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Previsão do Impacto de Compostos Psicoativos nas Bactérias do 
Intestino Humano com Modelação Metabólica 

O intestino humano é composto por muitos micróbios, a microbiota, que vai desde bactérias e vírus 

até archaea e eukaria, sendo que as bactérias anaeróbicas compõem a maior parte, com cerca de 500-

1000 espécies bacterianas. Cada bactéria tem um genoma que abrange milhares de genes e cada 

pessoa tem um conjunto diferente de bactérias. 

A medicação tem surgido como um dos fatores extrínsecos do hospedeiro que tem um forte impacto 

na variação da composição da microbiota intestinal humana. Uma vez que os recetores dos 

medicamentos, as enzimas que os metabolizam e os seus transportadores são produtos de genes que 

apresentam polimorfismos, a genética introduz variabilidade nas respostas dos indivíduos aos 

medicamentos e pode ser a causa das reações adversas a estes. 

O metabolismo celular é um sistema confiável para a análise preditiva dos efeitos secundários dos 

medicamentos, uma vez que pode ser transformado num modelo preditivo, designado como modelo 

metabólico à escala genómica. 

Este estudo baseia-se na investigação de Maier et al 2018, que testou o efeito de 1197 medicamentos 

que não têm como alvo as bactérias comensais do intestino (como medicamentos para o sistema 

nervoso) contra bactérias que são representativas do intestino humano, de forma a perceber se estes 

têm um efeito antibiótico secundário. 

Neste estudo, foi analisado o efeito destes medicamentos no crescimento da bactéria Bacteroides 

thetaiotaomicron, in silico, através de dois modelos metabólicos (para comparação), um dos quais foi 

curado manualmente e obtido da literatura e o outro foi reconstruído neste estudo com uma ferramenta 

automática chamada CarveMe. Este estudo mostra que apenas 4 medicamentos tiveram o mesmo efeito 

na bactéria in vitro e num dos modelos in silico, sendo que no outro apenas 2. Algumas hipóteses podem 

ser formuladas, entre as quais que nenhum destes modelos é representativo do metabolismo da bactéria 

ou que as condições experimentais não foram exatamente representadas nos modelos in silico. 

 

Palavras-chave: inativação de genes, modelos metabólicos, microbioma do intestino 
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Predicting the Impact of Psychoactive Compounds on Human Gut 
Bacteria with Metabolic Modelling 

The human gut is comprised of many microbes, the microbiota, ranging from bacteria and viruses to 

archaea and eukarya, being that anaerobic bacteria make up the most part, with about 500-1000 

bacterial species. Each bacterium has a genome encompassing thousands of genes and each person 

has a different set of bacteria.  

Medication has been emerging as one of the host extrinsic factors that has a strong impact in the 

variance of the human gut microbiota composition. Since drug receptors, drug metabolising enzymes and 

drug transporters are the products of genes that exhibit polymorphisms, genetics introduces variability 

among the response of individuals and may be the cause of adverse reactions to treatment. 

Cellular metabolism is a reliable system for predictive analysis of drugs side effects since it is a genome-

wide network that can be turned into a predictive model, designated as genome-scale metabolic model 

(GSMM). 

This study is based on the experimental Maier et al 2018 research, that screened 1197 drugs not 

targeted at human gut commensal bacteria (such as nervous system drugs) against representatives of 

the human gut, to investigate the antibiotic-like side effect of these drugs.  

In the present study, it is analysed the effect of these drugs on the growth of the bacterium Bacteroides 

thetaiotaomicron, in silico, through two GSMMs (for comparison purposes), one of which manually 

curated and obtained from literature and the other reconstructed in this study with the use of an automatic 

tool named CarveMe. It was found that only 4 drugs had corresponding results in vitro and in one of the 

in silico models and only 2 in the other model. Some hypotheses can be made, such as that these GSMMs 

are not representative of the bacterium metabolism or that the experimental conditions were not exactly 

represented in the models. 

 

Key words: gene-deletion, metabolic modelling, gut microbiome 
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1 Introduction 

1.1 Context and Motivation 

The human gut harbours countless microbes, the microbiota, which have an active role in functions 

such as immunological and developmental, and have been linked to brain development, physiology and 

psychology primarily through neuroactive compound production and degradation [1, 2].  

Drugs that act on the nervous system (neuroactive drugs), which include antipsychotics, 

antidepressants and antianxiety drugs, act on the host central nervous system and their consumption has 

been associated with modifications in the microbiota composition [1][2][3]. Furthermore, drugs that are 

not targeted at gut commensals have also been shown to change the microbiome diversity [2]. 

Therefore, it is crucial to unravel interactions between the microbiome and drugs and take them into 

account during drug development and selection of medical treatment, in order to control drug responses 

and side effects [2, 4, 5, 6]. Although numerous studies have reported some interactions, systematic 

evaluation of these relationships is yet missing [3]. 

1.2 Aims 

The goal of this project is to systematically analyse drug effects on bacterial metabolism and growth, 

based on data on drug-protein interactions and based on genome-scale metabolic models (GSMM) of gut 

bacteria. These are further divided into the following aims: 

• Reconstruct the GSMM of Bacteroides thetaiotaomicron with an automatic tool named CarveMe. 

• Examine the GSMM of B. thetaiotaomicron for its ability to produce known neuroactive compounds. 

• Incorporate drug-protein interaction information from the STITCH and KEGG databases into to the 

GSMM to predict the effects of drugs, screened in vitro in Maier et al 2018, on bacterial growth and 

metabolism. 

• Repeat the previous step for a GSMM retrieved from literature that was reconstructed with a different 

automatic tool named ModelSEED and was manually curated. 

• Compare in silico results with in vitro ones. 
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1.3 Structure 

The dissertation has the following structure: 

• Chapter 2: State-of-the-Art 

─ Gut microbiome interindividual variability. 

─ Bi-directional communication between the brain and the gut. 

─ The side effects of drugs in the gut bacteria. 

─ Genome-scale metabolic modelling to predict the effects of a drug on a bacterium. 

• Chapter 3: Methods 

─ Automatic reconstruction of B. thetaiotaomicron’s genome-scale metabolic model. 

─ In silico simulation of drugs’ effect on Bacterium’s growth and metabolism. 

─ Using a manually curated B. thetaiotaomicron’s model to compare and understand drugs’ effect 

results in silico. 

• Chapter 4: Results  

─ Analyses of automatic model reconstructions. 

─ Investigation of bacterium’s ability to metabolise neuroactive compounds. 

─ Results of drugs’ effect simulation. 

• Chapter 5: Discussion 

• Chapter 6: Conclusions 
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2 State-of-the-Art 

2.1 Human Gut Microbiome 

The gut flora is comprised of many microbes, the microbiota, ranging from bacteria and viruses to 

archaea and eukarya, being that anaerobic bacteria make up the most part, hence being the most studied 

[4][5]. All the genomes belonging to the microbiota constitute the microbiome [5][6]. 

2.1.1 Composition / Interpersonal Variability 

Due to the highly diverse microbial community of the microbiota, present in diverse niches and active 

at varying rates, numerous interactions among it and with the host exist, such as cross-feeding (metabolic 

exchange between microorganisms), mutualism, commensalism and competition (e.g., genes producing 

antimicrobials or competition for the same niche) [7][5][8]. 

The microbiota composition varies from person to person and throughout life with microbiome’s 

intrinsic and extrinsic factors (such as taxa interactions, in the first case, and diet, genetics, pollutants, 

cohabitation and use of medication, in the last case) [5][6][2][9][10]. 

According to a longitudinal study done in a Dutch population, environment and cohabitation were the 

primary factors that explained microbiome variance (as shown in Fig. 1b) and only 15% of the variability 

could be explained by extrinsic factors, which means that the microbiome is very unique [5][6][2][9][10]. 

However, it can be said that the microbiome is fairly stabilised after the age of 3 and, around 65 years 

old, gradual changes start to occur (characterized, for example, by a depletion in the core abundant 

genera “Bacteroides” [Fig. 1a] and by changes in the metabolic capacity [11][10][3]) and the microbiome 

interindividual variation increases [12][11][10]. 

Gut microbes are responsible for catabolising nutrients that go unmodified to the gut because they are 

not digested by host enzymes. This results in the production of metabolites, among which are short chain 

fatty acids (e.g., acetate, propionate and butyrate), branched chain amino acids and gases. This catabolic 

process might need combinations of microorganisms for it to happen [13][7][5]. Microbes also metabolise 

other compounds, as for example, bacterial cell wall components. All of these metabolites, that together 

define the metabolome, can later be absorbed or excreted by the host through metabolic processes and 

pathways [7][5]. 
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Fig. 1. Gut microbiome composition. a, Core of species in the human gut microbiome (from 364 fecal metagenomes of asymptomatic 
individuals; figure taken from Maier et al 2018 [3]). b, Heritability and contribution of individual exposures to microbiome variance (figure 

from [10]).  

2.1.2 Gut-Brain Communication Driven by Microbiota-Derived Neuroactive Metabolites 

The nervous system allows communication between the brain and all parts of the body, through the 

transmission of electrical signals along the extension of one neuron (the axon) towards the dendrite of the 

postsynaptic neuron. This transmission involves the release of neurotransmitters that bind targets in the 

postsynaptic neuron and can cause its excitation, inhibition or modulation [14]. 

 The nervous system comprises two main parts: 

• the central nervous system (CNS), consisting mainly of the spinal cord and the brain and is named so 

since it integrates information from the rest of the body and controls its activity [15]. 

• the peripheral nervous system (PNS), that is made up from the nerves that link the skin, limbs and 

other organs to the CNS [15]. These nerves can be grouped, according to the location of connection 

to the CNS, into spinal nerves (that connect to the spinal cord) and cranial nerves (that connect directly 

to the brain). The latter include the vagus nerve, that is the longest cranial nerve since it runs from the 

brain stem to part of the colon (Fig. 2) [16, 17]. Moreover, the PNS can be divided into: 

─ the somatic system, that controls voluntary muscle activity through innervation of skeletal muscles 

[18][19]. 
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─ the autonomic system, that encompasses neurons innervating blood vessels, lymphoid tissue and 

internal organs, being implicated in the control of physiological processes [18][19]. This system 

further includes neurons located within the gut, named enteric neurons, which around 500 million 

of them make up the enteric nervous system (ENS) [20][21]. 

 

Fig. 2. Gut connection to the brain. 

The gut and the central nervous system have been shown in research to have a strong connection, 

which has been designated as “gut-brain axis” and is modulated by activation of neurons in the gut, by 

hormones and by immune signals [12][22]. Moreover, metabolites produced by the gut microbiota have 

gained special interest by research community as they have been implicated in neuronal processes and 

dysfunction (examples in Table 1) [22]. Evidence regarding some of the metabolites from Table 1 and 

their involvement in the gut-brain communication will be presented as follows: 

• bacteria can metabolise the amino-acid tryptophan and produce precursors of serotonin, a 

neurotransmitter involved in cognition regulation and mood [23][24]. Tryptophan was present in higher 

concentrations in plasma of germ-free mice, in contrast to mice with a gut microbiota, which was 

further supported by reduced metabolism of tryptophan along its dominant metabolic fate, the 

kynurenine pathway [25][26]. Tryptophan is also degraded into quinolinic acid, which activates the 

glutamate-gated ion-channel N-methyl-D-aspartate (NMDA) found in neurons and, when the activation 

is exacerbated, leads to loss of neuronal function and cell damage/death [24]. 

• neurotransmitter glutamate have been shown to enhance cognitive abilities and memory [22] and are 

present in much-elevated levels in conventionally colonised mice compared to germ-free mice [26]. 
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• short-chain-fatty-acids (SCFA) are fatty acids produced by gut bacteria during fermentation of complex 

carbohydrates, of which propionate and acetate are the most abundant metabolites [27][28]. SCFAs 

are involved in the maturation of immune cells of the CNS and in its homeostasis [22]. 

• menaquinone/vitamin K2 has shown neuroprotective properties, in a model of neurodegenerative 

disease, by inhibiting aggregation of neurotoxic proteins inside the neurons [22]. 

 

Table 1. Neuroactive metabolites reported as being produced/consumed by bacteria. 

Type Metabolites Reported observations CarveMe ID 

Neurotransmitters 

precursors 

Tryptophan [29, 30] Precursor of serotonin (5-HT/5-hidroxitriptamina) 

and of tryptamine 

trp__L_p/e/c 

L-3,4-dihydrophenylalanine (L-DOPA) [26] Precursor of dopamine 34dhphe_p/e/c 

Tyramine [26] Precursor of dopamine tym_p/e 

Neurotransmitters Tryptamine  trypta_c 

Gamma-aminobutyric acid (GABA) [26, 29–

31] 

Inhibitory neurotransmitter; has been observed 

in MDD (major depressive disorder) patients [31] 

gg4abut_c 

Dopamine [29] [30] [26] Motivation, reward, hedonistic regulation [30] dopa_p/e/c 

Glutamate [30] [26]  glu__L_p/e/c 

Nitric oxide [30]  no_p/e/c 

Taurine (amino sulfonic acid) [26]  taur_p/e/c 

short-chain-fatty-acids 

(SCFAs) 

Butyrate [29][30] Regulation of brain-derived neurotrophic factors; 

Regulation of neuroinflammatory processes [32]; 

depleted in MDD (major depressive disorder) 

patients [33] 

but_p/e/c 

Propionate [29] [30] ppa_p/e/c 

Acetate [29] [30] ac_p/e/c 

Isovaleric acid [30] 3mb_p/e/c 

3mba_e/c 

Secondary messenger Inositol [30] Regulation of neuronal and glial activity [34] inost_p/e/c 

Vitamins Menaquinone (vitamin K2) [30]  mqn6/7/8_c 

Excitotoxic 
(damage/death of nerve cells) 

Neuroinflammatory 

Quinolinic acid [30] [31] Metabolic pathway to quinolinic acid is activated 

in MDD (major depressive disorder) patients; 

quinolinic acid impairs neurons inducing 

depressive symptoms [31] 

quln_c 

Anti-inflammatory S-Adenosylmethionine (SAM) [30]  amet_c 

2.2 Impact of Drugs on Human Gut Bacteria 

Medication has been emerging as one of the host extrinsic factors that has a strong impact in the 

variance of the human gut microbiota composition [2][35]. Studies have shown that antibiotics, that are 

supposed to inhibit pathogens, have a side effect on the gut microbiota [2][36]. Furthermore, non-

antibiotics have also been linked to changes in microbiome composition [2][35]. 

