
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Alexandra de Barros Reigada

Generic SAST tool Comparer

Academic Year 2021/2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Alexandra de Barros Reigada

Generic SAST tool Comparer

Master dissertation
Integrated Master Degree in Informatics Engineering

Dissertation supervised by
Pedro Rangel Henriques
Nuno Oliveira

Academic Year 2021/2022

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilized according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the
University of Minho.

Alexandra de Barros Reigada

iii

A C K N OW L E D G M E N T S

Over the last five years, I had the support of some important people that were always by
my side and were essential to the achievement of my integrated master’s degree in software
engineering, whom I would like to thank.

First of all, to my supervisors: Professor Doutor Pedro Rangel Henriques thank you for
accepting to guide this project, for your weekly support, your motivation and enthusiasm
for my accomplishments, your knowledge and advisory, throughout this year; Doutor Nuno
Oliveira thank you for your constant availability, all the guidance, for sharing your vision
with me and finally for giving me the opportunity to be an intern at Checkmarx which
contributed for the development of this project and my personal growth.

To all my family, thank you for always being present, for your efforts, unconditional love
and for never letting me give up. I couldn’t do it if you were not by my side.

To my MIEI colleagues, thank you for sharing knowledge, for the mutual help and for
your friendship. This journey wouldn’t be so happy without you.

To my friends from Ponte de Lima, thank you for your support and for always being there,
especially in the rougher times.

Thank you, Tuna de Medicina da Universidade do Minho, for all the wonderful moments
that we shared, for the motivation, for helping me forget about my issues and for bringing
excitement and positivity into my academic life.

To my team Adamastores from Checkmarx, thank you for the kind way you welcomed me
to the company and guidance in my first work experience. Without your flexibility, support
and understanding of my academic status, I wouldn’t have accomplished this important
step.

Finally, thank you Checkmarx AppSec for your availability and for making a valuable
contribution to this project.

Thank you everyone, you will always be in my heart
Alexandra

A B S T R A C T

Cybernetic attacks are a genuine concern today that can compromise the integrity of any
person, organization, or business. Every day, new incidents are publicized that demonstrate
the true extent of the harm that cyber criminals may wreak. Sensitive data exposure, identity
theft, service malfunctioning are just a few of the most typical dangers, which can result
in financial loss or damage to a company’s reputation in many circumstances. There are
many mechanisms and technologies used by these companies to identify vulnerabilities in
applications. The most popular technology used to detect vulnerabilities is SAST (Static
Application Security Testing) as it focus on the detection of vulnerabilities at the early stages
of software development. However, these tools only analyze source code and that brings a
big problem associated: wrong detections (false positive results) and some real vulnerabilities
not reported (false negative results), adding that depending on what techniques used by
each product, this number may change and the content of the results also changes. With
that said, SAST solution providing companies would benefit from a system where it would
be possible to compare their SAST results against results of adverserial products. This
would allow them to understand their flaws and opportunities to improve. In the context
of the above, Checkmarx proposes the development of a system to compare SAST tool
results providing insight on how one such tool falls behind its competitor and how it can
be improved to match the exposed gap. This is the main topic of this Master’s Thesis
dissertation. An exhaustive study of SAST tools, their classification according to a set of
predefined dimensions and platforms that compare these tools were the starting point
to make the system generic, innovative and able to compare the great number of SAST
tools in the market. SAST Tool Comparer has been developed following an architecture
that fulfills the expected and proposed functionalities: it reads scan reports from several
SAST tools, either open-source and commercial, obtains results from open-source SAST
tools directly scanning from the application, compares results taking into account multiple
parameters, displays important statistics to understand the comparison and also provides
the configuration and introduction of new tools as well as converters to filter the necessary
results for an efficient comparison. In this document, each of these features will be presented
from the implementation until the final result, as well as some comparisons between SAST
tools and possible inferences resulting therefrom.

Key-Words: vulnerability detection, static code analysis, SAST tools, SAST-tools compari-
son

iv

R E S U M O

Os ataques cibernéticos são uma preocupação genuína hoje em dia que podem compro-
meter a integridade de qualquer pessoa, organização ou empresa. Todos os dias, novos
incidentes são divulgados que demonstram a verdadeira extensão dos danos que os crimi-
nosos cibernéticos podem causar. Exposição de dados confidenciais, roubo de identidade,
mau funcionamento do serviço são apenas alguns dos perigos mais comuns, que podem
resultar em perdas financeiras ou danos à reputação de uma empresa em muitas circun-
stâncias. Existem muitos mecanismos e tecnologias utilizados por essas empresas para
identificar vulnerabilidades em aplicações. A tecnologia mais popular é o SAST (Static
Application Security Testing), por se concentrar na detecção de vulnerabilidades nas fases
iniciais do desenvolvimento de software. No entanto, estas ferramentas apenas analisam
código-fonte e esse facto contém um problema associado: identificações erradas (falsos
positivos) e algumas vulnerabilidades que existem e não são descobertas (falsos negativos),
acrescentando que dependendo das técnicas utilizadas por cada produto, esse número e
o conteúdo dos resultados podem mudar. Dito isto, as empresas que providenciam este
tipo de ferramenta podem beneficiar de um sistema onde seria possível comparar os seus
resultados SAST com os de produtos concorrentes. Isto permite-lhes entender as suas falhas
e oportunidades para melhorar. Dentro deste contexto, a Checkmarx propôs o desenvolvi-
mento um sistema que compara os resultados da utilização de ferramentas SAST, fornecendo
uma análise sobre o seu comportamento quando testadas com a concorrência. Um estudo
exaustivo das ferramentas SAST, a sua classificação de acordo com um conjunto de dimen-
sões pré-definidas e plataformas que comparam essas ferramentas foram o ponto de partida
para tornar o sistema genérico, inovador e capaz de comparar um número substancial
de ferramentas presentes no mercado. SAST Tool Comparer foi elaborado seguindo uma
arquitetura que cumpre as funcionalidades esperadas e propostas: lê scan reports de várias
ferramentas SAST tanto open-source como comerciais, obtém resultados de ferramentas SAST
open-source diretamente da aplicação, compara resultados tendo em conta vários critérios
e apresentando estatísticas importantes para perceber a comparação e ainda disponibiliza
a configuração e introdução de novas ferramentas bem como conversores para filtrar os
resultados necessários para uma comparação eficiente. Neste documento serão apresentadas
cada uma destas funcionalidades desde a implementação até ao resultado final bem como
algumas comparações entre ferramentas SAST e possíveis inferências daí resultantes.

Palavras-Chave: deteção de vulnerabilidades, análise estática de código, ferramentas
SAST, comparação de resultados do SAST

v

C O N T E N T S

1 Introduction 1

1.1 Motivation 2

1.2 Objectives 2

1.3 Research Hypothesis 3

1.4 Research Method 3

1.5 Document structure 3

2 Background 5

2.1 Code vulnerability 5

2.1.1 CWE 8

2.2 Introduction to Static Application for Security Testing 10

2.3 Summary 11

3 State of the Art 12

3.1 Existing SAST tools 12

3.1.1 Open source tools 12

3.1.2 Commercial tools 15

3.1.3 Types of output 19

3.2 Tools comparison 20

3.3 Summary 22

4 Proposed Approach 23

4.1 Requirements 23

4.2 Architecture 23

4.3 Technologies 24

4.3.1 GO 24

4.3.2 Vue 25

4.3.3 Docker 25

4.4 Summary 26

5 Development 27

5.1 Configuring a new tool 27

5.2 Reading a scan 28

5.3 Add a new reader 32

5.4 Comparing results 32

5.4.1 Types of comparing results 32

5.5 Summary 35

vi

contents vii

6 Final product 36

6.1 User interface 36

6.1.1 Add new tool 36

6.1.2 All scans 37

6.1.3 Upload scan output 38

6.1.4 Scan project 39

6.1.5 Compare results 39

6.2 Summary 43

7 Case studies 44

7.1 Checkmarx - Flawfinder 44

7.2 Checkmarx - Snyk 48

7.3 Checkmarx - Semmle 51

7.4 Summary 52

8 Conclusion 53

8.1 Future work 54

L I S T O F F I G U R E S

Figure 1 CWE Structure - ID, name, description and relationships. 8

Figure 2 CWE Structure - Common consequences. 9

Figure 3 CWE Structure - Examples, memberships and mitigations. 9

Figure 4 System architeture. 23

Figure 5 Introduce new tool in the system view. 37

Figure 6 All scans view. 38

Figure 7 Upload scan output view. 38

Figure 8 Scan project view. 39

Figure 9 Compare two scan outputs view. 40

Figure 10 Metrics view. 41

Figure 11 Different results. 41

Figure 12 Equal results by CWE panel. 41

Figure 13 Equal results by Hierarchy - Parent Issue view. 42

Figure 14 Equal results by Hierarchy - Child Issue view. 42

Figure 15 Equal results by Node - CxSAST Issue view. 42

Figure 16 Equal results by Node - Flawfinder Issue view. 43

Figure 17 Compare CxSAST and Flawfinder results - scans. 44

Figure 18 cinatra-master-cpp17 comparison - results. 45

Figure 19 rdkcmf comparison - results. 46

Figure 20 insecure-coding-examples - results. 47

Figure 21 Compare CxSAST and Snyk results - scans. 48

Figure 22 WebGoat.NET-Csharp7-master comparison: CxSAST -> Snyk. 49

Figure 23 WebGoat.NET-Csharp7-master comparison: Snyk -> CxSAST. 49

Figure 24 WebGoat.NET-Csharp7-master comparison - equal results by CWE. 50

Figure 25 AlegroCart comparison - results. 51

Figure 26 WebGoat.NET-Csharp7-master comparison - results. 52

viii

L I S T O F TA B L E S

Table 1 Comparative table of SAST tools. 19

Table 2 Comparative table of SAST tools output. 20

ix

A C R O N Y M S

A

AST Abstract Syntax Tree.

C

CWE Common Weakness Enumeration.

D

DAST Dynamic Application Security Testing.

H

HTTP Hypertext Transfer Protocol.

I

IAST Interactive Application Security Testing.

L

LDAP Lightweight Directory Access Protocol.

S

SAST Static Application Security Testing.

SDLC Software Development Life Cycle.

SQL Structured Query Language.

SVM Suport Vector Machine.

X

XML Extensible Markup Language.

