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Previsao do Impacto de Compostos Psicoativos nas Bactérias do
Intestino Humano com Modelacao Metabdélica

O intestino humano é composto por muitos micrébios, a microbiota, que vai desde bactérias e virus
até archaea e eukaria, sendo que as bactérias anaerobicas compdem a maior parte, com cerca de 500-
1000 espécies bacterianas. Cada bactéria tem um genoma que abrange milhares de genes e cada
pessoa tem um conjunto diferente de bactérias.

A medicacdo tem surgido como um dos fatores extrinsecos do hospedeiro que tem um forte impacto
na variacao da composicao da microbiota intestinal humana. Uma vez que os recetores dos
medicamentos, as enzimas que 0s metabolizam e os seus transportadores sao produtos de genes que
apresentam polimorfismos, a genética introduz variabilidade nas respostas dos individuos aos
medicamentos e pode ser a causa das reacdes adversas a estes.

O metabolismo celular é um sistema confiavel para a analise preditiva dos efeitos secundarios dos
medicamentos, uma vez que pode ser transformado num modelo preditivo, designado como modelo
metabdlico a escala genomica.

Este estudo baseia-se na investigacdo de Maier ef a/2018, que testou o efeito de 1197 medicamentos
que nao tém como alvo as bactérias comensais do intestino (como medicamentos para o sistema
nervoso) contra bactérias que sao representativas do intestino humano, de forma a perceber se estes
tém um efeito antibiético secundario.

Neste estudo, foi analisado o efeito destes medicamentos no crescimento da bactéria Bacteroides
thetaiotaomicron, in silico, através de dois modelos metabolicos (para comparacao), um dos quais foi
curado manualmente e obtido da literatura e o outro foi reconstruido neste estudo com uma ferramenta
automatica chamada CarveMe. Este estudo mostra que apenas 4 medicamentos tiveram o0 mesmo efeito
na bactéria /n vitroe num dos modelos /7 silico, sendo que no outro apenas 2. Algumas hipoteses podem
ser formuladas, entre as quais que nenhum destes modelos é representativo do metabolismo da bactéria

ou que as condicoes experimentais ndo foram exatamente representadas nos modelos /7 sifico.

Palavras-chave: inativacao de genes, modelos metabdlicos, microbioma do intestino



Predicting the Impact of Psychoactive Compounds on Human Gut
Bacteria with Metabolic Modelling

The human gut is comprised of many microbes, the microbiota, ranging from bacteria and viruses to
archaea and eukarya, being that anaerobic bacteria make up the most part, with about 500-1000
bacterial species. Each bacterium has a genome encompassing thousands of genes and each person
has a different set of bacteria.

Medication has been emerging as one of the host extrinsic factors that has a strong impact in the
variance of the human gut microbiota composition. Since drug receptors, drug metabolising enzymes and
drug transporters are the products of genes that exhibit polymorphisms, genetics introduces variability
among the response of individuals and may be the cause of adverse reactions to treatment.

Cellular metabolism is a reliable system for predictive analysis of drugs side effects since it is a genome-
wide network that can be turned into a predictive model, designated as genome-scale metabolic model
(GSMM).

This study is based on the experimental Maier ef a/ 2018 research, that screened 1197 drugs not
targeted at human gut commensal bacteria (such as nervous system drugs) against representatives of
the human gut, to investigate the antibiotic-like side effect of these drugs.

In the present study, it is analysed the effect of these drugs on the growth of the bacterium Bacteroides
thetaiotaomicron, in sifico, through two GSMMs (for comparison purposes), one of which manually
curated and obtained from literature and the other reconstructed in this study with the use of an automatic
tool named CarveMe. It was found that only 4 drugs had corresponding results /n vifro and in one of the
in silicomodels and only 2 in the other model. Some hypotheses can be made, such as that these GSMMs
are not representative of the bacterium metabolism or that the experimental conditions were not exactly

represented in the models.

Key words: gene-deletion, metabolic modelling, gut microbiome
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1 Introduction

1.1 Context and Motivation

The human gut harbours countless microbes, the microbiota, which have an active role in functions
such as immunological and developmental, and have been linked to brain development, physiology and
psychology primarily through neuroactive compound production and degradation [1, 2].

Drugs that act on the nervous system (neuroactive drugs), which include antipsychotics,
antidepressants and antianxiety drugs, act on the host central nervous system and their consumption has
been associated with modifications in the microbiota composition [1][2][3]. Furthermore, drugs that are
not targeted at gut commensals have also been shown to change the microbiome diversity [2].

Therefore, it is crucial to unravel interactions between the microbiome and drugs and take them into
account during drug development and selection of medical treatment, in order to control drug responses
and side effects [2, 4, b, 6]. Although numerous studies have reported some interactions, systematic

evaluation of these relationships is yet missing [3].

1.2 Aims

The goal of this project is to systematically analyse drug effects on bacterial metabolism and growth,
based on data on drug-protein interactions and based on genome-scale metabolic models (GSMM) of gut

bacteria. These are further divided into the following aims:

e Reconstruct the GSMM of Bacteroides thetaiotaomicron with an automatic tool named CarveMe.

o Examine the GSMM of B. thetaiotaomicron for its ability to produce known neuroactive compounds.

e Incorporate drug-protein interaction information from the STITCH and KEGG databases into to the
GSMM to predict the effects of drugs, screened in vitro in Maier ef a/ 2018, on bacterial growth and
metabolism.

o Repeat the previous step for a GSMM retrieved from literature that was reconstructed with a different
automatic tool named ModelSEED and was manually curated.

e Compare /n sifico results with /n vitro ones.



1.3 Structure

The dissertation has the following structure:

e Chapter 2: State-of-the-Art
— Gut microbiome interindividual variability.
— Bi-directional communication between the brain and the gut.
— The side effects of drugs in the gut bacteria.
— Genome-scale metabolic modelling to predict the effects of a drug on a bacterium.
e Chapter 3: Methods
— Automatic reconstruction of B. thetaiotaomicrorn’'s genome-scale metabolic model.
— In silico simulation of drugs’ effect on Bacterium’s growth and metabolism.
— Using a manually curated 5. thetaiotaomicron's model to compare and understand drugs’ effect
results /n silico.
e Chapter 4: Results
— Analyses of automatic model reconstructions.
— Investigation of bacterium’s ability to metabolise neuroactive compounds.
— Results of drugs’ effect simulation.
e Chapter 5: Discussion

e Chapter 6: Conclusions



2 State-of-the-Art

2.1 Human Gut Microbiome

The gut flora is comprised of many microbes, the microbiota, ranging from bacteria and viruses to
archaea and eukarya, being that anaerobic bacteria make up the most part, hence being the most studied

[4][5]. All the genomes belonging to the microbiota constitute the microbiome [5][6].

2.1.1 Composition / Interpersonal Variability

Due to the highly diverse microbial community of the microbiota, present in diverse niches and active
at varying rates, numerous interactions among it and with the host exist, such as cross-feeding (metabolic
exchange between microorganisms), mutualism, commensalism and competition (e.g., genes producing
antimicrobials or competition for the same niche) [7][5][8].

The microbiota composition varies from person to person and throughout life with microbiome’s
intrinsic and extrinsic factors (such as taxa interactions, in the first case, and diet, genetics, pollutants,
cohabitation and use of medication, in the last case) [5][6][2][9][10].

According to a longitudinal study done in a Dutch population, environment and cohabitation were the
primary factors that explained microbiome variance (as shown in Fig. 1b) and only 15% of the variability
could be explained by extrinsic factors, which means that the microbiome is very unique [5][6][2][9][10].

However, it can be said that the microbiome is fairly stabilised after the age of 3 and, around 65 years
old, gradual changes start to occur (characterized, for example, by a depletion in the core abundant
genera “Bacteroides” [Fig. 1a] and by changes in the metabolic capacity [11][10][3]) and the microbiome
interindividual variation increases [12][11][10].

Gut microbes are responsible for catabolising nutrients that go unmodified to the gut because they are
not digested by host enzymes. This results in the production of metabolites, among which are short chain
fatty acids (e.g., acetate, propionate and butyrate), branched chain amino acids and gases. This catabolic
process might need combinations of microorganisms for it to happen [13][7][5]. Microbes also metabolise
other compounds, as for example, bacterial cell wall components. All of these metabolites, that together
define the metabolome, can later be absorbed or excreted by the host through metabolic processes and

pathways [7][5].
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Fig. 1. Gut microbiome composition. a, Core of species in the human gut microbiome (from 364 fecal metagenomes of asymptomatic
individuals; figure taken from Maier et a/2018 [3]). b, Heritability and contribution of individual exposures to microbiome variance (figure
from [10]).

2.1.2 Gut-Brain Communication Driven by Microbiota-Derived Neuroactive Metabolites

The nervous system allows communication between the brain and all parts of the body, through the
transmission of electrical signals along the extension of one neuron (the axon) towards the dendrite of the
postsynaptic neuron. This transmission involves the release of neurotransmitters that bind targets in the
postsynaptic neuron and can cause its excitation, inhibition or modulation [14].

The nervous system comprises two main parts:

o the central nervous system (CNS), consisting mainly of the spinal cord and the brain and is named so
since it integrates information from the rest of the body and controls its activity [15].

e the peripheral nervous system (PNS), that is made up from the nerves that link the skin, limbs and
other organs to the CNS [15]. These nerves can be grouped, according to the location of connection
to the CNS, into spinal nerves (that connect to the spinal cord) and cranial nerves (that connect directly
to the brain). The latter include the vagus nerve, that is the longest cranial nerve since it runs from the
brain stem to part of the colon (Fig. 2) [16, 17]. Moreover, the PNS can be divided into:

— the somatic system, that controls voluntary muscle activity through innervation of skeletal muscles

[18][19].



— the autonomic system, that encompasses neurons innervating blood vessels, lymphoid tissue and
internal organs, being implicated in the control of physiological processes [18][19]. This system
further includes neurons located within the gut, named enteric neurons, which around 500 million

of them make up the enteric nervous system (ENS) [20][21].

Thalamus

Amygdala

Vagus nerve

Stomach

Small intestine

Large intestine

Fig. 2. Gut connection to the brain.

The gut and the central nervous system have been shown in research to have a strong connection,
which has been designated as “gut-brain axis” and is modulated by activation of neurons in the gut, by
hormones and by immune signals [12][22]. Moreover, metabolites produced by the gut microbiota have
gained special interest by research community as they have been implicated in neuronal processes and
dysfunction (examples in Table 1) [22]. Evidence regarding some of the metabolites from Table 1 and

their involvement in the gut-brain communication will be presented as follows:

e bacteria can metabolise the amino-acid tryptophan and produce precursors of serotonin, a
neurotransmitter involved in cognition regulation and mood [23][24]. Tryptophan was present in higher
concentrations in plasma of germ-free mice, in contrast to mice with a gut microbiota, which was
further supported by reduced metabolism of tryptophan along its dominant metabolic fate, the
kynurenine pathway [25][26]. Tryptophan is also degraded into quinolinic acid, which activates the
glutamate-gated ion-channel N-methyl-D-aspartate (NMDA) found in neurons and, when the activation
is exacerbated, leads to loss of neuronal function and cell damage/death [24].

e neurotransmitter glutamate have been shown to enhance cognitive abilities and memory [22] and are

present in much-elevated levels in conventionally colonised mice compared to germ-free mice [26].



e short-chain-fatty-acids (SCFA) are fatty acids produced by gut bacteria during fermentation of complex

carbohydrates, of which propionate and acetate are the most abundant metabolites [27][28]. SCFAs

are involved in the maturation of immune cells of the CNS and in its homeostasis [22].

e menaquinone/vitamin K2 has shown neuroprotective properties, in a model of neurodegenerative

disease, by inhibiting aggregation of neurotoxic proteins inside the neurons [22].

Table 1. Neuroactive metabolites reported as being produced/consumed by bacteria.

Type Metabolites Reported observations CarveMe ID
Neurotransmitters Tryptophan [29, 30] Precursor of serotonin (5-HT/5-hidroxitriptamina) ~ trp__L_p/e/c
precursors and of tryptamine
L-3,4-dihydrophenylalanine (L-DOPA) [26] Precursor of dopamine 34dhphe_p/e/c
Tyramine [26] Precursor of dopamine tym_p/e
Neurotransmitters Tryptamine trypta_c
Gamma-aminobutyric acid (GABA) [26, 29— Inhibitory neurotransmitter; has been observed ggdabut_c
31] in MDD (major depressive disorder) patients [31]
Dopamine [29] [30] [26] Motivation, reward, hedonistic regulation [30] dopa_p/e/c
Glutamate [30] [26] glu__L p/e/c
Nitric oxide [30] no_p/e/c
Taurine (amino sulfonic acid) [26] taur_p/e/c
short-chain-fatty-acids Butyrate [29][30] Regulation of brain-derived neurotrophic factors; but_p/e/c
(SCFAs) Propionate [29] [30] Regulation of neuroinflammatory processes [32];  ppa_p/e/c
Acetate [29] [30] depleted in MDD (major depressive disorder) ac_p/e/c
Isovaleric acid [30] patients [33] 3mb_p/e/c
3mba_e/c
Secondary messenger  Inositol [30] Regulation of neuronal and glial activity [34] inost_p/e/c
Vitamins Menaquinone (vitamin K2) [30] mqn6/7/8_c
Excitotoxic Quinolinic acid [30] [31] Metabolic pathway to quinolinic acid is activated ~ quln_c
(damage/death of nerve cells)
Neuroinflammatory in MDD (major depressive disorder) patients;
quinolinic acid impairs neurons inducing
depressive symptoms [31]
Anti-inflammatory S-Adenosylmethionine (SAM) [30] amet_c

2.2 Impact of Drugs on Human Gut Bacteria

Medication has been emerging as one of the host extrinsic factors that has a strong impact in the

variance of the human gut microbiota composition [2][35]. Studies have shown that antibiotics, that are

supposed to inhibit pathogens, have a side effect on the gut microbiota [2][36]. Furthermore, non-

antibiotics have also been linked to changes in microbiome composition [2][35].

Drugs are supposed to have a certain therapeutic outcome while avoiding secondary effects, which are

undesirable effects at normal dosages. The study of the genetic influence on the relationship between

drug dose and effect is gaining increasing interest since drug receptors, drug metabolising enzymes and

drug transporters are the products of genes that exhibit polymorphisms. This influence of genetics

introduces variability among response of individuals and may be the cause of adverse reactions to
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treatment [37]. The estimated 500-1000 bacterial species that comprise the gut microbiome, with each
bacterium having a genome harbouring thousands of genes, together with the fact that each person has
a different set of bacteria, adds further variability between individuals and subsequent response to drugs
[38].

Cellular metabolism is a reliable system for predictive analysis of drugs side effects since it's a genome-
wide network that can be turned into a predictive model, designated as genome-scale metabolic model
(GSMM). Using these models together with drug-gene interaction information allows the prediction of
linkages between gene and phenotype and the identification of the molecular mechanisms of the side
effects of the drugs [39].

Several databases provide information between drugs and their targets, such as Pharos [40], DrugBank
[41], BioGRID [42] and Therapeutic Target Database [43], but their data sources can't be easily traced
back and neither do they provide links to genome databases, unlike STITCH (search tool for interacting

chemicals) which integrates all of this information (Fig. 3) [44][45].

STITCH

Data Sources

- saco } o == P wbliTed fd] Befct
----- e :Qn\u-..' E BioGRID
Genomic Context High-throughput Lab (Conserved) Co- Automated Previous Knowledge in
Predictions Experiments Expression Textmining Databases

Fig. 3. Information sources of STITCH database (adapted from [46]).

STITCH is a database that collects experimental data about protein-chemical interactions and that
predicts protein-chemical associations de rnovo using computational tools, by knowledge transfer between
organisms and from other databases, as shown in Fig. 3 [44][47]. These predicted interactions are based
on the identification of pairs of genes that are thought to be functionally associated, through genome
comparisons [47]. Each predicted interaction is assigned a confidence score, which is representative of
how likely the interaction is true. [46]. Experimental interactions are given a uniform confidence score per
database. The scores of interactions that are transferred via homology correspond to the probability of
finding the associated proteins within the same metabolic pathway. Individual scores are then computed
into a combined score. This score ranges from O to 1, being that 1 is the highest possible confidence

[46][47].



