using bulk RNAseq data provided by the Leiden Univer-

sity Medical Centre (LUMC);

! Implement the code in open-source software, allowing the full reproducibility of the studies con-

ducted, as well as bringing important resources for the scientific community.

! Write articles with the results of the work in selected international journals and conferences.

1.3 Thesis Outline

The present document is divided into six chapters. The first chapter gives a brief introduction to the subject

of the work, by providing a context, motivation and main objectives.
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The following chapter gives a background for this work. It starts by introducing the immune system

and cancer, and how these two are connected. This is followed by a description of the metabolism in T-

and cancer cells, and how it can be taken advantage of for immunotherapy. Lastly, we detail on what

constraint-based modelling is and how it can be used in human cancer.

The third chapter describes the creation of a single-cell RNAseq (scRNAseq) atlas of colorectal can-

cer (CRC) tumour-microenvironment. It starts by explaining what datasets were collected and how they

were properly integrated. This is followed by a detailed description of how the cells were annotated, with

emphasis on T-cells. Lastly, an overview of the annotated cell-types is given.

Chapter four details the creation of genome-scale metabolic models of different T-cell subtypes from

the micro-environment of CRC and normal matched colon. The data collected in chapter 3 was used to

create these models. This is followed by a thorough analysis of the models, including model structure, flux

predictions and gene essentiality.

Chapter five details the benchmarking of several tumour deconvolution methods that use single-cell

RNAseq data as reference to do so. This chapter includes a summary of each method tested and how they

were compared, followed by in-depth analysis of what are the best methods to use in different situations.

In the final chapter, the present work is reviewed, followed by a discussion on work to do in the future.
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Background

This chapter gives first an overview of the immune system and cancer. The role that the immune system

plays in cancer and how the different cells in a tumour micro-environment interact with each other will also

be discussed, with emphasis on metabolism and how this can be taken advantage of for immunotherapy.

Having the biological background of the work explained, we detail on what constraint-based modeling is

and how it can be used in human cancer is overviewed.

2.1 Overview of the Immune System

Immunity is the state of protection from a disease and can be differentiated into two components, innate

and adaptive immunity.

2.1.1 From innate to adaptive immune system

Innate immunity is the first to respond to the exposure of an antigen. The defense mechanisms generated

by this type of immunity are not specific to a particular pathogen but can recognise classes of molecules

characteristic of pathogens. This type of immunity is carried out by myeloid cells like neutrophils, basophils,

eosinophils and mast cells.

The other cells from the myeloid lineage are phagocytic cells that have professional antigen-presenting

cell (APC) function. These cells play a role in connecting the innate and adaptive immune systems, by

secreting proteins that attract and activate lymphocytes once they make contact with a pathogen at a site

of infection [3].

Adaptive immunity, even though it responds only within 5 to 6 days after the initial exposure to the

antigen, has a high degree of specificity. This type of immunity can exhibit immunologic memory, where

a subsequent exposure to the same antigen results in a quicker, stronger and more effective response

[4]. Lymphocytes play an important role in effective adaptive immunity. They are a type of white blood

cells that display antigen-binding receptors with specificity, diversity, memory and self/non-self recognition

capacity. There are two main types of lymphocyte populations: B lymphocytes (B-cells) and T lymphocytes
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(T-cells). B- and T- cells recognise and bind to discrete sites on the antigen, called antigen determinants

or epitopes [5].

The adaptive immunity can be divided into humoral, carried out by B-cells, and cell-mediated, by

T-cells.

B-cells mature within the bone marrow and each one expresses a unique antigen-binding receptor

on its membrane, the antibody. When a naïve B cell finds an antigen that binds to its membrane-bound

antibody, the cell starts dividing rapidly into a clone of cells that differentiate into memory B cells and

effector B cells called plasma cells. These cells have the same antigenic specificity as the original parent

cell (clonal selection). Plasma cells produce enormous amounts of antibodies that can be secreted into

circulation. After binding to the antigen, these antibodies can form clusters that are readily ingested by

phagocytic cells, or cause the lysis of the foreign organism where the antigen is [4].

Like B-cells, T-cells arise in the bone marrow but then migrate to the thymus, where they mature.

Each T-cell acquires a unique antigen-binding molecule, known as T-cell receptor (TCR). There are two

well-defined subpopulations of T-cells: helper (T! ) and cytotoxic (T3 ) T-cells [3]. However, T-cells can only

recognise epitopes when bound to cell-membrane glycoproteins called major histocompatibility complex

(MHC) molecules [5]. Class I MHC molecules are expressed on the surface of nearly all nucleated cells,

while class II MHC molecules are primarily expressed on APCs like monocytes, macrophages, dendritic

cells and B cells.

When a naïve helper T-cell encounters and recognises an antigen loaded into a MHC class II molecule,

their interaction causes production of a costimulatory signal by the APC, causing activation of the helper

T-cell. This activated cell proliferates and differentiates into memory and effector cells, all with the same

antigen specificity (clonal expansion). The effector cells then start secreting various growth factors, known

collectively as cytokines. These cytokines play a role in activating various cells that participate in the

immune response, such as B-cells, cytotoxic T-cells and macrophages. Differences in the patterns of

cytokines result in different types of immune response [4].

Under the influence of these cytokines, the cytotoxic T-cell that recognises the antigen proliferates and

differentiates into effector cells called activated cytotoxic T lymphocytes, which then monitor the body and

eliminate any cell that display that same antigen [4].

2.1.2 T-cells

The TCR is an heterodimer, with each chain containing two extracellular domains connected by a dissulfide

bond. The transmembrane region anchors each chain in the plasma membrane and interact with CD3

chains, forming the TCR-CD3 complex. CD3 is not only closely related to TCR, but its expression is also

required for membrane expression of the TCRs [6].

The chains that compose a TCR are predominantly " and 4 chains ("4TCR). "4T-cells comprise 90%

to 95% of all T-cells [3].
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"4T Lymphocytes These cells are divided into two main groups, based on whether they express CD4

or CD8 in their membranes. Cytotoxic T-cells (358+T-cells) are normally those that display the glycoprotein

CD8 in their membranes and recognize the complex antigen-MHC class I. The cells that normally display

the glycoprotein CD4 in their membranes are the helper T-cells (354+T-cells) and recognize the complex

antigen-MHC class II [3].

The naïve form of 358+T-cells browse the surfaces of antigen-presenting cells with their TCRs and the

co-receptors CD8. If bound to an MHC-peptide complex, they become activated, proliferate and differen-

tiate into either an effector cell, the activated cytotoxic T-cell, that will monitor the body and eliminate any

cell with the foreign antigen complexed with MHC class II, or a memory cell. To proliferate and differentiate

optimally, naïve 358+T-cells need help from mature 354+T-cells [7].

The naïve form of 354+T-cells also browse the surfaces of antigen-presenting cells with their TCRs

and the co-receptors CD4. If bound to a MHC-peptide complex, they become activated, proliferate and

differentiate into either an effector or regulatory 354+T-cell subtype or into a memory cell. Which subtype

dominates the immune response depends on the type of pathogen or malign cell, as the different subtypes

produce different sets of cytokines that enable the activation of cytotoxic T-cells and other cells [7, 8]. Some

of the subtypes are:

! T Helper Type 1 (T!1): Regulates the immune response to intracellular pathogens and it is charac-

terized by the secretion of IFN-6 and TNF-4 ;

! T Helper Type 2 (T!2): Characterized by the secretion of IL-4, IL-5 and IL-13, it regulates the response

to many of the extracellular pathogens;

! T Helper Type 17 (T!17): Named after their secretion of the cytokine IL-17, they play an important

role in cell-mediated immunity and may help the defence against fungi. They also secrete IL-21 and

IL-22;

! Follicular Helper T-Cell (T7! ): Has a role in humoral immunity and regulates B-cell development.

It secretes IL-21;

! Regulatory T-cell (T89: ): This type of cell is able to inhibit an immune response, helping with

maintenance of immune tolerance [9]. Regulatory T-cells are distinguished from other cells by their

presence of CD25 on their surfaces, and by the expression of the internal transcription factor FoxP3.

Memory T-cells, regardless of expressing CD4 or CD8, are often divided into two main subsets [8, 10].

While central memory T-cells express the CCR7 receptor and are mostly present in secondary lymphoid

organs, effector memory T-cells do not express CCR7 and exhibit rapid effector function ex vivo, while

mostly residing in peripheral lymphoid organs or recently infected tissues. Central memory were shown to

generate effector memory T-cells in vitro [11]. In fact, memory CCR7−CD62L−CD28+ T-cells have been

found in peripheral blood of healthy individuals and are seen as ’transitional’ memory cells, as they appear
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to be more differentiated than central memory T-cells but not as fully as effector memory T-cells in terms

of phenotype and magnitude of expansion in response to IL-15 in vivo [10].

Other subsets of memory T-cells have been found, such as the tissue-resident memory T-cells, which

is emerging as pivotal in the protection of mucosal surfaces and epithelial from invading pathogens [10].

Innate Lymphoid cells (ILCs) Lacking antigen-specific receptors like those of B- and T- cells, ILCs

are a diverse family of lymphocytes that comprise natural killer (NK) cells, lymphoid tissue inducer (LTi)

cells and helper-like ILCs. ILCs are often considered as a subset of T-cells.

NK cells can be distinguished by the expression of specific surface markers and presence of cytotoxic

granules. NK cells are efficient cell killers that attack abnormal cells, by killing any cell that does not have

receptors for self MHC class I. The binding of these receptors to NK cells inhibits their killing ability [3].

MHC class I is expressed by almost all normal cells but often down-regulated in tumour cells [12].

Helper-like ILCs mirror the T-helper polarization of conventional 354+T-cells and can be divided into

three subtypes: ILC1, ILC2 and ILC3. These cells produce not only cytokines to orchestrate and amplify

anti-microbial denfenses, but also soluble factors that promote tissue maintenance [13].

Unconventional T-cells 6;T-cells are scarce in lymphoid tissues but abundant at mucosal sites such

as skin, tongue, intestine and reproductive organs [14, 15]. Other unconventional T-cells include CD8"" T-

cells, which express the CD8"" heterodimer instead of the CD8"4 characteristic of conventional cytotoxic

T-cells, and NKT cells, which have characteristics of both conventional T-cells and NK cells.

2.2 Cancer

Although most cells in the adult body are quiescent, certain cell populations retain the ability to proliferate

throughout the adult life, which is essential for proper tissue homeostasis. Cell division is influenced by

exogenous signals like nutrients, growth and inhibitory factors, as well as interaction with neighbour cells

and extracellular matrix [16].

During cell division, a series of surveillance pathways, known as ’cell cycle checkpoints’ monitor for

potential problems during the cell cycle. Once a problem is detected, cell cycle checkpoints activate

signalling pathways that induce a temporary cell cycle arrest so that it can be fixed. Depending on the

cell type and degree of damage, checkpoints can even induce permanent cell cycle arrest (senescence)

or apoptosis [16].

Cancer is a disease caused by abnormal cells that escaped the checkpoint mechanisms and multiply

uncontrollably. Interestingly, cancer cells are well known for carrying genetic alterations that often affect

genes of the cell cycle machinery and checkpoint pathways. Cancer cells might generate a solid mass

called tumour (or neoplasm/ neoplasia), and possibly invade the organism. Those tumours that invade

the organism are mentioned as malignant tumours, while those that do not are referred to as benign.
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Based on their origin, cancers can be divided into four types. Carcinomas, the most common type,

occur at internal organs and usually form solid tumours. These include breast cancer, lung cancer and

colorectal cancer. Sarcomas begin in tissues that connect and support the body, like nerves, muscles,

blood and lymph vessels, and bone. Leukemias, on the other hand, consist on uncontrollable growth of

the blood cells, while lymphomas begin in the lymphatic system.

2.2.1 Cancer hallmarks

Cancer cells display many other biochemical and biological features common to most cancers. While

some are particular to distinct tumour types, most human tumours share six of these biochemical and

biological features. They are known as hallmarks of cancer and are essential to the multistep process of

tumourigenesis, which reflects the progressive transformation of normal human cells into highly malignant

derivatives [17].

Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites

their acquisition. Cancer cells often show increased number of mutations, which can happen due to

increasing sensitivity to mutagenic agents, a breakdown in one or several components of the genomic

maintenance machinery, or both. Inflammation also fosters multiple hallmark functions [18].

Sustaining proliferative signalling Normal cells require mitogenic growth signals to move from a

quiescence state to an active proliferative state. These signals are transmitted into the cell by transmem-

brane receptors, which then regulate progression through the cell cycle as well as cell growth [18]. Tumour

cells, however, show a greatly reduced dependence on exogenous growth stimulation. They can synthesize

and secrete the necessary growth factors, or even over-express growth factor receptors to make the cells

hyper-responsive to low levels of growth factor [17, 18].

Evading growth suppressors Within a normal tissue, multiple anti-proliferative signals operate to

maintain cellular quiescence and tissue homeostasis [17]. Disruptions in the pathways of these growth

suppressors help cancer cells evading anti-proliferative signals.

Resisting cell death Alterations on the apoptotic machinery can dramatically affect the dynamics

of tumour progression. In fact, apoptosis is attenuated in those tumours that succeed in progressing to

high-grade malignancy and resistance to therapy [19].

Replicative immortality The previous hallmarks do not ensure, on their own, expansive tumour

growth, as normal cells carry a cell-autonomous program that limits their multiplication. Telomeres are

multiple tandem hexanucleotide repeats that protect the ends of chromosomal DNA and suffer progressive

erosion through successive cycles of replication, loosing the ability to protect the ends of chromosomal

DNA and thus cell viability. Malignant cells are able to maintain telomeres at a length above a critical

threshold allows unlimited multiplication of descent cells. Most do so by up-regulating expression of the

telomerase enzyme, which adds hexanucleotide repeats onto the ends of telomeric DNA [20].
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Inducing Angiogenesis Oxygen and nutrients are crucial for cell function and survival. For that,

cells need blood vessels nearby. The growth of new blood vessels, called angiogenesis, is transitory and

carefully regulated. In the adult, angiogenesis only happens as part of physiologic processes as wound

healing and female reproductive cycle [18]. Many tumours show increased expression of angiogenesis

inducing factors, while others down-regulate expression of endogenous inhibitors [21].

Tissue invasion andmetastasis Often, tumour masses have cells that move out, invade adjacent tis-

sues, and travel to distant sites where they may establish new colonies [17]. These distant settlements are

called metastasis and their occurrence is mostly regulated by the developmental regulatory program called

epithelial-mesenchymal transition (EMT). After developing tissue-colonising ability, the cells in metastatic

colonies may disseminate to new sites or back to the primary tumours. This can significantly modify the

phenotype and underlying gene expression program of the cancer cells within the primary tumour [18].

Reprogramming of energy metabolism The uncontrolled cell proliferation characteristic of cancer

cells has also to be enabled by adjustments to energy metabolism in order to fuel growth and division [17].

For example, Warburg et al [2] observed that cancer cells can reprogram their energy production by limiting

it largely to glycolysis, leading to a state termed aerobic glycolysis. Additionaly, oxygenation fluctuates

temporally and regionally, as a result of the instability and chaotic organisation of the tumour-associated

neovasculature. Because of this, some tumours have been found to contain two sub-populations of cancer

cells that differ in their energy generating pathways. One is glucose-dependent and secretes lactate, while

the other, better oxygenated due to its position in the tumour’s periphery, preferentially imports and utilises

this lactate as energy source [22].

Evading immune destruction Highly immunogenic cancer cells may evade immune destruction by

disabling components of the immune system that could eliminate them [18]. For example, cancer cells

may paralyse infiltrating cytotoxic T and NK cells, by secreting immunosuppressive factors [23], or recruit

immunosuppressive cells like regulatory T-cells [24].

The cancer hallmarks are not necessarily expressed equally nor continuously in all the tumour, as

there is cell-to-cell phenotypic variability due to several constrains such as location, size, and history.

The initial causes of oncogenic events include prolonged hormone stimulation, viruses, chemical car-

cinogens, radiation, inflammation, and acquired or inborn genetic defects. Necessary but not sufficient,

causal events simply increase the probability of cancer development [25]. The oncogenic events can ei-

ther be genetic, like mutations, recombinations and copy number changes, or epigenetic, transcriptional

or post-transcriptional. The final cancerous phenotype may result from one or a successive addition of

oncogenic events [25].

These oncogenic events affect molecules that take part on signalling pathways or gene regulatory

networks. One event can induce several hallmarks. For example, the disruption of p53 can induce angio-

genesis and proliferation, and suppress apoptosis [17, 21]. Furthermore, while a specific genetic event
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may only contribute to the acquisition of a single hallmark in certain tumours, the same event may lead

to simultaneous acquisition of several distinct hallmarks in other tumours [17].

The cell’s paths for becoming malignant vary greatly. Mutations in certain oncogenes and tumour sup-

pressor genes can occur early in some tumours and late in others, which causes the particular sequence

in which hallmarks are acquired to vary widely. Nonetheless, the hallmarks that are ultimately reached

are shared by virtually all types of tumours [17].

2.2.2 Role of the Immune System in Cancer

The human organism is able to undergo a series of stepwise events called the cancer-immunity cycle so

that a productive anti-tumour immunity response can occur. Firstly, neoantigens released from tumours

are passively transported or captured and delivered by dendritic cells to regional lymph nodes via afferent

lymphatic vessels. In tumour-draining lymph nodes, dendritic cells present the captured cancer-specific

antigens to T-cells, activating their responses. At this stage, the balance between T effector cells and T

regulatory cells is an important key to the final outcome [26].

The newly activated cytotoxic T-cells exit the lymph node and circulate throughout the body via the

bloodstream, whose chemokine gradients and adhesion molecules direct circulating T-cells to extravasate

through the blood vessels and migrate into the tumour. Once here, they scan the cancer cells and kill

them, which releases additional tumour-associated antigens to increase the range and depth of the re-

sponse in subsequent steps [26, 27]. While cytotoxic T-cells, and NK cells, engage in tumour killing,

T!1 and, sometimes, T!17 cells provide important help that boosts cytotoxic immunity [28]. Under ideal

circumstances, this cycle leads to the eradication of malignant cells by the cytotoxic cells, establishes

tumour-specific immunological memory, and prevents further tumour progression [27].

In the vast majority of established tumours, however, the leukocytes that infiltrate the tumour are

insufficient to stop tumour growth [28]. For instance, tumour antigens may not be detected, or dendritic

cells and T-cells may treat antigens as self rather than foreign. T-cells may not even properly infiltrate

tumours due to factors present in the tumour micro-environment [26]. Also, if T regulatory cells exceed

effector responses, they will be able to inhibit these responses against tumour cells.

It is clear now that tumours are not an homogeneous cell population of only cancer cells, they are

also composed by several types of non-malignant cells. This environment, referred to as tumour micro-

environment (TME), includes blood and lymphatic endothelial cells, tumour-infiltrating leukocytes (TILs),

mesenchymal stem cells (MSCs) and their differentiated progeny, such as cancer-associated fibroblasts

(CAFs) and pericytes, accompanied with the extracellular matrix.

The different constituents of the TME can interact closely with each other and the tumour cells. These

interactions control and shape tumour cell survival, invasiveness and metastatic dissemination, as well as

access and responsiveness to therapeutics. This dynamic relationship is set early on in malignant growth

and evolves throughout the life history of a tumour [27, 28]. Besides direct contact and contact through

cytokine and chemokine production, metabolism is also an important part in this interaction.
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2.3 Metabolism in T-cells and Cancer

Glycolysis, oxidative phosphorilation (OXPHOS), fatty acid oxidation (FAO), the tricarboxylic acid (TCA) cycle

and fatty acid synthesis (FAS) are core cooperative metabolic pathways in any type of cell.

Glycolysis is the pathway by which glucose is broken down into pyruvate, which can then be used as

substrate in the TCA cycle in the presence of oxygen, or for production of lactate when the mitochondria are

damaged or in the absence of oxygen. However, in 1958, Warburg et al [2] found that activated leukocytes

and tumour cells, two types of cells that need to rapidly divide, produce lactate from pyruvate even in the

presence of oxygen, a process termed aerobic glycolysis. Although it only produces a net of 2 ATP, aerobic

glycolysis provides metabolic intermediates necessary for many other metabolic pathways, allowing these

cells to rapidly proliferate.

In mitochondria, the TCA cycle incorporates Acetyl-CoA from pyruvate produced by glycolysis or FAO,

to generate reducing equivalents (NADH and FADH2), which donate electrons to the electron transport

chain (ETC). This leads to the generation of a proton gradient across the inner mitochondrial membrane

and ultimately to the generation of up to 36 ATP in a process named OXPHOS. NADH and FADH2 can also

be produced during FAO. During this process, reactive oxygen species (ROS) are also produced [29].

2.3.1 T-cells

Throughout the life of an immune cell, energy and substrate requirements change considerably, as certain

metabolic pathways must be engaged, or suppressed, to facilitate development and activation [29].

Naïve T-cells The naïve 358+ and 354+ T-cells formed in the development stage leave the thymus

and enter the circulation as resting cells. Traveling throughout the organism on immune surveillance

requires constant cytoskeletal rearrangements, a process that is ATP expensive but requires only basal

replacement biosynthesis [30]. These cells need a metabolic balance that favours energy production over

biosynthesis to move through tissues and prevent cell death, without leaving a quiescence state [29].

To do this, naïve T-cells rely greatly on the high-energy yielding processes of FAO, and pyruvate and

glutamine oxidation via the TCA cycle (figure 1) [30].

Naïve T-cells Activation Activated T-cells undergo high production of metabolite precursors and ATP

to support the cell growth phase prior to the first T-cell division that will enter the cell in the clonal expansion

phase (figure 1).

Activated T-cells engage into mitochondrial one-carbon metabolism associated with induction of the

folate cycle, which coincides with the increased TCA cycle and OXPHOS [31]. Also, lipid synthesis is

suppressed and instead lipid oxidation is promoted [32].

ROS are generated in the mitochondria as a consequence of the TCA cycle and OXPHOS [33]. High

levels of ROS lead to uncontrolled proliferation of T-cells. Glutathione, generated through one-carbon units

derived from serine in the mitochondria, titrates ROS, maintaining moderate levels of ROS [34].
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Rapid cell division requires biosynthesis of intracellular constituents including lipid membranes, nucleic

acids and proteins, which need increased glucose and glutamine to satisfy the metabolic requirements,

while decreasing lipid oxidation (figure 1) [30].

Figure 1: Overview of the characteristic metabolic phenotype throughout T-cells life cycle. In green are
the metabolic pathways characteristic of quiescent/immunosuppressive cells and in yellow those of prolif-
erating cells. Naïve T-cells and their activated form in the initial growing phase are characterised by high
activity of fatty acid oxidation (FAO), tricarboxylic acid (TCA) cycle and oxidative phosphorilation (OXPHOS).
Activated naïve T-cells in the cell division phase highly express glycolysis, glutaminolysis and fatty acid
synthesis (FAS). Effector T-cells have low TCA and OXPHOS activity, and high glycolysis and glutaminoly-
sis. T!17 cells are further characterised by high levels of FAS. Regulatory T-cells have low glycolysis but
high OXPHOS and FAO. Finally, memory T-cells are characterised by low glycolysis, high OXPHOS, and
the futile cycle between FAS and FAO.

Activated T cells also increase methionine uptake. This amino acid is highly important for proliferat-

ing cells, as it is the predominant ’start’ amino acid in protein synthesis. The methionine cycle further

generates methyl donors required for RNA and histone methylation[35].

Finally, activated T-cells go through asymmetric cell division. Associated with different distribution

of metabolic mediators, asymmetric division drives activated T-cells toward either an effector or memory

phenotype [36].

Those cells that inherit higher levels of amino acids go through a regulatory process that makes them

more glycolytic and more likely to develop into effector cells [37]. They exhibit increased expression of

effector molecules and increased expression of the large neutral amino acid transporter CD98, critical for

clonal expansion and effector cell differentiation [38].

The other cells have enhanced lipid metabolism, spare respiratory capacity (SRC, the extra capacity

that cells have available to produce energy in response to increased stress or work) and survival. All

features of the memory phenotype, these cells are primed to become long-lived memory cells [37].
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Effector T-cells Activated effector T-cells use glycolysis and glutaminolysis for ATP generation and

redox balance. In fact, these cells upregulate Glut1, which mediates the increased glucose uptake [39].

Cells that starve of glucose have increased amounts of glutamine-derived glutamate and pyruvate to allow

them maintain TCA activity (figure 1) [40]. This metabolite allocation allows lipids and other amino acids

to be redirected to generate biomass, such as nucleotides for DNA and lipids for membranes, to support

cell division and effector cell functions.

Effector T cells have increased fission and more punctate mitochondria with looser cristae, which leads

to a physical dissociation of ETC supercomplexes that may cause electrons to linger in the complexes and

imbalance redox reactions. This imbalance can cause an increase in NADH levels that slow the TCA cycle.

To restore the redox balance, cells augment glycolysis and shunt pyruvate as excreted lactate, known as

aerobic glycolysis. This allows regeneration of NAD+ from cytosolic NADH [41].

Memory T-cells Besides the initial asymmetric division during T-cell activation, some effector CD4+

and CD8+ T-cells are capable of differentiating into long-lived quiescent memory cells after pathogen clear-

ance instead of suffering apoptosis. In this phase, T-cells no longer undergo rapid growth that requires high

rates of biosynthesis. Instead, they require efficient energy generation to support basic cellular functions

and prevent cell death [30]. Thus, aerobic glycolysis is reduced, while FAO and mitochondrial metabolism

is favoured (figure 1). This also allows memory T-cells to increase their capacity to undergo oxidative

metabolism under metabolic stress, due to higher SRC [29, 30].

Fatty acids are synthesized by memory T-cells from glucose in internal lysossomal stores, rather than

acquiring them from an extracellular source. The fatty acids formed are then broken down by lisossomal-

acid-lipase-mediated lipolysis to liberate free fatty acids from storage to be used as substrates in FAO. This

futile cycle may be engaged to ensure a continuous lipid supply for FAO, regardless of the extracellular

lipid content, and maintain enzyme expression to keep cells primed and ready for rapid recall in the event

of pathogen re-encounter [42].

Although SRC and this futile cycle are important for the function of central memory T-cells in the lymph

nodes, effector memory T-cells that reside in tissues rely on the import of extracellular fatty acids and on

glycolysis [43]. Nevertheless, and although not yet clear, the substrates used for FAO in different memory

T-cell populations may be due to substrate availability in different tissue environments [29].

Memory T-cells have increased expression of phosphoenolpyruvate carboxykinase (PCK1), which me-

diates glycogen biosynthesis and subsequent glutathione production through the pentose phosphate path-

way, which maintains memory T-cells by reducing ROS levels [44].

Effector 354+ T-cells subsets The distinct metabolic pathways engaged by the different 354+T-cell

subsets (figure 1) are not only crucial for their differentiation and survival, but also support important

cell-specific functions.

Although all effector 354+T-cell subsets have higher rates of glycolysis than naïve T-cells, T!1, T!2 and

T!17 cells have higher levels of Glut1 compared with regulatory T-cells [45]. Increased glucose uptake

is not only sufficient to selectively enhance effector T function, but the inhibition of glucose metabolism
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is capable of selectively inhibit effector T-cells, specially T!17 [46]. T!17 cells display lower OXPHOS

than other helper T-cells. Regulatory T-cells are only partially dependent on glycolysis, resulting from

the simultaneous increase in OXPHOS [47]. While high levels of glycolysis induces their proliferation, it

limits their suppressive capacity [48]. Once glycolysis-related genes are inhibited and lipid and oxidative

metabolism genes are promoted, regulatory T-cells reach their maximal suppressive ability.

T!17 cells rely on de novo FAS, rather than acquisition of extracellular fatty acids, to meet lipid require-

ments [49]. Cholesterol biosynthesis is required for suppressive function in regulatory T-cells [50].

In spite of exhibiting high FAO levels, Cluxton D. et al [47] observed that regulatory T-cells do not

entirely rely on FAO. Glycolysis can serve as an alternative energy source. Raud B. et al [51] even found

that deletion of the mitochondrial long-chain fatty acid transporter CPTI, essential for long-chain FAO, did

not affect regular T-cell development and function.

2.3.2 Tumour cells

Cancer cells go through metabolic changes relative to normal cells that support the acquisition and main-

tenance of malignant properties. Many of these changes are observed among most types of cancer cells,

which supports reprogrammed metabolism as a hallmark of cancer [52].

Nutrients Uptakes The uptake of nutrients from the environment must be increased to fulfil the

biosynthetic demands associated with the high proliferation rate of cancer cells. Glucose and glutamine

are the two most important components. Their catabolism provides various carbon intermediates that are

used for the assembly of various macromolecules. Furthermore, controlled oxidation of carbon skeletons

of glucose and glutamine allows generation of NADH, FADH2 and NADPH. Glutamine further contributes

with reduced nitrogen for the de novo biosynthesis of nitrogen-containing compounds [52].

Normal cells do not import nutrients in a constitutive manner, as this process is strictly regulated by

growth factor signalling and interactions with the extracellular matrix. However, accumulated oncogenic

mutations in cancer cells allows tumour cells to constantly scavenge for glucose, glutamine and essential

amino acids from the extracellular environment [18]. The glucose transporter Glut1 [53] is up-regulated,

just like the glutamine transporters ASCT2 and SN2.

Glutaminase expression is also promoted [54], which converts glutamine into glutamate, whose accu-

mulation promotes TCA cycle. Increased cysteine uptake is promoted by the glutamate accumulation, as

the xCT transporter imports cysteine in exchange of glutamate [55]. Cysteine, a sulfur containing amino

acid, can be involved in the biosynthesis of glutathione, iron-sulfur clusters, and hydrogen sulfide (!2< ).

!2< is involved in the protection from oxidative stress, increased mitochondrial respiration, protection from

apoptosis, and facilitation of angiogenesis [56].

Although the majority of normal proliferating cells require exogenous supply of glutamine despite the

existence of a glutamine biosynthetic pathway, some cancer cells over-express glutamine synthetase and

are able to produce glutamine de novo [57].
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Tumour cells are also able to use opportunistic modes of nutrient acquisition to access normally

inaccessible nutrient sources, as well as to recover pre-made molecules when their synthesis within the

cell is compromised[52]. The deficit of unsaturated fatty acids in cancer cells can be overcome by the

import of ready-made fatty acids. Cancer cells can even induce the neighbouring normal cells to release

stored lipids [58].

Bioenergetics Cancer cells exhibit aerobic glycolysis, a robust provider of precursors and reducing

equivalents necessary for biosynthesis of macromolecules essential for cell proliferation [52].

The first metabolite produced in the glycolysis pathway, glucose-6-phosphate, enters the pentose phos-

phate pathway (PPP), generating NADPH and ribose-5-phosphate, a structural component of nucleotides.

In fact, PPP utilisation is frequently elevated in tumour cells [59].

3-Phosphoglycerate can be used as a precursor for the biosynthesis of serine and glycine, and as

means to generate methyl donor groups and NADPH. Serine, for example, is a major substrate of the

folate cycle, an essential source of precursors for the biosynthesis of purines and thymidine. Methylene

tetrahydrofolate dehydrogenase 2 (MTHFD2), a component of this cycle, has been found to be one of

the most frequently over-expressed metabolic enzymes in cancer [60]. Furthermore, the final reaction of

glycolysis is catalysed by pyruvate kinase (PK) in the form PKM2 in most tissues, including tumours [61].

PKM2 is activated by serine [62].

Nevertheless, most cancer cells still generate the majority of ATP through mitochondrial function,

despite the high glycolytic rates [52]. There is no actual shift between TCA and glycolysis, like initially

proposed by Warburg et al [2], but rather a considerable reduction of the TCA cycle activity to a state

sufficient to maintain mitochondrial integrity and ATP production.

In addition to pyruvate derived from glycolysis, fatty acids and amino acids can supply substrates to

the TCA cycle. In fact, glutamine can provide acetyl-CoA as a precursor when pyruvate oxidation to acetyl-

CoA is compromised by hipoxia or ETC impairment. Also, most proliferating cells depend on a continuous

supply of glutamine to maintain TCA cycle intermediates [52].

Biosynthesis of macromolecules The production of biosynthetic intermediates through metabolic

pathways such as glycolysis, PPP, TCA cycle and non-essential amino acid synthesis allows the assembly

of larger and more complex molecules, required for replicative cell division and tumour growth. Among

these, the most commonly studied in cancer metabolism are proteins, lipids and nucleic acids [52].

While glutamine-derived glutamate works as a nitrogen donor for the production of several non-essential

amino acids via transamination, the amide nitrogen of glutamine is used by asparagine synthetase (ASNS)

to produce asparagine from aspartate. Notably, ASNS is frequently up-regulated in tumours and is asso-

ciated with poor prognosis [63, 64].

Essential amino acids, in turn, are acquired from the extracellular space through surface transporters

under the influence of growth factor signalling [65].
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Arginine is a non-essential amino acid that can become conditionally essential in some tumourigenic

contexts. For example, arginino succinate synthase (ASS1), essential to the de novo biosynthesis of argi-

nine, is frequently epigenetically silenced in pancreatic and renal cancers [66, 67]. Inactivation of this

enzyme causes cancer cells to accumulate ornithine, which is then used in the production of polyamines.