Drugs are supposed to have a certain therapeutic outcome while avoiding secondary effects, which are 

undesirable effects at normal dosages. The study of the genetic influence on the relationship between 

drug dose and effect is gaining increasing interest since drug receptors, drug metabolising enzymes and 

drug transporters are the products of genes that exhibit polymorphisms. This influence of genetics 

introduces variability among response of individuals and may be the cause of adverse reactions to 
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treatment [37]. The estimated 500-1000 bacterial species that comprise the gut microbiome, with each 

bacterium having a genome harbouring thousands of genes, together with the fact that each person has 

a different set of bacteria, adds further variability between individuals and subsequent response to drugs 

[38]. 

Cellular metabolism is a reliable system for predictive analysis of drugs side effects since it’s a genome-

wide network that can be turned into a predictive model, designated as genome-scale metabolic model 

(GSMM). Using these models together with drug-gene interaction information allows the prediction of 

linkages between gene and phenotype and the identification of the molecular mechanisms of the side 

effects of the drugs [39]. 

Several databases provide information between drugs and their targets, such as Pharos [40], DrugBank 

[41], BioGRID [42] and Therapeutic Target Database [43], but their data sources can’t be easily traced 

back and neither do they provide links to genome databases, unlike STITCH (search tool for interacting 

chemicals) which integrates all of this information (Fig. 3) [44][45]. 

 

Fig. 3. Information sources of STITCH database (adapted from [46]). 

 STITCH is a database that collects experimental data about protein-chemical interactions and that 

predicts protein-chemical associations de novo using computational tools, by knowledge transfer between 

organisms and from other databases, as shown in Fig. 3 [44][47]. These predicted interactions are based 

on the identification of pairs of genes that are thought to be functionally associated, through genome 

comparisons [47]. Each predicted interaction is assigned a confidence score, which is representative of 

how likely the interaction is true. [46]. Experimental interactions are given a uniform confidence score per 

database. The scores of interactions that are transferred via homology correspond to the probability of 

finding the associated proteins within the same metabolic pathway. Individual scores are then computed 

into a combined score. This score ranges from 0 to 1, being that 1 is the highest possible confidence 

[46][47]. 
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2.3 In Silico Simulation of Drug Interaction with Bacteria 

2.3.1 Genome-Scale Metabolic Modelling 

Profiling microorganisms present in the gut (through metagenomics sequencing and taxonomic 

assignment), identifying and or quantifying metabolites (metabolomics) and which microbes are 

responsible their production, understanding metabolites’ influence on their host’s metabolism (on health 

and disease states, for example) and evaluating microbe-microbe interactions, is all knowledge that is 

extremely important for the development of strategies to improve human health. Strategies involving, for 

instance, the administration of beneficial bacterial (probiotics) or of substrates enhancing their growth 

(pre-biotics), with the aim of modifying microbiome composition and, consequently, changing its impact 

on the host [5][7][6]. 

Approaches namely 16rRNA amplicon sequencing, shotgun metagenomics sequencing, taxonomic 

assignment and metabolic profiling, mainly of fecal samples (most studied kind of samples, as reviewed 

in [7]), has generated enormous amounts of data, such as, genomic information, microbial composition 

and quantification and/or identification of metabolites present in a biological system, respectively [5, 7, 

48]. 

Statistical analysis of this data allows to figure out differences in gut microbial and metabolites’ 

composition under different conditions [49][4]. However, they alone don’t allow identification of the 

contribute of each species to the host’s metabolism, nor provide understanding of interactions between 

microbes [48][50]. 

Thus, development of descriptive mathematical models is necessary to integrate all of this diverse 

omics data and enable the computational exploration of complexities of the gut microbiome, 

consequently, contributing to the knowledge of pathophysiology of diseases and allowing the proposal of 

personalised interventions [4, 6, 48]. 

A genome-scale metabolic model (GSMM) of an organism is a mathematical representation of its 

metabolism’s genome-scale network reconstruction (GENRE), which in turn is based on all of the 

information about the organism, such as genome annotation and biochemical characterisation, 

assembled from sources like high-throughput data, databases and research papers [51][4]. 

A GENRE is made up of all organism’s metabolic reactions that are linked to its genome. Briefly, the 

metabolic reconstruction (represented in figure 4) starts with acquiring genome annotations for the 

organism. Then, biochemical databases (like BiGG, KEGG and MetaCyc) are searched to identify reactions 
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for the corresponding catalysing enzymes encoded by the genome, the so called gene-protein-reaction 

(GPR) relationship [4, 51]. 

 

Fig. 4. Genome-scale network reconstruction (adapted from [51]). 

The GENRE conversion into a mathematical format initially requires the tabulation of the stoichiometry 

of each metabolite participating in a reaction, designated as stoichiometric matrix (as shown in figure 5a). 

Unlike models that necessitate kinetic parameters to be measured, GSMMs rely on the imposition of 

constraints on the flow patterns of the metabolites to be able to compute a feasible space of flux 

distributions (or flux map) using constraint-based modelling methods (CBM) such as COBRA (constraint-

based reconstruction and analysis) (figure 5b). These constraints, which are equations when referring to 

balances and are inequalities when imposing bounds, can be of several types [6, 8, 51] : 

• Enforcement of mass balance (or mass-balance or flux balance) constraints: the amount of intracellular 

compounds produced must be equal to the amount of intracellular compounds consumed at the steady 

state, meaning that the production and consumption cancel out) [6, 8, 51]. 

• Capacity constraints (or reaction flux bounds): definition of maximum and minimum allowable fluxes 

through reactions; also define which metabolites can enter from the medium [6, 8, 51]. 

• Thermodynamic feasibility constraints: thermodynamically feasible directions imposed on reactions [6, 

8, 51]. 

• Substrate uptake rates [6, 8, 51]. 

• Secretion rates [6, 8, 51]. 

The computed space of flux distributions represents multiples solutions that satisfy the governing 

constraints and that are associated with candidate physiological functions that the network produces. 
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Thus, the next step is defining the biological function that, mathematically, is represented by an objective 

function (for e.g., if the objective is to predict growth, the objective function is biomass production which 

is represented by a biomass reaction in the stoichiometric matrix). In order to calculate the reaction fluxes 

(optimal flux distribution) that minimise or maximise the objective function, it’s frequently used a linear 

programming technique designated as flux balance analysis (FBA), that is based on assumptions of 

steady-state growth and mass balance. Nevertheless, it presents limitations, one of which is not being 

able to infer metabolite concentrations [4][51]. 

 

Fig. 5. Mathematical conversion of a genome-scale network reconstruction to a computational genome-scale metabolic model (adapted 
from [4]). a, Stoichiometric matrix. b, feasible space of flux distributions (or flux map). 

Currently, there are metabolic models for many organisms. In order to provide the scientific community 

a resource for obtaining these models, repositories have been being created to collect and validate them 

and to standardise the reaction, the metabolite and the gene identifiers [4, 6]. One example is the Virtual 

Metabolic Human database [4][52]. However, if the organism doesn’t have any GSMM associated or if it 

has but is not sufficiently descriptive of the organism, a new GSMM can be generated automatically or an 

existing GSMM can be either manually or automatically curated [4]. 
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2.3.2 Refinement of Model Reconstruction 

With the increasing ability to easily determine the complete genome of an organism, through whole 

genome sequencing, and with the growing number of available software tools to reconstruct GSMMs from 

genome annotation, the number of metabolic reconstructions is rapidly increasing [53][54][51]. However, 

problems such as incomplete or incorrect genome annotation (i.e., missing or wrong metabolic function 

attributed to a gene)  and biochemical databases not being organism-specific (meaning that one enzyme 

might be linked to a certain activity that is not present in the organism), can lead to incorrect models that 

resulted in wrong predictions of phenotypes when compared with experimental observations. These 

problems make the refinement/curation of the reconstruction an important part of the process, to ensure 

high-quality predictions [53][51]. 

Therefore, after an automatic software tool has been used to create a draft reconstruction, the latter 

should go through steps of curation that can be performed multiple times and without an order until the 

final GSMM [53][51]. Some of the most important steps are the following: 

• Investigation of the function of a gene through experiments or literature, since it can have a wrong 

annotation or not have one at all [53][51]. 

• Removal of reactions that are too generically described, e.g., DNA [53][51]. 

• Verification of substrates and/or cofactors of enzymes that are associated with multiple reactions in 

organism-unspecific biochemical databases. This step is necessary because substrate/cofactor 

specificity of enzymes can be different between organisms and incorrect inclusion of substrates may 

lead to wrong predictions [53][51]. 

• Making sure the direction of a reaction is assigned correctly. When no information is available to 

determine the reaction directionality, the reaction is set by default as reversible. However, a high 

number of reversible reactions can lead to a free exchange of metabolites between compartments and 

impact the results. Some textbooks and literature provide rule of thumbs for the directionality of some 

reactions [53][51]. 

• Confirming correct compartment location of enzymes (i.e., if they are located in the cytoplasm, in the 

periplasm or extracellularly). Their incorrect assignment can lead to the addition, without evidence, of 

reactions that transport metabolites between intracellular compartments and, consequently, result in 

the misrepresentation of the model [53][51]. Tools such as PSORT [55][56] and Proteome Analyst 

[57][58] can be used to determine a compartment to an enzyme based on its sequence. 

• Verification of the gene-protein-reaction (GPR) rule [53][51]. According to the catalytic mechanism of a 

metabolic reaction, the GPR rule associated with it can be [54][4, 51, 59]: 



12 

 

─ an empty rule, meaning no gene is involved in its catalysis. This is valid since there are reactions 

that occur spontaneously or that only need small molecules to occur. Reactions with these rules are 

designated as spontaneous or as non-enzymatic reactions [54][4, 51, 59]. 

─ a single gene rule, i.e., only one gene is required for the reaction catalysis. In this case, one single 

gene is responsible for a monomeric enzyme, i.e., an enzyme with a single subunit[54] [4, 51, 59]. 

─ a multiple genes rule, when a reaction is catalysed by either an oligomeric enzyme (an enzyme 

consisting of multiple subunits, all of which necessary for the reaction catalysis) or by isoforms of 

an enzyme (a highly similar enzyme that can catalyse the same reaction). These rules use the 

operator AND (Fig. 6) to indicate that all the genes that encode the subunits of an oligomeric enzyme 

are necessary for the reaction to occur; the operator OR (Fig. 6) to specify the genes that encode 

the isoforms of the enzyme, which in this case only one of the enzymes is sufficient for the reaction 

catalysis; or both operators at the same time to describe isoforms and subunits involved [54][4, 51, 

59]. 

Reactions that have associated either of the two previous rules are designated as gene associated 

reactions or enzymatic reactions [54][4, 51, 59]. Some GPRs retrieved from databases might be wrong 

due to differences between organisms when it comes to, for instance, subunits composing the enzymes 

or the reactions they catalyse. Wrong associations affect the results of gene deletion studies [54][4, 

51, 59]. The tool GPRuler can reconstruct automatically the GPRs from the name of the organism or 

from its metabolic model [54][4, 51, 59]. 

 

Fig. 6. Representation of the operators AND and OR used in the “multiple genes” GPR rule (taken from [54]). a, Scheme representing 
subunits necessary for an enzyme to catalyse a reaction. b, Representation of enzyme isoforms and how they can be used alternatively for 

reaction catalysis. 
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• Analysing the biomass reaction. This reaction describes all the intracellular compounds (and their 

individual contributions) that are essential for the cell to grow. If the biomass composition for the 

organism is not available, one should determine it experimentally or, at least, estimate it from the 

genome. Using the genome of other organisms, such as Escherichia coli, for this estimation will 

probably lead to incorrect results since the number of rRNA operons differs between organisms. 

Furthermore, when a precursor of biomass is not included, its synthesis reaction will not be essential 

for growth, making the genes that catalyse it not essential as well, and vice-versa. This will consequently 

lead to wrong results of gene deletion studies [53][4, 51, 59]. 

• Adding further constraints such as enzyme capacity will result in a smaller set of steady-states flux 

solutions [53][4, 51, 59]. 

• Evaluating if the network is able to synthesize biomass precursors or to simulate a physiological 

function, by testing the capability of the model to carry flux through the reactions. This allows the 

identification of network gaps which correspond to missing metabolic reactions and functions. Network 

gaps cause blocked reactions (reactions that cannot carry flux when boundaries are open) and dead-

end metabolites (metabolites that are synthetised but not consumed). If the network gaps don’t allow 

the model to be functional, it is necessary to add reactions whilst ensuring network connectivity, the 

so called gap-filling process [53][4, 51, 59]. The reactions to be added can be selected by multiple 

ways: 

─ analysing through biochemical maps the enzymes that are able to produce the dead-end 

metabolites, information with which one can search for reactions that consume them [53][4, 51, 

59]. 