2.3 In Silico Simulation of Drug Interaction with Bacteria

2.3.1 Genome-Scale Metabolic Modelling

Profiling microorganisms present in the gut (through metagenomics sequencing and taxonomic
assignment), identifying and or quantifying metabolites (metabolomics) and which microbes are
responsible their production, understanding metabolites’ influence on their host's metabolism (on health
and disease states, for example) and evaluating microbe-microbe interactions, is all knowledge that is
extremely important for the development of strategies to improve human health. Strategies involving, for
instance, the administration of beneficial bacterial (probiotics) or of substrates enhancing their growth
(pre-biotics), with the aim of modifying microbiome composition and, consequently, changing its impact
on the host [5][7][6].

Approaches namely 16rRNA amplicon sequencing, shotgun metagenomics sequencing, taxonomic
assignment and metabolic profiling, mainly of fecal samples (most studied kind of samples, as reviewed
in [7]), has generated enormous amounts of data, such as, genomic information, microbial composition
and quantification and/or identification of metabolites present in a biological system, respectively [5, 7,
48].

Statistical analysis of this data allows to figure out differences in gut microbial and metabolites’
composition under different conditions [49][4]. However, they alone don't allow identification of the
contribute of each species to the host’s metabolism, nor provide understanding of interactions between
microbes [48][50].

Thus, development of descriptive mathematical models is necessary to integrate all of this diverse
omics data and enable the computational exploration of complexities of the gut microbiome,
consequently, contributing to the knowledge of pathophysiology of diseases and allowing the proposal of
personalised interventions [4, 6, 48].

A genome-scale metabolic model (GSMM) of an organism is a mathematical representation of its
metabolism’s genome-scale network reconstruction (GENRE), which in turn is based on all of the
information about the organism, such as genome annotation and biochemical characterisation,
assembled from sources like high-throughput data, databases and research papers [51][4].

A GENRE is made up of all organism’s metabolic reactions that are linked to its genome. Briefly, the
metabolic reconstruction (represented in figure 4) starts with acquiring genome annotations for the

organism. Then, biochemical databases (like BiGG, KEGG and MetaCyc) are searched to identify reactions



for the corresponding catalysing enzymes encoded by the genome, the so called gene-protein-reaction

(GPR) relationship [4, 51].
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Fig. 4. Genome-scale network reconstruction (adapted from [51]).

The GENRE conversion into a mathematical format initially requires the tabulation of the stoichiometry
of each metabolite participating in a reaction, designated as stoichiometric matrix (as shown in figure 5a).
Unlike models that necessitate kinetic parameters to be measured, GSMMs rely on the imposition of
constraints on the flow patterns of the metabolites to be able to compute a feasible space of flux
distributions (or flux map) using constraint-based modelling methods (CBM) such as COBRA (constraint-
based reconstruction and analysis) (figure 5b). These constraints, which are equations when referring to

balances and are inequalities when imposing bounds, can be of several types [6, 8, 51] :

e Enforcement of mass balance (or mass-balance or flux balance) constraints: the amount of intracellular
compounds produced must be equal to the amount of intracellular compounds consumed at the steady
state, meaning that the production and consumption cancel out) [6, 8, 51].

e (Capacity constraints (or reaction flux bounds): definition of maximum and minimum allowable fluxes
through reactions; also define which metabolites can enter from the medium [6, 8, 51].

e Thermodynamic feasibility constraints: thermodynamically feasible directions imposed on reactions [6,
8, b1].

e Substrate uptake rates [6, 8, 51].

e Secretion rates [6, 8, 51].

The computed space of flux distributions represents multiples solutions that satisfy the governing

constraints and that are associated with candidate physiological functions that the network produces.



Thus, the next step is defining the biological function that, mathematically, is represented by an objective
function (for e.g., if the objective is to predict growth, the objective function is biomass production which
is represented by a biomass reaction in the stoichiometric matrix). In order to calculate the reaction fluxes
(optimal flux distribution) that minimise or maximise the objective function, it's frequently used a linear
programming technique designated as flux balance analysis (FBA), that is based on assumptions of
steady-state growth and mass balance. Nevertheless, it presents limitations, one of which is not being

able to infer metabolite concentrations [4][51].
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Fig. 5. Mathematical conversion of a genome-scale network reconstruction to a computational genome-scale metabolic model (adapted
from [4]). a, Stoichiometric matrix. b, feasible space of flux distributions (or flux map).

Currently, there are metabolic models for many organisms. In order to provide the scientific community
a resource for obtaining these models, repositories have been being created to collect and validate them
and to standardise the reaction, the metabolite and the gene identifiers [4, 6]. One example is the Virtual
Metabolic Human database [4][52]. However, if the organism doesn’t have any GSMM associated or if it
has but is not sufficiently descriptive of the organism, a new GSMM can be generated automatically or an

existing GSMM can be either manually or automatically curated [4].
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2.3.2 Refinement of Model Reconstruction

With the increasing ability to easily determine the complete genome of an organism, through whole
genome sequencing, and with the growing number of available software tools to reconstruct GSMMs from
genome annotation, the number of metabolic reconstructions is rapidly increasing [53][54][51]. However,
problems such as incomplete or incorrect genome annotation (i.e., missing or wrong metabolic function
attributed to a gene) and biochemical databases not being organism-specific (meaning that one enzyme
might be linked to a certain activity that is not present in the organism), can lead to incorrect models that
resulted in wrong predictions of phenotypes when compared with experimental observations. These
problems make the refinement/curation of the reconstruction an important part of the process, to ensure
high-quality predictions [53][51].

Therefore, after an automatic software tool has been used to create a draft reconstruction, the latter
should go through steps of curation that can be performed multiple times and without an order until the

final GSMM [53][51]. Some of the most important steps are the following:

o |nvestigation of the function of a gene through experiments or literature, since it can have a wrong
annotation or not have one at all [53][51].

e Removal of reactions that are too generically described, e.g., DNA [53][51].

o Verification of substrates and/or cofactors of enzymes that are associated with multiple reactions in
organism-unspecific biochemical databases. This step is necessary because substrate/cofactor
specificity of enzymes can be different between organisms and incorrect inclusion of substrates may
lead to wrong predictions [53][51].

e Making sure the direction of a reaction is assigned correctly. When no information is available to
determine the reaction directionality, the reaction is set by default as reversible. However, a high
number of reversible reactions can lead to a free exchange of metabolites between compartments and
impact the results. Some textbooks and literature provide rule of thumbs for the directionality of some
reactions [53][51].

e Confirming correct compartment location of enzymes (i.e., if they are located in the cytoplasm, in the
periplasm or extracellularly). Their incorrect assignment can lead to the addition, without evidence, of
reactions that transport metabolites between intracellular compartments and, consequently, result in
the misrepresentation of the model [53][51]. Tools such as PSORT [55][56] and Proteome Analyst
[57][58] can be used to determine a compartment to an enzyme based on its sequence.

e Verification of the gene-protein-reaction (GPR) rule [53][51]. According to the catalytic mechanism of a

metabolic reaction, the GPR rule associated with it can be [54][4, 51, 59]:
11



— an empty rule, meaning no gene is involved in its catalysis. This is valid since there are reactions
that occur spontaneously or that only need small molecules to occur. Reactions with these rules are
designated as spontaneous or as non-enzymatic reactions [54][4, 51, 59].

— a single gene rule, i.e., only one gene is required for the reaction catalysis. In this case, one single
gene is responsible for a monomeric enzyme, i.e., an enzyme with a single subunit[54] [4, 51, 59].

— a multiple genes rule, when a reaction is catalysed by either an oligomeric enzyme (an enzyme
consisting of multiple subunits, all of which necessary for the reaction catalysis) or by isoforms of
an enzyme (a highly similar enzyme that can catalyse the same reaction). These rules use the
operator AND (Fig. 6) to indicate that all the genes that encode the subunits of an oligomeric enzyme
are necessary for the reaction to occur; the operator OR (Fig. 6) to specify the genes that encode
the isoforms of the enzyme, which in this case only one of the enzymes is sufficient for the reaction
catalysis; or both operators at the same time to describe isoforms and subunits involved [54][4, 51,
59].

Reactions that have associated either of the two previous rules are designated as gene associated

reactions or enzymatic reactions [54][4, 51, 59]. Some GPRs retrieved from databases might be wrong

due to differences between organisms when it comes to, for instance, subunits composing the enzymes

or the reactions they catalyse. Wrong associations affect the results of gene deletion studies [54][4,

51, 59]. The tool GPRuler can reconstruct automatically the GPRs from the name of the organism or

from its metabolic model [54][4, 51, 59].
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e Analysing the biomass reaction. This reaction describes all the intracellular compounds (and their
individual contributions) that are essential for the cell to grow. If the biomass composition for the
organism is not available, one should determine it experimentally or, at least, estimate it from the
genome. Using the genome of other organisms, such as £scherichia coli, for this estimation will
probably lead to incorrect results since the number of rRNA operons differs between organisms.
Furthermore, when a precursor of biomass is not included, its synthesis reaction will not be essential
for growth, making the genes that catalyse it not essential as well, and vice-versa. This will consequently
lead to wrong results of gene deletion studies [53][4, 51, 59].

e Adding further constraints such as enzyme capacity will result in a smaller set of steady-states flux
solutions [53][4, 51, 59].

e Evaluating if the network is able to synthesize biomass precursors or to simulate a physiological
function, by testing the capability of the model to carry flux through the reactions. This allows the
identification of network gaps which correspond to missing metabolic reactions and functions. Network
gaps cause blocked reactions (reactions that cannot carry flux when boundaries are open) and dead-
end metabolites (metabolites that are synthetised but not consumed). If the network gaps don’t allow
the model to be functional, it is necessary to add reactions whilst ensuring network connectivity, the
so called gap-filling process [53][4, 51, 59]. The reactions to be added can be selected by multiple
ways:

— analysing through biochemical maps the enzymes that are able to produce the dead-end
metabolites, information with which one can search for reactions that consume them [53][4, 51,
59].

— adding temporary demand and/or sink reactions that add metabolites to the network, in order to
make blocked reactions carry flux and, thus, test metabolic functions. This allows the identification
of the gap that makes the model not functional and subsequent filling of the gap [53][4, 51, 59].

e Using experimental observations to correct and improve network content [53][4, 51, 59].

e Evaluation of growth rate. A slow growth rate might mean that at least one of the medium components
is limiting growth, which can be verified by increasing the uptake rate of each of the components and
checking if the growth rate increases. A fast growth rate might be indicative of a non-optimal biomass
reaction, reactions that shouldn't be in the model or of missing and/or incorrect constraints [53][4,

51, 59].

Depending on the automation level of the reconstruction tool used, these different steps of curation

can be performed manually or automatically and on different stages of the reconstruction process [60].
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2.3.3 Model Reconstruction Approaches

In general, genome-scale metabolic reconstruction tools follow one of two main approaches: bottom-
up and top-down, as represented in Fig. 7 [60].

The bottom-up approach starts the process with the genome of the organism and generates a draft
reconstruction with the respective reactions retrieved from biochemical databases, which will then go
through curation steps [60].

The top-down approach distinguishes from the latter since, instead of starting with the genome of the
organism, it begins with reconstructing a draft model with all the reactions and metabolites present in a
database, that belong to multiple organisms of the same domain. Subsequently, the draft model is turned
into an organism-specific model, using genome information to remove the reactions and metabolites that
are unlikely to be part of the organism [60].

Several reconstruction tools are available [61], but this study will be focused on the description of
ModelSEED [62] and CarveMe [60] which are representing the bottom-up and the top-down approaches,
respectively.

ModelSEED is a web tool that automates most of the curation steps mentioned previously in chapter
2.3.2. Since it is a bottom-up reconstruction approach, the first step it performs is annotating a genome
sequence using the RAST (Rapid Annotation using Subsystem Technology) fully-automated service
[63][62].

After this, the model is constructed with reactions selected from SEED database [62, 64]. This database
puts together every information from KEGG database [65] and from 13 available GSMMs [62]. The model
generated consists of GPR rules that are constructed from mappings, in SEED database, of gene function
to reactions. Furthermore, a biomass reaction is also added based on a template that exists in SEED and
that was assembled by curating biomass reactions of 19 existent GSMMs. This reaction includes 39
substrates that are included in every model reconstructed by this tool and 44 substrates that can be
additionally added if they satisfy the tool criteria by genomic evidence (e.g., cell wall type being gram-
positive or gram-negative) [62]. The relative abundances of the substrates in the biomass reaction are
based on measured values in £. colifor gram-negative organisms and Bacillus subtilis from gram-positive
ones.

After this phase, the model has network gaps that don’t allow its functionality and goes through a mixed
integer linear optimization problem (MILP) where, for example, some reactions are favoured over others
(e.g., intracellular biosynthesis pathways are favoured over transport reactions) and penalties are given

to reactions that go on an unfavourable thermodynamically way. If the growth medium specific for the
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organism is experimentally determined, the optimization also identifies the reactions that must be added
to enable growth on the respective medium; if no growth medium information is available, all the
metabolites are allowed to be imported from the medium [62]. ModelSEED also performs optimization of
the model in order to fit experimental data (optimization steps such as searching inconsistencies between
model annotations and gene essentiality data and using the using the GrowMatch [66] algorithm to correct

errors that lead to discrepancies between growth /7 silico and in vivo.
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Fig. 7. Metabolic model reconstruction approaches (adapted from [60]). a, Represents the bottom-up approach. b, Represents the top-
down approach.

Regarding the top-down reconstruction approach, CarveMe is a Python-based tool that begins the
reconstruction by making a draft model containing all reactions and metabolites that exist in the BiGG
Models database (integrates more than 70 published genome-scale metabolic networks) [66] and that
are specific for the bacteria domain, thus being designated as the universal draft model of bacterial
metabolism [60]. This model then goes through a manual curation process, during which, for instance,
an universal biomass equation, adapted from £.coli; is added and reversibility of reactions is constrained
to make thermodynamically feasible phenotypes. From this universal model, CarveMe generates two
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additional models that can be used in the place of the former and that are made specific for gram-positive
and gram-negative bacteria by the addition of appropriate cell wall components to the biomass reaction
[60].

BiGG database also presents the GPR associations from the original GSMMs, associations which
CarveMe uses to makes its own database with the genes and protein sequences. This database is going
to be used in the next step, in which the user inputs the genome of the organism and CarveMe aligns
gene/protein sequences to the ones in the database and attributes the alignment a score. The score of
every isoform of a protein that catalyses a reaction will be summed up, subsequently normalised to a
median value of 1 and attributed to the respective reaction. Non-enzymatic reactions (reactions don't
need a protein to be catalysed) are given a score of zero and enzymatic reactions that don’t have any
gene/protein mapped to it are given a -1 score. These scores are then used for the MILP optimization
problem that maximizes the number of reactions with higher scores and minimizes the presence of the
lower score ones, finally resulting in a model comprising reactions that are more likely to be present in

the specific organism. All of this process is schematised in Fig. 8.
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Fig. 8. Scheme about the CarveMe top-down reconstruction process (adapted from [60]).
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In order to be able to evaluate if running the MILP problem would lead to different reactions being
added to the model and, consequently, give rise to different predictions of a bacterium’s capabilities,
CarveMe has the option of performing ensemble modelling. This step takes enzymatic reactions without
a gene associated to it (have a score of -1) and attributes to them random weighting factors. This means
that only these reactions will have a different score every time the MILP problem is solved [25]. This will
generate different models, all of which will constitute the ensemble model. Studying these alternative
models is important to understand if the reactions that differ are present in most models, hence being
able to assume that the predictions of any of the models generated are going to be representative, or not.
The more complete a genome is (i.e., the more the DNA sequence is deciphered) and the more
genes/proteins mapped to the CarveMe database, the fewer the enzymatic reactions with -1 score.
Consequently, the random factor decreases, which means that the models that will be generated each
time the optimization problem is solved, should have almost the same reactions present.

CarveMe also allows the user to provide experimental data such as a list of growth medium substrates
and perform the necessary curating steps to make the model functional in this medium, such as gap-

filling.