These compounds have been shown to inhibit apoptosis and promote tumour growth invasion [52]. Proline

can be produced from glutamate or from arginine-derived ornithine. Notably, the principal enzyme in pro-

line production, pyrroline-5-carboxylate reductase (PYCR1), is one of the most commonly overexpressed

enzymes in tumours [60]. The suppression of ASS1-driven argininosuccinate production can also cause

accumulation of its substrate, aspartate, required for nucleotide production [52].

Purine and pyrimidine nucleotides are required for synthesis of RNA and DNA. The expression of

phosphoribosyl pyrophosphate synthetase 2 (PRPS2) [68] and carbamoyl phosphate synthetase II (CAD)

[69] are up-regulated by c-Myc in tumour cells. These enzymes are involved in purine and pyrimidine

biosynthesis, respectively.

The capacity to rapidly produce lipids in cancer cells facilitates the formation of membranes, the

alteration of membrane composition in favour of oxidative damage-resistant saturated fatty acids, lipidation

reactions, and cellular signalling. The activity of several enzymes involved in lipid synthesis, even in lipid-

replete conditions, are up-regulated in cancer cells.

2.3.3 Tumour Micro-Environment

The most frequently found tumour infiltrating lymphocytes (TILs) within the TME are tumour-associated

macrophages (TAMs) and T-cells [28]. TAMs are alternatively activated macrophages reprogrammed to

display various tumour-promoting functions [28, 70]. Polymorphonuclear leukocytes are rarely seen in

human TMEs [71].

High numbers of cytotoxic T cells and T!1 cells are correlated with better survival in some cancers,

including invasive colon cancer, melanoma, multiple myeloma, and pancreatic cancer [28]. For example,

T!1 cells maximize the killing efficiency of macrophages and proliferation of CD8+T-cells [72]. However,

during de novo carcinogenesis, anti-tumour T-cells cannot control tumour growth, due to tumour-induced

tolerance mechanisms in most cancers [73].

In fact, tumour cells have the ability to actively downregulate all phases of anti-tumour immune re-

sponses through metabolism, affecting the recruitment and function of immune cells. The different con-

stituents of the TME can also interact closely with each other to control and shape tumour cell survival,

invasiveness and metastatic dissemination. These interactions dictate the ability of the immune system

to fight cancer and even responsiveness to therapeutics. This dynamic relationship is set early on in

malignant growth and evolves throughout the life history of a tumour [27, 28].

Figure 2 gives an overview of some of the metabolic interactions within the TME, discussed below.

When tumour cells are exposed to hypoxic conditions, the production of the hypoxia-inducible factor 1"

(HIF-1" ) is up-regulated, which promotes glycolysis and leads to activation of angiogenesis-promoting
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factors. In the presence of oxygen, HIF-1" is degraded. The acidic microenvironment caused by tumours,

that up-regulates glycolysis and increases production of lactic acid, can ’simulate’ the effects of hypoxia,

even in the presence of oxygen. Thus, HIF-1" may not be suppressed even in normoxia conditions [72].

Figure 2: Summary of some of the metabolic interactions within the tumour micro-environment (TME). The
up-regulation of glycolysis in tumour cells increases the secretion of lactic acid into the micro-environment,
causing an acidic microenvironment that ’simulates’ the effects of hypoxia. This leads to an up-regulation
of HIF-1" , activating angiogenesis-promoting factors. These factors can stimulate the proliferation of
MDSCs, which liberate arginase into the micro-environment that will consume L-arginine. Shortage of
this metabolite can inhibit CD8+T-cell function. Constitutively expressed in most human tumours, IDO is
involved in the catabolism of tryptophan, which induces immunosuppression through T-cell anergy and
depletion. | IDO: Indoleamine-2,3-dioxygenase; HIF-1" : hypoxia-inducible factor 1" ; MDSCs: myeloid-
derived suppressor cells; NO: nitric oxide; ROS: reactive oxygen species

Angiogenic factors also stimulate the proliferation of myeloid-derived suppressor cells (MDSCs), which

include immature dendritic cells, neutrophils, monocytes, and early myeloid progenitors. When stimu-

lated, these cells up-regulate and liberate arginase into the micro-environment, which consumes L-arginine.

Shortage of L-arginine in the environment can inhibit CD8+T-cell function. Stimulated MDSCs also increase

production of nitric oxide (NO) and ROS. NO can suppress T-cell function through inhibition of MHC-II ex-

pression and T-cell proliferation and apoptosis [72].

TAMs are capable of blocking CD8+T-cells proliferation or infiltration by releasing factors with immuno-

suppressive potential like ROS [70]. TAMs can further suppress surface proteins on infiltrating T-cells

through nitrosylation, inhibiting T-cells’ anti-tumour functions [74].

ROS released by tumour cells can induce cancer-associated fibroblasts to up-regulate aerobic glycolysis

and secrete lactate and pyruvate. Tumour cells then consume these two metabolites [75]. Alternatively,

the lactate secreted by cancer cells is taken up by cancer-associated fibroblasts and used as fuel to drive

tumour-promoting functional activities [76]. Cancer-associated fibroblasts are the most predominant non-

hematopoietic stromal cell type in the TME [27].
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Indoleamine-2,3-dioxygenase (IDO) is constitutively expressed in most human tumours [77]. IDO is

involved in the catabolism of tryptophan, an essential amino acid for T-cell proliferation and differentiation

[71]. The catabolism of tryptophan into kynurenine by this enzyme induces immunosuppression through

T-cell anergy and depletion [77]. Plasmacytoid dendritic cells have shown expression of indoleamine-2,3-

dioxygenase (IDO), as well as defective production of type I interferon [74].

Presence of TNF-" and IFN-6 can dramatically increase MSCs’ expression of inducible nitric oxide

synthase (iNOS) [78] and production of IDO [71]. iNOS consumes arginase, producing ROS and NO.

Mevalonate pathway intermediates produced by tumour cells were shown to activate and promote

6;T-cells’ anti-tumour responses [15].

2.3.4 Targeting metabolism for therapy

The most common therapies applied to cancer patients are surgery, radiation therapy and/or chemother-

apy. Surgery is mostly used for non-invasive solid tumours and coupled with other treatments. While

radiation therapy uses high doses of radiation to kill or slow the growth of tumour cells, by damaging their

DNA beyond repair, chemotherapy uses drugs to this end. However, these two treatments do not only kill

tumour cells, they also affect healthy cells. For example, the most common side effects comprise fatigue,

hair loss, nausea and vomiting.

Through more recent years, other alternatives for cancer therapy have been studied to generate as few

harmfull side effects as possible to the patient. These can be achieved by searching for specific targets

in tumours cells that do not affect healthy cells, or even specific ways of enhancing the immune response

against cancer. As cancer cells go through metabolic changes relative to normal cells that support the

acquisition and maintenance of malignant properties, the metabolism of cancer cells has been studied for

immunotherapy.

Naturally, inhibition of glycolytic and glutaminolytic enzymes has been extensively studied. Diclofenac

has been reported to reduce tumour growth, the quantity of regulatory T-cells and lactate in the micro-

environment in a glioma model [79]. Neutralisation of the TME’s acidic environment with bicabornate

or esomeprazole, for example, improves cytotoxic T-cell and NK cell anti-cancer immune responses [80].

Hexokinase (HK), a glycolytic protein, is overexpressed in many tumour cells and its inhibition was shown to

delay tumour progression in pre-clinical mouse models [81]. However, 1-deoxyglucose (2DG), an inhibitor

of HK, also leads to impairment of T-cells’ metabolism [82].

Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES) is a glutaminase inhibitor that

showed anti-cancer immunity in several tumour models with elevated activity [83].

OXPHOS is also a great potential target to eliminate tumour cells.

The anti-diabetic drug metformin can act as an anti-cancer agent by inhibiting the complex I from ETC.

This causes a decrease in ATP levels that lead to cancer cell death [80]. However, this drug’s uptake

occurs through the organic cation transporters (OCTs), only present in a few tissues, such as liver and
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kidney, and in certain tumour cells [65]. Regarding effects on the immune system, this drug can further

enhance memory T-cells and regulatory T-cell expansion [80].

Dichloroacetate (DCA) induces a shift from glycolysis to OXPHOS, thus inhibiting tumour cells growth

in vitro and in mouse models. However, it also affects T-cells, favouring regulatory T-cell formation [84].

Down-modulation of IDO has been shown to improve anti-tumour responses [74, 80]. Imatinib, for

instance, activates effector T-cells and suppresses regulatory T-cells in an IDO-dependet manner [85].

Inhibition of the rate-limiting enzyme in FAO, CPTI, has anticancer effects in vitro and in vivo. However,

etomoxir showed hepatotoxicity in patients with congestive heart failure, and other inhibitors are still to be

approved for cancer therapy [86].

Resistance to cancer therapies may result from not taking into consideration the TME, as briefly noted

above in few examples. Furthermore, CSCs are typically therapy-resistant due to decreased oxidative stress

response, increased genomic stability, and expression of multiple drug resistance transporters [78].

TME cells are not subject to mutational and epigenetic changes that result in drug resistance. Thus,

targeting the TME cells, specially immune cells, along with tumour cells can be advantageous.

Regarding tumour stroma, targeting the tumour extracellular matrix can boost natural anti-tumour

immunity and improve immune-therapeutics efficacy. However, it may also enhance regulatory T-cell

infiltration and increase angiogenesis [27].

Despite the progresses, clinical responses may be transitory and have limited benefits in long term [74],

mostly due to drug resistance caused by the existence of similar pathways that are alternatively upregulated

by the cell. Furthermore, investigation of a potential metabolic target is normally only performed in tumour

cells, without counting with the possible negative side effects on other cells in the TME and outside.

These problems show the value in creating in silico metabolic models of the whole metabolome of

immune and tumour cells to study the effects of metabolic targets and off-targets on each individual cell,

as well as interactions between the different cells in the TME upon disruption with approved drugs. This

could be further fine-tuned to patient-specific cases, personalising each patient’s therapy. Metabolomics

can aid in such a way that cancer therapy and cancer immunotherapy act specifically on malignant cells,

remarkably reducing the side effects to the patient.

2.4 Constraint-based Modeling and Human Cancer

Two popular, but very different, approaches to model a cell’s metabolism are the kinetic (dynamic) and

stoichiometric modeling. The kinetic modeling, as the name suggests, relies on the enzyme kinetics

information to model the metabolite concentrations and reaction fluxes through time [87, 88]. However,

kinetic models require a lot of details for their construction, which must be obtained through experiments

that are difficult to perform. Because of this, they usually end up covering only a few pathways or models

from small organisms [88, 89].
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Stoichiometric modeling in turn disregards this dynamic intracellular behaviour, by assuming the

pseudo-steady state for internal metabolites, due to the intracellular dynamics being much faster than

extracellular dynamics. With this assumption, the variation in concentration of each metabolite throughout

time is considered to be zero [89]. As such, they are better fitted to be applied at the genome-scale,

as a smaller amount of information per reaction allows the development of larger models. However, the

simulation of any changes in time and metabolite concentrations is not possible [88].

For a reaction <1 +<2 ←→ 2= , the reaction rate (>- ) is the difference between the rate of the forward

reaction (?@ ) and the rate of the backward reaction (>' ), leading to: >- = >@ − >' . As the molecularity

is 1 for each substrate and 2 for the product, the variation in concentration through time of <1 and <2 is
2 [<1]
2- = 2 [<2]

2- = −>- , and the variation in concentration of P through time is 2 [=]
2- = 2.>- .

To model all the metabolic interactions within a cell, the structure of metabolic models is represented

by a matrix < , where each row represents a metabolite from a metabolic network and each column a

reaction in the same network.

2.4.1 Stoichiometric modeling

For stoichiometric modeling, the matrix values represent the stoichiometric coefficients of the metabolites

in the reactions. A positive value denotes that the metabolite in question is a product of the reaction, while

a negative value means that the metabolite is a substrate. If the coefficient value is zero, the metabolite

does not participate in that reaction.

The structure of this matrix is often complemented by information gathered about gene-protein-reaction

(GPR) associations, which list the set of metabolic reactions encoded in the genome. These associations

can go from the simplest one, where one gene encodes one protein that catalyses one reaction, to more

complex associations, where several genes encode part of one enzyme (enzyme complexes). It is also

possible that multiple enzymes, encoded by the respective genes, perform the same function (isozymes),

while one protein can catalyse several reactions.

With this, the stoichiometric model of a network can be defined by:

< .> = 0, (2.1)

where S represents the stoichiometric matrix and v the flux vector. The i element of v represents the rate

of the reaction i, present in the column i of the stoichiometric matrix. Figure 3 represents an example of

how a stoichiometric model can be obtained from a metabolic network. The reactions >4, >5 and >6 in that

figure represent exchange reactions, used to explain the flow of metabolites in and out of the cell.
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Figure 3: Example of a stoichiometric representation of a metabolic network.

Furthermore, cell growth is normally also taken into consideration in the stoichiometric matrix, by

adding a column, where the metabolites that are consumed during production of biomass, such as nucleic

acids, proteins and lipids, have a negative stoichiometry value. If not, they have a null stoichiometry value.

The corresponding flux rate in v corresponds to the growth rate of the organism.

Normally, there are more reactions than metabolites in a metabolic network, i.e., there are more

unknown variables than equations. This leaves the stoichiometric model underdetermined, as there is not

a unique solution to this system.

Since cells are subject to constraints that limit their behaviour, defining these in the stoichiometric

model leads to a space of flux distributions that can actually be achieved by a cell. As the metabolic

phenotype can be defined in terms of flux distributions, this space represents, or contains, all feasible

phenotypes. This establishes the link between stoichiometric modeling and constraint-based modeling

(CBM), as stoichiometric modeling can be viewed as a particular case of constraint-based modeling that

only has stoichiometric constraints [89].

There are two main types of constraints in CBM [89]. The non-adjustable, invariant, constraints are

time-invariant restrictions of possible cell behaviour. The invariant constraints are the ones that compose

the general assumptions of every stoichiometric model [88]: the mass conservation principle, applied

to limit metabolic network behaviour in models; energy balance, derived from the law of conservation of

energy in an isolated system; the steady-state, where metabolites’ concentrations do not vary over time;

and thermodynamic constraints, which limit the direction and capacity of reactions.

Adjustable constraints depend on environmental conditions and vary from one individual cell to an-

other. These include regulation and experimental measurements [89].

A graphical representation of this is provided in figure 4, where each axis represents the flux through

a reaction in the network. With the assumption of steady state (< .> = 0), the space of possible flux

distributions is firstly restricted to an hyperplane, which is converted into a convex polyhedral cone when

the irreversibility of fluxes is taken into consideration, further constraining the model. By convention, the

natural flow direction of a reaction is assigned the positive direction. Therefore, every irreversible reaction
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is constrained to only non-negative values: > ≥ 0. If a reaction is reversible, its lower bound is normally

set to minus infinity or a large negative value. After this, if the capacity of all reactions is set, which refers

to the maximum flux values of enzyme or transport capacities (> ≤ >)(# ), also called upper bounds, the

space of possible solutions is bounded, having no longer infinite possibilities.

Figure 4: Graphical representation of the space of feasible flux distributions of a stoichiometric model.
Adapted from [89].

The more non- and adjustable constraints are incorporated, the more restrict the space of possible

flux distributions is [89].

There are two major types of analysis that can be performed to extract information from CBMs:

network-based pathway analysis and determination of flux distributions under certain conditions.

Network-based Pathway Analysis Network-Based Pathway Analysis attempts to study the systemic

properties of the network and the capabilities of the cell metabolism.

Elementary flux modes (EFMs) represent unique routes of a metabolic network that may connect inputs

to outputs. Each EFM is non-decomposable, i.e., the removal of a reaction prevents the occurrence of a

non-zero steady flux distribution by means of the remaining reactions [90]. Thus, each metabolic network

is represented by its own unique set of EMs [91].

As most reactions in a metabolic network are catalysed by enzymes, these reactions show the minimal

sets of enzymes that must be expressed for a proper functioning of the metabolic routes. If one of the

reactions is blocked, the route(s) containing this reaction do not occur any more [92].

Indeed, EFMs can be used in the detection of minimal cut sets (MCSs) [90]. These are irreducible sets

of reactions in the network whose inactivation prevents a feasible flux distribution of a certain objective

reaction or set of objective reactions in the network.

Determination of flux distributions Experimental measurements of extracellular fluxes (uptake or

excretion of metabolites) can be used to estimate the current flux of a metabolic network, which may be

accomplished by methods from the field of Metabolic Flux Analysis (MFA) [89]. In some cases, these

experimental measurements are provided as intervals, taking into account the uncertainty of the measure-

ments. Therefore, instead of having a measured flux >), it will be given as an interval
[
> ())*+), > ())(#)

]
.
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If enough fluxes are measured, this may enable the calculation of intervals of possible values for each

non-measured flux [93].

On the other hand, the flux balance analysis (FBA) approach predicts a phenotype (flux distribution)

based on the main objective to be accomplished by the cell and the restrictions that this metabolic system

has to obey. This approach assumes that cells evolve to achieve an optimal behaviour owing to evolutionary

pressure, i.e., cells regulate their fluxes toward optimal flux distribution [89], thus aiming at achieving a

biologically meaningful description of the metabolic state of a system.

The mathematical representation is as follows [94]:

Maximize (or Minimize) A = ,B .>

Subject to: < .> = 0

%' C ≤ > C ≥ D' C C = 1, ...,E

(2.2)

In the objective function A , , is a vector of weights indicating how much each reaction in the network

(> ) contributes to the objective to be accomplished by the cell. So, , contains values of 1 at the positions

of the respective reactions in > that enter the objective function, and 0 for those that do not; %' and ub

are the lower and upper bounds, respectively, of each reaction > C .

The most commonly used objective function is the maximization of biomass. However, there are

many other widely used objective functions: minimize ATP production, minimize nutrient uptake, or even

maximize a given metabolite’s production [89]. Different outcomes can be achieved by not only playing

with the objective function, but also by altering the constraints of the model [94]. One example is the

simulation of gene knockouts, by forcing the unwanted reactions to zero flux. Another one is limiting

substrates uptake to zero to mimic substrates not available to the cell.

FBA has its limitations, however, and various alternative methods based on FBA have been put forward

throughout the past years [95–99]. Parsimonious enzyme usage FBA (pFBA) [95], for example, assumes

that there is a selection for the fastest growing strains, like FBA, but that they also require the least amount

of enzymes.

There are many situations where different flux distributions reach the same exact quantitative objective

value. FVA (Flux Variability Analysis) [96] allows to determine the maximum and minimum values that

each flux can have so that the constraints are satisfied and the same optimal objective values is reached,

identifying as much alternative optimal solutions as possible.

Minimization of Metabolic Adjustment (MOMA) [100] is used when predicting flux distributions resulting

from gene knockouts or other genetic perturbations. By assuming that a mutant is likely to initially display a

sub-optimal flux distribution that is intermediate between the wild-type optimum and the mutant optimum,

it calculates the flux distribution that minimizes the differences to a reference distribution, which may be

provided or calculated using FBA or pFBA.

The MOMA approach tends to favour numerous small changes in fluxes over a few large changes with

an equal total sum of distance to the original steady state. Thus, it is said that MOMA is more suitable to
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predict the transient metabolic states that occur right after the genetic perturbations, instead of predicting

well the metabolic state after the adaptation of the organism to the perturbation has occurred [101].

The regulatory on/off minimization (ROOM) approach [101] tries to minimise the total number of

significant fluxes that have to change compared to the wild-type version, with the assumption that the

cell’s objective is to only perform the regulatory changes that minimise the adaptation cost.

2.4.2 Metabolic Models in Humans

Genome-scale metabolic models (GSMMs) are stoichiometric models that contain all the known reactions

that occur in a type of cell. The construction of these models is an iterative process that may require cycling

several times between different steps. It starts with a draft reconstruction that combines information on

genes that encode enzymes or membrane transporters, from several sources, to construct a preliminary

set of reactions and constraints. This set is analysed to detect potential faults and correct them, in a

step normally called reconstruction refinement. The reconstruction is then converted to a mathematical

model, where the matrix < and respective constraints are defined. The stoichiometric model is evaluated

by comparing its predictions with experimental or literature data and revised if necessary.

Generic Human Models Human genome-scale metabolic networks first appeared after the Human

Genome Project, allowing for the full sequence and annotation of the human genome. With this exten-

sive information on the human genes, along with knowledge gathered through decades of research on

numerous metabolic genes and enzymes, reaction mechanisms and interactions, large-scale modelling of

human metabolism has been constantly progressing.

The first attempts of a genome-scale metabolic network for a generic human cell culminated in two

projects: Recon 1 [102] and EHMN (Edinburgh Human Metabolic Network) [103], by 2007. Although

EHMN network contained more genes and unique reactions than Recon 1, it lacked subcellular compart-

ments that exist in the human cells, thus not considering transport or exchange reactions. By 2010, EHMN

was extended to integrate subcellular location information for the reactions [104], based on Recon 1 and

other sources.

Recon 2 was released in 2012 [105] by adding metabolic information present in different sources, from

EHMN and literature to Recon 1. This model had 1789 genes, 7440 reactions, 2626 unique metabolites,

and eight compartments (cytoplasm, mitochondria, nucleus, endoplasmic reticulum, Golgi apparatus,

lysosome, peroxisome and extracellular space). Another model was released around the same time,

known as HMR (Human Metabolic Reaction Database) [106, 107]. HMR was constructed by grouping

information from Recon 1 and EHMN, as well as from HumanCyc [108] and KEGG databases [109].

In 2013, HMR was further expanded into a new version, HMR 2.0 [110], to include an extensive lipid

metabolism. HMR was extended by merging data from previously published hepatocyte models, Recon 2,

literature, HumanCyc [108] and KEGG [109]. HMR 2.0 contained 3765 genes, 3160 unique metabolites

and 8181 reactions.
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Since the release of Recon 2, several updates by different groups led to different versions of Recon 2.

Recon 2.2. [111] integrated all these alternative versions in 2016, alongside with additional manual cor-

rections and updates. By redefining the representation of oxidative phosphorylation, a new compartment

was defined, the mitochondrial intramembrane.

Shortly after this release, Recon 3D [112] expanded Recon 2 by integrating sources such as HMR 2.0.

This model contained 3 288 genes, 13 543 reactions and 4 140 unique metabolites. Two gender-specific

whole-body metabolism reconstructions based on the Recon 3D model were created [113]. These models,

named Harvey (male model) and Harvetta (female), were organized into 22 and 24 organs, respectively,

due to sex-specific organs, and 6 types of blood cells.

More recently, a new human generic model, Human-GEM [114], was created by integrating and ex-

tensively curating several sources, including Human Protein Atlas (HPA) [115], HMR 2.0, Recon 3D and

others. The novelty compared to previous models is the availability of a version-controlled open source

repository, which enables community-driven curation and refinement that allow rapid and trackable up-

dates. This model contains 13 802 reactions, 8 378 metabolites and 3 625 genes.

Context-specific Models Many reactions in a generic human GSMM are not active under certain

conditions or cell/tissue types. Although a generic human model contains all the metabolic genes and

reactions in the organism, not all cells/tissues express all the genes encoded in the genome or at the

same levels. An example of this is the metabolism of cancer cells, which changes considerably in relation

to healthy cells, as mentioned before. These differences lead to marked discrepancies in the metabolic

model. Thus, reducing generic models into context-specific ones aids the in silico prediction of particular

situations.

Various tissue-specific reconstruction algorithms have been developed throughout the years. With a

general GSMM, literature and experimental data, as a starting point, these algorithms output a specific

model with a subset of the reactions (and metabolites) of the original GSMM.

Tissue-specific reconstruction algorithms can be mainly divided in two major groups. The flux-dependent

methods can either try to find an optimal flux distribution for the given experimental data, like GIMME [116],

or use experimental data to get the subset of reactions that are active based on a defined threshold, like

iMAT [117, 118], INIT [107] and its extension tINIT [119], and PRIME [120].

For example, INIT (Integrative Network Inference for Tissues) [107] is mainly focused on scoring each

protein based on how strong the experimental evidence on its presence, or absence, is. With this, it finds

the subnetwork whose sum of proteins’ evidence scores is maximized, while the ability of all reactions in

the resulting model to carry flux is tested. For this, the steady state condition is not imposed, but instead,

a small positive net accumulation or secretion rate for all metabolites is allowed. The tINIT (task-driven

Integrative Network Inference for Tissues) algorithm extension [119] allows the user to define metabolic

tasks that the resulting model should be able to perform. It starts by identifying the set of reactions in the

generic model without which at least one of the tasks fails, and goes on performing like the INIT algorithm

with the additional constraint that these reactions must be in the solution.
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Pruning methods, in turn, start with a set of core reactions, known to be present in the desired tissue

by going through literature or experimental data, and remove the other reactions of the generic GSMM

whose removal does not cause loss of reaction functionality in the core set. To achieve this, these methods

establish a trade-off between maintaining the model as concise as possible and including all core reactions

in the final model, allowing a core reaction to be removed if it requires too many undesirable reactions to

be active [121].

The main advantages of this last type of methods relies on making it possible for the user to define the

set of core reactions using multiple different sources and know that reactions with high evidence of being

present in a tissue are always included in the final model, besides generating a flexible and functional

metabolic model. Examples of such algorithms are MBA [122], mCADRE [123], fastCORE [124], and

CORDA [121].

However, pruning algorithms are not deprived of disadvantages. The order in which reactions are

removed can affect the outcome of the final model, as well as the possible removal of fundamental reac-

tions to achieve a concise tissue-specific reconstruction can cause physiologically unlikely flux distributions

[121].

The fastCORE [124] algorithm, for instance, takes a set of reactions that have strong evidence to be

active in the context of interest and searches for a subnetwork that contains all reactions from the core

set and a minimal set of additional reactions, by assessing the flux consistency through FVA. This flux

consistency is characterized by each reaction in the subnetwork being active in at least one feasible flux

distribution.

Several human cancer metabolic models have been constructed in the past years. Among these are

models of glioblastoma [125], ovarian cancer [126], hepatocellular carcinoma [126], melanoma [127],

breast, urothelial, lung and renal cancers [128], and colorectal cancer [129]. Several other studies have

focused on constructing models specific for cancer cell lines [130–132], or even from patient-specific

samples [119, 133–136].

Regarding the study of the immune system, tissue-specific reconstruction algorithms have also been

used to generate metabolic models of immune cells, including CD4 T [113], naive CD4 T [137–139], T!1

[138, 139], T!2 [138, 139] and T!17 [138] cells, as well as macrophages [140, 141], monocytes [113],

B cells [113] and NK cells [113]. However, none were applied in the context of cancer.

2.4.3 Omics Data

The advent of omics technologies have revolutionised the way biological research is conducted. They

allow the analysis of a global set of molecules and their interactions simultaneously. Integrating data

from different omics helps creating an overall ’snapshot’ of a cell’s metabolism and evaluate how different

mutations affect metabolism.

Omics data can be used to find the reactions that should be present in a cell-type or tissue in order

to reconstruct a context-specific metabolic model from a generic model. In fact, developing large-scale
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metabolic models became possible due to the advance of omics technologies.

Genomics It consists on the study of the genomic material of an organism. In cancer patients, genomic

tests are often performed before treatment. Genetic mutations are identified by comparing the tumour

genome with the patient’s normal tissue or a reference genome at a single base pair resolution [142].

The most used techniques have been Sanger sequencing, microarrays, and Next-Generation Sequenc-

ing (NGS) [143].

Sanger sequencing consists on a base-by-base sequencing, but it can only capture up to one thousand

bases per run. Microarrays, in turn, involve the binding of the different cDNA sequences obtained in a

solution to the respective probe in the array, allowing the measurement of the relative concentrations

of those sequences [144]. NGS enables the identification and quantification of transcripts without prior

knowledge of a particular gene sequence, and can provide information regarding alternative splicing and

sequence variation. Although NGS allows whole genome sequencing (WGS), allowing identification of all

coding and non-coding variants, it is also possible to only screen variants in the coding region (whole

exome sequencing, WES) [143].

The great technical advances achieved throughout the years to obtain genomic data culminated in

the sequence of the whole human genome, the Human Genome Project, in 2003. Since then, Sanger

sequencing and microarrays have been completely substituted by NGS in sequencing the human cells’

genome.

Transcriptomics This technology studies the transcriptome, which represents all RNA transcripts in a

cell, both coding (mRNA) and non-coding (ribosomal, transfer, etc) RNAs. Normally, mRNAs are the main

focus, as the quantification of each transcript provides and insight into the gene expression levels. This

allows a better understanding of the dynamics of metabolism [143].

To assess transcriptomics data, similar techniques to those in genomics are used, namely microarrays

and RNA-sequencing (RNA-seq). While microarrays only allow measurement of relative concentrations of

the different transcripts, quantification in RNA-seq is done by counting the number of sequence reads

assigned to different transcripts [145].

More recently, single-cell techniques like single-cell RNAseq (scRNAseq) have been developed. This

technique allows quantitative characterisation of each cell’s transcriptome in a sample, giving valuable

information about cell-types and states at high resolution [146]. Especially in cancer, where samples from

bulk transcriptomics are often analysed as if they were an homogenous population of tumour cells, not

accounting for the diversity of stromal and immune cells present that can be crucial in the understanding

of cancer.

Proteomics This omics studies the entire set of proteins in a cell, at a precise developmental or cellular

phase. Techniques used in proteomics, mainly mass spectrometry (MS), are less scalable than those used

to study nucleic acids, like NGS. Still, considering that protein quantities and activities of malignant cells
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are affected by distinct replication and metabolic processes, proteomics has the potential to uniquely

characterise the malignant cell or tissue and to discover diagnostic markers of a disease [142, 143].

Although MS allows identification and quantification of proteins in a sample, the eventual function of

an existing protein in a sample depends on how the protein is folded, i.e., its 3D structure. To derive

the proteins’ structures in a sample, techniques such as X-Ray, Nuclear Magnetic Resonance (NMR) and

cryo-electron microscopy come into play. These techniques allow visualization of protein domains, de-

duce protein function, study structural changes following disease associated mutations, and discover and

develop drugs [143].

Proteomics can also be used to study protein-protein interactions (PPIs), which consist on either two

proteins that physically interact in a complex, or simply share the same location, as interacting proteins

are likely to share common tasks or functions [143].

Because the proteome is extremely dynamic, there is an elevated sample heterogeneity, even with the

same types of samples and conditions, that complicates the development of a universal and comprehensive

human proteome reference and the comparison of different studies [143].

Epigenomics Epigenomic changes include DNA methylation and chromatin modifications like histone

acetylation, methylation, phosphorylation and others. These heritable changes have a great impact in the

expression patterns of genes, and can be affected by mutations in enzymes in charge of DNA methylation,

demethylation and chromatin modification. This may allow tumour progression if the suppressed or ac-

tivated gene hinders or promotes tumour progression. Epigenomic changes are often observed in many

cancers.

Identification of DNA methylation status is performed by using bisulfite treatment, which only modifies

unmethylated cytosines to uracils, followed by sequencing and comparison between bisulfite-treated and

untreated samples [142].

Regarding histone modifications, these are identified by high-throughput DNA sequencing technologies

coupled with chromatin immunoprecipitation (ChIP), where modification-specific antibodies immunoisolate

DNA-histone complexes with the desired histone modifications. The selected DNA sequences are then

identified via microarrays (ChIP-chip) or sequencing (ChIP-seq) [142].

Metabolomics This technique comprises the analysis of the metabolites produced during biochemical

reactions, which depend on gene expression to be produced. This omics is thus closely related to the

ones described above, as the production of metabolites can reflect particular combinations of individuals’

genetics and environmental exposures. Metabolomics can be used to develop diagnostics and understand

relevant molecular pathways under specific conditions [143].

The most used techniques in this field are Mass Spectrometry, coupled with liquid or gas chromatog-

raphy (LC/GC-MS), and Nuclear Magnetic Resonance (NMR). These methods, despite being able to give

important information, are far less common than those used in the previous omics, and there is not a

single one that allows the analysis of the whole metabolome.
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2.4.4 Applications of Modeling in Human Cancer

At first, the reconstructed models are used to simulate cellular responses under certain conditions and

compare the predictions to experimental data or expected behaviour from literature. This model evaluation

helps to further refine the model and assess its accuracy.

As cancer cells are expected to have reduced TCA cycle activity and increase glycolysis, even in aerobic

conditions, many authors start out by evaluating if the cancer models show reduced fluxes in the reac-

tions that are part of the TCA cycle and increased fluxes in those part of glycolysis, in aerobic conditions

[125–127, 132], as opposed to normal cell models [126, 127]. Other functions are tested to assess if

the models simulate what has been experimentally found. Özcan E. et al [125] glioblastoma metabolic

models showed active flux for the pyruvate dehydrogenase reaction, where glucose is metabolised through

pyruvate dehydrogenase rather than pyruvate carboxylase in glioblastoma cells. A metastatic melanoma

model [127], when compared to the primary melanoma model, showed increased fluxes in purine and

pyrimidine synthesis and glutamate, arginine and proline metabolism, while reaction fluxes in coenzyme-A

metabolism, fatty acid synthesis and OXPHOS decreased.