─ adding temporary demand and/or sink reactions that add metabolites to the network, in order to 

make blocked reactions carry flux and, thus, test metabolic functions. This allows the identification 

of the gap that makes the model not functional and subsequent filling of the gap [53][4, 51, 59]. 

• Using experimental observations to correct and improve network content [53][4, 51, 59]. 

• Evaluation of growth rate. A slow growth rate might mean that at least one of the medium components 

is limiting growth, which can be verified by increasing the uptake rate of each of the components and 

checking if the growth rate increases. A fast growth rate might be indicative of a non-optimal biomass 

reaction, reactions that shouldn’t be in the model or of missing and/or incorrect constraints [53][4, 

51, 59].  

Depending on the automation level of the reconstruction tool used, these different steps of curation 

can be performed manually or automatically and on different stages of the reconstruction process [60]. 
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2.3.3 Model Reconstruction Approaches 

In general, genome-scale metabolic reconstruction tools follow one of two main approaches: bottom-

up and top-down, as represented in Fig. 7 [60]. 

The bottom-up approach starts the process with the genome of the organism and generates a draft 

reconstruction with the respective reactions retrieved from biochemical databases, which will then go 

through curation steps [60]. 

The top-down approach distinguishes from the latter since, instead of starting with the genome of the 

organism, it begins with reconstructing a draft model with all the reactions and metabolites present in a 

database, that belong to multiple organisms of the same domain. Subsequently, the draft model is turned 

into an organism-specific model, using genome information to remove the reactions and metabolites that 

are unlikely to be part of the organism [60]. 

Several reconstruction tools are available [61], but this study will be focused on the description of 

ModelSEED [62] and CarveMe [60] which are representing the bottom-up and the top-down approaches, 

respectively. 

ModelSEED is a web tool that automates most of the curation steps mentioned previously in chapter 

2.3.2. Since it is a bottom-up reconstruction approach, the first step it performs is annotating a genome 

sequence using the RAST (Rapid Annotation using Subsystem Technology) fully-automated service 

[63][62]. 

After this, the model is constructed with reactions selected from SEED database [62, 64]. This database 

puts together every information from KEGG database [65] and from 13 available GSMMs [62]. The model 

generated consists of GPR rules that are constructed from mappings, in SEED database, of gene function 

to reactions. Furthermore, a biomass reaction is also added based on a template that exists in SEED and 

that was assembled by curating biomass reactions of 19 existent GSMMs. This reaction includes 39 

substrates that are included in every model reconstructed by this tool and 44 substrates that can be 

additionally added if they satisfy the tool criteria by genomic evidence (e.g., cell wall type being gram-

positive or gram-negative) [62]. The relative abundances of the substrates in the biomass reaction are 

based on measured values in E. coli for gram-negative organisms and Bacillus subtilis from gram-positive 

ones. 

After this phase, the model has network gaps that don’t allow its functionality and goes through a mixed 

integer linear optimization problem (MILP) where, for example, some reactions are favoured over others 

(e.g., intracellular biosynthesis pathways are favoured over transport reactions) and  penalties are given 

to reactions that go on an unfavourable thermodynamically way. If the growth medium specific for the 
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organism is experimentally determined, the optimization also identifies the reactions that must be added 

to enable growth on the respective medium; if no growth medium information is available, all the 

metabolites are allowed to be imported from the medium [62]. ModelSEED also performs optimization of 

the model in order to fit experimental data (optimization steps such as searching inconsistencies between 

model annotations and gene essentiality data and using the using the GrowMatch [66] algorithm to correct 

errors that lead to discrepancies between growth in silico and in vivo. 

 

Fig. 7. Metabolic model reconstruction approaches (adapted from [60]). a, Represents the bottom-up approach. b, Represents the top-

down approach.  

Regarding the top-down reconstruction approach, CarveMe is a Python-based tool that begins the 

reconstruction by making a draft model containing all reactions and metabolites that exist in the BiGG 

Models database (integrates more than 70 published genome-scale metabolic networks) [66] and that 

are specific for the bacteria domain, thus being designated as the universal draft model of bacterial 

metabolism [60]. This model then goes through a manual curation process, during which, for instance, 

an universal biomass equation, adapted from E.coli, is added and reversibility of reactions is constrained 

to make thermodynamically feasible phenotypes. From this universal model, CarveMe generates two 
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additional models that can be used in the place of the former and that are made specific for gram-positive 

and gram-negative bacteria by the addition of appropriate cell wall components to the biomass reaction 

[60]. 

BiGG database also presents the GPR associations from the original GSMMs, associations which 

CarveMe uses to makes its own database with the genes and protein sequences. This database is going 

to be used in the next step, in which the user inputs the genome of the organism and CarveMe aligns 

gene/protein sequences to the ones in the database and attributes the alignment a score. The score of 

every isoform of a protein that catalyses a reaction will be summed up, subsequently normalised to a 

median value of 1 and attributed to the respective reaction. Non-enzymatic reactions (reactions don’t 

need a protein to be catalysed) are given a score of zero and enzymatic reactions that don’t have any 

gene/protein mapped to it  are given a -1 score. These scores are then used for the MILP optimization 

problem that maximizes the number of reactions with higher scores and minimizes the presence of the 

lower score ones, finally resulting in a model comprising reactions that are more likely to be present in 

the specific organism. All of this process is schematised in Fig. 8. 

 

Fig. 8. Scheme about the CarveMe top-down reconstruction process (adapted from [60]). 
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In order to be able to evaluate if running the MILP problem would lead to different reactions being 

added to the model and, consequently, give rise to different predictions of a bacterium’s capabilities, 

CarveMe has the option of performing ensemble modelling. This step takes enzymatic reactions without 

a gene associated to it (have a score of -1) and attributes to them random weighting factors. This means 

that only these reactions will have a different score every time the MILP problem is solved [25]. This will 

generate different models, all of which will constitute the ensemble model. Studying these alternative 

models is important to understand if the reactions that differ are present in most models, hence being 

able to assume that the predictions of any of the models generated are going to be representative, or not. 

The more complete a genome is (i.e., the more the DNA sequence is deciphered) and the more 

genes/proteins mapped to the CarveMe database, the fewer the enzymatic reactions with -1 score. 

Consequently, the random factor decreases, which means that the models that will be generated each 

time the optimization problem is solved, should have almost the same reactions present. 

CarveMe also allows the user to provide experimental data such as a list of growth medium substrates 

and perform the necessary curating steps to make the model functional in this medium, such as gap-

filling. 

2.3.4 Using Metabolic Models to Predict Biological Capabilities 

GSMMs can be used to compute perturbations at genetic and environmental (nutritional input) levels, 

allowing the simulation of many different experimental conditions in silico quickly and, consequently, the 

prediction and analysis of the consequences of these changes [51]. 

GSMMs have been used for qualitative predictions such as gene essentiality. Since each reaction is 

linked to the corresponding protein, hence, to the encoding gene(s), removing a reaction from the GSMM 

and computing growth allows to know if the gene(s) is essential depending if growth can be computed or 

not without it (figure 9). As genome editing techniques develop, the results of gene knockout studies will 

be necessary for engineering genomes and, thus, result in a desired phenotype [51]. 



18 

 

 

Fig. 9. Gene essentiality prediction (adapted from [51]). 

GSMMs have also been used to predict quantitively phenotypic organism functions like (as represented 

in figure 10) [51]: 

• Nutrient utilisation [51]. 

• Central carbon metabolism fluxes [51]. 

• Strain abundance and nutrient exchanges [51]. 

 

Fig. 10. Quantitative predictions (adapted from [51]). 

To address the possible existence of multiple flux solutions that optimize the objective function, flux 

variability analysis (FVA) can be used to predict the flux range of reactions [51]. 

Incorrect model predictions are related with incomplete knowledge about an organism that can, in turn, 

be discovered using algorithms that implement automated approaches designated as “gap-filling”. These 

have been used to query databases to discover potential metabolic reactions that lead to new hypothesis 

that can be experimentally tested [51]. 
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Cell-type and condition-specific (e.g., healthy vs disease) GSMMs, resultant of multi-omic data 

integration through the conversion of experimental data into model constraints, allow evaluation of 

phenotypic capabilities and consequent identification of molecular differences between different cells or 

environments [51]. 
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2.3.5 Overview of Available Resources / Tools 

Table 2. Overview of available tools. 

Analyses Tools/ Databases Description 

Genome-scale metabolic 

reconstructions/models’ 

acquisition 

AGORA [50]  

 KBase [9]  

 Virtual Metabolic Human database [13]  

Genome-scale metabolic 

models’ refinement 

ModelSEED [9]  

 rBioNet [50] [67]  

 metaGEM [68] Reconstruction of sample-specific metabolic 

models from metagenomic data 

   

In silico model simulation COBRA [69]  

 FBA [9] [13] Linear programming technique to determine the 

steady-state reaction flux distribution 

Used for growth prediction/ substrate utilization 

profiles; maximum production flux 

 Distributed FBA [67] Contribution of each strain to overall production 

 FVA [13] Flux range of reactions 

Used for production capabilities 

 Gurobi [9] [13] Linear programming solver 

 CPLEX [67] Linear programming solver 

 Fast-SL [13] Synthetic lethality analysis 

Reaction essentialities 

Community modelling Microbiome Modelling Toolbox [67] 

(COBRA extension) 

Join individual genome-scale metabolic models 

 createPanModels.m [70] 

(function of Microbiome Modelling Toolbox) 

Join individual genome-scale metabolic models of 

the same species (strain-specific) 

 MMinte [49] Pairwise interactions 

 MICOM [49] Community interactions 

 mgPipe [70] 

(function of COBRA) 

Integration of microbial abundance 

 MetGEMs toolbox [71] Metabolic functional analysis of microbial 

communities 

To assign enzyme functions 

To associate abundance of enzymes with related 

diseases (for example) 

Large-scale metagenomic 

data 

Human Microbiome Project Consortium [67]  

 MetaHIT [7]  

   

Statistical tests SelectKBest [69]  

 Jaccard coefficient [9] Metabolic dissimilarity test 

 Mann-Whitney U test [9]  

 Wilcoxon rank-sum test [9]  

 Spearman’s correlation [5] Connects metabolomics data (metabolites level) 

with microbiome taxonomic profiles 

   

Databases of reactions UniProt [69] Reactions associated with genes 

 BLASTP [13] Reactions associated with enzymes 

 KEGG [9]  

 BIGG [9]  

 MetaCyc [6]  
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3 Methods 

As explained in the Introduction section, according to the in vitro results of a 2018 research [3], drugs 

that are not supposed to target gut commensal bacteria, such as human-targeted drugs, changed the gut 

microbiome composition. In particular, drugs that targeted the nervous system were overrepresented [3].  

To understand the undesirable effects of drugs on the human gut microbiome, it is necessary to study 

how they interact with bacteria and their impact on bacteria’s growth and metabolism. 

The study was based on a specific bacterium, the gram-negative Bacteroides thetaiotaomicron (strain 

VPI-5482 and taxonomy identification 226186 [72]), due to its extensive distribution among humans [73] 

and to being the most commonly isolated obligate anaerobe [74] (thus, having a very complete genome).  

The drugs’ effect on B. thetaiotaomicron’s growth and metabolism was determined by its in silico 

genome-scale metabolic model. 

The following sections describe which drugs were studied in this project and how information about 

drugs’ interaction with genes was obtained and integrated for in silico simulation of their effects.  

3.1 Drug Selection 

The first analysis of drug effects on bacteria was focused on the drugs that target the nervous system, 

screened in the studied paper [3].  

As reported Maier et al. [3] and as presented in its “Supplementary Table 1” (shown in Table 3), all 

the drugs screened in the in vitro experiment were categorized into therapeutic classes according to the 

Anatomical Therapeutic Chemical (ATC) classification presented in Table 4 [75]. Table 3 illustrates two 

examples of the information extracted from “Supplementary Table 1”, where each row corresponds to a 

drug identified by a unique “Prestwick_ID” and by  one or multiple “ATC codes” representing the 

therapeutic classes they belong to. 

 

Table 3. Partial content of “Supplementary Table 1” of Maier et al 2018 [3]. Two examples where chosen for illustration. 

prestwick_ID chemical name STITCH4 id ATC codes 

Prestw-948 Timolol maleate salt CID100005478 C07AA06 S01ED01 

Prestw-978 Memantine Hydrochloride CID100004054 N06DX01 
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Table 4. Anatomical Therapeutic Chemical (ATC) classification. a, All therapeutic classes. b, Specific classes of nervous system drugs. 

(Adapted from [75]). 

 

The drugs that act on the nervous system belong to the ATC class “N”, as shown in Table 4. Therefore, 

from the “Supplementary Table 1” of the paper [3], all these drugs were gathered by selecting the rows 

that have at least one of the values in the column “ATC codes” starting with the characters “N0” (as it’s 

represented in the second row of the Table 3).  

This table further presented a column named “STITCH4 id” (Table 3), that attributed an identifier to 

each drug, with which it is possible to retrieve information from the STITCH database [46] about how a 

drug interacts with a gene, as it will be explained in the following section. 

Lastly, the second analysis of drug effects on bacteria was based on the drugs screened in the same 

paper [3], that covered all main ATC therapeutic classes and that are not supposed to affect gut 

commensals. From these, the ones that had information in STITCH were also studied. 

3.2 Extracting Interaction Information between Drugs and Bacterial 

Proteins from the STITCH Database 

From the STITCH database [46][44], a file containing known and predicted interactions between drugs 

and proteins/genes (proteins and genes will be used interchangeably) of B. thetaiotaomicron was 

downloaded (“226186.actions.v5.0.tsv.gz”) (Table 5).  

http://stitch.embl.de/download/actions.v5.0/226186.actions.v5.0.tsv.gz
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Table 5. STITCH file “226186.actions.v5.0.tsv.gz” partial information. a, Table that highlights the 7 different values possible in column 
“mode”. b, Table that emphasizes that one drug (e.g. “CIDm00131041”) can have an effect on multiple genes. 