2.3.4 Using Metabolic Models to Predict Biological Capabilities

GSMMs can be used to compute perturbations at genetic and environmental (nutritional input) levels,
allowing the simulation of many different experimental conditions /n7 sifico quickly and, consequently, the
prediction and analysis of the consequences of these changes [51].

GSMMs have been used for qualitative predictions such as gene essentiality. Since each reaction is
linked to the corresponding protein, hence, to the encoding gene(s), removing a reaction from the GSMM
and computing growth allows to know if the gene(s) is essential depending if growth can be computed or
not without it (figure 9). As genome editing techniques develop, the results of gene knockout studies will

be necessary for engineering genomes and, thus, result in a desired phenotype [51].
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hH

Fig. 9. Gene essentiality prediction (adapted from [51]).

GSMMs have also been used to predict quantitively phenotypic organism functions like (as represented

in figure 10) [51]:

° Nutrient utilisation [51].

e  (Central carbon metabolism fluxes [51].

e  Strain abundance and nutrient exchanges [51].
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Fig. 10. Quantitative predictions (adapted from [51]).

To address the possible existence of multiple flux solutions that optimize the objective function, flux

Strain abundance and
nutrient exchange
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variability analysis (FVA) can be used to predict the flux range of reactions [51].

Incorrect model predictions are related with incomplete knowledge about an organism that can, in turn,
be discovered using algorithms that implement automated approaches designated as “gap-filling”. These

have been used to query databases to discover potential metabolic reactions that lead to new hypothesis

that can be experimentally tested [51].
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Cell-type and condition-specific (e.g., healthy vs disease) GSMMs, resultant of multi-omic data
integration through the conversion of experimental data into model constraints, allow evaluation of
phenotypic capabilities and consequent identification of molecular differences between different cells or

environments [51].
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2.3.5 Overview of Available Resources / Tools

Table 2. Overview of available tools.

Analyses Tools/ Databases Description
Genome-scale metabolic AGORA [50]
reconstructions/models’
acquisition
KBase [9]

Virtual Metabolic Human database [13]

Genome-scale metabolic
models’ refinement

ModelSEED [9]

rBioNet [50] [67]
metaGEM [68]

Reconstruction of sample-specific metabolic
models from metagenomic data

In sifico model simulation

COBRA [69]
FBA [9] [13]

Distributed FBA [67]
FVA [13]

Gurobi [9] [13]
CPLEX [67]
Fast-SL [13]

Linear programming technique to determine the
steady-state reaction flux distribution

Used for growth prediction/ substrate utilization
profiles; maximum production flux

Contribution of each strain to overall production
Flux range of reactions

Used for production capabilities

Linear programming solver

Linear programming solver

Synthetic lethality analysis

Reaction essentialities

Community modelling

Microbiome Modelling Toolbox [67]
(COBRA extension)

createPanModels.m [70]

(function of Microbiome Modelling Toolbox)
MMinte [49]

MICOM [49]

mgPipe [70]

(function of COBRA)

MetGEMs toolbox [71]

Join individual genome-scale metabolic models

Join individual genome-scale metabolic models of
the same species (strain-specific)

Pairwise interactions

Community interactions

Integration of microbial abundance

Metabolic functional analysis of microbial
communities

To assign enzyme functions

To associate abundance of enzymes with related
diseases (for example)

Large-scale metagenomic
data

Human Microbiome Project Consortium [67]

MetaHIT [7]

Statistical tests

SelectKBest [69]

Jaccard coefficient [9]
Mann-Whitney U test [9]
Wilcoxon rank-sum test [9]
Spearman'’s correlation [5]

Metabolic dissimilarity test

Connects metabolomics data (metabolites level)
with microbiome taxonomic profiles

Databases of reactions

UniProt [69]
BLASTP [13]
KEGG [9]
BIGG [9]
MetaCyc [6]

Reactions associated with genes
Reactions associated with enzymes
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3 Methods

As explained in the Introduction section, according to the /n vitro results of a 2018 research [3], drugs
that are not supposed to target gut commensal bacteria, such as human-targeted drugs, changed the gut
microbiome composition. In particular, drugs that targeted the nervous system were overrepresented [3].

To understand the undesirable effects of drugs on the human gut microbiome, it is necessary to study
how they interact with bacteria and their impact on bacteria’s growth and metabolism.

The study was based on a specific bacterium, the gram-negative Bacteroides thetaiotaomicron (strain
VPI-5482 and taxonomy identification 226186 [72]), due to its extensive distribution among humans [73]
and to being the most commonly isolated obligate anaerobe [74] (thus, having a very complete genome).

The drugs’ effect on B. thetaiotaomicron's growth and metabolism was determined by its /n silico
genome-scale metabolic model.

The following sections describe which drugs were studied in this project and how information about

drugs’ interaction with genes was obtained and integrated for /n silico simulation of their effects.

3.1 Drug Selection

The first analysis of drug effects on bacteria was focused on the drugs that target the nervous system,
screened in the studied paper [3].

As reported Maier et al. [3] and as presented in its “Supplementary Table 1” (shown in Table 3), all
the drugs screened in the /n wiro experiment were categorized into therapeutic classes according to the
Anatomical Therapeutic Chemical (ATC) classification presented in Table 4 [75]. Table 3 illustrates two
examples of the information extracted from “Supplementary Table 1", where each row corresponds to a
drug identified by a unique “Prestwick_ID" and by one or multiple “ATC codes” representing the

therapeutic classes they belong to.

Table 3. Partial content of “Supplementary Table 1" of Maier ef a/2018 [3]. Two examples where chosen for illustration.

prestwick_ID  chemical name STITCH4 id ATC codes
Prestw-948 Timolol maleate salt CID100005478  CO7AA06 SO1EDO1
Prestw-978 Memantine Hydrochloride CID100004054  NO6DX01
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Table 4. Anatomical Therapeutic Chemical (ATC) classification. a, All therapeutic classes. b, Specific classes of nervous system drugs.
(Adapted from [75]).

a
Anatomical Therapeutic Chemical (ATC) Classification
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>
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* b
M MUSCULO-SEELETRL SYSIEM ¥ N
.o
TERWOTUS SYSTER 13
* b
>

HOT7X OTHER RERVOUS SYSTEM DRUGS

, INSECTICIDES AND REPELLENIS

The drugs that act on the nervous system belong to the ATC class “N”, as shown in Table 4. Therefore,
from the “Supplementary Table 1" of the paper [3], all these drugs were gathered by selecting the rows
that have at least one of the values in the column “ATC codes” starting with the characters “NO” (as it's
represented in the second row of the Table 3).

This table further presented a column named “STITCH4 id” (Table 3), that attributed an identifier to
each drug, with which it is possible to retrieve information from the STITCH database [46] about how a
drug interacts with a gene, as it will be explained in the following section.

Lastly, the second analysis of drug effects on bacteria was based on the drugs screened in the same
paper [3], that covered all main ATC therapeutic classes and that are not supposed to affect gut

commensals. From these, the ones that had information in STITCH were also studied.

3.2 Extracting Interaction Information between Drugs and Bacterial

Proteins from the STITCH Database

From the STITCH database [46][44], a file containing known and predicted interactions between drugs
and proteins/genes (proteins and genes will be used interchangeably) of B. thetaiotaomicron was

downloaded (“226186.actions.v5.0.tsv.gz") (Table 5).
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Table 5. STITCH file “226186.actions.v5.0.tsv.gz"” partial information. a, Table that highlights the 7 different values possible in column
“mode”. b, Table that emphasizes that one drug (e.g. “CIDm00131041") can have an effect on multiple genes.

a item_id_a item_id_b mode action a_is_acting score b item_id_a item_id_b mode action aisacting score
226186.8T_1545 CIDm00131041 inhibition inhibition fo410 (RN o 1545 inhibition inhibition . a0
CIDm00131041 226186.ET_1545 _inhibition _inhibition t 410 |E5m00131041 | 226186871016 inhibition inhibition t 491
22618687 0638 CIDmO06914645  binding NaN f 689 | CIDmOD121041 |226186.8T 0303 inhibition inhibition t 491
CIDmOGS14645 22612067 0635 binding NaN f 689  |CIDmO0131041 | 226186.8T_1413 inhibition inhibition t 410
226186.BT_1881 CIDm10400926 pred_bind  NaN f o182 CIDm00131041 |226186.8T_4338 inhibition inhibiticn t 410
CIDm10400926 226186.BT_1881 pred_bind  NaN f 182 | CIDmOD131041 |226186.8T_1234 inhibition inhibition t 410
226186.BT_3720 CIDm00006410 activation activation f 410
CIDm00006410 226186.BT_3720 activation activation t 410
226186.BT_1854  (CIDs06419702  catalysis NaN t 900
CIDs06419702 226186BT_1854 catalysis NaN f 900
22618687 0311 CIDm00000783 reaction NalN £ 777
CIDm00000783 226186.8T_0311 reaction NaN t 777
226186.8T_3115  CIDsO0063090  expression  NalN f 152
CIDs00063090 22618687 3115  expression  NaN t 152

Each row in Table 5a corresponds to an interaction between the values in columns “item_id_a" and

“item_id_b" that can either be:

e the gene (e.g. “226186.BT_1545"), in which the characters until the dot represent the NCBI taxonomic
ID of the organism (“226186"), followed by the unique gene identifier, the NCBI locus tag
(“BT_1545"), that always starts with the organism’s initials (“BT").

e the drug ID (e.g. “CIDm00131041"), that is comprised of a prefix “CIDm” or “CIDs” (which
corresponds to the “flat” compound, that merges stereo-isomers, or to the stereo-specific compound,
respectively) and a suffix that corresponds to the PubChem [76] compound ID [46, 77]; the drug ID
will also be henceforth designated as STITCH ID.

Therefore, each row represents a drug-protein interaction. Furthermore, each interaction with a
particular drug is repeated in the consecutive row, with “item_id_a” and “item_id_b" swapped. This is
to distinguish cases where one of the elements is having an action over the other, but the opposite does
not occur (e.g., gene “226186.BT_1545" does not have any effect on the drug “CIDm00131041", but
the drug has an effect on the gene, as one can see in the first two rows of Table 5a, where column
“a_is_acting” has the respective values “f" [false] and “t” [true]).

Table 5a also shows that the column “mode” can have 7 different values (inhibition, binding, predicted
to bind [pred_bind], activation, catalysis, reaction and expression [phenotypic effects or predicted to have
the same phenotype] [46]), while the column “action” can only be either inhibition or activation. To study

the effect of a drug on a bacterium’s growth, the rows containing “inhibition” on both columns “mode”
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and “action” were selected, since only this information can be simulated using GSMMs. Subsequently,
solely the rows that correspond to a drug inhibiting a gene were kept (i.e., rows that have the drug ID in
column “item_id_a" and “t” in column “a_is_acting”).

The “score” column in Table 4 is used to verify if the results have a meaningful interpretation or not,
since it is a measure of confidence from STITCH on how likely an interaction is true. Scores rank from O
to 1, being that 1 is the highest confidence score. In the file, this value is multiplied by 1000.

Depicted in Table 5b is the fact that one drug can interact with multiple genes. All the interactions with
a specific drug will be used at the same time to manipulate the /n silico model and analyse the effect of

the drug on the bacterium (as described in the below section 3.5).

3.3 Corresponding Drug-Protein Interaction Information to Selected Drugs

The STITCH IDs of the drugs screened in the paper [3], present in the column “STITCH4 id” of Table
3, were obtained, by the authors of the paper, through a chemical annotation tool called CART [78]. Since
a chemical name can correspond to different PubChem compound IDs (Table 6, e.g. “piroxicam”
corresponds to IDs “54684470" and “23690938"), CART uses text matching to map the drug's
synonyms to the PubChem ID of the “flat” compound, the suffix of “CIDm” (using the STITCH file

“chemical.aliases.v5.0.tsv").

Table 6. STITCH file “chemical.aliases.v5.0.tsv” partial content.

Flat_chemical Stereo_chemical Alias Source

CIDm23690938 CIDs2369@938 Piroxicam [USAM:BAN:INN:JAN] 845 LeadScope
CIDm23690938 CIDs54684470 Piroxicam-d3 1852 1896

This results in drug IDs with the suffix “CID1” in the paper, because in STITCH files the suffixes
“CIDm”/”CID1" (and “CIDs"/CIDQ") are interchangeable. However, as the STITCH drug IDs from the
paper were obtained without regarding the stereoisomer, the isomers were combined to increase the
coverage of information. This means that, in the present work, the suffixes were ignored and the drugs

were solely identified by their PubChem ID, not to exclude any information.

3.4 Automatic Reconstruction of Genome-Scale Metabolic Models of B.

thetaiotaomicron

The drugs’ effect on bacterium’s growth and metabolism was determined for the /n silico B.

thetaiotaomicron's genome-scale metabolic model.
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As presented previously in the state-of-the-art, there are multiple alternative ways of creating a
metabolic model. We chose the tool CarveMe in this work since it automates many curation steps and
builds a model using only the genome, which is very useful for species that cannot grow in well-defined
media [60]. Besides, this tool reconstructs models with BiGG identifiers, allowing the integration of drug-
protein information from STITCH, which is not the case of reconstructed models already available in
literature such as AGORA models [52], for example. The models generated were analysed using the
Python package “COBRApy” [79].

The genome of B. thetaiotaomicron was provided to CarveMe as a protein FASTA file (a text-based
formatted file that represents amino acid sequences), named as
“GCF_000011065.1_ASM1106v1_protein.faa” (downloaded from the National Center for Biotechnology
Information [NCBI], using “RefSeq” as the source database [72]).

After this step, CarveMe provides the user various alternatives, some of which were studied in this
project under the different analyses performed, to assess their differences and propose the most suitable

one. These alternatives are regarding:

o the template used for the “carving” process (i.e. selecting reactions from a model with all bacteria’s
reactions to generate an organism specific model):
— universal; models henceforth designated as universal or simply U
— gram-negative; models identified as gram
e the growth medium:
—not initialised with any particular medium composition; models henceforward mentioned as
NoMedium or complete medium
— minimal anaerobic M9 medium; models named as M9[-O,] or only M9
— lysogeny anaerobic broth; models from now on designated as LB[-O,] or LB
e the gapfilling process:
— no gap-filling; models labelled as NoGap
— during model reconstruction; models identified as gapDuring

— after model reconstruction; models nominated as gapAfter

This resulted in a total of 14 models, as displayed in Table 7:
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Table 7. Resulting models (separated by growth medium).

Models

U_NoMedium_NoGap U_LBE gapAfter U_M9_gapAfter

gram_Nohedium_NoGap U _LB_gapDuring U_M9_gapDuring
U_LB noGap U_M%_noGap
gram_LE_gapAfter pram_MS_papAfter

gram_LE_gapDuring pram_MS_pgapDuring
gram_LE_noGap gram_MS_noGap

3.4.1 Exploration of Alternative Models

As mentioned in section 2.3.2, enzymatic reactions that do not have any gene mapped to it have a
score of -1 and are given random weighting factors. This means that only these reactions will have a
different score every time the MILP problem is solved [60]. Thus, there are alternative solutions that might
lead to different reactions being present and, subsequently, give rise to different predictions of a
bacterium’s capabilities [60].

CarveMe tool allows the generation of an ensemble model, which is an aggregation of n models
reconstructed. An ensemble of 100 models was generated using the options of gram-negative template,
LB medium and gap-filling after the reconstruction process. The ensemble model was then analysed with

the Python library for metabolic model simulation, ReFramed [80, 81].

3.5 In Silico Simulation of Drug Effects on Gut Bacteria

To simulate the effect of a drug on the /n silico model of B. thetaiotaomicron, it was necessary to
integrate the information gathered from STITCH into the model. This was done using COBRApy tool, as it

is described in the following sections.

3.5.1 Performing in silico Gene Deletion to Study Growth Inhibiting Drug Effects on B.

thetaiotaomicron

In order to simulate, /n silico, the effect of a drug on the growth of a bacterium, the COBRApy function
“knock_out_model_genes” was used (Fig. 11). This function takes up a list of genes that are inactivated
by the drug and gets the reactions associated to those genes through the GPR rule. If a gene is essential

for a reaction to occur, the reaction bounds are set to zero to make the reaction flux null.
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STITCH COBRApy

N . «cobra.manipulation.knock_out_model_genes [model: Model, gene_list: Iterable{Union|'Gene! int, str]]) = List{'Reaction
Actions (.tsv) file P _out_model_g I R 1

Drug ID Gene ID Mode NIH Disable the genes in g
It sets the bound:

CIDm00003878  226186.BT_0380 inhibition

for reactions catalysed by the genes in gene_list if deleting the genes

would stop ¢ eding.

