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A B S T R A C T

Climate change and a growing human population necessitate improved crop adaptability and

yield. Improving photosynthesis is one promising route to boosting plant productivity. Photosyn-

thesis is hampered by the dual activity of its main CO2-fixing enzyme ribulose-1,5-bisphosphate

carboxylase/oxygenase (Rubisco). The enzyme side-reacts with O2, leading to the production of

a toxic byproduct, which must be expensively recycled through the photorespiratory pathway.

Rubisco’s oxygenation rate depends on the CO2 : O2 ratio and increases under high temper-

atures. In C3 plants, which make up 90% of the known plant species, this phenomenon can

decrease photosynthetic efficiency by an estimated fourth. C4 plants have evolved a carbon-

concentration mechanism that suppresses photorespiration by spatially separating initial carbon

fixation and re-fixation by Rubisco. Initial carbon fixation occurs in the mesophyll cells, while

decarboxylation and carbon fixation by Rubisco occurs in the bundle sheath cell and releases

pyruvate or phosphoenolpyruvate which then moves back to the mesophyll cells for the next

cycle. To successfully engineer C4 metabolism in C3 plants, it is important to obtain a quantita-

tive understanding of both the energetics and distribution of metabolic fluxes of this metabolic

cycle. Here, we tackle this question by analysing a large-scale metabolic model, consisting of

mesophyll and bundle sheath cells connected through the exchange of cytosolic metabolites.

We parameterized the model for the main C4 crop maize (Zea mays) by using biochemical and

anatomical constraints derived from the literature. These constraints also enable the model

to correctly predict the appearance of the C4 cycle, different C4 subtypes and decarboxylation

enzyme co-activity. Accounting for the volumetric ratio between the two cell types leads to

more accurate predictions of C2 photosynthesis, a triose phosphate-3-phosphoglycerate shuttle

between the cell types, mesophyll-specific nitrate reduction, choice of decarboxylation enzyme,

the ratio of ATP production between the cell types, cell type-specific cyclic or linear electron

transport activity and biomass production. Thus, our modelling approach can guide biological

engineering strategies to implement C4 photosynthesis into other plant systems to ultimately

improve crop productivity.

Keywords: Anatomical Constraints; C4 Photosynthesis; Constraint-Based Modelling; Zea

mays.
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R E S U M O

As alterações climáticas e o crescimento da população humana tornam necessário uma melhor

adaptabilidade e rendimento agrı́cola. Melhorar a fotossı́ntese é uma via promissora para

aumentar a produtividade vegetal. A fotossı́ntese é dificultada pela dupla actividade da principal

enzima fixadora de CO2, a ribulose-1,5-bisfosfato carboxilase/oxigenase (Rubisco). A enzima

reage paralelamente com O2, levando à produção de um subproduto tóxico, que é reciclado

através da via fotorrespiratória. A taxa de oxigenação da Rubisco depende do rácio CO2 : O2

e aumenta com temperaturas elevadas. Nas plantas C3, que constituem 90% das espécies

vegetais conhecidas, este fenómeno pode diminuir a eficiência fotossintética em um quarto.

As plantas C4 desenvolveram um mecanismo de concentração de carbono que suprime a

fotorrespiração separando espacialmente a fixação inicial de carbono e a refixação pela Rubisco.

A fixação inicial de carbono ocorre nas células do mesofilo, enquanto a descarboxilação e a

fixação de carbono pela Rubisco ocorre nas células da bainha do feixe e liberta piruvato

ou fosfoenolpiruvato, que depois se desloca de volta para o mesofilo para o ciclo seguinte.

Para incorporar o metabolismo C4 em plantas C3, é importante obter uma compreensão

quantitativa da produção de energia e da distribuição dos fluxos metabólicos deste ciclo. Neste

trabalho abordamos esta questão através da análise de um modelo metabólico em grande

escala, constituı́do por uma célula do mesofilo e da bainha de feixe conectadas pela troca de

metabolitos citosólicos. Parametrizámos o modelo com restrições bioquı́micas e anatómicas

de milho (Zea mays) derivadas da literatura. Estas restrições permitem ao modelo prever o

ciclo e diferentes subtipos de fotossı́ntese C4 e co-actividade de enzimas de descarboxilação. A

inclusão do volume celular leva a previsões mais precisas de componentes metabólicos tais

como a fotossı́ntese C2, o transportador triose fosfato-3-fosfoglicerato, a redução de nitrato

no mesofilo, a escolha da enzima de descarboxilação, o rácio entre a produção de ATP nas

células, a actividade cı́clica ou linear de transporte de electrões e a produção de biomassa.

Assim, a nossa abordagem de modelação pode guiar estratégias de engenharia biológica para

implementar a fotossı́ntese C4 noutros sistemas vegetais e melhorar a produtividade agrı́cola.

Palavras-Chave: Restrições Anatómicas; Fotossı́ntese C4; Modelação Baseada em

Restrições; Zea mays.
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1

I N T R O D U C T I O N

1.1 MOTIVATION AND CONTEXT

Climate change is predicted to have direct impacts on agricultural production over the course

of the 21st century [1]. The main effects of climate change that impact agriculture are well

documented: increases in atmospheric carbon dioxide (CO2) concentration; changes to temper-

ature, precipitation and solar exposure levels; rising sea levels; and more severe and frequent

extreme climatic events. The combination of these factors contributes to negative impacts on

agricultural production worldwide, making agriculture one of the most endangered activities by

climate change [2, 3].

Due to climate change, the decline of agricultural production will negatively affect global

food production [4]. This problem is further magnified by an estimated growth of the world human

population to approximately 9.7 billion by 2050 [5], which will lead to an estimated increase in

food demand between 59 and 98% [6].

Reducing the impact of climate change on agriculture and increasing agricultural productivity

is vital to safeguarding food security over the next century and reducing hunger and malnutrition,

particularly in developing countries [7]. This calls for the need to implement crop breeding

approaches that will help develop climate-resilient crops with better adaptability and productivity

under stress conditions [3].

One fundamental component of plant metabolism that can increase yield is photosynthesis.

Photosynthesis is the process during which light is converted into the carbohydrates’ chemical

energy using CO2 and water (H2O) [8]. It is the leading supplier of carbon and energy required

to synthesise the organic compounds that drive plant growth and development [9]. Additionally,

1
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photosynthesis core metabolic pathways are highly conserved across a wide range of plant

species and they are one of the best-studied processes. The three known types of photo-

synthesis are the C3, C4 and Crassulacean Acid Metabolism (CAM) photosynthesis. These

photosynthetic types differ in their carbon fixation strategies, with C3 being the most frequent

type, while C4 evolved in plants under hot, low CO2 environments and CAM in arid biomes, in

which plants suffered from water limitation [10]. Additionally, these pathways display different

resource requirements, with nitrogen (N) being relevant due to its role in protein synthesis [11].

Thus, boosting plant photosynthetic efficiency is a target for improving crop productivity. However,

past efforts to improve photosynthetic efficiency have not been sufficient to improve productivity

to the estimated required levels and future outcomes depend on a further understanding of the

photosynthetic process [12, 13].

Research on photosynthesis finds a powerful tool in systems biology and computational

modelling. These disciplines provide techniques for the in silico representation of metabolic

pathways and cellular organization, through the construction of metabolic models and optimi-

sation routines [14]. One of these techniques is Constraint-based Modelling (CBM). A key

feature of CBM is the dependence only on reaction stoichiometry and not kinetic parameters

for model building and simulation, allowing metabolism to be simulated at a large- and even

genome-scale [15]. The effects of different environments on metabolism can be investigated

through this framework. More concretely, such a large-scale model can be employed to study

the metabolism of photoautotrophic plant cells, allowing the study of the effect of environmen-

tal changes on photosynthetic metabolism and comparing different photosynthetic pathways

regarding the metabolic response to these changes [16]. Overall, the use of CBM applied to

the study of photosynthesis will allow us to better understand metabolic responses to changes

in the environment and provide insights into how to engineer these pathways toward a greater

photosynthetic efficiency [17].
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1.2 GOALS

The main goal of this thesis is to compare different types of photosynthesis regarding their

constraints and capacities, particularly the effect of anatomical constraints upon carbon, nitrogen

and energetic metabolism, using CBM.

In detail, the objectives are:

• Review the relevant literature as to existing plant leaf models;

• Set up photoautotrophic growing leaf models capable of different types of photosynthesis;

• Implement novel anatomical constraints into the developed photosynthetic model;

• Compare anatomy-constrained model predictions against the bibliography;

• Evaluate energy metabolism, biomass production and cell-specific distributions of carbon

and nitrogen metabolism in C4 photosynthesis;

1.3 THESIS ORGANIZATION

In Chapter 2 the literature review will be presented with a detailed state of the art regarding the

present work. The biological problem will be presented first, exploring our current knowledge

of photosynthesis and its known types and subtypes, alongside their benefits and limitations.

Second, we will review plant energy metabolism, specifying the known types of metabolic energy

and where they can be contained and spent. Third, we will then overview nitrogen metabolism,

with a specific focus on C4 nitrate assimilation. Fourth, we will overview CBM approaches,

detailing both the architecture of stoichiometric models and simulation frameworks. Fifth, we will

review existing stoichiometric models of plant metabolism and further specify existing models for

modelling photoautotrophic plant leaf cells. Lastly, we will revise the literature for the impact of

leaf anatomical constraints on C4 metabolism, and their potential applications.

In Chapter 3 we will explain how the metabolic models used in the present work were built

and curated. Additionally, we will also detail how the anatomical constraints were implemented

into the models. In the end, we will review the techniques used to generate and analyse flux

solutions from the models
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In Chapter 4 the results of this work will be presented. We will overview all obtained

data regarding maize biomass composition, C4 cycle, nitrogen metabolism and assimilation,

choice of decarboxylation enzymes, type of electron transport and ATP and biomass production.

Throughout the chapter, a discussion of the results will be presented against bibliographic

sources.

In Chapter 5 we will showcase the final conclusions of the project and finalize with dis-

cussing future research directions.



2

S TAT E O F T H E A R T

2.1 PHOTOSYNTHESIS

Oxygenic photosynthesis is one of the most important metabolic processes in the world, with

almost all life depending on it either directly or indirectly. Through photosynthetic organisms such

as plants, algae and cyanobacteria can utilize light energy to generate organic molecules, such

as glucose, from CO2 and H2O, while releasing molecular oxygen (O2) into the atmosphere. In

equation (1) we present the generic equation for photosynthesis [18].

6 CO2 + 12 H2O + light energy → C2H12O6 + 6 O2 + 6 H2O (1)

The reactions of oxygenic photosynthesis take place, in the cells of algae and plant leaves,

inside organelles termed chloroplasts. Chloroplasts are surrounded by a double membrane,

inside of which there is a membrane system referred to as thylakoids. These structures separate

an internal space, called lumen, from an outer space, called stroma, which holds the necessary

enzymes for carbon (C) fixation. Embedded in the thylakoid membranes are large protein com-

plexes of which Photosystem I (PSI), Photosystem II (PSII), Cytochrome b6f Complex (cyt b6f)

and ATP Synthase (ATPase) are the main enzymatic complexes for light energy absorption and

transformation [10].

Chlorophyll (green pigments) and carotenoids (yellow-to-orange pigments) are parts of

both PSI and PSII complexes and these pigments are responsible for absorbing light energy,

which is then delivered to the PSI and PSII reaction centres through pigment-protein antennas.

This energy is then converted into redox chemical energy, with a small part being dissipated

as heat and chlorophyll fluorescence. Through this process, H2O is oxidised to O2, with the

production of Adenosine Triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate

5



2.1. Photosynthesis 6

reduced (NADPH). These reactions all occur in the thylakoid membrane and are collectively

designated as the “light reactions” of photosynthesis [19].

The products of the light reactions (ATP and NADPH) are then used for CO2 assimilation in

the stroma in the “dark reactions” of photosynthesis. It is worth noting that the dark reactions are

active in the presence of light; the designation originates because they are not directly driven by

light absorption [20]. The CO2 is obtained from the atmosphere by diffusion through the stomata,

small pores which regulate gas exchange in the plant’s leaves. The assimilation of CO2 occurs

via the Calvin-Benson-Basham (CBB), resulting in the reduction of CO2 into carbohydrates, such

as sucrose and starch (Fig. 1) [21].

Figure 1 – Simplified scheme for the relation between the “Light Reaction” and the “C reactions” or “Dark
reactions”. The ATP and NADPH provided by the light reactions using light and H2O, power the formation
of CH2O which stands for a simplified carbohydrate unit, while releasing O2. Adapted from [10]

Plants have evolved three main pathways for the assimilation of CO2, reflecting adaptation to

various environmental conditions: C3, C4 and CAM. We will elaborate upon these photosynthetic

types in the following chapters.