XSS Cross-Site Scripting.

XXE XML External Entities.

x

1

I N T R O D U C T I O N

Nowadays, information security is one of the most relevant areas in the business world.
The need to obtain data and essential information for organizations explains the impor-

tance of information security procedures that prevent risks.
The invasion of business systems, sensitive data exposure, identity theft or any other

cyber attack are malicious actions very present in today’s world that damage not only the
company reputation but also cause financial losses.

Since nowadays almost everyone has a device with an Internet connection, cyber security
has become a major concern for software companies. It is essential to have the capability to
identify and correct pieces of vulnerable code in order to prevent the software from being
compromised, maintain the clients safety and assure the security of company data.

A vulnerability is a weakness in an application that allows an attacker to cause harm to
the stakeholders of that application. Stakeholders include the application owner, application
users, and other entities that rely on the applications1.

The Open Web Application Security Project (OWASP)2 defines Static Application Security
Testing (SAST) tools as those that can help find security vulnerabilities in the source code
without compiling and running the program. Such tools detect and classify the vulnerability
warnings into one of many types (e.g., input validation and representation)[Aloraini et al.
(2019)].

Finding coding errors early in the development life cycle saves the time and money of
catching them during production and makes sure the code is written securely as it is created.

SAST tools offer organizations a number of benefits such as the ability to find vul-
nerabilities without the need for compiling or running code or the coverage of different
programming languages, maning it is easy to identify common vulnerabilities like buffer
overflows, Cross-site scripting problems and SQL injection flaws. Moreover, after they find
an error, they clearly identify source files, line numbers, subsections of lines containing

1 Avaliable at: https://owasp.org/www-community/vulnerabilities/, accessed in October 2021.
2 Available at: https://owasp.org/www-community/Source_Code_Analysis_Tools, accessed in October 2021.

1

1.1. Motivation 2

errors and even complete flows of data from code constructs representing possible inputs to
those representing sinks of the identified vulnerabilities3.

SAST tools constitute, thus, one of the most effective approaches for finding software
vulnerabilities early in the development life-cycle. However, static analysis has a few
limitations due to the lack of runtime information. In SAST tools this lack of information
may severely impact the quality of the findings, namely their accuracy.

1.1 motivation

The accuracy of the findings is always a high requirement in SAST tools. SAST tools are
known to produce false positives (finding a vulnerability where it doesn’t exist and hence,
do not require developers’ effort for fixing) and false negatives (not finding a vulnerability
where it exists) and accuracy is impacted by these findings.

Low accuracy (this is, a great amount of such wrong results) is most of the times, what
raises more concerns to costumers, affecting the confidence on such tools and their adoption.
Moreover, a high rate of false warnings makes developers lose interests in detecting results
[Tow] specially with larger projects, where the number of warnings produced by a tool can
be high and can “outweigh” the true positives[Johnson et al. (2013)]. One possible approach
to find missing results, is usually to rely on on-purpose vulnerable projects, knowing how-
ever that these are not real-life projects. Other approach could be to compare the findings
with findings obtained by other SAST tools. Therefore, motivated by the above-mentioned
challenges that developers and costumers may encounter when using SAST tools, this project
aims at the development of a system that compares SAST results hoping to understand how
to improve the performance of the used techniques.

1.2 objectives

This Master’s Thesis objectives are the following:

• Analysis, description, and comparison of various SAST tools.

• Creation of a generic and extensible system capable of comparing existing SAST tools
and integrating new ones. The output must indicate the differences in the results of
both tools.

• Apply the created system to compare several SAST tools and assess their outputs.

3 Avaliable at: https://www.softwaresecured.com/top-sast-tools-for-developers/, accessed in October 2021.

1.3. Research Hypothesis 3

1.3 research hypothesis

With this master’s work, it is intended to prove that it is possible to automatically compare
SAST tools results by directly scanning with such tools - in case they are free or open source
- or considering the output findings – in case of commercial, aiming at understanding gaps
in their findings, in order to improve the accuracy of a specific one.

1.4 research method

The methodology used to achieve the objectives will be the following:

• Research of SAST tools available in the market, commercial or open source;

• Analysis and description of the SAST tools referred above, how do they express their
output, what input accept, what technologies are used to produce the ouput, what is
the mode of execution;

• Bibliographic study to deeply understand the state of the art in the area of SAST tools
comparison platforms;

• Comparison of results obtained and construction of a table;

• Development of a generic and extensible platform capable of integrating the SAST
tools in order to indicate what they have in common, if one of them spots more
vulnerabilities than the other and if so, what upgrade should be added to close the
identified gaps;

• Test this platform with Checkmarx SAST tool, and other.

• Discussion of results.

This is an iterative process. If the results achieved in one of the stages are not satisfactory,
then it is important to go back to one of the previous stages and deepen the literature
research or revise some project decisions.

1.5 document structure

The dissertation is organized into eight chapters. In this chapter, the context, motivation
and objectives of this project were presented. Chapter 2 presents some important definitions
and clarifications about the subject that will be discussed. Chapter 3, ”State of the Art”,
presents a summary of the most known SAST tools and related existing work on comparing

1.5. Document structure 4

these tools. Chapter 4, ”Proposed Approach”, explains the strategy chosen, system archi-
tecture and chosen technologies to construct the system. Chapter 5 explains all the steps
and decisions that were made to develop the system proposed that will allow for reach
the objectives defined. Chapter 6 describes the application built, the usage flow and its
functionalities. Chapter 7 validates the system developed, presenting three case-studies.
Finally Chapter 8, the Conclusion, is dedicated to express conclusive thoughts about the
project outcomes and future work that could improve this platform.

2

B A C K G R O U N D

This chapter covers some main concepts that are important to better understand and
follow the next chapters such as the definition of a code vulnerability and SAST.

2.1 code vulnerability

A vulnerability is a flaw or error in the code of a system or device that, if it is exploited,
might compromise the confidentiality, accessibility, and integrity of data stored there by
allowing unauthorized access, elevating privileges, or denying services. An exploit is a piece
of software or a program used to take advantage of this weakness.

There are some communities that help in identifying commonly occurring risks in applica-
tions [Pariwish Touseef (2019)] such as:

• System Administration, Networking, and Security (SANS)
SANS is a private organization that provides training in cybersecurity and information
security. This institute keeps a list of the 25 most dangerous software error types1.

• Common Vulnerabilities and Exposure (CVE)2

The MITRE organization created CVE in 1999 to find and classify software and firmware
vulnerabilities. CVE offers a free lexicon to businesses to help them improve their
cyber security. Security experts may acquire information about certain cyberthreats
from various information sources using CVE identifiers, also known as CVE names or
CVE numbers, by utilizing the same common term.

• Common Weakness Enumeration (CWE)3 is a community-developed collection of
software and hardware weakness types. It serves as a common language, a measuring
stick for security tools, and as starting point for attempts to identify, mitigate, and
avoid weaknesses.

1 Available at: https://www.sans.org/top25-software-errors/, accessed in July 2022.
2 Available at: https://cve.mitre.org/, accessed in July 2022.
3 Available at: https://cwe.mitre.org/data/, accessed in July 2022.

5

2.1. Code vulnerability 6

The Common Weakness Enumeration Top 25
4 is a list of the most widespread and

critical weaknesses that are likely to lead to exploits, repairs, and lengthy lulls in
development.

Simply said, CVE and CWE differ in that one addresses symptoms while the other
addresses a root cause. The CVE is only a list of currently known problems with
certain systems and products, whereas the CWE classifies different types of software
vulnerabilities.

CVE may be used to maintain security controls for software assurance, however it is
not as relevant as CWE is5.

• Open Web Application Security Project (OWASP)
The OWASP is a set of coding standards provided by a free online community estab-
lished to deliver recommendations, processes, documentation, tools, and guidelines to
develop secure software.

The OWASP Top 10 is a standard awareness document for developers and web ap-
plication security. Companies should adopt this document and start the process of
ensuring that their web applications minimize these risks6.

Some of the most common security vulnerabilities present in the OWASP Top Ten Web
Application Security Risks of 2021 are :

1. Broken Access Control
By enforcing policy, access control ensures that users stay inside the bounds
of their specified permissions. Failures frequently result in the unauthorized
exposure of information, the change or deletion of data, or the performance of
business functions outside the user’s scope.

2. Cryptographic Failures
This issue leads to the exposure of confidential application data such as passwords,
patient health records, business secrets, credit card numbers, email addresses
and other private user data. This happens when there is a poor or non-use of
cryptographic algorithms.

3. Injection
In this type of attack, an attacker supplies untrusted input to a program. An
interpreter will process this input as part of a command or query. This in turn
modifies how that software is run, when the User-supplied data is not filtered,
validated or sanitized.

4 Available at: https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html, accessed in July 2022.
5 Available at: https://www.parasoft.com/blog/what-is-cwe/, accessed in July 2022.
6 Available at: https://owasp.org/www-project-top-ten/, accessed in July 2022.

2.1. Code vulnerability 7

4. Insecure Design
This new category refers to different weaknesses, expressed as absent or ineffective
control design. A flawless implementation cannot remedy an unsafe design since,
by definition, the necessary security safeguards were never developed to protect
against certain attacks.

5. Security Misconfiguration
These attacks take use of web applications’ setup flaws. Many web applica-
tions come with important developer features that, if not disabled during live
production, are risky.

6. Vulnerable and Outdated Components
This happens when a program makes use of elements with known security flaws,
including libraries or APIs. A developer must know the version of components
being used, check for problems regularly, remove redundant and unnecessary
dependencies.

7. Identification and Authentication Failures
Failures in identification, authentication and session management are flaws in the
apps’ authentication methods.

8. Software and Data Integrity Failures
Occurs when significant information and software updates are inserted into the
delivery pipeline without first ensuring their authenticity. It is crucial to check
installed packages, used libraries and dependencies and ensure that the data is
authentic and has not been altered in any way.

9. Security Logging and Monitoring Failures
This flaw exists when there are insufficient logging and monitoring procedures
that can help identify some type of dangerous activity.

10. Server-Side Request Forgery
This type of attack allows the attacker to view or modify internal resources by
abusing server capabilities. By carefully choosing the URLs, the attacker may
be able to read server configuration information like AWS metadata, connect to
internal services like http-enabled databases, or send post requests to internal
services that are not intended to be exposed. The attacker can provide or modify
a URL that the code running on the server will read from or submit data to.