CIDs00005002  226186.BT_0509 inhibition Feature Table (o) file
The changes are reverted upon exit if executed within the model as context.
Protein ID Gene ID
0ld locus_tag Parameters
CarVeMe - model (cobra.Modef) - The model whose reaction bounds are to be set

WP_011107230_1  BT_0380

Generated Model ( xml) file / WP_011107304_1 BT_0509 ‘ gene _ist (list of cobra.Gene) - The list of genes to knock-out.

Gene ID Returns

Alist of cobra.Reactions that had the bounds turned to

WP_011107230_1
WP_011107304_1

Fig. 11. Scheme that represents the /in silico process of simulating a drug effect on a bacterium. Initially, all the known and predicted
interactions between drugs and the bacterium genes are gathered from STITCH file “226186.actions.v5.0.tsv.gz". Since the gene IDs from
STITCH do not match the ones of the generated model with CarveMe, it is necessary to obtain, from NCBI, the feature table file of the
bacterium, with which one can match the genes IDs. Finally, for each drug, a list of genes that have interaction information with the former
is reunited and then used as input to the “knock_out_model_genes” function from COBRApy.

Using the FBA tool in COBRApy, one can obtain the maximum flux through the objective reaction. In
this model, the objective reaction represents the biomass function, which describes the rate of production
of the metabolites that make up a bacterium. Hence, with the FBA tool we can predict the bacterium’s
growth rate.

By running FBA before and after shutting off the flux through the reactions affected by the genes’ knock-
out (with the previous function), the growth rate of the model without and with the constraints imposed
by the drugs was obtained, respectively.

For the purpose of establishing a threshold to distinguish drugs that had effect on growth from those
that did not, the percentage difference (also mentioned as “%GrowthChange” henceforth) between the

obtained growth rates by running FBA was calculated according to the following equation:

FBAafter - FBAbefore . O)

% hCh =
GrowthChange abs( FBAbefore

After this step, a “%GrowthChange” equal or greater than 90% was decided based on histogram’s
interpretation (Fig. 23, 24, 29 in results section) and was associated with the drug having an inhibitory
effect on the bacterium’s growth.

These results were then compared with the impact of these drugs /7 vitro, in Maier et al 2018
experiment [3]. The “Supplementary Table 3" of this research paper contains p-values for the impact of
each drug on the growth of each gut bacterium used in the experiment. Drugs that led to a significant

reduction of growth had a p-value <= 0,01 [3].
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Drugs were considered to have matching /n silico and in vitro results when they led to a

“%GrowthChange” of equal to or more than 90% and a p-value equal to or below 0,01, as shown in Fig.

12.
STITCH

1 Drug ID Gene ID Mode

’ A @ @ @ @ CIDmM00003878 226186.8T_0380 inhibition

w 1197 drugs CIDs00005002 226186.8T_0509  inhibition
"40 bacteria B @ @ CIDs00002726 226186.8T_0309  inhibition

' CIDM00002726 226186.8T_3386  inhibition

52 @ @ CIDs00005002 226186.8T_3386  inhibition

In vitro
Drugs

STITCH

Drugs
with “Inhibiting” mode

Drugs screened in vitro
that have STITCH information

In silico

Drug
No Effect
on growth
p-value>0,01
£ 7B\

Drug
Effect
on growth
p-value<—0 01

Drug
No Effect
on growth
%GrowthChange <90%

Drug
Effect
on growth
%GrowthChange >=90%

. B. thetaiotaomicron

Fig. 12. Process of selecting drugs that have STITCH information, out of the drugs that inhibited /n vifro the growth of a specific
bacterium (in this case, of B. thetaiotaomicron, as an example). The first step is to find which drugs, from the ones screened /in vitro, have
information in the STITCH file. From these, the drugs that inhibited bacterium’s growth /n vifro are selected. The last step is to compare
the effects of these drugs in silico with the effects /n vitro.

3.5.2 Analysis of Drug Effects on the Metabolism of B. thetaiotaomicron

With a focus on studying the effect of the drugs on the bacterium’s metabolism (i.e., on the reactions
that are essential for the organism to be maintained), it was necessary to investigate the number of
reactions that were affected.

The COBRApy function “flux_variability_analysis” (FVA) allows to obtain all the fluxes of a reaction that

are possible at the optimal growth rate (denominated as fluxes range).
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Reactions were considered to be affected when their flux ranges before and after the genes were
“knocked-out”, were not overlapping 100% (i.e., the minimum or the maximum values were outside the
range of fluxes of the reaction that were possible before the constraints imposed on the model by the

drug).

3.5.3 Analysis of Drug Effects on the Ability of B. thetaiotaomicronto

Produce/Consume Neuroactive Metabolites

A list of neuroactive metabolites was gathered from literature, as presented in section 2.1.2. From this
list and using COBRApy, it was possible to associate with each metabolite the reactions involved in their
production and/or consumption (named as neuroactive reactions in this study).

From the reactions that were affected by a drug (process mentioned in section above 3.5.2), the
neuroactive reactions were selected and the neuroactive metabolites were connected to them, to
understand if the drug has an influence in the production/consumption of neuroactive metabolites by the

bacterium.

3.5.4 Repeating Drug Effects Simulation Analyses using a Manually Curated Model (for

Comparison Purposes)

The analyses described in the above-mentioned sections 3.5.1, 3.5.2 and 3.5.3, were repeated for a
B. thetaiotaomicron GSMM assembled by Heinken et al. 2013 built through a “bottom-up” reconstruction
process [82]. This means that a draft model was initially obtained with ModelSEED tool [83], followed by
extensive manual curation [82]. The model, designated as “iAH991.xml", was downloaded from the
“ThieleLab” website [84] (link “Collection of 11 human gut [...]").

Simulations were also performed in three different media (NoMedium, LB and M9). NoMedium was
the default medium of the model and it corresponds to all exchange reactions having (-1000,1000)
bounds. In order to simulate LB and M9 media and to be able to compare with the model reconstructed

using CarveMe, the bounds of the exchange reactions had to be changed accordingly:

e the exchange reactions that were related with the medium composition had to have their lower bounds
modified to -10.

e to remove exchange reactions from the medium, their lower bounds had to be changed to 0.
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From this point on, models generated with CarveMe will be further designated by “carveme” models
and the ones resulting from “bottom-up” reconstruction approaches, used for comparison analyses, were

mentioned as “curated” models.

3.6 Data and Code Availability

https://github.com/inestm28/BioinformaticsDissertation2022
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4 Results

This study was based on the /n7 vifro results of the Maier et a/2018 research [3], in which drugs that
are not supposed to target gut commensal bacteria, affected growth of single gut bacteria /n vifro. In
particular, 24% of the human-targeted drugs inhibited the growth of at least one strain /n vitro, with drugs
that act on the nervous system being overrepresented in this group [3].

In order to understand the undesirable secondary effects of drugs on gut bacteria, it is necessary to
study how they interact with bacteria and their impact on its growth and metabolism.

This study focused on the impact of all drugs screened in Maier et a/ [3], on one bacterium, 5.
thetaiotaomicron. The drugs’ effect on its growth and metabolism was determined with its /n silico
genome-scale metabolic model, through gene deletion studies, i.e., the genes that are predicted to be
inhibited by a drug (information present in STITCH database) are “deleted” and the resulting growth is
assessed.

First, the GSMM used for the simulation of drug effects was chosen out of 14 different GSMMs
automatically reconstructed with CarveMe tool with the aim of assessing robustness of the model
reconstruction and compare the models in terms of medium composition, biomass function and included
reactions and metabolites [60], as described in the following 4.1 section. Second, we used the models to
investigate the information contained in the models on neuroactive metabolism. Third, we simulated the
effects of drugs on bacterial growth and metabolism with its /n7 silico GSMM, through gene deletion studies,
i.e., the genes that are predicted to be inhibited by a drug (information present in STITCH database) are
“deleted” and the resulting growth is assessed. Finally, we compared the simulated results to the
experimentally observed growth phenotypes. The results of the simulation are presented in sections 4.2

and 4.3.

4.1 Models Automatically Reconstructed based on Combinations of

Parameters

In CarveMe, different options for the creation of GSMMs were available. These concerned (as
mentioned in methods section 3.4) choices of template (universal or gram), of growth medium (complete
medium/NoMedium, LB or M9) and of the gap-filling process (no gap-filling, gap-filling during or gap-filling
after the reconstruction process). With the purpose of choosing the alternatives that better represented

B. thetaiotaomicron and the /n vitro conditions of the research paper on which this work was based on,
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Maier et a/ 2018 [3], 14 different models, comprising combinations of these different options, were
generated (models identified in Table 8).

Since it is not possible to find the exact composition of the medium used in the experiments of Maier
et al2018 [3] - the modified Gifu Anaerobic Medium (mGAM) - since it contains complex ingredients such
as peptone, yeast extracts, and digested serum, which are not chemically defined [85] - it was necessary
to reconstruct the models with the available medium options in CarveMe, to verify how they differed

between each other and which one would resemble the most with mGAM.

4.1.1 Identification of Medium Composition Differences

In experiments /n vitro, the growth medium is a solution that contains a variety of nutrients that are
essential for the survival and growth of the organism. Likewise, /7 sifico, the growth medium is represented
by a list of reactions that import the metabolites and co-factors that are available and lead to a specified
growth rate that the model has to achieve [79]. These reactions, designated as exchange reactions, are
conceptual reactions for modelling influx and efflux across the bacterium boundaries. However, not all
the exchange reactions that are part of the GSMM have active exchange fluxes, as represented by the
difference between the columns “Total no. of exchange reactions” and “No. of active exchange fluxes” in
Table 8: NoMedium models have all exchange reactions with an active flux, LB models have around 20%
active and M9 about 7%. This difference is due to their bounds, being that the ones with active exchange
fluxes have non-zero flux bounds. When an exchange reaction has a lower bound equal to zero (as in
column “Bounds of non-active exchanges” of Table 8), it means a certain metabolite is not being provided
to the organism (for instance, if we want to model an anaerobic medium, then we have to set the lower

bound of the corresponding exchange reaction “EX_02_e" to 0, e.g. [0,1000]).

Table 8. Characteristics of the growth media of the models (differently coloured according to the reconstruction’s growth medium being
“NoMedium”, “LB" or “M9").

Models Total no. of  No. of Bounds of active Bounds of
exchange active exchanges non-active
reactions exchange exchanges

fluxes

U_NoMedium 251 251 (-1000.0, 1000.0) ——

gram_NoMedium 253 253 (-1000.0, 1000.0)

U_LB 251 50 (-10.0, 1000.0) (0.0, 1000.0)

gram_LB 253 50 (-10.0, 1000.0) (0.0, 1000.0)

U_M9 251 17 (-10.0, 1000.0) (0.0, 1000.0)

_gram_M9 253 17 (-10.0, 1000.0) (0.0, 1000.0)

The composition of LB and M9 growth media is shown in Fig. 13a as well as the partial composition

of NoMedium (Fig. 13a,b).
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a 0 = non-active flux or not present b 0 = non-active flux or not present
1 = active flux 1 = active flux
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Fig. 13. Models’ growth medium composition (which is defined by the exchange reactions that have an active flux) and difference in the
exchange reactions that are part of the models. a, Heatmap with all exchange reactions that have an active flux for every model, except for
the models with no initialised medium (“NoMedium” in x-axis labels) for convenience reasons, since these have around 250 reactions and

more than 95% of them are present in both models (“NoMedium_U_NoGap” and “NoMedium_gram_NoGap”); reactions that have an
active flux in a specific model are coloured as black and reactions with non-active flux or not present have a white colour; models are also
grouped by colours according to their growth medium. b, Heatmap with the reactions that have an active exchange flux and that are
different between the “NoMedium” models; colour scheme is the same as in the heatmap in a. ¢, Heatmap with the exchange reactions
that are different between the models based on the universal and on the gram-negative templates; black colour means that the reaction is
present and white means the opposite; models are also grouped by colours according to the template used for carving.

From Fig. 13a,b it is possible to gather that 7 exchange reactions only exist in universal models and 9
only in gram. This makes sense since the growth reaction of universal models does not contain membrane
and cell wall precursors specific for gram-negative bacteria (as opposed to the growth reaction of gram-
negative models) (Fig. 14). These precursors are different for gram-negative bacteria since they have a
thinner peptidoglycan layer than gram-positive bacteria and present an outer lipid membrane [86]. These

precursors are the following (as shown in Fig. 14):
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e “kdo?lipid4_p", a glycolipid which is an essential component of the outer cell wall, that functions as
an hydrophobic anchor of lipopolysaccharides (LPS) [87]

e “mureinbpx4p_p" (peptidoglycan or murein), a polymer consisting of sugars and amino acids that is
part of the peptidoglycan layer [88]

e “pel60/161_c,p", phosphatidylethanolamines which are the major phospholipids in gram-negative

bacteria [89]
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Fig. 14. Metabolites’ difference regarding growth reactions (heatmap where black colour means that the reaction is present and white
means the opposite; models are grouped by colours according to the template used for carving being universal or gram).

According to these differences between the growth reactions of universal and gram-negative models,
the latter need exchange reactions like “EX_alaala_e”, “EX_LalaDgluMdap_e”, “EX_4hba_e" and
“EX_malt_e” (that import murein, amino acids and sugars) (Fig. 13c), which in turn is going to affect the

metabolic pathways that are selected during the reconstruction process.
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4.1.2 Model from Gram-Negative template, with LB Medium and Gap-Filled After

Reconstruction Better Represents B. thetaiotaomicron and its /n Vitro Growth

Conditions

To choose the model that will better predict the neuroactive capabilities of the bacterium, an analysis

regarding the reactions that produce or consume neuroactive metabolites (henceforward mentioned as

neuroactive reactions for simplicity reasons) was performed.
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Fig. 15. Neuroactive metabolites (heatmap where black colour means that the metabolite is present in every model and white means the
opposite).

From the list of neuroactive metabolites gathered from literature and presented in section 2.1.2, every
model presented 12 out of the 17 metabolites (Fig. 15).

As represented in Fig. 16a, only 13 neuroactive reactions (out of 2000) differ between universal and
gram models and, out of these, 8 seem to be interchangeable, i.e., reactions that are only present in
universal have equivalent functions to reactions that only exist in gram, but some of the precursors are
different. These only change because the models use different metabolic pathways. Of these 8, 3 only
exist in universal (“AROAT”, “GLUtex” and “OHPBAT") and 2 only in gram (“PYDXS" and “UHGADA”").
Since the difference was not crucial, it was necessary to analyse how the models differed when it came
to all the other reactions.

Regarding all reactions (Fig. 16a), there are around 200 reactions (out of 2000) that differ between
universal and gram models, being that 21% are transport reactions (metabolite transport between
compartments inside the bacterium or between extracellular/periplasmic space and cytoplasm, as
opposed to exchange reactions that correspond to exchanges in the extracellular environment). However,
most of the former seem to be interchangeable because of name similarities, which indicate a reaction
involved in the same metabolic pathway, such as, for example, reactions “ACt4pp” and “ACt5pp” which

are “Na+/Acetate symport (periplasm)” and "Acetate transport in via proton symport", respectively.
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Fig. 16. Reactions that do not exist in at least one model. a, Heatmap where the black colour means that the reaction is present in the
model and white means the opposite; reactions’ names are coloured and named “Transp”, “Neuro” and “Ex” to highlight transport,
neuroactive and exchange reactions, respectively; models are grouped by colours according to the template used for carving being

universal or gram b, Bar plot with the number of reactions per model, out of the reactions that don't exist in at least one model (colour

scheme is the same for grouping the models).
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From this point on, the choice of parameters was restricted to models using the gram-negative
template, since these have in average 8 more reactions than universal ones (Fig. 16b) and overall higher

FBA predicted values for the growth rate (Fig. 17).