As for T-cells, Puniya et al [138] showed that T!1, T!2 and T!17 models had more flux through fatty

acid biosynthesis and less flux through fatty acid 4 oxidation than the naïve CD4 T-cell model. Limiting

glucose from the environment resulted in decreased growth rate in all the 4 models. However, there was

not a significant effect in growth rate when glutamine was removed from the medium of T!1, T!2 and T!17

models, and growth rate of naïve CD4 T-cell model was more dependent on glucose and glutamine uptake

than the other models. Still, gene deletion analysis revealed that more than 70% of the gene essentiality

predictions agreed with previous experimental tests.

There are several methodologies that make use of a GSMM to gain insights on the capabilities of a cell’s

metabolism. This could be of great value in better understanding the underlying metabolic mechanisms

of cancer and the tumour micro-environment.

Metabolite Biomarkers A challenge in cancer diagnosis is the identification of metabolite biomarkers

that are present in biofluids such as plasma, urine and feces. This allows measurement of biomarkers

in a non-invasive, cost-effective way for early diagnosis and monitoring treatment efficiency [147]. These

biomarkers can distinguish not only between healthy and disease cases, but also between clinical groups

such as subtypes of cancer. The study by Nam et al [148] is an example of potential biomarkers that were

found using metabolic models. While succinate and fumarate were shown to be biomarkers for gastric

cancer, as seen in literature, due to loss of function in sub-unit B of succinate dehydrogenase (SDHB),

palmitate, D-glucose, and adenosine are potential biomarkers of leukemia due to fatty acid synthase’s

(FASN) loss of function.

Pathway Analysis Pathway analysis allows to understand different important aspects of the metabolic

network. The more a reaction appears in different EFMs, the more important it is for the structure of the

network [149]; when different sets of connected reactions lead to the same output from the same input,
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the network has pathway redundancy. A high degree of redundancy might translate into the network being

better at tolerating knockouts or drug inhibition than one of low redundancy, thus showing high robustness

[91]. Minimal cut sets (MCSs) [90] represent a set of potential drug targets to prevent the functioning of

an objective reaction.

Drug Targets As mentioned before, the metabolism of cancerous cells is modified during tumour de-

velopment to meet requirements of fast cellular proliferation or due to genetic alterations. There might be

certain reactions whose enzymes are essential for a tumour cell’s viability but not for healthy cells. These

enzymes can become interesting drug-targets. Also, as metabolism is evolutionarily more conserved than

other biological processes, it is less probable for cancer cells to evolve resistance to these drugs by devel-

oping alternative pathways [150]. While the discovery of new drugs presents itself as a challenging task

that requires a very long period of research and development before any new compound can be commer-

cialised, exploiting the properties of already available drugs, whose information about the therapeutic and

toxicity effects are already known, frequently becomes the focus when using metabolic models [121, 127,

131, 133, 151].

The identification of drug targets comes from studying the essentiality of reactions and metabolites.

Ghaffari et al [131] tested cancer cell line models for metabolite essentiality and, after testing the essen-

tial metabolites in normal tissue models, 85 metabolites were found to be essential only in the cancer

models. One of these metabolites was L-carnitine. Knowing that perhexiline malate salt inhibits CPT1

(responsible for the translocation of conjugated L-carnitine and long chain fatty acids from cytosol to the

mitochondria), and partly CPT2, the authors treated two different cancer cell lines with this compound.

Significant reduction in both cell lines viability was observed.

Yizhak et al [132] predicted 17 metabolic enzymes as targets to mitigate cancer cell migration, as

their individual knockout from the models reduced the glycolytic to oxidative ATP flux ratio, positively as-

sociated with this event. Indeed, most have been found to have significantly higher expression levels in

metastatic breast cancer patients than those non-metastatic and lower expression of 9 of those enzymes

are associated wit improved long-term survival.

Immune cell models were used to find potential drug targets for T cells in rheumatoid arthritis, mul-

tiple sclerosis or primary biliary cholangitis [138], and to study metabolic changes during infection of

macrophages by a pathogen [141]. However, none were applied in the context of cancer.
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A Colorectal Cancer Atlas of scRNAseq Data

The type of cancer focused throughout this work was colorectal cancer (CRC). Also known as colorectal

adenocarcinoma, this cancer usually emerges from the glandular, epithelial cells of the colon or rectum

[152, 153]. Colon or rectal cancers are often merged due to the many biological and clinical common

features [152].

Colorectal cancer is often asymptomatic until it substantially grows and spreads, hindering the prog-

nosis and subsequent survival. In fact, the 5-year survival rate is close to 90% when it is diagnosed at an

early stage, but of only 13% when the diagnosis is delayed. The limited number of tests that can be used

for timely and efficient screening or diagnosis also affects the diagnosis, with up to 90% of the cases being

diagnosed after symptoms onset [152].

According to the statistics provided by the International Agency for Research and Cancer (IARC) of the

World Health Organization (WHO) in 2020 [154], colorectal cancer is the third most frequent malignant

disease around the world, comprising 10% of total malignancies. The number of deaths in 2020 for

colorectal cancer was approximately 935 000, representing 9.4% of cancer-related deaths, only preceded

by lung cancer.

As CRC is a very heterogenous malignancy with different pathological and genetic signatures, it is

very difficult to find one single molecular therapy to treat this type of cancer. In fact, surgery remains the

primary course of treatment for early diagnosis cases, while in advanced cases cytotoxic therapies are met

with rapid evolution of drug resistance and cancer recurrence [153]. However, therapeutic stratification

based on the pathological and gene signatures may ultimately lead to improved therapeutic outcomes.

The most widely used stratification approach is the Consensus Molecular Subtypes (CMS) of CRC [155].

Briefly, there are 4 CMS subtypes and an additional mixed phenotype when a clear CMS subtype

cannot be assigned [156]. CMS1 is characterised by high microsatellite instability (MSI), CpG island

methylator phenotype (CIMP+), hypermutation, frequent mutations of BRAF gene, and immune infiltration

and activation. CMS2 is known for high somatic copy number alteration (SCNA) and activation of the

WNT and MYC signalling pathways. CMS3, in turn, has frequent KRAS mutations and is characterised by

metabolic deregulation. Finally, CMS4 is characterised by high SCNA, stromal infiltration, TGF-4 activation,

and angiogenesis.
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To construct a wide number of T-cell genome-scale metabolic models that characterised different

subtypes of T-cells, we wanted to make use of scRNAseq data, as this type of data allows quantitative

characterisation of each cell’s transcriptome in a sample. This lets us construct models of different T-cell

types from the same tumour micro-environment. For this, we first constructed a colorectal cancer (CRC)

atlas of scRNAseq data from different studies.

The following tools were used to read, process, analyse, and save scRNAseq data: R packages Seurat

(v.4.0.3) [157], SeuratDisk (v.0.0.0.9019) [158], SeuratObject (v.4.0.2) [159], clustree (v. 0.4.3) [160],

SIGMA (v.0.0.0.1) [161], infercnv (v.1.8.0) [162], CMScaller (v.0.99.2) [163]. The scripts were run with the

R version 4.1.0. More detailed information, including scripts, is available in the GitHub project ?iiTb,
ff;Bi?m#X+QKfb�`�+�`/QbQf*_*n�hG�a.

3.1 Datasets Collected

Raw counts from four publicly available datasets, named CRC_Qian [164], GSE132465 [165], GSE144735

[165] and Colon_smillie [166], were used to construct the atlas. Three correspond to CRC studies, while

one (Colon_smillie) has data from colon of patients with ulcerative colitis and healthy individuals. As such,

the samples related to the healthy individuals were used. Table 1 shows an overview of the datasets

collected.

Table 1: Overview of the datasets used to construct the CRC atlas

CRC_Qian GSE132465 GSE144735 Colon_smillie

Nº Patients 7 23 6 12
Nº Samples 21 33 18 48
Nº Cells (before QC) 44 684 63 689 27 414 51 705
Nº Cells (after QC) 29 793 57 804 24 510 50 811
Technology 3’ 10xGenomics 3’ 10xGenomics 3’ 10xGenomics 3’ 10xGenomics

Studies CRC_Qian and GSE144735 have tumour (border and core) and normal matched mucosa

samples for each patient. For study GSE132465, 10 of the 23 patients have tumour and normal matched

mucosa samples, while the other 13 only have tumour samples. Regarding Colon_smillie dataset, each

donor has a sample extracted from two different locations of the colon.

3.2 Quality Control

Before merging the datasets together, they were individually checked for quality control. This allowed us to

filter low quality cells and lowly expressed genes. Cells were kept if they followed all the following criteria:

(1) At least 1000 UMIs in each cell; (2) Between, including, 250 and 6 000 of detected genes (i.e., genes

with non-zero UMIs) in each cell; (3) A complexity metric ( log10 ED)'0/_:0+01
log10 ED)'0/_FGH1 ) of at least 0.8; (4) Percentage
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of mitochondrial RNA not greater than 20%. Genes were considered lowly expressed, and thus removed,

if they were not detected in 10 or more cells. This quality control was performed using the R language.

At this point in the pipeline, datasets were already loaded into a Seurat object and stored as a h5Seurat

format file, using the R packages Seurat (v.4.0.3) [157] and SeuratDisk (v.0.0.0.9019) [158].

3.3 Dataset Integration

The different datasets were integrated using Seurat (R package, v.4.0.3) [157], so that proper cell-type

annotation could be performed.

First, datasets were processed. Each dataset was normalised individually by dividing the counts from

each cell by the total of the respective cell and multiplied by the scale factor 10000, followed by natural

logarithmic transformation. Then, the top 2000 variables were calculated for each dataset and integration

features calculated. Each dataset was then scaled with regression of the difference between the S and G2M

phases (so that we could still distinguish proliferative cells from those not proliferating) and the percentage

of mitochondrial RNA. PCA was finally performed to reduce dimensionality of datasets, in order to perform

a faster and less computationally heavy integration.

After this, the integration anchors were found and the data integrated.

3.4 Cell Annotation

We started by separating the cells into 5 big groups of cell-types: Epithelial, Stromal, Myeloid, B-cells and

T-cells. After this, we further annotated the cells for each of these groups individually, so that we could

obtain more detailed and better annotations.

To perform the initial separation of the cells into the mentioned groups, we used Seurat (R package,

v.4.0.3) [157] to find the clusters at a resolution of 0.1. After inspecting the quality of the clustering by

mapping into UMAP plot metrics, such as number of UMIs and genes per cell, cell-cycle scores for the S

and G2M phases, and percentage of mitochondrial RNA, we explored the expression of gene markers to

annotate the cells (figure 5). The following genes were used: EPCAM (epithelial cells); S100B, COL1A1,

VWF and ENG (stromal cells); CD14, FCGR3A, FCER1A, GZMB, TPSAB1 and TPSB2 (myeloid cells); CD79A

and MZB1 (B-cells); and CD3D (T-cells).

For each group of cell-types, we found the clusters using a set of 10 different resolutions, ranging from

0.1 to 1 at a step of 0.1. After assessing the quality of the clustering, we found the resolution that best

separates the cells into clusters with interesting biological information using clustree (R package, v.0.4.3)

[160] and the expression of genes that were markers for cell-types that we wanted to find. The gene

expression was evaluated by visualizing their expression mapped into UMAP and violin plots. Regarding

T- and epithelial cells, more steps were performed to be able to fully annotate the cells correctly. These

steps are mentioned next in their respective sub-sections.
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Figure 5: Annotation of the big groups of cells. Top-left UMAP is coloured by the annotated cell-types. All
other UMAPs are coloured by the RNA expression of the genes used to identify the cells, which goes from
blue (low expression) to yellow (high expression). Grey cells have no expression of the respective gene.

3.4.1 Stromal cells

Regarding stromal cells, the following genes were used to annotate the cell-types (figure 6): VWF, PLVAP,

CDH5 (endothelial cells); RGCC, RAMP3 (tip-like vascular endothelial cells); ACKR1, SELP (stalk-like vas-

cular endothelial cells); LYVE1, PROX1 (lymphatic endothelial cells); S100B, PLP1 (enteric glia); SYNPO2,

CNN1, PDGFRB (vascular smooth muscle-cells); RGS5, ABCC9, KCNJ8 (pericytes); TAGLN, ACTA2, ACTG2,

MYH11, MYLK, DES (myofibroblasts); COL1A1, COL1A2, COL6A1, COL6A2, COL3A1, DCN (fibroblasts);

THY1, FAP (cancer associated fibroblasts).
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Figure 6: Annotation of the stromal cells. Top-left UMAP is coloured by the annotated cell-types. All other
UMAPs are coloured by the RNA expression of some of the genes used to identify the cells, which goes
from blue (low expression) to yellow (high expression). Grey cells have no expression of the respective
gene.

3.4.2 Myeloid cells

Regarding myeloid cells, the following genes were used to annotate the cell-types (figure 7): CD14,

FCGR3A, MARCO, ITGAM (monocyte/ macrophage lineage); FCER1A, CST3 (conventional dendritic cells);

IL3RA, SERPINF1, GZMB, ITM2C (plasmacytoid dendritic cells); KIT, TPSB2, TPSAB1 (mast cells). In

our data, we were not able to separate monocytes from macrophages. However, we further separated

the monocyte/ macrophage lineage into further groups: IL1B, IL6, S100A8, S100A9 (pro-inflammatory

macro/mono); CD163, SEPP1, APOE,MAF (anti-inflammatory macro/mono); SPP1 (SPP1+ macro/mono);
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FCN1 (FCN1+ macro/mono).

Figure 7: Annotation of the myeloid cells. Top-left UMAP is coloured by the annotated cell-types. All other
UMAPs are coloured by the RNA expression of some of the genes used to identify the cells, which goes
from blue (low expression) to yellow (high expression). Grey cells have no expression of the respective
gene.

3.4.3 B-cells

For B-cells, the following genes were used to annotate the cell-types (figure 8): IGHD, MS4A1, CXCR4,

NR4A2 (naïve B-cells); CD27, MS4A1, CXCR4, NR4A2 (memory B-cells); STMN1, ACTB, RGS13, MKI67,
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PCNA, MARCKSL1, HMGN1, HMGN2 (proliferative cells); MZB1, CD27 (plasma cells); IGHA1, IGHA2

(IgA+); IGHM (IgM+); IGHG1, IGHG2, IGHG3, IGHG4, IGHGP (IgG+).

Figure 8: Annotation of the B-cells. Top-left UMAP is coloured by the annotated cell-types. All other UMAPs
are coloured by the RNA expression of some of the genes used to identify the cells, which goes from blue
(low expression) to yellow (high expression). Grey cells have no expression of the respective gene.

3.4.4 T-cells

To annotate the group of T-cells, we first clustered them with a low resolution (0.2) where we were able

to obtain 8 clusters: (0+7) CD4 T-cells; (1) CD8 T-cells and more; (2) regulatory T-cells; (3) 6;T-cells

+ NK-like cells + other ILCs; (4) CD8+ and CD4+ T-cells expressing CXCL13; (5) CD4 T-cells mostly

expressing IL17; and (6) proliferative T-cells. These annotations were obtained based on the following
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genes (figure 9): CD3E, CD3D, CD3G (T-cells); TRAC, TRBC1, TRBC2 ("4T-cells); CD8A (CD8+ T-cells);

CD4 (CD4+ T-cells); TRGC1, TRGC2, TRDC (6;T-cells); KLRB1 (NK-like); CXCL13 (CXCL13+ cells); IL2RA

(regulatory T-cells); IL17A (IL17+ cells); and MKI67, PCNA (proliferative cells).

Figure 9: Gene expression over the group of cells identified as T-cells. Top-left UMAP is coloured by
the clusters obtained under resolution 0.2. All other UMAPs are coloured by the RNA expression of the
respective genes, which goes from blue (low expression) to yellow (high expression). Grey cells have no
expression of the respective gene.

As we wanted to have more granularity in the annotation of T-cells and increasing the resolution was

not originating satisfactory results, we used SIGMA (R package, v.0.0.0.1) to evaluate the clusterability of

each cluster from resolution 0.2, and if that was due to meaningful variability (for example, we do not want

to end up clustering cells according to dataset of origin).

Having a good clusterability among all clusters except cluster 7 (figure 10B), we decided to merge

clusters 0 and 7, as they represented the same cell-type(s) (figures 9 and 10). We then separately sub-

clustered each of the 7 clusters for further annotation, after visually checking that the clusterability was

not due to dataset of origin (supplementary figure 51).
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Figure 10: (A) Same UMAP, one (top) with all Tcells coloured using resolution 0.2, and the other (bottom)
with only the clusters 0 and 7. (B) Clusters’ SIGMA clusterability. This metric goes from 0 to 1. The closer
to 1, the more clusterable. (C) Violin plots of the gene expression distribution in clusters 0 and 7.

When finding the sub-clusters for cluster (0+7), we assessed if the cells were being separated ac-

cording to the original clusters 0 and 7 (figure 11C), which did not happen. Thus, we could further trust

that these two clusters could be merged and evaluated together for further sub-clustering.

Figure 11: Cluster (0+7). UMAPS with (A) Final annotation, (B) clusters before the final annotation, (C)
orignal clusters, and (D) expression of relevant genes (expression goes from blue (low) to yellow (high),
while grey cells is the absence of expression).
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For cluster (0+7), as observed in figure 11, we were able to annotate naïve (CCR7, SELL), central

memory (CCR7, SELL, PASK) and effector memory (KLRB1, S100A4, PTPRCAP, PFN1, GZMA) cells. The

cluster of regulatory T-cells (2) was not further sub-clustered, as we did not found any interesting biological

information between the sub-clusters.

The cluster constituted by mostly CD4 T-cells expressing IL17 (5) was separated into IL17A+, IL17A+

IL17F+, IL17F+, IL17A+ IL22+ and IL22+ CD4 T-cells, and effector memory CD4 T-cells (figure 12A), as

they expressed effector memory related genes (KLRB1, S100A4, PTPRCAP, PFN1, GZMA) but not IL17

or IL22 genes (figure 12C), or any other markers that could indicate these could be another type of CD4

T-cells (data not shown).

Figure 12: Cluster (5). UMAPS with (A) Final annotation, (B) clusters before the final annotation, and
(C) expression of relevant genes (expression goes from blue (low) to yellow (high), while grey cells is the
absence of expression).

In the cluster with mostly CD8 T-cells (1) (figure 13), we found naïve CD8 T-cells (CCR7, SELL);

tissue resident memory CD8 T-cells (ZNF683); effector memory CD8 T-cells (KLRB1, S100A4, PTPRCAP,

PFN1, IL7R, ANKRD28); memory CD8 T-cells expressing CD160, cytotoxic CD8 T-cells (NKG7, GZMA,

GZMB, GZMH, GZMK, PRF1, IFNG); double-negative T-cells (expressing "4TCR and CD3 genes, but not

CD8 or CD4 genes); CD8"" IELs (expressing "4TCR genes and CD8A, but no CD8B); and a cluster with

an NK-like signature (KLRD1, KLRB1, XCL1, XCL2) that also expressed some T-cell markers, which was
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annotated as NKT cells.

Figure 13: Cluster (1). UMAPS with (A) Final annotation, (B) clusters before the final annotation, and
(C) expression of relevant genes (expression goes from blue (low) to yellow (high), while grey cells is the
absence of expression).

In the cluster with cells expressing CXCL13 (4) (figure 14A), we found follicular (CXCL13+) CD4 T-cells,

CXCL13+ CD8 T-cells, and tissue resident memory CD8 T-cells (expressing ZNF683 but no CXCL13). The

cluster of proliferative cells (6) was divided into CD4 and CD8 proliferative T-cells (figure 14B).

Figure 14: UMAPS with final annotation, clusters before the final annotation, and expression of relevant
genes (expression goes from blue (low) to yellow (high), while grey cells is the absence of expression). (A)
Cluster (4); (B) Cluster (6).
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Finally, the cluster with6;T-cells and other non-conventional T-cells (3) (figure 15) contained6;T-cells

(TRDC, TRGC1, TRGC2), NK cells (KLRD1, KLRB1, XCL1, XCL2), lymphoid tissue-inducer cells (RORC,

LTA, LTB), NKT cells (NK-like signature genes and some T-cell markers). In this cluster, a sub-cluster of

cells with high expression of heat-shock proteins (HSPA6, HSPA1B, HSPA1A, HSPB1, HSP90AA1, HSPD1,

HSPH1) was removed from the dataset.

Figure 15: Cluster (3). UMAPS with (A) Final annotation, (B) clusters before the final annotation, and
(C) expression of relevant genes (expression goes from blue (low) to yellow (high), while grey cells is the
absence of expression).

3.4.5 Epithelial cells

First, we wanted to separate tumour from normal cells in tumour samples. For that, we used the R package

infercnv (v.1.8.0) [162] to identify somatic large-scale chromosomal copy number variations (CNVs) by

comparing the gene expression of the epithelial cells from tumour samples with the gene expression of

the epithelial cells from normal matched samples. After processing the raw counts data accordingly, we

used the six-state HMM-based CNV prediction method (i6 HMM) to predict, for each gene in each cell,

the CNV level. There are 6 different levels: (1) complete loss; (2) loss of one copy; (3) neutral (i.e.,

no change); (4) addition of one copy; (5) addition of two copies; (6) addition of more than two copies.

From these predictions, we considered the existence of a chromosome arm loss if more than a third of

the genes from that chromosome arm were predicted to have levels 1 or 2. If more than a third of a
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chromosome arm’s genes were predicted with levels 4 or greater, we considered to have a gain in that

chromosome arm. Finally, an epithelial cell was considered a tumour cell if it had at least one chromosome

arm alteration (gain or loss), while those with no large-scale alterations were classified as possibly normal.

CNV predictions for some of the patients can be observed in the heatmap figures 53 to 55.

For those tumour samples having too many epithelial cells classified as normal (figure 55 is an example

of that), we further analysed the expression of genes known to be differentially expressed in CRC, to

account for those cases where tumour do not have copy number variation. These genes are: MYC, RNF43,

AXIN2, CTNNB1, CD44, MLH1 [167–172]. While MLH1 is under-expressed in tumours, all others are over-

expressed, which happens in our atlas (figure 16). For each of those samples, we compared the expression

distribution of these genes between normal, putative normal and putative tumour cells. The genes that

had similar distribution between putative normal and putative tumour and different distribution between

normal and putative normal were used to re-annotate the putative normal cells. For over expressed genes,

the cells were re-annotated as tumour if the gene expression was higher than the median gene expression

from normal cells. For the under expressed gene, the cells were re-annotated as tumour if the gene

expression was smaller than the median gene expression from normal cells.

Figure 16: Distribution of the expression of genes MYC, RNF43, AXIN2, CTNNB1, CD44, MLH1 in normal
epithelial cells vs cells classified as tumour after CNV predictions.

The following genes were used to annotate the group of normal epithelial cells (figure 17): LGR5,

SMOC2, ASCL2 (stem cells); SOX9, CDK6, MUC4, FABP5, PLA2G2A, LCN2 (progenitor cells); MUC2,

ITLN1, CLCA1 (secretory progenitors); TOP2A, CCNA2, MCM5, OLFM4, SLC12A2 (transit-amplifying cells);

POU2F3, TRPM5, SPIB, IL17RB, HTR3E (tuft cells); CHGA, CHGB, CPE, NEUROD1, PYY (enteroendocrine

cells); MUC2, CLCA (goblet cells); FABP1, SLC26A3, TMEM37, BEST4 (enterocyte/colonocyte cells); LYZ,

CA7, CA4, SPIB, FKBP1A (paneth-like cells).

Tumour cells were annotated according to the consensus molecular subtypes (CMS), using the R

package CMScaller (v.0.99.2) [163]. Gene expression of cells was aggregated by sample before prediction.

As such, a cell was annotated with the CMS type that was predicted to the respective sample. If the tool
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was not able to confidently classify a sample, that sample was classified with a Mixed type.

Figure 17: Annotation of the normal epithelial cells. Top-left UMAP is coloured by the annotated cell-types.
All other UMAPs are coloured by the RNA expression of some of the genes used to identify the cells, which
goes from blue (low expression) to yellow (high expression). Grey cells have no expression of the respective
gene.

3.5 Overview of the atlas

Our atlas has a total of 163 810 cells, separated into 51 044 T-cells, 47 462 epithelial cells, 30 187 stromal

cells, 17 674 B-cells, and 17 443 myeloid cells. The number of cells for each cell-subtype identified is

summarised in table 2.
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Table 2: Number of cells in each cell-subtype present in the CRC atlas. TA: transit-amplifying cells; CAFs:

Cancer-associated fibroblasts; VSMCs: Vascular smooth muscle cells; DCs: Dendritic cells; LTi: Lymphoid

tissue-inducer cells.

Cancer cells 28 208

Normal Epithelial cells

Progenitor cells 2 818

19 254

Secretory progenitors 2 094
TA cells 3 862
Tuft cells 191
Enteroendocrine cells 74

Goblet cells
Not immature 391
Immature 1 505

Enterocyte/colonocyte cells
Immature 3 926
BEST4+ 536
Other 3 201

Paneth-like cells 656

Stromal cells

Fibroblasts 14 007

30 187

CAFS 4 914
Myofibroblasts 693
Pericytes 2 014
Enteric glia cells 1 649
VSMCs 791

Endothelial cells
tip-like vascular 3 934
stalk-like vascular 1 792
lymphatic 393

Myeloid cells

Anti-inflammatory macro/mono lineage
Other 4 963

17 443

SPP1+ 4 180

Pro-inflammatory macro/mono lineage
Other 2 548
FCN1+ 1 639

conventional DCs 2 072
plasmacytoid DCs 335
Mast cells 1 222
Unkown 484

B-cells

Naive 2 872

17 674
Memory 7 323

Plasma cells
IgA+ 5 624
IgG+ 685

Proliferative 1 170

T-cells

CD4+

Poliferative 377

51 044

Naive 8 484
Memory 13 484
Regulatory 6 801
Follicular 1 156
IL22+ 201
IL17+ 755

CD8+

Poliferative 439
Naive 414
Memory 6 534
CXCL13+ 1 977
Cytotoxic 1 105

Unconventional

6; 2 317
NKT 1 759
NK 1 382
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Table 2 (cont.)
CD8"" 2 488
LTi cells 327

Double-Negative 1 044

TOTAL 163 810

The consensus molecular subtype (CMS) of colorectal cancer most present in our atlas is CMS2, with

22 samples, followed by CMS1 (10), CMS4 (8) and CMS3 (4). Two samples were not confidently classified

with any CMS and were thus labeled with a Mixed type. Gene set enrichment analysis (GSEA) with the

assigned groups confirms the CMS classification (figure 18A). The group of samples with a CMS2 type are

characterised by a high MSS/MSI ratio and activated MYC and E2F target gene sets. The CMS1 group,

as expected, is MSI-like, but also revealed overexpression of genes related with MTORC1 signaling and

E2F targets. CMS3 samples are MSS-like and have up-regulation of metabolic processes, namely fatty

acid metabolism and oxidative phosphorilation. CMS4, in turn, have the characteristic strong activation

of epithelial mesenchymal transition (EMT), TGF4 and angiogenesis. GSEA was not performed with the

Mixed samples.

Figure 18: (A) Heatmap of the results of gene set enrichment analysis using the CMS predictions. Blue
and red mean under- and over- representation, respectively, of the gene set. (B) UMAP visualization of
tumour epithelial cells, coloured by CMS type. (C) Hierarchical cluster of samples, coloured by CMS type.
(D) Distribution of the proportions of B-, epithelial, myeloid, stromal and T- cells by CMS type.

The UMAP visualization of the tumour cells coloured by the respective sample’s CMS (figure 18B)

shows that the cells from different samples but same CMS tend to group together. There is a clear

separation of the CMS1, CMS2 and CMS4 cells, while CMS3 seems to overlap with the other CMS types.

In fact, when performing hierarchical clustering of the samples (by aggregating the genes counts across
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all cells of each sample, figure 18C), CMS3 samples clustered closer to the Mixed type. The remaining

types tended to group with other samples of the same CMS type.

We further assessed the proportion of the major cell-types across each CMS type (figure 18D). CMS4

showed a higher proportion in stromal cells than other types, as expected, but we did not observe a

higher immune infiltration in CMS1 samples than other CMS types. CMS3 samples showed the highest

proportions of B- and T- cells, although it should be kept in mind that only 4 samples were classified as

CMS3.

The construction of this CRC atlas of scRNAseq data with cells spanning various T-cell subtypes from

several different colorectal patients with tumour and normal matched samples allowed us to construct

T-cell metabolic models that characterised not only the T-cells present in the tumour micro-environment,

but also those in an unaffected part of the colon (or rectum) of the patient.
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Modeling T-cells from the Colorectal Cancer

Environment

This chapter discusses the construction of a wide number of genome-scale metabolic models for different

subtypes of T-cells from the micro-environment of colorectal cancer (CRC) and normal matched colon. We

made use of the scRNAseq atlas for colorectal cancer (CRC) constructed in the previous chapter.

A total of 196 models were constructed. Even though the structure of these models showed a lot

of common pathways across cell-types and tissues of origin, the models for regulatory T-cells showed

interesting differences between tissue of origin, for example. The prediction of models’ fluxes was very

close to expected results regarding biomass and energy production. Cell-type prediction showed good

results not only on datasets of gene expression but also on datasets of models’ structure (reaction presence)

and of flux predictions. Models were further tested for gene essentiality and for the effect of different media

conditions.

All code was run with the R version 4.1.0 or the python version 3.6.9. More detailed information, includ-

ing scripts, is available in the GitHub project ?iiTb,ff;Bi?m#X+QKfb�`�+�`/QbQfJ2i�#QHB+n
JQ/2Hb.

4.1 Methods

Starting from a generic human metabolic model, we reconstructed cell-type specific models with the aid

of the scRNAseq data from the colorectal cancer (CRC) atlas constructed in the previous chapter. Not all

samples from this atlas were used tough. We only used CRC patients with samples from both tumour

and normal matched tissues, after filtering the samples with less than 1000 cells. Within the total of 14

patients with normal matched tissue samples, 7 had samples from tumour border and core. The cell-types

considered for the construction of the models were: naïve CD8, memory CD8, proliferative CD8, cytotoxic

CD8, naïve CD4, memory CD4, proliferative CD4, IL17+ CD4, follicular CD4, and regulatory CD4 T-cells.
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4.1.1 Generic human model

The generic human model used to reconstruct context-specific models was Human-GEM [173], v.1.8.0,

retrieved from the GitHub repository ?iiTb,ff;Bi?m#X+QKfavb"BQ*?�HK2`bf>mK�M@:1J in June

2021 in the SBML format. Human-GEM is a consensus genome-scale metabolic model (GSMM) created

by integration of the preceding models HMR2.0 and Recon3D, and curation of different databases. This

model contains a total of 13 802 reactions, 8 378 metabolites and 3 625 genes. Reactions span 9

compartments: extracellular, cytosol, inner mitochondria, mitochondria, endoplasmic reticulum, Golgi

apparatus, lysosome, peroxisome, and nucleus.

Before model reconstruction, we ensured consistency of the generic model chosen by identifying and

removing blocked reactions. These are reactions whose maximum and minimum fluxes are null with open

medium exchanges when performing flux variability analysis (FVA), meaning that they are not able to carry

flux on any condition.

Furthermore, we tested the consistent model for its capability to perform metabolic tasks [174] known

to occur in human cells, as well as for biomass production under a specific medium (see section 4.1.3 for

a detailed information on the medium used).

The python module COBRApy [175] was used to handle the SBML file of the Human-GEM model, as

well as to process this model into a consistent one. The evaluation of the consistent model regarding

metabolic tasks and biomass production was performed through the python module troppo [176].

4.1.2 Model Reconstruction

To construct cell-type specific models from the human generic model, we used the fastCORE algorithm

[177], which was available through the python module troppo [176]. fastCORE takes a set of reactions that

have strong evidence to be active in the context of interest and searches for a subnetwork that contains

all reactions from the core set and a minimal set of additional reactions to allow flux consistency through

FVA. The choice of this algorithm was based on Vieira et al [178], where different combinations of data

processing and reconstruction algorithms were tested for the reconstruction of tissue-specific models.

The models returned by fastCORE were further gap-filled to ensure that flux through the biomass

reaction when running the models with a specific medium (see section 4.1.3 for a detailed information

on the medium used) is possible. To do so, the gap-filling was performed assuming no limitation (i.e.,

high upper bounds) of the metabolites that compose the medium. All models whose biomass flux was still

null were excluded from the analysis. As such, in downstream analysis, whenever a model is predicted

with null biomass, it can only be due to specific conditions (e.g., concentration of metabolites in medium,

inhibited internal reactions, etc.).

From expression data to core reaction set To construct the models using scRNAseq data, the

raw gene counts were aggregated across cells of the same cell-type, generating a pseudo-bulk expression

data for each cell-type in each sample. A cell-type in a sample was only considered for aggregation if more
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than 5 cells representing that cell-type were available. A table summarising the cell-types represented in

each scRNAseq sample and respective number of cells is present in the supplementary table 13. After

aggregation, a gene expression matrix was created for each sample, where the rows corresponded to

the genes and the columns to the cell-types considered for that sample. After this, the gene expression

matrices were normalised into CPM counts. This was performed with the aid of the R packages Seurat

[157] and SeuratDisk [158].