 

Each row in Table 5a corresponds to an interaction between the values in columns “item_id_a” and 

“item_id_b” that can either be: 

• the gene (e.g. “226186.BT_1545”), in which the characters until the dot represent the NCBI taxonomic 

ID of the organism (“226186”), followed by the unique gene identifier, the NCBI locus tag 

(“BT_1545”), that always starts with the organism’s initials (“BT”). 

• the drug ID (e.g. “CIDm00131041”), that is comprised of a prefix “CIDm” or “CIDs” (which 

corresponds to the “flat” compound, that merges stereo-isomers, or to the stereo-specific compound, 

respectively) and a suffix that corresponds to the PubChem [76] compound ID [46, 77]; the drug ID 

will also be henceforth designated as STITCH ID. 

Therefore, each row represents a drug-protein interaction. Furthermore, each interaction with a 

particular drug is repeated in the consecutive row, with “item_id_a” and “item_id_b” swapped. This is 

to distinguish cases where one of the elements is having an action over the other, but the opposite does 

not occur (e.g., gene “226186.BT_1545” does not have any effect on the drug “CIDm00131041”, but 

the drug has an effect on the gene, as one can see in the first two rows of Table 5a, where column 

“a_is_acting” has the respective values “f” [false] and “t” [true]).   

Table 5a also shows that the column “mode” can have 7 different values (inhibition, binding, predicted 

to bind [pred_bind], activation, catalysis, reaction and expression [phenotypic effects or predicted to have 

the same phenotype] [46]), while the column “action” can only be either inhibition or activation. To study 

the effect of a drug on a bacterium’s growth, the rows containing “inhibition” on both columns “mode” 

http://stitch.embl.de/download/actions.v5.0/226186.actions.v5.0.tsv.gz
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and “action” were selected, since only this information can be simulated using GSMMs. Subsequently, 

solely the rows that correspond to a drug inhibiting a gene were kept (i.e., rows that have the drug ID in 

column “item_id_a” and “t” in column “a_is_acting”). 

The “score” column in Table 4 is used to verify if the results have a meaningful interpretation or not, 

since it is a measure of confidence from STITCH on how likely an interaction is true. Scores rank from 0 

to 1, being that 1 is the highest confidence score. In the file, this value is multiplied by 1000. 

Depicted in Table 5b is the fact that one drug can interact with multiple genes. All the interactions with 

a specific drug will be used at the same time to manipulate the in silico model and analyse the effect of 

the drug on the bacterium (as described in the below section 3.5).  

3.3 Corresponding Drug-Protein Interaction Information to Selected Drugs 

The STITCH IDs of the drugs screened in the paper [3], present in the column “STITCH4 id” of Table 

3, were obtained, by the authors of the paper, through a chemical annotation tool called CART [78]. Since 

a chemical name can correspond to different PubChem compound IDs (Table 6, e.g. “piroxicam” 

corresponds to IDs “54684470” and “23690938”), CART uses text matching to map the drug’s 

synonyms to the PubChem ID of the “flat” compound, the suffix of “CIDm” (using the STITCH file 

“chemical.aliases.v5.0.tsv”). 

Table 6. STITCH file “chemical.aliases.v5.0.tsv” partial content. 

 

This results in drug IDs with the suffix “CID1” in the paper, because in STITCH files the suffixes 

“CIDm”/”CID1” (and “CIDs”/CID0”) are interchangeable. However, as the STITCH drug IDs from the 

paper were obtained without regarding the stereoisomer, the isomers were combined to increase the 

coverage of information. This means that, in the present work, the suffixes were ignored and the drugs 

were solely identified by their PubChem ID, not to exclude any information.  

3.4 Automatic Reconstruction of Genome-Scale Metabolic Models of B. 

thetaiotaomicron 

The drugs’ effect on bacterium’s growth and metabolism was determined for the in silico B. 

thetaiotaomicron’s genome-scale metabolic model. 
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As presented previously in the state-of-the-art, there are multiple alternative ways of creating a 

metabolic model. We chose the tool CarveMe in this work since it automates many curation steps and 

builds a model using only the genome, which is very useful for species that cannot grow in well-defined 

media [60]. Besides, this tool reconstructs models with BiGG identifiers, allowing the integration of drug-

protein information from STITCH, which is not the case of reconstructed models already available in 

literature such as AGORA models [52], for example. The models generated were analysed using the 

Python package “COBRApy” [79]. 

The genome of B. thetaiotaomicron was provided to CarveMe as a protein FASTA file (a text-based 

formatted file that represents amino acid sequences), named as 

“GCF_000011065.1_ASM1106v1_protein.faa” (downloaded from the National Center for Biotechnology 

Information [NCBI], using “RefSeq” as the source database [72]). 

After this step, CarveMe provides the user various alternatives, some of which were studied in this 

project under the different analyses performed, to assess their differences and propose the most suitable 

one. These alternatives are regarding: 

• the template used for the “carving” process (i.e. selecting reactions from a model with all bacteria’s 

reactions to generate an organism specific model): 

─ universal; models henceforth designated as universal or simply U 

─ gram-negative; models identified as gram 

• the growth medium:  

─ not initialised with any particular medium composition; models henceforward mentioned as 

NoMedium or complete medium 

─ minimal anaerobic M9 medium; models named as M9[-O2] or only M9 

─ lysogeny anaerobic broth; models from now on designated as LB[-O2] or LB 

• the gap-filling process: 

─ no gap-filling; models labelled as NoGap 

─ during model reconstruction; models identified as gapDuring 

─ after model reconstruction; models nominated as gapAfter 

This resulted in a total of 14 models, as displayed in Table 7: 
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Table 7. Resulting models (separated by growth medium). 

 

3.4.1 Exploration of Alternative Models 

As mentioned in section 2.3.2, enzymatic reactions that do not have any gene mapped to it have a 

score of -1 and are given random weighting factors. This means that only these reactions will have a 

different score every time the MILP problem is solved [60]. Thus, there are alternative solutions that might 

lead to different reactions being present and, subsequently, give rise to different predictions of a 

bacterium’s capabilities [60]. 

CarveMe tool allows the generation of an ensemble model, which is an aggregation of n models 

reconstructed. An ensemble of 100 models was generated using the options of gram-negative template, 

LB medium and gap-filling after the reconstruction process. The ensemble model was then analysed with 

the Python library for metabolic model simulation, ReFramed [80, 81]. 

3.5 In Silico Simulation of Drug Effects on Gut Bacteria 

To simulate the effect of a drug on the in silico model of B. thetaiotaomicron, it was necessary to 

integrate the information gathered from STITCH into the model. This was done using COBRApy tool, as it 

is described in the following sections. 

3.5.1 Performing in silico Gene Deletion to Study Growth Inhibiting Drug Effects on B. 

thetaiotaomicron 

In order to simulate, in silico, the effect of a drug on the growth of a bacterium, the COBRApy function 

“knock_out_model_genes” was used (Fig. 11). This function takes up a list of genes that are inactivated 

by the drug and gets the reactions associated to those genes through the GPR rule. If a gene is essential 

for a reaction to occur, the reaction bounds are set to zero to make the reaction flux null. 
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Fig. 11. Scheme that represents the in silico process of simulating a drug effect on a bacterium. Initially, all the known and predicted 

interactions between drugs and the bacterium genes are gathered from STITCH file “226186.actions.v5.0.tsv.gz”. Since the gene IDs from 
STITCH do not match the ones of the generated model with CarveMe, it is necessary to obtain, from NCBI, the feature table file of the 

bacterium, with which one can match the genes IDs. Finally, for each drug, a list of genes that have interaction information with the former 
is reunited and then used as input to the “knock_out_model_genes” function from COBRApy.  

Using the FBA tool in COBRApy, one can obtain the maximum flux through the objective reaction. In 

this model, the objective reaction represents the biomass function, which describes the rate of production 

of the metabolites that make up a bacterium. Hence, with the FBA tool we can predict the bacterium’s 

growth rate. 

By running FBA before and after shutting off the flux through the reactions affected by the genes’ knock-

out (with the previous function), the growth rate of the model without and with the constraints imposed 

by the drugs was obtained, respectively. 

For the purpose of establishing a threshold to distinguish drugs that had effect on growth from those 

that did not, the percentage difference (also mentioned as “%GrowthChange” henceforth) between the 

obtained growth rates by running FBA was calculated according to the following equation: 

 

%GrowthChange = abs (
FBAafter - FBAbefore

FBAbefore
*100) 

 

After this step, a “%GrowthChange” equal or greater than 90% was decided based on histogram’s 

interpretation (Fig. 23, 24, 29 in results section) and was associated with the drug having an inhibitory 

effect on the bacterium’s growth.  

These results were then compared with the impact of these drugs in vitro, in Maier et al 2018 

experiment [3]. The “Supplementary Table 3” of this research paper contains p-values for the impact of 

each drug on the growth of each gut bacterium used in the experiment. Drugs that led to a significant 

reduction of growth had a p-value <= 0,01 [3]. 

http://stitch.embl.de/download/actions.v5.0/226186.actions.v5.0.tsv.gz
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Drugs were considered to have matching in silico and in vitro results when they led to a 

“%GrowthChange” of equal to or more than 90% and a p-value equal to or below 0,01, as shown in Fig. 

12. 

 

Fig. 12. Process of selecting drugs that have STITCH information, out of the drugs that inhibited in vitro the growth of a specific 

bacterium (in this case, of B. thetaiotaomicron, as an example). The first step is to find which drugs, from the ones screened in vitro, have 
information in the STITCH file. From these, the drugs that inhibited bacterium’s growth in vitro are selected. The last step is to compare 

the effects of these drugs in silico with the effects in vitro. 

3.5.2 Analysis of Drug Effects on the Metabolism of B. thetaiotaomicron 

With a focus on studying the effect of the drugs on the bacterium’s metabolism (i.e., on the reactions 

that are essential for the organism to be maintained), it was necessary to investigate the number of 

reactions that were affected. 

The COBRApy function “flux_variability_analysis” (FVA) allows to obtain all the fluxes of a reaction that 

are possible at the optimal growth rate (denominated as fluxes range). 
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Reactions were considered to be affected when their flux ranges before and after the genes were 

“knocked-out”, were not overlapping 100% (i.e., the minimum or the maximum values were outside the 

range of fluxes of the reaction that were possible before the constraints imposed on the model by the 

drug). 

3.5.3 Analysis of Drug Effects on the Ability of B. thetaiotaomicron to 

Produce/Consume Neuroactive Metabolites 

A list of neuroactive metabolites was gathered from literature, as presented in section 2.1.2. From this 

list and using COBRApy, it was possible to associate with each metabolite the reactions involved in their 

production and/or consumption (named as neuroactive reactions in this study).  

From the reactions that were affected by a drug (process mentioned in section above 3.5.2), the 

neuroactive reactions were selected and the neuroactive metabolites were connected to them, to 

understand if the drug has an influence in the production/consumption of neuroactive metabolites by the 

bacterium. 

3.5.4 Repeating Drug Effects Simulation Analyses using a Manually Curated Model (for 

Comparison Purposes) 

The analyses described in the above-mentioned sections 3.5.1, 3.5.2 and 3.5.3, were repeated for a 

B. thetaiotaomicron GSMM assembled by Heinken et al. 2013 built through a “bottom-up” reconstruction 

process [82]. This means that a draft model was initially obtained with ModelSEED tool [83], followed by 

extensive manual curation [82]. The model, designated as “iAH991.xml”, was downloaded from the 

“ThieleLab” website [84] (link “Collection of 11 human gut […]”). 

Simulations were also performed in three different media (NoMedium, LB and M9). NoMedium was 

the default medium of the model and it corresponds to all exchange reactions having (-1000,1000) 

bounds. In order to simulate LB and M9 media and to be able to compare with the model reconstructed 

using CarveMe, the bounds of the exchange reactions had to be changed accordingly: 

•  the exchange reactions that were related with the medium composition had to have their lower bounds 

modified to -10. 

• to remove exchange reactions from the medium, their lower bounds had to be changed to 0. 
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From this point on, models generated with CarveMe will be further designated by “carveme” models 

and the ones resulting from “bottom-up” reconstruction approaches, used for comparison analyses, were 

mentioned as “curated” models. 

3.6 Data and Code Availability 

https://github.com/inestm28/BioinformaticsDissertation2022 
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4 Results 

This study was based on the in vitro results of the Maier et al 2018 research [3], in which drugs that 

are not supposed to target gut commensal bacteria, affected growth of single gut bacteria in vitro. In 

particular, 24% of the human-targeted drugs inhibited the growth of at least one strain in vitro, with drugs 

that act on the nervous system being overrepresented in this group [3].  

In order to understand the undesirable secondary effects of drugs on gut bacteria, it is necessary to 

study how they interact with bacteria and their impact on its growth and metabolism. 

This study focused on the impact of all drugs screened in Maier et al [3], on one bacterium, B. 

thetaiotaomicron. The drugs’ effect on its growth and metabolism was determined with its in silico 

genome-scale metabolic model, through gene deletion studies, i.e., the genes that are predicted to be 

inhibited by a drug (information present in STITCH database) are “deleted” and the resulting growth is 

assessed. 