What constitutes a bug or a vulnerability depends on the programming languages and
frameworks used. A programming issue in Java language looks very different from bad C
or Swift code. Therefore, static code analysis is programming language dependent.

2.1. Code vulnerability 8

2.1.1 CWE

The Common Weakness Enumeration (CWE) is a category system for hardware and
software weaknesses and vulnerabilities. It is supported by a community project whose
objectives are to comprehend hardware and software defects and develop automated tools
that may be used to find, correct, and prevent those problems 7.

This list contains a specific and succinct definition for each common weakness type as
well as examples on how it can occur, thus this community makes an effort to ensure that
every item in the list is adequately described and differentiated.

All of these weaknesses are connected by hierarchical relationships so they can be navi-
gated by a specific point of view.

Each CWE has the following structure as seen in Figure 1:

Figure 1: CWE Structure - ID, name, description and relationships.

It has a name and an identifier which are unique. Next there is a description for this issue,
how it can occur, how can an attacker take advantage of this and what are the consequences.

There is a section dedicated to its relationships according to certain views. These interac-
tions - defined as ChildOf, ParentOf, MemberOf - give insight to related weaknesses that
could exist at higher and lower levels of abstraction. Also, defined to identify comparable
CWEs that the user may wish to investigate are relationships like PeerOf and CanAlsoBe.

For example, CWE-36 is a child of CWE-22 which refers to Improper Limitation of a Pathname
to a Restricted Directory.

7 Available at: https://cwe.mitre.org/, accessed in July 2022.

2.1. Code vulnerability 9

The applicable platforms table shows possible areas where the given weakness could
appear. These may be for certain identified languages, operating systems, architectures,
paradigms, technologies, or a class of such platforms. Each one of these can have a fre-
quency of this appearance. For this case in special, Absolute Path Traversal can occur in
any language. Nonetheless, there are some CWE that are related to certain languages. For
example, CWE-125 - Out-of-bounds Read usually appears on C or C++ projects.

Figure 2: CWE Structure - Common consequences.

The many different repercussions linked to the vulnerability are listed in Common Conse-
quences table as seen in Figure 2 Scope identifies the application security area that is being
compromised, while Impact describes the negative technical impact that comes up if an
attacker succeeds in exploiting this flaw. Likelihood gives details about how likely a particular
consequence will occur compared to the others on the table. For instance, a vulnerability
may have a high chance of being used to achieve a certain impact but a low chance of being
used to achieve a different impact.

Figure 3: CWE Structure - Examples, memberships and mitigations.

These last listings as seen in Figure 3 describe some examples on which this issue occurs
as well as the views in which this CWE is present (memberships). Finally there is a table of

2.2. Introduction to Static Application for Security Testing 10

possible mitigations that suggest a prevention for a likely attack.

2.2 introduction to static application for security testing

Static Application Security Testing, also known as white-box testing, is a software testing
methodology designed for inspecting and analyzing application source code that could
disrupt the availability and integrity of an application’s service. This happens without the
code being executed, in the initial stages of development8.

Therefore, SAST tools prevents security-related issues from being considered an af-
terthought. This give developers real-time feedback as they code helping them make
necessary improvements fast and efficiently without having to check through the code
manually. SAST scans are based on a set of predetermined rules that define the coding
errors in the source code that need to be addressed and assessed9. SAST tools detect bugs,
vulnerabilities and improve code quality [Nguyen-Duc et al. (2021)].

The SAST service intends to enable developers to design and deliver secure code by
integrating the SAST tools into existing development and/or delivery pipeline procedures,
which helps developers uncover and fix vulnerabilities even before a project reaches the
testing phase.[Li (2020)]. With that said, SAST tools can integrate with DevSecOps10 CI/CD
pipelines, run in an IDE or by command line. Developers can also customize reports, these
can be exported offline and tracked using dashboards.

However, the current status of SAST tools is susceptible to the following drawbacks:

• A large number of false positives and negatives reported, making it difficult to deter-
mine that a security issue is actually a vulnerability. As a result, developers will have
to put in more work to manually discover and address errors.

• It is still challenging to automatically detect a few types of security flaws (such as
authentication issues, access control problems, and unsafe cryptography usage).

• It is difficult to find bugs in third-party libraries, customizations, and frameworks
because they aren’t always reflected in the code.

• The incapability of reviewing compiled source code and detect business logic flaws[Li
(2020)].

8 Available at: https://www.synopsys.com/blogs/software-security accessed in November 2021.
9 Available at: https://owasp.org/www-community/Source_Code_Analysis_Tools, accessed in November 2021.

10 Available at: https://www.devsecops.org/, accessed in November 2021.

2.3. Summary 11

2.3 summary

This chapter highlighted key elements surrounding SAST, including the concept of code
vulnerability and what CWE and SAST are.

3

S TAT E O F T H E A RT

This chapter will present the existing tools in the market, some articles and platforms that
compare these tools and what type of work has been done around this topic.

3.1 existing sast tools

In this section, it is presented some of the existing tools in the market, commercial and
open-source, understand their mode of execution, what type of output is produced, type of
analysis and scanning.

It is divided in two subsections: open source and commercial tools. Open source products
usually support one language only and use simplistic algorithms that are incapable of
detecting specific flaws. Open source tools have far smaller rule bases, weaker interfaces,
and integration functionality as compared to commercial alternatives. Commercial solutions
use complex specific algorithms, have extensive rule bases, support a variety of programming
languages, and provide a comprehensive user interface and integration (e.g., plugins or
APIs).

3.1.1 Open source tools

Flawfinder

Flawfinder is a tool that detects vulnerabilities in C/C++ projects by using pattern-
matching and is executed by command-line. This tool produces a report in HTML or CSV
format or prints it in the command-line. This report lists all files that were scanned and all
the vulnerabilities found, ordered by severity. For each vulnerability, Flawfinder provides
its location, the severity score, its type, the vulnerable function, a short description, a link
to the CWE page of the vulnerability, and a proposed fix which is often the name of a safe
function that can be used instead of the vulnerable one. Moreover, the report shows the
analysis summary, which contains statistical data about the scan, such as with the number

12

3.1. Existing SAST tools 13

of files scanned and the number of errors reported[Smith et al. (2020)].

NodeJsScan

NodeJsScan supports many languages such as Java, C++, C, VB, PHP, PL/SQL. It has a
command line interface for easy integration with DevSecOps CI/CD pipelines. It produces
results in JSON. A configuration file is available for each language which can be modified for
customized searches[har]. NodeJsScan comes with a collection of security rules defined in
the rules.xml file, which includes tags that identify different sorts of vulnerabilities as well as
rules to match vulnerabilities in the project’s source. String comparison, Regex comparison,
Template comparison, Multi-Match Regex comparison, Dynamic Regex comparison, and
Missing Security Code are the six categories of rules.

Semmle

Semmle Inc1 is a platform for code analysis owned by GitHub. Semmle developed LGTM,
a continuous code analysis tool focused on identifying vulnerabilities in software systems
that has Semmle QL in its core, a query language and code search engine that enables code
analysis to detect and eliminate security vulnerabilities. QL employs variant analysis, a
technique commonly used by security experts. After a vulnerability is discovered, security
experts examine the remainder of the code base for similar issues. QL automates and extends
this process across various several code bases, allowing developers to design queries that
can be shared and reused. Semmle claims that their solutions have identified hundreds of
vulnerabilities, including over 100 CVEs in open source projects2.

Brakeman

Brakeman is a vulnerability scanner specifically designed for Ruby on Rails applications.
It produces a HTML or Generic Issue Import Format output and provides a quick look into
the code which raised the warning. It runs by command line and there is a plugin available
for Jenkins/Hudson3,4

1 Available at: https://github.com/Semmle, accessed in July 2022.
2 Available at: https://www.infoq.com/news/2019/09/github-semmle-vulnerabilities/, accessed in July 2022.
3 Available at: https://brakemanscanner.org/, accessed in December 2021.
4 Available at: https://github.com/presidentbeef/brakeman

3.1. Existing SAST tools 14

Findbugs

Findbugs5 is an open source project that detects 125 types of security vulnerabilities in
Java programs. Findbugs report and classify the bugs and vulnerabilities found into four
rankings: scariest, scary, troubling, and of concern. It contains a bug description, examples of
similarly vulnerable code and how to fix it, links to useful information on this vulnerability,
tool-specific information and it can be customized so only a subset of the categories are
reported on. It also provides a “Navigation” panel that contains a trace of the vulnerability
and offers a few quick fixes[Johnson et al. (2013)],[har],[Smith et al. (2020)]. Findbugs can be
executed by command line and there is also an Eclipse plugin[Smith et al. (2020)].

RIPS

RIPS (Research and Innovation to Promote Security)6 is the most popular static code
analysis tool for PHP code and can detect more than 80 vulnerabilities. This tool tokenizes
PHP code (lexical analysis) based on PHP’s tokenizer extension and performs semantic
analysis to build a program model. RIPS provides an integrated code audit architecture in
addition to a structured report of discovered vulnerabilities. It provides a web interface from
which the user can configure and launch scans, and consult the results. Vulnerabilities are
categorized into files and then sorted by type of vulnerability. Along with the problematic
code, RIPS provides a brief summary of each vulnerability. The help view, when available,
explains vulnerabilities in greater depth and may recommend fixes.[Smith et al. (2020)]. False
positives are a drawback of the open-source version due to the lack of an abstract syntax tree
or control-flow graph. False negatives can occur due to a lack of support for object-oriented
PHP programming. There is a commercial version of RIPS that can analyze not only PHP but
also Java code. This one, on the other hand, makes use of control-flow graphs and abstract
syntax trees. RIPS is accessible as both on-premises software and Software-as-a-Service
(SaaS)7.

JsHint

JsHint is a SAST tool that detects vulnerabilities in JavaScript programs. It is designed
to help developers write complex programs without worrying about typos and language
errors[har]. There is an online version which is accessible through the official website and a

5 Avaliable at: ttp://findbugs.sourceforge.net/, accessed in December 2021.
6 Avaliable at: ttp://rips-scanner.sourceforge.net/, accessed in December 2021.
7 Available at: https://en.wikipedia.org/wiki/RIPS, accessed in December 2021.

3.1. Existing SAST tools 15

command-line version, distributed as a Node.js module 8.