2.1.1 C3 PHOTOSYNTHESIS

C3 photosynthesis is the most widespread form of C assimilation in photosynthetic organisms,

accounting for the assimilation of about 15% of the C in the atmosphere every year [22]. In C3

species CO2 assimilation occurs practically in all leaf mesophyll cells, which are in direct contact

with the intercellular air space that is connected to the atmosphere via stomatal openings in the

epidermis [23]. In the first step, the enzyme Ribulose-1,5-bisphosphate carboxylase-oxygenase

(Rubisco) catalyses the carboxylation of CO2 acceptor molecule Ribulose-1,5-bisphosphate

(RuBP), forming 3-phosphoglycerate (3-PGA) which consists of three C atoms, giving rise to
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the name “C3 cycle” [8]. Due to the contact with the outer environment, Rubisco also catalyses

the oxygenation of RuBP in which it reacts with oxygen, forming 2-phosphoglycerate (2-PG)

(Fig. 3 (I)). However, accumulation of 2-PG can lead to a reduction in RuBP regeneration

and is therefore toxic to plants. Formation of 2-PG due to the oxygenation activity of Rubisco

activates recycling of 2-PG by the photorespiratory C oxidative pathway, which prevents the

accumulation of 2-PG and recovers 75% of fixed C lost due to oxygenation while the remaining

25% are released as CO2. Photorespiration is also referred to as the “C2 cycle” due to being

essentially a recovery pathway triggered by 2-PG, a two-C molecule [24]. Besides the loss of

efficiency of C fixation, the C2 cycle also incurs additional ATP and NADPH costs associated

with the re-fixation of C and re-assimilation of N [25]. The ratio of carboxylation to oxygenation

of Rubisco is dependent on the CO2 : O2 ratio in the cell. Additionally, the oxygenase activity

of Rubisco is temperature-dependent, increasing with temperature. Rubisco sensitivity to O2

makes it so that the efficiency of the C3 pathway decreases as atmospheric CO2 decreases

and temperature increases, creating an evolutionary pressure on the photosynthetic pathway for

increased efficiency under low atmospheric CO2 and/or high temperatures [26].

2.1.2 C2 PHOTOSYNTHESIS

A phenotype between C3 and C4 plants exists corresponding to an intermediate evolutionary

stage corresponding to a dual-celled photorespiratory glycine shuttle [27]. During evolution,

after the Bundle Sheath (BS) cells become photosynthetically engaged, they acquire increased

numbers of chloroplasts and mitochondria. BS mitochondria migrate to the centripetal region

of the cell, followed by chloroplast, giving rise to ”proto-Kranz” anatomy [28]. This leads to the

reduction of Glycine Decarboxylase (GDC) activity in the Mesophyll (M) cell, while BS GDC

activity is increased. The enzyme GDC is a key component in the photorespiratory pathway,

from whose activity also results in the release of CO2 and ammonium (NH4
+). Its migration to

the BS translates into glycine, originating from the M cell photorespiratory salvage pathway,

being transported from M to BS to serve as a substrate for GDC, and the resulting CO2 enters

the CBB cycle in the BS chloroplast, resulting in an initial carbon concentrating mechanism

around Rubisco [29]. This metabolic conformation is termed C2 photosynthesis, due to glycine
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being a 2 C molecule, and represents an important intermediate step before a full-fledged C4

cycle is developed [30].

2.1.3 C4 PHOTOSYNTHESIS

Reduced efficiency of C fixation due to photorespiration under hot and dry environments acted

as a driver in the evolution of the C4 pathway. The C4 photosynthetic pathway occurs in 7,500 of

the world’s 250,000 plant species and has evolved separately at least 66 times [31]. It consists

of biochemical and anatomical modifications designed to concentrate CO2 around Rubisco

through the spatial separation of C uptake and fixation by Rubisco with the goal of suppressing

photorespiration. C4 photosynthesis typically involves two different cell types, the M and the BS

cells, in a conformation termed the Kranz anatomy (Fig. 2).

Figure 2 – Illustrations demonstrating the differences between C3 and C4 leaf structures. (A) Depiction
of a C3 leaf , representing a small BS cells with few organelles. (B) Presentation of a C4 leaf with BS
cells very large, reduced number of M cells relative to BS cells and BS chloroplasts are enlarged and
centripetally positioned. Abbreviations: BS, bundle sheath; M, mesophyll. Adapted from [31]
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The C4 cycle involves the initial fixation of CO2 in the form of bicarbonate in the M cells by

Phosphoenolpyruvate Carboxylase (PEPC), resulting in oxaloacetate (OAA) that is converted to

the transport metabolites malate or aspartate, which are both 4 C molecules, leading to the term

“C4”. Malate or aspartate are then transported to the BS cells, where the C4 molecule is decar-

boxylated releasing CO2. The decarboxylation enzyme used can be either NADP-dependent

Malic Enzyme (NADP-ME), NAD-dependent Malic Enzyme (NAD-ME), Phosphoenolpyruvate

Carboxykinase (PEP-CK) or either a combination of NADP-ME:PEP-CK or NAD-ME:PEP-CK;

the decarboxylation enzyme used determines the subtype of C4 photosynthesis [32]. In the case

of the NADP-ME subtype, the decarboxylation reaction produces Pyruvate, which is transferred

back to the M cell where PEP is regenerated by Pyruvate, phosphate dikinase (PPDK). In

NAD-ME and PEP-CK subtypes, the Pyruvate resulting from the decarboxylation reaction is

transaminated and transported as Alanine. The released CO2 in the BS cell is then re-fixed

by Rubisco, which is located exclusively in the BS cells in C4 plants (Fig. 3 (II)) [33]. This

metabolism effectively concentrates the CO2 from the intercellular air spaces of the leaf inside

the BS cells. In addition to the gains resulting from the suppression of photorespiration, high CO2

concentrations around Rubisco result in high rates of photosynthesis and increased efficiency in

the use of H2O and N resources [34].

Despite the advantages of the C4 cycle, these gains can be offset by changing environmental

conditions. To operate the C4 cycle, extra ATP must be used when compared to the C3 cycle.

Under elevated CO2 environments or at low temperatures, photosynthetic efficiency is greater in

C3 photosynthesis, making the C4 cycle less efficient. This happens because of the combination

of the reduction of photorespiration in the C3 cycle in these conditions and the ATP costs

associated with maintaining the C4 cycle [26].

2.1.4 CAM PHOTOSYNTHESIS

While some plants evolved the C4 pathway, in arid regions where plants experience severe H2O

stress and a Water-Use Efficiency (WUE) is a priority for plant survival, others evolved CAM

photosynthesis. CAM photosynthesis is characterised by the temporal separation between C

uptake from the atmosphere and fixation by Rubisco. When H2O is limited, the guard cells close

the stomata to prevent H2O loss through evapotranspiration. However, this severs gas exchanges
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between the leaf and the atmosphere, limiting CO2 uptake by the plant. CAM plants overcome

this by opening their stomata and taking up CO2 primarily at night when the temperature is lower

and relative humidity is higher, thus reducing H2O loss. During this phase CO2 is fixed by PEPC

producing malate, which is stored in the vacuole overnight as malic acid. During the day the

stomata are closed, the stored malate is decarboxylated and the resulting CO2 is transported to

the chloroplasts where it is fixed by Rubisco (Fig. 3 (III)). This metabolism greatly increases CAM

plant’s WUE, having a three- and six-fold higher WUE than C4 and C3 plants, respectively. The

decarboxylation of malate also greatly increases CO2 concentration around Rubisco, thereby

reducing the increased photorespiration rates expected in high temperature environments [35,

36].

However, in the absence of H2O limitation, CAM photosynthesis is outperformed by C3 and

C4 photosynthesis due to its comparatively lower photosynthetic rates and higher energetic

costs, causing many CAM plants to be slow growing and long-lived [37].

Interestingly, multiple lineages of CAM plants are aquatic. These plants evolved into CAM

not because of H2O limitation but rather C limitation in their environment. These plant habitats

consist of temporary pools which experience elevated day/night C availability fluctuations. By

opening their stomata during the night, the plants are able to take advantage of the elevated

nighttime CO2 levels, while preventing CO2 diffusion during the day [38].

2.2 ENERGY METABOLISM

Reducing equivalents and energy are necessary to drive living processes [40]. Reducing

equivalents are mostly provided as the pyridine nucleotides nicotinamide adenine dinucleotide

reduced (NADH) and NADPH, while energy is provided by the carrier ATP. NADH and NADPH

are generated through the reduction of nicotinamide adenine dinucleotide oxidized (NAD+) and

nicotinamide adenine dinucleotide phosphate oxidized (NADP+), while ATP is generated through

the phosphorylation of Adenosine Diphosphate (ADP). Energetic cellular metabolism operates

on the turnover of these metabolites which act as currency to fuel some metabolic processes

and are regenerated through others.
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Figure 3 – Schematic representations of C3, C4 and CAM photosynthesis. (I) In C3 photosynthesis
Rubisco demonstrates both carboxylase and oxygenase activity, leading to the formation of PG which
undergoes photorespiration; (II) During C4 photosynthesis CO2 is initially fixed as malate in the MC and
then transported to the BSC. There it is converted into Pyr by NADP-ME which concentrates CO2 around
Rubisco. (III) CAM photosynthesis allows for fixation of CO2 during the night and the resulting malate
is stored in the vacuole. During the day the stored malate is released and decarboxylated, releasing
CO2 for Rubisco carboxylase activity and regenerating PEP. Chloroplasts are represented in green and
vacuoles in lilac. Abbreviations: CA, carbonic anhydrase; M, malate; MDH, malate dehydrogenase; ME,
malic enzyme; OA, oxaloacetate; PEP, phosphoenolpyruvate; PEPC, phosphoenolpyruvate carboxylase;
CB, Calvin-Benson-Basham cycle; PG, phosphoglycolate; PR, photorespiration; Pyr, pyruvate; PPDK,
pyruvate phosphate dikinase. Adapted from [39]

The generation of these compounds occurs in different pathways across different sub-

cellular compartments [41]. As overviewed in Chapter 2.1, NADPH and ATP are generated

under illuminated conditions during the light reactions of photosynthesis. These products drive

CO2 fixation into organic molecules in the CBB cycle, and more ATP and reducing power need

to be generated and made available in the cytosol to satisfy cellular demand [42]. Additional ATP

generation occurs in the cytosol through glycolysis and in the mitochondria through oxidative

phosphorylation [43]. Similarly, reducing equivalent generation also occurs as NADH in the

cytosol through glycolysis and in the mitochondria through the Tricarboxylic Acid (TCA) cycle;

and as NADPH in the plastid and cytosol through the pentose phosphate pathway (Fig. 4).

The primary role of NADH is to transfer electrons from the oxidation of substrates into the

mitochondrial electron transport chain to generate the proton gradient necessary for ATP syn-
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Figure 4 – Schematic overview of plant respiration. Substrates for mitochondrial respiration are priorly
generated by other metabolic processes. Glycolysis and the pentose phosphate pathways convert sugars,
in the form of sucrose to organic acids, generating NADH or NADPH and ATP. The organic acids are
further oxidized in the TCA cycle, and the NADH and flavin adenine dinucleotide (FADH2) are produced
there to provide energy for ATP synthesis in the oxidative phosphorylation pathway. Adapted from [44]

.

thesis. On the other hand, NADPH mostly provides a supply of reducing power for biosynthesis,

oxidative stress responses and the maintenance of thiol redox networks [45].

Additionally, the pyridine nucleotides serve not only a central role in energy metabolism [46]

but also have roles in development [47], signalling [48], reactive oxygen, reactive N species and

biosynthesis [49], gene expression [50], immunity [51], and post-harvest metabolism [52].

In addition to plant respiration, the photosynthetic electron transport chain may switch

between linear electron transport to cyclic electron transport in order to provide additional ATP

to satisfy cellular needs [53]. In this chapter, we will detail the activity of the photosynthetic

electron transport chain and its variations with regard to its impact on plant metabolism.

2.2.1 LINEAR ELECTRON TRANSPORT

The light reactions of photosynthesis are composed of chemical processes carried out by

four major protein complexes: PSII, the cyt b6f, PSI, and ATPase [18]. Light capture during
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photosynthesis occurs at two spatially separated reaction centres: PSI and PSII, that function in

tandem. The chlorophyll within these reaction centres absorbs light at different wavelengths,

with PSI absorbing maximally at 700 nm and PSII absorbing at 680 nm. PSI produces a strong

reductant, capable of reducing NADP+ and a weak oxidant, while PSII produces a strong oxidant

(used to oxidize H2O) and a weak reductant. An electron transport chain connects these two

centres in a Z (zigzag) scheme (Fig. 5). The cyt b6f receives electrons from PSII and delivers

them to PSI (participating in the electron transport chain). Both PSII and the cyt b6f pump

protons into the lumen of the thylakoid, making them available for ATPase, which produces ATP

as protons are pumped through it from the lumen into the stroma [44].

Figure 5 – Z scheme of photosynthesis. Red light is absorbed by PSII, producing a strong oxidant and a
weak reductant, while PSI absorbs far-red light producing a weak oxidant and a strong reductant. The
oxidant produced by PSII is used to oxidize H2O, while the reductant produced by PSI is used to reduce
NADP+. Adapted from [44].

In this series of reactions, the electron donor is H2O, which PSII oxidizes according to

Equation 2 [54].