= FBAvalue 53.89 B0
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Fig. 17. Models’ FBA values/growth rates (models are grouped by colours according to the template used for carving being universal or
gram).

Even though the FBA value of the model with complete medium (“gram_NoMedium_NoGap”, Fig. 17)
is the highest of all models, this medium is not representative of the one in which the experiments of the
paper [3] were performed, the modified Gifu Anaerobic Medium (mGAM), as one can observe by its
estimated composition in Fig. 18, since the complete medium corresponds to all exchange reactions

having non-zero flux bounds which corresponds to a very rich medium that is not the case of mGAM.
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Fig. 18. mGAM deduced composition (heatmap where reactions that have an active flux are coloured as black and reactions with non-
active flux or not present have a white colour; media names are distinguished by different colours)

Therefore, models that were initialised with LB medium were chosen for the drug effects simulations
that follow in section 4.3, given that this medium resembles more the mGAM medium than M9 (Fig. 18).
Moreover, Fig. 16b shows that the gap-filling process adds 3 to 4 reactions in gram models, hence
reducing the reconstructed models to gap-filled models. Between the alternatives for the process of gap-
filling, doing it before lead to a very slow growth, which might mean that a substrate might be limiting

growth due to something missing in the network. Gap-filling after the reconstruction lead to a higher FBA
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value, which makes the model more feasible (Fig. 17). Thereby, the choice of the model

“gram_LB_gapAfter” is the most satisfactory for the following analyses.

4.1.3 Alternative models built from the complete genome of B. thetaiotaomicron are

highly similar

The model above-chosen - “gram_LB_gapAfter” - was generated according to one solution of a specific
optimization problem, the MILP problem.

This model reunites all the different models that can be reconstructed with the alternative solutions of
the MILP problem. An ensemble model with the same parameters as the “gram_LB_gapAfter” model
and comprising the solutions of 100 models was generated.

The heatmap in Fig. 19 highlights the fact that there are only 14 reactions (out of the 2671 unique
possible reactions; 0,5%) that are different between the models (out of the 100 models part of the
ensemble model), i.e., were selected in at least one of the models but not in all; from these 14, the
bottom 10 reactions are present in more than half of the models; from the rest of the 2671 reactions that
are present in the database of the tool CarveMe, some were not selected in any model and others were

selected in all.
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Fig. 19. Reactions of the ensemble model that differ between the 100 models (heatmap first sorted by ascending number of models in
which a reaction is present, followed by descendent sort of number of reactions in each model; black colour means that the reaction is
present in the model and white means the opposite; the model chosen in the previous section - “gram_LB_gapAfter” - is highlighted to be
able to compare its reactions with the alternative models; the neuroactive reactions are also highlighted).

|u

Furthermore, 39% of the models have the exact same reactions as the original “gram_LB_gapAfter”,
and 6 other only differ in two reactions that seem to be commutable with two other
(“3HAD40”/"3HAD40_2" and “30AR40”/"30AR40_2", named “3-hydroxyacyl-[acyl-carrier-protein]
dehydratase” and “3-oxoacyl-[acyl-carrier-protein] reductase”, respectively), since in these models when

one doesn’t exist, the other does.
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These results together demonstrate that the alternative models only have a very small percentage of

reactions that change between themselves, not being substantially different from the model generated

originally (“gram_LB_gapAfter”). Hence, it is possible to assume that using this model for the analyses

will lead to results that can have a meaningful interpretation.

4.2 Automatically Reconstructed Model has the Potential to Produce/

Consume Neuroactive Metabolites

The “gram_LB_gapAfter” model has a total of 12 out of the selected 17 neuroactive metabolites and

a total of 138 reactions (out of 2154; 6%), some of which are involved in their production and some in

their consumption (Fig. 20).
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Fig. 20. Reactions that produce or consume the selected neuroactive metabolites (heatmap where the black colour means that the
reaction is present in the model and white means the opposite; reactions’ names are coloured and named “Transp” and “Ex” to highlight
transport and exchange reactions, respectively; heatmap is divided into two parts, by the y-axis, due to size reasons).

4.3 /n Silico Simulations Capture a Small Number of Experimentally

Observed Drug Effects

According to Maier et a/. 2018 [3], drugs that act on the nervous system (henceforth mentioned,
interchangeably, as neuroactive drugs) inhibited, /7 vifro, gut bacteria more than other medications. To
study this, they screened 198 different neuroactive drugs, being that 193 are human-targeted, 1 is
targeted at protozoa, 1 at metazoan parasites and 3 are veterinary drugs (Fig. 21).

The research also comprised other drugs that cover all main ATC therapeutic classes, most of which
are human-targeted and the rest are supposed to only inhibit pathogens but also affected gut commensals
(Fig. 21).

In total, the paper screened 1200 compounds, of which 89 are not drugs (i.e., are compounds with
biological roles (e.g. vitamins) or compounds that are being investigated, in clinical trials, as possible
treatments) and 3 (Prestw-1105/385/425) did not have a measured impact on bacterial growth (no p-

value).
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Fig. 21. Representation of therapeutic classes and target species of the drugs screened in Maier ef a/2018 (13% of the drugs belong to
more than one therapeutic class, hence adding up these values doesn’t make up the total of 1111 drugs). Each bar corresponds to drugs
that belong to one specific therapeutic class and is subdivided by the target species of the drugs.

In the next sections, we aimed at simulating the effects of these drugs on bacterial growth with genome-

scale models and flux balance analysis.

4.3.1 Neuroactive Drugs have Divergent /n Vitro and /n Silico Effects on Bacterium’s

Growth

The experimental results showing bacterial inhibition by neuroactive drugs are intriguing, since they
are supposed to target receptors that are absent in bacteria (like dopamine and serotonin receptors). The
idea then was to investigate, /n silico, which proteins are affected in B. thetaiotaomicron that restrict the
flux of reactions in a way that lead to its growth inhibition /n vifro, using drug-protein interactions from
STITCH database.

Each one of the 198 neuroactive drugs is identified by a unique Prestwick ID. Out of these, 4 Prestwick

IDs correspond to 2 STITCH IDs, being that each pair of Prestwick IDs corresponds to 1 STITCH ID (Table
9).

Table 9. Neuroactive drugs from Maier ef a/2018 that have different Prestwick IDs but same STITCH ID.

Prestwick ID STITCH ID

Prestw-109, Prestw-935 CIDs00001207
Prestw-1271, Prestw-692 CIDs00002771

Of the 196 unique STITCH IDs, only 41 have reported inhibiting interactions with genes of A

thetaiotaomicron (Fig. 22a). These interactions comprise 36 genes in the “gram_LB_gapAfter” model

(Fig. 22b).
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Fig. 22. Inhibiting interactions, from STITCH database, involving neuroactive drugs (from Maier et a/2018) and B. thetaiotaomicron
genes. a, 41 Neuroactive drugs that have inhibiting information with B. thetaiotaomicronin STITCH. b, 36 B. thetaiotaomicron proteins
from “gram_LB_gapAfter” model that have, in STITCH, inhibiting interaction information with the 41 neuroactive drugs (37 genes in
STITCH don't have a correspondent gene in carveme, because STITCH uses “old_locus_tag” but some genes in the FASTA file [used for
“gram_LB_gapAfter"] only have the “new_locus_tag"). Bold font in figure is used to highlight the intersection information.

From these 41 drugs, none of them inhibited 5. thetaiotaomicron’s growth in vitro.
/n sifico and using the chosen model “gram_LB_gapAfter”, 3 drugs — acetaminophen, gabapentin,
vigabatrin - inhibited growth (absolute percentage change in growth rate of 100%, Fig. 23a,b) when the

genes, with inhibiting interactions with the corresponding drug, were “knocked-out” at the same time.
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Fig. 23. Effect of drugs on growth rate, in “gram_LB_gapAfter” model (drugs that lead to 100% change are the ones that had an effect;
in this case, 3 drugs).

These /n silico results happened because each of these 3 drugs has interaction information in STITCH
with one essential gene in “gram_LB_gapAfter” model (acetaminophen and gabapentin with “BT_1806"
and vigabatrin with “BT_3935") (Table 10). A gene is essential when restricting the flux of the reactions
that depend on it lead to a null growth rate. However, these interactions have a score of around 0.4 out
of 1, which is a low confidence value, and, according to STITCH database, they have no experimental
evidence and were transferred via orthology from another organism. This might mean that these

interactions are incorrect and, if so, these drugs would have an inhibitory effect /n silico, like they didn't

in vitro.
Table 10. Neuroactive drugs with /n silico effect in carveme model.
Drug Acetaminophen Gabapentin Vigabatrin
(paracetamol)
ATC code NO2BEO1 NO3AX12 NO3AGO4
(analgesic) (antiepileptic) (antiepileptic)
STITCH ID CID000001983 CIDO00003446 CIDO00005665
Target species Human Human Human
Target species’ proteins PTGS1 (COX1) CACNA2D ABAT

PTGS2 (COX2)

SLC6A1 (GAT1)
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Target proteins’ Oxidoreductases lon channels Aminotransferases
classification Solute carrier family

B. thetaiotaomicron

orthologous genes in

KEGG database

B. thetaiotaomicron BT_1806 BT_3935

essential genes in (oxidoreductase: acyl-CoA (transferase: aminotransferase class I/1l-fold pyridoxal
“gram_LB_gapAfter” dehydrogenase family protein) phosphate-dependent enzyme)

model

STITCH score 0,471 (not experimental) 0,410 (not experimental)

In order to understand if the differences between /nn vitro and /n silico results were due to models
lacking information, the analyses were repeated for a B. thetaiotaomicron's GSMM, assembled and gone
through extensive manual curation by Heinken ef a/ 2013 (model designated, from this point onwards,
as curated and, for simplicity reasons, “gram_LB_gapAfter” model is going to be named as carveme)
[82]. For comparison purposes, the medium was modified in order to resemble LB medium from carveme

model.

a Carveme Curated b
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carveme Genesin: Srated Genes in Effect of Neuroactive drugs on growth rate
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Fig. 24. Neuroactive drugs and curated model. a, 33 B. thetaiotaomicron genes from curated model (out of 73 in STITCH) have, in
STITCH, inhibiting interaction information with the 41 neuroactive drugs and 23 genes are common between carveme and curated
models. b, Effect of drugs on growth rate (drugs that lead to 100% change are the ones that had an effect; in this case, 4 drugs).

Fig. 24c shows that 23 genes are common between carveme and curated models. And in Fig. 24a, we
can see that the curated model has 3 genes less than carveme, with interaction information from STITCH.
From Fig. 24b and from Table 11, we can see that, instead of the 3 above-mentioned drugs that had

an /n silico effect on growth in the carveme model, in the curated model 4 different drugs had an effect,
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namely Carbamazepine, Valproic acid, Lamotrigine and Topiramate. Each of these drugs affects 2

essential genes in curated, “BT_1225" and “BT_0382", that do not exist in carveme (Table 11).

Table 11. Neuroactive drugs with /7 silico effect in curated model.

Drug Carbamazepine Valproic acid Lamotrigine Topiramate
ATC code NO3AFO01 NO3AGO1 NO3AX09 NO3AX11
(antiepileptic) (antiepileptic) (antiepileptic) (antiepileptic)
STITCH ID CID000002554 CID000003121 CIDO00003878 CIDO00005514
Target species Human Human Human Human
Target species’ SCN1-5/8-11A ABAT SCN1-5/8-11A SCN1-5/8-11A
proteins SSADH GRI[A/K]
GAD CACNA1-L
CACNAL-T GABR
CA2/4
Target proteins’ lon channels lon channels lon channels lon channels (ligand-
classification Oxidoreductases gated: GABA, glutamate)
Transferases Lyases
Lyases
B. thetaiotaomicron BT_2570

orthologous genes in

KEGG database

(lyase: glutamate

decarboxylase)

B. thetaiotaomicron BT_1225 (oxidoreductase: GDP-L-fucose synthase)

essential genes in BT_0382 (oxidoreductase: NAD-dependent epimerase/dehydratase family protein)
curated model

STITCH score 0,388 (not experimental)

From the essential genes affected in carveme, “BT_1806" is not present in the curated model, while
“BT_3935" is present but is not essential.

The drug “valproic acid” affects the human gene “GAD" (glutamate decarboxylase 1) that corresponds,
according to KEGG database [90], to the B. thetaiotaomicron's orthologous gene “BT_2570" (glutamate
decarboxylase) (Table 11). This gene is present in the curated model, but it is not essential (meaning that
even if it was present, this gene alone wouldn't inhibit growth) and it does not have inhibiting interaction
in STITCH (so even though the drug interacts with this protein, it can interact with it in a different way

from inhibition, such as, for instance, activation or binding).

4.3.2 Neuroactive Drugs Influence Neuroactive Metabolism

With STITCH information, it is also possible to investigate if the neuroactive drugs can have any effect
on B. thetaiotaomicror's neuroactive reactions and, consequently, on the production and/or consumption
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of neuroactive metabolites by the bacterium. This information can then be verified experimentally by mass

spectrometry-based metabolomics approaches.
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Fig. 25. Neuroactive metabolites that might be possibly affected by neuroactive drugs in carveme model (heatmap with black colour
representing a metabolite that was affected by a drug and with white colour representing the opposite; the drugs that are coloured are the
ones that also affect neuroactive reactions in curated model).

Looking at Fig. 25, and connecting the information there with the one from Table 1 and from Fig. 20,
it is noticeable that, out of the 41 neuroactive drugs, 6 have an effect in neuroactive reactions in the
carveme model. The neuroactive metabolites that might be affected by the neuroactive drugs that had /n
sifico effect on growth - vigabatrin, gabapentin and acetaminophen - are acetate (ac_c), S-
adenosylmethionine (amet_c), glutamate (glu__L_c/e), inositol (inost_c), menaquinone (magn6/7/8_c),
propionate (ppa_c) and tryptophan (trp__L_c/e). Additionally, the drugs topiramate, disulfiram and
carbamazepine might also affect glutamate.

Regarding the curated model, a total of 8 neuroactive drugs had an effect on neuroactive reactions

(Fig. 26).
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Fig. 26. Neuroactive metabolites that are affected by neuroactive drugs in curated model (heatmap with black colour representing a
metabolite which had its production and/or consumption affected by a drug and with white colour representing the opposite; the drugs
that are coloured are the ones that also affect neuroactive reactions in carveme model).
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5 out of the 8 drugs (vigabatrin, gabapentin, disulfiram, topiramate and carbamazepine) also had an

effect in the carveme model. However, carveme and curated models have basically inverted results:

e disulfiram, topiramate and carbamazepine only affect glutamate in carveme, but affect acetate, S-
adenosylmethionine, glucose, menaquinone, propionate and tryptophan in curated; plus quinolinic acid
(quin[c]), that is not affected in carveme.

e vigabatrin and gabapentin only affect glutamate in curated, but affect acetate, S-adenosylmethionine,
glucose, menaquinone, propionate and tryptophan in carveme; plus inositol, that is not affected in

curated.

These results are likely due to the fact that the neuroactive reactions indirectly affected by some drugs

are not the same when comparing carveme with curated.

4.3.3 In Silico Results Match /n Vitro Growth Inhibition Effect of Two Percent of the

Non-Commensal Targeting Drugs

Besides the drugs that act upon the human nervous system, Maier ef a/2018 [3] also screened drugs
from other ATC therapeutic classes (Fig. 21). However, it focused on drugs that are not supposed to affect
gut commensals, to generate a systematic resource of the effect of drugs in altering gut microbiome
composition (i.e., changing the species that are present in the gut) [3]. These drugs comprised, for
example, the ones which have the human cells as targets (642 drugs) and antibiotics that are supposed
to only inhibit pathogens (and not commensals, 144 drugs), as shown in Fig. 27 [3].

Even though some of the compounds studied are not considered drugs (88 “not a drug” , Fig. 27),
(i.e., are compounds with biological roles (e.g. vitamins) or compounds that are being investigated, in
clinical trials, as possible treatments), they were designated, both in the present work and in the research
paper, as drugs (for simplicity reasons, making the words “compound” and “drug” interchangeable).