CodeWarrior

CodeWarrior can find security vulnerabilities in applications written in C, C#, PHP, Java,
Ruby, ASP, and JavaScript and is available for Linux, OX, BSD, and MacOS. It can be executed
after downloading it and constructing it with "make". Furthermore, although it is a web
application, Apache is not required to operate it. The program is known for having a low
percentage of false positives[har].

SonarQube

SonarQube is one of the most common open-source static code analysis tools for measuring
quality aspects of source code, including vulnerability. The Community Edition includes
static code analysis for around 15 languages as well as vulnerability and bug detection,
code smell tracking, technical debt review with remediations, code quality history and
metrics, CI/CD integration, and the ability to extend functionality further with over 60

community plugins. The Developer Edition includes all of the above features plus support
for 22 languages (ABAP, C, C++, CSS, Flex, HTML, Go, JavaScript, Java, Objective-C, Kotlin,
PL/SQL, PHP, C, Python, Ruby, Scala, Swift, T-SQL, VB.Net, TypeScript, and XML), as well
as real-time notifications in the IDE as part of SonarLint smart notification and pull request
decoration. SonarQube implements two fundamental approaches to check for issues in
source code:

• Syntax trees and API basics: Before running any rules, a code analyzer parses the
given source code file and produces the syntax tree. The structure is used to clarify the
problem as well as determine the strategy to use when analyzing a file.

• Semantic API: In addition to enforcing rules based on data provided by the syntax
tree, SonarQube provides more information through a semantic representation of the
source code. However, for the time being, this model only works with Java source code.
This semantic model offers data on each symbol that is changed.[Nguyen-Duc et al.
(2021)].

3.1.2 Commercial tools

DeepCode

8 Available at: https://www.methodsandtools.com/tools/jshint.php, accessed in December 2021.

3.1. Existing SAST tools 16

DeepCode is a SAST tool that uses AI to find vulnerabilities. It supports Java, JavaScript,
Python, TypeScript, and C/C++ code. For open source software and commercial teams of
up to 30 developers, the bot is free. DeepCode’s machine learning module analyzes a large
repository of modifications made by developers as they work on a wide range of projects.
DeepCode is able to provide developers a potential solution to the problem they are working
on by learning from this repo, as well as spot faults that have previously occurred9. Devel-
opers can connect DeepCode with their GitHub, BitBucket, or GitLab accounts or directly
within their IDE. DeepCode immediately starts reviewing each commit and identifies issues
without any required configuration10.

Reshift Security

Reshift Security is a SAST tool that supports Java and JavaScript. It integrates with Github,
Bitbucket, and Gitlab where it can simply sync projects and run scans on every build. With
the focus being a tool built for developers, Reshift offers “automated fixes” where suggested
fixes are listed and developers can simply accept to create a pull request. Because of that,
Reshift is currently known for being a seamless tool that developers can use and don’t have
to interact with it to remediate issues[har]. Reshift can be used as a plugin for IntelliJ and
there is also a VS Code extension.

CodeSonar

CodeSonar11 is a tool that performs a whole-program, interprocedural analysis on C/C++
code and identifies complex programming bugs. Similar to a compiler, CodeSonar does a
build of the code, but instead of creating object code it creates an abstract representation of
the program. After the individual files are built, a synthesis phase combines the results into
a whole-program model. The model is symbolically executed and the analysis keeps track of
variables and how they are related. Warnings are generated when anomalies are encountered.
CodeSonar does not need test cases and works with the existing build system[Ivo Gomes
(2009)] CodesSonar produces a report in SARIF (Static Analysis Interchange Format).

AppScan

AppScan12, formerly by IBM, is a SAST designed for web applications that uses machine
learning which allows this tool to produce a reduced number of false positives. There is still

9 Available at: https://dzone.com/articles/using-machine-learning-for-static-analysis-4, accessed in December
2021.

10 Avaliable at: ttps://snyk.io/news/snyk-announces-acquisition-of-deepcode/, accessed in December 2021.
11 Available at: https://www.grammatech.com/products/source-code-analysis, accessed in December 2021.
12 Available at: https://www.hcltechsw.com/appscan, accessed in December 2021.

3.1. Existing SAST tools 17

potential for development on the integration front, according to critics, as it currently lacks a
functional Jenkins plugin.

Kiuwan Code Security

Code Security13 is a SAST solution from Kiuwan. It supports over 30 programming
languages, scans locally and then shares results in the cloud. It is known for its fast scan and
results delivery. It can remediate vulnerabilities and the user can customize its environment.

Snyk

Snyk14’s main goal is to work for developers and solve the major problems of traditional
SAST products: they are too slow, with scans taking several hours, and they have a history
of poor accuracy and false positives. Snyk Code employs a semantic analysis AI engine
that learns from millions of open-source commits and is combined with Snyk’s Security
Intelligence database, resulting in a constantly growing code security knowledge base that
reduces false positives to near zero 15.

Coverity

Coverity16 is a SAST solution from Synopsys. It supports 22 languages and more than 70

frameworks. Rapid Scan, a rapid, lightweight static analysis engine, is included in Coverity
and may be used to scan online and mobile apps, microservices, and infrastructure-as-code
(IaC) settings.

Fortify

Fortify 17 is compatible with 21 programming languages and can detect over 900 different
types of vulnerabilities. To automate all validation operations and decrease the danger
of false positives, it employs a unique dataflow analysis technique and machine learning
algorithms. Fortify double-checks the fix to guarantee that the vulnerability was indeed
removed and that no new issues have arisen in its place. It performs this automatic double-
checking of all potential fixes using the results of prior audits as well as a comprehensive
knowledgebase. The tool translates the format of the source code, scans it, then gives a

13 Available at: https://www.kiuwan.com/code-security-sast/, accessed in December 2021.
14 Available at: https://snyk.io/
15 Available at: https://docs.snyk.io/products/snyk-code
16 Available at: https://snyk.io/, accessed in July 2022.
17 Available at: https://www.microfocus.com/en-us/cyberres/application-security/static-code-analyzer, accessed

in July 2022.

3.1. Existing SAST tools 18

detailed report. The user can’t add rules and has to upload codes manually. Fortify can
integrate with the Eclipse IDE or Visual Studio as well and has a mechanism for interaction
with continuous integration management systems, which allows automatic generation of
error reports.

CTool

CTool is a tool that is used to scan C, C++, Java code and bytecode. The tool can be
executed from the command line or via a full application. It also provides different interfaces
such as an IDE plugin, or a web page. Each vulnerability is reported along with a priority
score, its type, the code location, and information on its severity and sometimes fixes are
suggested. The GUI cannot be customized, since it is a web page. The tool provides the
ability to export a report in xml, html, or pdf format, and to customize reports. It also
allows the users to customize the analysis by choosing which checkers to run, and set code
annotations that guide the analysis at runtime[Smith et al. (2020)].

Veracode

Veracode18 The static binary analysis engine models the binary executable into an inter-
mediate representation, which is then verified for security flaws using a set of automated
security scans. Their SAST tool provides fast static analysis with automated security feed-
back, across the development environment (IDE integration) and from the CI/CD pipeline.

Checkmarx

Checkmarx CxSAST 19 support 27 programming languages and frameworks. Some tools
that rely on only lexical analysis have the tendency to output many false positives because
they do not take into account the semantic. This tool overcomes this lack by using the
Abstract Syntax Tree (AST) of the program being evaluated [Baptista et al. (2021)]. Besides
finding vulnerabilities, based on those results, it suggests recommendations on how to fix
problems with linking to a graphic scheme. It can be integrated with various development
environments (Eclipse, IntelliJ, Visual Studio, etc.), build servers (Jenkins, CLI, Bamboo,
Maven, TeamCity), version control systems (Bitbucket, etc.), and bug tracking (Atlassian Jira).

18 Avaliable at: ttps://www.veracode.com/, accessed in November 2021.
19 Avaliable at: ttps://checkmarx.com/product/cxsast-source-code-scanning/, accessed in November 2021.

3.1. Existing SAST tools 19

Table 1: Comparative table of SAST tools.

Tool Licence Execution Technologies Report Format
Flawfinder Free CLI Pattern-matching HTML/CSV/CLI
NodeJsScan Free CLI Pattern-matching JSON

Semmle Free App/IDE Plugin Pattern-matching CSV/SARIF
Brakeman Free CLI/ Jenkins Plugin Unknown HTML/Generic Issue Import Format
Findbugs Free CLI/ Eclipse Plugin Unknown xml/html

RIPS Free CLI/App Lexical/Semantic analysis Unknown
JsHint Free CLI/App Unknown XML

CodeWarrior Free CLI/App Unknown Unknown
SonarQube Free App Syntax trees/Semantic API JSON
DeepCode Commercial IDE Machine learning Unknown

Reshift Security Commercial IDE Plugin/Extension/Repositories Unknown Unknown
CodeSonar Commercial App Pattern-matching SARIF
AppScan Commercial App Machine learning DB/XML/PDF

Fortify Commercial CLI/App/IDE Plugin Machine learning XML
CTool Commercial CLI/App/IDE Plugin Unknown XML/HTML/PDF Format

Veracode Commercial App Unknown XML
Snyk Commercial CLI/App/IDE Plugin Semantic analysis AI engine JSON

Coverity Commercial IDE Plugin Unknown CSV/SARIF/JSON
Kiuwan Commercial IDE Plugin/Repositories Unknown PDF/CSV

Checkmarx Commercial App/IDE Plugin/Others Lexical/Semantic analysis JSON/XML/PDF/CSV/RTF

Table 1 summarizes the most relevant characteristics of the SAST tools stated above. Those
marked with unknown were not found or it’s about non revealed information, to the best of
our knowledge.

3.1.3 Types of output

The most common elements that can be found in a SAST output are:

• The name of the issue;

• Description of the problem;

• CWE related to the issue;

• Location: filename, start and end line, start and end column;

• Query executed that returned this issue;

• Function or type of node where it occurs;

• Severity or impact of the issue.

The majority of the SAST tools reviewed have these elements in their output. However,
they can have more elements such as:

• A copy of the source code where the issue is located;

• Suggestions to fix the issue.

3.2. Tools comparison 20

Table 2: Comparative table of SAST tools output.