2 H2O → O2 + 4 H+ + 4 e− (2)

From two H2O molecules, four electrons are removed, generating an O2 molecule and four

hydrogen ions which are released into the lumen. These electrons are then transferred into

plastoquinone (PQ), yielding the reduced compound plastohydroquinone (PQH2), which in turn

transfers those electrons into the cyt b6f. Through this complex, electrons are transferred to

plastocyanin (PC) in a cyclic process termed the Q cycle, resulting in the regeneration of PQ

and the transport of protons across the thylakoid membrane into the lumen. PC then reduces
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the PSI. Overall, for every two electrons delivered to PSI, four protons are transported thylakoid

membrane into the lumen, two PQH2 are oxidized to PQ and one PQ is reduced to PQH2. Within

PSI electrons are transferred to the small soluble protein ferredoxin (Fd). The final acceptor of

this chain is NADP+, which is reduced by the membrane-associated flavoprotein Ferrodoxin-

NADP+ Reductase (FNR) to NADPH, thereby completing the linear electron transport (Fig 6)

[39].

2.2.2 CYCLIC ELECTRON TRANSPORT

Electron flow through the cyt b6f is coupled with proton pumping into the lumen, which is in turn

used for ATP generation. Under certain conditions, electron flow can cycle back to the cyt b6f

through the reduction of PQ instead of the reduction of NADP+ by FNR. This cyclic electron

flow results in additional ATP production, but production of no reducing equivalents (NADPH). In

addition, it is thought to play a role in plant photoprotection responses and regulating electron

transfer at the cyt b6f [55].

Four distinct pathways for cyclic electron flow are described, diverging at the PQ reductase

step, where electrons from PSI are transferred into the PQ pool. Maize thylakoids contain a

type 1 NADPH dehydrogenase (NDH) complex, which participates in cyclic electron transport,

by reducing PQ while pumping additional protons to the lumen [56]. This pathway and other

alternatives are illustrated in Figure 6.

Cyclic electron transfer has been shown to play a role in energy balance in C4 metabolism

[57]. Maize, a mostly NADP-ME C4 species, shows a strong BS expression of NDH protein

complex accompanied by reduced BS PSII activity [58], while both NDH and PGR5 were found

overexpressed in NAD-ME C4 compared to C3 and C3-C4 intermediate species of Flaveria

[59]. Due to the extra ATP requirements of the C4 cycle, it is theorized that this can be met by

increased cyclic electron transport in BS cells. More specifically for NADP-ME species, the net

transfer of NADPH from M to BS cells implies a reduced requirement for linear electron transport

to produce NADPH in the BS chloroplast [60].

The exact environmental and metabolic conditions that lead to cyclic electron transport

regulation are still an active area of research, particularly with regards to C4 photosynthesis [61].
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Figure 6 – Representation of linear and cyclic electron transport. Orange arrows indicate linear electron
transport, black arrows cyclic electron transport and blue arrows indicate proton movement. Four different
pathways for cyclic electron transport are shown: 1) NDH complex; 2) Fd-PQ oxidoreductase (FQR); 3)
type 2 NADPH:PQ oxidoreductase (Nda2); and 4) cyt b6f with the possible involvement of FNR. Adapted
from [55]

2.3 NITROGEN METABOLISM

N is an essential component for the biosynthesis of amino acids and proteins, nucleic acids, cell

wall components, hormones, vitamins and others [62]. Plants require an uptake of N from the

environment during autotrophic growth, which is available either as nitrate (NO3
-) or NH4

+. N is

uptaken directly from the soil through the roots or from the air through symbiosis with N-fixing

bacteria in the rhizosphere. However, the majority of N uptake by plants is done via the soil in

the form of NO3
-, since NH4

+ is oxidised to NO3
- by nitrifying bacteria. An exception to this are

flooded or acidic soils, in which NH4
+ is the predominant N source [63]. Assimilation of NO3

-

can occur either in the roots or the leaves. Root assimilation occurs mainly at an early growth

stage and also in many woody plants and some legumes. Leaf assimilation occurs in fully grown

herbaceous plants [64].

In root cells, N transported into the roots can be stored in vacuoles, used for the synthesis

of the amino acids glutamine and asparagine, or sent into the xylem in order to be assimilated

by the leaves [65]. In C3 plant leaves under photoautotrophic conditions, NO3
- is uptaken into
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the M cells, where it is reduced to nitrite (NO2
-) by the action of Nitrate Reductase (NR) in the

cytosol, with NADH as a reductant. NO2
- is toxic and all NO2

- formed by this reaction is quickly

transported to the chloroplast where it is reduced to NH4
+ by Nitrite Reductase (NiR), using Fd

supplied by PSI as an electron donor [66]. The produced NH4
+ is then transferred into glutamate

at the expense of ATP by Glutamine Synthase (GS), forming glutamine. Glutamine is then

converted back to glutamate via Glutamate Synthase (GOGAT), which makes glutamine react

with one molecule of α-ketoglutarate to form two molecules of glutamate, using Fd as a reductant

(Fd-GOGAT). The organic acid α-ketoglutarate acts as an important intermediate in the TCA

cycle and acts here as a C skeleton for N assimilation. Another form of GOGAT also exists in

plants, which used NADH as a reductant (NADH-GOGAT) [67]. The activity of GS and GOGAT

operate in a cyclic way and are collectively designated as the GS-GOGAT cycle. Glutamine and

glutamate then serve as the precursors to generate other biomolecules containing N [68].

C4 plants differ significantly from C3 plants in the compartmentalization of N metabolism

and also in N use efficiency [69]. C4 species display a greater N use efficiency than C3 species,

which is speculated to be connected with the lower amounts of Rubisco required for C fixation

due to the C concentration mechanism, and the reduced need for photorespiratory N recycling.

In addition, C4 plants also segregate the enzymatic mechanism of N assimilation in a cell-specific

way, between the BS and the M cells [70]. NO3
- or NH4

+ are generally uptaken by the BS cell

through the xylem vessels. In maize, NR and NiR are exclusively present in the M cells, while

the GS-GOGAT cycle operates in both BS or M cells, or exclusively on the BS cell. Additionally,

GDC, a key photorespiratory enzyme located in the mitochondria whose activity leads to the

production of NH4
+, is exclusively located in the BS cell of C4 plants [71]. In the event of

oxygenase activity by the BS Rubisco, the NH4
+ released by the subsequent C2 cycle activity

would be re-assimilated by the GS-GOGAT cycle in the BS [72] (Fig. 7).

Despite this, several questions regarding N assimilation are not completely answered. It is

not understood what advantages the cell-specific distribution of N assimilation enables in C4

plants, nor how leaf anatomical variation impacts this distribution [73]. Thus, studies expanding

on N assimilation in C4 may help us shed more light on these subjects and contribute to a

greater understanding of future bio-engineering strategies of C4 metabolism and N fixation.
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Figure 7 – Schematic of N uptake in a maize leaf. NO3
- is uptaken by the BS from the xylem and is

transported to the M cell where it is reduced to NH4
+ by the activity of NR in the cytosol and NiR in the

plastid. The NH4
+ enters the GS-GOGAT cycle and is converted into glutamate and glutamine. For the

GOGAT reaction, Fd or NADH can be used as reductants. Glutamine can then be transported to the
plastid of the BS cell, where it contributes to the assimilation of NH4

+ released by GDC during the C2
cycle. Transport reactions are indicated in dashed arrows. Abbreviations: NO3

-, nitrate; NO2
-, nitrite;

NH4
+, ammonium; GLT, glutamate; GLN, glutamine; Gly, glycine; NR, nitrate reductase; NiR, nitrite

reductase; GS, glutamine synthase; GOGAT, glutamate synthase; GDC, glycine decarboxylase, Fd,
ferredoxin. Adapted from [72]

2.4 CONSTRAINT-BASED MODELLING

One of the greatest achievements in systems biology is the use of computational models

to predict biological activity, using methods such as COnstraints-Based Reconstruction and

Analysis (COBRA). Due to the increased availability of biological data, several databases

exist detailing biochemical and genetic components that comprise cellular activity, including

metabolic pathway information such as genes, proteins, reactions and the relationships between

these components [74]. Through the data stored in these databases, it is possible to generate

network reconstructions of cellular metabolism based on genome annotation, biochemical

characterisation, and scientific literature. Such a network can, for example, represent biochemical

reactions known or predicted in a given organism. Representing the metabolic reactions of a

given cell, alongside genetic context and gene genomic location leads to the construction of a
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Genome Scale (GES) network. Smaller subsections of metabolism may be used when building

the models, leading to the construction of more specific large or small–scale models. These

metabolic networks can be mathematically represented and used to generate computational

predictions of biological functions [15].

The mathematical representation of such a network can be accomplished through the

depiction of the stoichiometric coefficients of each reaction in the form of a numerical matrix

(S), of size m×n, in which every row represents a unique compound (m compounds), and every

column represents one reaction (n reactions), while the flux through all the reactions in the

network is represented by a vector (v). Typically, there are more reactions than metabolites in

the model (n > m) making the system underdetermined, leading to many possible solutions [75].

In CBM, constraints are represented as equations that represent balances or inequalities

that impose bounds on flux values. The matrix S imposes mass balance constraints, ensuring

that the total amount of any compound produced in the network must be equal to the total

amount consumed at steady state. Each reaction is also given a lower and upper bound, which

set the minimum and maximum flux values, respectively. Constraining creates a space of flux

solutions, in which each point can be mathematically represented as a flux distribution listing all

flux values for that point (Fig. 8) [76].

Figure 8 – Conceptual basis of constraint-based modelling. When no constraints exist on the solution
space, the flux distribution may occur anywhere in the solution space. Through applying mass balance
constraints (1) and constraints on fluxes upper and lower bounds (2) a constrained solution space is
defined. Adapted from [77].
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2.4.1 FLUX BALANCE ANALYSIS

Although the imposed constraints define a range of possible flux solutions, one may be interested

in finding a specific point in that space, for instance, the maximum growth rate and corresponding

flux distribution. This optimal point can be found using Flux-Balance Analysis (FBA) [77]. In

FBA, it is assumed that biological systems optimise a given objective function Z = cTv, which

can be any linear combination of fluxes, where c is a vector of weights indicating how much

each reaction contributes to the objective. The goal of FBA is to find a flux distribution that either

minimises or maximises Z.

In Equation (3), the FBA linear problem is represented, starting with the objective, in this

case, the maximisation of a given objective function; this is followed by assuming the flow of

metabolites in the network to be at a steady state; finally, network fluxes are further constrained

between two bounds. From a biological perspective, this objective function can take the shape

of the maximisation of ATP production or maximisation of the flux through a specific biomass

reaction. This biomass reaction corresponds to a sink reaction consisting of the weighted sum

of metabolites used in cellular growth. These weights are typically derived from experimental

measures and are represented as ratios in the reaction stoichiometry.

max(cT · v)
subject to S · v = 0

lb < v < ub
(3)

Through solving the described linear programming problem, a set of optimal steady-state

flux distributions that satisfy the given constraints is reached. The pipeline for FBA analysis is

exemplified in Fig. (9).

2.4.2 PARSIMONIOUS FLUX BALANCE ANALYSIS

In addition to FBA, other extensions of this methodology can also be used to obtain optimal

solutions. One such method is a variation of FBA termed parsimonious enzyme usage FBA

(pFBA) [78]. In pFBA, the underlying assumption is that cells have a limited total enzymatic
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Figure 9 – Schematic representation of the formulation of an FBA problem. (a) To perform FBA, one
must first build a metabolic network reconstruction consisting of a list of stoichiometrically balanced
biochemical reactions; (b) The reactions are then converted into the stoichiometric matrix (S). The flow of
metabolites is assumed to be at a steady state as given by S · v = 0; (c) To solve the system of equations,
an objective function (Z) is defined, in this case, maximisation of biomass; (d) Linear programming is
used to identify the flux distribution that maximises or minimises the objective function within the space of
feasible fluxes (blue region). The thick red arrow indicates the direction of increasing Z, while the thin
red arrows depict the process of linear programming, culminating in the identification of an optimal point.
Adapted from [77].

capacity and have therefore evolved to minimise the costs for the synthesis of enzyme and

membrane transporters that support cell growth and maintenance [79].

These assumptions are mathematically approximated by employing FBA to optimise the

objective function, followed by minimising the net metabolic flux through all reactions in the

network. The latter is obtained through the addition of a constraint to minimise the sum of the

absolute flux values to the FBA linear problem, creating a two-step linear problem. Therefore,

pFBA finds the subset of genes and proteins that may contribute to the most efficient metabolic

network topology to a given set of constraints. This methodology allows the obtention of predicted
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flux distributions which are more closely correlated to in vivo distributions, as described through

comparison with omic data [80].

2.4.3 FLUX VARIABILITY ANALYSIS

The methods discussed above allow the computation of the optimal flux distribution in the flux

solution space that optimises a given objective function. However, these flux distributions may

not be unique. For any optimal flux distribution, there may exist alternate optimal solutions

defining a region in the flux solution space that generate the same objective function value

via different flux distributions, while satisfying all the imposed constraints. The occurrence of

these alternative distributions stems from the flexibility of metabolism, namely the existence of

several metabolic pathways that can lead to the production of the same metabolites, creating

redundancy in the metabolic network [81].