To get the set of core reactions for each cell-type model reconstruction, we used a similar approach

to that of Richelle et al [179]. A gene is active in a sample’s cell-type if its expression is greater than a

global maximum threshold, defined by the 75-ℎ percentile of the expression distribution of all genes in all

cell-types of that sample. On the other hand, a gene is inactive in a sample’s cell-type if its expression is

smaller than a global minimum threshold, defined by the 10-ℎ percentile of the expression distribution of

all genes in all cell-types of that sample. Genes whose expression falls between these two thresholds, are

considered active, or inactive, based on a local threshold. This local threshold is defined by 25-ℎ percentile

of the expression distribution of that gene in all cell-types of that sample. The percentiles were defined

based on the best combinations found by Vieira et al [178] for the reconstruction of metabolic models.

To achieve this, and for further downstream analysis, we first transformed the normalised pseudo-bulk

data into gene activity scores (GASs), calculated using the above thresholds (table 3).

Table 3: Calculation of the gene activity scores (GAS) from a sample. #$: expression, in CPMs, of gene
$; $%&'(%_)(# : 75th percentile of the expression distribution of all genes in all cell-types of a sample;
$%&'(%_)*+: 10th percentile of the expression distribution of all genes in all cell-types of a sample;
%&,(%_-ℎ/01ℎ&%2 : 35th percentile of the expression distribution of a gene in all cell-types of a sample.

Condition State GAS

#$ ≥ $%&'(%_)(# Active log2
#!

$%&'(%_)(#

#$ ≤ $%&'(%_)*+ Inactive log2
#!

$%&'(%_)*+

$%&'(%_)*+ ≤ #$ ≥ $%&'(%_)(# Moderate (Active or Inactive) log2
#!

%&,(%_-ℎ/01ℎ&%2

To obtain the set of core reactions to give as input to the reconstruction algorithm, we then need

to translate the GASs into reaction activity scores (RASs). To do this, the gene-protein-reaction (GPR)

rules present in the generic human model are used. These rules describe which combinations of genes

are involved in the production of the enzyme(s) that catalyse the reactions. If two genes are necessary

together (e.g., enzyme complex) for a reaction to occur, its GPR rule will be Gene A AND Gene B. On the

other hand, if only one of two genes is necessary for a reaction (e.g., enzyme isoforms), the GPR rule is

Gene A OR Gene B. To translate these GPR rules into the continuous RASs, the AND operators are replaced

with a minimum function, assuming that the enzyme/reaction is limited by the lowest expressed gene.

The OR operators, on the other hand, are replaced by a maximum function, assuming that the reaction

activity is the activity of the highest expressed gene. A few examples on how to get the RASs from the

GASs are present in table 4.
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Table 4: Examples for calculating RASs. #(, #' , #, : expression, in CPMs, of genes (, ' and ,, respectively;
)(# : maximum;)*+: minimum.

GPR Replacement
RAS

(if #( < #' < #,)

#( I8 #' )(# (#(, #') #'
#( JE5 #' )*+(#(, #') #(

(#( JE5 #') I8 #, )(# ()*+(#(, #'), #,) #,
(#( I8 #') JE5 #, )*+()(# (#(, #'), #,) #'

Finally, we only need to obtain the set of core reactions that will be used in the reconstruction model.

By the way that the GASs and RASs were calculated (base 2 logarithm of a ratio), active reactions are

simply those reactions whose RAS is positive.

All these calculations were made using the python language.

4.1.3 Media used in the experiments

To obtain flux predictions as close as possible to the in vivo reality of the T-cells, we sought to create a

medium that best represented the metabolites in healthy human blood, instead of using a cell culture

medium. We also wanted to recreate the metabolic medium in the tumour micro-environment, as it would

be even closer to reality. However, there isn’t enough information on the concentration of metabolites

in this situation, when compared to that found for metabolites under normal conditions. Nevertheless,

several studies focused on how much the presence of metabolites change between the blood of normal

individuals and CRC patients were found.

Normal Medium The concentrations for the metabolites in the external compartment of our mod-

els were gathered from the Serum Metabolome Database (SMDB), which is integrated in the Human

Metabolome Database (HMDB) [180]. For those model metabolites with more than one ‘normal’ con-

centration in the database, the final concentration was averaged. Metabolites with no information in the

database regarding ‘normal’ concentrations were not included in the medium. Three metabolites (water,

oxygen, and H+) were considered as always available, and thus their bounds were opened (maximum

uptake set to 1 000). A total of 537 metabolites composed the final normal medium.

Metabolic models work with reaction fluxes (mmol/gDW/h) instead of metabolite concentrations. Re-

garding the metabolites in a medium, they are represented by fluxes that characterise the entry rate of the

metabolites in the cell. As such, the concentrations gathered from the database were transformed into

fluxes in the following manner [181]:

7%D#G( =
[G(]

[,0%%1] . ,0%%K0*$ℎ- . -*)0
(4.1)

51



CHAPTER 4. MODELING T-CELLS FROM THE COLORECTAL CANCER ENVIRONMENT

The flux of a metabolite Ma in a model of a specific cell-type is thus obtained by dividing its con-

centration in the medium ([G(], in mM) by the concentration of viable cells in the medium ([,0%%1], in

nºcells/L) after an experiment that lasted a certain amount of time, dry weight of the cell (,0%%K0*$ℎ- , in

gDW) and said time (-*)0, in h).

All these values, apart from the metabolite concentrations, were not known. However, we followed

Aurich M. et al [181] on how to calculate these values. Knowing that osteosarcoma (U2OS) cells have a

cell dry weight of approximately 60 pg [182] and a cell volume of 4000 um3 [183], we can get the weight

of T-cells knowing that their volume is approximately 176 um3 [184]. Thus, the calculated T-cell weight

is, approximately, 2.640×10e-12 gDW. The optimal concentration of T-cells in a medium was considered

2.5×10e8 cells/L, assuming that the culture media is normally changed every two days (time = 48h) [185].

The supplementary table 11 summarises the metabolites present in the normal medium.

TumourMedium We found several studies [186–191] that performed NMR- or MS- based metabolomics

on blood of normal individuals and CRC patients and assessed how much the peak intensities of the re-

spective metabolites changed between conditions. As such, we used the information available regarding

the fold changes between these two conditions to modify the normal human blood medium into a tumour

one.

We found information for 84 of the metabolites present in our normal human blood medium. Thus, we

changed the concentrations of these metabolites using the fold change averaged across the studies, while

maintaining the remaining metabolites’ concentrations. A table with the information on the fold changes

calculated by the different studies and respective average is present in supplementary table 12.

4.1.4 Flux prediction

To predict the reaction fluxes in our models, we resorted to the Parsimonious Flux Balance Analysis (pFBA)

approach.

pFBA maximises an objective to be accomplished by the cell and, from the possible solutions that lead

to that maximum, gives the solution that leads to the lowest overall flux through the metabolic network.

The objective was set to maximise the biomass reaction for proliferative T-cells. Biomass production is not

the main objective of non-proliferative T-cells, with the production of energy being as important. In line with

other studies that constructed models for normal, non-proliferative, cells [129, 137, 148], the objective of

the remaining T-cells was the maximisation of biomass and ATP production in equal weights.

It is in the lower and upper bounds restrictions of the exchange reactions that the medium fluxes come

into play. The upper bound (i.e., maximum flux possible) of medium metabolites’ exchange reactions are

set to the fluxes calculated in section 4.1.3.

pFBA was run using the python module COBRApy [175].
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4.1.5 Model Evaluation

After reconstructing the models, we carried a series of evaluations to assess how good the models repre-

sented the cell-types and to extract additional valuable information.

We first assessed the ability to distinguish the different cell-types using transcriptomics data versus

the models reconstructed. We also analysed the fluxes of certain reactions and compared them between

models, and assessed how the models were affected when specific metabolites were removed from the

medium. We further tested the models for gene essentiality and compared the flux predictions between

using a normal and tumour human blood medium.

Cell-type Prediction We compared the ability to predict the type of T-cells from the different types of

data used, namely the pseudo-bulk RNAseq dataset, in CPMs, used to construct the respective models,

the absent and present reactions of each reconstructed model, and the pFBA flux predictions using the

normal or tumour human blood media. For the reaction presence and pFBA prediction datasets, only the

reactions with GPRs were used.

For this, a random forest classifier with repeated 10-fold cross-validation was trained using the R

package caret [192]. Each dataset used was divided into the same 70% samples used for training and

30% for testing. Prior to training, genes/reactions with zero variance across the training samples were

removed.

The predictions obtained from the test samples were evaluated using the metric Mathews correlation

coefficient (MCC). This metric is appropriate to multi-class problems, perfectly symmetric (no class is more

important than the other), and not sensitive to class-imbalance (i.e., when the different classes are not

evenly represented, which happens in these datasets with some T-cell subsets having far more models

than others). The general MCC formula is the following:

G33 =
B= .BE − 7= .7E√

(B= + 7=).(B= + 7E ).(BE + 7=).(BE + 7E ) (4.2)

MCC is calculated through the true positives (B= ), true negatives (BE ), false positives (7= ) and false

negatives (7E ). This metric varies from -1 to 1. An MCC value 1 means that all cell-types were correctly

classified, while a value of -1 means that all cell-types were not well classified. An MCC value of 0 means

that the classifier is no better than random guessing.

Gene Essentiality As mentioned before, the objective was set to maximise the biomass reaction for

proliferative T-cells, while both the biomass and ATP production were maximised in the other T-cell subsets.

For this simulation, however, the objective of all models was set to maximise only biomass, as we wanted

to assess which genes could be essential in the production of biomass.

After excluding house-keeping genes from our analysis, only 932 genes were potentially essential for

our models. These were the only ones whose deletion led to the deletion of one or more reactions. For

example, a reaction whose GPR rule is Gene A OR Gene B will not be deleted if only one of the genes is.

On the other hand, a reaction with a GPR rule of Gene A AND Gene B will be deleted if one of the genes is.
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The 932 genes were deleted individually, and the biomass maximised using the FBA approach (see

section 2.4.1). A gene was considered essential for a model if its objective decreased to 0. Furthermore,

a gene was considered essential for a cell-type if it was essential for more than 50% of the models of that

cell-type.

Gene essentiality was carried using python and the module COBRApy [175], while the analysis of its

results was carried in the R language.

4.2 The different representations of the transcriptomics

dataset

We used the dimension reduction technique Uniform Manifold Approximation and Projection (UMAP) to

have a visual representation of how well the different cell-types can be separated when using the different

representations of the transcriptomics dataset used prior to model reconstruction. Those representations

are the scRNAseq dataset of T-cells with all genes (figure 19A); the scRNAseq dataset of T-cells with only

the metabolic genes present in the generic model Human-GEM (figure 19B); and the pseudo-bulk dataset

created (figure 19C).

Figure 19: UMAP plots for the (A) scRNASeq data with all genes, (B) scRNAseq data with only the metabolic
genes, and (C) pseudo-bulk RNAseq data. Each dot corresponds to a cell in case of the scRNAseq datasets,
or a cell-type in a sample in case of the pseudo-bulk data. The plots were coloured according to the cell-
types.

Using all genes to plot the T-cell subtypes from the CRC atlas that were modelled (figure 19A) shows
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that most cells group together with others from the same cell-type. However, a few of the cell-types tend to

overlap. That is the case of cytotoxic CD8 T-cells and memory CD8 T-cells, IL17+ CD4 T-cells and memory

CD4 T-cells, and a small subset of naïve CD8 T-cells with memory CD8 T-cells.

Filtering the dataset for metabolic genes relevant for the model reconstruction (figure 19B) shows a

marked overlap. All cell-types overlap, except for proliferative CD4 and CD8 T-cells, which group apart

from the rest. This makes sense, as metabolically T-cells are very closely related, with the proliferative

T-cells being the most distinct ones due to the known metabolic shifts all cells go through to acquire the

ability to proliferate.

The pseudo-bulk data (figure 19C), however, no longer shows such a strong overlap. Proliferative CD4

and CD8 T-cells still group together and there is no distinct separation between the other cell-types.

4.3 Models Reconstructed

A total of 196 models were reconstructed (table 5 and supplementary table 13): 16 cytotoxic CD8 T-cells;

13 follicular CD4 T-cells; 13 IL17+ CD4 T-cells; 33 memory CD4 T-cells; 30 memory CD8 T-cells; 30

naïve CD4 T-cells; 11 naïve CD8 T-cells; 12 proliferative CD4 T-cells; 9 proliferative CD8 T-cells; and 29

regulatory CD4 T-cells.

Table 5: For each cell-type (Cell Type), number of reconstructed models (Number of Models) and their
distribution regarding tissue of origin (State Distribution) and CMS classification (CMS Distribution).

Cell Type Number of Models State Distribution CMS Distribution

Cytotoxic CD8 16
Tumour: 10

Normal Matched: 6
CMS1: 2 CMS2: 6 CMS3: 2
CMS4: 0 Mixed: 0

Follicular CD4 13
Tumour: 13

Normal Matched: 0
CMS1: 3 CMS2: 6 CMS3: 3
CMS4: 0 Mixed: 1

IL17+ CD4 13
Tumour: 8

Normal Matched: 5
CMS1: 2 CMS2: 4 CMS3: 1
CMS4: 0 Mixed: 1

Memory CD4 33
Tumour: 20

Normal Matched: 13
CMS1: 6 CMS2: 6 CMS3: 3
CMS4: 4 Mixed: 1

Memory CD8 30
Tumour: 18

Normal Matched: 12
CMS1: 6 CMS2: 6 CMS3: 3
CMS4: 2 Mixed: 1

Naive CD4 30
Tumour: 19

Normal Matched: 11
CMS1: 6 CMS2: 6 CMS3: 2
CMS4: 4 Mixed: 1

Naive CD8 11
Tumour: 6

Normal Matched: 5
CMS1: 0 CMS2: 4 CMS3: 2
CMS4: 0 Mixed: 0

Proliferative CD4 12
Tumour: 12

Normal Matched: 0
CMS1: 3 CMS2: 4 CMS3: 2
CMS4: 2 Mixed: 1

Proliferative CD8 9
Tumour: 9

Normal Matched: 0
CMS1: 3 CMS2: 3 CMS3: 2
CMS4: 0 Mixed: 1

Regulatory CD4 29
Tumour: 20

Normal Matched: 9
CMS1: 6 CMS2: 6 CMS3: 3
CMS4: 4 Mixed: 1
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The cell-types follicular and proliferative CD4 T-cells, and proliferative CD8 T-cells do not have models

from normal matched tissue.

Regarding the number of reactions that are present in the different models (figure 20A), there is a

visible difference in the number of reactions present between the models from normal matched tissue and

those from tumour tissue for the cell-types cytotoxic CD8 T-cells, IL17+ CD4 T-cells and regulatory CD4

T-cells. On the other hand, there is not much difference for the models from memory and naïve cell-types.

The models from naïve CD8 T-cells, normal cytotoxic CD8 T-cells, normal IL17+ T-cells, and normal

regulatory CD4 T-cells have the least number of reactions. Excluding normal regulatory CD4 T-cells, all

these models have less than 5 000 reactions.

Figure 20: Distribution of the number of reactions per model, (A) separated by tissue of origin, and (B)
separated by the CMS subtype classification.
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When considering the CMS subtypes of the respective samples (figure 20B), we can see some inter-

esting differences. The number of reactions in the regulatory CD4 T-cell models tends to decrease in the

following manner: CMS1>CMS2>CMS3>CMS4>Normal Matched. Also, while most memory CD8 T-cell

models from tumour tissue have a similar number of reactions to those from normal matched mucosa,

the models from CMS4 and 2 of the CMS1 have a lot less reactions than other ones.

4.4 Pathway Coverage

To analyse pathway coverage, we calculated the percentage of reactions in each metabolic pathway that

were present in each model.

4.4.1 Pathways covered in all models

The most and least covered pathways across all models are depicted in the heatmap from figure 21. The

heatmap with all metabolic pathways is in supplementary figure 57.

There are two pathways that clearly have little to no presence across the great majority of the models,

which are peptide metabolism and dietary fibre binding. Both pathways only have reactions that are

not catalysed by any enzyme, meaning that none of the reactions have a GPR rule associated. It is more

difficult for these reactions to be added in the reconstruction process, as there is no omics data supporting

their presence or absence. They will only be added if they are included manually in the core reaction set

if, for example, literature supports their existence in the respective cell-type; or if during the reconstruction

process, they are necessary for flux consistency.

Figure 21: Most and least covered pathways (%) across all reconstructed models.
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The other pathways that also have little percentage of reactions present in the models are fatty acid

recycling in the endoplasmic reticulum, bile acid recycling, protein assembly, drug metabolism, protein

degradation, and acyl-CoA hydrolysis. Bile acid recycling, acyl-CoA hydrolysis and drug metabolism, for

example, are pathways mostly associated with the liver [193, 194].

Two clear sets of pathways that are very present in all models are the pathways for 4 -oxidation of fatty

acids in both the mitochondria and peroxisome, and those related to fatty acid metabolism (omega-3 and

-6, linoleate), elongation and biosynthesis.

Cholesterol biosynthesis (both Kandustch-Russel and Bloch pathways) is also present. Cholesterol

has a critical role in T-cell function and signalling [195, 196] because T-cells rely greatly on motility and

membrane-membrane interactions with other cells and cholesterol has been shown to be important in

maintaining cell membrane stiffness [197]. Inhibiting enzymes from the cholesterol metabolism and trans-

porters leads to changes in T-cell function, activation, and reprogramming.

For example, treating a population of naive T-cells with an inhibitor of the enzyme that catalyses the rate-

limiting step of cholesterol biosynthesis suppresses progression of their differentiation and cell cycle [197].

Both CD4 and CD8 naive T-cells reprogram their cholesterol metabolism upon activation, promoting both

import and biosynthesis [198–200]. SREBP proteins, required for cholesterol biosynthesis, are essential

for cytotoxic CD8 T-cells to acquire sufficient cholesterol levels that allow proliferation and acquisition of an

effector phenotype [199]. IL17+ CD4 T-cells’ differentiation induced by ROR6 was preceded by enhanced

cholesterol biosynthesis [200]. In fact, increased cholesterol content in the plasma membrane has been

associated with a pro-inflammatory phenotype, even though membrane cholesterol enrichment in FOXP3+

CD4 regulatory T-cells did not alter their suppressogenic function [201].

Other pathways highly present across models include heparan sulfate degradation, keratan sulfate

degradation, chondroitin sulfate degradation, aminoacyl-tRNA biosynthesis, terpenoid backbone biosyn-

thesis, and leukotriene metabolism.

The interaction of chemokine, integrins and selectins with glycosaminoglycans (GAGs) regulates the

recruitment, adhesion, and migration of leukocytes from the circulation to the site of inflammation. GAGs

are divided into four main groups: Heparan sulfate, chondroitin sulfate, keratan sulfate, and hyaluronic

acid. Apart from hyaluronic acid, GAGs are attached to the core protein of proteoglycans (PGs)[202].

For instance, heparanase, the only mammalian enzyme that directly cleaves heparan sulfate, has

also been described to be expressed in T-cells and up-regulated upon activation [203]. Furthermore,

lymphocytes from peripheral blood mononuclear cells (PBMCs) of breast cancer patients were found to

display higher heparanase expression than those from healthy patients [204]. Even though its expression

has been shown to promote leukocytes migration and penetration of the basement membrane and blood

vessel entry [203], it has been suggested that it can either be pro- or anti- tumorigenic [205].

Leukotrienes are one of the types of eicosanoids that derive from arachidonate. They have been

linked to proliferation, apoptosis, cytokine production, differentiation, and chemotaxis in T-cells [206], and

recognised as possibly having both pro- and anti- inflammatory roles in the immune response of T-cells

[207].
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ALOX5, an enzyme that catalyses the first reaction from this pathway (conversion of arachidonic acid

into leukotriene A4, LTA4), was shown to occur in human T cell lines as well as in purified peripheral

blood T cells, including naive and memory CD4 T-cells and cytotoxic CD8 T-cells [208]. The production

of leukotriene B4 (LTB4) and cysteinyl leukotrienes (LTC4, LTD4 and LTE4) was also detected in various

T-cell lines and primary cells [209, 210].

4.4.2 Models’ structure differs between normal and tumour tissue

We wanted to assess if any cell-type was affected by the tumour micro-environment, i.e., if the reaction

presence differed between normal and tumour models. For that, we performed pathway differential anal-

ysis based only on comparing the pathway coverage between normal- and tumour- derived models of

each cell-type. From all the cell-types, regulatory CD4 T-cells and cytotoxic CD8 T-cells showed the most

interesting results.

To calculate the most differently covered pathways for each cell-type, we first calculated the fold change

on pathway coverage between normal- and tumour- derived models using the R package gtools [211]. Only

those with absolute fold changes higher than 1.5 were subsequently tested using the non-parameteric test

Mann-Whitney using the R package stats [212]. p-values were adjusted using the false discovery rate

(FDR) method by Benjamin & Hochberg [213]. Pathways with an adjusted p-value smaller than 0.05 were

considered differentially covered.

Regulatory CD4 T-cells Thirty-two pathways are differentially covered between normal and tumour

regulatory T-cell models (supplementary table 15). When plotting these pathways in a heatmap (figure 22),

it is possible to see that, even though most models from normal matched tissue group together, there is

not a complete separation between normal and tumour derived models. In fact, three main groups can be

distinguished: (1) only models from normal matched tissues; (2) all models from tumour tissue classified

as CMS4, two from normal tissue and one from tumour tissue classified as CMS3; (3) remaining tumour

derived models.

This goes in line with the previously shown results (figure 20) regarding the distribution of number

of reactions in the models for each CMS type, where it was visible a decreasing trend: CMS1 > CMS2 >

CMS3 > CMS4 > Normal Matched. From all the tumour derived models, the number of reactions in the

models from CMS4 samples is the closest to that in the normal matched models. Also, one of the models

from CMS3 has clearly less reactions than the other two CMS3 models. These 3 groups are still visible

when visualizing all metabolic pathways’ coverage in a heatmap (supplementary figure 57).

The pathways fatty acid biosynthesis (even-chain), glycerolipid metabolism, keratan sulfate biosynthe-

sis, fatty acid biosynthesis (odd-chain) give the clearest separation between tumour (heatmap groups (2)

and (3)) and normal (heatmap group (1)) derived models. The TCA cycle (Tricarboxylic acid cycle and gly-

oxylate/dicarboxylate metabolism) is also more significantly present in tumour-derived models than normal

matched-derived ones.
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Figure 22: Differentially covered pathways between normal- and tumour- derived regulatory CD4 T-cell
models.

When comparing mice regulatory T-cells from a tumour site and the spleen, Pacella et al [214] found

that those from the tumour site tended to acquire less FAs, despite the up-regulation of CD36, a transporter

of FAs into the cell. Considering that CPT1A, which moves FAs into the mitochondria, was significantly

more expressed in tumour regulatory CD4 T-cells, and that these cells accumulated significantly more FAs,

FA synthesis might be more present in tumour regulatory CD4 T-cells. Pacella et al [214] further showed

higher consumption of the first intermediates of the TCA cycle by the tumour-infiltrating regulatory CD4

T-cells.

There are a number of pathways whose distinction between groups (1) and (2) is not as clear. These

pathways include: biotin metabolism, folate metabolism, sulfur metabolism, carnithine shuttle (mitochon-

drial), ether lipid metabolism, phosphatidylinositol phosphate metabolism, fatty acid biosynthesis, pool

reactions, bile acid biosynthesis and glycosphingolipid biosynthesis-lacto and neolacto series.

This shows that regulatory CD4 T-cell models from CMS4 tumour seem to be less anti-inflammatory

than the other tumour-derived models.

Biotin deficiency decreases differentiation toward anti-inflammatory regulatory T-cells [215]. It thus

makes sense that this pathway is very present in regulatory CD4 T-cells, even more so in tumour regu-

latory CD4 T-cells. Although most regulatory CD4 T-cell models have relatively high presence of biotin

metabolism, it is visibly higher in group (3).

Folate metabolism coverage is lower in groups (1) and (2). Yamaguchi et al [216] reported that folate
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receptor 4 (FR4) is crucial for murine regulatory CD4 T-cell expansion in vivo and its blockade enhanced

anti-tumour immunity.

High levels of hydrogen sulfide (H2S), produced in the sulfur metabolism pathway, are known to limit

the release of pro-inflammatory molecules and promote the secretion of anti-inflammatory cytokines [217].

Knockout of genes that encode for H2S-producing enzymes decreases regulatory CD4 T-cell proliferation

[218].

The carnithine shuttle (mitochondrial) is in charge of transporting FAs in and out of the mitochondria,

crucial for FAO to occur.

Cytotoxic CD8 T-cells Twelve pathways are differentially covered between normal and tumour cyto-

toxic CD8 T-cell models (supplementary table 16). When plotting these pathways in a heatmap (figure

23), it is possible to see a clear separation between tumour- and normal- derived models. The pathways

that are more clearly different between the two groups are oxidative phosphorylation (OXPHOS), biopterin

metabolism, pantothenate and CoA biosynthesis, carnitine shuttle (peroxisomal), folate metabolism, and

estrogen metabolism. There are sphingolipid-related pathways (glycosphingolipid biosynthesis-ganglio se-

ries, sphingolipid metabolism and glycosphingolipid metabolism). There is one model from a CMS2 tu-

mour, however, that seems closer to the normal-derived models, as pathway coverage is very similar apart

from folate metabolism and estrogen metabolism. Also, from the 10 tumour-derived models, only 3 have

relatively low coverage of estrogen metabolism.

Figure 23: Differentially covered pathways between normal- and tumour- derived cytotoxic CD8 T-cell mod-
els.

Folate deficiency was shown to reduce CD8+ T-cells capacity to proliferate in response to activation.

This sensitivity to the lack of folate is higher in CD8+ T-cells than CD4+ T-cells [219]. We showed previously

that the folate metabolism in regulatory CD4+ T-cell models from CMS4 tumours, and normal-matched

tissues, was less covered than the other tumour-derived models. Regarding estrogen metabolism, estro-

gens are usually correlated with an immunoenhancement effect on the immune system, with CD8+ T-cells
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showing a high response [220]. Navarro et al [221] showed that the female human CD8+ T-cells incubated

with higher concentrations of the estrogen 174 -estradiol (E2) were significantly more cytotoxic, while the

male human CD8+ T-cells showed an increase but not significant. Of note, the 3 tumour-derived models

with low estrogen metabolism are not all from male patients, and the other tumour-derived models are not

all from female patients. The same occurs in the normal-derived models.

Increased levels tetrahydrobiopterin (BH4), by either providing high concentrations of it in the medium

or by overexpression of GCH1, a gene from the biopterin metabolism, were shown to enhance proliferation

of stimulated mice CD4 and CD8 T-cells. Cronin et al [222] further showed that stimulated BH4-deficient

T-cells hold decreased mitochondrial respiration and oxygen consumption. Indeed, OXPHOS and pan-

tothenate and CoA biosynthesis (essential for the TCA cycle) are two pathways that are also more present

in the tumour-derived cytotoxic CD8 T-cell models than those derived from normal-matched tissue.

4.4.3 Differences in models’ structure between cell-types

We also wanted to assess if any pair of cell-types’ metabolism was significantly different, i.e., if the pathway

presence differed between them. For that, we performed pathway differential analysis based only on

comparing the pathway coverage. From all the pairs of cell-types, regulatory vs IL17+ CD4 T-cells, and

naïve vs proliferative CD8 T-cells showed the most interesting results.

To calculate the most differentiated pathways for each pair of cell-types, we first calculated the fold

change on pathway coverage between two cell-types using the R package gtools [211]. Only those with

absolute fold changes higher than 1.5 were subsequently tested using the non-parameteric test Mann-

Whitney using the R package stats [212]. p-values were adjusted using the Benjamin & Hochberg (FDR)

method [213]. Pathways with an adjusted p-value smaller than 0.05 were considered differentially covered.

IL17+ CD4 vs regulatory CD4 T-cells Nine pathways are differentially covered between IL17+ and

regulatory CD4 T-cell models (supplementary table 18). When plotting these pathways in a heatmap (figure

24), it is possible to see a separation between these two cell-types. The pathways that are more clearly

different between the two cell-types are biotin metabolism, fatty acid biosynthesis, glycerolipid metabolism,

and keratan sulfate biosynthesis.

We previously showed that biotin metabolism was more present in tumour-derived regulatory CD4

T-cell models than those derived from normal matched mucosa and that biotin deficiency revealed a

decreased differentiation towards anti-inflammatory regulatory T-cells [215]. Now, when comparing IL17+

and regulatory CD4 T-cells, we were also able to capture the difference in biotin metabolism presence

between these two cell-types, where this pathway is less present in IL17+ CD4 T-cell models. Indeed,

biotin deficiency did not only lead to a decreased differentiation towards anti-inflammatory regulatory T-

cells, but also induced Th1 and Th17-mediated pro-inflammatory responses [215]. This shows that, like

corroborated in the literature, that biotin metabolism is important for an anti-inflammatory function of

regulatory T-cells, while it is not necessary for IL17+ CD4 T-cell function.
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Figure 24: Differentially covered pathways between IL17+ and regulatory CD4 T-cell models.

The normal-derived regulatory CD4 T-cell models tend to cluster closer to IL17+ T-cell models than

the other regulatory CD4 T-cell models. Interestingly, the pathways that are clearly different between these

two cell-types were also considered differentially present between normal- and tumour- derived regulatory

CD4 T-cell models. These pathways are biotin metabolism, fatty acid biosynthesis (even-chain), fatty acid

biosynthesis (odd-chain), glycerolipid metabolism, and keratan sulphate biosynthesis.

Protein related pathways (protein modification, assembly and degradation, and peptide metabolism)

were also differentially more present in regulatory CD4 T-cells but were not considered differentially present

between normal- and tumour- derived regulatory CD4 T-cell models.

Naive CD8 vs proliferative CD8 T-cells Ten pathways are differentially covered between naïve and

proliferative CD8 T-cell models (supplementary table 17). When plotting these pathways in a heatmap

(figure 25), it is possible to see a clear separation between these two cell-types. The pathways that

are more clearly different between the two cell-types are carnithine shuttle (endoplasmic reticular and

mitochondrial), thiamine metabolism, sulfur metabolism, and O-glycan metabolism.

The carnithine shuttle (mitochondrial) is in charge of transporting FAs in and out of the mitochondria.

This is known to be crucial for fatty acid oxidation, process in which naïve T-cells greatly rely on [30].

However, our models show higher presence of carnithine shuttle (endoplasmic reticular and mitochondrial)

in proliferative CD8 T-cell models than in naïve CD8 T-cell models, except for a few naïve models that also

have a high presence of carnithine shuttle (endoplasmic reticular). Still, Cong-Hui et al [223] showed that

transport of fatty acids into the mitochondria by CPT1 may be required for anabolic processes that support

healthy mitochondrial function and proliferation independent of fatty acid oxidation in cancer cells. It could

be the same case for proliferative T-cells. Endoplasmic reticulum’s carnithine shuttle has been shown to

function as an antioxidant to inhibit endoplasmic reticulum stress in proliferative cells other than T-cells

[224].
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Figure 25: Differentially covered pathways between naive and proliferative CD8 T-cell models.

Glycans are essential for signaling and cell-cell interactions, and they have been shown to be important

in T-cell development, activity, differentiation and proliferation. Although O-glycans are de novo synthesized

by cells, naïve T-cells cannot synthesize core 2 O-glycans. Following TCR stimulation, T-cells increase ex-

pression of 2 O-glycan synthesis, which allows proliferative T-cells to extravasate into non-lymphoid tissues

[225].

4.5 Predicting cell-types in the different stages of model

reconstruction

We sought to assess how well the data from different stages of model reconstruction predict the different

cell-types. Using pseudo-bulk transcriptomics data leads to the best results out of all stages (figure 26),

with an MCC of 0.793. Nevertheless, the model structure (presence/absence of reactions) is still a good

classifier for cell-type, with an MCC of 0.526. If we filter the reactions without a GPR, this value increases

to 0.583.

Figure 26: MCC results when predicting cell-type using test samples from the pseudo-bulk RNAseq (in
CPMs), reactions presence, or pFBA predicted fluxes datasets.
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The fluxes predicted using the normal human blood medium lead to the worst results, with an MCC

of 0.350. This suggests that the structure of a model is a better indicator of cell-type than predicted

fluxes. Also, a good structure that correctly resembles the experimental data does not necessarily mean

that predicted fluxes will be good, as the model’s objective and constraints like the medium used affects

predictions. Nevertheless, the fluxes still have some predictive power, as the MCC is clearly higher than

0. This time, the pFBA fluxes without filtration of the reactions without a GPR give better predictions than

those with (MCC 0.350 > 0.293).

Even though different, we can thus expect high flux similarities between the models of the different T-

cell subtypes. We calculated the Euclidean distances of the structure (supplementary figure 56A) and of the

predicted fluxes under normal medium (supplementary figure 56B) between the different models. Indeed,

all models were structurally very different from each other, while leading to very similar flux predictions.

4.6 Flux Predictions

4.6.1 Biomass and ATP production

We chose different objectives for the models of proliferative T-cells and the remaining, non-proliferating,

T-cells. As mentioned, biomass production is not the main objective of non-proliferative T-cells, with the

production of energy being as important. With this, the proliferative T-cells’ models were optimised for

biomass production while the remaining were optimised for both biomass and ATP production, using

pFBA.

Having this in mind, prediction results do show that the biomass of proliferative T-cells is higher than

their naïve counterparts (figure 27), as expected. Cytotoxic CD8 T-cell follicular CD4 T-cells and IL17+ CD4

T-cell models also have relatively low biomass.