Removing the 198 nervous system drugs, investigated in the previous section 4.3.1, from the 1197
compounds from Maier ef a/ [3], a total of 999 compounds were selected for the investigation of their

effect in B. thetaiotaomicron's GSMM (Fig. 27).
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Fig. 27. Target species of the 999 compounds from all ATC classes, except from the nervous system one.

Every one of the 999 compounds is identified by a unique Prestwick ID. However, not all of them have
a unique STITCH ID. 29 Prestwick IDs comprise 14 unique STITCH IDs, being that 13 pairs match to one
unique STITCH ID and 3 match to a last one (Table 12). This gives a total of 984 unique STITCH IDs.
The drugs with the same STITCH ID will have the same genes inhibited and, subsequently, the same in

sifico results.

Table 12. Drugs from Maier ef a/2018 that have different Prestwick IDs but same STITCH ID (coloured rows correspond to the drugs in
STITCH database that have inhibiting interactions with B. thetaiotaomicron).

Prestwick ID STITCH ID

Prestw-1075/1081 CIDs00004946
Prestw-1086/1089 CIDs00000401
Prestw-1516/198 CIDs00002083
Prestw-847/857 CIDs00003914
Prestw-860/864 CIDs00069216
Prestw-1097/911 CIDs00003779
Prestw-135/373 CIDs00004112
Prestw-182/545 CIDs00003913
Prestw-233/565 CIDs00003661
Prestw-256/257 CIDs00005538
Prestw-285/985 CIDs00005645
Prestw-45/791 CIDs00001301
Prestw-536/953 CIDs00002249

Prestw-411/440/697 CIDs00000225

Out of these 984 STITCH IDs, only 232 (Fig. 28a) have inhibiting interactions with 5. thetaiotaomicron's
genes according to STITCH, which encompass 96 genes in the carveme model and 128 in the curated
one (Fig. 28b). Due to some STITCH IDs having more than 1 Prestwick ID (Table 12), as mentioned
above, these 232 STITCH IDs correspond to 242 Prestwick IDs. Out of the latter, 41 inhibited the growth
of B. thetaiotaomicron in vitro (Fig. 29a) and, /n sifico, 10 had an effect in carveme and 20 in curated

(Fig. 29b), being that 7 had effect in both models.
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Fig. 28. Inhibiting interactions, from STITCH database, involving all drugs from Maier et a/2018 (except neuroactive drugs) and 5.
thetaliotaomicron genes. a, 232 Drugs that have inhibiting interaction information with B. thetaiotaomicron, in STITCH. b, 96 B.
thetaliotaomicron genes from carveme and 128 from curated (out of 255 proteins in STITCH) have, in STITCH, inhibiting interaction
information with the 232 drugs’ STITCH IDs and 67 genes are common between carveme and curated models.
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Fig. 29. Effect of the 242 drugs on B. thetaiotaomicron's growth. a, Drugs’ effect /n vitro (191 no effect/41effect). b, Drugs’ effect in
silico, in both carveme and curated models, out of 242 unique Prestwick IDs.

From the 242 drugs, only 2 — Prestw-808 (Furazolidone) and Prestw-732 (Streptozotocin) — had an
effect /n vifro and in both models (carveme and curated) and 2 more /n vitro and in the curated model

only — Prestw-237 (Ofloxacin) and Prestw-1479 (Triclosan) — as Table 13 highlights.
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Table 13. 60 Drugs (out of the 242 that had, in STITCH database, inhibiting interactions with B. thetaiotaomicron's proteins) that had
effect either /n vitro (first 41 rows with p-value <=0.01 [pink rows]), /n silico (in carveme [green rows] and curated [purple rows] models) or
in both (yellow rows) (corresponding STITCH IDs and drugs names are in Supplementary Table 1).

Prestwick ID  Proteins  Proteins  Proteins  Affected  Affected % Growth % Growth  Effect Target
in in in reactions  reactions change change in vitro species
STITCH  carveme curated  carveme  curated carveme curated (pvalue)
1109 3 1 0 0 0 0 0 0.00 bacteria
1233 3 3 3 16 4 0 0 0.00 human
525 3 1 0 0 0 0 0 0.00 bacteria
151 3 1 0 0 0 0 0 0.00 bacteria
808 1 1 1 1156 780 100 100 0.00 bacteria
113 7 3 2 0 20 0 0 0.00 bacteria
208 1 0 0 0 0 0 0 0.00 bacteria
1415 1 1 1 0 6 0 0 0.00 human
1157 3 1 0 0 0 0 0 0.00 bacteria
1446 4 0 0 0 0 0 0 0.00 bacteria
1265 4 0 0 0 0 0 0 0.00 bacteria
238 4 0 0 0 0 0 0 0.00 bacteria
237 9 2 2 0 802 0 1667 o0.00 bacteria
1343 4 0 0 0 0 0 0 0.00 bacteria
766 3 1 0 0 0 0 0 0.00 bacteria
756 7 4 0 0 0 0 0 0.00 human
1401 4 0 0 0 0 0 0 0.00 bacteria
37 1 0 0 0 0 0 0 0.00 protozoa
1056 1 1 1 0 6 0 0 0.00 viruses
1194 4 0 0 0 0 0 0 0.00 antiseptic
333 1 1 1 2 95 0 0 0.00 viruses
168 7 5 4 16 4 0 0 0.00 bacteria
1479 20 5 10 0 752 0 66 o.00 antiseptic
1378 3 1 0 0 0 0 0 0.00 bacteria
699 1 1 0 0 0 0 0 0.00 human
1 1 1 1 2 0 0 0 0.00 human
1303 4 0 0 0 0 0 0 0.00 bacteria
370 13 5 0 0 0 0 0 0.00 human
390 3 1 0 0 0 0 0 0.00 bacteria
732 34 22 29 1151 759 100 100 0.00 human
708 1 1 0 0 0 0 0 0.00 antiseptic
267 3 1 0 0 0 0 0 0.00 fungi
376 3 1 0 0 0 0 0 0.00 bacteria
740 1 1 0 0 0 0 0 0.00 not a drug
1203 14 10 7 0 27 0 0 0.00 human
487 4 0 0 0 0 0 0 0.00 human
205 1 1 0 0 0 0 0 0.00 human
368 1 1 0 0 0 0 0 0.01 human
126 3 1 0 0 0 0 0 0.01 protozoa
478 3 1 0 0 0 0 0 0.01 human
1114 3 1 0 0 0 0 0 0.01 viruses
736 2 1 2 0 802 0 0.02 bacteria
1467 20 8 12 0 752 0 0.11 human
1314 15 4 10 0 752 0 0.24 human
94 1 1 1 0 783 0 0.52 human
1337 21 7 14 0 752 0 0.74 human
105 31 2 13 0 794 0 0.80 human
275 22 2 3 0 803 0 0.81 human
1097/911 35 9 32 1186 4 0.93/1.00 human
1134 2 2 2 161 760 1.00 human
14 2 2 1 12 752 1.00 bacteria
257/256 9 7 4 1108 803 1.00/1.00 human
1210 2 2 2 1165 804 1.00 human
741 26 19 17 1167 784 1.00 not a drug
1198 28 1 13 0 794 1.00 human
1285 2 2 2 1165 804 1.00 human
1118 2 1 2 0 802 1.00 bacteria
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489 2 1 2 0 802 0 100 1.00 bacteria
441 20 12 8 1152 7 100 0 1.00 human

Regarding the 2 drugs that had an effect /n viro and in both /n silico models:

the drug “Prestw-808" affected one gene “BT_0347" that is essential in both models (Table 14). This
drug-protein interaction was transferred via orthology (STITCH score 0,6) from another species (“Gallus
gallus”).

the drug “Prestw-732" did not affect any essential gene in either of the models (Table 14). However,
it had many reported protein interactions in STITCH (34) and more than 60% of these proteins were
present in carveme and in curated (22 and 29, respectively, as shown in Table 14). Consequently,
their knock-out lead to many reactions having their fluxes changed (around 50% of the total number of
reactions in both models) (Table 13). Even though the drug is targeted at humans, according to Maier

et a/ 2018 [3], it has been previously reported as having antibacterial activity.

Table 14. Drugs with both /n vitro and in silico effect.

Drug Prestw-808 Prestw-732 Prestw-237 Prestw-1479
Name Furazolidone Streptozotocin Ofloxacin Triclosan
ATC code GO1AX06 LO1ADO4 JOIMAO1/12 DOBAEQ4
(Gynecological (Antineoplastic/ (Antibacterial for D09AA06
antiinfectives alkylating systemic use) (Antiseptics
and antiseptics agents) S01AX11/19 and disinfectants)
- nitrofurans S02AA16
[inhibit glucose (Antiinfective)
mechanism])
STITCH ID CID000003435 CID000005300 CID000004583 CID000005564

Target species
Target species’
proteins

Target proteins’
classification

B. thetaiotaomicron
orthologous genes in
KEGG database

B. thetaiotaomicron
essential genes in
carveme model

B. thetaiotaomicron
essential genes in
curated model

Bacteria Human Bacteria Antiseptic
DNA gyrase Enoyl-acyl carrier
DNA Topoisomerase protein reductase
enzyme
Binds to phosphate, Isomerases Oxidoreductases
amino, sulfhydryl,
hydroxyl, and
imidazole groups,
commonly found in
nucleic acids and
other macromolecules
BT_0899 BT_4188
(DNA gyrase) (oxidoreductase)
BT_3579
(DNA topoisomerase)
BT_0347
(transketolase;
involved in pentose
phosphate pathway)
BT_0347 BT_1225
(transketolase) (oxidoreductase: GDP-
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(oxidoreductase: NAD-
dependent
epimerase/dehydratase
family protein)
STITCH score 0,604 0,382
(not experimental) (not experimental)

As for the drugs that inhibited growth /n vitro but only had an effect in the curated model:

o the drug “Prestw-237" only affected two genes — “BT_2048" and “BT_0106" - (Table 13), but none
of them were essential (Table 14). However, their “knock-out” restricted the flux of two reactions,
“FOLR” and “DHFR", to zero, which, consequently, lead to a high number of affected reactions (50%
of total reactions).

— In carveme, the drug also targeted “BT_2048", but “BT_0106" was not present and instead
targeted “BT_3386". These only affected the reaction “FOLR2", but its fluxes’ range did not change
and, subsequently, didn’t affect any other reactions.

— Moreover, according to KEGG and to STITCH database, this drug targets B. thetaiotaomicron's
genes “BT_0899” and “BT_3579", but these genes are not present in carveme nor in curated
models [90].

e The drug “Prestw-1479" targeted two essential genes in curated, namely “BT_1225" and “BT_0382"
(Table 13).

— These genes don't exist in carveme.

— Furthermore, this drug targets “BT_4188" according to KEGG but, even though it is present in both

models and it is essential in curated, it does not have inhibiting interactions in STITCH.

Regarding the 201 drugs that did not inhibit growth /n vitro, 20 did inhibit in at least one of the models

(17 in curated, 8 in carveme and 5 in both, as Table 13 shows). From these:

o the 8 drugs (6 unique STITCH IDs) that inhibited carveme affected 6 essential genes altogether, 1 of
which is also essential in curated (BT_2123), 3 exist but are not essential there and 2 don't exist (Table
15).

e the 17 drugs (16 unique STITCH IDs) that inhibited curated, only 8 targeted essential genes. A total of
12 essential genes were affected, being that 1 is also essential in carveme, 5 exist in carveme but are
not essential there and 6 don't exist (Table 15). The drugs that did not affect essential genes lead, in
average, to a higher number of affected reactions than the ones that targeted essential genes (796 vs

768, respectively).
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Table 15. Essential genes affected by drugs that didn’t inhibit growth /in vifro but inhibited /in silico; (*) means that the drug inhibited
growth but it didn't affect any essential gene.

Prestwick ID Essential gene(s) carveme  Essential gene(s) curated Model's presence
736 Inhibited curated (*)
1467 BT_1225 Not in carveme
BT_0382 Not in carveme
BT_0674 Exists in carveme but not essential
1314 BT_1225 Not in carveme
BT_0382 Not in carveme
94 _ BT_3845 Exists in carveme but not essential
1337 BT_1225 Not in carveme
BT_0382 Not in carveme
105 Inhibited curated (*)
275 ——— Inhibited curated (*)
1097/911 BT_1806 ———— Not in curated
1134 ——— Inhibited curated (*)
14 ——— BT_0373 Exists in carveme but not essential
257/256 BT_2123 BT_2123 Exists and it's essential in both
1210 BT_3261 Inhibited curated (*) Exists in curated but not essential
741 BT_4503 Not in curated
BT_3845 Exists in carveme but not essential
BT_2797 Exists in carveme but not essential
1198 ——— Inhibited curated (*)
1285 BT_3261 Inhibited curated (*) Exists in curated but not essential
1118 Inhibited curated (*)
489 _ Inhibited curated (*)
441 BT 3935 Exists in curated but not essential

In order to understand the differences between the models, regarding the effect of the drugs, it was
necessary to study how the number of proteins that have information in STITCH, the number of affected
proteins, the number of affected reactions and the effect on the bacterium’s growth, changed together
(Fig. 30). However, in this analysis, the drugs that affected essential genes (15 drugs) were removed from
the 242 drugs, in order to be able to generally understand the relationship between the affected proteins

and respective affected reactions.
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Fig. 30. Relationship between the number of proteins that have interactions in STITCH (“Proteins in STITCH”), the number of affected
proteins in the /n silico models (“Affected Proteins”), the number of affected reactions (i.e., reactions for which their fluxes’ ranges before
and after the genes were “knocked-out”, were not 100% overlapping) (“Affected Rxs”) and the percentage of change in growth rate
(“%GrowthChange”); this applies to all the 242 drugs mentioned before, except the drugs that affected essential genes in order to be able
to understand the correlation between the number of affected genes/proteins and the number of affected reactions; left panel is the
correlation heatmap for carveme and the right panel is for curated, where a value of 1 or -1 means a perfect correlation, a value above 0.6
was considered a good correlation and the absolute values below 0.6 are considered a bad correlation. The correlation values correspond
to the Pearson correlation coefficient.

Looking at Fig. 30 and at Fig. 31 (that shows the distribution of the number of affected proteins and
the percentage of affected reactions by the 242 drugs), overall, one can make some observations about

these results, such as:

e There is a higher correlation between the number of proteins that have inhibiting information in STITCH
and the number of affected proteins in curated than in carveme (0.72 vs 0.63, respectively).

— This means that curated has more genes that interact with the drugs than carveme. This matches
the information from Fig. 28b, which shows that curated has more genes interacting with drugs than
carveme. Hence, when there is more information from STITCH, it is more likely that more proteins
will be affected in curated than in carveme.

e Regarding the majority of the drugs (the ones that did not have an effect either /n vitro or in silico), the
number of proteins affected by them was overall equal to or less than 5, in both models(Fig. 31a).
However, in curated, more drugs led to a higher percentage of affected reactions (around 7% of the
drugs affected the flux of about 20% of the reactions) than in carveme (each drug affected less than
10% of the reactions) (Fig. 31b). This is corroborated by the better correlation between the number of
affected proteins and the number of affected reactions in carveme than in curated (0.64 vs 0.45,
respectively) (Fig. 30).

— Nevertheless, it is a weak relationship in both, meaning that an increase in the number of affected
reactions does not mean it was caused by a higher number of affected proteins.

— This difference between carveme and curated might happen because the percentage of gene
associated reactions in curated is higher than in carveme (71% vs 69%, respectively; Table 16),
which means that one gene will probably be involved in a higher number of reactions in curated
than in carveme, thus, once the gene is “knocked-out”, it will affect a higher number of reactions.

e The correlation between affected reactions and percentage growth change is high in both models 0.93
and 0.87, in carveme and curated, respectively), meaning that when the number of affected reactions
is elevated, it's very likely that the change in growth will be high as well, leading more likely to inhibition

of growth.
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Fig. 31. Distribution of the proteins and reactions affected by the 242 drugs that had STITCH inhibiting information with 5.
thetaiotaomicron's proteins. a, Number of proteins that were affected/”knocked-out” in the carveme and curated models (grouped by
drugs that had effect /n silico [left boxplots] and by the ones that didn't [right boxplots]); figure divided into two panels, in which the left

panel regards drugs that had effect /» vifro and the right one regards drugs that didn’t have effect /7 vitro. b, Percentage of affected
reactions out of each models’ total number of reactions (i.e., reactions for which their fluxes’ ranges before and after the genes were
“knocked-out”, were not 100% overlapping); grouping of drugs and scheme of figures is the same as in a.