One way to approach this issue is through another COBRA method defined as Flux Variabil-

ity Analysis (FVA). FVA is used to find the minimum and maximum flux for reactions in a given

network. It also allows for the exploration of these parameters under suboptimal conditions,

e.g., 80% of maximal possible biomass production. After solving equation (3), FVA solves two

optimisation problems for each flux of interest. The linear programming problem for FVA is

shown in equation 4, where Z0 = wTv0 is an optimal solution to equation 3; additionally γ

controls whether the analysis is performed on suboptimal network states (0 ≤ γ < 1) or on the

optimal state (γ = 1). The solution to equation 3 determines the upper and lower bounds of

every reaction flux that will result in the same value for the original objective function (Fig. 10)

[82].

maxv/minv vi

subject to S · v = 0

wTv ≥ γ Z0

lb < v < ub

(4)

The computed flux boundaries allow for confirmation of flux variability throughout the

network, with these findings translating into alternative optimal flux distributions.
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Figure 10 – Schematic of the optimal solution space and FVA results. The blue polygon represents the
region where the objective function can take on the same optimal value, and the red circles represent
maximum and minimum flux values that allow the optimal objective function value, which can be deter-
mined using FVA. N and photon uptake reactions are used as examples for FVA computation. Adapted
from [81].

2.5 MODELLING PLANT METABOLISM

2.5.1 PLANT METABOLIC MODELS

In the past decade, there has been a rapid increase in the number of sequenced plant genomes

[83]. Data from public databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG)

[84], PlantSEED [85] and The Plant Metabolic Network Database [86], provide organism-specific

information on genes, enzymes, reactions and metabolites which can be implemented in

reconstructing plant metabolic network models. Such stoichiometric models exist for different

plant species and can be classified as ”core” models, restricted to the well-known and conserved

pathways of the central C metabolism and GES models, which contain all the reactions catalysed

by the enzymes encoded in an annotated genome [87].

Most stoichiometric models for plant metabolism consider only one cell type. The first

developed models considered primarily leaf metabolism, using such models to study both

autotrophic and heterotrophic metabolism. However, more recently, multi-cell models are being

built, representing multi-tissue and whole-plant level networks. In general, these models serve

as powerful tools to study the metabolic capacities of single cells [88]; guide systems-level
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metabolic pathway analysis [89]; interactions between the M and BS cells in C4 photosynthesis

[17]; interactions between different tissues in developing seeds [90]; explore whole-plant systems

represented by connected leaf, stem, and root cell models [90]; whole-plant diel models [91];

and rhizobial symbiosis in legumes [92], among others.

However, there are several challenges to plant network reconstruction. There is a lack of

detailed experimental information available for genome annotation, even for intensely studied

organisms. For Arabidopsis thaliana, the main model for plant biology studies, an estimated 21%

of enzymes are missing direct experimental evidence [93]. In addition, enzyme promiscuity, which

is prevalent in plant specialised (secondary) metabolism, makes it difficult to accurately define

stoichiometry in metabolic networks. Lastly, in existing databases, there are still knowledge gaps

regarding metabolite intracellular transport and enzyme subcellular location. These limitations

may force modellers to adopt either conservative or non-conservative approaches. The former

involves curating pathways in order to only include information backed by strong evidence [94];

the latter involves filling the knowledge gaps with related data such as known orthologs from

related or any species, in a process termed gap-filling [95]. Despite these challenges, the

number of available plant models has dramatically increased over the last decade. In 2020,

Clark et al. reviewed the published plant genome-scale models and found 35 published models

for 19 plant species [96].

Töpfer reviewed in 2021 the existing flux-balance models of leaf metabolism [16]. They

were divided into the models investigating the leaf metabolic responses through constraining

environmental variables, such as light, CO2, O2 and nutrient uptake exchange reactions; and into

data-driven models, integrating omics data to constraint reaction fluxes. In the latter case, data

was collected from leaf material exposed to different environments. Additionally, these studies

were organised according to modelling either biotic or abiotic interactions. These included

species-specific leaf models for rice [97, 98] , Arabidopsis [99, 100], maize [101–103], tomato

[104], potato [105], Flaveria genus [106]; and generic models for CAM [107], C4 [17] and

C3-CAM photosynthesis [35].
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2.5.2 CONTEXT-SPECIFIC MODELS

Network reconstruction at GES captures all reactions in all tissues, whereas context-specific

models seek to capture the relevant reactions in a particular tissue and context. Plant metabolism

is dynamic, changing from tissue to tissue and in response to the environment [108]. Much of

plant secondary metabolism, for example, is induced by abiotic or biotic stress. In a given cell,

gene expression dictates which pathways can be used at any time point [109]. The construction

of such context-specific models can be achieved through the integration of omics data, which

are used to constrain reaction fluxes in a GES model. Methods such as PROM [110], iMAT [111],

MADE [112], GIMME [113], AdaM [114] and E-flux [115] are examples of frameworks used to

integrate transcriptomics data as flux constraints in stoichiometric models. In addition, multi-

omics approaches are also being developed by mapping gene-protein-reaction relationships,

allowing for the joint integration of transcriptome, proteome, and metabolome data [116]. The

abundance of available data in pathway databases makes it easier to build increasingly complete

and specific models. However, the question of the practicality of larger networks arises. For

example, in an Arabidopsis GES model [117], only a fraction of total reactions carried flux during

after FBA simulations. This happened because only a subset of the network was required to

synthesise the main biomass components and account for maintenance-associated energetic

costs. Furthermore, both the number of active reactions and the reactions themselves were

similar to FBA models of primary metabolism [109]. As such, to model photosynthetic pathways,

a core model of central metabolism is sufficient to simulate heterotrophic and autotrophic growth.

2.6 LEAF ANATOMICAL CONSTRAINTS

C3 plants evolution into C4 plants is accompanied by several modifications of leaf anatomy

[118]. Leaf architecture of C4 plants is collectively designated of Kranz anatomy, with one of

the most common phenotypes presented above in Fig.2. Despite this, there is a considerable

anatomical variation in the Kranz syndrome among C4 species, resulting from convergent

evolution from several plant lineages [119]. There are four essential anatomical requirements

for C4 photosynthesis: I) Two distinct cell types are arranged so that atmospheric gases reach
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the M cell more easily than the BS cell. The M cell houses PEPC, while the BS cell houses

the CBB cycle; II) The two cell types must be in close contact to allow the rapid exchange of

metabolites; III) The cell where the CBB cycle is housed (BS cell) must occupy a large enough

fraction of the leaf to accommodate a significant amount of chloroplasts, and IV) Chloroplasts

must be abundant in the CBB cycle cell [120–124]. Prevention of atmosphere contact with BS

cell is essential to photorespiration [34]. Close contact between the cell types, coupled with the

abundance of plasmodesmata, allows the fast exchange of C4 acids (malate or aspartate) from

theM to the BS. This exchange, together with the transport of Phosphoenolpyruvate (PEP) or

pyruvate back to the M cell, enables the carbon concentration mechanism [125]. The increase

in BS cell tissue ratio in C4 plants compared to C3 plants is connected with the need for a

larger number of chloroplasts to house Rubisco, whose activity is no longer present in the M

chloroplasts. This increase in BS tissue can be achieved by an increase in BS size or number,

depending on the C4 species [119].

Within these constraints there is a considerable anatomical variation, encompassing mito-

chondria and chloroplast size and abundance, the position of those within the BS cells and the

presence of suberin in the walls of BS cells [27, 126, 127]. Variation also occurs in organelle

function depending on C4 subtypes, with, as an example, PSII being deactivated in NADP-ME

C4 plants chloroplasts while this is not the case in NAD-ME subtype C4 plants [128]. The

NADP-ME subtype allows the transport of NADPH from M chloroplast linear electron transport

to the BS in the form of malate and through the triose phosphate-3-phosphoglycerate shuttle.

This reduces the need for BS chloroplast to produce NADPH and leads to their specialisation in

cyclic electron transport and CBB cycle activity. In addition, several NADP-ME species, such as

Maize, display agranal BS chloroplasts. In agranal chloroplasts, thylakoids do not form grana

and require higher light intensities for PSII activation, thereby reinforcing maize BS chloroplast’s

specialization in cyclic electron transport [129].

Due to Kranz anatomy, BS cells are shaded by their surrounding M cells, resulting in lesser

light penetration to the former [61]. It is postulated that the relative area ratios of BS:M tissue

ratio affects the degree of shading of BS cells, and therefore the light uptake by BS chloroplasts.

These changes in light absorption alter BS light-dependent energetic metabolism and therefore

influence the energetic exchanges of the C4 cycle as a whole. As with other traits related to

Kranz anatomy, there is a suite of variations of BS:M tissue ratio compatible with C4 metabolism,
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spread over several C4 species [130]. It follows that variations in this ratio will thereby affect the

energy metabolism inherent to the C4 cycle, and may contribute to observed differences in the

cell-specific distribution of metabolic processes in these species [131].

Despite the extensive use of CBM to model C4 metabolism, none have considered the

effect of differential BS:M tissue ratios or quantified its metabolic impact through the analysis

of predicted flux distributions. We hypothesise that by adding such anatomical constraints to a

CBM framework, more accurate flux predictions may be obtained, particularly with regard to C4

leaf energetic metabolism.



3

M E T H O D S

In this section, I explain how we built the models used in our analysis, the specific constraints

utilized and how the anatomical constraints were implemented into the model. In the end, I

discuss methodologies used to perform the flux simulations. All the code used can be found on

the following link: https://github.com/Toepfer-Lab/Anatomical Constraints C4.

3.1 MODEL BUILDING

The models were built and implemented using Python with the COnstraints-Based Recon-

struction and Analysis for Python COnstraints-Based Reconstruction and Analysis for Python

(COBRApy) package for model visualization and manipulation [132]. COBRApy is a python

package for CBM that allows the implementation of COBRA methods. Additionally, species-

specific biomass compositions were added to the models. The developed models correspond

to large-scale growing leaf cell models that are capable of both autotrophic and heterotrophic

metabolism. These models encompass reactions from plant primary metabolism, which are

charge- and proton-balanced by considering molecular protonation states [107]. Plant primary

metabolism encompasses all reactions needed for plant growth and development and is highly

conserved in higher species [133]. In order to simulate a growing leaf, the objective function was

defined as the maximization of biomass production.

On one side, architectural and external contains were added, consisting of adding miss-

ing reactions, constraining metabolite uptakes reactions into the model and parameterising

exchanges between the cell types. On the other, internal constraints were added in order to

27

https://github.com/Toepfer-Lab/Anatomical_Constraints_C4


3.1. Model building 28

ensure either a C4-specific flux distribution or to add specific constraints pertaining to maize

metabolism. These constraints are further detailed below.

3.1.1 MODELS

The initial model was a generic C3 model of plant central carbon metabolism provided by the

Sweetlove group [134]. C4 photosynthesis evolved from C3, making all C4 enzymes already

present in the C3 model [133]. This model is composed of 861 metabolites and 896 reactions.

The model is further compartmentalised into 12 sub-cellular compartments, including the plastid,

peroxisome, vacuole, cytosol, mitochondria, and endoplasmatic reticulum (Fig. 11). Pathway

information for 208 pathways is also available for model reactions.

Figure 11 – Schematic representation of the C3 one-cell model. The model contains several subcellular
compartments which possess their own reactions and transport metabolites through the cytosol. The
model can import and export metabolites from the extracellular environment to the cytosol through the
use of exchange reactions.

We used the pipeline described by [17] to generate our maize C4 leaf model. The model-

building process involved the duplication of the C3 generic model and the connection of the two

network copies with transporters of cytosolic metabolites (Fig. 12). The initial capture of carbon

occurred as CO2 in the M cell which was then transported to the BS cell. Here, carbon was

refixed by Rubisco in the CBB cycle, enabling growth. The biomass composition was obtained
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from [85, 101, 135], and encompasses proteins, carbohydrates, cell wall constituents, lipids and

soluble metabolites. The flux unit used in the model is µmol m-2 s-1 corresponding to the amount

of flux through a reaction (µmol) by a given area (1 m2) in a given timeframe (1 s).

Figure 12 – Schematic representation of the C4 two-cell model. The M cell is allowed to exchange gases
with the extracellular airspace, while the BS exchanges inorganic and organic molecules with the xylem.
Cytosolic exchange reactions are added between the models allowing carbon to be supplied to the BS
cell where the CBB cycle occurs. This allows the production of starch, sugars and amino acids which are
then exported through the BS cell

3.1.2 NAMING CONVENTIONS

In the models, each reaction and metabolite is associated with a unique identifier. These identi-

fiers are written according to a naming convention, in order to facilitate model manipulation and

interpretation of simulation results. Metabolite IDs are organized according to the structure of

{Metabolite Name} {Compartment}. Three types of naming conventions are used for reaction

IDs. Firstly, exchange reactions between the model and the extracellular space (uptake/secretion

reactions) follow the convention {Reaction Name} tx. Secondly, transport reactions between

sub-cellular compartments have a {Metabolite Name} {Origin Compartment}{Destination

Compartment} structure. Finally, all other reactions follow a similar convention as with the

metabolites with {Reaction Name} {Compartment}. Metabolite and Reaction names are de-
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rived from Metacyc ([136]) while the compartments are written as a one or two-letter abbreviation

(Ex: Mitochondria - m; Plastid - p; Cytosol - c).

In the C4 model, a prefix was added to each metabolite and reaction ID during the duplication

process to identify the cell type. This results in the structure of {[Cell Type]} {Previous ID}.

Cell type prefixes can be either for the bundle sheath ([B]) or for the mesophyll ([M]). In addition,

transport reactions of cytosolic metabolites between the cell types were named similarly to

the exchange reactions but with an added prefix, with the structure of {[MB]} {Metabolite

Name} tx.