Figure 27: Biomass flux prediction using normal human blood.

Some models from naïve CD4, follicular CD4, memory CD4, memory CD8 and regulatory CD4 T-cells

showed biomasses as big as those observed in the proliferative T-cells’ models, even though the objectives
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are different. While for memory T-cells the flux going through the biomass reaction varies in both tumour-

and normal matched- derived models (figure 28A), all naive CD4 T-cell models, except one, that have high

biomass are from tumour tissue samples. In line with the high biomass fluxes, all naïve CD4 T-cell models,

except one, that have low ATP production levels are from tumour tissue samples (figure 28B).

As for regulatory CD4 T-cell models, the models with high biomass are from tumour samples of CMS1

and CMS2 types (figure 28A). Interestingly, regulatory CD4 T-cell models from CMS4 and one from CMS3

clustered closer to those from normal tissue when looking into the pathway coverage in section 4.4.2,

while models from CMS1 and CMS2 showed higher coverage of pathways connected to pro-inflammatory

functions. While the models from tumour tissues of type CMS1 and CMS2 have high biomass flux, unlike

the remaining regulatory CD4 T-cell models, only those from CMS1 have low ATP production (figure 28B).

Figure 28: Biomass flux (A) and ATP production (B) predictions using normal human blood, separated by
CMS type.
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Regarding ATP production, it was expected that it would be higher in non-proliferative T-cells, due to the

objectives chosen for pFBA. It is visible (figure 28A) that proliferative T-cells do have less ATP production

than the remaining T-cell types. However, apart from cytotoxic CD8 T-cells, some of the models of these

non-proliferating T-cell types have relatively lower or equal ATP production to those of proliferative T-cells.

We further checked what would happen to the biomass and ATP production if all models, irrespective

of cell-type, were optimised for biomass production only (supplementary figure 58). Even though we can

see some difference in biomass fluxes between naive and proliferative CD8 T-cells, all cell-types show

relatively the same biomass and ATP production flux. This shows the importance of choosing the right

objective to predict a model’s fluxes that can depict the real fluxes of a cell-type. Previous studies [129,

137, 148], including one for T-cells, have also applied an objective that would combine biomass and

ATP production for models characterising normal, non-proliferative, cells, while proliferative cell models

(tumour and normal) would only have the maximisation of biomass as their objective.

Performing prediction of the cell-types based on the pFBA fluxes predicted using biomass as the only

objective for all models (figure 29) lead to worse results, especially when comparing those obtained using

all reactions (MCC of 0.158 vs 0.350).

Figure 29: MCC results when predicting cell-type using test samples from the pFBA predicted fluxes
datasets. pFBA: pFBA predictions with the different objectives and all reactions; pFBA GPRS: pFBA pre-
dictions with the different objectives and only reactions with GPRs; pFBA Biomass: pFBA predictions with
biomass as the only objective and all reactions; pFBA Biomass GPRS: pFBA predictions with biomass as
the only objective and only reactions with GPRs.

Ploting the biomass against the ATP production (figure 30) shows that most proliferative models have

relatively low ATP production flux and a variable biomass flux that is mostly high (13 out of 19 models).

Regarding the remaining models, which are non-proliferative and thus were maximised for both ATP and

biomass production, most either have high biomass and low ATP production (28 out of 123 models), or

low biomass and high ATP production (73 out of 123 models). This shows that even when maximising for

both biomass and ATP production, the tendency of models with high biomass to have low ATP production,

and vice versa, is still captured. Furthermore, most models where this is not observed are from tumour
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tissue samples: 9 of the 12 models with low ATP production and biomass and 10 out of the 15 models

with high ATP production and biomass.

Figure 30: Models’ fluxes of the ATP production and biomass. Upper left: high biomass and low ATP;
upper right: high biomass and high ATP; bottom left: low biomass and low ATP; bottom right: low biomass
and high ATP.

4.6.2 Sources of FADH2 and NADH and fatty acid (FA) uptake

In general, all cell-types are obtaining most of their FADH2 (figure 31A) and NADH (figure 31B) from fatty

acid oxidation (FAO) pathway. This was assessed by calculating for each pathway the total flux going

through the reactions that produce FADH2 or NADH.

Regarding the pathways that work as NADH sources (figure 31B), glutaminolysis is the one that con-

tributes the least, followed by glycolysis. After FAO, the TCA cycle is the pathway that most contributes

to the production of NADH in the models. Regarding proliferative CD4 and CD8 T-cells, however, their

models show that the biggest source of NADH is gycolysis, followed by TCA cycle (supplementary figure

59).

The models for naive T-cells are in line with literature [30], as they do rely greatly on FAO, followed

by the TCA cycle (figure 31). Proliferating T-cells also show an expected higher dependency on glycolysis

than other pathways. The flux going through NADH producing reactions from glycolysis is not higher in

proliferative versus naive T-cell models, however.

68



4.6. FLUX PREDICTIONS

Figure 31: Cumulative fluxes (mmol/gDW/h) of the reactions that produce (A) FADH2 or (B) NADH, for
each source pathway.

Although memory T-cells synthesize FAs and aerobic glycolysis is reduced, effector memory T-cells

that reside in tissues rely on the import of extracellular FAs and glycolysis [43]. This might be why there

are memory CD4 and CD8 models that either have relatively high flux of FAs uptake or no/very close to

no uptake (figure 32A). Also, memory CD4 T-cells have a higher median of fluxes producing NADH and

FADH2 from FAO and glycolysis than memory CD8 T-cells (figure 31).

Proliferative T-cells are characterised by relying in fatty acid synthesis instead of uptake (figure 1),

which shows in our results (figure 32A), with a null or very close to null uptake of fatty acids.

Regarding regulatory CD4 T-cells, Pacella et al’s study [214] found that regulatory CD4 T-cells from

the tumour site tended to acquire less FAs, despite the up-regulation of CD36, a transporter of FAs into the

cell. We not only showed in section 4.4.2 that fatty acid synthesis was more present in tumour regulatory
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CD4 T-cell models, but also now pFBA predictions show smaller fatty acid uptake fluxes in a lot of the

tumour-derived models (figure 32B), when compared to the normal-derived ones.

Finally, although IL17+ CD4 T-cells were found to rely on de novo FA synthesis rather than acquisition

of extracellular fatty acids to meet lipid requirements [49], a lot of the IL17+ CD4 T-cell models show a

relatively high flux of FA uptake (figure 32A).

Figure 32: Cumulative fluxes (mmol/gDW/h) of the reactions that uptake fatty acids (FAs) from the
medium, (A) per cell-type and (B) separated by tissue of origin.

4.6.3 Effect of metabolite availability on biomass

We next evaluated the effect that the absence of certain metabolites has on the biomass of the T-cell

models. Thus, the objective of all models was set to maximise only biomass.

No Tryptopahn It is expected that absence of tryptophan from medium causes T-cells’ biomass to

decrease, as it has been shown that indoleamine-pyrrole 2,3-dioxygenase (IDO), which catalyses trypto-

phan metabolism in the kynurenine pathway, inhibits T-cell activation by tryptophan deprivation and by
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promoting the expansion of regulatory T-cells [226]. The biomass of all models decreases to zero or very

close to zero once tryptophan is removed from medium (figure 33), even regulatory CD4 T-cells.

Figure 33: Distribution of the biomass flux of the T-cell types, with and without tryptophan in the medium.

No Oxygen Although a lot of models across most cell-types suffer a decrease in biomass flux, most

cell-types, on average, do not suffer a big change (figure 34).

Figure 34: Distribution of the biomass flux of the T-cell types, with and without oxygen in the medium.
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In general, it is expected that T-cells suffer reduced proliferation in an environment with no oxygen [227,

228], even though reduced amounts of oxygen up-regulate genes involved in glycolytic ATP production and

down-regulates the OXPHOS pathways [229], associated with higher [230, 231] or no effect [229] in

proliferation. Still, it has been pointed out that the impact of oxygen in cell viability relies on the type of

stimulus that the stimulated cultures received, as two different stimuli revealed different impacts of oxygen

levels on T-cells proliferation [232, 233]. Thus, removing oxygen from the metabolic models’ medium can

result in either decreased, increased or no effect on biomass.

It is well known that the effects of hypoxia are coordinated by the hypoxia-inducible transcription factors

(HIFs). As noted before, however, the metabolic models do not capture the signaling and/or regulation

pathways. Thus, discrepancies between the effect of hypoxia in our models and literature might be due to

this. Furthermore, most studies on the effect of hypoxia test the cells under very low oxygen levels, and

not in complete absence of it.

No Glutamine Unavailability of glutamine in medium, with glucose present, decreases biomass flux

to or very close to zero across all cell-types (figure 35).

Figure 35: Distribution of the biomass flux of the T-cell types, with and without glutamine in the medium.

As reported in the literature, glutamine seems to be essential for all T-cells’ proliferation [226, 227,

234], especially because it acts as a nitrogen donor for DNA and RNA nucleotide production [227, 234].

Indeed, DNA and RNA production decreases to zero, or very close to zero, when no glutamine is available

in the models’ medium (supplementary figure 60).

No Nucleotides Overall, there is no difference in biomass flux (figure 36) and production of DNA

(supplementary figure 61) when no nucleotides are available in the medium. This goes in line with Ma et

al’s study [235] on in vitro vs in vivo metabolism of CD8+ T-cells, where the effector cells where shown to

almost entirely rely on de novo nucleotide biosynthesis.
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Figure 36: Distribution of the biomass flux of the T-cell types, with and without nucleotides in the medium.

No Glucose When removing glucose from medium, most models do not suffer changes in the biomass

flux, with only some showing decreased biomass (supplementary figure 62). This, however, is not corrob-

orated by literature, as it has been reported decreased T-cell proliferation rates in glucose-deficient media

[227].

However, these studies are mainly done in vitro, where not all metabolites present in the blood are

used and glucose concentration is significantly higher than physiological levels. The existence of alternative

metabolites in the medium may reduce the dependence on glucose.

Essentiality of genes that encode transporters As detailed in the following section, we performed

gene essentiality for all models. From the 932 genes that are potentially essential, 201 catalise transport

reactions. From these, 43 genes were predicted as essential in our pipeline for at least one cell-type.

Focusing on those that catalise uptake of metabolites, we were left with 14 genes (supplementary figure

14).

Interestingly, some of these genes are involved in co-uptake of sodium and chloride (SLC12A3);

sodium- and chloride- dependent transportation of glycine (SLC6A5); sodium- and chloride- dependent

transportations of taurine and 4 -alanine (SLC6A6); sodium-dependent transportation of monocarboxylates

and short-chain fatty acids (SLC5A8); and sodium-dependent uptake of the bile acid sulfotaurolithocholate

(SLC10A6). Other essential genes catalise uptake of compounds like amino acids (SLC7A11, SLC7A8,

SLC7A5); prostaglandines, leukotrines and other eicosanoids (SLCO2A1).

It is noteworthy that no single-deletion of a gene responsible for the uptake of tryptophan or glutamine

was reported as essential. This is due to the uptake of these metabolites being done by reactions that are

catalised by more than one alternative gene, or even by different reactions catalised by different genes.
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Thus, all genes related to the uptake of each of these metabolites would have to be deleted to replicate

the results obtained upon their removal from the medium.

4.7 Gene Essentiality

4.7.1 Validation with CRISPR-CAS9 studies

We compared the gene essentiality predictions with two CRISPR-CAS9 studies that evaluated how essential

the genes were for in vitro human CD4 [236] and CD8 [237] T-cell proliferation.

Ting et al [236] evaluated a total of 2 658 genes, of which only 274 are present in genes tested in

silico (figure 37A). Shifrut et al [237], on the other hand, tested a total of 9 329 genes, of which only 462

are part of the genes tested in silico (figure 37A). 324 genes tested in silico were not tested in any of the

studies (figure 37A). It should be kept in mind that some of the genes could be present in two or all the

three datasets, but the gene symbol used could be different. As a simple comparison was made between

the symbols present in the three datasets, this might be the case for some genes.

Figure 37: Venn diagrams of (A) the genes that were tested by the 3 different datasets, (B) the genes
tested in silico and the genes reported as essential by the studies, (C) the in silico predictions and the
genes tested, and (D) from the common genes between the studies and the pipeline, the predicted essential
genes and the essential genes reported by the respective study, for both CD4 T-cells (top diagram) and
CD8 T-cells (bottom diagram).
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As no CRISPR-CAS9 studies testing cell proliferation were found for any specific CD4 or CD8 T-cell

subtype, we joined the genes that were predicted as essential for each CD4 T-cell subtype together and

compared them with those from the study of Ting et al [236]. The same thing was done for the CD8 T-cell

subtypes, for comparison with Shifrut et al [237].

From the 932 genes tested in our pipeline, 14 were only essential in CD8 T-cell subtypes, while 32

were only essential in CD4 T-cell subtypes (figure 37C). 78 were essential in both CD4 and CD8 T-cell

subtypes.

From the 2 658 genes tested by Ting et al [236], 48 were considered essential. Of these 48, only

14 are present in the group of genes tested in silico (figure 37B). For the study of CD8 T-cells [237], 454

genes were found to be essential, in the total of 9 329 genes tested, and only 160 are present in the group

of genes tested in our pipeline. The CRISPR-CAS9 studies share 19 essential genes, 7 of which are part

of our tested genes.

For a fair comparison between our predictions and the studies’ essential genes, we only used the in

silico genes that were also tested in the studies (figure 37D). For the CD4 T-cells, only 5 were considered

essential in both the study [236] and this work. While 9 in silico predictions were not essential in the

study, 20 study’s essential genes were not considered so in our pipeline. For the CD8 T-cells, 27 were

considered essential by both our pipeline and Shifrut et al [237]. However, 22 in silico essential genes

were not considered essential by the study, and 133 of study’s essential genes were not predicted essential

in our pipeline.

There is a marked difference between the in silico predictions and the results reported by both studies.

However, from the 274 common genes, 240 genes are not considered essential in both CD4 T-cells’

datasets, while 280 were not essential in both CD8 T-cells’ datasets, in the total of 462 common genes.

It is good to keep in mind, however, three main points: (1) the CRISPR-CAS9 studies were performed

with healthy human T-cells in vitro, while our models represent T-cells from a tumour patient (some from

tumour tissue, others from normal matched tissue); (2) the medium used in the predictions does not

resemble a medium usually used in vitro, but instead resembles the metabolites present in healthy human

blood; and (3) the metabolic models can only predict the essentiality of a gene at the metabolism level,

they do not account for regulatory and signalling pathways that can affect the essentiality of a gene.

4.7.2 Pathways affected across cell-types

We wanted to check the pathways with the most essential genes, i.e., the most affected pathways. For

that, from all the potential essential genes involved in a pathway, we calculated the percentage of those

that were essential to each model. We focused on the most affected pathways whose number of potential

essential genes is bigger than one (table 6).
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Table 6: Top twenty pathways with the most median percentage of essential genes.

Pathways % of essential genes

Sulfur metabolism 33.3
Butanoate metabolism 25.0
Cholesterol biosynthesis 2 25.0
Glycosphingolipid biosynthesis-globo series 25.0
Phosphatidylinositol phosphate metabolism 25.0
Aminoacyl-tRNA biosynthesis 19.0
Fructose and mannose metabolism 16.7
Propanoate metabolism 16.7
ROS detoxification 16.7
Eicosanoid metabolism 16.7
Glycosphingolipid metabolism 16.7
Metabolism of other amino acids 14.3
Cholesterol metabolism 12.8
Tryptophan metabolism 12.5
Beta-alanine metabolism 12.5
Chondroitin / heparan sulfate biosynthesis 12.5
Amino sugar and nucleotide sugar metabolism 11.8
N-glycan metabolism 11.8
Pyrimidine metabolism 11.5
Pentose and glucuronate interconversions 11.1

Eicosanoid production has been described to normally have low constitutive levels [206], although

eicosanoids are recognised as possibly having both pro- and anti- inflammatory roles in the immune re-

sponse of T-cells [207]. Some eicosanoids are produced from eicosapentaenoic acid (EPA) and dihomo-

6 -linolenic acid (DGLA), but most are derived from arachidonate [206]. These arachidonate-derived

compounds include hydroxyeicosatetraenoic acids (HETEs), epoxides, hydroperoxyeicosatetraenoic acids

(HPETEs), lipoxins (LXs), leukotrienes (LT), and prostanoids.

All the 6 genes that affect at least one reaction in the Eicosanoid metabolism once deleted catalyse

reactions that produce several arachidonate-derived eicosanoids (table 7).

Table 7: Potential essential genes from the Eicosanoid metabolism pathway and respective products.

Gene Product(s)

ALOX12B 12-HPETE
CYP2F1 12-HETE
CYP4F8 18-HETE
CYP4F12 10-HETE

LTC4S Leukotriene C4
HPGD Prostaglandin F2" /15-Keto-Prostaglandin F2A
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As mentioned earlier, arachidonate-derived prostanoids and leukotrienes have been linked to prolifer-

ation, apoptosis, cytokine production, differentiation, and chemotaxis in T-cells [206].

CYP4F8 was tested in both CRISPR-CAS9 studies [236, 237] and LTC4S was tested in the CD8 T-cell

related study [237]. Only LTC4S was considered essential.

Glycosphingolipids (GSLs) are present in the cell membranes and have been related to T-cell activation,

differentiation and function [238]. A group of GSLs are (iso)globosides, whose synthesis is represented

in the metabolic models through the metabolic pathway Glycosphingolipid biosynthesis-globo series, one

of the most affected pathways by gene essentiality. Indeed, the synthesis of this group of GSLs, as well

as other types, has been shown to occur in normal human T-cells [238, 239]. From the 8 genes in this

pathway that were tested for gene essentiality, 4 were tested by ther CD8 T-cell related study (A4GALT,

B3GALNT1, ST8SIA1 and GLA) [237], and only 1 by the CD4 T-cell related study (GLA) [236]. Only Shifrut

et al [237] reported essential genes, namely A4GALT and B3GALNT1.

Other highly affected pathways include Butanoate metabolism, which has been shown to play an

important role in the cytotoxic capacity of in vitro mouse CD8+ T-cells when these cells were supplemented

with low-dose butyrate [240]. In fact, one of the genes tested from this pathway was considered as essential

for the cytotoxic CD8+ T-cell type (the gene was essential for more than 90% of this cell-type’s models).

As mentioned before, hydrogen sulfide (H2S) is produced in the sulfur metabolism pathway. Knockout

of genes that encode for H2S-producing enzymes was shown to decrease regulatory CD4 T-cell proliferation

[218].

Some genes catalyse reactions from different metabolic pathways. So, it should be kept in mind that

only the inactivity of some of those reactions affected by a gene deletion might have an actual effect on

the model’s objective. So, a pathway that is very affected upon gene deletions might not be ‘causing’

the inability of a model to perform its objective when that pathway is not fully working. Evaluating the

essentiality of each reaction individually would aid in understanding what metabolic pathways could be

seen as more important for a cell-type.

Due to having a lot of genes associated to it, the Transport reactions pathway does not come up as one

of the most affected pathways when looking into the percentage of genes that affect the models’ objective.

However, it is the pathway that has the biggest number of genes considered as essential in each model.

This was expected, due to the high number of potentially essential genes (201) that represent the transport

of metabolites between compartments of a cell or the uptake of metabolites. Thus, we also checked the

pathways with the highest median number of essential genes (table 8), as looking into the percentage of

essential genes in the pathways can focus the analysis only on pathways with less genes.

The 20 pathways with the most median number of genes that are essential are crucial for cell

proliferation. There are several pathways related to amino acids metabolism (glycine, serine and thre-

onine metabolism, valine, leucine and isoleucine metabolism, phenylalanine, tyrosine and tryptophan

metabolism, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, and cysteine

and methionine metabolism), DNA/RNA production (nucleotide metabolism and pyrimidine metabolism),

and fatty acids (fatty acid oxidation and fatty acid biosynthesis). Other important pathways include oxidative
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phosphorylation, cholesterol metabolism, and aminoacyl-tRNA biosynthesis.

Table 8: Top twenty pathways with the most median number of essential genes.

Pathways Number of essential genes

Transport reactions 40.5
Nucleotide metabolism 11.0
Oxidative phosphorylation 8.0
Sphingolipid metabolism 7.0
Fatty acid oxidation 6.0
Cholesterol metabolism 5.0
Aminoacyl-tRNA biosynthesis 4.0
N-glycan metabolism 4.0
Steroid metabolism 4.0
Glycerophospholipid metabolism 4.0
Pyrimidine metabolism 3.0
Glycine, serine and threonine metabolism 3.0
Valine, leucine, and isoleucine metabolism 3.0
Phenylalanine, tyrosine and tryptophan biosynthesis 3.0
Fatty acid biosynthesis 3.0
Bile acid biosynthesis 3.0
Drug metabolism 3.0
Arginine and proline metabolism 2.5
Propanoate metabolism 2.0
Alanine, aspartate and glutamate metabolism 2.0
Cysteine and methionine metabolism 2.0

4.8 Effect of a tumour blood medium

We compared the pFBA predictions obtained using the normal human blood medium, constructed using

information from the Serum Metabolome DataBase (SMDB), with those obtained using the tumour human

blood medium. This tumour human blood medium was created from information on fold changes between

the blood of normal and tumour patients. From the total of 537 metabolites in our normal human blood

medium, we only found information for 84 of the metabolites (approximately 15.6%).

We performed a non-parametric paired statistical test, Wilcoxon signed rank test, to find which models’

reaction fluxes differed significantly between the two types of medium. This was only observed for 53 out

of the 116 models that returned feasible pFBA solutions (approximately 46% of the models, figure 38A).

More than half of the models of naive CD4 (56.25%), memory CD4 (71.43%), follicular CD4 (55.56%),

proliferative CD4 (57.14%), and proliferative CD8 (55.56%) T-cells significantly differed (figure 38B). No

naive CD8 T-cell models were affected by the change in medium.

We next checked what pathways changed the most when the medium was changed. For this, we

78



4.8. EFFECT OF A TUMOUR BLOOD MEDIUM

selected the top 30 pathways with the highest median of ratio of affected reactions and plotted the dis-

tribution of this ratio across all models for each pathway (figure 38C). As expected, the most affected

pathways are those directly affected by the metabolites whose concentration changed.

Figure 38: (A) Number and (B) percentage of models, by cell-type, whose metabolism is significantly
different when the medium was changed to a tumour blood-like one. (C) Top 30 pathways that changed
the most when the medium was changed.

The change in concentration of amino acids (asparagine, aspartate, glutamate, glutamine, glycine, his-

tidine, isoleucine, leucine, lysine, methionine, serine, threonine tryptophan, tyrosine, and valine) affected

the flux of a lot of the reactions from two pathways related to the metabolism of this type of metabolites:

alanine, aspartate and glutamate metabolism; cysteine and methionine metabolism.

4 -oxidation of even-chain fatty acids (mitochondrial) and fatty acid activation (cytosolic) pathways were

affected. The concentration of four unsaturated FAs (elaidate, linolenate, nervonic acid, oleate) and two

saturated FAs (lauric acid, myristic acid) changed in the tumour medium.

Moreover, glycolysis / gluconeogenesis was affected by changes in acetate, glucose, lactate, Pi, PEP

and pyruvate levels, while the TCA cycle was affected by citrate, fumarate, glycerate, and malate.

Other pathways were affected not because the metabolites that enter those pathways suffered a change

in concentration in the medium, but because of the change in other pathways. This is the case of ROS

detoxification.

We finally checked if the flux of the biomass reaction also changed, considering that pathways like

amino acids’ metabolism, fatty acid oxidation, glycolysis, TCA cycle, and oxidative phosphorylation were

some of the most affected by the change in medium.

Only 45 models (not necessarily part of those that had a significantly different metabolism) had dif-

ferent biomass flux. The biomass flux increased in 26 of these models (supplementary figure 63A). No

naïve and cytotoxic CD8 T-cell models’ biomass changed (supplementary figure 63D).
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4.9 Discussion

The metabolic models of T-cells structurally resemble well the respective gene expression data, with not-

so-distant predictive capabilities of the cell-types (figure 26). However, there are still a lot of similarities

between the different types of T-cells, whether in gene expression (figure 19) or in the models’ structure

(figure 21). Pathways like cholesterol biosynthesis, heparan sulfate degradation, keratan sulfate degrada-

tion, chondroitin sulfate degradation, leukotriene metabolism, and fatty acid related pathways are all highly

present across all T-cell models and known for being important for T-cell function.

Nevertheless, some groups of models show interesting differences in pathway coverage. For example,

regulatory CD4 t-cell models from normal tissue samples seem to have less anti-inflammatory function due

to less presence of pathways related to anti-inflammatory functions in T-cells (figure 22). Interestingly, we

found models from CMS4 tumour samples to have less coverage of anti-inflammatory related pathways

than the other tumour models. These regulatory CD4 T-cell CMS4 models also grouped closer to the

normal-derived models, suggesting that regulatory CD4 T-cells from CMS4 tumours are not able to be

as anti-inflammatory as they could. Further corroborating the less anti-inflammatory function of normal-

derived regulatory CD4 T-cells is the close clustering of these models with those of IL17+ CD4 T-cells

(figure 24). Normal-derived regulatory CD4 T-cell models also have visibly less reactions than their tumour-

counterparts (figure 20A), with models from CMS4 tumour being closer to normal-derived ones than the

other tumour-derived models (figure 20B). When performing flux prediction with the pFBA approach, the

biomass of normal-derived models, as well as of those from CMS4 tumours, of regulatory T-cells was null

or very close to null, unlike those from other tumour-derived models (figure 28). All of this suggests that

normal-derived and CMS4 regulatory CD4 T-cell models are also generally less metabolically active than

the other regulatory CD4 T-cell models.

A good structure that correctly resembles the experimental data does not necessarily mean that pre-

dicted fluxes will be good, however. Especially when knowing that these models do not take into con-

sideration enzymatic constraints and gene / metabolic regulation, which are important aspects of a cell

that greatly affect its metabolism. As such, flux predictions are still known to be quite imprecise [178],

which is noticeable in our cell-type prediction results using reaction fluxes vs gene expression and reaction

presence (figure 26).

Nevertheless, the prediction of major metabolic aspects related to T-cells were correct. It was shown

that the median biomass of proliferative T-cell models was higher than the naïve T-cell models, and that

most models (114 out of 142 models with feasible pFBA solutions) have relatively high biomass and low

ATP production or vice-versa.

Fatty acid oxidation (FAO) is the pathway that contributes the most to produce FADH2 in all models.

While models from non-proliferative T-cell models rely mostly in FAO for NADH production, proliferative

T-cell models’ biggest source of NADH is glycolysis. Proliferative T-cells, characterised by relying in fatty

acid synthesis instead of uptake (figure 1), showed to have null or very close to null uptake of fatty acids

in the pFBA predictions (figure 32A).
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The individual deletion of tryptophan and glutamine from the medium decreases T-cell’s biomass to

or very close to zero, while the deletion of nucleotides did not affect the biomass, as expected [226, 227,

234]. Even though biomass was expected to decrease, the deletion of glucose did not affect the biomass

of the models, which could be explained by existence of alternative metabolites in the medium that are

not present in in vitro studies and may reduce the dependence on glucose.

All flux predictions mentioned above were made using a normal human blood medium. Thus, we tried

to construct a medium as close as possible to what a tumour blood medium could be. As there were no

quantitative measurements of a tumour blood medium, unlike the normal one, we constructed the tumour

medium looking into studies that compared peak intensities from mass spectrometry between normal and

tumour blood samples. We were able to change only 84 of the 537 metabolites we have on the normal

medium, which might explain why only 46% of the models differentially changed with the new medium.

Another reason for a low percentage of models that differed might be the fact that cells always try to adjust

so that the metabolism differs as little as possible and this was captured by the models. Nevertheless, the

most affected pathways were those directly affected by the metabolites whose concentration changed. A

better quantitative characterisation of a tumour blood medium would be very helpful in the future to better

estimate the reaction fluxes of these cell-types in the colorectal cancer environment.
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Benchmarking of Tumour Deconvolution Methods

Although scRNAseq gives valuable information about cell-types and states at single-cell resolution, this

technique is not an accurate representation of cell-type proportions in a sample. Bulk RNA sequencing,

on the other hand, is used for diagnostic purposes in routine clinical settings, allowing an unprecedented

amount of data describing tumours.

Cell-type profiles can be recovered from bulk RNAseq data and used for cell-type metabolic model

reconstruction. The proportions can aid in the construction of community models when modelling the

tumour micro-environment.

Having this in mind, we tested and compared several tumour deconvolution methods that were devel-

oped to use scRNAseq data as reference to estimate cell-type proportions. Our CRC atlas of scRNAseq

data was used.

5.1 Methods

5.1.1 Bulk RNAseq Deconvolution

The mixed gene expression profile of a tumour micro-environment can be seen as the linear combination

of the gene expression profiles of each cell type in that micro-environment and the respective proportions

of those cell types. This relation can be portrayed by equation 5.1:

J.L = M (5.1)

Here, M represents a matrix of the gene expression profile for a tumour micro-environment, the bulk

data, with an expression value for each gene (rows) in each sample (columns). J is a matrix representing

the cell type gene expression profiles, with an expression value for each gene (rows) in each cell type

(columns). This matrix is often referred to as reference matrix. Genes in J are the same as those in M.

Finally, L represents the proportions of these cells in the micro-environment. This matrix contains the

proportion of each cell type (rows) for each sample (columns).
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In this chapter, we focus on deconvoluting bulk RNAseq data (M) from CRC samples to obtain the

cell-type proportions (L ).

5.1.2 Bulk data and ground-truth proportions

We used in-house bulk RNAseq tumour samples from CRC patients, gathered at the Leiden University

Medical Center (Leiden cohort) [241] and whose cell counts were calculated by using Hyperion mass

cytometry imaging. A total of 21 samples were available.

The ground-truth phenotypes were divided into 9 different cell-types plus a group named ’other cells’

(see section 5.1.3). To calculate the proportion of a cell-type in a sample (figure 39B), we aggregated the

cell counts of all phenotypes of that cell-type (figure 39A and supplementary table 19) and divided them

by the total number of cells in the sample.

Figure 39: Ground-truth (A) cell counts and (B) proportions of the cell-types used for deconvolution.

5.1.3 CRC atlas as the reference data

The CRC atlas of scRNAseq data constructed was used to build the reference matrix. Usually, scRNAseq

data from peripheral blood mononuclear cells (PBMCs) is used as reference for the deconvolution of

tumour samples. However, this will always lead to incorrect estimation of immune cell-type proportions:

(1) gene expression profile of immune cells from peripheral blood might not represent well the expression

of tumour-infiltrating immune cells; (2) several cell-types present in the tumour are not PBMCs and are

thus not accounted for when deconvoluting the samples (all methods normalize the proportions estimation

to sum to 1).

Mapping cell-types between CRC atlas and ground-truth proportions To test the different

deconvolution methods, we had to find the best overlap between the atlas’s cell-types and the ground-

truth’s cell phenotypes. While doing so, we found the best balance between having appropriate cell-types

matched and enough subtype detail to deconvolute the most important cell subtypes. All cell-types /
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phenotypes that did not have a match between the atlas and the ground-truth were simply grouped in the

Other cells cell-type.

We grouped the cell-types in the CRC atlas, as well as the ground-truth phenotypes, into 10 different

cell-types (more details in supplementary table 19): cancer cells, stromal cells, macro/mono lineage,

B-cells, CD4+ T-cells, regulatory T-cells, CD8+ T-cells, proliferative T-cells, NK cells, and other cells.

Subset of original CRC atlas For computational reasons, and because one of the methods tested

(CIBERSORTx) has a file quota of 1000 MB for each of their website users, a subset of the original atlas

was created and used for all methods, including the calculation of cell-type markers (necessary for some of

the methods). Also, only the cells from tumour samples were kept, as we only used tumour bulk RNAseq

samples for deconvolution.

A maximum of 1 200 cells per cell-type were kept, which reduced the number of cells to a total of 11

187: 904 for NK cells; 683 for proliferative T-cells; and 1 200 for each of the remaining cell-types. The

percentage of cells per patient was maintained.

Cell-Type Markers For each of the 10 cell-types, the cells from that cell-type were compared to all

others to search for gene markers of that cell-type. We used Seurat (R package, v.4.0.3) [157] for this. To

reduce the genes to test, only those with a log2 fold-change value, on average, greater than 0.8 between

the cell-type’s cells and all others were analysed. Also, genes had to be expressed in at least 30% of the

cells in the cell-type. The Wilcoxon Rank Sum test was used. A gene was considered a marker if the

respective p-value was smaller than 0.01. A total of 1169 different genes were obtained.

5.1.4 Methods evaluated

We compared a total of 10 methods. In this section, we give a summary of what these methods can do.

Generally, the methods can be separated into two major groups: those that try to solve the deconvolution

equation 5.1, and thus are non-negative matrix factorization (NMF) based algorithms, and those that are

based on neural networks to predict the proportions (and thus do not necessarily use the deconvolution

equation 5.1). Only two of the methods evaluated belong to the last group of methods: DigitalDLSorter

and Scaden.