First, the GSMM used for the simulation of drug effects was chosen out of 14 different GSMMs 

automatically reconstructed with CarveMe tool with the aim of assessing robustness of the model 

reconstruction and compare the models in terms of medium composition, biomass function and included 

reactions and metabolites [60], as described in the following 4.1 section. Second, we used the models to 

investigate the information contained in the models on neuroactive metabolism. Third, we simulated the 

effects of drugs on bacterial growth and metabolism with its in silico GSMM, through gene deletion studies, 

i.e., the genes that are predicted to be inhibited by a drug (information present in STITCH database) are 

“deleted” and the resulting growth is assessed. Finally, we compared the simulated results to the 

experimentally observed growth phenotypes. The results of the simulation are presented in sections 4.2 

and 4.3. 

4.1 Models Automatically Reconstructed based on Combinations of 

Parameters  

In CarveMe, different options for the creation of GSMMs were available. These concerned (as 

mentioned in methods section 3.4) choices of template (universal or gram), of growth medium (complete 

medium/NoMedium, LB or M9) and of the gap-filling process (no gap-filling, gap-filling during or gap-filling 

after the reconstruction process). With the purpose of choosing the alternatives that better represented 

B. thetaiotaomicron and the in vitro conditions of the research paper on which this work was based on, 
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Maier et al 2018 [3], 14 different models, comprising combinations of these different options, were 

generated (models identified in Table 8). 

Since it is not possible to find the exact composition of the medium used in the experiments of Maier 

et al 2018 [3] - the modified Gifu Anaerobic Medium (mGAM) - since it contains complex ingredients such 

as peptone, yeast extracts, and digested serum, which are not chemically defined [85] - it was necessary 

to reconstruct the models with the available medium options in CarveMe, to verify how they differed 

between each other and which one would resemble the most with mGAM. 

4.1.1 Identification of Medium Composition Differences 

In experiments in vitro, the growth medium is a solution that contains a variety of nutrients that are 

essential for the survival and growth of the organism. Likewise, in silico, the growth medium is represented 

by a list of reactions that import the metabolites and co-factors that are available and lead to a specified 

growth rate that the model has to achieve [79]. These reactions, designated as exchange reactions, are 

conceptual reactions for modelling influx and efflux across the bacterium boundaries. However, not all 

the exchange reactions that are part of the GSMM have active exchange fluxes, as represented by the 

difference between the columns “Total no. of exchange reactions” and “No. of active exchange fluxes” in 

Table 8: NoMedium models have all exchange reactions with an active flux, LB models have around 20% 

active and M9 about 7%. This difference is due to their bounds, being that the ones with active exchange 

fluxes have non-zero flux bounds. When an exchange reaction has a lower bound equal to zero (as in 

column “Bounds of non-active exchanges” of Table 8), it means a certain metabolite is not being provided 

to the organism (for instance, if we want to model an anaerobic medium, then we have to set the lower 

bound of the corresponding exchange reaction “EX_o2_e” to 0, e.g. [0,1000]). 

Table 8. Characteristics of the growth media of the models (differently coloured according to the reconstruction’s growth medium being 

“NoMedium”, “LB” or “M9”). 

Models Total no. of 

exchange 

reactions 

No. of 

active 

exchange 

fluxes 

Bounds of active 

exchanges 

Bounds of 

non-active 

exchanges 

U_NoMedium 251 251 (-1000.0, 1000.0) -------------------- 

gram_NoMedium 253 253 (-1000.0, 1000.0) -------------------- 

U_LB 251 50 (-10.0, 1000.0) (0.0, 1000.0) 

gram_LB 253 50 (-10.0, 1000.0) (0.0, 1000.0) 

U_M9 251 17 (-10.0, 1000.0) (0.0, 1000.0) 

gram_M9 253 17 (-10.0, 1000.0) (0.0, 1000.0) 

 
The composition of LB and M9 growth media is shown in Fig. 13a as well as the partial composition 

of NoMedium (Fig. 13a,b). 
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Fig. 13. Models’ growth medium composition (which is defined by the exchange reactions that have an active flux) and difference in the 
exchange reactions that are part of the models. a, Heatmap with all exchange reactions that have an active flux for every model, except for 

the models with no initialised medium (“NoMedium” in x-axis labels) for convenience reasons, since these have around 250 reactions and 
more than 95% of them are present in both models (“NoMedium_U_NoGap” and “NoMedium_gram_NoGap”); reactions that have an 

active flux in a specific model are coloured as black and reactions with non-active flux or not present have a white colour; models are also 
grouped by colours according to their growth medium. b, Heatmap with the reactions that have an active exchange flux and that are 

different between the “NoMedium” models; colour scheme is the same as in the heatmap in a. c, Heatmap with the exchange reactions 

that are different between the models based on the universal and on the gram-negative templates; black colour means that the reaction is 
present and white means the opposite; models are also grouped by colours according to the template used for carving. 

From Fig. 13a,b it is possible to gather that 7 exchange reactions only exist in universal models and 9 

only in gram. This makes sense since the growth reaction of universal models does not contain membrane 

and cell wall precursors specific for gram-negative bacteria (as opposed to the growth reaction of gram-

negative models) (Fig. 14). These precursors are different for gram-negative bacteria since they have a 

thinner peptidoglycan layer than gram-positive bacteria and present an outer lipid membrane [86]. These 

precursors are the following (as shown in Fig. 14): 
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• “kdo2lipid4_p”, a glycolipid which is an essential component of the outer cell wall, that functions as 

an hydrophobic anchor of lipopolysaccharides (LPS) [87] 

• “murein5px4p_p” (peptidoglycan or murein), a polymer consisting of sugars and amino acids that is 

part of the peptidoglycan layer [88] 

• “pe160/161_c,p”, phosphatidylethanolamines which are the major phospholipids in gram-negative 

bacteria [89] 

 

Fig. 14. Metabolites’ difference regarding growth reactions (heatmap where black colour means that the reaction is present and white 

means the opposite; models are grouped by colours according to the template used for carving being universal or gram).  

According to these differences between the growth reactions of universal and gram-negative models, 

the latter need exchange reactions like “EX_alaala_e”, “EX_LalaDgluMdap_e”, “EX_4hba_e” and 

“EX_malt_e” (that import murein, amino acids and sugars) (Fig. 13c), which in turn is going to affect the 

metabolic pathways that are selected during the reconstruction process. 
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4.1.2 Model from Gram-Negative template, with LB Medium and Gap-Filled After 

Reconstruction Better Represents B. thetaiotaomicron and its In Vitro Growth 

Conditions 

To choose the model that will better predict the neuroactive capabilities of the bacterium, an analysis 

regarding the reactions that produce or consume neuroactive metabolites (henceforward mentioned as 

neuroactive reactions for simplicity reasons) was performed. 

 

Fig. 15. Neuroactive metabolites (heatmap where black colour means that the metabolite is present in every model and white means the 

opposite). 

From the list of neuroactive metabolites gathered from literature and presented in section 2.1.2, every 

model presented 12 out of the 17 metabolites (Fig. 15).  

As represented in Fig. 16a, only 13 neuroactive reactions (out of 2000) differ between universal and 

gram models and, out of these, 8 seem to be interchangeable, i.e., reactions that are only present in 

universal have equivalent functions to reactions that only exist in gram, but some of the precursors are 

different. These only change because the models use different metabolic pathways. Of these 8, 3 only 

exist in universal (“AROAT”, “GLUtex” and “OHPBAT”) and 2 only in gram (“PYDXS” and “UHGADA”). 

Since the difference was not crucial, it was necessary to analyse how the models differed when it came 

to all the other reactions. 

Regarding all reactions (Fig. 16a), there are around 200 reactions (out of 2000) that differ between 

universal and gram models, being that 21% are transport reactions (metabolite transport between 

compartments inside the bacterium or between extracellular/periplasmic space and cytoplasm, as 

opposed to exchange reactions that correspond to exchanges in the extracellular environment). However, 

most of the former seem to be interchangeable because of name similarities, which indicate a reaction 

involved in the same metabolic pathway, such as, for example, reactions “ACt4pp” and “ACt5pp” which 

are “Na+/Acetate symport (periplasm)” and "Acetate transport in via proton symport", respectively. 
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Fig. 16. Reactions that do not exist in at least one model. a, Heatmap where the black colour means that the reaction is present in the 

model and white means the opposite; reactions’ names are coloured and named “Transp”, “Neuro” and “Ex” to highlight transport, 
neuroactive and exchange reactions, respectively; models are grouped by colours according to the template used for carving being 

universal or gram b, Bar plot with the number of reactions per model, out of the reactions that don’t exist in at least one model (colour 

scheme is the same for grouping the models). 
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From this point on, the choice of parameters was restricted to models using the gram-negative 

template, since these have in average 8 more reactions than universal ones (Fig. 16b) and overall higher 

FBA predicted values for the growth rate (Fig. 17).  

 

Fig. 17. Models’ FBA values/growth rates (models are grouped by colours according to the template used for carving being universal or 

gram). 

Even though the FBA value of the model with complete medium (“gram_NoMedium_NoGap”, Fig. 17) 

is the highest of all models, this medium is not representative of the one in which the experiments of the 

paper [3] were performed, the modified Gifu Anaerobic Medium (mGAM), as one can observe by its 

estimated composition in Fig. 18, since the complete medium corresponds to all exchange reactions 

having non-zero flux bounds which corresponds to a very rich medium that is not the case of mGAM. 

 

Fig. 18. mGAM deduced composition (heatmap where reactions that have an active flux are coloured as black and reactions with non-

active flux or not present have a white colour; media names are distinguished by different colours)  

Therefore, models that were initialised with LB medium were chosen for the drug effects simulations 

that follow in section 4.3, given that this medium resembles more the mGAM medium than M9 (Fig. 18). 

Moreover, Fig. 16b shows that the gap-filling process adds 3 to 4 reactions in gram models, hence 

reducing the reconstructed models to gap-filled models. Between the alternatives for the process of gap-

filling, doing it before lead to a very slow growth, which might mean that a substrate might be limiting 

growth due to something missing in the network. Gap-filling after the reconstruction lead to a higher FBA 
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value, which makes the model more feasible (Fig. 17). Thereby, the choice of the model 

“gram_LB_gapAfter” is the most satisfactory for the following analyses. 

4.1.3 Alternative models built from the complete genome of B. thetaiotaomicron are 

highly similar 

The model above-chosen - “gram_LB_gapAfter” - was generated according to one solution of a specific 

optimization problem, the MILP problem. 

This model reunites all the different models that can be reconstructed with the alternative solutions of 

the MILP problem. An ensemble model with the same parameters as the “gram_LB_gapAfter” model 

and comprising the solutions of 100 models was generated. 

The heatmap in Fig. 19 highlights the fact that there are only 14 reactions (out of the 2671 unique 

possible reactions; 0,5%) that are different between the models (out of the 100 models part of the 

ensemble model), i.e., were selected in at least one of the models but not in all; from these 14, the 

bottom 10 reactions are present in more than half of the models; from the rest of the 2671 reactions that 

are present in the database of the tool CarveMe, some were not selected in any model and others were 

selected in all.  

 

Fig. 19. Reactions of the ensemble model that differ between the 100 models (heatmap first sorted by ascending number of models in 

which a reaction is present, followed by descendent sort of number of reactions in each model; black colour means that the reaction is 
present in the model and white means the opposite; the model chosen in the previous section - “gram_LB_gapAfter” – is highlighted to be 

able to compare its reactions with the alternative models; the neuroactive reactions are also highlighted). 

Furthermore, 39% of the models have the exact same reactions as the original “gram_LB_gapAfter”, 

and 6 other only differ in two reactions that seem to be commutable with two other 

(“3HAD40”/”3HAD40_2” and “3OAR40”/”3OAR40_2”, named “3-hydroxyacyl-[acyl-carrier-protein] 

dehydratase” and “3-oxoacyl-[acyl-carrier-protein] reductase”, respectively), since in these models when 

one doesn’t exist, the other does.  
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These results together demonstrate that the alternative models only have a very small percentage of 

reactions that change between themselves, not being substantially different from the model generated 

originally (“gram_LB_gapAfter”). Hence, it is possible to assume that using this model for the analyses 

will lead to results that can have a meaningful interpretation. 

4.2 Automatically Reconstructed Model has the Potential to Produce/ 

Consume Neuroactive Metabolites  

The “gram_LB_gapAfter” model has a total of 12 out of the selected 17 neuroactive metabolites and 

a total of 138 reactions (out of 2154; 6%), some of which are involved in their production and some in 

their consumption (Fig. 20). 
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Fig. 20. Reactions that produce or consume the selected neuroactive metabolites (heatmap where the black colour means that the 

reaction is present in the model and white means the opposite; reactions’ names are coloured and named “Transp” and “Ex” to h ighlight 
transport and exchange reactions, respectively; heatmap is divided into two parts, by the y-axis, due to size reasons). 

4.3 In Silico Simulations Capture a Small Number of Experimentally 

Observed Drug Effects 

 According to Maier et al. 2018 [3], drugs that act on the nervous system (henceforth mentioned, 

interchangeably, as neuroactive drugs) inhibited, in vitro, gut bacteria more than other medications. To 

study this, they screened 198 different neuroactive drugs, being that 193 are human-targeted, 1 is 

targeted at protozoa, 1 at metazoan parasites and 3 are veterinary drugs (Fig. 21). 

The research also comprised other drugs that cover all main ATC therapeutic classes, most of which 

are human-targeted and the rest are supposed to only inhibit pathogens but also affected gut commensals 

(Fig. 21). 

In total, the paper screened 1200 compounds, of which 89 are not drugs (i.e., are compounds with 

biological roles (e.g. vitamins) or compounds that are being investigated, in clinical trials, as possible 

treatments) and 3 (Prestw-1105/385/425) did not have a measured impact on bacterial growth (no p-

value). 
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Fig. 21. Representation of therapeutic classes and target species of the drugs screened in Maier et al 2018 (13% of the drugs belong to 

more than one therapeutic class, hence adding up these values doesn’t make up the total of 1111 drugs). Each bar corresponds to drugs 
that belong to one specific therapeutic class and is subdivided by the target species of the drugs. 