3.1.3 LEAF ARCHITECTURAL CONSTRAINTS

Added reactions

Missing transport reactions were added to the base model in order to enable a correct C4 flux

distribution. A malate/pyruvate shuttle was added to allow better export of pyruvate from the BS

plastid during the C4 cycle. A pyruvate/proton symporter was also added to improve pyruvate

transport to the plastid (Table 1). Reactions were added according to the work of [17].

Table 1 – Transport reactions added to the base C3 model to enable the C4 cycle. Based on the model
presented by [17].

Reaction Name Reaction ID Reaction Formula Reference

Malate/Pyruvate transporter PYR MAL pc
MAL c + PYRUVATE p ↔

MAL p + PYRUVATE c
[137]

Proton mediated Pyruvate
symporter

PYR H pc
PROTON c + PYRUVATE c ↔

PROTON p + PYRUVATE p
[17]

Uptake reactions

The exchange of metabolites with the extracellular environment is performed either through

uptake (source) or secretion (sink) reactions. In order to provide biologically interpretable flux

solutions, the directionality of these reactions needed to be changed in some cases, while in

others the exchange reaction needed to be outright blocked. Uptake of NH4
+ was blocked in
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order to prevent preferential uptake over NO3
-. Only sucrose export was allowed in order to

retain autotrophic growing conditions. Uptake of CO2 from the medium was blocked in the

BS, forcing the use of the C4 metabolism to shuttle carbon from the M to the BS. This can be

assumed due to reduced BS CO2 leakiness under moderate temperature and incident irradiance

[138] (Table 2). Uptake of CO2 by the maize M cell was constrained to a maximum of 40 µmol

m-2 s-1, as reported in [139]. Additionally, the uptake of inorganic nutrients through the vascular

bundle by the BS cells was simulated by blocking their uptake through the M cell, which now can

only conduct gaseous exchanges (CO2 and O2) with the medium.

Table 2 – Constraints applied to the lower and upper bounds of the general and C4 model. The value of
1000 µmol m-2 s-1 was defined as the maximum flux value. Constraining both lower and upper bounds
results in a blocked reaction. Blocking the lower bound generates a source reaction while blocking the
upper bound generates a sink reaction.

Reaction ID Lower Bound Upper Bound

Both Models

H2O tx -1000 1000

NH4 tx 0 0

Nitrate tx 0 1000

Pi tx 0 1000

SO4 tx 0 1000

O2 tx -1000 1000

Sucrose tx -1000 0

GLC tx -1000 0

Photon tx 0 1000

unlProtHYPO c 0 0

C4

[B] CO2 tx 0 0

[M] CO2 tx 0 40

[M] Nitrate tx 0 0

[M] SO4 tx 0 0

[M] H2O tx 0 0

[M] Ca tx 0 0
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Table 2 continued from previous page

Reaction ID Lower Bound Upper Bound

[M] Mg tx 0 0

[M] H2O tx 0 0

[M] Pi tx 0 0

[M] Ca tx 0 0

Exchange reactions

Exchange of cytosolic metabolites was allowed between the M and BS in the C4 model, with

the exception of 47 metabolites which are presented in Table 3. This allows metabolites to be

transported as needed between the cell types despite cell-type specific uptake from the medium.

The list of metabolites whose transport was blocked is based on the work of [17].

Table 3 – List of cytosolic metabolites whose exchange is blocked between the bundle sheath and
mesophyll cells in the C4 model.

Metabolite Name Metabolite ID Metabolite Name Metabolite ID

Hydrogen Sulfide

(H2S)
HS c Oxaloacetate

(C4H2O5)

OXALACETIC

ACID c

Fructose

1,6-bisphosphate

(C6H14O12P2)

FRUCTOSE 16

DIPHOSPHATE c

Hydrogencarbonate

(HCO3)
HCO3 c

3-phospho-D-glyceroyl

phosphate

(C3H4O10P2)

DPG c UTP

(C9H11N2O15P3)
UTP c

Proton (H+) PROTON c UDP

(C9H11N2O12P2)
UDP c

Acetaldehyde

(C2H4O)
ACETALD c UDP-α-D-glucose

(C15H22N2O17P2)

UDP

GLUCOSE c
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Table 3 continued from previous page

Metabolite Name Metabolite ID Metabolite Name Metabolite ID

Acetate

(C2H3O2)
ACET c ATP

(C10H12N5O13P3)
ATP c

5,10-methenyl

tetrahydrofolate

(C20H22N7O6)

5 10 METHENYL

THF c

ADP

(C10H12N5O10P2)
ADP c

5-methyltetra

hydrofolate

(C20H25N7O6)

5 METHYL THF c AMP

(C10H12N5O7P)
AMP c

L-homocysteine

(C4H9NO2S)
HOMO CYS c IMP

(C10H11N4O8P)
IMP c

S-adenosyl-L-homo

cysteine

(C14H20N6O5S)

ADENOSYL

HOMO CYS c

XMP

(C10H11N4O9P)

XANTHOSINE 5

PHOSPHATE c

O-acetyl-L-serine

(C5H9NO4)
ACETYLSERINE c GTP

(C10H12N5O14P3)
GTP c

Tetrahydrofolate

(C19H23N7O6)
THF c GDP

(C10H12N5O11P2)
GDP c

Adenosine

(C10H13N5O4)
ADENOSINE c GMP

(C10H12N5O8P)
GMP c

Maltose

(C12H22O11)
MALTOSE c CDP

(C9H12N3O11P2)
CDP c

coenzyme A

(C21H32N7O16P3S)
CO A c dUMP

(C9H11N2O8P)
DUMP c

γ-L-glutamyl 5-phosphate

(C5H8NO7P)
L GLUTAMATE 5 P c dTMP

(C10H13N2O8P)
dTMP c

Acetyl-CoA

(C23H34N7O17P3S)
ACETYL COA c dTDP

(C10H13N2O11P2)
DTDP c
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Table 3 continued from previous page

Metabolite Name Metabolite ID Metabolite Name Metabolite ID

Cellulose

(C6H10O5)n

CELLULOSE c GTP

(C10H12N5O14P3)
GTP c

L-glutamate-5-

semialdehyde

(C5H9NO3)

L GLUTAMATE

GAMMA

SEMIALDEHYDE c

dTTP

(C10H13N2O14P3)
DTTP c

S-adenosyl-L-

methionine

(C15H23N6O5S)

S ADENOSYL

METHIONINE c

NAD+

(C21H26N7O14P2)
NAD c

Diphosphate (H4O7P2) PPI c NADH

(C21H27N7O14P2)
NADH c

(S)-1-pyrroline-5-

carboxylate

(C5H6NO2)

L DELTA1

PYRROLINE 5

CARBOXYLATE c

NADP+

(C21H25N7O17P3)
NADP c

Ammonium

(NH4
+)

AMMONIUM c NADPH

(C21H26N7O17P3)
NADPH c

Carbon dioxide

(CO2)
CARBON DIOXIDE c

Rubisco

In C3 plants, the M Rubisco oxygenase activity has been measured and is reported to have 3:1

carboxylase/oxygenase ratio [100]. In C4, due to the carbon concentration mechanism, Rubisco

oxygenase activity is negligible.

In the C4 model, 3 Rubisco populations were implemented. One population was imple-

mented in the M cell and was constrained to a 3:1 carboxylation/oxygenation ratio. Another

was implemented in the BS cell, uses the CO2 transported through the C4 cycle and was

subjected to no carboxylation/oxygenation ratio. The last was implemented in the BS and was
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constrained to only use CO2 directly imported from the M cell and was also constrained to a

3:1 carboxylation/oxygenation ratio [17]. The purpose of this last population was to observe the

model choice between the cost of the C4 cycle and photorespiration.

3.1.4 VOLUMETRIC CONSTRAINTS

In our modeling approach, two interacting systems, corresponding to the BS and M tissue are

being modeled. These two systems are spatially separated and light uptake into the systems is

modelled independently and is regulated by the ratio between light uptake by the BS cell and

light uptake by the M cell (AB BS
M

, no unit). Observation of figure 2, however shows that, not only

are the BS cells surrounded by M cells, when looking at a section of leaf surface, there are

areas that are exclusively occupied by M tissue and areas occupied by BS tissue. As such, only

the AB BS
M

is not sufficient to accurate model the light uptake by each system. By accounting for

these different tissue surface areas through a the implementation of a volume ratio constraint

(VBS
M

, no unit), we can describe this effect.

Anatomical constraints were implemented into our constraint-based modelling framework

through a volume ratio constraint between the BS and the M tissue (VBS
M

). Leaf thickness

(VThickness, m) was equal for both cell and therefore VBS
M

was calculated as the ratio between the

BS (VBS, m2) and M (VM, m2) tissue surface area as described in equation 5.

VBS = (VWidth)
2 · VThickness

VM = (IVD − VWidth)
2 · VThickness

VBS
M
=

VBS

VM

VBS
M
=

(VWidth)
2 · VThickness

(IVD − VWidth)
2 · VThickness

VBS
M
=

(VWidth)
2

(IVD − VWidth)
2

(5)

BS surface area was approximated by squaring leaf vasculature width (VWidth, m), while

M surface area was approximated by squaring the difference between the interveinal distance

(IVD, m) and VWidth. Data was collected for maize leaf anatomical measurements from [131].
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Exchange stoichiometry

The calculated VBS
M

ratio was then used to constrain the stoichiometry of the exchange reactions

between the M and the BS cell. Model flux units are given in µmol as a function of area

(m2) and time (s). Because of this relationship, moving flux from one compartment to another

compartment with a larger or smaller area leads to a downscale or upscale in flux, respectively,

once the flux unit is scaled. To compare the flux values between the cell types, fluxes are

multiplied by the volume value of their respective cell type and have their units converted to

µmol s-1. This is illustrated in Figure 13, given an example where VBS
M
= 4.

Figure 13 – Representation of the flux scaling through the exchange reactions between the M and BS cell
with the implementation of surface area differences. The green arrows represent the exchange reaction
and the scaling process. It must be noted that although VM and VBS are referred to as volumes, their unit
is in m2, as described in equation 5.

In this way, if VM is assumed to always have an area of 1 m2, all metabolite exchange

reactions between the M and BS cells had their stoichiometries scaled in such a way that

1 µmol
m2 s [M] Metabolite c ↔ 1/VBS

M

µmol
m2 s [B] Metabolite c. This results in a simulation of the effect

of relative tissue sizes upon metabolite transport between the cell types.
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Light uptake

Light uptake into the model was defined separatly as the light uptake into the BS (PBS, µmol

m-2 s-1) and light uptake into the M cell (PM, µmol m-2 s-1). To compare light uptakes with

bibliographically reported values, PBS and PM were normalized by multiplying them by the

respective areas of their cells, like described in figure 13. These values were then summed,

originating PTotal (µmol s-1) (Equation 6).

PTotal = PBS · VBS + PM · VM (6)

The M cells surround their neighbouring BS cells, leading to a shading effect, in which the

BS cells receive less light than the M cells [140]. To model this effect, normalized PBS and PM

values are allocated through the introduced through the (AB BS
M

) ratio (Equation 7), which was

implemented in previous works [17]. When AB BS
M
= 1 and VBS

M
= 1, PBS = PM.

AB BS
M
=

PBS · VBS

PM · VM
(7)

From the values of VBS, PTotal and AB BS
M

the values of PM and PBS need to be calculated in

order to be supplied to the model as constraints for the photon uptake reaction of the respective

cell types. We first deduced the formula for the calculus of PBS from Equation 6 (Equation 8)

and from Equation 7 (Equation 9).

PBS =
(PTotal − PM · VM)

VBS
(8)

PBS = AB BS
M
· PM · VM

VBS
(9)

In the same way, Equation 6 and Equation 9 were combined to deduce the formula for the

calculus of PM. This resulted in Equation 10, which calculates PM from the known values of

PTotal, VM and AB BS
M

.



3.1. Model building 38

PTotal =

(
AB BS

M
· PM · VM

VBS

)
· VBS + PM · VM

= AB BS
M
· PM · VM + PM · VM

=
(

AB BS
M
+ 1

)
· PM · VM

By rearranging the equation, we obtain:

PM =
PTotal(

AB BS
M
+ 1

)
· VM

(10)

As previously mentioned, if VM is normalized to always take the value of 1 m2 (VM = 1),

then VBS
M

= VBS. This allows the simplification of equations 10 and 8, resulting in equation 11

and 12, respectively, which are implemented into the model.

PM =
PTotal(

AB BS
M
+ 1

) (11)

PBS =
(PTotal − PM)

VBS
M

(12)

3.1.5 INTERNAL CONSTRAINTS

General constraints

Plastoquinol Oxidase, NTT, and uncoupled pyruvate transport were blocked according to [17].

Unutilized biomass reactions already present in the model were blocked in order to prevent

unwanted sink reactions. ATP maintenance cost reaction acts exclusively as an ATP sink, and

its directionality was constrained to only allow ATP consumption. PPDK is located mostly in

M cells in the plastid compartment [33]; transport of pyruvate was achieved by blocking this

reaction in the cytosol in the M cell.