Element Flawfinder NodeJsScan Semmle Snyk Checkmarx A B C
Name ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Description ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗

CWE ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✓

Filename ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Start line ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

End line ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Start column ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗

End column ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Query ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗

Function or node ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗

Severity ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Source code ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓

Suggestion ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗

Table 2 shows the most important elements that are present in the SAST tool outputs. A,
B, C denote commercial tools; as their output contain confidential data, their names must be
hide.

3.2 tools comparison

Nowadays, there are many choices available in the market so before choosing a SAST tool
for a development team it is necessary to take into account some aspects:

• The tool must analyze code in the languages the required applications are written in
and must support the framework used by the application so that it integrates easily
into the SDLC.

• It is important to check the accuracy of the SAST tools that is intended since it is the
weakest point for SAST and there will always be false positives and false negatives.

• A SAST tool should be easily integrated into a CI/CD pipeline or with IDE’s and
repositories.

• The tool must be customizable. The team must configure the tool to suit their de-
velopment needs. For instance, they can write new rules to help detect additional
security vulnerabilities. They may also need to integrate the SAST tool into their build
environment and create dashboards where they can track scan results and generate
custom reports.

• A SAST tool that delivers results on larger projects as for smaller ones with the same
efficiency.

3.2. Tools comparison 21

There are various sites available on the internet which compare SAST tools but not
based on all the important criteria referred above. It is a superficial comparison about the
advantages and disadvantages of commercial or open source tools, the investment, the speed
of scanning and accuracy, they do not report the specific results of the compared tools.
Furthermore, they also compare their features, clients reviews and ratings 20, 21, 22.

Another way of testing Application Security Testing tools is by using benchmarks. The
OWASP Benchmark Project is a Java test suite designed to verify the speed and accuracy of
vulnerability detection tools. It is a fully runnable open source web application that can be
analyzed by any type of Application Security Testing (AST) tool, including SAST 23. After
testing SAST tools individually with a benchmark, a comparison between them can be done.
There has been some studies that follows this paradigm and reports metrics obtained by the
SAST tools comparison. In this specific project, they run the selected SAST tools against the
OWASP Top Ten Benchmark designed with the default configuration for each tool, select
appropriate metrics to analyze results and finally rank the SAST tools according to the result
metrics such as percentage and number of false positives, false negatives and true positives
[Higuera et al. (2020)]. There are other approaches using the Juliet Test Suite24 as it is not
only limited to the top 10 vulnerabilities as of the OWASP benchmark [Gentsch (2020)].

A study was conducted aiming at the creation of a platform that combines two known
SAST tools in order to improve the performance. The development team had decided to
select the combination of SonarQube and SpotBug as the most practical solution with SAST
tools. The further development includes SpotBug plugin to a community-version SonarQube
and a new SonarQube widget to customize the scanning result. As static analysis uses
basically whitebox testing to explore source code, this result shows the potential to improve
existing tools, and probably towards a universal security static security ruleset[Nguyen-Duc
et al. (2021)].

Many evaluators follow a common method when deciding which static analysis tool will
perform best for their group or business. They test each tool on the same code, compare
the findings, then choose the tool that reports the most violations out-of-the-box. Other
approach is to scan the code taking several samples written in different languages. Then,
developers have to look at both false positives and false negatives, knowing where the
vulnerabilities are and compare those found by different tools.

The tool-compare repository25 available on github, compares static code analysis of IaC
tools and integrates some of the features this project intend to implement. In the world of

20 Avaliable at: ttps://www.trustradius.com/static-application-security-testing-sast, accessed in November 2021.
21 Avaliable at: ttps://www.capterra.com/static-application-security-testing-(sast)-software/pricing-guide/, ac-

cessed in November 2021.
22 Avaliable at: ttps://www.getapp.com/all-software/static-application-security-testing-sast/, accessed in Novem-

ber 2021.
23 Avaliable at: ttps://github.com/OWASP-Benchmark/BenchmarkJava, accessed in November 2021.
24 Avaliable at: https://www.nist.gov/publications/juliet-11-cc-and-java-test-suite.
25 Avaliable at: ttps://github.com/iacsecurity/tool-compare, accessed in November 2021.

3.3. Summary 22

infrastructure-as-code security there are several tools for users to choose from. The goal of
this repository is to help compare the different options so that users can choose the tool that
best fits their needs.

3.3 summary

This chapter described the research which consisted in learning about the most well-
known SAST tools, what they do, their mode of execution, supported languages, the
different technologies used and different report formats. It were also discussed the various
SAST tools comparisons found in the literature. Moreover, online platforms to compare
those tools, as well as the approaches used by developers to do this analysis are presented.

4

P R O P O S E D A P P R O A C H

This chapter presents a functional requirements elicitation and gives a quick overview of
the proposed architecture for the implementation of the system as well as the technologies
needed for achieving the proposed goals.

4.1 requirements

A functional requirement is a need that has to be fulfilled in order to deliver an operational
capability. Below are the functional requirements for this proposal:

• Upload a configuration file that defines how a new tool is executed;

• Upload a reader that convert a new tool output to a temporary struct;

• Upload a scan output, attached to a new project or an existing one;

• Upload a project source code so the scan results can be linked to the related line;

• Scan a project with configured tools;

• Compare scans based on many criteria and download the results.

4.2 architecture

Figure 4 describes the first system architecture defined to develop this project:

Figure 4: System architeture.

23

4.3. Technologies 24

Register - This component will receive and consume configuration files that will instruct
how the tools are executed. It will register the tools in the system.

Executer - This component will receive the application source code and analyse it using
the tool the user has chosen among the supported tools on the system. The system will
execute the scan via docker, command line as well as other options and produce the results.

Converter - This component will receive two types of inputs: the results of the scan using
the executer or the output of scanning the same project using a tipically commercial tool,
externally. To process the data, the system must be able of reading SAST outputs in various
formats such as JSON, HTML, XML, SARIF whether these are customized to the product
itself or not. After obtaining the two objects of study, the system will read the data based on
result readers provided for each supported tool or generic output format. This will convert
the SAST outputs to an intermediate representation so that the system can compare them
quickly and efficiently.

Comparer - The system will compare the two objects that contain the vulnerabilities of
each scan, indicating what they have in common and highlighting the finding gap.

Viewer - The result of comparison will be presented through a web interface. The results
can also be exported as a report on a json format, where the different vulnerabilities present
on the two scans are described.

4.3 technologies

This section introduces the technologies that will be used in this implementation as well
as the reasons that led to this choice. The programming language will be Go, the framework
Vue for the web interface and Docker to integrate the open-source SAST tools.

4.3.1 GO

Go is an open-source programming language designed for building simple, fast, and
reliable software, therefore it is the chosen language that will be used for the backend
of this project 1 Go was originally designed at Google in 2007. At the time, Google was
growing quickly, and code being used to manage their infrastructure was also growing in
both size and complexity. Some Google engineers then decided that they needed a new

1 Avaliable at: https://www.golang.org, accessed in December 2021.

4.3. Technologies 25

programming language focused on simplicity, efficiency in both compilation and execution
and effectiveness in writing reliable and robust programs [Alan A. A. Donovan (2015)]. Go is
an open-source project so code for its compiler, libraries and tools are avalilable to everyone.
It also has an active community that develops modules and libraries and helps newcomers,
contributing to the Go project itself.

Here is an example of the Fibonacci Sequence in Go 2:

1 func FibonacciLoop (n i n t) i n t {
f := make ([] in t , n+1 , n+2)

3 i f n < 2 {
f = f [0 : 2]

5 }
f [0] = 0

7 f [1] = 1

f o r i := 2 ; i <= n ; i ++ {
9 f [i] = f [i −1] + f [i −2]

}
11 re turn f [n]

}

4.3.2 Vue

Vue.js 3 is an open-source frontend JavaScript framework for building user interfaces
and single-page applications. Vue allows to take a web page and split it up into reusable
components, each one having its own HTML, CSS and JavaScript needed to render the page.
Official libraries and packages provide advanced functionality necessary for complicated
applications such as routing, state management, and build tools.

4.3.3 Docker

Docker is an open source software platform for creating, deploying, and managing virtu-
alized application containers on a common operating system. A container is a standard unit
of software that packages up code and all its dependencies, libraries and configuration files
so the program moves from one computer environment to another rapidly and reliably. A
Docker image is a lightweight, standalone, executable package of software that includes all
the parameters needed to run an application: code, runtime, system tools, system libraries

2 Avaliable at: https://gobyexample.com/, accessed in December 2021.
3 Avaliable at: https://vuejs.org/, accessed in December 2021.

4.4. Summary 26

and settings. It executes code inside a container so containers move between Docker envi-
ronments with the same OS work with no modifications 4.

4.4 summary

In this chapter, the proposed architecture for this system was presented together with the
functional requirements. Moreover, the proposed technologies were described along with
the reasons why they were chosen.

4 Avaliable at: https://www.docker.com/, accessed in December 2021.

5

D E V E L O P M E N T

This chapter describes all the challenges faced and decisions made throughout the devel-
opment of the comparing system. Each one of the following sections explains how the main
required functionalities were implemented: how to add a new tool and a new reader, read a
scan and compare results.

5.1 configuring a new tool

Besides the existing tools in the system, the user can add a new tool in order to scan
projects with it. For this purpose, the system needs the tool name, that must be unique, and
information about how it is executed.

This system can receive instructions for two types of tools:

• The ones that can be executed by command line
The user must provide a configuration file with the following information: which
commands have to be executed in order to install the tool, the commands to execute
the tool with a specific string that will be later replaced for the project path and the
output format.

1 {

2 "install":["pip install flawfinder"],

3 "scanProject": "flawfinder --sarif {path_to_project}",

4 "format": ".json"

5 }

6

• The ones that can be pulled by a docker image
In addition to the case above, the user must provide the name of the docker image to
pull and the path to the output.

27

5.2. Reading a scan 28

1 {

2 "image":"imageName",

3 "format":".json",

4 "scanProject": "{path_to_host_folder_to_scan}:/path tool:latest

scan -p '/path' -o '/path/'",

5 "pathToOutput": "/path/results.json"

6 }

7

5.2 reading a scan

For the integration of some readers in the system, it was necessary to analyze various
SAST outputs and study how the above values could be retrieved.

There are plenty of formats for a SAST scan output and it is common for a tool to deliver
many types such as xml, json and csv.

Moreover, some tools present the same type of output, for example SARIF but don’t fill all
the fields available on this format. A good example of this behaviour is the SARIF output of
Flawfinder, Snyk and Semmle:

• Flawfinder and Semmle outputs refers only to the start line, start and end column
while Snyk’s refers also to the end line.