4.3.4 Non-Commensal Targeting Drugs Influence Neuroactive Metabolism

Taking a look at the drug effects on the bacterial neuroactive metabolism, and restricting to the drugs
that had an effect /n vifro and in at least one of the models (streptozotocin, furazolidone, ofloxacin and

triclosan):

e these drugs affected the production/consumption of the same neuroactive metabolites (acetate, S-
adenosylmethionine, glutamate, menaquinone, propionate and tryptophan), in both models, except

that in carveme additionally inositol was affected and in curated quinolinic acid (Fig. 32).
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Fig. 32. Neuroactive metabolites that might be possibly affected by drugs, out of the 242, that inhibited /» vifro and in at least one of the
in silico models (heatmap with black colour representing a metabolite that was affected by a drug and with white colour representing the
opposite; the drugs that are coloured are the ones that affect in both models, carveme and curated; the coloured metabolites are the ones
that differ between the models).
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5 Discussion

The /n vitro results of the Maier ef a/ 2018 research [3], showed undesirable side effects of drugs that
aren’t supposed to target gut commensal bacteria, on the gut microbiome composition. In particular,
there was an overrepresentation of neuroactive drugs among the human-targeted drugs that had effects
of bacterial growth [3]. However, the mechanisms of the drug inhibition of bacterial growth remain largely
unknown. In this study, we aimed at identifying potential mechanisms of drug-bacteria interactions in
silico using GSMM and flux balance analysis combined with the information on drug-protein interactions
from the STITCH database.

In summary, the /n silico results were the following:

e out of the 198 neuroactive drugs screened /n vitro:
— 41 had inhibiting interaction information, in STITCH, with proteins of B. thetaiotaomicron and, out
of these:

o none had effect on the growth of 5. thetaiotaomicron in vitro.

o 3 inhibited growth in carveme model (acetaminophen, gabapentin and vigabatrin); affected
essential genes “BT_1806", that is not present in curated, and “BT_3935", that is present but
is not essential in curated.

o 4 different drugs inhibited in curated (carbamazepine, valproic acid, lamotrigine and topiramate);
affected essential genes “BT_1225" and “BT_0382", that do not exist in carveme.

e out of the 999 non-commensal targeted drugs screened /n vitro:
— 242 had inhibiting interaction information with proteins of B. thetaiotaomicron:

o 41 inhibited growth /n vitro and of these.
= 2 also had an effect in both /7 silico models; one of them affected the gene “BT_0347" that is

essential in both models.
= 2 had effect in the curated model only; affected the non-essential genes “BT_2048" and
“BT_0106". The latter was not present in carveme.

o 201 didn't inhibit growth /7 vitro but:

= 8 in carveme; all affected essential genes, 6 in total, 1 essential in curated as well, 3 exist in
curated but are not essential and 2 don't exist.

= 17 had an effect on growth in curated; 8 drugs targeted essential genes, 12 in total, 5 of which
exist in carveme but are not essential.

= 5 drugs inhibited growth in both models.
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Overall, combining experimental results with /n7 silico ones, there are some hypotheses one can make:

the drug interactions with the affected essential genes, in both models, were erroneous [90].

LB medium might not be completely representative of mGAM medium, which can lead to different
essential genes for B. thetaiotaomicron’s growth (as one can see in Table 16) . Thus, the drug-protein
interactions from STITCH might occur, but not lead to inhibition of growth.

the GPR rules might be incorrect or incomplete, since they are generated during the model
reconstruction process, hence possibly leading to incorrect predictions of essential genes.

these genes can be essential, but the dose used in the experiment might have been too small to have

had an effect on bacterium’s growth.

Table 16. Summary of carveme and of curated models, not only for LB medium, but also for complete and M9 media (fluxes have the
unit mmol / [gDW h]).

CarveMe Curated
model model

Reconstruction approach “top-down” “bottom-

up”

Biomass equation - species Escherichia
coli [60]

Medium composition - species Complete LB M9 Complete LB M9
Mycoplasma | Bacillus E. coli (default) (from LB (from M9
genitalium subtilis [60] carveme carveme
[60] and models) models)

Shewanella
oneidensis
[60]

Growth rate 55,0 1,4 0,9 86,8 5,7 1,7

No. of proteins in FASTA 4636 4636

No. of genes/proteins in model 832 993

Essential genes 40 67 (8%) 120 61 ‘ 124 (12%) ‘ 200

Total no. of reactions 2151 2154 2155 1528

Universally blocked reactions 55 89

Exchange reactions 253 280

Exchange reactions with active flux 253 50 17 280 49 21

Exchange reactions with active flux — 23,1 2,4 5,2 73,0 22,2 44,8

absolute fluxes’ mean

Exchange reactions bounds (- active (- active (- (- active (- active (-
1000,1000) | 10,1000) 10,1000) | 1000,1000) | 10,1000) 10,1000)

| non- | non- | non- | non-
active active active active
(0,1000) (0,1000) (0,1000) (0,1000)

Medium specific blocked reactions 55 685 (32%) 760 89 530 (35%) 540

Zero flux reactions 1825 1833 1774 945 843 920

Transport reactions 637 87

Purely metabolic reactions 1255 | 1258 6m | 1259 | 1154 g3
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Purely metabolic reactions with non-zero flux ~ 180 212 311 465 582 554
Purely metabolic reactions with non-zero flux 68,5 2,4 1,0 109,8 17,5 22,9
- absolute fluxes’ mean

Gene associated reactions 1489 (69%) 1084 (71%)

(enzymatic reactions)

Gene associated reactions 1047 (49%) 1034 (68%)

that are purely metabolic

Altogether, the results show that:

carveme and curated models do not have the same essential genes in LB medium (67 vs 124,
respectively; Table 16), which means that, to be able to rely on the /n silico results, there is still a need
to do more experimental research on B. thetaiotaomicror's, in order to find the most accurate biomass
composition, that, consequently, is going to change gene essentiality.

both /n silico models are missing genes that have interactions in STITCH (37 and 40, respectively; Fig.
24c), which means that some reactions in the models are not being affected. These reactions could
lead to a change in bacterium’s growth, thus leading to even more drugs inhibiting growth.

carveme and curated models differ in the genes present (as shown in Fig. 24a and Fig. 28b and Table
16 - 832 vs 993), in the number of blocked reactions (685 vs 530) and in the number of gene
associated reactions (1489 vs 1084, Table 16). Therefore, when one drug affects one gene in one
model, it affects certain reactions that might not be affected in the other model (which is further
supported by the difference in the drugs’ effect on the neuroactive metabolism, since it affects the
production/consumption of different neuroactive metabolites, as shown in Fig. 25, 26 and 32).

It is necessary to do more upstream perturbations experiments in order to discover more drug-protein

inhibiting interactions and, subsequently, be able to perform more accurate /in7 silico predictions.

58



6 Conclusions

In the present work, an automatic genome-scale metabolic reconstruction of 5. thetaiotaomicron was
generated and subsequently used to systematically investigate drugs’ effect on its growth and its
metabolism and, moreover, its results were compared with the ones from a manually curated model
reconstruction. The drugs have been previously screened /n vifroin the Maier et a/2018 research paper.

These drugs were selected for two different reasons:

e to understand why neuroactive drugs had an effect on bacteria, given that they are supposed to target
receptors that don't exist in bacteria.

e to examine why medication that is not targeted at gut commensals, affects them.

The goal was to evaluate if the drugs had corresponding results /n7 vifro and /n silico and, if so, be able
to examine the proteins that are being affected.
Neither of the /n silico models predicted well the drugs’ effect on the bacterium’s growth. These results

suggest that:

e the models are inaccurate, particularly due to probable incomplete and/or incorrect biomass
composition and possibly leading to wrong gene essentiality predictions.

e some drug-protein interaction information retrieved from STITCH database was erroneous because
they were transferred via orthology from other organisms.

e the medium used in the /7 silico models was not representative of the one used in the /n vifro screen

experiment.

Since Maier ef al. 2018 paper [3] monitored the growth of 40 bacterial strains. In the future work, it
would be important to extend the analysis performed in this study for B. thetaiotaomicron to the other 39
bacteria. In this way, we can test whether drug effects can be predicted better for other species and

compare /n silico predictions for drug effects between different species.

59



10.

11.

12.

References

Flowers, S.A., Evans, S.J., Ward, K.M., Mclnnis, M.G., Ellingrod, V.L.: Interaction Between Atypical
Antipsychotics and the Gut Microbiome in a Bipolar Disease Cohort. Pharmacotherapy. 37, 261-
267 (2017).

Schmidt, T.S.B., Raes, J., Bork, P.: The Human Gut Microbiome: From Association to Modulation.
Cell. 172, 1198-1215 (2018).

Maier, L., Pruteanu, M., Kuhn, M., Zeller, G., Telzerow, A., Anderson, E.E., Brochado, A.R.,
Fernandez, K.C., Dose, H., Mori, H., Patil, K.R., Bork, P., Typas, A.: Extensive impact of non-
antibiotic drugs on human gut bacteria. Nature. 555, 623-628 (2018).

Esvap, E., Ulgen, K.O.: Advances in Genome-Scale Metabolic Modeling toward Microbial
Community Analysis of the Human Microbiome. ACS Synth. Biol. 10, 2121-2137 (2021).

Lamichhane, S., Sen, P., Dickens, A.M., OreSi¢, M., Bertram, H.C.: Gut metabolome meets
microbiome: A methodological perspective to understand the relationship between host and
microbe. Methods. 149, 3-12 (2018).

van der Ark, K.C.H., van Heck, R.G.A., Martins Dos Santos, V.A.P., Belzer, C., de Vos, W.M.: More
than just a gut feeling: constraint-based genome-scale metabolic models for predicting functions
of human intestinal microbes. Microbiome. 5, 78 (2017).

Hornung, B., Martins dos Santos, V.A.P., Smidt, H., Schaap, P.J.: Studying microbial functionality
within the gut ecosystem by systems biology. Genes Nutr. 13, 1-19 (2018).

Saa, P., Urrutia, A., Silva-Andrade, C., Martin, A.J., Garrido, D.: Modeling approaches for probing
cross-feeding interactions in the human gut microbiome. Comput. Struct. Biotechnol. J. 20, 79-
89 (2022).

Kumar, M., Ji, B., Babaei, P., Das, P., Lappa, D., Ramakrishnan, G., Fox, T.E., Haque, R., Petri,
W.A., Béackhed, F., Nielsen, J.: Gut microbiota dysbiosis is associated with malnutrition and
reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metab. Eng.
49, 128-142 (2018).

Gacesa, R., Kurilshikov, A., Vich Vila, A., Sinha, T., Klaassen, M.A.Y., Bolte, L.A., Andreu-Sanchez,
S., Chen, L., Collij, V., Hu, S., Dekens, J.AM., Lenters, V.C., Bjork, J.R., Swarte, J.C., Swertz,
M.A., Jansen, B.H., Gelderloos-Arends, J., Jankipersadsing, S., Hofker, M., Vermeulen, R.C.H.,
Sanna, S., Harmsen, H.J.M., Wijmenga, C., Fu, J., Zhernakova, A., Weersma, R.K.: Environmental
factors shaping the gut microbiome in a Dutch population. Nature. 604, 732-739 (2022).

Wilmanski, T., Diener, C., Rappaport, N., Patwardhan, S., Wiedrick, J., Lapidus, J., Earls, J.C.,
Zimmer, A., Glusman, G., Robinson, M., Yurkovich, J.T., Kado, D.M., Cauley, J.A., Zmuda, J.,
Lane, N.E., Magis, A.T., Lovejoy, J.C., Hood, L., Gibbons, S.M., Orwoll, E.S., Price, N.D.: Gut
microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274~
286 (2021).

Chakrabarti, A., Geurts, L., Hoyles, L., lozzo, P., Kraneveld, A.D., La Fata, G., Miani, M., Patterson,
E., Pot, B., Shortt, C., Vauzour, D.: The microbiota—gut-brain axis: pathways to better brain health.

60



13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Perspectives on what we know, what we need to investigate and how to put knowledge into
practice. Cell. Mol. Life Sci. 79, 1-15 (2022).

Devika, N.T., Raman, K.: Deciphering the metabolic capabilities of Bifidobacteria using genome-
scale metabolic models. Sci. Rep. 9, 1-9 (2019).

What are the parts of the nervous system?,
https://www.nichd.nih.gov/health/topics/neuro/conditioninfo/parts.

Hagan, C.E., Bolon, B., Keene, C.D.: Nervous System. Elsevier Inc. (2012).

Vagus Nerve: Function, Stimulation, and More, https://www.healthline.com/human-body-
maps,/ vagus-nerve#anatomy-and-function, last accessed 2022/10/25.

The Vagus Nerve, https://teachmeanatomy.info/head/cranial-nerves/vagus-nerve-cn-x/, last
accessed 2022/10/25.

Pavlov, V.A., Chavan, S.S., Tracey, K.J.: Molecular and Functional Neuroscience in Immunity.
Annu. Rev. Immunol. 36, 783 (2018).

Bradley, P.B.: The somatic motor system. In: Introduction to Neuropharmacology. pp. 35-42.
Butterworth-Heinemann (1989).

Fleming, M.A., Ehsan, L., Moore, S.R., Levin, D.E.: The Enteric Nervous System and Its Emerging
Role as a Therapeutic Target. Gastroenterol. Res. Pract. 2020, (2020).

Cook, T.M., Mansuy-Aubert, V.. Communication between the gut microbiota and peripheral
nervous system in health and chronic disease. Gut Microbes. 14, 1-20 (2022).

Ahmed, H., Leyrolle, Q., Koistinen, V., Karkkainen, O., Layé, S., Delzenne, N., Hanhineva, K.:
Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes. 14, (2022).

Luan, H., Wang, X., Cai, Z.: Mass spectrometry-based metabolomics: Targeting the crosstalk
between gut microbiota and brain in neurodegenerative disorders. Mass Spectrom. Rev. 38, 22-
33(2019).

Spichak, S., Bastiaanssen, T.F.S., Berding, K., Vickova, K., Clarke, G., Dinan, T.G., Cryan, J.F.
Mining microbes for mental health: Determining the role of microbial metabolic pathways in
human brain health and disease. Neurosci. Biobehav. Rev. 125, 698-761 (2021).

Clarke, G., Grenham, S., Scully, P., Fitzgerald, P., Moloney, R.D., Shanahan, F., Dinan, T.G.,
Cryan, J.F.: The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic
system in a sex-dependent manner. Mol. Psychiatry. 18, 666-673 (2013).

Lai, Y., Liu, C.W., Yang, Y., Hsiao, Y.C., Ru, H., Lu, K.: High-coverage metabolomics uncovers
microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in
mice. Nat. Commun. 12, 1-16 (2021).

Tan, J., McKenzie, C., Potamitis, M., Thorburn, A.N., Mackay, C.R., Macia, L.: The Role of Short-
Chain Fatty Acids in Health and Disease. Elsevier Inc. (2014).

Silva, Y.P., Bernardi, A., Frozza, R.L.: The Role of Short-Chain Fatty Acids From Gut Microbiota in
Gut-Brain Communication. Front. Endocrinol. (Lausanne). 11, 25 (2020).

61



29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Dinan, T.G., Cryan, J.F.: Brain-Gut-Microbiota Axis and Mental Health. Psychosom. Med. 79, 920-
926 (2017).

Valles-Colomer, M., Falony, G., Darzi, Y., Tigchelaar, E.F., Wang, J., Tito, R.Y., Schiweck, C.,
Kurilshikov, A., Joossens, M., Wijmenga, C., Claes, S., Van Oudenhove, L., Zhernakova, A., Vieira-
Silva, S., Raes, J.: The neuroactive potential of the human gut microbiota in quality of life and
depression. Nat. Microbiol. 4, 623-632 (2019).

Suda, K., Matsuda, K.: How Microbes Affect Depression: Underlying Mechanisms via the Gut-
Brain Axis and the Modulating Role of Probiotics. Int. J. Mol. Sci. 23, 1-17 (2022).