In the next sections, we aimed at simulating the effects of these drugs on bacterial growth with genome-

scale models and flux balance analysis. 

4.3.1 Neuroactive Drugs have Divergent In Vitro and In Silico Effects on Bacterium’s 

Growth 

The experimental results showing bacterial inhibition by neuroactive drugs are intriguing, since they 

are supposed to target receptors that are absent in bacteria (like dopamine and serotonin receptors). The 

idea then was to investigate, in silico, which proteins are affected in B. thetaiotaomicron that restrict the 

flux of reactions in a way that lead to its growth inhibition in vitro, using drug-protein interactions from 

STITCH database. 

Each one of the 198 neuroactive drugs is identified by a unique Prestwick ID. Out of these, 4 Prestwick 

IDs correspond to 2 STITCH IDs, being that each pair of Prestwick IDs corresponds to 1 STITCH ID (Table 

9). 

Table 9. Neuroactive drugs from Maier et al 2018 that have different Prestwick IDs but same STITCH ID. 

Prestwick ID STITCH ID 

Prestw-109, Prestw-935 CIDs00001207 
Prestw-1271, Prestw-692 CIDs00002771 

 

Of the 196 unique STITCH IDs, only 41 have reported inhibiting interactions with genes of B. 

thetaiotaomicron (Fig. 22a). These interactions comprise 36 genes in the “gram_LB_gapAfter” model 

(Fig. 22b). 
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Fig. 22. Inhibiting interactions, from STITCH database, involving neuroactive drugs (from Maier et al 2018) and B. thetaiotaomicron 
genes. a, 41 Neuroactive drugs that have inhibiting information with B. thetaiotaomicron in STITCH. b, 36 B. thetaiotaomicron proteins 

from “gram_LB_gapAfter” model that have, in STITCH, inhibiting interaction information with the 41 neuroactive drugs (37 genes in 
STITCH don’t have a correspondent gene in carveme, because STITCH uses “old_locus_tag” but some genes in the FASTA file [used for 

“gram_LB_gapAfter”] only have the “new_locus_tag”). Bold font in figure is used to highlight the intersection information. 

From these 41 drugs, none of them inhibited B. thetaiotaomicron’s growth in vitro. 

In silico and using the chosen model “gram_LB_gapAfter”, 3 drugs – acetaminophen, gabapentin, 

vigabatrin – inhibited growth (absolute percentage change in growth rate of 100%, Fig. 23a,b) when the 

genes, with inhibiting interactions with the corresponding drug, were “knocked-out” at the same time. 

 

Fig. 23. Effect of drugs on growth rate, in “gram_LB_gapAfter” model (drugs that lead to 100% change are the ones that had an effect; 

in this case, 3 drugs). 

These in silico results happened because each of these 3 drugs has interaction information in STITCH 

with one essential gene in “gram_LB_gapAfter” model (acetaminophen and gabapentin with “BT_1806” 

and vigabatrin with “BT_3935”) (Table 10). A gene is essential when restricting the flux of the reactions 

that depend on it lead to a null growth rate. However, these interactions have a score of around 0.4 out 

of 1, which is a low confidence value, and, according to STITCH database, they have no experimental 

evidence and were transferred via orthology from another organism. This might mean that these 

interactions are incorrect and, if so, these drugs would have an inhibitory effect in silico, like they didn’t 

in vitro. 

Table 10. Neuroactive drugs with in silico effect in carveme model. 

Drug Acetaminophen 

(paracetamol) 

Gabapentin Vigabatrin 

ATC code N02BE01 

(analgesic) 

N03AX12 

(antiepileptic) 

N03AG04 

(antiepileptic) 

STITCH ID CID000001983 CID000003446 CID000005665 

Target species Human Human Human 

Target species’ proteins PTGS1 (COX1) 

PTGS2 (COX2) 

CACNA2D 

SLC6A1 (GAT1) 

ABAT 
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Target proteins’ 

classification 

Oxidoreductases Ion channels  

Solute carrier family 

Aminotransferases 

B. thetaiotaomicron 

orthologous genes in 

KEGG database 

--------------------------------- -------------------------------- -------------------------------- 

B. thetaiotaomicron 

essential genes in 

“gram_LB_gapAfter” 

model 

BT_1806 

(oxidoreductase: acyl-CoA 

dehydrogenase family protein) 

BT_3935 

(transferase: aminotransferase class I/II-fold pyridoxal 

phosphate-dependent enzyme) 

STITCH score 0,471 (not experimental) 0,410 (not experimental) 

 

In order to understand if the differences between in vitro and in silico results were due to models 

lacking information, the analyses were repeated for a B. thetaiotaomicron’s GSMM, assembled and gone 

through extensive manual curation by Heinken et al. 2013 (model designated, from this point onwards, 

as curated and, for simplicity reasons, “gram_LB_gapAfter” model is going to be named as carveme) 

[82]. For comparison purposes, the medium was modified in order to resemble LB medium from carveme 

model. 

 

Fig. 24. Neuroactive drugs and curated model. a, 33 B. thetaiotaomicron genes from curated model (out of 73 in STITCH) have, in 

STITCH, inhibiting interaction information with the 41 neuroactive drugs and 23 genes are common between carveme and curated 
models. b, Effect of drugs on growth rate (drugs that lead to 100% change are the ones that had an effect; in this case, 4 drugs). 

Fig. 24c shows that 23 genes are common between carveme and curated models. And in Fig. 24a, we 

can see that the curated model has 3 genes less than carveme, with interaction information from STITCH. 

From Fig. 24b and from Table 11, we can see that, instead of the 3 above-mentioned drugs that had 

an in silico effect on growth in the carveme model, in the curated model 4 different drugs had an effect, 
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namely Carbamazepine, Valproic acid, Lamotrigine and Topiramate. Each of these drugs affects 2 

essential genes in curated, “BT_1225” and “BT_0382”, that do not exist in carveme (Table 11). 

Table 11. Neuroactive drugs with in silico effect in curated model. 

Drug Carbamazepine Valproic acid Lamotrigine Topiramate 

ATC code N03AF01 

(antiepileptic)  

N03AG01 

(antiepileptic) 

N03AX09 

(antiepileptic) 

N03AX11 

(antiepileptic) 

STITCH ID CID000002554 CID000003121  CID000003878 CID000005514  

Target species Human Human Human Human 

Target species’ 

proteins 

SCN1-5/8-11A ABAT 

SSADH 

GAD 

CACNA1-T 

SCN1-5/8-11A SCN1-5/8-11A 

GRI[A/K] 

CACNA1-L 

GABR 

CA2/4 

Target proteins’ 

classification 

Ion channels Ion channels 

Oxidoreductases 

Transferases 

Lyases 

Ion channels Ion channels (ligand-

gated: GABA, glutamate) 

Lyases 

B. thetaiotaomicron 

orthologous genes in 

KEGG database 

--------------------------------- BT_2570 

(lyase: glutamate 

decarboxylase) 

-------------------------------- -------------------------------- 

B. thetaiotaomicron 

essential genes in 

curated model 

BT_1225 (oxidoreductase: GDP-L-fucose synthase) 

BT_0382 (oxidoreductase: NAD-dependent epimerase/dehydratase family protein) 

STITCH score 0,388 (not experimental) 

 

From the essential genes affected in carveme, “BT_1806” is not present in the curated model,  while 

“BT_3935” is present but is not essential.  

The drug “valproic acid” affects the human gene “GAD” (glutamate decarboxylase 1) that corresponds, 

according to KEGG database [90], to the B. thetaiotaomicron’s orthologous gene “BT_2570” (glutamate 

decarboxylase) (Table 11). This gene is present in the curated model, but it is not essential (meaning that 

even if it was present, this gene alone wouldn’t inhibit growth) and it does not have inhibiting interaction 

in STITCH (so even though the drug interacts with this protein, it can interact with it in a different way 

from inhibition, such as, for instance, activation or binding). 

4.3.2 Neuroactive Drugs Influence Neuroactive Metabolism 

With STITCH information, it is also possible to investigate if the neuroactive drugs can have any effect 

on B. thetaiotaomicron’s neuroactive reactions and, consequently, on the production and/or consumption 
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of neuroactive metabolites by the bacterium. This information can then be verified experimentally by mass 

spectrometry-based metabolomics approaches. 

 

Fig. 25. Neuroactive metabolites that might be possibly affected by neuroactive drugs in carveme model (heatmap with black colour 

representing a metabolite that was affected by a drug and with white colour representing the opposite; the drugs that are coloured are the 
ones that also affect neuroactive reactions in curated model).  

 

Looking at Fig. 25, and connecting the information there with the one from Table 1 and from Fig. 20, 

it is noticeable that, out of the 41 neuroactive drugs, 6 have an effect in neuroactive reactions in the 

carveme model. The neuroactive metabolites that might be affected by the neuroactive drugs that had in 

silico effect on growth - vigabatrin, gabapentin and acetaminophen - are acetate (ac_c), S-

adenosylmethionine (amet_c), glutamate (glu__L_c/e), inositol (inost_c), menaquinone (mqn6/7/8_c), 

propionate (ppa_c) and tryptophan (trp__L_c/e). Additionally, the drugs topiramate, disulfiram and 

carbamazepine might also affect glutamate. 

Regarding the curated model, a total of 8 neuroactive drugs had an effect on neuroactive reactions 

(Fig. 26).  

 

Fig. 26. Neuroactive metabolites that are affected by neuroactive drugs in curated model (heatmap with black colour representing a 

metabolite which had its production and/or consumption affected by a drug and with white colour representing the opposite; the drugs 
that are coloured are the ones that also affect neuroactive reactions in carveme model). 
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5 out of the 8 drugs (vigabatrin, gabapentin, disulfiram, topiramate and carbamazepine) also had an 

effect in the carveme model. However, carveme and curated models have basically inverted results: 

• disulfiram, topiramate and carbamazepine only affect glutamate in carveme, but affect acetate, S-

adenosylmethionine, glucose, menaquinone, propionate and tryptophan in curated; plus quinolinic acid 

(quln[c]), that is not affected in carveme. 

• vigabatrin and gabapentin only affect glutamate in curated, but affect acetate, S-adenosylmethionine, 

glucose, menaquinone, propionate and tryptophan in carveme; plus inositol, that is not affected in 

curated. 

These results are likely due to the fact that the neuroactive reactions indirectly affected by some drugs 

are not the same when comparing carveme with curated.  

4.3.3 In Silico Results Match In Vitro Growth Inhibition Effect of Two Percent of the 

Non-Commensal Targeting Drugs 

Besides the drugs that act upon the human nervous system, Maier et al 2018 [3] also screened drugs 

from other ATC therapeutic classes (Fig. 21). However, it focused on drugs that are not supposed to affect 

gut commensals, to generate a systematic resource of the effect of drugs in altering gut microbiome 

composition (i.e., changing the species that are present in the gut) [3]. These drugs comprised, for 

example, the ones which have the human cells as targets (642 drugs) and antibiotics that are supposed 

to only inhibit pathogens (and not commensals, 144 drugs), as shown in Fig. 27 [3]. 

Even though some of the compounds studied are not considered drugs (88 “not a drug” , Fig. 27), 

(i.e., are compounds with biological roles (e.g. vitamins) or compounds that are being investigated, in 

clinical trials, as possible treatments), they were designated, both in the present work and in the research 

paper, as drugs (for simplicity reasons, making the words “compound” and “drug” interchangeable). 

Removing the 198 nervous system drugs, investigated in the previous section 4.3.1, from the 1197 

compounds from Maier et al  [3], a total of 999 compounds were selected for the investigation of their 

effect in B. thetaiotaomicron’s GSMM (Fig. 27). 
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Fig. 27. Target species of the 999 compounds from all ATC classes, except from the nervous system one. 

Every one of the 999 compounds is identified by a unique Prestwick ID. However, not all of them have 

a unique STITCH ID. 29 Prestwick IDs comprise 14 unique STITCH IDs, being that 13 pairs match to one 

unique STITCH ID and 3 match to a last one (Table 12). This gives a total of 984 unique STITCH IDs. 

The drugs with the same STITCH ID will have the same genes inhibited and, subsequently, the same in 

silico results. 

Table 12. Drugs from Maier et al 2018 that have different Prestwick IDs but same STITCH ID (coloured rows correspond to the drugs in 

STITCH database that have inhibiting interactions with B. thetaiotaomicron). 

Prestwick ID STITCH ID 

Prestw-1075/1081 CIDs00004946 

Prestw-1086/1089 CIDs00000401 

Prestw-1516/198 CIDs00002083 

Prestw-847/857 CIDs00003914 

Prestw-860/864 CIDs00069216 

Prestw-1097/911 CIDs00003779 

Prestw-135/373 CIDs00004112 

Prestw-182/545 CIDs00003913 

Prestw-233/565 CIDs00003661 

Prestw-256/257 CIDs00005538 

Prestw-285/985 CIDs00005645 

Prestw-45/791 CIDs00001301 

Prestw-536/953 CIDs00002249 

Prestw-411/440/697 CIDs00000225 

 

Out of these 984 STITCH IDs, only 232 (Fig. 28a) have inhibiting interactions with B. thetaiotaomicron’s 

genes according to STITCH, which encompass 96 genes in the carveme model and 128 in the curated 

one (Fig. 28b). Due to some STITCH IDs having more than 1 Prestwick ID (Table 12), as mentioned 

above, these 232 STITCH IDs correspond to 242 Prestwick IDs. Out of the latter, 41 inhibited the growth 

of B. thetaiotaomicron in vitro (Fig. 29a) and, in silico, 10 had an effect in carveme and 20 in curated 

(Fig. 29b), being that 7 had effect in both models. 
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Fig. 28. Inhibiting interactions, from STITCH database, involving all drugs from Maier et al 2018 (except neuroactive drugs) and B. 
thetaiotaomicron genes. a, 232 Drugs that have inhibiting interaction information with B. thetaiotaomicron, in STITCH. b, 96 B. 

thetaiotaomicron genes from carveme and 128 from curated (out of 255 proteins in STITCH) have, in STITCH, inhibiting interaction 
information with the 232 drugs’ STITCH IDs and 67 genes are common between carveme and curated models. 