AutoGeneS (python package, v.1.0.4) [242] starts by selecting the most interesting genes to use

in the deconvolution by simultaneously minimizing the correlation and maximizing the distance between

cell-types. The signature matrix is generated with only those genes and the proportions are estimated

by minimising the regression error E: J.< .L + 9 = M. Three different regression models can be used

to perform this prediction: NuSVR, non-negative least squares and linear. This method accounts for the

mRNA content bias, where differing cell size, and thus varying per cell RNA content, can affect the correct

estimation of cell-types proportions (see section 5.1.5). AutoGeneS uses the average number of mRNAs

in each cell-type (< in mentioned equation) to try to correct for this bias.
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BisqueRNA (R package, v.1.0.5) [243] starts by generating the signature matrix by averaging read

counts within each cell-type in the single-cell data. Together with the proportions of the cell-types in the

single-cell data, the method then learns gene-specific transformations of the bulk data to account for

technical biases between single-cell and bulk technologies. BisqueRNA then estimates the bulk RNAseq

data proportions using the signature matrix and the transformed bulk data.

BSeqSC (R package, v.1.0) [244] generates a signature matrix to be used by CIBERSORTx (method

explained below) to estimate the proportions of a bulk RNAseq dataset. When this method was first

developed, and due to licensing requirements, the source code for estimating the proportions needed to be

downloaded separately from CIBERSORTx website. However, it seems that new releases of CIBERSORTx no

longer have the source code available. As such, we generated the signature matrix through this R package

and then uploaded it to CIBERSORTx website to perform the estimation. Regarding the generation of the

signature matrix from the scRNAseq data, the gene expression is averaged across all cells within each cell

type. A list of genes known to be markers of the cell-types in question must be given so that the signature

matrix is only calculated with those. Optionally, the single-cell counts can be re-scaled before computing

the average gene expression. If so, the data is transformed into counts per million (CPM) and re-scaled

using the cell-types’ average counts.

CIBERSORTx (Website) [245] first sets to zero the counts of genes whose average expression in a

log2 space is low, to then aggregate cells from the same cell-type by summing the counts in non-linear

space from a few cells and transforms the summed counts into CPM counts. This aggregation process

is repeated several times to generate several transcriptome replicates per cell-type. The genes used in

the final signature matrix are those that are differentially expressed in at least one of the cell-types. This

method gives the opportunity to optionally handle the technical variation between the signature matrix

(single-cell RNAseq) and the bulk mixture (bulk RNAseq) while preserving biological signal. CIBERSORTx

then estimates the bulk RNAseq data proportions using the signature matrix and the bulk data.

DigitalDLSorter (R package, v.0.1.1) [246] trains Deep Neural Network (DNN) models with bulk

RNAseq samples simulated from aggregated and pre-characterised scRNAseq data and whose composition

is thus known. The final trained model is then used to estimate the proportions of true bulk RNAseq

samples. Furthermore, this method can simulate new single-cell profiles from real ones to increase signal

and variability in small datasets or in those with under-represented cell-types.

DWLS (R script) [247] starts by calculating the cell-types’ differentially expressed genes using Seurat

(R package, v.4.0.3) [157] under the bimod likelihood ratio test. After that, several candidate signature

matrices with 50 to 200 marker genes, where the expression values of the genes are averaged across each

cell-type, are tested. The best signature matrix corresponds to the candidate with the lowest condition

number. The signature matrix is then used to estimate the cell-types’ proportions of the bulk RNAseq data

by solving the deconvolution equation 5.1 through a weighted least squares approach.
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MOMF (R package, v.0.2.0) [248] aggregates cells from the same cell-type by summing the raw

counts. These cell-type profiles are normalised by dividing them by the multiplication of the corresponding

cell-type’s total counts with a weight factor (proportion of total cell-type counts in the total counts of the

scRNAseq data). MOMF then estimates the bulk RNAseq data proportions using the signature matrix and

the bulk data.

MuSiC (R package, v.0.2.0) [249] starts by choosing genes with low cross-subject variance, critical

for transferring cell type-specific gene expression information from one dataset to another. Prediction of

proportions for closely related cell-types is difficult, due to their gene expression being closely correlated.

Because of this, MuSiC optionally employs a tree-guided procedure that recursively zooms in on closely

related cell types to estimate the proportions.

Scaden (python package, v.0.9.4) [250] uses a deep neural network ensemble trained on artificial

bulk data simulated with a given scRNAseq reference to infer the cellular composition of the samples. The

final trained model is then used to estimate the proportions of true bulk RNAseq samples.

SCDC (R package, v.0.0.0.9000) [251] is an ensemble method that combines the deconvolution

results from different scRNAseq reference datasets. The references that better recapitulate the true under-

lying gene expression profiles of the bulk samples are given higher weights when integrating the different

results together to produce a final estimation.

5.1.5 RNA content bias correction

Cell-types have differing cell size and thus varying per cell RNA content. For example, a monocyte usually

has more mRNA content than a T-cell. This can affect the correct estimation of the cellular proportions of

the cell-types, as methods will most likely estimate the RNA proportions of the cell-types instead.

Previous studies have tried to address this matter, by applying RNA content bias correction on the

estimated proportions [252] or on the reference matrix, prior to the estimation of proportions [253]. In

both cases, this correction is applied using cell-type factors, which are values that represent the relative

RNA content per cell for the cells in the mixture.

We decided to test each method with and without RNA content bias correction. Both ways of correcting

RNA content bias were evaluated. RNA content bias correction was not tested on methods AutoGeneS and

MuSiC_woGrouping (MuSiC version where the tree-guided procedure is not performed when estimating the

proportions), as these methods were already implemented by taking into consideration the RNA content

bias.

When applying the correction to the reference matrix created from the scRNAseq data provided, the

following was applied [253]:

(/B .,)B (5.2)

where / is the genes x cell-types reference matrix and , the cell-type factors vector.
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To apply correction on the estimated proportions, the following was applied [252]:

,−1.@∑
,−1.@ ′

(5.3)

where , is the cell-type factors vector and @ the estimated proportions.

To obtain the factor of a cell-type, the average of total gene counts of all cells of the scRNAseq atlas in

that cell-type was calculated (table 9).

Table 9: Bias factors used for RNA content bias correction.

Cell-types Bias factor

Cancer cells 16 865.324
Stromal cells 9 361.539

Macro/mono lineage 6 323.148
Proliferative T-cells 4 863.001

B-cells 3 581.911
Regulatory T-cells 2 979.075

CD4+ T-cells 2 946.983
NK cells 2 738.166

CD8 T-cells 2 514.997

5.1.6 Comparison of methods

The methods were run using default parameters or, when available, the parameters advised by the authors.

For AutoGeneS, the three different regression models were tested (NuSVR, non-negative least squares and

linear), and MuSiC was run using the tree-guided procedure (named from here on MuSiC_wGrouping) and

without it (named from here on MuSiC_woGrouping). All methods were run through R language version

4.1.0. For python based methods, they were run with the aid of the R package reticulate (v.1.2.0) [254],

an R interface to Python modules. More detailed information, including scripts, is available in the GitHub

project ?iiTb,ff;Bi?m#X+QKfb�`�+�`/QbQfhmKQm`n.2+QMpQHmiBQM.

The pearson correlation and the root mean square error (RMSE) between estimated and ground-truth

proportions were the metrics used to assess how good the methods were. We chose both metrics and not

just one for three main reasons (figure 40).

If the proportions are perfectly predicted (i.e., estimations equal ground-truth and overlap the y=x

line), we have a correlation of 1 and an RMSE of 0 (figure 40A). However, in situations where the predicted

proportions vary in parallel to the y=x line (figure 40B), the correlation will still be 1, even though the

proportions were not well estimated. In this case, RMSE will be greater than zero. In a last hypothetical

case, if all proportions are predicted 0 and the ground-truth proportions are very close to zero, the RMSE

will be very close to zero, giving the impression that the proportions are being estimated with very little

error (figure 40C). However, the method was not able to detect the cell-type(s) in question. In this case,

the correlation cannot be calculated (originating a missing value) due to null standard deviation.

87

https://github.com/saracardoso/Tumour_Deconvolution


CHAPTER 5. BENCHMARKING OF TUMOUR DECONVOLUTION METHODS

Figure 40: Examples of three different situations of estimated vs ground-truth proportions. (A) correlation
is 1, while RMSE is 0. (B) correlation is 1, but RMSE is 0.1. (C) correlation cannot be calculated (as all
predictions are 0), but RMSE is 0.09.

5.2 Results

5.2.1 CIBERSORTx, DigitalDLSorter and Scaden are the best methods

overall

Overall, three methods standout as the best (figure 41): CIBERSORTx, DigitalDLSorter and Scaden. These

methods have a RMSE smaller than 0.12 and a correlation that goes above 0.8. Closely followed by

AutoGeneS_nusvr and DWLS, the remaning methods have a poor correlation (under 0.42) and most have

a RMSE greater than 0.2. AutoGeneS_linear is by far the worst method. Scatterplots of the estimated

proportions against the ground-truth for the best methods and the worst one are present in figure 42,

while the remaining methods are in supplementary figure 64.

Figure 41: Overall correlation vs RMSE for all methods. A good method has a high correlation and a small
RMSE. Grey horizontal and vertical lines mark a correlation of 0.5 and a RMSE of 0.2, respectively.
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We imagined that just because a method is, overall, one of the best, does not mean that it is the best

at predicting every single cell-type. In fact, a good estimation regarding some of the cells might mask those

others that are very poorly estimated. Also, the cell-types that are constantly more present in the samples,

like cancer cells, affect more the overall RMSE and correlation than those present in proportions almost

close to zero. This is noticeable when plotting the estimated proportions against the ground truth (figures

42 and supplementary figure 64). Thus, it is a good idea to evaluate methods deconvolution ability by

looking into each cell-type separately.

Figure 42: Scatter plots of estimated vs ground-truth proportions for the three clear best methods (CIBER-
SORTx, DigitalDLSorter and Scaden), the two other good methods (AutoGeneS_nusvr and DWLS), and the
worst method (AutoGeneS_linear) overall.

5.2.2 Other methods can be better at predicting a cell-type individually

Per cell-type metrics do show that in overall metrics a good estimation regarding some of the cells masks

those others that are very poorly estimated (figure 43). This is especially evident for AutoGeneS_linear.

This method scores an RMSE of almost 1 for regulatory CD4 T-cells, but for the macro/mono lineage cells

it is smaller than 0.2. The remaining cell-types have scores between 0.5 and 0.75, which is closer to the
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overall RMSE of this method (0.542). Regarding correlation, it is evident that no method scores higher

than 0.8 in any cell-type, although the three best methods overall have a correlation greater than 0.8.

Figure 43: Cell-type correlation vs RMSE for all methods. A good method has a high correlation and a
small RMSE. Grey horizontal and vertical lines mark a correlation of 0.5 and a RMSE of 0.2, respectively.

We next evaluated which method is the best for predicting each cell-type individually (table 10). For this,

we focused on RMSE and correlations metrics (figure 43), but also on visual inspection of the estimated

versus ground-truth proportions (supplementary figures 65 to 73).

Table 10: Best methods for each cell-type.

Cell-type Best Method

Cancer cells Scaden
Stromal cells BisqueRNA
Macro/mono lineage cells BSeqSC
B-cells Scaden
CD4 T-cells CIBERSORTx
Regulatory CD4 T-cells Scaden
CD8 T-cells DigitalDLSorter
Proliferative T-cells MuSiC_wGrouping
NK cells Scaden

The best method to estimate cancer cells is Scaden, followed by CIBERSORTx, DigitalDLSorter, Au-

toGeneS_nusvr and DWLS (figure 43 and supplementary figure 65). These are the methods that are the
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best overall. As no other cell-type shows these methods as the clear best ones, this shows that the cell-

types that are constantly more present in the samples affect more the overall RMSE and correlation of a

method.

While stromal cells (figure 43 and supplementary figure 66) are best estimated using BisqueRNA, fol-

lowed by BseqSC, BseqSC is the best one at estimating the proportions for the cells from the macro/mono

lineage (figure 43 and supplementary figure 67).

Even though MuSiC_woGrouping and CIBERSORTx have better correlation and slight worse RMSE at

estimating B-cells (figure 43), the estimations versus the ground-truth plots (supplementary figure 68)

show that Scaden is the right choice. The very low RMSE is not due to all samples being estimated as zero

and the bad correlation is highly influenced by two samples, without which Scaden’s correlation would be

better and with which MuSiC_woGrouping and CIBERSORTx have better correlation.

When assessing the methods’ RMSE and correlation metrics for regulatory CD4 T-cells (figure 43),

DWLS, AutoGeneS_nusvr and Scaden are the three best. However, visually comparing estimated and

ground-truth proportions (supplementary figure 70) shows that AutoGeneS_nusvr gives negative propor-

tions, while most samples were predicted by DWLS to not have regulatory CD4 T-cells. Scaden under-

estimates regulatory CD4 T-cells, but is still able to detect them. Regarding CD4 (figure 43 and sup-

plementary figure 69) and CD8 T-cells (figure 43 and supplementary figure 71), the best methods are

CIBERSORTx and DigitalDLSorter, respectively.

With better RMSE than DigitalDLSorter, DWLS and MOMF, MuSiC_wGrouping is the best method

to predict proliferative T-cells (figure 43 and supplementary figure 72). Even though they have better

correlation than MuSiC_wGrouping, MOMF only detects the presence of proliferative T-cells in 4 samples,

DWLS returns negative proportions for 4 of the samples, and DigitalDLSorter over-estimates proportions

a lot more than the previous methods.

NK cells is by far the most difficult cell-type to estimate, with no method performing particularly well

(figure 43 and supplementary figure 73). Scaden, followed by DigitalDLSorter, seem to be the methods

that better capture NK cells proportions, even though the respective correlations are negative.

With these results in mind, we decided to see what would happen if a pipeline using the best method

for each cell-type was used (figure 44). Combining the best methods for each cell-type creates better

overall estimations, with a correlation that now surpasses 0.9 and a RMSE smaller than 0.1 (figure 44A).

We tested how different the results would be between a simple combination of the results from the different

methods (Combined) and normalising the combined results of each sample to sum to 1 (Combined_norm,

figures 44C and 44D). Overall, normalising the estimation leads to better results, although the difference

is of only 0.013 and -0.001 for the correlation (0.925 - 0.912) and RMSE (0.085 – 0.086) respectively.

We tried to find an independent dataset for colorectal cancer that also provided information on cell-

type proportions based on mass cytometry to further corroborate these findings. However, we could not

find one. Nevertheless, we checked the overall correlation and RMSE by sample, to check how many

samples benefit from a combined pipeline as opposed to the Scaden method (figure 44B). Indeed, most

samples (76%) were better estimated using the combined approach. The samples that greatly benefited

91



CHAPTER 5. BENCHMARKING OF TUMOUR DECONVOLUTION METHODS

were NIC13, NIC24 and NIC4, which showed some of the worst estimations throughout most methods

(supplementary figure 85) including Scaden. The samples that seem to have not benefitted from the

combined pipeline were NIC16, NIC20, NIC27, NIC6, and NIC7. Still, the metrics did not change much.

Figure 44: (A) Overall correlation vs RMSE for all methods, including the methods combining the best
methods for each cell-type (Combined and Combined_norm). (B) Sample correlation vs RMSE for Scaden,
Combined and Combined_norm. A good method has a high correlation and a small RMSE. Grey horizontal
and vertical lines mark a correlation of 0.5 and a RMSE of 0.2, respectively. Scatter plots of estimated vs
ground-truth proportions for (C) Combined and (D) Combined_norm.

5.2.3 RNA content bias correction does not improve predictions

Both RMSE and correlation metrics (figure 45) of predictions with correction for mRNA content bias do

not show improvement from those without any correction, even though the decrease in prediction ability

is not too steep. There is only one method with improved predictions upon correction on the reference

matrix (Corrected Before). This method is Scaden, but the improvement is not high and, in both cases,

(correction and no correction) Scaden is one of the three best methods. The improvement observed in the

Scaden method seems to be mostly due to an improvement in predicting the proportions of the samples

NIC3, NIC4, NIC13, NIC15, NIC24 and NIC29 (supplementary figure 86). Furthermore, the methods

that already have correction for RNA content (AutoGeneS_linear, AutoGeneS_nnls, AutoGeneS_nusvr and

MuSiC_woGrouping) have some of the worst predictions (figure 45 and 41), with only AutoGeneS_nusvr

showing satisfactory results overall.
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Figure 45: Pearson correlation (A) and (B) RMSE values of the methods without and with correction. Meth-
ods were tested for correction on the reference matrix (Corrected Before) and on the estimated proportions
(Corrected After).

This goes against previous findings [252, 253], where correction for mRNA content bias was shown

to improve deconvolution. However, it is noteworthy that Zaitsev et al [252], which tested the correction

for this bias on the predicted proportions, used a dataset created with only two cell-types whose total RNA

content is considerably different and was measured by analysing bulk RNA data of pure samples. The

small number of cell-types, the big difference in RNA content and its calculation from the exact same cells

used for creation of the samples used in deconvolution might be decisive for a good correction. In our case,

there are much more than 2 cell-types (but the exact cell-types present in the bulk samples is not known),

and the total RNA content is known through a scRNAseq dataset independent from the bulk samples.

Beyond this, Zaitsev et al [252] developed a complete deconvolution method, i.e., a deconvolution method

that does not use prior information on cell-type gene expression to estimate the proportions. Interestingly,

the predictions with correction for RNA content on the estimated proportions lead to the worst results

overall in our work.

Sosina et al [253] tested the correction for this bias on the reference matrix using the MuSiC method

with default parameters. In that study, the single-cell reference used was obtained using the Fluidigm

C1 system, which normalises cDNA libraries to the same concentration prior to sequencing and thus

removes potential variability in RNA abundances across cell-types. The datasets collected in this work

were constructed using 10XGenomics.

If we explore the results obtained without any correction for RNA content for each cell-type individually,

it is possible to see that the biggest cell-type, cancer cells, are not over-estimated in any of the methods

that does not use correction (supplementary figure 65). In fact, all methods that already come with RNA

content bias correction (AutoGeneS and MuSiC_woGrouping) under-estimate cancer cells. It is noteworthy,

however, that Scaden slightly improves the estimation of cancer cells upon correction of the estimated
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proportions (figure 46 and supplementary figure 74), whose uncorrected version was the best method at

predicting cancer cells.

The only other two cell-types whose RNA content bias correction seems to help is stromal and macro/mono

lineage cells.

Figure 46: RMSE (A) and (B) pearson correlation values of the methods without and with correction,
separated by cell-type. Methods were tested for correction on the reference matrix (Corrected Before) and
on the estimated proportions (Corrected After).

Stromal cells was the cell-type with the most amount of methods where correction for RNA content

improved the predictions (7 out of 9 methods – (figure 46A). Of these, only 3 showed better RMSE than

the best uncorrected method for this cell-type. Comparing the estimated and ground-truth proportions

(supplementary figure 75), however, shows that the uncorrected method (BisqueRNA) might still be the

best option to predict stromal cells proportions.

For the macro/mono lineage cell-type, BsqesSC corrected for RNA content on the reference matrix

shows visibly better results than its uncorrected version (figure 46 and supplementary figure 76).

Regarding the remaining cell-types, some methods benefited from this correction, but none showed

better results than the uncorrected method that was best for the respective cell-type (figure 46 and sup-

plementary figures 74 to 82).

5.2.4 Effect of real cell-types’ proportions in samples estimations

Finally, we were interested in assessing how the amount of cells or RNA content in the samples affected

the correct estimation of the samples’ proportions.

The total number of cells in a sample seems to not affect much its predictions for most methods

(figure 47A). For AutoGeneS_nnls, CIBERSORTx, MuSiC_wGrouping, however, the greater the number of
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cells, the worse the RMSE of the sample. The correlation between the RMSE and the total number of cells

is bigger than 0.34 in these methods. Even though there is some positive correlation between the total

number of cells in a sample and its total number of reads (0.309, supplementary figure 83), the samples’

RMSEs from AutoGeneS_nnls and CIBERSORTx improve with the increase of total read counts (-0.316 and

-0.233, respectively). The total number of reads also positively affects other methods (figure 47B), like

AutoGeneS_nusvr (-0.481), MuSiC_woGrouping (-0.478) and SCDC (-0.443).

Figure 47: For each method, RMSE of the samples is mapped against their corresponding (A) total number
of cells and (B) total number of read counts.
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Even though the total number of cells or reads might not seem to affect much the overall prediction

of samples’ proportions, the proportion of certain cell-types in the samples might affect such predictions.

This was hinted before, with cancer and stromal cells being the cell-types that most affect the overall

predictions of the methods (figures 42 and supplementary figure 64).

With different levels of correlation, the best methods to predict cancer cells are positively affected by

the increase of the proportions the cancer cells in the samples (figure 48). Apart from AutoGeneS (-0.034)

and DWLS (-0.157), these methods have a correlation smaller than -0.3. DigitalDLSorter is the most

affected one, with a correlation of -0.729. All other models, which did not perform as well, are negatively

affected by the increase of cancer cells proportions in the samples, especially MuSiC_wGrouping (0.98),

BisqueRNA (0.661) and MOMF (0.885).

Figure 48: For each method, RMSE of the samples is mapped against their corresponding proportion of
cancer cells.

Regarding stromal cells (supplementary figure 84), CIBERSORTx, AutoGeneS_nusvr and Scaden are

not too affected by the proportion that stromal cells hold in a sample, while DigitalDLSorter is negatively

affected, with a correlation of 0.651.

The best methods overall are negatively affected by the increasing proportion that cells not deconvo-

luted (Other cells) have in the samples (figure 49). As expected, increasing the proportion of a group of

cells not deconvoluted by the methods hinders estimations because the methods assume that the decon-

voluted cell-types are the only cell-types present, by making proportions of estimated cell-types to have to

sum up to 1. Despite that, most of these methods still score RMSEs smaller than 0.2 for the samples with

higher proportion of Other cells. Surprinsingly, some methods benefit from a higher presence of Other

cells. These methods, however, score an RMSE higher than 0.2 for practically all samples.
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Figure 49: For each method, RMSE of the samples is mapped against their corresponding proportion of
other cells.

The same trend seen for the Other cells seems to happen for the immune cells (figure 50). The

best methods overall are negatively affected by the increasing proportion of immune cells, while the worst

methods are either positively affected or not affected.

Figure 50: For each method, RMSE of the samples is mapped against their corresponding proportion of
immune cells.
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5.3 Discussion

In this chapter, we wanted to assess the best methods to use for the deconvolution of colorectal cancer

samples of bulk RNAseq data. There are two studies [255, 256] that performed benchmarking of tumour

deconvolution methods that include those that use scRNAseq data as reference. However, none were

focused on colorectal cancer and methods’ performance can change according to the tissue to be decon-

voluted. The authors from one of these studies, a DREAM challenge that sought to evaluate a wide range

of deconvolution methods and pipelines [256], even concluded that the best method may be problem spe-

cific. Although this challenge covered a lot of methods, very few were based on scRNAseq data and those

methods were compared using their own default single-cell reference, which does not allow to properly

assess if a better performance is due to the reference used or the deconvolution algorithm. Furthermore,

they only used correlation metrics (pearson and spearman) to evaluate the results.

We found that the best method overall was CIBERSORTx, closely followed by DigitalDLSorter and

Scaden. The authors from the DREAM challenge [256] also reported CIBERSORTx as the top-performing

method for their datasets. However, when looking into which methods are the best for each cell-type,

CIBERSORTx is only the best for CD4 T-cells and DigitalDLSorter for CD8 T-cells. Scaden, on the other

hand, was found to be the best method for 4 cell-types (cancer cells, B-cells, regulatory CD4 T-cells, and

NK cells). BisqueRNA, BseqSC and MuSiC_wGrouping were some of the worst methods overall but they

were the best at predicting stromall cells, macro/mono lineage cells, and proliferative T-cells, respectively.

DWLS, all AutoGeneS methods, MOMF, MuSiC_woGrouping, and SCDC were not the best in any cell-type.

Combining the best methods for each cell-type seems promising for estimating the proportions of

all cell-types in the samples. However, further testing with an independent dataset with known cell-type

proportions should be pursued, to assure that this is scalable for other CRC datasets and samples and

does not work only for our specific case. The authors from the DREAM challenge [256] also combined the

outputs of different methods but their ensemble method found only modest improvement relative to the

top-scoring individual methods.

We also found that certain cell-types are more easily deconvoluted than others, with NK cells being,

by far, the most difficult cell-type to estimate. CD4 and regulatory CD4 T-cells were also rather difficult to

estimate.

The total number of read counts seems to influence sample estimations, with those having higher

total mRNA content showing better results in most methods. We were also able to show that, as expected,

the proportion of cells in the samples that are not part of a cell-type considered for deconvolution hinders

the estimation of the deconvoluted cell-types. Notwithstanding, the best methods overall still showed low

(< 0.2) RMSE for most samples, in a dataset where the proportion of unknown cells (Other cells) in the

samples goes up to 0.15.

Finally, assuming that bigger cell-types would tend to be over-estimated, it would be expected that

cancer, stromal and macro/mono lineage cells would suffer over-estimation across most methods without

RNA content bias correction. This was not the case, however. All methods that already implemented
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correction (AutoGeneS and MuSiC_woGrouping) under-estimated cancer cells and only some of the other

methods benefitted (modestly) from this correction. Stromal cells also slightly benefited from RNA con-

tent bias correction. Only macro/mono lineage cells showed to visibly benefit from this correction when

comparing the best methods with and without correction.

These results give a clear indication of the best methods to use when assessing the proportions of

different cell-types in a colorectal cancer sample of bulk RNAseq data. Nevertheless, further work is

needed. For example, it is necessary to assess cell-types’ spillover in CRC samples, i.e., what other cell-

types are being attributed signal that belongs to a certain cell-type. This can only be done by estimating

proportions of samples purified for each cell-type and could help understand to what detail we could

estimate cell subtypes.
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Conclusion and Future Work

In this work, we have created genome-scale metabolic models of T-cells from tumour and normal-matched

samples of different patients with colorectal cancer. This was made possible due to the construction of an

atlas of scRNAseq data for CRC patients with normal matched mucosa.

The CRC atlas has a total of 163 810 cells, separated into 51 044 T-cells, 47 462 epithelial cells, 30

187 stromal cells, 17 674 B-cells, and 17 443 myeloid cells. A total of 50 phenotypes were found. We

also characterised the tumour cells according to their CMS type.

This atlas allowed us to characterise not only the T-cells present in the tumour micro-environment,

but also those in an unaffected part of the colon (or rectum) of the patient. A total of 196 models were

reconstructed, spanning various T-cell subtypes: cytotoxic CD8 T-cells, follicular CD4 T-cells, IL17+ CD4

T-cells, memory CD4 and CD8 T-cells, naïve CD4 and CD8 T-cells, proliferative CD4 and CD8 T-cells, and

regulatory CD4 T-cells. We have shown that these models do a good job at predicting the different T-cell

subtypes, when using reaction presence or pFBA predictions datasets, with MCC values of 0.583 and

0.350 respectively. However, gene expression was still better at predicting the subtypes, with an MCC

value of 0.793. Even though these flux predictions lead to quite imprecise results, something that also

happened in a previous study of breast cancer models [178], major metabolic aspects of T-cells were

observed. These include biomass and ATP production, pathways that most contribute to the production

of NADH and FADH2, fatty acid uptake, and the effect of metabolites absence from medium.

Interesting differences in pathway coverage regarding regulatory CD4 T-cell models were found. The

models from normal tissue samples seem to have less anti-inflammatory function, due to less presence of

pathways related to anti-inflammatory functions in T-cells, and being less metabolically active, due to null

or close to null biomass fluxes, than tumour-derived models. Furthermore, models from CMS4 tumours

seemed to share these characteristics of normal-derived models.

Another topic we worked on was tumour deconvolution, where we used our CRC atlas of scRNAseq data

to test and compare several tumour deconvolution methods that were developed to use scRNAseq data

as reference to estimate cell-type proportions. Since bulk RNAseq data is used for diagnostic purposes

in routine clinical settings, allowing for an unprecedented amount of data describing tumours, cell-type

profiles can be recovered from bulk RNAseq data and used for cell-type metabolic model reconstruction.
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Our results gave a clear indication of the best methods to use in colorectal cancer samples. We found

that the best method overall was CIBERSORTx, closely followed by DigitalDLSorter and Scaden. However,

when looking into each cell-type individually, we found out that other methods were better at predicting

some of the cell-types. Combining the best methods for each cell-type seemed promising for estimating

the proportions of all cell-types in the samples.

6.1 Contributions

The first major contribution from this work is the CRC atlas of scRNAseq data. The different studies that

compose this atlas were integrated and re-annotated so that all would be annotated in the same way

and share the same level of detail regarding cell-types annotated. Although this atlas was crucial for the

development of the remaining work of this thesis, it can also be used by the community for various other

ends outside the scope of this work.

Secondly, we developed a pipeline that can be easily replicated for the reconstruction of metabolic

models from any kind of single-cell RNAseq dataset. This pipeline was proven to be very relevant, as the

models obtained from this pipeline not only do characterise well the cell-types that they represent, but also

revealed interesting aspects of T-cells, especially regulatory CD4 T-cells. Also, the models here constructed

and validated can be used by the community.

Lastly, we provided important results regarding the benchmark of tumour deconvolution methods,

which can aid the community in choosing the method(s) to use when deconvoluting their bulk RNAseq

data from CRC samples. The contributions of this work are not restricted, however, to colorectal cancer.

This pipeline can, indeed, be used in other types of samples.

6.2 Publications

At the time of writing, chapters 2 to 5 are being prepared for submissions, including a review of the current

state-of-the-art on using metabolic models in cancer and the immune system (chapter 2), a paper on the

creation of the atlas and its use in tumour deconvolution (chapters 3 and 5), and one regarding the T-cell

metabolic models (chapter 4).

Apart from this, the following publication, although not part of the thesis’ goals, was written during the

doctoral program: Cardoso, S. et al. NMRFinder: a novel method for 1D 1H-NMR metabolite annotation.

Metabolomics, 17(21), 2021.

6.3 Future Work

Although the main objectives were accomplished, the work done in this thesis can be extended and im-

proved.
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The model reconstruction pipeline can be applied to other cell-types from the CRC micro-environment.

For example, reconstruction of tumour cell models would allow finding drug target combinations for specific

patients, by exploring their effects on both tumour and T-cells (and other immune and non-immune cells).

Modeling all cell types in a tumour micro-environment could enable the optimisation of immune cells’

response to cancer, by modeling the metabolic competition in the tumour micro-environment through a

community of models. The recovered proportions of the different cell-types in the environment from bulk

RNAseq data could aid in constructing this community.

Extending the model reconstruction pipeline by complementing the data used for reconstruction with

other bulk or single-cell omics data would help on reconstructing more accurate models.

Also, the reconstruction of a metabolic model for each single-cell can also be explored. Two main

drawbacks have to be considered, however. The possible computational burden of such task and the

low-depth of sequencing per cell that might result in wrongly considering certain genes as not expressed.

Although we gave a clear indication of the best methods to use in colorectal cancer samples and that

combining the best methods for each cell-type seemed promising for estimating the proportions of all

cell-types in the samples, there is still room for improvement. First, further testing with an independent

dataset should be pursued, to assure that combining methods to predict the proportions of the different

cell-types is scalable for other CRC samples and does not work only for our specific case. Other future

work should include, as discussed before, the assessment of cell-types’ spillover in CRC samples. Testing

if more detailed subtypes of cells can be recovered in deconvolution is also of interest. In this work, we

only deconvoluted, among the T-cells, CD8+, CD4+, regulatory CD4+, and proliferative T-cells. This is not

on the same level of detail as those subtypes used to construct the models, due to having to find a balance

between the atlas’ subtypes and the ground-truth information available about the bulk samples.
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Supplementary Figures

This appendix contains all supplementary figures, separated by chapters.

A.1 Chapter 3

Figure 51: Clusterability results from SIGMA. Each dot corresponds to a cell, which are coloured by dataset
of origin. The clusterability of the clusters was not dictated by the dataset of origin.
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A.2 Chapter 4

Figure 56: Similarity between (A) the structure of the models (i.e., reaction presence/absence) and (B)
predicted fluxes under normal human blood medium. The smaller Euclidean distance is, the smaller the
similarity is.
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Figure 57: Pathway coverage (%).
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Figure 58: Biomass (A) and ATP (B) production when biomass was set as the only objective for all models.

Figure 59: Cumulative fluxes (mmol/gDW/h) of the reactions that produce NADH, from all source path-
ways, for proliferative CD4 and CD8 T-cell models
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Figure 60: Distribution of (A) DNA and (B) RNA production of the T-cell types, with and without glutamine
in the medium.
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Figure 61: Distribution of DNA production of the T-cell types, with and without nucleotides in the medium.

Figure 62: Distribution of the biomass flux of the T-cell types, with and without glucose in the medium.
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Figure 63: (A) Number of models where biomass flux increases, decreases or suffers no change. This
information is further showed by (B) tissue of origin, (C) CMS type, and (D) cell-type.
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A.3 Chapter 5

Figure 64: Scatter plots of estimated vs ground-truth proportions for the remaining methods that are not
present in figure 42.
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Figure 65: Scatter plots of estimated vs ground-truth proportions of all methods for cancer cells.
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Figure 66: Scatter plots of estimated vs ground-truth proportions of all methods for stromal cells.
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Figure 67: Scatter plots of estimated vs ground-truth proportions of all methods for macro/mono lineage
cells.
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Figure 68: Scatter plots of estimated vs ground-truth proportions of all methods for B-cells.