• Snyk output also presents the code flow that precedes the result since the first node
until the last.

Besides, there are several ways of grouping the same type of results. For example, CxSAST
groups the same CWE and query results in an array while Flawfinder presents 1 result for
each vulnerability found.

This different type of delivering results can be seen next:

Flawfinder - Not grouping
1 {
2 " r e s u l t s " : [
3 {
4 " message " : {
5 " t e x t " : " b u f f e r / s p r i n t f : Does not check f o r b u f f e r overflows (CWE−120) . "
6 } ,
7 " l o c a t i o n s " : [
8 {
9 " phys ica lLocat ion " : {

10 " a r t i f a c t L o c a t i o n " : {

5.2. Reading a scan 29

11 " u r i " : " t e s t . c " ,
12 } ,
13 " region " : {
14 " s t a r t L i n e " : 21 ,
15 " startColumn " : 2 ,
16 " endColumn " : 39

17 }
18 }
19 }
20] ,
21 } ,
22 {
23 " message " : {
24 " t e x t " : " b u f f e r /scanf : The scanf () family ' s %s operation , without a l i m i t s p e c i f i c a t i o n , permits b u f f e r

overflows (CWE−120) . "
25 } ,
26 " l o c a t i o n s " : [
27 {
28 " phys ica lLocat ion " : {
29 " a r t i f a c t L o c a t i o n " : {
30 " u r i " : " t e s t . c "
31 } ,
32 " region " : {
33 " s t a r t L i n e " : 25 ,
34 " startColumn " : 2 ,
35 " endColumn " : 17

36 }
37 }
38 }
39]
40 }
41]
42 }

5.2. Reading a scan 30

CxSAST - Grouping by CWE-id and query
1 {
2 " Queries " : [
3 {
4 " Metadata " : {
5 " Id " : 5587 ,
6 "QueryName " : " Buffer_Overflow_Unbounded_Format " ,
7 "GroupName " : "CPP : Cx : CPP_Buffer_Overflow : 0 " ,
8 " S e v e r i t y " : " C r i t i c a l " ,
9 "CweId " : 120

10 } ,
11 " Resul t s " : [
12 {
13 " Nodes " : [
14 {
15 "Column " : 25 ,
16 " FileName " : " t e s t . c " ,
17 " FullName " : " bug " ,
18 " Length " : 3 ,
19 " Line " : 20 ,
20 " MethodLine " : 14 ,
21 "Name " : " bug " ,
22 " NodeId " : 129 ,
23 "DomType " : " UnknownReference "
24 }]
25 } ,
26 {
27 " Nodes " : [
28 {
29 "Column " : 2 ,
30 " FileName " : " t e s t . c " ,
31 " FullName " : " scanf " ,
32 " Length " : 5 ,
33 " Line " : 25 ,
34 " MethodLine " : 14 ,
35 "Name " : " scanf " ,
36 " NodeId " : 184 ,
37 "DomType " : " MethodInvokeExpr "
38 }
39]
40 }
41]
42 } ,
43 {
44 " Metadata " : {
45 " Id " : 5556 ,
46 "QueryName " : " Buffer_Overflow_Unbounded_Buffer " ,
47 "GroupName " : "CPP : Cx : CPP_Buffer_Overflow : 0 " ,
48 " S e v e r i t y " : " C r i t i c a l " ,
49 "CweId " : 120

50 } ,
51 " Resul t s " : [
52 {
53 " Nodes " : [
54 {
55 "Column " : 7 ,
56 " FileName " : " t e s t . c " ,
57 " FullName " : " f " ,
58 " Length " : 1 ,
59 " Line " : 32 ,
60 " MethodLine " : 14 ,
61 "Name " : " f " ,
62 " NodeId " : 242 ,
63 "DomType " : " UnknownReference "
64 }
65]
66 }
67]
68 }
69] }

5.2. Reading a scan 31

Other aspect that can take many forms in a scan and it is vital to compare results, is the
path to the file.

For example, CxSAST output represents the file name in the following way:

"FileName": "\\cinatra-master\\connection.hpp"

This path has double backslashes and does not start with the project name. It starts with
the first inner folder. On the other hand, Flawfinder presents the path to the file with a
single slash and starting in the outter folder where the project is:

"uri": "Projects/cinatra-master-cpp17/cinatra-master/websocket.hpp"

To fix this incoherence between integrated tools in the system and uploaded scans, it
was necessary to normalize the file path in order to be possible to compare results. When
converting the output results to an intermediate structure, all backslashes are replaced by a
single slash and the string must start in the project folder that is identified by its name. This
change covers the majority of cases that came across the development of the system.

Taking into consideration Table 2, the chosen essential elements for a stable comparison of
results were the following, since they are the most common between the analyzed outputs:

• The name of the issue

• CWE related to the issue

• Location: start line only

• Filename

• Function or type of node where it occurs

In addition and as a suggestion of an Application Security team, it can be helpful to have
the classification of the issue (false negative, false positive, true positive or unclassified) that
is added manually and evaluated by this type of teams, so they can have extra information
about their results when comparing to others.

The structure that defines a vulnerability for comparison is as shown in the example
below:

1 {

2 "Issue": "Use of Externally-Controlled Format String",

3 "File": "/program.c",

4 "InitialNode": 9,

5.3. Add a new reader 32

5 "TypeNode":"format/printf",

6 "CWEList" : ["CWE-134"],

7 "Classification" : "True positive"

8 }

5.3 add a new reader

In order to interpret an unknown scan output format, the user must upload the results
reader. This reader is a zip folder that contains a Dockerfile so the program will run under
Docker. It must be able to read the scan and create a json file that contains the vulnerabilities.
Each existing tool in the system must have a converter attached, since it would be useless
scanning a project without knowing how to fetch the important results.

5.4 comparing results

For this project, CWE-2000: Comprehensive CWE Dictionary1 was used since it has the name
of every active CWE, its description and relationships, which groups it is inserted in and
what views it is relevant for.
For this comparison, it is important to know every CWE-Id and its relationships between
child and parent CWE because the purpose is to know if a certain tool is finding an issue
that is related to another issue even though they are not exactly the same.

5.4.1 Types of comparing results

By CWE-Id

The most reliable way of comparing issues from a SAST output is by testing the equality
of CWE-Ids. If both tools find the same CWE in the same line, then it’s about the exactly
same issue.

By vulnerability name

Not every SAST tool assigns a CWE-Id to an issue. In that case, the comparison can be
done between the name of the issue.

1 Avaliable at: https://cwe.mitre.org/data/slices/2000.html, accessed in July 2022.

5.4. Comparing results 33

For example, CxSAST and NodeJSScan probably identify the same issue in line 2 since
NodeJSScan assigns a Password Hardcoded problem and CxSAST finds this result by running
Use_Of_Hardcoded_Password which is assigned to Use of Hard-coded Password (CWE-259).
However, neither of this issues names match completely.

1 var dummy_info = {
2 " password " : " asdfpiuw981 "
3 }

The chance of matching vulnerabilities names is not high since many SAST tool has its
own definition for an issue.

To solve this problem and having more results when comparing by name, there was an
attempt of assigning a CWE for the issue name and then compare by it. However, any
attempt of assigning a CWE-Id is unsafe. For example, NodeJsScan output does not refer
to CWE. Its issues are grouped by categories: Application Related, Cross-site-scripting and
Vulnerable Node Module.

1 {
2 " s e c _ i s s u e s " : {
3 " Appl icat ion Related " : [
4 {
5 " d e s c r i p t i o n " : "A hardcoded s e c r e t was i d e n t i f i e d . " ,
6 " f i lename " : " app . j s " ,
7 " l i n e " : 44 ,
8 " l i n e s " : " app . use (s e s s i o n ({ \ n s e c r e t : ' \ u00f1asddfilhpaf78h78032h7sg780dsbovncubuyvqy ' , \ n cookie : {\n secure : f a l s e ,\n

maxAge : 99999999999\n } " ,
9 " path " : "\\ vulnerable −node−master\\app . j s " ,

10 " sha2 " : " aa7af4 f62702b21938ef01 f5201c f1a5cbf6664388181aacfebbe88bfe081271 " ,
11 " tag " : " node " ,
12 " t i t l e " : " S e c r e t Hardcoded "
13 } ,
14] ,
15 " Cross S i t e S c r i p t i n g (XSS) " : [
16 {
17 " d e s c r i p t i o n " : " The EJS template has an unescaped v a r i a b l e . Untrusted user input passed to t h i s v a r i a b l e r e s u l t s in

Cross S i t e S c r i p t i n g (XSS) . " ,
18 " f i lename " : " bought_products . e j s " ,
19 " l i n e " : 26 ,
20 " l i n e s " : " f o r (var i = 0 ; i < products . length ; i ++) {<\ntd > < % −products [i] . product_id % > < /td >" ,
21 " path " : "\\ vulnerable −node−master\\views\\bought_products . e j s " ,
22 " sha2 " : "86 bd333ac85d54b1f83b82aac57e52bd90cfb6623f2dc9b72a0795288157cb08 " ,
23 " tag " : " xss " ,
24 " t i t l e " : " Unescaped v a r i a b l e in EJS template f i l e "
25 } ,
26]
27 }
28 }

It is impossible to attribute a CWE-Id for each issue, since these titles are vague:

5.4. Comparing results 34

• Secret Hardcoded can relate to CWE-259 (Use of Hard-coded Password), CWE-798 (Use
of Hard-coded Credentials) or even CWE-547 (Use of Hard-coded, Security-relevant
Constants).

• Cross Site Scripting is related to dozens of CWE-Ids.

By vulnerability hierarchy

Considering the hierarchy relationships of every CWE-Id, it is possible to indicate if a
result is more in-depth than other.
For instance CWE-79 which refers to Cross-site Scripting issue, has one ancestor and many
descendants. It is possible to conclude that any result with this CWE, will be very wide.