Tran, S.M.S., Hasan Mohajeri, M.: The role of gut bacterial metabolites in brain development,
aging and disease. Nutrients. 13, 1-41 (2021).

Caspani, G., Kennedy, S., Foster, J.A., Swann, J.: Gut microbial metabolites in depression:
Understanding the biochemical mechanisms. Microb. Cell. 6, 454-481 (2019).

Lopez-Gambero, A.J., Sanjuan, C., Serrano-Castro, P.J., Suarez, J., Fonseca, F.R. De: The
Biomedical Uses of Inositols: A Nutraceutical Approach to Metabolic Dysfunction in Aging and
Neurodegenerative Diseases. Biomedicines. 8, (2020).

Maier, L., Typas, A.: Systematically investigating the impact of medication on the gut microbiome.
Curr. Opin. Microbiol. 39, 128-135 (2017).

Becattini, S., Taur, Y., Pamer, E.G.: Antibiotic-Induced Changes in the Intestinal Microbiota and
Disease. Trends Mol. Med. 22, 458-478 (2016).

Westervelt, P., Cho, K., Bright, D.R., Kisor, D.F.: Drug-gene interactions: Inherent variability in
drug maintenance dose requirements. P T. 39, 630-637 (2014).

Gilbert, J.A., Blaser, M.J., Caporaso, J.G., Jansson, J.K., Lynch, S. V., Knight, R.: Current
understanding of the human microbiome. Nat. Med. 24, 392 (2018).

Shaked, I., Oberhardt, M.A., Atias, N., Sharan, R., Ruppin, E.: Metabolic Network Prediction of
Drug Side Effects. Cell Syst. 2, 209-213 (2016).

Pharos: llluminating the Druggable Genome, https://pharos.nih.gov/, last accessed
2022/10/30.

Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D.,
Li, C., Sayeeda, Z., Assempour, N., lynkkaran, |., Liu, Y., Maclejewski, A., Gale, N., Wilson, A.,
Chin, L., Cummings, R., Le, Di., Pon, A., Knox, C., Wilson, M.: DrugBank 5.0: A major update to
the DrugBank database for 2018. Nucleic Acids Res. 46, D1074-D1082 (2018).

BioGRID | Database of Protein, Chemical, and Genetic Interactions, https://thebiogrid.org/, last
accessed 2022/10/30.

Zhou, Y., Zhang, Y., Lian, X., Li, F., Wang, C., Zhu, F., Qiu, Y., Chen, Y.: Therapeutic target
database update 2022: Facilitating drug discovery with enriched comparative data of targeted
agents. Nucleic Acids Res. 50, D1398-D1407 (2022).

Szklarczyk, D., Santos, A., Von Mering, C., Jensen, L.J., Bork, P., Kuhn, M.: STITCH 5: augmenting
protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44, D380-
62



45.

46.

47.

48.

49.

50.

51.

52.
53.

54.

55.
56.

57.

58.

50.

D384 (2016).

Mottini, C., Napolitano, F., Li, Z., Gao, X., Cardone, L.: Computer-aided drug repurposing for
cancer therapy: Approaches and opportunities to challenge anticancer targets. Semin. Cancer
Biol. 68, 59-74 (2021).

STITCH: chemical association networks,
http://stitch.embl.de/cgi/input.pl?Userld=zaZX8Q 1vNvhF &sessionld=VuqggdWbWsM;9.

von Mering, C., Jensen, L.J., Snel, B., Hooper, S.D., Krupp, M., Foglierini, M., Jouffre, N., Huynen,
M.A., Bork, P.: STRING: known and predicted protein-protein associations, integrated and
transferred across organisms. Nucleic Acids Res. 33, (2005).

Sen, P., Oresi¢, M.: Metabolic modeling of human gut microbiota on a genome scale: An overview.
Metabolites. 9, (2019).

Hale, V.L., Jeraldo, P., Mundy, M., Yao, J., Keeney, G., Scott, N., Cheek, E.H., Davidson, J., Green,
M., Martinez, C., Lehman, J., Pettry, C., Reed, E., Lyke, K., White, B.A., Diener, C., Resendis-
Antonio, O., Gransee, J., Dutta, T., Petterson, X.M., Boardman, L., Larson, D., Nelson, H., Chia,
N.: Synthesis of multi-omic data and community metabolic models reveals insights into the role
of hydrogen sulfide in colon cancer. Methods. 149, 59-68 (2018).

Magnusdéttir, S., Heinken, A., Kutt, L., Ravcheev, D.A., Bauer, E., Noronha, A., Greenhalgh, K.,
Jager, C., Baginska, J., Wilmes, P., Fleming, R.M.T., Thiele, I.: Generation of genome-scale
metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35,
81-89 (2017).

O'Brien, E.J., Monk, J.M., Palsson, B.O.: Using genome-scale models to predict biological
capabilities. Cell. 161, 971-987 (2015).

Virtual Metabolic Human, https://www.vmh.life/.

Thiele, 1., Palsson, B.: A protocol for generating a high-quality genome-scale metabolic
reconstruction. Nat. Protoc. 5, 93-121 (2010).

Filippoid, M. Di, Damianiid, C., Pesciniid, D.: GPRuler: Metabolic gene-protein-reaction rules
automatic reconstruction. (2021).

PSORT, https://www.psort.org/.

Yu, N.Y., Wagner, J.R., Laird, M.R., Melli, G., Rey, S., Lo, R., Dao, P., Cenk Sahinalp, S., Ester,
M., Foster, L.J., Brinkman, F.S.L.. PSORTb 3.0: improved protein subcellular localization
prediction with refined localization subcategories and predictive capabilities for all prokaryotes.
Bioinformatics. 26, 1608-1615 (2010).

Proteome Analyst, http://pa.wishartlab.com/pa/pa/index.html.

Szafron, D., Lu, P., Greiner, R., Wishart, D.S., Poulin, B., Eisner, R., Lu, Z., Anvik, J., Macdonell,
C., Fyshe, A., Meeuwis, D.: Proteome Analyst: custom predictions with explanations in a web-
based tool for high-throughput proteome annotations. Nucleic Acids Res. 32, W365 (2004).

Bernstein, D.B., Sulheim, S., Almaas, E., Segre, D.: Addressing uncertainty in genome-scale
metabolic model reconstruction and analysis. Genome Biol. 22, 1-22 (2021).
63



60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Machado, D., Andrejev, S., Tramontano, M., Patil, K.R.: Fast automated reconstruction of genome-
scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542-
7553 (2018).

Passi, A., Tibocha-Bonilla, J.D., Kumar, M., Tec-Campos, D., Zengler, K., Zuniga, C.: Genome-
scale metabolic modeling enables in-depth understanding of big data. Metabolites. 12, (2022).

Henry, C.S., Dejongh, M., Best, A.A., Frybarger, P.M., Linsay, B., Stevens, R.L.: High-throughput
generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28,
977-982 (2010).

Aziz, R.K., Bartels, D., Best, A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S.,
Glass, E.M., Kubal, M., Meyer, F., Olsen, G.J., Olson, R., Osterman, A.L., Overbeek, R.A., McNeil,
L.K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G.D., Reich, C., Stevens, R., Vassieva, O.,
Vonstein, V., Wilke, A., Zagnitko, O.: The RAST Server: rapid annotations using subsystems
technology. BMC Genomics. 9, (2008).

Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J. V., Chuang, H.Y., Cohoon, M., de Crécy-
Lagard, V., Diaz, N., Disz, T., Edwards, R., Fonstein, M., Frank, E.D., Gerdes, S., Glass, E.M.,
Goesmann, A., Hanson, A., lwata-Reuyl, D., Jensen, R., Jamshidi, N., Krause, L., Kubal, M.,
Larsen, N., Linke, B., McHardy, A.C., Meyer, F., Neuweger, H., Olsen, G., Olson, R., Osterman,
A., Portnoy, V., Pusch, G.D., Rodionov, D.A., Riickert, C., Steiner, J., Stevens, R., Thiele, .,
Vassieva, 0., Ye, Y., Zagnitko, O., Vonstein, V.: The subsystems approach to genome annotation
and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691-5702 (2005).

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., Ishiguro-Watanabe, M.: KEGG for
taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 1, 13-14 (2013).

Kumar, V.S., Maranas, C.D.: GrowMatch: An Automated Method for Reconciling In Silico/In Vivo
Growth Predictions. PLOS Comput. Biol. 5, e1000308 (2009).

Heinken, A., Ravcheev, D.A., Baldini, F., Heirendt, L., Fleming, R.M.T., Thiele, |.: Systematic
assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic
capabilities in inflammatory bowel disease. Microbiome. 7, 1-18 (2019).

Zorrilla, F., Buric, F., Patil, K.R., Zelezniak, A.: MetaGEM: Reconstruction of genome scale
metabolic models directly from metagenomes. Nucleic Acids Res. 49, (2021).

Fang, X., Monk, J.M., Mih, N., Du, B., Sastry, A. V., Kawas, E., Seif, Y., Smarr, L., Palsson, B.O.:
Escherichia coli B2 strains prevalent in inflammatory bowel disease patients have distinct
metabolic capabilities that enable colonization of intestinal mucosa. BMC Syst. Biol. 12, 1-10
(2018).

Baldini, F., Hertel, J., Sandt, E., Thinnes, C.C., Neuberger-Castillo, L., Pavelka, L., Betsou, F.,
Kriger, R., Thiele, I.: Parkinson’s disease-associated alterations of the gut microbiome predict
disease-relevant changes in metabolic functions. BMC Biol. 18, 1-21 (2020).

Patumcharoenpol, P., Nakphaichit, M., Panagiotou, G., Senavonge, A., Suratannon, N.,
Vongsangnak, W.: MetGEMs Toolbox: Metagenome-scale models as integrative toolbox for
uncovering metabolic functions and routes of human gut microbiome. PLoS Comput. Biol. 17, 1-
18 (2021).

64



72.

73.

74.

75.

76.
77.

78.

79.

80.
81.
82.

83.

84.

85.
86.

87.

88.

89.

Btheta - Genome - Assembly - NCBI,
https://www.ncbi.nlm.nih.gov/assembly/GCF_000011065.1#/qa.

Ryan, D., Jenniches, L., Reichardt, S., Barquist, L., Westermann, A.J.: A high-resolution
transcriptome map identifies small RNA regulation of metabolism in the gut microbe Bacteroides
thetaiotaomicron. Nat. Commun. 11, (2020).

Mohsin, M., Tanaka, K., Kawahara, R., Kondo, S., Noguchi, H., Motooka, D., Nakamura, S.,
Khong, D.T., Nguyen, T.N., Hoang, T.N., Yamamoto, Y.: Whole-genome sequencing and
comparative analysis of the genomes of Bacteroides thetaiotaomicron and Escherichia coli isolated
from a healthy resident in Vietnam. J. Glob. Antimicrob. Resist. 21, 65-67 (2020).

KEGG BRITE: Anatomical Therapeutic Chemical (ATC) Classification,
https://www.genome.jp/brite/br08303.

PubChem, https://pubchem.ncbi.nim.nih.gov/.

Kuhn, M., Szklarczyk, D., Franceschini, A., Von Mering, C., Jensen, L.J., Bork, P.: STITCH 3:
zooming in on protein-chemical interactions. Nucleic Acids Res. 40, (2012).

Deghou, S., Zeller, G., Iskar, M., Driessen, M., Castillo, M., Van Noort, V., Bork, P.: CART—a
chemical annotation retrieval toolkit. Bioinformatics. 32, 2869-2871 (2016).

Ebrahim, A., Lerman, J.A., Palsson, B.0., Hyduke, D.R.: COBRApy: COnstraints-Based
Reconstruction and Analysis for Python. BMC Syst. Biol. 7, 1-6 (2013).

GitHub - cdanielmachado/reframed, https://github.com/cdanielmachado/reframed.
ReFramed, https://reframed.readthedocs.io/en/latest/.

Heinken, A., Sahoo, S., Fleming, R.M.T., Thiele, |.: Systems-level characterization of a host-
microbe metabolic symbiosis in the mammalian gut. Gut Microbes. 4, 28-40 (2013).

Henry, C.S., Dejongh, M., Best, A.A., Frybarger, P.M., Linsay, B., Stevens, R.L.: High-throughput
generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 2010
289. 28, 977-982 (2010).

In silico Reconstructions | ThieleLab, https://www.thielelab.eu/in-silico-models.
Gifu Anaerobic Broth, Modified (GAM) Composition, https://himedialabs.com/TD/M2079.pdf.

Silhavy, T.J., Kahne, D., Walker, S.: The Bacterial Cell Envelope. Cold Spring Harb. Perspect. Biol.
2, (2010).

Wang, X., Quinn, PJ., Yan, A.. Kdo2-ipid A: structural diversity and impact on
immunopharmacology. Biol. Rev. Camb. Philos. Soc. 90, 408 (2015).

Vollmer, W., Bertsche, U.: Murein (peptidoglycan) structure, architecture and biosynthesis in
Escherichia coli. Biochim. Biophys. Acta - Biomembr. 1778, 1714-1734 (2008).

Bogdanov, M., Pyrshev, K., Yesylevskyy, S., Ryabichko, S., Boiko, V., lvanchenko, P., Kiyamova,
R., Guan, Z., Ramseyer, C., Dowhan, W.: Phospholipid distribution in the cytoplasmic membrane
of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. Sci. Adv. 6,

65



(2020).

90. KEGG: Kyoto Encyclopedia of Genes and Genomes, https://www.genome.jp/kegg/.

66



Supplementary Information

Supplementary Table 1. Prestwick ID/STITCH ID/Drug name matching of the drugs (out of the 242 that had, in STITCH database,
inhibiting interactions with B. thetaiotaomicron’s proteins) that had effect either in vitro, in silico (in carveme and curated models) or in

both.
PrestwickID ~ STITCHID Drugname PrestwickID ~ STITCHID Drugname
1109 05361912  Rifabutin 708 00002335  Benzethonium chloride
1233 06333887  Auranofin 267 00002812  Clotrimazole
525 05381226  Rifampicin 376 00002794  Clofazimine
151 00003255  Erythromycin 740 00003194 Ebselen
808 00003435  Furazolidone 1203 00003385  5-fluorouracil
113 00002764  Ciprofloxacin hydrochloride 487 00002958  Daunorubicin hydrochloride
monohydrate
208 00005578  Trimethoprim 205 00610479  Tolfenamic acid
1415 00003363  Floxuridine 368 00002351  Bepridil hydrochloride
1157 06323497  Rifapentine 126 00004046  Mefloguine hydrochloride
1446 00004259  Moxifloxacin 478 00003333  Felodipine
1265 00005379  QGatifloxacin 1114 00060787  Saquinavir mesylate
238 00003948  Lomefloxacin hydrochloride 736 00002617  Cefazolin sodium salt
237 00004583  Ofloxacin 1467 00005591  Troglitazone
1343 00005257  Sparfloxacin 1314 00004829 Pioglitazone
766 00005479  Tinidazole 94 00002265  Azathioprine
756 00003054  Diethylstilbestrol 1337 00077998  Rosiglitazone Hydrochloride
1401 00003229  Enoxacin 105 00002949  Danazol
37 00004993  Pyrimethamine 275 00003339  Fenofibrate
1056 00006256  Trifluridine 1097/911 00003779  ()-Isoproterenol hydrochloride
/ (+)-Isoproterenol (+)-bitartrate salt
1194 00005441  Thimerosal 1134 00000596  Cytarabine
333 00005726  Zidovudine, AZT 14 00005320  Sulfacetamide sodic hydrate
168 00004509  Nitrofurantoin 257/256 00005538  Retinoic acid / Isotretinoin
1479 00005564  Triclosan 1210 00002088  Alendronate sodium
1378 00054688  Clarithromycin 741 00000925  Nadide
699 00003606  Hexestrol 1198 00005527  Tranilast
1 00008646  Azaguanine-8 1285 00060852  Ibandronate sodium
1303 00051081  Pefloxacine 1118 00002622  Cefepime hydrochloride
370 00002333  Benzbromarone 489 00002650  Ceftazidime pentahydrate
390 00003443  Fusidic acid sodium salt 441 00000450  Estradiol-17 beta
732 00005300  Streptozotocin
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