136



A.3. CHAPTER 5

Figure 69: Scatter plots of estimated vs ground-truth proportions of all methods for CD4 T-cells.
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Figure 70: Scatter plots of estimated vs ground-truth proportions of all methods for regulatory CD4 T-cells.
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Figure 71: Scatter plots of estimated vs ground-truth proportions of all methods for CD8 T-cells.
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Figure 72: Scatter plots of estimated vs ground-truth proportions of all methods for proliferative T-cells.
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Figure 73: Scatter plots of estimated vs ground-truth proportions of all methods for NK cells.

Figure 74: For cancer cells, scatter plots of estimated vs ground-truth proportions of best uncorrected
method and the corrected methods whose RMSE improved relative to the best uncorrected method.
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Figure 75: For stromal cells, scatter plots of estimated vs ground-truth proportions of best uncorrected
method and the corrected methods whose RMSE improved relative to the best uncorrected method.

Figure 76: For macro/mono lineage cells, scatter plots of estimated vs ground-truth proportions of best
uncorrected method and the corrected methods whose RMSE improved relative to the best uncorrected
method.
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Figure 77: For B-cells, scatter plots of estimated vs ground-truth proportions of best uncorrected method
and the corrected methods whose RMSE improved relative to the best uncorrected method.

Figure 78: For CD4 T-cells, scatter plots of estimated vs ground-truth proportions of best uncorrected
method and the corrected methods whose RMSE improved relative to the best uncorrected method.

Figure 79: For regulatory CD4 T-cells, scatter plots of estimated vs ground-truth proportions of best uncor-
rected method and the corrected methods whose RMSE improved relative to the best uncorrected method.
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Figure 80: For CD8 T-cells, scatter plots of estimated vs ground-truth proportions of best uncorrected
method and the corrected methods whose RMSE improved relative to the best uncorrected method.

Figure 81: For proliferative T-cells, scatter plots of estimated vs ground-truth proportions of best uncor-
rected method and the corrected methods whose RMSE improved relative to the best uncorrected method.

Figure 82: For NK cells, scatter plots of estimated vs ground-truth proportions of best uncorrected method
and the corrected methods whose RMSE improved relative to the best uncorrected method.
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Figure 83: Scatter plot of samples’ total read counts vs total cell counts.

Figure 84: For each method, RMSE of the samples is mapped against their corresponding proportion of
stromal cells.
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Figure 85: For each uncorrected method, scatter plot of pearson correlation vs RMSE of the samples.

Figure 86: For Scaden, scatter plots of pearson correlation vs RMSE of the samples for each correction
type.
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Supplementary Tables

This appendix contains all supplementary tables, separated by chapters.

B.1 Chapter 4

Table 11: Metabolites used in the human blood medium, with the corresponding exchange reaction id

from the model. Each metabolite has information on the average concentration (mM) in normal human

blood, gathered from SMDB database, and the fluxes (mmol/gDW/h) used in normal and tumour human

blood media.

Metabolite Name
Exchange
Reaction

Concentrations
Normal Blood

Fluxes
Normal Blood

Fluxes
Blood Tumour

(11Z,14Z,17Z)-eicosatrienoic acid MAR13042 3,410E-04 1,076E-03 1,076E-03
(13Z)-eicosenoic acid MAR13043 1,172E-02 3,700E-02 3,700E-02
(18R)-HEPE MAR11907 1,380E-07 4,356E-07 4,356E-07
(R)-3-hydroxybutanoate MAR09134 7,025E-01 2,217E+00 6,861E+00
(R)-mevalonate MAR10262 3,230E-05 1,020E-04 1,020E-04
(S)-2-aminobutanoate MAR10206 2,280E-02 7,197E-02 1,159E-01
(S)-Glycerate MAR00603 2,000E-03 6,313E-03 8,207E-03
1-methylnicotinamide MAR09104 4,300E-04 1,357E-03 1,357E-03
1,2-diacylglycerol-LD-TAG pool MAR00574 5,567E-01 1,757E+00 1,757E+00
1,3-Diaminopropane MAR11933 4,000E-05 1,263E-04 1,263E-04
10Z-Heptadecenoic acid MAR13040 1,030E-03 3,251E-03 3,251E-03
11-Dehydro-thromboxane B2 MAR11911 2,750E-06 8,681E-06 8,681E-06
11-deoxycorticosterone MAR11866 3,680E-05 1,162E-04 1,162E-04
11-deoxycortisol MAR11865 3,900E-06 1,231E-05 1,231E-05
11,12-EET MAR10215 5,420E-07 1,711E-06 1,711E-06
12-hydroxy-arachidonate MAR11836 8,340E-05 2,633E-04 2,633E-04
12,13-hydroxyoctadec-9(z)-enoate MAR11969 8,780E-06 2,771E-05 2,771E-05
12(13)-EpOME MAR10218 6,450E-06 2,036E-05 2,036E-05
12(S)-HHT MAR12128 2,030E-06 6,408E-06 6,408E-06
12(S)-HPETE MAR10179 1,450E-06 4,577E-06 4,577E-06
13-cis-Retinoate MAR11895 3,000E-06 9,470E-06 9,470E-06
13-cis-retinoyl-glucuronide MAR09210 6,600E-06 2,083E-05 2,083E-05
13,16,19-docosatrienoic acid MAR13051 4,000E-06 1,263E-05 1,263E-05
13(S)-HPODE MAR10208 6,010E-06 1,897E-05 1,897E-05
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14,15-DiHETE MAR10234 1,130E-06 3,567E-06 3,567E-06
14,15-EET MAR10216 9,420E-07 2,973E-06 2,973E-06
15-deoxy-PGD2 MAR10229 1,940E-06 6,124E-06 6,124E-06
15-Keto-prostaglandin F2a MAR10181 1,990E-07 6,282E-07 6,282E-07
15(R)-HEPE MAR11830 5,990E-07 1,891E-06 1,891E-06
15(S)-HEPE MAR10232 5,990E-07 1,891E-06 1,891E-06
15(S)-HETrE MAR10227 4,610E-07 1,455E-06 1,455E-06
15(S)-HPETE MAR10180 1,060E-06 3,346E-06 3,346E-06
16" -hydroxyestrone MAR10491 7,800E-07 2,462E-06 2,462E-06
17" -hydroxypregnenolone MAR11870 6,820E-06 2,153E-05 2,153E-05
17" -hydroxypregnenolone sulfate MAR11876 2,000E-03 6,313E-03 6,313E-03
17" -hydroxyprogesterone MAR11869 5,070E-06 1,600E-05 1,600E-05
18-hydroxy-arachidonate MAR11839 2,730E-07 8,617E-07 8,617E-07
2-arachidonoylglycerol MAR13031 7,800E-03 2,462E-02 2,462E-02
2-Hydroxy-Isovalerate MAR11481 8,633E-03 2,725E-02 2,725E-02
2-Hydroxybutyrate MAR09216 4,223E-02 1,333E-01 2,181E-01
2-Hydroxyestrone MAR11860 1,700E-07 5,366E-07 5,366E-07
2-hydroxyphenylacetate MAR11440 5,030E-04 1,588E-03 1,588E-03
2-methoxyestradiol-174 MAR11863 1,000E-05 3,157E-05 3,157E-05
2-Methylcitrate MAR09217 7,950E-05 2,509E-04 2,509E-04
2-oxo-3-methylvalerate MAR09012 2,035E-02 6,424E-02 6,424E-02
2-oxobutyrate MAR11391 7,110E-03 2,244E-02 2,244E-02
2-phospho-D-glycerate MAR09842 1,600E-03 5,051E-03 5,051E-03
2,5-dihydroxybenzoate MAR11901 8,250E-04 2,604E-03 2,604E-03
20" -hydroxy-4-pregnen-3-one MAR09268 2,910E-05 9,186E-05 9,186E-05
21-hydroxyallopregnanolone MAR11864 5,200E-06 1,641E-05 1,641E-05
24-Hydroxycholesterol MAR11879 6,200E-05 1,957E-04 1,957E-04
25-Hydroxycholesterol MAR11884 1,050E-05 3,314E-05 3,314E-05
25-Hydroxyvitamin D2 MAR09214 9,001E+00 2,841E+01 2,841E+01
26-Hydroxycholesterol MAR11881 2,840E-04 8,965E-04 8,965E-04
3-(3-Hydroxy-Phenyl)Propionate MAR10426 1,440E-04 4,545E-04 4,545E-04
3-Hydroxy butyryl carnitine MAR04815 8,200E-05 2,588E-04 2,588E-04
3-Hydroxy Trans7,10-Hexadecadienoyl Carnitine MAR04830 1,500E-05 4,735E-05 4,735E-05
3-Hydroxy-3-Methyl-Glutarate MAR11494 4,600E-02 1,452E-01 1,452E-01
3-Hydroxy-glutarate MAR11519 1,500E-04 4,735E-04 4,735E-04
3-Hydroxy-isovaleryl carnitine MAR04824 2,660E-04 8,396E-04 8,396E-04
3-hydroxy-L-kynurenine MAR09865 5,000E-05 1,578E-04 1,578E-04
3-Hydroxyanthranilate MAR09863 7,900E-05 2,494E-04 2,494E-04
3-Hydroxyhexadecanoylcarnitine MAR04823 1,250E-05 3,946E-05 3,946E-05
3-Hydroxyhexadecenoylcarnitine MAR04822 1,000E-05 3,157E-05 3,157E-05
3-Hydroxyisobutyrate MAR10185 2,050E-02 6,471E-02 6,471E-02
3-iodo-L-tyrosine MAR11891 6,900E-07 2,178E-06 2,178E-06
3-Methoxytyramine MAR10427 2,500E-06 7,891E-06 7,891E-06
3-methyl-2-oxobutyrate MAR09011 1,250E-02 3,946E-02 3,946E-02
3-Methylhistidine MAR10188 2,850E-03 8,996E-03 8,996E-03
3-O-methyldopa MAR10225 8,900E-05 2,809E-04 2,809E-04
3-Phospho-D-glycerate MAR09862 5,270E-02 1,664E-01 1,664E-01
3-phosphoserine MAR10441 1,700E-02 5,366E-02 5,366E-02
3,4-Dihydroxymandelate MAR11902 1,100E-05 3,472E-05 3,472E-05
3,4-dihydroxyphenylacetate MAR11432 1,010E-05 3,188E-05 3,188E-05
3,4-Dihydroxyphenylethanol MAR12114 1,600E-04 5,051E-04 5,051E-04
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3,4-dihydroxyphenylethyleneglycol MAR09218 7,670E-06 2,421E-05 2,421E-05
3,5-Diiodo-L-tyrosine MAR11893 3,600E-06 1,136E-05 1,136E-05
3" ,12alpha-dihydroxy-54 -cholanate MAR08646 4,500E-04 1,420E-03 1,420E-03
4-Acetamidobutanoate MAR10190 5,000E-04 1,578E-03 1,578E-03
4-aminobutyrate MAR09091 2,100E-04 6,629E-04 6,254E-04
4-androstene-3,17-dione MAR11848 3,690E-06 1,165E-05 1,165E-05
4-coumarate MAR11823 2,010E-04 6,345E-04 6,345E-04
4-hydroxy-2-nonenal MAR11912 1,100E-04 3,472E-04 3,472E-04
4-hydroxy-2-quinolinecarboxylic acid MAR09855 2,650E-05 8,365E-05 8,365E-05
4-Hydroxy-butyrate MAR11568 2,460E-02 7,765E-02 7,765E-02
4-Hydroxy-debrisoquine MAR09223 2,170E-04 6,850E-04 6,850E-04
4-Hydroxybenzoate MAR11431 4,809E-03 1,518E-02 2,429E-02
4-hydroxyphenylacetate MAR09224 9,881E-03 3,119E-02 3,119E-02
4-hydroxyphenyllactate MAR10184 6,400E-04 2,020E-03 2,020E-03
4-Hydroxyphenylpyruvate MAR09010 3,700E-04 1,168E-03 1,168E-03
4-methyl-2-oxopentanoate MAR09013 2,650E-02 8,365E-02 8,365E-02
4-Pyridoxate MAR09228 2,100E-05 6,629E-05 6,629E-05
5-" -dihydrotestosterone MAR09229 1,940E-06 6,124E-06 6,124E-06
5-Aminolevulinate MAR10428 3,500E-04 1,105E-03 1,105E-03
5-formyl-THF MAR09100 2,500E-06 7,891E-06 7,891E-06
5-guanidino-2-oxopentanoate MAR11847 1,230E-04 3,883E-04 3,883E-04
5-Hydroxy-L-tryptophan MAR09094 1,800E-05 5,682E-05 5,682E-05
5-Hydroxyindoleacetate MAR09843 5,160E-05 1,629E-04 1,629E-04
5-Hydroxytryptophol MAR11952 9,000E-07 2,841E-06 2,841E-06
5-Methoxytryptophol MAR11918 1,248E-07 3,938E-07 3,938E-07
5-methyl-THF MAR09234 3,000E-04 9,470E-04 9,470E-04
5-oxoproline MAR09025 1,950E-02 6,155E-02 6,155E-02
5,10-Methylene-THF MAR11953 1,000E-05 3,157E-05 3,157E-05
5,15-DiHETE MAR11909 3,400E-07 1,073E-06 1,073E-06
5,6-dihydrouracil MAR10193 3,130E-04 9,880E-04 9,880E-04
5,6-EET MAR10214 3,560E-06 1,124E-05 1,124E-05
5(S)-HEPE MAR11908 7,280E-07 2,298E-06 2,298E-06
5(S)-HETE MAR10209 5,010E-04 1,581E-03 1,581E-03
5" -androstane-3,17-dione MAR11855 3,600E-07 1,136E-06 1,136E-06
5" -androstane-3" ,17beta-diol MAR11856 4,750E-07 1,499E-06 1,499E-06
5" -pregnane-3,20-dione MAR11871 3,605E-05 1,138E-04 1,138E-04
6-Hydroxymelatonin MAR11922 2,400E-07 7,576E-07 7,576E-07
6-oxo-prostaglandin F1alpha MAR10219 2,690E-07 8,491E-07 8,491E-07
6-trans-LTB4 MAR10226 1,850E-07 5,840E-07 5,840E-07
8,9-EET MAR10145 6,270E-07 1,979E-06 1,979E-06
9-cis-Retinoate MAR11897 4,900E-06 1,547E-05 1,547E-05
9-Eicosenoic acid MAR13054 1,172E-02 3,700E-02 3,700E-02
9,10-hydroxyoctadec-12(Z)-enoate MAR11971 5,020E-05 1,585E-04 1,585E-04
9(10)-EpOME MAR10217 3,050E-06 9,628E-06 9,628E-06
Acetaldehyde MAR09242 1,000E-03 3,157E-03 3,157E-03
Acetate MAR09086 4,674E-02 1,475E-01 1,741E-01
Acetoacetate MAR09132 1,521E-01 4,800E-01 4,800E-01
Acetone MAR09243 6,503E-02 2,053E-01 2,053E-01
Acetyl-glycine MAR10196 8,957E-02 2,827E-01 2,126E-01
Adenine MAR09253 4,700E-04 1,484E-03 1,736E-03
Adenosine MAR09254 1,344E-03 4,242E-03 4,242E-03
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Adipic acid MAR10200 9,000E-05 2,841E-04 2,841E-04
ADP MAR09255 1,600E-01 5,051E-01 5,051E-01
adrenaline MAR09095 7,380E-07 2,330E-06 2,330E-06
Adrenic acid MAR00566 4,073E-03 1,286E-02 1,286E-02
AKG MAR09259 1,050E-02 3,314E-02 3,314E-02
Alanine MAR09061 3,586E-01 1,132E+00 1,132E+00
Aldosterone MAR09261 6,780E-07 2,140E-06 2,140E-06
Allantoin MAR10431 2,100E-03 6,629E-03 8,220E-03
Allopregnanolone MAR11868 3,730E-06 1,177E-05 1,177E-05
" -D-Glucose 1,6-bisphosphate MAR09461 9,800E-02 3,093E-01 3,093E-01
" -Tocopherol MAR09151 3,243E-02 1,024E-01 1,024E-01
" -Tocotrienol MAR09152 4,230E-03 1,335E-02 1,335E-02
Aminoacetone MAR11956 6,000E-02 1,894E-01 1,894E-01
AMP MAR09262 1,908E-02 6,021E-02 6,021E-02
Anandamide MAR10213 2,039E-03 6,437E-03 6,437E-03
Androsterone MAR09263 6,030E-05 1,903E-04 1,903E-04
Androsterone sulfate MAR10230 1,110E-02 3,504E-02 3,504E-02
Androsterone-glucuronide MAR09264 4,370E-04 1,379E-03 1,379E-03
anthranilate MAR09028 1,550E-05 4,893E-05 4,893E-05
aquacob(III)alamin MAR09269 2,720E-07 8,586E-07 8,586E-07
Arachidonate MAR00568 1,711E-01 5,400E-01 5,400E-01
Arginine MAR09066 8,581E-02 2,708E-01 2,708E-01
Argininosuccinate MAR09919 2,100E-03 6,629E-03 6,629E-03
Ascorbate MAR09158 4,361E-02 1,377E-01 1,377E-01
Asparagine MAR09062 5,314E-02 1,677E-01 1,962E-01
aspartate MAR09070 2,172E-02 6,857E-02 1,046E-01
ATP MAR00569 1,793E+00 5,659E+00 5,659E+00
Azelaic acid MAR11351 2,700E-02 8,523E-02 8,523E-02
Behenic acid MAR04929 1,095E-02 3,457E-02 3,457E-02
Benzoate MAR10475 2,079E-02 6,561E-02 6,561E-02
4 -Alanine MAR09260 2,635E-03 8,318E-03 8,318E-03
4 -Carotene MAR09276 3,526E-02 1,113E-01 1,113E-01
4 -hydroxy-4 -methylbutyrate MAR10224 4,000E-03 1,263E-02 1,263E-02
Betaine MAR09341 7,255E-02 2,290E-01 2,290E-01
Bilirubin MAR09273 4,481E-02 1,415E-01 1,415E-01
Biotin MAR09109 2,570E-05 8,112E-05 8,112E-05
Butyrate MAR09809 1,000E-03 3,157E-03 3,157E-03
Calcidiol MAR09215 6,840E-05 2,159E-04 2,159E-04
Calcitriol MAR11965 8,000E-08 2,525E-07 2,525E-07
cAMP MAR09275 8,500E-06 2,683E-05 2,683E-05
Carnosine MAR08644 3,230E-03 1,020E-02 1,020E-02
CDP MAR04096 3,600E-02 1,136E-01 1,136E-01
Ceramide pool MAR04384 8,880E-03 2,803E-02 2,803E-02
cerotic acid MAR00618 7,230E-04 2,282E-03 2,282E-03
cGMP MAR09220 5,500E-06 1,736E-05 1,736E-05
Chenodeoxycholate MAR04144 1,083E-03 3,417E-03 3,417E-03
Chenodiol MAR10026 1,083E-03 3,417E-03 3,417E-03
Chloride MAR09150 1,030E+02 3,253E+02 3,253E+02
Cholate MAR09280 8,400E-04 2,652E-03 2,652E-03
Cholesterol MAR09285 3,124E+00 9,861E+00 9,861E+00
Cholesterol-sulfate MAR11889 5,400E-03 1,705E-02 1,705E-02
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Choline MAR09083 1,328E-02 4,190E-02 5,028E-02
cis-cetoleic acid MAR13056 2,950E-05 9,312E-05 9,312E-05
cis-erucic acid MAR04927 7,164E-03 2,261E-02 2,261E-02
cis-gondoic acid MAR10432 4,628E-03 1,461E-02 1,461E-02
cis-Vaccenic acid MAR00704 9,860E-02 3,112E-01 3,112E-01
Cis,Cis-11,14-Eicosadienoic Acid MAR10228 9,036E-03 2,852E-02 2,852E-02
Citrate MAR09286 1,257E-01 3,968E-01 4,802E-01
Citrulline MAR09201 4,189E-02 1,322E-01 1,322E-01
CO MAR09288 7,200E-02 2,273E-01 2,273E-01
CO2 MAR09058 2,133E+01 6,733E+01 6,733E+01
Coproporphyrin I MAR09701 8,100E-06 2,557E-05 2,557E-05
Coproporphyrin III MAR09702 6,000E-06 1,894E-05 1,894E-05
Coproporphyrinogen I MAR01965 1,500E-05 4,735E-05 4,735E-05
Corticosterone MAR09294 2,700E-05 8,523E-05 8,523E-05
Cortisol MAR09293 3,460E-04 1,092E-03 1,092E-03
Cortisone MAR10235 4,720E-05 1,490E-04 1,490E-04
Creatine MAR09290 5,045E-02 1,593E-01 1,593E-01
Creatinine MAR09460 6,058E-02 1,912E-01 1,723E-01
Cyanate MAR04334 4,500E-05 1,420E-04 1,420E-04
cys-gly MAR09279 5,188E-02 1,638E-01 1,638E-01
Cysteine MAR09065 1,407E-01 4,442E-01 4,442E-01
Cystine MAR09363 8,146E-02 2,571E-01 2,880E-01
Cytidine MAR09295 1,750E-04 5,524E-04 5,524E-04
Cytosine MAR09291 6,400E-03 2,020E-02 2,020E-02
D-3-amino-isobutanoate MAR09222 1,643E-03 5,186E-03 5,186E-03
D-Alanine MAR09098 4,468E-01 1,410E+00 1,410E+00
D-Arabitol MAR10429 1,500E-03 4,735E-03 6,392E-03
D-Aspartate MAR09097 1,179E-02 3,720E-02 5,674E-02
D-glucitol MAR09685 7,045E-03 2,224E-02 2,224E-02
D-gluconic acid MAR11393 3,295E-03 1,040E-02 1,040E-02
D-Lactate MAR09136 9,130E-03 2,882E-02 4,016E-02
D-Ornithine MAR09454 8,900E-02 2,809E-01 2,809E-01
D-Xylose MAR09203 2,443E+00 7,712E+00 1,026E+01
D-Xylulose MAR11942 2,500E-03 7,891E-03 7,891E-03
debrisoquin MAR09299 1,490E-04 4,703E-04 4,703E-04
decanoic acid MAR09815 1,100E-02 3,472E-02 3,472E-02
Decanoyl carnitine MAR04859 2,370E-04 7,481E-04 7,481E-04
Dehydroascorbic acid MAR09301 5,772E-03 1,822E-02 1,822E-02
dehydroepiandrosterone MAR11850 1,330E-05 4,198E-05 4,198E-05
dehydroepiandrosterone sulfate MAR09302 7,547E-03 2,382E-02 2,382E-02
Deoxycytidine MAR09296 2,000E-04 6,313E-04 6,313E-04
Deoxyuridine MAR09310 2,840E-04 8,965E-04 1,363E-03
Desmosterol MAR11887 1,834E-03 5,789E-03 5,789E-03
DHA MAR00573 1,056E-01 3,334E-01 3,334E-01
DHAP MAR01922 1,385E-02 4,372E-02 4,372E-02
dihomo-6 -linolenate MAR00576 4,666E-02 1,473E-01 1,473E-01
dihydrobiopterin MAR10495 4,180E-03 1,319E-02 1,319E-02
Dihydrofolate MAR09303 5,000E-06 1,578E-05 1,578E-05
Dimethylglycine MAR09848 2,500E-03 7,891E-03 6,468E-03
Dodecanedioic acid MAR10240 1,099E-01 3,469E-01 3,469E-01
Dodecanedioyl carnitine MAR04869 2,270E-04 7,165E-04 7,165E-04
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Dopamine MAR09092 6,500E-08 2,052E-07 2,052E-07
Dopamine 3-O-sulfate MAR09308 2,650E-05 8,365E-05 8,365E-05
Dopamine 4-O-sulfate MAR12007 2,700E-06 8,523E-06 8,523E-06
DPA MAR00571 3,073E-02 9,699E-02 9,699E-02
Ecgonine-methyl ester MAR11833 2,370E-04 7,481E-04 7,481E-04
eicosanoate MAR00567 7,278E-03 2,297E-02 2,297E-02
Elaidate MAR00583 1,000E-01 3,157E-01 4,040E-01
EPA MAR00701 1,434E-01 4,528E-01 4,528E-01
Estradiol-174 MAR09314 2,720E-07 8,586E-07 8,586E-07
estradiol-174 3-glucuronide MAR09129 3,870E-08 1,222E-07 1,222E-07
Estriol MAR09452 4,780E-06 1,509E-05 1,509E-05
Estrone MAR11858 1,630E-07 5,145E-07 5,145E-07
Estrone 3-sulfate MAR09317 2,330E-06 7,355E-06 7,355E-06
Ethanol MAR09099 2,383E-02 7,523E-02 7,523E-02
Ethanolamine MAR09084 2,695E-02 8,507E-02 8,507E-02
ethanolamine-phosphate MAR09849 1,150E-02 3,630E-02 3,457E-02
Etiocholanolone MAR09453 1,250E-06 3,946E-06 3,946E-06
FAD MAR01939 7,133E-05 2,252E-04 2,252E-04
Fe2+ MAR09076 8,922E+00 2,816E+01 2,816E+01
Fe3+ MAR09096 1,778E-02 5,612E-02 5,612E-02
FMN MAR08962 1,060E-05 3,346E-05 3,346E-05
Folate MAR09146 2,370E-05 7,481E-05 7,481E-05
Formaldehyde MAR01946 1,630E-02 5,145E-02 5,145E-02
Formate MAR09318 1,032E-01 3,257E-01 3,257E-01
formyl-N-acetyl-5-methoxykynurenamine MAR11904 6,500E-08 2,052E-07 2,052E-07
Fructose MAR09139 3,950E-02 1,247E-01 1,247E-01
Fructose-1,6-bisphosphate MAR11974 2,500E-03 7,891E-03 7,891E-03
Fumarate MAR11400 1,223E-03 3,860E-03 4,208E-03
Galactitol MAR11422 5,900E-04 1,862E-03 1,862E-03
Galactose MAR09140 5,930E-02 1,872E-01 1,872E-01
6 -butyrobetaine MAR10191 1,000E-02 3,157E-02 3,157E-02
6 -carboxyethyl-hydroxychroman MAR04380 1,600E-04 5,051E-04 5,051E-04
6 -Glutamyl-cysteine MAR11916 9,983E-03 3,151E-02 3,151E-02
6 -Linolenate MAR00626 1,213E-02 3,829E-02 3,829E-02
6 -Tocopherol MAR09153 1,156E-02 3,650E-02 3,650E-02
GDP MAR09340 1,650E-02 5,208E-02 5,208E-02
globoside MAR09336 2,150E-03 6,787E-03 6,787E-03
Glucosamine MAR09168 2,900E-04 9,154E-04 1,172E-03
Glucose MAR09034 4,688E+00 1,480E+01 3,152E+01
Glucosylceramide pool MAR12043 9,600E-03 3,030E-02 3,030E-02
Glucuronate MAR11424 1,650E-01 5,208E-01 6,979E-01
glutamate MAR09071 6,542E-02 2,065E-01 2,722E-01
Glutamine MAR09063 5,877E-01 1,855E+00 1,635E+00
Glutaryl carnitine MAR04897 2,750E-05 8,681E-05 8,681E-05
Glyceraldehyde MAR09851 1,476E+00 4,659E+00 6,243E+00
Glycerate MAR09342 1,000E-02 3,157E-02 4,104E-02
Glycerol MAR09085 1,407E-01 4,442E-01 1,159E+00
Glycine MAR09067 4,567E-01 1,442E+00 1,888E+00
glycochenodeoxycholate MAR09283 6,800E-04 2,146E-03 3,048E-03
Glycocholate MAR09281 5,130E-04 1,619E-03 2,899E-03
Glycogen MAR09729 4,120E-02 1,301E-01 1,301E-01
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Glycolate MAR10436 3,405E-02 1,075E-01 1,215E-01
glycolithocholate MAR04148 9,000E-06 2,841E-05 2,841E-05
Glycoursodeoxycholate MAR04151 1,450E-04 4,577E-04 4,577E-04
Glyoxalate MAR11448 3,050E-03 9,628E-03 9,628E-03
GM3 MAR12044 5,067E-03 1,599E-02 1,599E-02
GMP MAR09343 9,700E-06 3,062E-05 3,062E-05
GSH MAR09351 8,984E-02 2,836E-01 2,836E-01
GSSG MAR09350 1,083E-02 3,417E-02 3,417E-02
GTP MAR09352 5,600E-02 1,768E-01 1,768E-01
guanidinoacetate MAR09852 4,890E-03 1,544E-02 1,544E-02
Guanosine MAR09348 8,000E-04 2,525E-03 2,525E-03
H2O2 MAR09354 1,050E-02 3,314E-02 3,314E-02
H2S MAR09103 5,165E-02 1,630E-01 1,630E-01
HCO3- MAR09078 2,303E+01 7,269E+01 7,269E+01
Hepoxilin A3 MAR04409 1,140E-07 3,598E-07 3,598E-07
heptaglutamyl-folate(DHF) MAR09239 7,600E-06 2,399E-05 2,399E-05
Hexadecanedioic acid MAR10246 1,100E-04 3,472E-04 6,007E-04
Hexadecenoylcarnitine(9) MAR11949 3,170E-05 1,001E-04 1,001E-04
hexanoic acid MAR09811 1,700E-02 5,366E-02 5,366E-02
Hexanoy lcarnitine MAR04899 6,030E-05 1,903E-04 1,903E-04
Hippurate MAR10474 1,141E-02 3,603E-02 3,603E-02
Histamine MAR00619 7,530E-05 2,377E-04 2,377E-04
Histidine MAR09038 1,207E-01 3,809E-01 3,097E-01
Homocitrulline MAR10249 5,000E-03 1,578E-02 1,578E-02
Homocysteine MAR09853 8,808E-03 2,780E-02 2,780E-02
Homocysteine-thiolactone MAR11914 2,820E-06 8,902E-06 8,902E-06
Homogentisate MAR10247 4,300E-05 1,357E-04 1,245E-04
Homoserine MAR09161 1,200E-02 3,788E-02 3,788E-02
Homovanillate MAR09694 5,960E-05 1,881E-04 1,881E-04
Hyaluronate MAR09122 5,300E-05 1,673E-04 1,673E-04
hydracrylate MAR10186 4,100E-03 1,294E-02 1,294E-02
hydrogen-cyanide MAR09160 4,850E-03 1,531E-02 1,531E-02
Hypoxanthine MAR09358 6,322E-03 1,996E-02 1,996E-02
imidazole-4-acetate MAR11951 1,000E-04 3,157E-04 3,157E-04
IMP MAR09360 6,300E-02 1,989E-01 1,989E-01
Indoleacetate MAR11419 9,830E-04 3,103E-03 3,103E-03
Inosine MAR09362 1,388E-03 4,381E-03 4,381E-03
Inositol MAR09361 2,353E-02 7,426E-02 8,837E-02
Isocitrate MAR09854 6,000E-03 1,894E-02 1,894E-02
Isoleucine MAR09039 6,371E-02 2,011E-01 2,645E-01
Isovaleryl carnitine MAR04943 2,160E-04 6,818E-04 6,818E-04
Isovalerylglycine MAR11457 1,700E-04 5,366E-04 5,366E-04
Keratan sulfate I MAR09113 1,400E-04 4,419E-04 4,419E-04
Kynurenine MAR09857 2,681E-03 8,463E-03 1,549E-02
L-2-aminoadipate MAR09856 1,368E-03 4,318E-03 3,482E-03
L-3-amino-isobutanoate MAR09221 1,643E-03 5,186E-03 5,186E-03
L-Arabinose MAR09270 2,500E-03 7,891E-03 1,199E-02
L-Arabitol MAR09241 2,000E-03 6,313E-03 8,523E-03
L-Carnitine MAR09292 4,094E-02 1,292E-01 1,635E-01
L-Cystathionine MAR09846 3,640E-04 1,149E-03 1,149E-03
L-Dopa MAR09219 7,230E-06 2,282E-05 2,282E-05
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L-Homocystine MAR11301 8,520E-03 2,689E-02 2,689E-02
L-hydroxylysine MAR10301 1,500E-03 4,735E-03 4,735E-03
L-Lactate MAR09135 1,613E+00 5,090E+00 7,092E+00
L-Metanephrine MAR09373 1,600E-06 5,051E-06 5,051E-06
L-Octanoylcarnitine MAR04918 2,100E-04 6,629E-04 6,629E-04
L-Palmitoylcarnitine MAR09925 1,170E-04 3,693E-04 3,693E-04
L-Pipecolate MAR10255 6,230E-03 1,967E-02 1,967E-02
L-xylulose MAR11940 9,000E-03 2,841E-02 2,841E-02
LacCer pool MAR10027 1,000E-02 3,157E-02 3,157E-02
Lanosterol MAR11441 4,800E-04 1,515E-03 1,515E-03
Lathosterol MAR10256 5,903E-03 1,863E-02 1,863E-02
lauric acid MAR10434 5,822E-03 1,838E-02 2,297E-02
Leucine MAR09040 1,333E-01 4,207E-01 3,082E-01
Leukotriene B4 MAR09365 7,830E-06 2,472E-05 2,472E-05
Leukotriene B5 MAR10233 7,900E-08 2,494E-07 2,494E-07
Leukotriene C4 MAR09366 4,190E-06 1,323E-05 1,323E-05
Leukotriene E4 MAR09368 7,530E-06 2,377E-05 2,377E-05
Leukotriene F4 MAR09163 3,050E-07 9,628E-07 9,628E-07
lignocerate MAR00621 5,958E-03 1,881E-02 1,881E-02
Limonene MAR09369 1,900E-04 5,997E-04 5,997E-04
Linoleate MAR09035 6,374E-01 2,012E+00 2,012E+00
Linolenate MAR09036 2,865E-02 9,044E-02 7,066E-02
lipoic acid MAR09167 7,700E-05 2,431E-04 2,042E-04
Lipoxin A4 MAR10211 7,850E-08 2,478E-07 2,478E-07
Lithocholate MAR04164 2,050E-04 6,471E-04 6,471E-04
LTD4 MAR09367 1,290E-05 4,072E-05 4,072E-05
Lysine MAR09041 1,877E-01 5,926E-01 4,666E-01
malate MAR11404 7,600E-03 2,399E-02 3,039E-02
malonic-dialdehyde MAR11945 2,335E-03 7,371E-03 7,371E-03
Mannose MAR09137 5,150E-02 1,626E-01 2,471E-01
margaric acid MAR00620 2,666E-01 8,416E-01 8,416E-01
mead acid MAR13058 3,458E-03 1,092E-02 1,092E-02
Melatonin MAR11920 5,870E-07 1,853E-06 1,853E-06
Methanol MAR09372 1,676E-01 5,290E-01 5,290E-01
Methionine MAR09042 2,150E-01 6,788E-01 5,954E-01
Methylamine MAR11934 1,000E-03 3,157E-03 3,157E-03
methylglyoxal MAR09375 5,530E-02 1,745E-01 1,745E-01
Methylimidazoleacetic acid MAR09090 8,460E-05 2,670E-04 2,670E-04
methylmalonate MAR10243 1,740E-04 5,492E-04 5,492E-04
Myristic acid MAR00702 2,026E-02 6,395E-02 4,919E-02
N-acetyl-L-cysteine MAR11821 4,000E-03 1,263E-02 1,263E-02
N-acetylneuraminate MAR11348 1,285E-03 4,056E-03 4,056E-03
N-Acetylornithine MAR10198 1,093E-03 3,451E-03 4,486E-03
N-methylhistamine MAR11930 3,400E-07 1,073E-06 1,073E-06
N1-Acetylspermidine MAR11962 7,000E-06 2,210E-05 2,210E-05
N8-Acetylspermidine MAR11917 5,000E-05 1,578E-04 1,578E-04
NAD+ MAR09376 2,430E-02 7,670E-02 7,670E-02
NADH MAR12141 2,200E-02 6,944E-02 6,944E-02
NADP+ MAR09377 1,960E-02 6,187E-02 6,187E-02
Nervonic acid MAR00637 2,600E-02 8,207E-02 6,313E-02
NH3 MAR09073 1,102E-01 3,478E-01 3,478E-01
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NH4+ MAR11420 3,850E-02 1,215E-01 1,215E-01
nicotinamide MAR09378 2,350E-04 7,418E-04 6,182E-04
Nicotinate MAR09142 4,308E-02 1,360E-01 1,360E-01
Nitrite MAR09149 1,974E-02 6,230E-02 6,230E-02
NO MAR09381 1,200E-08 3,788E-08 3,788E-08
noradrenaline MAR09093 2,810E-06 8,870E-06 8,870E-06
Norepinephrine sulfate MAR09382 8,000E-06 2,525E-05 2,525E-05
Normetanephrine MAR10490 3,400E-07 1,073E-06 1,073E-06
O-Acetylcarnitine MAR09920 6,473E-03 2,043E-02 2,656E-02
O-Butyrylcarnitine MAR04889 2,380E-04 7,513E-04 7,513E-04
O-propanoylcarnitine MAR09921 4,140E-04 1,307E-03 1,307E-03
octadecenoylcarnitine(5) MAR09923 2,950E-04 9,312E-04 9,312E-04
octanoic acid MAR09813 5,250E-03 1,657E-02 1,657E-02
Oleate MAR00650 3,037E-01 9,585E-01 1,270E+00
omega-3-arachidonic acid MAR00577 7,000E-06 2,210E-05 2,210E-05
Omeprazole MAR09387 3,400E-04 1,073E-03 1,073E-03
Ornithine MAR09087 7,827E-02 2,471E-01 2,471E-01
Orotate MAR09690 2,945E-03 9,296E-03 9,296E-03
Oxalate MAR09165 1,029E-02 3,248E-02 4,580E-02
Oxypurinol MAR12693 5,000E-02 1,578E-01 1,578E-01
Palmitate MAR00611 4,871E-01 1,537E+00 1,537E+00
Palmitolate MAR00617 5,034E-02 1,589E-01 1,589E-01
Pantothenate MAR09145 2,744E-03 8,662E-03 8,662E-03
PC-LD pool MAR00655 3,711E+01 1,171E+02 1,171E+02
pentadecylic acid MAR00662 1,008E-01 3,181E-01 3,181E-01
PEP MAR09858 1,250E-02 3,946E-02 3,523E-02
peroxynitrite MAR11906 3,868E-02 1,221E-01 1,221E-01
PG-CL pool MAR00658 3,577E-02 1,129E-01 1,129E-01
Phenylacetate MAR10439 5,500E-02 1,736E-01 1,736E-01
Phenylacetylglutamine MAR09391 3,340E-03 1,054E-02 1,054E-02
Phenylalanine MAR09043 6,945E-02 2,192E-01 2,192E-01
Phenylpyruvate MAR11438 2,750E-03 8,681E-03 8,681E-03
phosphocholine MAR09845 2,200E-03 6,944E-03 6,944E-03
physeteric acid MAR13060 1,500E-03 4,735E-03 4,735E-03
Phytanate MAR00659 4,697E-03 1,483E-02 1,483E-02
Phytanic acid MAR09037 4,697E-03 1,483E-02 1,483E-02
Pi MAR09072 9,028E-01 2,850E+00 3,306E+00
PI pool MAR12127 3,524E-01 1,112E+00 1,112E+00
Picolinic acid MAR11925 2,990E-04 9,438E-04 9,438E-04
Porphobilinogen MAR11932 6,000E-05 1,894E-04 1,894E-04
PPi MAR11405 1,800E-03 5,682E-03 5,682E-03
Pregnenolone MAR11867 1,430E-05 4,514E-05 4,514E-05
Pregnenolone sulfate MAR11875 1,300E-04 4,104E-04 4,104E-04
Pristanic acid MAR11967 1,675E-03 5,287E-03 5,287E-03
Progesterone MAR09393 2,368E-03 7,475E-03 7,475E-03
Proline MAR09068 1,989E-01 6,277E-01 6,277E-01
propane-1,2-diol MAR11936 8,933E-03 2,820E-02 2,820E-02
Propanoate MAR09808 1,250E-03 3,946E-03 3,946E-03
Prostaglandin A1 MAR04203 7,400E-08 2,336E-07 2,336E-07
Prostaglandin A2 MAR04213 9,550E-07 3,015E-06 3,015E-06
Prostaglandin B2 MAR04217 4,460E-07 1,408E-06 1,774E-06
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Prostaglandin D2 MAR09395 1,930E-07 6,092E-07 6,092E-07
Prostaglandin E1 MAR09396 3,700E-09 1,168E-08 1,168E-08
Prostaglandin E2 MAR09397 7,310E-07 2,307E-06 2,307E-06
Prostaglandin F1alpha MAR04234 3,760E-07 1,187E-06 1,187E-06
Prostaglandin F2alpha MAR09398 2,510E-07 7,923E-07 7,923E-07
Prostaglandin J2 MAR10210 4,950E-08 1,563E-07 1,563E-07
protoporphyrin MAR11954 7,600E-04 2,399E-03 2,399E-03
provitamin D3 MAR10195 5,000E-03 1,578E-02 1,578E-02
PRPP MAR01984 5,310E-03 1,676E-02 1,676E-02
PS-LD pool MAR00661 1,748E-02 5,518E-02 5,518E-02
Putrescine MAR11426 1,560E-04 4,924E-04 4,282E-04
Pyridoxal MAR09400 2,510E-04 7,923E-04 7,923E-04
Pyridoxal-phosphate MAR09691 3,440E-05 1,086E-04 1,086E-04
Pyridoxamine MAR09399 1,640E-04 5,177E-04 5,177E-04
Pyridoxine MAR09144 2,500E-05 7,891E-05 7,891E-05
Pyruvate MAR09133 7,269E-02 2,295E-01 3,748E-01
Quinolinate MAR09859 4,700E-04 1,484E-03 1,484E-03
quinonoid dihydrobiopterin MAR11957 6,000E-06 1,894E-05 1,894E-05
Retinal MAR10492 1,550E-04 4,893E-04 4,893E-04
retinoate MAR09404 1,070E-04 3,378E-04 3,378E-04
retinol MAR09147 8,488E-02 2,679E-01 2,679E-01
Retinoyl-glucuronide MAR09405 6,600E-06 2,083E-05 2,083E-05
Retinyl palmitate MAR13067 5,610E-05 1,771E-04 1,771E-04
Retinyl-ester MAR00666 1,030E-04 3,251E-04 3,251E-04
Ribitol MAR09401 1,167E-03 3,684E-03 5,231E-03
Riboflavin MAR09143 3,500E-04 1,105E-03 1,105E-03
Ribose MAR09406 2,300E-03 7,260E-03 5,149E-03
SAH MAR09026 2,440E-04 7,702E-04 7,702E-04
Salsolinol MAR11927 1,310E-06 4,135E-06 4,135E-06
SAM MAR10202 8,550E-05 2,699E-04 2,699E-04
Sarcosine MAR09131 7,000E-04 2,210E-03 3,403E-03
Sebacicacid MAR10321 9,100E-05 2,872E-04 2,872E-04
Selenomethionine MAR11961 6,900E-04 2,178E-03 2,178E-03
Serine MAR09069 1,397E-01 4,410E-01 5,600E-01
Serotonin MAR09412 7,540E-04 2,380E-03 2,380E-03
SM pool MAR11281 1,084E+00 3,423E+00 3,423E+00
sn-glycerol-3-PC MAR09850 3,400E-02 1,073E-01 1,073E-01
sn-glycerol-3-phosphate MAR09868 3,000E-02 9,470E-02 9,470E-02
Spermidine MAR11427 4,776E-03 1,508E-02 1,508E-02
Spermine MAR09715 2,604E-03 8,220E-03 8,220E-03
Sphinganine MAR11959 1,100E-05 3,472E-05 1,417E-04
Sphinganine-1-phosphate MAR09410 5,500E-05 1,736E-04 1,736E-04
Sphingosine MAR11947 5,000E-05 1,578E-04 1,578E-04
Sphingosine-1-phosphate MAR09411 2,780E-04 8,775E-04 8,775E-04
Squalene MAR11842 1,900E-03 5,997E-03 5,997E-03
Stearate MAR00639 2,863E-01 9,037E-01 9,037E-01
Stearidonic acid MAR00695 2,120E-04 6,692E-04 6,692E-04
Stearoylcarnitine MAR09924 5,000E-05 1,578E-04 1,578E-04
Suberic acid MAR10339 1,870E-03 5,903E-03 5,903E-03
Succinate MAR09415 1,428E-02 4,506E-02 5,542E-02
Succinylacetone MAR11466 8,150E-05 2,573E-04 2,573E-04
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Sucrose MAR09416 1,800E-03 5,682E-03 5,682E-03
Sulfate MAR09074 3,528E-01 1,113E+00 1,113E+00
Sulfite MAR09088 1,230E-03 3,883E-03 3,883E-03
sulfochenodeoxycholate MAR04153 1,000E-04 3,157E-04 3,157E-04
sulfoglycolithocholate MAR04178 6,000E-05 1,894E-04 1,894E-04
TAG-extraction MAR09023 7,136E+00 2,253E+01 2,253E+01
Taurine MAR09418 1,036E-01 3,269E-01 1,121E+00
Taurochenodesoxycholate MAR09284 3,000E-04 9,470E-04 9,470E-04
taurocholate MAR09282 2,400E-04 7,576E-04 7,576E-04
Taurodeoxycholate MAR08959 6,200E-05 1,957E-04 1,957E-04
taurolithocholate MAR04146 1,212E-03 3,826E-03 3,826E-03
Tauroursodeoxycholate MAR04150 2,000E-03 6,313E-03 6,313E-03
Testosterone MAR09429 5,930E-06 1,872E-05 1,872E-05
tetradecenoylcarnitine(5) MAR10345 7,700E-05 2,431E-04 2,431E-04
Tetrahydrobiopterin MAR10496 1,100E-05 3,472E-05 3,472E-05
THF MAR09421 2,500E-06 7,891E-06 7,891E-06
Thiamin MAR09159 1,600E-04 5,051E-04 5,051E-04
Thiocyanate MAR09420 3,183E-02 1,005E-01 1,005E-01
Thiosulfate MAR09432 5,115E-02 1,615E-01 1,615E-01
Threonine MAR09044 1,478E-01 4,665E-01 3,332E-01
Thromboxane A2 MAR09433 2,400E-07 7,576E-07 7,576E-07
thromboxane B2 MAR10346 1,470E-04 4,640E-04 4,640E-04
Thymidine MAR09423 2,050E-04 6,471E-04 6,471E-04
Thyroxine MAR09424 6,518E-03 2,057E-02 2,057E-02
Tiglyl carnitine MAR04895 5,080E-05 1,604E-04 1,604E-04
trans-4-hydroxy-L-proline MAR08386 2,157E-02 6,807E-02 6,807E-02
Tricosanoic acid MAR13061 3,300E-05 1,042E-04 1,042E-04
triiodothyronine MAR09427 9,860E-07 3,112E-06 3,112E-06
tryptophan MAR09045 6,108E-02 1,928E-01 1,377E-01
Tyramine MAR11439 5,000E-06 1,578E-05 1,578E-05
Tyrosine MAR09064 7,779E-02 2,455E-01 1,846E-01
Ubiquinol MAR08967 4,000E-04 1,263E-03 1,263E-03
ubiquinone MAR08966 1,179E-03 3,722E-03 3,722E-03
UDP MAR09435 4,100E-02 1,294E-01 1,294E-01
UDP-glucose MAR01986 1,550E-01 4,893E-01 4,893E-01
UMP MAR09436 1,840E-01 5,808E-01 5,808E-01
Uracil MAR09437 1,135E-03 3,583E-03 3,583E-03
urate MAR09075 2,830E-01 8,934E-01 8,272E-01
Urea MAR09438 3,749E+00 1,183E+01 8,453E+00
Uridine MAR09439 9,107E-03 2,875E-02 1,916E-02
Urocanate MAR10347 4,300E-04 1,357E-03 1,357E-03
Uroporphyrin I MAR11929 6,300E-06 1,989E-05 1,989E-05
Ursodeoxycholate MAR04173 1,600E-04 5,051E-04 5,051E-04
Ursodeoxycholic acid 3-sulfate MAR12233 1,910E-02 6,027E-02 6,027E-02
Valeric acid MAR09810 6,000E-04 1,894E-03 1,894E-03
Valine MAR09046 2,166E-01 6,836E-01 5,121E-01
Vanillylmandelate MAR11446 3,500E-05 1,105E-04 1,105E-04
Vitamin D2 MAR09441 2,750E-06 8,681E-06 8,681E-06
Vitamin D3 MAR09442 4,590E-05 1,449E-04 1,449E-04
Xanthine MAR11428 1,973E-02 6,228E-02 6,228E-02
Xanthosine MAR09861 5,080E-03 1,604E-02 4,349E-01
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Xanthurenate MAR09693 1,100E-05 3,472E-05 3,472E-05
xylitol MAR09138 1,589E-03 5,016E-03 6,821E-03
H2O MAR09047 - 1,000E+03 1,000E+03
O2 MAR09048 - 1,000E+03 1,000E+03
H+ MAR09079 - 1,000E+03 1,000E+03