 

Fig. 29. Effect of the 242 drugs on B. thetaiotaomicron’s growth. a, Drugs’ effect in vitro (191 no effect/41effect). b, Drugs’ effect in 
silico, in both carveme and curated models, out of 242 unique Prestwick IDs.  

From the 242 drugs, only 2 – Prestw-808 (Furazolidone) and Prestw-732 (Streptozotocin) – had an 

effect in vitro and in both models (carveme and curated) and 2 more in vitro and in the curated model 

only – Prestw-237 (Ofloxacin) and Prestw-1479 (Triclosan) – as Table 13 highlights. 
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Table 13. 60 Drugs (out of the 242 that had, in STITCH database, inhibiting interactions with B. thetaiotaomicron’s proteins) that had 

effect either in vitro (first 41 rows with p-value <=0.01 [pink rows]), in silico (in carveme [green rows] and curated [purple rows] models) or 
in both (yellow rows) (corresponding STITCH IDs and drugs names are in Supplementary Table 1). 

Prestwick ID Proteins 
in 
STITCH 

Proteins 
in 
carveme 

Proteins 
in 
curated 

Affected 
reactions 
carveme 

Affected 
reactions 
curated 

% Growth 
change 
carveme 

% Growth 
change 
curated 

Effect 
in vitro 
(p-value) 

Target 
species 

1109 3 1 0 0 0 0 0 0.00 bacteria 
1233 3 3 3 16 4 0 0 0.00 human 
525 3 1 0 0 0 0 0 0.00 bacteria 
151 3 1 0 0 0 0 0 0.00 bacteria 
808 1 1 1 1156 780 100 100 0.00 bacteria 
113 7 3 2 0 20 0 0 0.00 bacteria 
208 1 0 0 0 0 0 0 0.00 bacteria 
1415 1 1 1 0 6 0 0 0.00 human 
1157 3 1 0 0 0 0 0 0.00 bacteria 
1446 4 0 0 0 0 0 0 0.00 bacteria 
1265 4 0 0 0 0 0 0 0.00 bacteria 
238 4 0 0 0 0 0 0 0.00 bacteria 
237 9 2 2 0 802 0 100 0.00 bacteria 
1343 4 0 0 0 0 0 0 0.00 bacteria 
766 3 1 0 0 0 0 0 0.00 bacteria 
756 7 4 0 0 0 0 0 0.00 human 
1401 4 0 0 0 0 0 0 0.00 bacteria 
37 1 0 0 0 0 0 0 0.00 protozoa 
1056 1 1 1 0 6 0 0 0.00 viruses 
1194 4 0 0 0 0 0 0 0.00 antiseptic 
333 1 1 1 2 95 0 0 0.00 viruses 
168 7 5 4 16 4 0 0 0.00 bacteria 
1479 20 5 10 0 752 0 100 0.00 antiseptic 
1378 3 1 0 0 0 0 0 0.00 bacteria 
699 1 1 0 0 0 0 0 0.00 human 
1 1 1 1 2 0 0 0 0.00 human 
1303 4 0 0 0 0 0 0 0.00 bacteria 
370 13 5 0 0 0 0 0 0.00 human 
390 3 1 0 0 0 0 0 0.00 bacteria 
732 34 22 29 1151 759 100 100 0.00 human 
708 1 1 0 0 0 0 0 0.00 antiseptic 
267 3 1 0 0 0 0 0 0.00 fungi 
376 3 1 0 0 0 0 0 0.00 bacteria 
740 1 1 0 0 0 0 0 0.00 not a drug 
1203 14 10 7 0 27 0 0 0.00 human 
487 4 0 0 0 0 0 0 0.00 human 
205 1 1 0 0 0 0 0 0.00 human 
368 1 1 0 0 0 0 0 0.01 human 
126 3 1 0 0 0 0 0 0.01 protozoa 
478 3 1 0 0 0 0 0 0.01 human 
1114 3 1 0 0 0 0 0 0.01 viruses 
736 2 1 2 0 802 0 100 0.02 bacteria 
1467 20 8 12 0 752 0 100 0.11 human 
1314 15 4 10 0 752 0 100 0.24 human 
94 1 1 1 0 783 0 100 0.52 human 
1337 21 7 14 0 752 0 100 0.74 human 
105 31 2 13 0 794 0 100 0.80 human 
275 22 2 3 0 803 0 100 0.81 human 
1097/911 35 9 32 1186 4 100 0 0.93/1.00 human 
1134 2 2 2 161 760 51 94 1.00 human 
14 2 2 1 12 752 0 100 1.00 bacteria 
257/256 9 7 4 1108 803 100 100 1.00/1.00 human 
1210 2 2 2 1165 804 100 100 1.00 human 
741 26 19 17 1167 784 100 100 1.00 not a drug 
1198 28 1 13 0 794 0 100 1.00 human 
1285 2 2 2 1165 804 100 100 1.00 human 
1118 2 1 2 0 802 0 100 1.00 bacteria 
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489 2 1 2 0 802 0 100 1.00 bacteria 
441 20 12 8 1152 7 100 0 1.00 human 

 
Regarding the 2 drugs that had an effect in vitro and in both in silico models: 

• the drug “Prestw-808” affected one gene “BT_0347” that is essential in both models (Table 14). This 

drug-protein interaction was transferred via orthology (STITCH score 0,6) from another species (“Gallus 

gallus”). 

• the drug “Prestw-732” did not affect any essential gene in either of the models (Table 14). However, 

it had many reported protein interactions in STITCH (34) and more than 60% of these proteins were 

present in carveme and in curated (22 and 29, respectively, as shown in Table 14). Consequently, 

their knock-out lead to many reactions having their fluxes changed (around 50% of the total number of 

reactions in both models) (Table 13). Even though the drug is targeted at humans, according to Maier 

et al 2018 [3], it has been previously reported as having antibacterial activity. 

Table 14. Drugs with both in vitro and in silico effect. 

Drug Prestw-808 Prestw-732 Prestw-237 Prestw-1479 

Name Furazolidone Streptozotocin Ofloxacin Triclosan 

ATC code G01AX06 

(Gynecological 

antiinfectives 

and antiseptics 

- nitrofurans 

[inhibit glucose 

mechanism]) 

L01AD04 

(Antineoplastic/ 

alkylating 

agents) 

J01MA01/12  

(Antibacterial for 

systemic use) 

S01AX11/19 

S02AA16 

(Antiinfective) 

D08AE04 

D09AA06 

(Antiseptics 

and disinfectants) 

STITCH ID CID000003435 CID000005300 CID000004583 CID000005564 

Target species Bacteria Human Bacteria Antiseptic 

Target species’ 

proteins 

--------------------------------- --------------------------------- DNA gyrase 

DNA Topoisomerase 

Enoyl-acyl carrier 

protein reductase 

enzyme 

Target proteins’ 

classification 

--------------------------------- Binds to phosphate, 

amino, sulfhydryl, 

hydroxyl, and 

imidazole groups, 

commonly found in 

nucleic acids and 

other macromolecules 

Isomerases Oxidoreductases 

B. thetaiotaomicron 

orthologous genes in 

KEGG database 

--------------------------------- --------------------------------- BT_0899 

(DNA gyrase) 

BT_3579 

(DNA topoisomerase) 

BT_4188 

(oxidoreductase) 

B. thetaiotaomicron 

essential genes in 

carveme model 

BT_0347 

(transketolase; 

involved in pentose 

phosphate pathway) 

--------------------------------- --------------------------------- --------------------------------- 

B. thetaiotaomicron 

essential genes in 

curated model 

BT_0347 

(transketolase) 

--------------------------------- --------------------------------- BT_1225 

(oxidoreductase: GDP-

L-fucose synthase) 

BT_0382 
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(oxidoreductase: NAD-

dependent 

epimerase/dehydratase 

family protein) 

STITCH score 0,604 

(not experimental) 

--------------------------------- --------------------------------- 0,382 

(not experimental) 

 

As for the drugs that inhibited growth in vitro but only had an effect in the curated model: 

• the drug “Prestw-237” only affected two genes – “BT_2048” and “BT_0106” -  (Table 13), but none 

of them were essential (Table 14). However, their “knock-out” restricted the flux of two reactions, 

“FOLR” and “DHFR”, to zero, which, consequently, lead to a high number of affected reactions (50% 

of total reactions). 

─  In carveme, the drug also targeted “BT_2048”, but “BT_0106” was not present and instead 

targeted “BT_3386”. These only affected the reaction “FOLR2”, but its fluxes’ range did not change 

and, subsequently, didn’t affect any other reactions. 

─  Moreover, according to KEGG and to STITCH database, this drug targets B. thetaiotaomicron‘s 

genes “BT_0899” and “BT_3579”, but these genes are not present in carveme nor in curated 

models [90].  

• The drug “Prestw-1479” targeted two essential genes in curated, namely “BT_1225” and “BT_0382” 

(Table 13). 

─  These genes don’t exist in carveme. 

─  Furthermore, this drug targets “BT_4188” according to KEGG but, even though it is present in both 

models and it is essential in curated, it does not have inhibiting interactions in STITCH. 

Regarding the 201 drugs that did not inhibit growth in vitro, 20 did inhibit in at least one of the models 

(17 in curated, 8 in carveme and 5 in both, as Table 13 shows). From these: 

• the 8 drugs (6 unique STITCH IDs) that inhibited carveme affected 6 essential genes altogether, 1 of 

which is also essential in curated (BT_2123), 3 exist but are not essential there and 2 don’t exist (Table 

15). 

• the 17 drugs (16 unique STITCH IDs) that inhibited curated, only 8 targeted essential genes. A total of 

12 essential genes were affected, being that 1 is also essential in carveme, 5 exist in carveme but are 

not essential there and 6 don’t exist (Table 15). The drugs that did not affect essential genes lead, in 

average, to a higher number of affected reactions than the ones that targeted essential genes (796 vs 

768, respectively). 
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Table 15. Essential genes affected by drugs that didn’t inhibit growth in vitro but inhibited in silico; (*) means that the drug inhibited 

growth but it didn’t affect any essential gene.  

Prestwick ID Essential gene(s) carveme Essential gene(s) curated Model’s presence 

736 ------------------ Inhibited curated (*)  

1467 ------------------ BT_1225 

BT_0382 

BT_0674 

Not in carveme 

Not in carveme 

Exists in carveme but not essential 

1314 ------------------ BT_1225 

BT_0382 

Not in carveme 

Not in carveme 

94 ------------------ BT_3845 Exists in carveme but not essential 

1337 ------------------ BT_1225 

BT_0382 

Not in carveme 

Not in carveme 

105 ------------------ Inhibited curated (*)  

275 ------------------ Inhibited curated (*)  

1097/911 BT_1806  ------------------ Not in curated 

1134 ------------------ Inhibited curated (*)  

14 ------------------ BT_0373 Exists in carveme but not essential 

257/256 BT_2123 BT_2123 Exists and it’s essential in both 

1210 BT_3261 Inhibited curated (*) Exists in curated but not essential 

741 BT_4503  

BT_3845 

BT_2797 

Not in curated 

Exists in carveme but not essential 

Exists in carveme but not essential 

1198 ------------------ Inhibited curated (*)  

1285 BT_3261 Inhibited curated (*) Exists in curated but not essential 

1118 ------------------ Inhibited curated (*)  

489 ------------------ Inhibited curated (*)  

441 BT_3935 ------------------ Exists in curated but not essential 

 

In order to understand the differences between the models, regarding the effect of the drugs, it was 

necessary to study how the number of proteins that have information in STITCH, the number of affected 

proteins, the number of affected reactions and the effect on the bacterium’s growth, changed together 

(Fig. 30). However, in this analysis, the drugs that affected essential genes (15 drugs) were removed from 

the 242 drugs, in order to be able to generally understand the relationship between the affected proteins 

and respective affected reactions. 
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Fig. 30. Relationship between the number of proteins that have interactions in STITCH (“Proteins in STITCH”), the number of affected 

proteins in the in silico models (“Affected Proteins”), the number of affected reactions (i.e., reactions for which their fluxes’ ranges before 
and after the genes were “knocked-out”, were not 100% overlapping) (“Affected Rxs”) and the percentage of change in growth rate 

(“%GrowthChange”); this applies to all the 242 drugs mentioned before, except the drugs that affected essential genes in order to be able 
to understand the correlation between the number of affected genes/proteins and the number of affected reactions; left panel is the 

correlation heatmap for carveme and the right panel is for curated, where a value of 1 or -1 means a perfect correlation, a value above 0.6 
was considered a good correlation and the absolute values below 0.6 are considered a bad correlation. The correlation values correspond 

to the Pearson correlation coefficient. 

Looking at Fig. 30 and at Fig. 31 (that shows the distribution of the number of affected proteins and 

the percentage of affected reactions by the 242 drugs), overall, one can make some observations about 

these results, such as: 

• There is a higher correlation between the number of proteins that have inhibiting information in STITCH 

and the number of affected proteins in curated than in carveme (0.72 vs 0.63, respectively). 