In maize, FNR is membrane-bound in the BS, mostly capable of NADP+ photoreduction,

while it is present in both membrane-bound and soluble form in the M, being capable of both
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NADP+ photoreduction and reducing ferredoxin. Constraints for FNR in the model were updated

to reflect this, with unconstrained directionality assigned to FNR in the M cell, and only allowed

in the direction of NADP+ photoreduction in the BS cell. PSII is lacking in the BS of Maize and

was therefore blocked. All added internal constraints are detailed in Table 4.

Table 4 – List of constraints used in the model curation of internal reactions in the C3 and C4 models.

Reaction ID Lower
bound

Upper
bound

Reference

Both Models

Plastoquinol Oxidase p 0 0 [141]

ATP ADP Pi pc 0 0 [142]

PYRUVATE pc 0 0 [17]

Biomass tx 0 0

-AraCore biomass tx 0 0

ATPase tx 0 1000

C4

[M] PYRUVATEORTHOPHOSPHATE DIKINASE RXN c 0 0 [33]

[B] PSII RXN p [143]

[M] 1 PERIOD 18 PERIOD 1 PERIOD 2 RXN p 1000 1000
[144]

[B] 1 PERIOD 18 PERIOD 1 PERIOD 2 RXN p 0 1000

Carbon concentrating mechanism

Analysis of initial FBA solutions revealed no C4 cycle activity. Traceback of C metabolism

revealed that the C4 cycle was bypassed through the reverse usage of TCA cycle and urea

degradation reactions. This was corrected by manipulating the directionality of the involved

reactions to allow decarboxylation through the C4 pathway (Table 5).
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Table 5 – List of constraints applied in order to regulate alternative decarboxylation pathways and enable
the C4 cycle.

Reaction ID Lower bound Upper bound

[B] UREASE RXN c 0 0

[M] UREASE RXN c 0 1000

[B] CARBAMATE KINASE RXN p 0 1000

[M] CARBAMATE KINASE RXN p 0 1000

[B] ISOCITDEH RXN m 0 1000

[M] ISOCITDEH RXN m 0 1000

[B] ISOCITDEH RXN c 0 1000

[M] ISOCITDEH RXN c 0 1000

[B] ISOCITRATE DEHYDROGENASE NAD RXN m 0 1000

[M] ISOCITRATE DEHYDROGENASE NAD RXN m 0 1000

Light-dependent maintenance

Light-dependent maintenance was implemented as described in [35]. It results in the implemen-

tation of equation 13, in which x represents a photon uptake and y represents maintenance

ATPase reaction flux, which is an ATP sink reaction. Such an implementation was designed to

include the costs of non-growth associated cellular maintenance into the model and is present in

each cell-type in the C4 model.

y = 0.0049x + 2.7852 (13)

Additionally, a previous study reported values for ATP and NADPH consumption in Arabidop-

sis thaliana heterotrophic cell cultures under control conditions [145]. This data was implemented

into the model by constraining NADPase reactions (NADPH sink reaction) to have a combined

one unit of flux for every three units of flux through the ATPase reaction (3:1 ATPase/NADPase),

whose value is determined by the light uptake according to Equation 13. There are three

NADPase reactions in each cell, in the plastid, mitochondria and cytosol compartments, and the

model freely chooses which should carry flux.



3.2. Flux simulations 41

3.2 FLUX SIMULATIONS

For the model simulations, pFBA was used. The solver used to run the linear optimisations was

”Gurobi”.

3.2.1 SVG FLUX MAPS

Flux solutions were visualised by integrating pre-made graphs of metabolic pathways with flux

data from model simulations. The program Inkscape [146] was used to manually generate SVG

flux metabolic maps. Flux solutions were saved as Pandas dataframes and then reaction flux

data was mapped to the corresponding arrows in the SVG map. Mapped flux data was then

scaled and implemented into the arrows both as a colour gradient and as arrow width.

3.2.2 BUDGET PLOTS

Metabolite turnover was analysed through a pair of stacked barplots in which one bar contains

flux values of metabolite-consuming reactions, while the other contains flux values of metabolite-

producing reactions. In every reaction, the budgeted metabolite stoichiometry was multiplied by

the reaction flux value as a scaling procedure.
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R E S U LT S A N D D I S C U S S I O N

4.1 LEAF BIOMASS COMPOSITION

A biomass reaction was built for maize, considering a set of 28 metabolites, representing

carbohydrate, protein, cell wall, lipid and soluble metabolite components. This biomass reaction

represents a sink reaction in which the relative percentages of the components needed for

cellular growth are represented as stoichiometries of each metabolite, which, when summed,

lead to one flux unit of biomass. The leaf-specific stoichiometries were derived mostly from

[102], with starch, maltose, glucose, sucrose and fructose drawn from [101] and cellulose from

[135] models biomass equations. Before adding the reaction to the model, the stoichiometric

coefficients for each metabolite were converted to the same units (mM) and scaled to 100.

Scaling was performed to allow the interpretation of the biomass reaction flux value as the result

of the relative contribution of each of its components. The scaled stoichiometries were then

used to create the maize biomass equation and added to the models (Fig. 14).

Analysis of the used biomass composition shows that the biggest contributor to the biomass

corresponds to carbohydrates, with approximately 53% contribution to total biomass, followed

by proteins (39%), cell wall (3.69 %), lipids (3.6%) and soluble metabolites (0.8 %). This is

consistent with previously measured compositions of maize leaves, which identified C as the

most abundant nutrient in maize leaves both in control and elevated temperature conditions

[147].

42
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Figure 14 – Representation of the relative percentages of each class of metabolites contribution to the
Maize biomass equation.

4.2 MAIZE C4 MODEL

The maize C4 model results from the duplication of a generic model capable of C3 photosynthesis.

This results in a total of 1722 metabolites and 1792 reactions. The initial version of the generic

C3 model corresponded to the ”Core” version. This model version was obtained through

the deprotonation of the original ”ProtonationStateCore” model. The advantages of the ”Core”

version lay in the absence of calculation of the protonation and subsequent reaction stoichiometry

changes whenever reactions needed to be added to the model. Protonation data is difficult

to obtain and implement into the model. Issues within the ”Core” version required additional

curation, leading to the ”ProtonStateCore” version being used in this work.

4.2.1 PREDICTION OF C4 CYCLE

Maize primarily uses the C4 photosynthetic pathway of NADP-ME, with a smaller engagement of

the PEP-CK pathway. After initial fixation of C into OAA by PEPC, the C4 molecule is then either

converted to aspartate in the cytosol by the reversible action of aspartate aminotransferase

(AspAT) or into malate in the plastid by the action of malate dehydrogenase. These molecules
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are then transported to the BS directly through the plasmodesmata. In the case of aspartate,

it is converted back into OAA by AspAT and then decarboxylated into PEP by PEP-CK, which

is transported back to the M cell to serve again as a substrate to PEPC. On the other hand,

malate is transported to the plastid where it is decarboxylated by NADP-ME yielding pyruvate.

This pyruvate is transported back into the M cell plastid where it is converted to PEP by PPDK,

which is transported to the cytosol to also serve as a substrate to PEPC. Maize is known to

operate both of these C4 cycle subtypes simultaneously.

The C4 model was able to accurately simulate each of these subtypes individually and

also simulate their co-activity (Figure 15)). This was only possible after the application of the

curation described in chapter 3. After blocking or constraining to high photorespiratory flux the

M cell Rubisco, and blocking direct CO2 transport between the cell types, the model predicted

biologically unfeasible decarboxylation routes through urea metabolism and through the partially

reversed activity of the TCA cycle. The root of this issue was identified as the lack of alternative

transportation routes of malate into the BS cell plastid and pyruvate into the M cell plastid. Malate

transport was solved by adding a Mal/Pyr shuttle, while pyruvate transport implied blocking

PPDK in the M cell cytosol and adding a Pyruvate/H+ symporter into the M cell plastid.

Figure 15 – FluxMap representing NADP-ME/PEP-CK C4 photosynthetic metabolism as represented
in the C4 model. The main reactions are represented in dark green, associated energy metabolism
is represented in yellow and transport reactions are represented in light blue. Abbreviations: HCO3-
- Bicarbonate; Pi - phosphate; OAA - Oxaloacetate; Glu - glutamate; α-KG - α-ketoglutarate; Asp -
Aspartate; Mal - Malate; MAL-DEH - Malate dehydrogenase; Pyr - pyruvate; PEP - phosphoenolpyruvate.
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4.2.2 IMPLEMENTATION OF ANATOMICAL CONSTRAINS IMPROVES PREDICTION OF C2 PHOTO-

SYNTHESIS UNDER PHOTORESPIRATORY CONDITIONS

To validate the introduced anatomical constraints in the maize C4 model, we designed an experi-

ment to test their impact on GDC activity in the M and BS mitochondria. The glycine pump was

previously introduced in chapter 2.1.2. To enable photorespiratory activity in the C4 model, the

BS Rubisco using CO2 from the C4 cycle was constrained to a 10:1 carboxylation/oxygenation

ratio, while the M Rubisco was kept at 3:1 carboxylation/oxygenation ratio. The BS Rubisco

which used CO2 directly imported from the M cell was blocked. A high photorespiratory environ-

ment was also simulated by enforcing a high light uptake (PTotal) of 1000 µmol s-1. Additionally

AB BS
M

value was also set at 0.66. We then tested GDC activity under two volume constrain

scenarios using FVA (Figure 6). In one scenario, the cell was assumed to have equal volume i.e

the VBS
M

was set to a value of 1, while in the other VBS
M

was set at 5.3 like previously calculated.

FVA was run with the additional constraint that the total sum of absolute fluxes could not be

larger than the smallest possible sum of absolute fluxes i.e that the total sum of absolute fluxes

could not be larger than the pFBA solution.

Table 6 – Maximum and minimum flux values of GDC enzyme in the BS and M cells under two volumetric
constraints.

Volume

Flux M GDC BS GDC

Max Min Max Min

VBS
M
= 1 1.859 1.859 5.936 5.936

VBS
M
= 5.3 0 0 7.651 7.651

In the absence of volume constraints, we observe that GDC activity is detected in both the

M and BS cells, although BS GDC still presents a much higher GDC activity. The higher BS

GDC activity can perhaps be explained by the large light uptake by the BS cell thanks to the

AB BS
M

of 0.66 enabling more energy production for operating the glycine pump. The reported
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AB BS
M

is considered a high value associated with a C4 phenotype, while C3 plants normally

display lower AB BS
M

values. When the volume constraint is implemented, a full shift of the GDC

pump occurs to the BS cell, with no M GDC activity.

It should be noted that both of these scenarios correspond to flux solutions in which most of

the Rubisco activity occurs in the M cell, despite the high photorespiratory ratio. This occurs

because the very high light uptakes lead to an abundance of energy production in both cell

types, which makes the cost of a higher photorespiratory activity less relevant and therefore

a better flux solution for the imposed constraints than the usage (and cost) associated with

operating the C4 cycle. When M Rubisco activity is allowed, BS Rubisco and the C4 cycle

become more preferential under more moderate (500 µmol s-1) light uptakes. Despite this

seemingly disagreeing with the conditions for C4 evolution (high light intensities), it must be

stated that the model lacks temperature-regulated Rubisco oxygenase activity, and therefore

the impact of photorespiration on the M cell is underestimated in the C4 model under high light

intensities.

Overall, the implementation of the volume ratio constraint predicts a fully operational

C2 photosynthesis flux mode with GDC activity exclusively in the BS cell. Compared to the

bibliography, this represents an improvement when we look at the absence of a volume ratio

constraint implementation scenario.

4.2.3 TRIOSE PHOSPHATE-3-PHOSPHOGLYCERATE SHUTTLE PREDICTED WITH AN ANATOMY-

CONSTRAINED C4 MODEL

In C4 metabolism, the M cell harvests more light than the BS cell, producing ATP and NADPH

through linear electron transport. However, the BS cell operates the CBB cycle, which increases

its demand for NADPH and ATP. To provide the BS cell with these metabolites during C4

photosynthesis, the triose phosphate-3-phosphoglycerate shuttle emerges. In this shuttle, 3-

phospho-D-glycerate (G3P) is sent through the plasmodesmata to the M cell plastid where

it is phosphorylated at the expense of ATP by phosphoglycerate kinase into 3-phospho-D-

glyceroyl phosphate (DPG). DPG is then reduced by the action of glyceraldehyde-3-phosphate

dehydrogenase into D-glyceraldehyde 3-phosphate (GAP) at the expense of NADPH and a H+.
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GAP is then transported back to the BS cell where the formerly mentioned reactions operate in

reverse, originating ATP, NADPH and H+ for use by BS cell metabolism.

We tested the operation of the shuttle in the C4 model in the presence and absence of

volume constraints (Figure 16). For model simulations parameters PTotal was set at 700 µmol

s-1, AB BS
M

was set at 0.66 and the M and photorespiratory BS Rubisco were blocked.

Figure 16 – FluxMaps of the triose phosphate-3-phosphoglycerate shuttle with integrated flux data under
two volume constraint scenarios. Flux data is shown through the colour gradient and arrow width. Some
reactions are represented by their EC numbers. Abbreviations: GAP - D-glyceraldehyde; G3P - 3-
phospho-D-glycerate; DPG - 3-phospho-D-glyceroyl phosphate;PGK - phosphoglycerate kinase; 1.2.1.13
- glyceraldehyde-3-phosphate dehydrogenase (NADP+) (phosphorylating); 1.2.1.9 - glyceraldehyde-3-
phosphate dehydrogenase (NADP+).