Table 12: Fold changes between tumour and normal blood reported by the studies and calculated average

fold change. Study sinalised with a † reported results for both GC-TOFMS and GCMS-QP201.

Metabolite Name
Exchange
Reaction

Fold Changes from Studies Average
Fold Change[186] [187] [188]† [188]† [189] [190] [191]

L-2-aminoadipate MAR09856 0 0 0 0 0 0 0,806 0,806
(S)-2-aminobutanoate MAR10206 0 0 0 0 0 1,61 0 1,61
Deoxyuridine MAR09310 0 0 0 0 1,52 0 0 1,52
2-Hydroxybutyrate MAR09216 0 0 1,4 0 1,42 2,09 0 1,637
(R)-3-hydroxybutanoate MAR09134 1,59 2,01 1,4 0 1,88 8,59 0 3,094
4-aminobutyrate MAR09091 0 0 0 0 0 0 0,944 0,944
Acetate MAR09086 1,18 0 0 0 0 0 0 1,18
O-Acetylcarnitine MAR09920 0 0 0 0 0 1,3 0 1,3
Adenine MAR09253 0 0 0 0 0 1,17 0 1,17
Allantoin MAR10431 0 0 0 0 0 0 1,24 1,24
L-Arabinose MAR09270 0 0 0 0 1,52 0 0 1,52
L-Arabitol MAR09241 0 0 0 0 1,35 0 0 1,35
D-Arabitol MAR10429 0 0 0 0 1,35 0 0 1,35
Asparagine MAR09062 0 0 0 0 1,17 0 0 1,17
aspartate MAR09070 0 0 0 0 1,68 0 1,37 1,525
D-aspartate MAR09097 0 0 0 0 1,68 0 1,37 1,525
L-Carnitine MAR09292 0 0 0 1,3 0 1,23 0 1,265
Choline MAR09083 1,2 0 0 0 0 0 0 1,2
Citrate MAR09286 1,21 0 0 0 0 0 0 1,21
Creatinine MAR09460 0 0 0 0 0,901 0 0,901 0,901
Cystine MAR09363 0 0 0 0 0 1,12 0 1,12
Dimethylglycine MAR09848 0 0 0 0 0 0 0,820 0,820
Elaidate MAR00583 0 0 0 0 1,14 1,42 0 1,28
Fumarate MAR11400 0 0 0 0 0 0 1,09 1,09
Glucosamine MAR09168 0 0 0 0 1,28 0 0 1,28
Glucose MAR09034 1,53 0 0 0 0 0 2,73 2,13
Glucuronate MAR11424 0 0 0 0 1,34 0 0 1,34
glutamate MAR09071 1,2 0 0 0 1,54 0 1,22 1,318
Glutamine MAR09063 0,847 0 0 0 0 0 0,917 0,881
Glyceraldehyde MAR09851 0 0 0 0 0 0 1,34 1,34
Glycerate MAR09342 0 0 0 0 1,3 0 0 1,3
(S)-Glycerate MAR00603 0 0 0 0 1,3 0 0 1,3
Glycerol MAR09085 0 0 0 0 0 2,61 0 2,61
Glycine MAR09067 1,46 0 0 0 1,16 0 0 1,31
glycochenodeoxycholate MAR09283 0 0 0 0 0 0 1,42 1,42
Glycocholate MAR09281 0 0 0 0 0 0 1,79 1,79
Glycolate MAR10436 0 0 0 0 1,13 0 0 1,13
Hexadecanedioic acid MAR10246 0 1,73 0 0 0 0 0 1,73
Histidine MAR09038 0 0 0 0 0 0 0,813 0,813
Homogentisate MAR10247 0 0 0 0 0 0 0,917 0,917
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Table 12 (cont.)

Metabolite Name
Exchange
Reaction

Fold Changes from Studies Average
Fold Change[186] [187] [188]† [188]† [189] [190] [191]

Inositol MAR09361 0 0 0 0 1,19 0 0 1,19
Isoleucine MAR09039 1,28 0 0 0 1,35 0 0 1,315
Kynurenine MAR09857 0 0 0 0 1,83 0 0 1,83
L-Lactate MAR09135 1,48 0 1,3 1,4 0 0 0 1,393
D-Lactate MAR09136 1,48 0 1,3 1,4 0 0 0 1,393
lauric acid MAR10434 0 0 0 0 1,25 0 0 1,25
Leucine MAR09040 0,813 0 0,667 0 0 0 0 0,733
Linolenate MAR09036 0 0 0 0 0 0 0,781 0,781
Lipoic acid MAR09167 0,840 0 0 0 0 0 0 0,840
Lysine MAR09041 0 0 0,714 0 0 0 0,877 0,787
malate MAR11404 0 0 1,3 0 1,37 0 1,13 1,267
Mannose MAR09137 0 0 0 0 1,52 0 0 1,52
Methionine MAR09042 0 0 0 0 0 0 0,877 0,877
Myristic acid MAR00702 0 0 0 0,769 0 0 0 0,769
Acetyl-glycine MAR10196 0 0 0 0 0 0 0,752 0,752
N-Acetylornithine MAR10198 0 0 0 0 1,3 0 0 1,3
Nervonic acid MAR00637 0 0 0 0,769 0 0 0 0,769
nicotinamide MAR09378 0 0 0 0,833 0 0 0 0,833
Oleate MAR00650 0 0 1,1 0 0 1,55 0 1,325
ethanolamine-phosphate MAR09849 0 0 0 0 0,952 0 0 0,952
Oxalate MAR09165 0 0 0 0 1,7 0 1,12 1,41
Pi MAR09072 0 0 0 0 1,16 0 0 1,16
PEP MAR09858 0 0 0 0 0 0 0,893 0,893
4-Hydroxybenzoate MAR11431 0 0 0 0 1,6 0 0 1,6
Prostaglandin B2 MAR04217 0 1,26 0 0 0 0 0 1,26
Putrescine MAR11426 0 0 0 0 0,870 0 0 0,870
Pyruvate MAR09133 0 0 2,1 2 0 1,3 0 1,633
Ribitol MAR09401 0 0 0 0 1,42 0 0 1,42
Ribose MAR09406 0 0 0 0 0,709 0 0 0,709
Sarcosine MAR09131 0 0 0 0 1,54 0 0 1,54
Serine MAR09069 1,18 0 0 0 1,36 0 0 1,27
Sphinganine MAR11959 0 0 0 0 0 4,08 0 4,08
Succinate MAR09415 1,23 0 0 0 0 0 0 1,23
Taurine MAR09418 0 0 0 0 3,43 0 0 3,43
Threonine MAR09044 0 0 0,714 0 0 0 0 0,714
tryptophan MAR09045 0 0 0,625 0,833 0 0 0 0,714
Tyrosine MAR09064 0,840 0 0,667 0,769 0 0 0 0,752
urate MAR09075 0 0 0 0 0 0 0,926 0,926
Urea MAR09438 0 0 0,714 0 0 0 0 0,714
Uridine MAR09439 0 0 0,588 0,769 0 0 0 0,667
Valine MAR09046 0,855 0 0,667 0 0 0 0 0,749
Xanthosine MAR09861 0 0 0 0 0 27,12 0 27,12
xylitol MAR09138 0 0 0 0 1,36 0 0 1,36
D-Xylose MAR09203 0 0 0 0 1,33 0 0 1,33
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Table 14: Essential genes that catalase uptake of metabolites. Cell-types codes: Cyto: cytotoxic CD8;
Fol: follicular CD4; IL17: IL17+ CD4; Mem4: memory CD4; Mem8: memory CD8; N4: naive CD4; N8;
Prol4: proliferative CD4; Prol8: proliferative CD8; Regs: regulatory CD4. The essentiality reported by the
two CRISPR-Cas9 studies is provided: -: gene not tested in study; Essential: gene tested and reported as
essential; Not essential: gene tested and reported as not essential.

Gene Cell-types CD4 Study [236] CD8 Study [237]
Reactions
Affected

CUBN IL17; Fol; Prol8 - -
MAR06884

multiple vitamine D
metabolism reactions

FASN
Cyto; IL17; Mem4; Mem8;

N4; N8; Prol4; Regs
Not essential - MAR04844

SLC5A8 Prol8 - Not essential

MAR08515
MAR09874
MAR09896
MAR09900
MAR09902
MAR07739

SLC6A5
Cyto; Fol; IL17; Mem8;

N4; N8; Prol4; Regs
Not essential -

MAR11456
MAR11453
MAR11450
MAR05457

SLC6A6 Fol; Prol8 - Essential

MAR02388
MAR04986
MAR05451
MAR05452
MAR05454

SLC7A5
Cyto; Fol; IL17; Mem4; Mem8;

N4; N8; Prol4; Prol8; Regs
Not essential - Multiple (97)

SLC7A7 IL17 - Not essential MAR11804
SLC7A8 Cyto; Mem4; N8; Regs - - MAR09402

SLC7A11
Cyto; Fol; IL17; Mem4; Mem8;

Prol8; Regs
Not essential - MAR04931

SLC10A6 Fol; N8 - - MAR09621

SLC12A3
Cyto; Fol; IL17; Mem8; N4;

N8; Prol4; Prol8; Regs
Not essential - MAR06524

SLC12A7 Cyto; Regs - - MAR11785

SLC22A3
Cyto; Fol; IL17; Mem8;

N4; N8; Prol4; Regs
Not essential - MAR11782

SLCO2A1 Fol; Prol8 Not essential - Multiple (28)
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Table 15: Differentially covered pathways between normal- and tumour- derived regulatory CD4 T-cell
models.

Pathway Adjusted p-value Fold Change

Acylglycerides metabolism 2,209E-04 3,211
Bile acid biosynthesis 2,209E-04 2,035

Drug metabolism 2,209E-04 3,086
Galactose metabolism 2,209E-04 1,848

Glycerophospholipid metabolism 2,209E-04 1,619
Glycosphingolipid biosynthesis-globo series 2,209E-04 1,585

Glycosphingolipid biosynthesis-lacto and neolacto series 2,209E-04 4,029
Isolated 2,209E-04 2,014

Tricarboxylic acid cycle and glyoxylate/dicarboxylate metabolism 2,209E-04 1,730
Glycosphingolipid metabolism 2,371E-04 1,876

Glycerolipid metabolism 3,308E-04 3,508
Protein assembly 3,578E-04 2,488

Ether lipid metabolism 4,348E-04 2,093
Pool reactions 7,253E-04 1,724

Fatty acid biosynthesis (even-chain) 9,362E-04 3,822
Blood group biosynthesis 1,204E-03 2,239

Protein degradation 1,204E-03 1,780
O-glycan metabolism 1,597E-03 1,588

Biotin metabolism 1,964E-03 1,598
Phosphatidylinositol phosphate metabolism 2,111E-03 2,541

Protein modification 2,111E-03 2,823
Sulfur metabolism 2,111E-03 1,786
Folate metabolism 2,180E-03 1,610

Keratan sulfate biosynthesis 2,733E-03 3,627
Fatty acid biosynthesis 3,264E-03 1,814

Carnitine shuttle (mitochondrial) 3,746E-03 1,885
Fatty acid biosynthesis (odd-chain) 4,754E-03 3,600

Riboflavin metabolism 1,322E-02 1,740
Thiamine metabolism 1,439E-02 1,614

Acyl-CoA hydrolysis 2,317E-02 2,505
Estrogen metabolism 3,400E-02 2,430
Peptide metabolism 4,275E-02 -4,074
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Table 16: Differentially covered pathways between normal- and tumour- derived cytotoxic CD8 T-cell mod-
els.

pathway pval_adjust fold_change

Glycosphingolipid biosynthesis-ganglio series 1,036E-02 1,965
Glycosphingolipid metabolism 1,036E-02 2,833

Pantothenate and CoA biosynthesis 1,036E-02 1,693
Riboflavin metabolism 1,036E-02 5,600

Folate metabolism 1,648E-02 2,161
Inositol phosphate metabolism 1,648E-02 3,489

Oxidative phosphorylation 1,648E-02 1,540
Sphingolipid metabolism 1,648E-02 1,645

Bile acid biosynthesis 3,864E-02 1,673
Biopterin metabolism 3,864E-02 1,611
Estrogen metabolism 4,036E-02 2,977

Carnitine shuttle (peroxisomal) 4,578E-02 1,674

Table 17: Differentially covered pathways between naive and proliferative CD8 T-cell models.

pathway pval_adjust fold_change

Acylglycerides metabolism 5,338E-02 -2,049
Blood group biosynthesis 1,620E-02 -2,287

Carnitine shuttle (endoplasmic reticular) 2,279E-02 -2,004
Carnitine shuttle (mitochondrial) 1,222E-03 -2,161

Drug metabolism 1,805E-02 -2,424
Glycosphingolipid biosynthesis-globo series 9,207E-03 -2,241

Glycosphingolipid biosynthesis-lacto and neolacto series 4,716E-01 -2,048
Glycosphingolipid metabolism 2,646E-02 -2,160

Keratan sulfate biosynthesis 5,338E-02 -4,578
O-glycan metabolism 1,222E-03 -2,750

Phosphatidylinositol phosphate metabolism 1,222E-03 -4,617
Protein modification 1,840E-01 -6,111

Sulfur metabolism 1,222E-03 -3,463
Thiamine metabolism 2,265E-03 -2,556

Xenobiotics metabolism 1,703E-01 -5,248
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Table 18: Differentially covered pathways between IL17+ and regulatory CD4 T-cell models.

pathway pval_adjust fold_change

Biotin metabolism 5,730E-04 -4,692
Fatty acid biosynthesis (even-chain) 1,529E-03 -2,970
Fatty acid biosynthesis (odd-chain) 7,421E-03 -4,034

Glycerolipid metabolism 1,442E-03 -3,684
Keratan sulfate biosynthesis 5,730E-04 -21,782

Peptide metabolism 3,257E-02 4,068
Protein assembly 5,730E-04 -2,619

Protein degradation 5,730E-04 -2,221
Protein modification 5,730E-04 -3,985

Xenobiotics metabolism 1,117E-01 -2,354

B.2 Chapter 5

Table 19: Cell-types used for tumour deconvolution, and respective overlap with CRC atlas and ground-truth

phenotypes.

CRC atlas cell-types Deconvolution cell-types Ground-truth phenotypes

Tumour Epithelial cells Cancer cells

Apoptotic_tum
Bcat+_tum
CD15+_Bcat+_tum
CD15+_HLA-DR+_Bcat+_tum
CD15+_tum
HLA-DR+_Bcat+_tum
IDO+_Bcat+_HLA-DR+_tum
P16ink4a+_tum
Prol_apoptotic_tum
Prol_Bcat+_tum
Prol_CD15+_Bcat+_tum
Prol_HLA-DR+_Bcat+_tum
Prol_HLA-DR+_TGFb+_Bcat+_tum
Prol_HLA-DR+_tum
Prol_IDO+_Bcat+_HLA-DR+_tum
Prol_TGFb+_Bcat+_tum
Prol_TGFb+_tum
Prol_tum
TGFb+_Bcat+_CD15+_tum
TGFb+_Bcat+_tum
TGFb+_tum

CD39+_vessels
D2-40+_vessels
Prol_vessels
TGFb+_vessels
Vessels
D2-40+_fibroblasts

Stromal cells Stromal cells CD39+_D2-40+_fibroblasts
CD56+_CD39+_D2-40+_fibroblasts
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Table 19 (cont.)
CRC atlas cell-types Deconvolution cell-types Ground-truth phenotypes

CD57+_D2-40+_fibroblasts
TGFb+_fibroblasts
TGFb+_D2-40+_fibroblasts
Firboblasts

TGFb+_monocytes
HLA-DR+_CD163+_macrophages
HLA-DR+_monocytes
HLA-DR+_macrophages

Anti-Inflammatory macro/mono Macro/Mono Lineage VISTA+_monocytes
Pro-Inflammatory macro/mono Macrophages_undefined

Monocytes
CD11c+_macrophages
CD45RO_undefined

Naïve B-cells
B-cells BcellsMemory B-cells

Proliferative B-cells

Naïve CD4+ T-cells

CD4+ T-cells

CD39+_CD8-_Tcells
IL22+ CD4+ T-cells CD4+_Tcells
IL17+ CD4+ T-cells CD57+_CD8-_Tcells

Memory CD4+ T-cells Intra_CD8-_Tcells
Follicular CD4+ T-cells CD8-_Tcells

Regulatory CD4+ T-cells Regulatory T-cells
Regulatory_Tcells
ICOS+_Regulatory_Tcells

Naïve CD8+ T-cells

CD8+ T-cells

CD8+_Tcell
CXCL13+ CD8+ T-cells CD57+_CD8+_Tcells
Memory CD8+ T-cells Intra_CD39+_CD8+_Tcells
Cytotoxic CD8+ T-cells Intra_CD8+_Tcells

Intra_GZMB+_CD8+_Tcell

Proliferative CD4+ T-cells
Proliferative T-cells Prol_Tcells

Proliferative CD8+ T-cells

NK cells NK cells
NK_cells
CD7+_CD3-_cells
CD56+_D2-40+_cells

Mast cells

Other cells

Apoptotic_cells
cDCs VISTA+_CD31+_CD38+_cells
pDCs TGFb+_CD31+_CD38+_cells

unknown myeloid cells CD31+_CD38+_cells
IgG+ Plasma cells Granulocytes
IgA+ Plasma cells TGFb+_granulocytes

Unconventional T-cells
LTi cells

Double-Negative T-cells
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