1 {

2 "CWE-79": {

3 "Name": "Improper Neutralization of Input During Web Page Generation ('Cross-

site Scripting')",

4 "ChildOf": {

5 "CWE-74": "Improper Neutralization of Special Elements in Output Used by a

Downstream Component ('Injection')"

6 },

7 "ParentOf": {

8 "CWE-692": "Incomplete Denylist to Cross-Site Scripting",

9 "CWE-80": "Improper Neutralization of Script-Related HTML Tags in a Web Page

(Basic XSS)",

10 "CWE-81": "Improper Neutralization of Script in an Error Message Web Page",

11 "CWE-83": "Improper Neutralization of Script in Attributes in a Web Page",

12 "CWE-84": "Improper Neutralization of Encoded URI Schemes in a Web Page",

13 "CWE-85": "Doubled Character XSS Manipulations",

14 "CWE-86": "Improper Neutralization of Invalid Characters in Identifiers in

Web Pages",

15 "CWE-87": "Improper Neutralization of Alternate XSS Syntax"

16 }

17 }

18 }

5.5. Summary 35

By node

The last way of comparing results is by analyzing the node in which the issue resides.
Some tools produce results with the type of node and in that case, if the same node type

is present in both compared scans, that is a match.

For example, both CxSAST and Flawfinder identify an issue in line 2, on node sprintf.
CxSAST finds an Unchecked Return Value (CWE-252) and Flawfinder finds a Buffer Copy
without Checking Size of Input (’Classic Buffer Overflow’) (CWE-120).

1 int demo(char *a, char *b) {

2 sprintf(s, "\n");

3 }

4

5.5 summary

This chapter explained the steps that were taken to implement the main functionalities of
the SAST tool Comparer.

6

F I N A L P R O D U C T

This chapter presents the last version of the prototype that implements the architecture
proposed in Chapter 4. It was built according to the implementation details explained along
the last chapter.

The system integrates already some readers and tools:

• two open source SAST tools - Flawfinder and NodeJSScan- that run by command line.

• some readers for many tools: Flawfinder (json - sarif), NodeJSScan (json), CxSAST
(json and xml), Snyk (json), Semmle (cvs and json) and others refered in Table 2.

6.1 user interface

This section presents the user interface by using images as well as notes that help better
understand the functionality and design.

6.1.1 Add new tool

As seen in Figure 5, this view aims to receive the tool configuration file as well the
corresponding reader so the results can be interpreted. This page contains some instructions
on the configuration file structure (as refered section 5.1), the necessary files inside the reader
and the required output structure.

36

6.1. User interface 37

Figure 5: Introduce new tool in the system view.

After uploading these configuration files, the tool is available to scan a project in this
system.

6.1.2 All scans

This view, Figure 6, shows all scans that were requested in a project scanning or uploaded
by the user. Each one has a reference to the tool, the project and the number of results. When
opening each panel, it is possible to see each result referring the file name, line, CWE-Id and
definition. When clicking the row on the table, it highlights the corresponding line in the
source code on the right so it is easy to understand what could possibly cause the issue.

There are also two buttons, one for uploading a scan output and the other for scanning a
project.

6.1. User interface 38

Figure 6: All scans view.

6.1.3 Upload scan output

To upload a scan output, it’s required to choose a project that is already listed and choose
an existing reader to convert. The checkbox must be ticked when the output results uploaded
are already in the correct structure to present them, in other words, there is no need to
convert the results. These inputs can be seen in Figure 7.

Figure 7: Upload scan output view.

6.1. User interface 39

6.1.4 Scan project

To scan a project, it’s required to choose a project that is already stored locally or upload a
new one and choose an existing tool in the system, as seen in Figure 8. At this moment, it is
possible to scan a project with Flawfinder and NodeJsScan.

Figure 8: Scan project view.

After having at least 2 scans of the same project, the user can start comparing results.

6.1.5 Compare results

The button New Comparison shown in Figure 9 opens a dialog in which it’s required to
choose two scans to compare. These must be scans from the same project, otherwise the
comparison would not make sense. The comparison is based on CWE-Ids by default but the
user can choose other criteria (hierarchy, name and node) and its order.

6.1. User interface 40

Figure 9: Compare two scan outputs view.

After finishing the comparison, a success message pops up and the results become
available.

These results can be downloaded by clicking the button on the right as shown in the
image below.

Figure 10 shows some statistics about the comparison:

• Total of different results: sum of the number of results only present in first and second
scan.

• Different results ratio: fraction between different and equal results.

• Which tool catches more results and the percentage of this majority.

• Precision: each criteria has a percentage of accuracy. This metric gives a perception of
how similar these results are.

Number of equal results by CWE * 1
(both tools identify the exact same issue)

+
Number of equal results by hierachy * 0.5

(tools identify a related issue)
+

Number of equal results by name * 0.7
(tools identify same named issues, the probability of being the exact same are high)

+
Number of equal results by node * 0.1

(tools identify a different issue on the same node)

Dividing by total number of results

6.1. User interface 41

Figure 10: Metrics view.

This view, as seen in Figure 11, shows all the different results present in both scans.

Figure 11: Different results.

This panel as shown in Figure 12 shows all equal results by CWE.

Figure 12: Equal results by CWE panel.

The equal results by hierarchy can be observed in Figure 13 and Figure 14 as the first one
represents the parent issue and the second one represents the child issue.

6.1. User interface 42

Figure 13: Equal results by Hierarchy - Parent Issue view.

Figure 14: Equal results by Hierarchy - Child Issue view.

Figure 15 and 16 shows the equal results when comparing by node. Figure 15 represents
CxSAST issue while figure 16 represents Flawfinder issue for the node getopt_long. Each one
attributes different CWE-Ids.

Figure 15: Equal results by Node - CxSAST Issue view.

6.2. Summary 43

Figure 16: Equal results by Node - Flawfinder Issue view.

6.2 summary

This chapter showed all the interface views as well as explanations on how to get the
results.

7

C A S E S T U D I E S

This chapter is devoted to the validation of the tool developed using for that purpose 3

case studies. Each one compares Checkmarx SAST tool against external tools, Flawfinder,
Snyk and Semmle respectively.

7.1 checkmarx - flawfinder

To compare results between these two tools, 3 projects were chosen: cinatra-master-cpp171,
rdkcmf 2 and insecure-coding-examples3 as seen in figure 17.

Each project was scanned with CxSAST (externally to the comparer tool) and the results
were uploaded. Then, the same projects were scanned using Flawfinder, directly from the
SAST Tool Comparer.

Figure 17: Compare CxSAST and Flawfinder results - scans.

1 Avaliable at: https://github.com/purecpp-org/cinatra, accessed in August 2022.
2 Avaliable at: https://github.com/rdkcmf/rdkc-rms, accessed in August 2022.
3 Avaliable at: https://github.com/patricia-gallardo/insecure-coding-examples, accessed in August 2022.

44

7.1. Checkmarx - Flawfinder 45

Figure 18 shows the results of cinatra-master-cpp17 comparison.
There are 141 different results as 133 are exclusive of CxSAST and 8 from Flawfinder.

There were not any results with the same CWE-Id but there were 8 hierarchy matches. In
addition, there were 18 nodes where these tools identified different CWE-Ids. These results
lead to a precision of 22%.

Figure 18: cinatra-master-cpp17 comparison - results.

Figure 19 shows the results of rdkcmf comparison.
There are 1836 different results as 1372 are exclusive of CxSAST and 464 from Flawfinder.

There were not any results with the same CWE-Id but there were 26 lines where CxSAST
and Flawfinder found related issues. Moreover, there were 121 nodes where these tools
identified different results and although there are no relationships between these results,
they may be good findings on both sides. These results lead to a precision of 17% since there
are lots of equal node results.

7.1. Checkmarx - Flawfinder 46

Figure 19: rdkcmf comparison - results.

Figure 20 shows the results of insecure-coding-examples comparison.
There are 163 different results as 117 are exclusive of CxSAST and 46 from Flawfinder.

There are 11 results with the same CWE-Id and 15 lines where CxSAST and Flawfinder
found related issues. Moreover, there were 40 nodes where these tools identified different
results. These results lead to a precision of 34% since there are lots of equal node results.

7.1. Checkmarx - Flawfinder 47

Figure 20: insecure-coding-examples - results.

After analyzing these comparisons statistics as seen in the images above, there are some
conclusions that can be taken:

• CxSAST always finds more results than Flawfinder.

• Flawfinder often finds the same CWE-ids. They are CWE-119, CWE-120, CWE-78,
CWE-134, CWE-126 among others, which can be a limitation.

• CxSAST and Flawfinder find many different results on the same nodes and that is why
the precision of these comparisons are low.

• The equal node results follow the same pattern very often. These pairs of results that
appear repeatedly can be worth of investigation:

– read - CxSAST identifies CWE-252 (Unchecked Return Value), Flawfinder iden-
tifies CWE-120 (Buffer Copy without Checking Size of Input) and CWE-20 (Im-
proper Input Validation).

– printf - CxSAST identifies CWE-311 (Missing Encryption of Sensitive Data),
CWE-497 (Exposure of Sensitive System Information to an Unauthorized Control
Sphere) or CWE-256 (Plaintext Storage of a Password) and Flawfinder identifies
CWE-134 (Use of Externally-Controlled Format String).

– memcpy - CxSAST identifies CWE-242 (Use of Inherently Dangerous Function),
Flawfinder identifies CWE-120 (Buffer Copy without Checking Size of Input).

7.2. Checkmarx - Snyk 48

– strlen - CxSAST identifies CWE-242 (Use of Inherently Dangerous Function),
Flawfinder identifies CWE-126 (Buffer Over-read).

• CxSAST and Flawfinder have way more hierarchy results in common rather than CWE
equal results. In the majority of these results, CxSAST identifies the parent issue and
Flawfinder identifies the child issue. These results are also very repetitive: for example,
CxSAST always finds CWE-118 at the same location where Flawfinder finds CWE-119

and CWE-120 and CxSAST always finds CWE-367 where Flawfinder finds CWE-362.

7.2 checkmarx - snyk

To compare results between these two tools, 2 projects were chosen: WebGoat.NET-Csharp7-
master4 and AlegroCart5.

Each project was scanned with CxSAST and with Snyk (both externally to the comparer
tool) and the results were uploaded as seen in Figure 21.

Figure 21: Compare CxSAST and Snyk results - scans.

From this view, it is notable CxSAST finds more results than Snyk.
Figure 22 and 23 show the comparison results between the WebGoat project scans.

4 Avaliable at: https://github.com/jerryhoff/WebGoat.NET, accessed in August 2022.
5 Avaliable at: https://github.com/alegroleo/alegrocart, accessed in August 2022.