Flux solutions were visualized by drawing an SVG flux map and integrating the flux values

of the corresponding reactions. When the volume ratio was not enforced, the shuttle was only

partially active, with G3P being produced in the BS by the activity of Rubisco and then shuttled

back to the M cell, with no GAP being shuttled back. With the implementation of the VBS
M

of 5.3,
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we observe a functional complete shuttle between the cell types, with G3P being sent to the

M plastid and GAP being sent back to the BS cytosol. Interestingly, the release of reducing

power stored in GAP does not occur in the plastid but directly in the cytosol under the activity of

glyceraldehyde 3-phosphate dehydrogenase, which directly converts GAP into G3P releasing

NADPH and 2 H+, while plastidial reactions still convert G3P into DPG and GAP. This means

that the production of GAP in the BS is still vital to an optimum flux solution in the BS cell and

the cytosolic reaction is utilized as a means of harvesting the energy from the shuttle.

4.3 IMPACT ON ANATOMICAL CONSTRAINTS ON NITRATE METABOLISM

4.3.1 ANATOMY-CONSTRAINED C4 MODEL PREDICTS GLUTAMATE DEHYDROGENASE ACTIVITY

DURING NITROGEN ASSIMILATION

Besides energy metabolism, N assimilation was also investigated in the presence and absence of

volume constraints. To investigate this, 2 flux simulations were performed and the flux solutions

were obtained. One was performed without the implementation of the volume constraint, i.e

VBS
M

= 1; another was performed with the implementation of previously calculate VBS
M

= 5.3,

representing the value for maize. Flux simulation were ran with PTotal = 700 µmol s-1 and

AB BS
M

= 0.66. M and BS photorespiratory Rubisco were blocked to ensure C4 cycle exclusive

activity. The resulting flux values were integrated with pre-designed SVG flux maps of C4 N

assimilatory metabolism (Figure 17).

Analysis of the flux maps shows that, in both scenarios, initial NO3
- assimilation occurs in

the M cell. This is according to the distribution of C4 N assimilation reported in [73]. Additionally,

GS-GOGAT activity is located in the M cell, whereas the same author reports GS-GOGAT

activity in both the BS andM cell or exclusively in the BS cell.

Interestingly, while in the VBS
M
= 1 scenario GS-GOGAT fluxes are fully explained by NO3

-

uptake, in the VBS
M

= 1 scenario the greatest contribution for GS-GOGAT comes from NH4
+

originating from the BS cell resulting from the activity of Glutamate Dehydrogenase (GDH). The

enzyme GDH is involved in C and N metabolism and was initially thought to act as an alternative

pathway for ammonium assimilation. However, later in vivo studies revealed that the enzyme
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Figure 17 – FluxMaps of the nitrogen assimilation metabolism with integrated flux data under two volume
constraint scenarios. Flux data is shown through the colour gradient and arrow width. Abbreviations: NR
- Nitrate reductase; NiR - Nitrite reductase; GS - Glutamine synthase; GOGAT - Glutamate synthase;
GDH - Glutamate dehydrogenase; GDC - Glycine decarboxylase; GLT - Glutamate; Gly - Glycine; GLN -
Glutamine.

operated in the direction of glutamate deamination. Further studies in maize localized this

enzyme exclusively to the BS cell. The physiological function and the reason why it operates in

the direction of deamination are not understood [148]. In our analysis, we observe that GDH is

activated when VBS
M

is implemented and provides NH4
+ for assimilation by GS-GOGAT. Besides

providing NH4
+ from glutamate, this enzyme also provides carbon skeletons to the BS through

the production of α-ketoglutarate which can be used for additional cellular activities.
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4.3.2 IMPROVEMENT OF MESOPHYLL-SPECIFIC NITRATE REDUCTION PREDICTION UNDER A

RANGE OF LIGHT UPTAKES WITH THE APPLICATION OF ANATOMICAL CONSTRAINTS

After observing N metabolism in two specific light uptake scenarios, we wanted to verify how the

implementation of VBS
M

affected N metabolism across a wider range of parameters, particularly

with regards to initial NO3
- assimilation. We defined a wide grid of AB BS

M
and PTotal values and

performed flux simulations for every parameter combination. This was performed with VBS
M

set

at 1 and 5.3. For each simulation, the cellular location of NiR was determined and qualitatively

mapped. The results were used to build two heatmaps (Figure 18).

Figure 18 – Qualitative heatmaps of the cellular localization of nitrate reduction in the C4 model for a
range of light uptakes and light distributions. Green, blue and yellow squares represent mesophyll-located,
bundle sheath-located and mixed flux solutions, respectively.

The resulting data shows that, when PTotal < 500 µmol s-1 and AB BS
M
< 0.3 , BS located NiR

is preferred when no volume constraint is applied. With the volume constraint, BS assimilation

only occurs for PTotal = 400 µmol s-1 for AB BS
M

< 0.3, while joint BS and M NiR activity are

predicted when PTotal = 300 µmol s-1 for AB BS
M
= 0.1.

Overall, these results indicate that there is an improvement in the prediction of NiR activity

across the spectrum of light uptake scenarios when compared to the biologically reported

metabolic distributions of C4 N assimilation through the implementation of the volume constraint.
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4.4 CHANGES IN DECARBOXYLATION ENZYMES ACTIVITY PREDICTED UNDER A RANGE

OF VOLUME RATIOS AND LIGHT UPTAKES

Maize utilizes two subtypes of C4 photosynthesis in tandem, PEP-CK and NADP-ME. The

two subtypes differ in their energetic requirements and the sub-cellular division in which they

operate. We investigated how variation in VBS
M

affects the choice of decarboxylation enzyme

in the C4 model. Three PTotal uptake scenarios were selected, corresponding to low (250

µmol s-1), medium (500 µmol s-1) and high (750 µmol s-1) light uptakes. Additionally, M and

photorespiratory BS Rubisco were blocked to ensure activity of the C4 cycle. For each of

these scenarios, flux solutions were obtained using pFBA for a range of VBS
M

and AB BS
M

values.

These flux solutions were then used to plot two heatmaps per scenario: one for PEP-CK and

another for NADP-ME. The value computed for each flux solution corresponds to the ratio of

decarboxylation with CO2 uptake for each of the decarboxylation enzymes (Figure 19).

Figure 19 – Heatmaps for NADP-ME and PEP-CK activity in the BS cell. For each total photon uptake
scenario, the ratio between enzymatic decarboxylation and CO2 uptake is calculated for each enzyme for
a range of volume constraints and light distributions. These ratios are then plotted separately for each
enzyme. The sum of the ratio values for each light uptake scenario is equal to 1.
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Firstly, under high light uptakes, NADP-ME is exclusively utilized for decarboxylation, re-

gardless of VBS
M

and AB BS
M

value, with activity of PEP-CK only present in very small amounts

under a AB BS
M

value of 0.1, which represents a very low light uptake by the BS cell.

Secondly, under medium light uptakes, NADP-ME is the dominant decarboxylation enzyme

when AB BS
M
> 0.3 . When AB BS

M
= 0.3, a gradient of co-activity between NADP-ME and PEP-CK

occurs along the VBS
M

axis, with smaller VBS
M

values associated with higher NADP-ME activity,

which give way to PEP-CK activity as the VBS
M

increases. When AB BS
M
≤ 0.2 flux solutions with

higher VBS
M

values continue to exhibit higher PEP-CK activity, which becomes dominant around

VBS
M

= 3, while lower VBS
M

values exhibit NADP-ME high activity (AB BS
M

= 0.2) or, curiously, a

fixed value for PEP-CK activity (AB BS
M
= 0.1).

Finally, under low light uptakes, this scenario is very similar to the medium light uptake

scenario while AB BS
M

> 0.3. Looking at AB BS
M

≤ 0.3, lower VBS
M

values lead to the display of

predominant PEP-CK activity which gradually engages with co-activity with NADP-ME at higher

VBS
M

.

Previous studies, both in vivo and in silico, have confirmed NADP-ME as a preferential

decarboxylation enzyme in a scenario where light is not limiting [17], while PEP-CK is typically

more engaged in light limiting scenarios, particularly with lower light uptake by the BS. In

our model light becomes not limiting when CO2 uptake becomes limiting. i.e the maximum of

uptake of 40 µmol m-2 s-1 of CO2 is being met. Our modelling approach shows that PEP-CK

engagement occurs predominantly under lower light uptakes by the BS under light limitation.

This is further evidenced by higher PEP-CK activity under low light scenarios in lower VBS
M

values.

Observing the biochemistry of the BS cell of Maize, the lack of PSII leads to its specialization

in cyclic electron transport. Usage of PEP-CK increases the need for cytosolic ATP in the

BS cell. Therefore, it is possible that PEP-CK engagement in these conditions is prefered by

pFBA to take advantage of elevated BS ATP production ratio when compared to the M cell,

and therefore maximize CO2 fixation under sub-optimal conditions while balancing energetic

requirements. Higher VBS
M

imply more light uptake by the BS, which may disable this flux mode

and shift decarboxylation towards NADP-ME activity. It should be noted however, that many

C4 species display higher AB BS
M

including maize which our simulations predict as exclusively

NADP-ME, while in vivo maize displays a NADP-ME/PEP-CK co-activity phenotype. This may
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imply that the demand for reducing power in the M cell in the form of NADPH may be under

represented in our model.

4.5 CYCLIC ELETRON TRANSPORT PREDICTED IN BUNDLE SHEATH CELLS UNDER

LOW LIGHT CONDITIONS

In maize, BS cells are specialized in ATP production through the exclusive usage of cyclic

electron transport in the plastid. The activity of PEP-CK increases BS demand for ATP, and

our simulations predict it to be prevalent in low light conditions and lower VBS
M

values. These

observations led us to further attempt to validate the link between BS ATP production, light

uptake and anatomical constraints, while also testing the C4 models’ ability to generalize and

provide broader interpretations of the observed flux distributions.

We tested this by first sourcing data from [61]. In this study, the authors reported an increase

in cyclic electron transport in the BS cell of Setaria viridis, a C4 NADP-ME plant, associated

with the decrease in BS size in plants acclimated to low light conditions when compared to

plants acclimated under high light. To bring the architecture of our maize model closer to one of

Setaria viridis, PPDK and PEP-CK were blocked in the BS cell, leaving NADP-ME as the sole

operational decarboxylation enzyme, while PSII was enabled in the BS cell. Additionally, M and

BS photorespiratory Rubisco were also blocked to ensure C4 photosynthesis was performed.

Based on the parameters provided in [61], two different scenarios were defined. In the high

light (HL) uptake scenario, AB BS
M

was set to 0.414, PTotal was set to 1000 µmol s-1 and VBS
M

was

set to 1.38. In the low light (LL) uptake scenario, AB BS
M

was set to 0.343, PTotal was set at 350

µmol s-1 and VBS
M

was set at 1.37. AB BS
M

and PTotal values were taken directly from [61], while

VBS
M

was calculated based on provided IVD and VWidth values and equation 5. For each scenario,

a budget plot of plastoquinone was obtained to evaluate linear and cyclic electron transport

(Figure 20).

Analysis of the budget plot reveals that no NDH activity is detected in the HL scenario i.e that

the BS cell is fully operating linear electron transport. In the LL scenario, 73% of plastoquinone

flux is consumed by NDH thereby participating in cyclic electron transport. This increase in

cyclic electron transport activity matches those reported by [61]. This reinforces our previous
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Figure 20 – Budget plots for plastoquinone turnover under high light (HL) and low light (LL) scenarios. In
each plot, metabolite consuming fluxes are presented on the left side, while metabolite-producing fluxes
are produced on the right.

observations of the connection between cyclic electron transport in the BS leading to higher ATP

production in light-limiting conditions. Despite the lack of PEP-CK derived demand for ATP in this

experiment, NADP-ME C4 subtype can supply the BS cell with reducing power transferred from

the M cell in the form of malate. The lack of NADPH production in the BS also removes demand

for O2 in the BS, reducing photorespiration and leaving room for the BS cell to specialize in ATP

production to meet cellular demands.

In the dataset used for this experiment, PTotal values of the LL scenario were parameterized

to 300 µmol s-1. The value of 350 µmol s-1 was used instead for two reasons. Firstly, the

implementation of PTotal = 300 µmol s−1 yielded no cyclic electron transport activity in the BS.

This relates to the second reason, for this implementation did not yield the PBS or PM reported by

[61], because in our implementation these values are calculated as a function of not only PTotal

and AB BS
M

, but also of VBS
M

, which made the experimental conditions more difficult to replicate,

and made it necessary to adjust the PTotal value to approximate so that the simulated PBS value

would match the one reported. These results also imply that the C4 model possesses a minimum

PTotal and PBS value below which BS cell exclusive production of ATP is no longer feasible as an

optimal solution under the presented constraints.
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4.6 IMPACT OF ANATOMICAL CONSTRAINTS ON ATP PRODUCTION

Leaf anatomy and ATP production are connected by the photosynthetic pathway. Leaf anatomy

influences light penetration to the tissues, which therefore determines the cellular capacity for

light-dependent ATP synthesis. It is then expected that the introduction of anatomical constraints

in the model in the form of VBS
M

would have an effect on M and BS cell comparative ATP

production. In the following subchapter, we will show the results of an experiment designed

to test this relationship. We have calculated, for selected flux distributions, the sum of all ATP

producing fluxes normalized by their stoichiometry (JATP) for the M cell (JATPM) and for the

BS cell (JATPBS). We then computed the ratio between them using equation 14.