─  This means that curated has more genes that interact with the drugs than carveme. This matches 

the information from Fig. 28b, which shows that curated has more genes interacting with drugs than 

carveme. Hence, when there is more information from STITCH, it is more likely that more proteins 

will be affected in curated than in carveme.  

• Regarding the majority of the drugs (the ones that did not have an effect either in vitro or in silico), the 

number of proteins affected by them was overall equal to or less than 5, in both models(Fig. 31a). 

However, in curated, more drugs led to a higher percentage of affected reactions (around 7% of the 

drugs affected the flux of about 20% of the reactions) than in carveme (each drug affected less than 

10% of the reactions) (Fig. 31b). This is corroborated by the better correlation between the number of 

affected proteins and the number of affected reactions in carveme than in curated (0.64 vs 0.45, 

respectively) (Fig. 30). 

─  Nevertheless, it is a weak relationship in both, meaning that an increase in the number of affected 

reactions does not mean it was caused by a higher number of affected proteins. 

─  This difference between carveme and curated might happen because the percentage of gene 

associated reactions in curated is higher than in carveme (71% vs 69%, respectively; Table 16), 

which means that one gene will probably be involved in a higher number of reactions in curated 

than in carveme, thus, once the gene is “knocked-out”, it will affect a higher number of reactions. 

• The correlation between affected reactions and percentage growth change is high in both models 0.93 

and 0.87, in carveme and curated, respectively), meaning that when the number of affected reactions 

is elevated, it’s very likely that the change in growth will be high as well, leading more likely to inhibition 

of growth. 
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Fig. 31. Distribution of the proteins and reactions affected by the 242 drugs that had STITCH inhibiting information with B. 
thetaiotaomicron’s proteins. a, Number of proteins that were affected/”knocked-out” in the carveme and curated models (grouped by 

drugs that had effect in silico [left boxplots] and by the ones that didn’t [right boxplots]); figure divided into two panels, in which the left 
panel regards drugs that had effect in vitro and the right one regards drugs that didn’t have effect in vitro. b, Percentage of affected 
reactions out of each models’ total number of reactions (i.e., reactions for which their fluxes’ ranges before and after the genes were 

“knocked-out”, were not 100% overlapping); grouping of drugs and scheme of figures is the same as in a.  

4.3.4 Non-Commensal Targeting Drugs Influence Neuroactive Metabolism 

Taking a look at the drug effects on the bacterial neuroactive metabolism, and restricting to the drugs 

that had an effect in vitro and in at least one of the models (streptozotocin, furazolidone, ofloxacin and 

triclosan): 

• these drugs affected the production/consumption of the same neuroactive metabolites (acetate, S-

adenosylmethionine, glutamate, menaquinone, propionate and tryptophan), in both models, except 

that in carveme additionally inositol was affected and in curated quinolinic acid (Fig. 32). 
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Fig. 32. Neuroactive metabolites that might be possibly affected by drugs, out of the 242, that inhibited in vitro and in at least one of the 

in silico models (heatmap with black colour representing a metabolite that was affected by a drug and with white colour representing the 
opposite; the drugs that are coloured are the ones that affect in both models, carveme and curated; the coloured metabolites are the ones 

that differ between the models). 
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5 Discussion 

The in vitro results of the Maier et al 2018 research [3], showed undesirable side effects of drugs that 

aren’t supposed to target gut commensal bacteria, on the gut microbiome composition. In particular, 

there was an overrepresentation of neuroactive drugs among the human-targeted drugs that had effects 

of bacterial growth [3].  However, the mechanisms of the drug inhibition of bacterial growth remain largely 

unknown. In this study, we aimed at identifying potential mechanisms of drug-bacteria interactions in 

silico using GSMM and flux balance analysis combined with the information on drug-protein interactions 

from the STITCH database. 

In summary, the in silico results were the following: 

• out of the 198 neuroactive drugs screened in vitro: 

─ 41 had inhibiting interaction information, in STITCH, with proteins of B. thetaiotaomicron and, out 

of these: 

o none had effect on the growth of B. thetaiotaomicron in vitro. 

o 3 inhibited growth in carveme model (acetaminophen, gabapentin and vigabatrin); affected 

essential genes “BT_1806”, that is not present in curated, and “BT_3935”, that is present but 

is not essential in curated. 

o 4 different drugs inhibited in curated (carbamazepine, valproic acid, lamotrigine and topiramate); 

affected essential genes “BT_1225” and “BT_0382”, that do not exist in carveme. 

• out of the 999 non-commensal targeted drugs screened in vitro: 

─ 242 had inhibiting interaction information with proteins of B. thetaiotaomicron: 

o 41 inhibited growth in vitro and of these: 

▪ 2 also had an effect in both in silico models; one of them affected the gene “BT_0347” that is 

essential in both models. 

▪ 2 had effect in the curated model only; affected the non-essential genes “BT_2048” and 

“BT_0106”. The latter was not present in carveme. 

o 201 didn’t inhibit growth in vitro but: 

▪ 8 in carveme; all affected essential genes, 6 in total, 1 essential in curated as well, 3 exist in 

curated but are not essential and 2 don’t exist. 

▪ 17 had an effect on growth in curated; 8 drugs targeted essential genes, 12 in total, 5 of which 

exist in carveme but are not essential. 

▪ 5 drugs inhibited growth in both models. 
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Overall, combining experimental results with in silico ones, there are some hypotheses one can make: 

• the drug interactions with the affected essential genes, in both models, were erroneous [90]. 

• LB medium might not be completely representative of mGAM medium, which can lead to different 

essential genes for B. thetaiotaomicron’s growth (as one can see in Table 16) . Thus, the drug-protein 

interactions from STITCH might occur, but not lead to inhibition of growth. 

• the GPR rules might be incorrect or incomplete, since they are generated during the model 

reconstruction process, hence possibly leading to incorrect predictions of essential genes. 

• these genes can be essential, but the dose used in the experiment might have been too small to have 

had an effect on bacterium’s growth. 

Table 16. Summary of carveme and of curated models, not only for LB medium, but also for complete and M9 media (fluxes have the 

unit mmol / [gDW h]). 

 CarveMe 

model 

  Curated 

model 

  

Reconstruction approach  “top-down”   “bottom-

up” 

  

Biomass equation - species Escherichia 
coli [60] 

     

Medium composition - species Complete 
 
Mycoplasma 
genitalium 
[60] 

LB 
 
Bacillus 
subtilis 
and 
Shewanella 
oneidensis 
[60] 

 

M9 
 
E. coli 
[60] 

Complete 
 
(default) 

LB 

 

(from LB 

carveme 

models) 

M9 
 
(from M9 
carveme 
models) 

Growth rate 55,0 1,4 0,9 86,8 5,7 1,7 

No. of proteins in FASTA 4636   4636   

No. of genes/proteins in model 832   993   

Essential genes 40 67 (8%) 120 61 124 (12%) 200 

Total no. of reactions 2151 2154 2155 1528   

Universally blocked reactions 55   89   

Exchange reactions 253   280   

Exchange reactions with active flux 253 50 17 280 49 21 

Exchange reactions with active flux –  

absolute fluxes’ mean 

23,1 2,4 5,2 73,0 22,2 44,8 

Exchange reactions bounds (-

1000,1000) 

active (-

10,1000) 

| non-

active 

(0,1000) 

active (-

10,1000) 

| non-

active 

(0,1000) 

(-

1000,1000) 

active (-

10,1000) 

| non-

active 

(0,1000) 

active (-

10,1000) 

| non-

active 

(0,1000) 

Medium specific blocked reactions 55 685 (32%) 760 89 530 (35%) 540 

Zero flux reactions 1825 1833 1774 945 843 920 

Transport reactions 637    87   

Purely metabolic reactions 1255 1258 (58%) 1259 1154 (75%)   
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Purely metabolic reactions with non-zero flux 180 212 311 465 582 554 

Purely metabolic reactions with non-zero flux 

- absolute fluxes’ mean 

68,5 2,4 1,0 109,8 17,5 22,9 

Gene associated reactions 

(enzymatic reactions) 

1489 (69%)   1084 (71%)   

Gene associated reactions 

that are purely metabolic 

1047 (49%)   1034 (68%)   

 

Altogether, the results show that: 

• carveme and curated models do not have the same essential genes in LB medium (67 vs 124, 

respectively; Table 16), which means that, to be able to rely on the in silico results, there is still a need 

to do more experimental research on B. thetaiotaomicron’s, in order to find the most accurate biomass 

composition, that, consequently, is going to change gene essentiality. 

• both in silico models are missing genes that have interactions in STITCH (37 and 40, respectively; Fig. 

24c), which means that some reactions in the models are not being affected. These reactions could 

lead to a change in bacterium’s growth, thus leading to even more drugs inhibiting growth. 

• carveme and curated models differ in the genes present (as shown in Fig. 24a and Fig. 28b and Table 

16 – 832 vs 993), in the number of blocked reactions (685 vs 530) and in the number of gene 

associated reactions (1489 vs 1084, Table 16). Therefore, when one drug affects one gene in one 

model, it affects certain reactions that might not be affected in the other model (which is further 

supported by the difference in the drugs’ effect on the neuroactive metabolism, since it affects the 

production/consumption of different neuroactive metabolites, as shown in Fig. 25, 26 and 32). 

• It is necessary to do more upstream perturbations experiments in order to discover more drug-protein 

inhibiting interactions and, subsequently, be able to perform more accurate in silico predictions. 
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6 Conclusions 

In the present work, an automatic genome-scale metabolic reconstruction of B. thetaiotaomicron was 

generated and subsequently used to systematically investigate drugs’ effect on its growth and its 

metabolism and, moreover, its results were compared with the ones from a manually curated model 

reconstruction. The drugs have been previously screened in vitro in the Maier et al 2018 research paper. 

These drugs were selected for two different reasons: 

• to understand why neuroactive drugs had an effect on bacteria, given that they are supposed to target 

receptors that don’t exist in bacteria. 

• to examine why medication that is not targeted at gut commensals, affects them. 

The goal was to evaluate if the drugs had corresponding results in vitro and in silico and, if so, be able 

to examine the proteins that are being affected. 

Neither of the in silico models predicted well the drugs’ effect on the bacterium’s growth. These results 

suggest that: 

• the models are inaccurate, particularly due to probable incomplete and/or incorrect biomass 

composition and possibly leading to wrong gene essentiality predictions. 

• some drug-protein interaction information retrieved from STITCH database was erroneous because 

they were transferred via orthology from other organisms. 

• the medium used in the in silico models was not representative of the one used in the in vitro screen 

experiment. 

Since Maier et al. 2018 paper [3] monitored the growth of 40 bacterial strains. In the future work, it 

would be important to extend the analysis performed in this study for B. thetaiotaomicron to the other 39 

bacteria. In this way, we can test whether drug effects can be predicted better for other species and 

compare in silico predictions for drug effects between different species. 
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Supplementary Information 

Supplementary Table 1. Prestwick ID/STITCH ID/Drug name matching of the drugs (out of the 242 that had, in STITCH database, 

inhibiting interactions with B. thetaiotaomicron’s proteins) that had effect either in vitro, in silico (in carveme and curated models) or in 
both. 

PrestwickID STITCHID Drugname PrestwickID STITCHID Drugname 

1109 05361912 Rifabutin 708 00002335 Benzethonium chloride 

1233 06333887 Auranofin 267 00002812 Clotrimazole 

525 05381226 Rifampicin 376 00002794 Clofazimine 

151 00003255 Erythromycin 740 00003194 Ebselen 

808 00003435 Furazolidone 1203 00003385 5-fluorouracil 

113 00002764 Ciprofloxacin hydrochloride 

monohydrate 

487 00002958 Daunorubicin hydrochloride 

208 00005578 Trimethoprim 205 00610479 Tolfenamic acid 

1415 00003363 Floxuridine 368 00002351 Bepridil hydrochloride 

1157 06323497 Rifapentine 126 00004046 Mefloquine hydrochloride 

1446 00004259 Moxifloxacin 478 00003333 Felodipine 

1265 00005379 Gatifloxacin 1114 00060787 Saquinavir mesylate 

238 00003948 Lomefloxacin hydrochloride 736 00002617 Cefazolin sodium salt 

237 00004583 Ofloxacin 1467 00005591 Troglitazone 

1343 00005257 Sparfloxacin 1314 00004829 Pioglitazone 

766 00005479 Tinidazole 94 00002265 Azathioprine 

756 00003054 Diethylstilbestrol 1337 00077998 Rosiglitazone Hydrochloride 

1401 00003229 Enoxacin 105 00002949 Danazol 

37 00004993 Pyrimethamine 275 00003339 Fenofibrate 

1056 00006256 Trifluridine 1097/911 00003779 (-)-Isoproterenol hydrochloride 
/ (+)-Isoproterenol (+)-bitartrate salt 

1194 00005441 Thimerosal 1134 00000596 Cytarabine 

333 00005726 Zidovudine, AZT 14 00005320 Sulfacetamide sodic hydrate 

168 00004509 Nitrofurantoin 257/256 00005538 Retinoic acid / Isotretinoin 

1479 00005564 Triclosan 1210 00002088 Alendronate sodium 

1378 00054688 Clarithromycin 741 00000925 Nadide 

699 00003606 Hexestrol 1198 00005527 Tranilast 

1 00008646 Azaguanine-8 1285 00060852 Ibandronate sodium 

1303 00051081 Pefloxacine 1118 00002622 Cefepime hydrochloride 

370 00002333 Benzbromarone 489 00002650 Ceftazidime pentahydrate 

390 00003443 Fusidic acid sodium salt 441 00000450 Estradiol-17 beta 

732 00005300 Streptozotocin    

 