7.2. Checkmarx - Snyk 49

Figure 22: WebGoat.NET-Csharp7-master comparison: CxSAST -> Snyk.

This first comparison (CxSAST vs Snyk) obtained 428 different results as 408 are exclusive
of CxSAST and 20 from Snyk. There was a match of 21 results with the same CWE-Id and 5

results in the same node but with different issues associated, which leads to a precision of
83%.

Figure 23: WebGoat.NET-Csharp7-master comparison: Snyk -> CxSAST.

The second comparison (Snyk vs CxSAST) is distinct from the first in that there were only
3 results when comparing by CWE-Id, which leads to a precision of 49% which is lower than

7.2. Checkmarx - Snyk 50

the previous. This result is quite odd since this comparison is based on the same 2 scans,
just in different directions.

However, when taking a deep look at these results, it is possible to understand at least
one reason for these differences in the numbers: CxSAST finds multiple results in the same
row and in different columns, while Snyk displays single results per row.

As the comparison is done only taking into account the line, leaving out the column, in the
first case, CxSAST results match Snyk result and join CWE equal results. In the second case,
the single Snyk result only matches once with a CxSAST result and despite the comparison
being done in two directions (CxSAST results that match Snyk results and vice-versa), this
last doesn’t add the corresponding results to the list since they would be duplicated. In the
second flow, only the different results are added to the list.

Thus, every CxSAST result that exist in the same line but different column, will be dis-
carded and join the Only present in CxSAST scan list.

Figure 24 shows same CWE results on the same project line that appear multiple times
(line 30 and 41) but are located in different columns, in CxSAST scan, while in Snyk it is a
unique result.

Figure 24: WebGoat.NET-Csharp7-master comparison - equal results by CWE.

This handicap could be fixed by comparing not only by line but also by column.
However, this could lead to another drawback: the number of different results could

increase exponentially since a slightly devious column value translates to a mismatch.
In addition, not every tool output makes a reference to the column, therefore this problem

continues to exist.

7.3. Checkmarx - Semmle 51

Despite not getting 100% precise results, this way it is possible to analyze 1:N and N:1
results by comparing in different orders.

The next comparison, in Figure 25, uses AlegroCart project and obtained 2799 different
results as 2789 are exclusive from CxSAST and 10 exclusive from Snyk, 13 results have the
same CWE-Id and 224 results are hierarchy related, which leads to a precision of 53%.

CxSAST continues to find more vulnerabilities than Snyk. Looking to equal hierarchy
results, CxSAST always identifies the parent issue and Snyk identifies the child issue which
can reflect that Snyk presents more specific results that CxSAST.

Figure 25: AlegroCart comparison - results.

7.3 checkmarx - semmle

To compare results between these two tools, 1 project was chosen: WebGoat.NET-Csharp7-
master6.

This project was scanned with CxSAST and with Semmle (both externally to the comparer
tool) and the results were uploaded.

6 Avaliable at: https://github.com/jerryhoff/WebGoat.NET, accessed in August 2022.

7.4. Summary 52

Figure 26: WebGoat.NET-Csharp7-master comparison - results.

Looking at Figure 26, it is noticeable that there are 459 different results, 433 from CxSAST
and 26 from Semmle. Comparing by CWE-IDs, only 1 result present in both scans and
there aren’t results with hierarchy relationships, therefore, these results comparison has an
accuracy of 100%.

Taking into account these last comparisons, it is possible to look deeper at the unique
results of each tool and see if they are indeed good findings. In case they are, then there
is an indication of the existence of false negative results in a tool. Therefore, its rules can
be improved to optimize its accuracy or even add new rules to be able to find these results.
On the other hand, the same can be done for false positives. If one tool finds a result and
another does not, there may exist incorrect or unwanted results. In that case, the rules of
that specific tool must be adjusted in order to remove these bad findings.

7.4 summary

Over this chapter, some comparison results between 4 SAST tools were presented along
with an exploratory analysis for each one.

8

C O N C L U S I O N

This chapter is meant to wrap up the master’s thesis by providing a summary of the work,
the final conclusions and some future work ideas.

The first chapter contains the motivation, objectives, research methodology and presents
the document organization of the master thesis.

The second chapter contains some key background concepts that must be understood in
order to get along with the work that is going to be presented.

The third chapter consists in investigating about SAST tools, the different options available
in the market, what is distinct about each one of them and studying about types of tools
comparison done in the past.

The fourth chapter presents and describes the architecture proposal along with its compo-
nents and functional requirements.

The fifth chapter explains the application development, its main challenges and decisions
in order to create a general and extendable system.

The sixth chapter presents the final product and describes each application page, its inputs
and outputs, a sort of guide on how the application works.

Finally the seventh chapter presents different case studies that help to understand the
distinct type of comparison results, how they could be interpreted and the benefits of such
comparison.

Taking into account the research hypothesis, the original premise of building a system
that automatically compares SAST tools results by directly scanning with such tools or
considering the output findings, was achieved in Chapter 6.

The final product and the case studies analyzed in Chapter 7 were important to demon-
strate this application, the type of results that it delivers and what type of meaningful
conclusions could be taken.

This project main contribution is to help Cybersecurity companies to evaluate their
products considering inputs from other similar tools in the market. What would usually be
a manual task, can with SAST tool comparer be made in a semi-automated fashion.

53

8.1. Future work 54

8.1 future work

Throughout the development of this Master’s Thesis project, some interesting ideas came
up but they were not carried out due to the context and the available time.

However, it would be good to improve this platform. These are some proposals:

• Improve the interface in order to be more efficient and safe and add more functionalities
such as remove scans, order results by line, file or cwe.

• The results comparison could be even deeper, for example, to give the option of
comparing by column and analyse if results are members of the same view could be
another criteria to test the results match.

• This project could be open-source so it would receive valuable inputs from users such
as more readers and tools to integrate the system.

• Divide the multiple components of this application so they can be used independently:
for example, it could be useful to have the comparison module available outside the
application, for possible integration in other tools.

• Provide the possibility of adding a custom vulnerability mapping between two specific
tools, for a comparison more adjusted to the user objectives.

B I B L I O G R A P H Y

Brian W. Kernighan Alan A. A. Donovan. The Go Programming Language - Alan A. A. Donovan,
Brian W. Kernighan. 2015.

Bushra Aloraini, Meiyappan Nagappan, Daniel M German, Shinpei Hayashi, and Yoshiki
Higo. An empirical study of security warnings from static application security testing
tools. Journal of Systems and Software, 158:110427, 2019.

Murat Aydos, Çiğdem Aldan, Evren Coşkun, and Alperen Soydan. Security testing of web
applications: A systematic mapping of the literature. Journal of King Saud University -
Computer and Information Sciences, 2021.

Tiago Baptista, Nuno Oliveira, and Pedro Rangel Henriques. Using Machine Learning for
Vulnerability Detection and Classification. volume 94, 2021.

Samuel Gonçalves Ferreira. Vulnerabilities fast scan, tackling sast performance issues with
machine learning. 2019.

Christoph Gentsch. Evaluation of open source static analysis security testing (sast) tools for
c, 2020.

Juan R.Bermejo Higuera, Javier Bermejo Higuera, Juan A.Sicilia Montalvo, Javier Cubo
Villalba, and Juan José Nombela Pérez. Benchmarking approach to compare web appli-
cations static analysis tools detecting owasp top ten security vulnerabilities. Computers,
Materials and Continua, 64:1555–1577, 6 2020.

Tiago Gomes Rodrigo Moreira Ivo Gomes, Pedro Morgado. An overview on the static code
analysis approach in software development, 2009.

John Peyton Kristofer A Duer Jinqiu Yang, Lin Tan. Towards better utilizing static application
security testing. 2019.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why don’t
software developers use static analysis tools to find bugs? 2013.

Jinfeng Li. Vulnerabilities mapping based on owasp-sans: A survey for static application
security testing (sast). Annals of Emerging Technologies in Computing, 4:1–8, 7 2020.

55

BIBLIOGRAPHY 56

Christopher J. Fox Michael S. Ware. Securing java code: heuristics and an evaluation of static
analysis tools. 2008.

Anh Nguyen-Duc, Manh-Viet Do, Quan Luong-Hong, and Kiem Nguyen-Khac. On the
combination of static analysis for software security assessment-a case study of an
open-source e-government project. 2021.

Abid Jamil Hamza Tauseef Sahar Ajmal Rimsha Asif Bisma Rehman Sumaira Mustafa
Pariwish Touseef, Khubaib Amjad Alam. Analysis of automated web application
security vulnerabilities testing | proceedings of the 3rd international conference on
future networks and distributed systems. 2019.

Pedro Miguel Lopes Pereira. Automatic fix of source code vulnerabilities. 2019.

F. Guerouate S. El Idrissi, N. Berbiche and M. Sbihi. Performance evaluation of web
application security scanners for prevention and protection against vulnerabilities. 2017.

Justin Smith, Lisa Nguyen Quang, Do Google, and Emerson Murphy-Hill Google. Why Can’t
Johnny Fix Vulnerabilities: A Usability Evaluation of Static Analysis Tools for Security. 2020.

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Research Hypothesis
	1.4 Research Method
	1.5 Document structure

	2 Background
	2.1 Code vulnerability
	2.1.1 CWE

	2.2 Introduction to Static Application for Security Testing
	2.3 Summary

	3 State of the Art
	3.1 Existing SAST tools
	3.1.1 Open source tools
	3.1.2 Commercial tools
	3.1.3 Types of output

	3.2 Tools comparison
	3.3 Summary

	4 Proposed Approach
	4.1 Requirements
	4.2 Architecture
	4.3 Technologies
	4.3.1 GO
	4.3.2 Vue
	4.3.3 Docker

	4.4 Summary

	5 Development
	5.1 Configuring a new tool
	5.2 Reading a scan
	5.3 Add a new reader
	5.4 Comparing results
	5.4.1 Types of comparing results

	5.5 Summary

	6 Final product
	6.1 User interface
	6.1.1 Add new tool
	6.1.2 All scans
	6.1.3 Upload scan output
	6.1.4 Scan project
	6.1.5 Compare results

	6.2 Summary

	7 Case studies
	7.1 Checkmarx - Flawfinder
	7.2 Checkmarx - Snyk
	7.3 Checkmarx - Semmle
	7.4 Summary

	8 Conclusion
	8.1 Future work