JATPBS
M
=

JATPBS · VBS

JATPM · VM
(14)

We proceeded to use this value to evaluate flux solutions against bibliographically estab-

lished (JATPBS
M

) values.

4.6.1 ANATOMICAL CONSTRAINTS IMPROVE JATP RATIO PREDICTION UNDER A RANGE OF

LIGHT UPTAKE CONDITIONS IN THE C4 MODEL

To assess JATPBS
M

value variation with changing light uptakes and anatomical constraints, flux

solutions were obtained for a range of combinations of AB BS
M

and PTotal values for two volume

constrain scenarios. Before performing the simulations, M and BS photorespiratory Rubisco

were blocked to ensure photosynthesis was performed through the C4 cycle. In the first scenario,

the cell types were assumed to have the same value i.e no anatomical constraint. In the second

scenario, VBS
M

was set at 5.3. This value was obtained from maize IVD and VWidth values derived

from the datasets presented by [131]. For each of these flux solutions, JATPM and JATPBS

were computed and JATPBS
M

was obtained. From this data, 1 heatmap was generated for each

scenario and a comparative analysis was formulated (Figure 21).

A similar distribution of JATPBS
M

values is observed in both heatmaps, with higher AB BS
M

values and lower PTotal values generating the higher JATPBS
M

, and vice-versa. Despite the
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Figure 21 – Heatmaps representing the ratio between BS and M cell ATP production (JATPBS
M

) for two
volume constraint scenarios. For each scenario, JATPBS

M
was evaluated for a range of light uptakes and

distributions. JATPBS
M

values are represented rounded to the first decimal in each square and by colour
through the colourmap.

similarities, in the scenario where the volume constrain is implemented, we observe a much

wider range of JATPBS
M

values, ranging from 0.4-3.3, while in the no volume constraint scenario

ratios only vary between 1.4-0.3.

In the same paper where the anatomical measurements were derived, the authors reported

a JATPBS
M

value for maize of 1,37 under a AB BS
M

of 0.66. Looking at the heatmaps, we identified

PTotal = 700 µmol m-2 s-1 as the point were JATPBS
M

value were closer to the ones reported

when the volume constraint was implemented. We obtained the JATPBS
M

for this point in both

scenarios, and this information is displayed in Table 7.

Analysis of these results shows us that for this PTotal and AB BS
M

scenario, the volume

constrain improves JATPBS
M

prediction compared to the bibliographically reported value. Looking

back at the heatmaps yields that, in the absence of volume constraint implementation, JATPBS
M

overall only come close to reported JATPBS
M

values under biologically unrealistic parameters,

such as extremely low light uptakes.

After analysing these two scenarios, we wanted to test how JATPBS
M

values would behave

under a range of different VBS
M

values and light uptake conditions. To test this, a gradient of 6 VBS
M
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Table 7 – Table reporting the value of photon uptake (PTotal), light distribution between BS and M (AB BS
M

)
and ratio of ATP production between BS and M (JATPBS

M
) for two flux solutions of the C4 model and

values reported in bibliographic sources. In the bibliography, no PTotal value was provided.

VBS
M

Bibliography

[131]1 5.3

PTotal 700 µmol s-1 n.a

AB BS
M

0.66

JATPBS
M

0.93 1.37 1.32

where chosen and implemented for the same ranges of AB BS
M

and PTotal previously used and

JATPBS
M

values were calculated. This resulted effectively in a parameter scan of JATPBS
M

under

different VBS
M

conditions (Figure 22).

Observation of the parameter scans reveals a linear relationship between the increase in

VBS
M

and the range of values of JATPBS
M

. The same pattern is observed in all heatmaps, which

was already described for VBS
M
= 1. The reported value of JATPBS

M
= 1.32 can be approximated

in the AB BS
M
= 0.66 at when PTotal takes the value of 200 µmol s-1 under a VBS

M
of 2. This optimum

PTotal value increases when VBS
M

takes the values of 3 and 4 to 400 and 600 µmol s-1, respectively.

When VBS
M
= 5, optimum JATPBS

M
values are observed when PTotal = 700 µmol s-1). From these

results, we can link JATPBS
M

with plant anatomy (represented by JATPBS
M
= 1.32) and light uptake

constraints (represented by PTotal and AB BS
M

). These parameters are different across the C4

spectrum, and this model may allow us to make accurate predictions of energy metabolism for

these species using these parameters as a starting point.

4.7 BIOMASS OPTIMUMS UNDER LOW LIGHT CONDITIONS PREDICTED UNDER LOW

BUNDLE SHEATH ILLUMINATION

Besides investigating C, N and energy metabolism, we also investigated how the biomass value

(pFBA objective function) would behave under varying VBS
M

and AB BS
M

under 3 PTotal scenarios:

low (250 µmol s-1) , medium (500 µmol s-1) and high (750 µmol s-1) light uptakes.
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Figure 22 – Heatmaps representing the ratio between BS and M cell ATP production (JATPBS
M

) for six
volume constraint scenarios. For each scenario, JATPBS

M
was evaluated for a range of light uptakes and

distributions. JATPBS
M

values are represented rounded to the first decimal in each square and by colour
through the colourmap.

For each of these scenarios, flux solutions were calculated for a range of AB BS
M

and VBS
M

values, and the biomass reaction flux value was computed. Additionally, M and BS photorespira-

tory Rubisco were blocked like in other simulations to ensure exclusive C4 flux solutions. These

values were then plotted to heatmaps (Figure 23).

Observation of the plots reveals that, under high light scenarios, biomass maintains a

maximum value regardless of AB BS
M

and VBS
M

variation. This occurs because carbon uptake is

limiting, and therefore the model cannot produce more biomass unless provided with more CO2.

When looking at the medium light uptake scenario, we observe that biomass assumes its lowest

values under high AB BS
M

and VBS
M

values, which correspond to greater light uptake by the BS cell.

The highest values for biomass are obtained when AB BS
M
< 0.4, mostly regardless of VBS

M
value.

When AB BS
M
≥ 0.4 it can be observed that the biomass optimum decreases with the increase in

VBS
M

. A similar relationship between variables can be observed under low-light conditions. Under
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Figure 23 – Heatmaps representing the biomass flux value for 3 total photon uptake scenarios. For each
scenario, the flux through the biomass reaction was evaluated for a range of light distributions and volume
constraints. Biomass flux values are represented by colour through the colourmap.

these conditions, the highest biomass optimum flux values can be found under the lowest AB BS
M

and VBS
M

values, suggesting an inversely proportional relationship.

These results imply that, firstly, the increase or decrease in VBS
M

does not affect the biomass

optimum under light-saturated conditions; Secondly, that under light limiting conditions, higher

VBS
M

coupled with higher AB BS
M

values yields suboptimal solutions with regards to biomass; Finally,

the reduction of BS VBS
M

coupled with lower AB BS
M

values is associated with optimal biomass

production under low light conditions. Coupled together these results suggest that characteristic

high C4 VBS
M

and AB BS
M

values are not sustainable under low light uptakes and are evolutionary

characteristic acquired under conditions of light saturation.

4.8 GENERAL ASSUMPTIONS AND LIMITATIONS

In this subchapter we will review the major assumptions and limitations in our modelling approach

approach.

Firstly, several experiments presented in this work are parameter scans for a given reaction

flux or ratio under varying values of PTotal, AB BS
M

and VBS
M

. The combination of these variables

however can generate biologically irrealistic scenarios. Extremely low PTotal values (< 200 µmol

s-1) are unlikely unless under very shaded conditions. There is also a biological correlation
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between AB BS
M

and VBS
M

values. Higher VBS
M

values can lead to a lower ”shading” effect by the M

cells, due to the larger surface area of BS cells when compared to the M cells. This signifies that

high AB BS
M

values are unrealistic under low VBS
M

and vice-versa. Additionally, it has been shown

that increase in AB BS
M

is a defining trait of C4 evolution, who is accompanied by increased VBS
M

values.

Secondly, to implement our modeling approach, we assumed that some areas of the

leaf cross section are enriched in BS and others in M cells based on Kranz anatomy. In our

framework, these areas are modeled separately as two different interacting systems. This was

done in order to allow more flexible flux distributions of light uptake. In the related work of

[17], one system was considered in which the two cell types existed in a theoretical area of

1 m2 in which light uptake was allocated to each cell types through the application of AB BS
M

,

which allocated a given light intensity to each cell type from an initial light intensity value. Our

separate modeling approach considers different cellular volumes (translated into areas) for each

cell type, requiring additional changes in the exchange between the cell types and subsequent

normalization to enable flux comparison. Setting PTotal as an initial value to calculate PM and PBS,

given values of AB BS
M

and VBS
M

allowed for an easier presentation of the results, but difficulted

interpretation of the actual light intensities involved by not intuitively providing the actual values

of PM and PBS for the flux solution.

Thirdly, chloroplast density and the actual light uptake capacity of the M and BS cells is

modeled implicitly and is not parameterized in the model. Adding this information will be an

asset for future modeling approaches.

Lastly, the usage of FBA to implement the model simulation also comes with its own set

of drawbacks. First, FBA usage implies a constraints-based approach to modeling, in which

enzymatic kinetic information is lacking; Second, the model does not consider the rate of

metabolite diffusion between between the cell and the extracellular environment, or between the

cytosol and the cellular compartments; Third, photorespiration rate is estimated based on its ratio

with Rubisco carboxylase activity, but actual measured ratios are not available and therefore are

not being implemented; Fourth, the effect of temperature is also not considered in the the model,

and as such the effect of temperature on metabolic processes, such as photorespiration, is not

modeled; Finally, cellular non-growth associated maintenance is applied through light-dependent

maintenance, but the actual maintenance costs are neither known or implemented.



5

C O N C L U S I O N S

The main objective of this thesis contemplated the integration of anatomical constraints with

a maize growing leaf model of C4 photosynthesis with the goal of improving metabolic flux

predictions. These constraints were then validated by evaluating flux predictions energy, carbon

and nitrogen metabolism against bibliographic sources, with the additional description of biomass

production.

Overviewing our main findings, we firstly observed that the model was capable of the

individual and combined activity of NADP-ME and PEP-CK C4 subtypes. Benchmarking against

bibliographic sources revealed that the implementation of anatomical constraints improved

flux predictions of C2 photosynthesis and of the triose phosphate 3-phosphoglycerate shuttle,

important pathways for the energy-balancing of C4 flux mode.

Additionally, increased BS volume also improved the prediction of the cellular localization

of NR and also helped identify the activity of GDH as a provider of NH4
+ to be assimilated by

the GS-GOGAT cycle. The deamination activity of GDH in maize BS had not been previously

described in silico and provides comprehensive evidence for its biological role.

Furthermore, the choice of decarboxylation enzyme was affected by the variation of anatom-

ical constraints, with PEP-CK activity being preferred when light is limiting, especially under low

light uptakes by the BS (lower AB BS
M

and VBS
M

ratios). On the other side, NADP-ME is preferred

under carbon limitation or higher light uptakes by the BS.

Moreover, generalization of the model for Setaria viridis anatomical and biochemical con-

straints allowed replication of the results of [61], predicting linear electron transport in the

BS under high light conditions while cyclic electron transport was predicted under low light

conditions.

61
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Likewise, anatomical constraints improved predictions of JATPBS
M

ratios when compared to

the maize data of [131]. Broader analysis under a range of light conditions revealed a quasi-

linear relationship between the anatomical constraints and JATPBS
M

ratios, opening the possibility

of generalization of this framework for other C4 species given biochemical and anatomical

measurements.

Finally, biomass production was not affected by anatomical constraints variation under

carbon limiting conditions. However, under light limiting conditions, lower light uptakes by the BS

lead to the optimal biomass solutions, coinciding with a preference for PEP-CK activity.

In summary, the implementation of anatomical constraints into the maize C4 model improved

flux predictions of C4 metabolism. To the best of our knowledge, this is the first time such

constraints are applied in a C4 CBM framework. These constraints are important additions for

the future inclusion of parameters such as enzyme kinetics, molecular crowding and cellular

storage capacity. This work represents a step in obtaining plant metabolic models with increased

accurate flux prediction capacity, which can be used downstream to enable and guide future

metabolic engineering strategies.

5.1 FUTURE PERSPECTIVES

Future research direction with the C4 model will involve strategies to improve the model’s

prediction accuracy and to improve the analysis of its outputs. This will be achieved by integrating

the generic model with biochemical and anatomical constraints of other C4 species and/or

integrating with omics data to generate context-specific models. Additionally, model visualization

and flux data analysis will be key in facilitating knowledge extraction from model predictions,

either by application of graph-based visualization tools in small-scale analysis or by applying

machine learning algorithms to interpret and compare large-scale model results. Lastly, the

curation of the model is an ongoing process, which needs to be updated as new information

becomes available or specific issues are detected, such as missing reactions or incorrect

stoichiometries. Overall, these new directions will be able to generate models better capable of

informing plant biologists and breeders about the inner workings of plant primary metabolism.
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