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Carteiras ótimas baseadas em características de ações: Construção e 

performance no mercado dos E.U.A 

Resumo 

Existe uma vasta literatura sobre criação de carteiras de investimentos, iniciada por Markowitz 

(1952) e prolongada ao longo dos anos com contribuições sobre novas abordagens e técnicas. 

Outro ramo relevante da literatura em Finanças concentra-se na análise fundamental e na 

investigação de métodos para prever rendibilidades futuras. Esta dissertação situa-se na interseção 

destes dois ramos, uma vez que tem como principal objetivo incorporar a análise fundamental na 

otimização de carteiras. 

Para atingir este objetivo, este estudo foca-se no mercado de ações dos EUA entre 1998 e 2021. 

Os dados são provenientes da Refinitiv Datastream e filtrados e processados seguindo as 

orientações de Landis e Skouras (2021). Para a criação das carteiras, as rendibilidades esperadas 

e as matrizes de covariância são produzidas com a estimação de um modelo que relaciona 

diretamente as rendibilidades esperadas com características das ações, como rácios 

contabilísticos. Para compreender se possíveis ganhos de performance advêm das rendibilidades 

esperadas, das matrizes de covariância, ou de ambas, carteiras com diferentes pressupostos são 

construídas e comparadas com as “Carteiras fundamentais totalmente otimizadas” (Fully 

optimized fundamental portfolios) através de várias medidas de performance. Estas são 

construídas seguindo Markowitz (1952), incorporando tanto as rendibilidades esperadas como as 

estimativas da matriz de covariância. Os resultados são comparados com os encontrados no 

estudo de Lyle e Yohn (2021). 

As principais conclusões desta dissertação são de que a incorporação de estimativas de 

rendibilidades esperadas com base nas características das ações e matrizes de covariância na 

otimização pode traduzir-se em ganhos na performance da carteira. No entanto, estes ganhos são, 

em quase todos os casos, apenas notórios quando há uma restrição de pesos superiores a zero 

(sem vendas a descoberto). Estes resultados são também dependentes do período de tempo em 

análise e da inclusão de ações de baixa capitalização no universo de investimentos. 

 

Palavras-chave: Análise de performance, Análise fundamental, Construção de carteiras, 

Mercado de ações, Rendibilidades  
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Optimal portfolios based on stock characteristics: Construction and 

Performance for the US Market 

Abstract 

There is a vast literature on investment portfolio creation, starting with Markowitz (1952) and 

prolonging itself throughout the years with numerous contributions on new approaches and 

improved techniques. Another relevant branch of Finance literature focuses on fundamental 

analysis and seeks to find methods to predict future returns. This dissertation lies in the intersection 

between these two branches, as its main objective is to incorporate fundamental analysis in mean-

variance portfolio optimization.  

In order to achieve this objective, this study focuses on the US stock market between 1998 and 

2021. The data is retrieved from Refinitiv Datastream and cleaned and processed following Landis 

and Skouras (2021) guidelines. For the creation of the portfolios, both expected returns and 

covariance matrices are produced with the estimation of a model that directly links expected returns 

with stock characteristics, including accounting ratios. To understand whether possible gains in 

performance arise from the expected returns, covariance matrixes, or both, several portfolios with 

different assumptions are constructed and compared to the “Fully optimized fundamental 

portfolios” with several performance measures. These Fully optimized portfolios are constructed in 

Markowitz's (1952) style, incorporating both the expected returns and covariance matrix 

estimations. Results are compared with the ones found in Lyle and Yohn (2021) study. 

The main conclusions of this dissertation are that incorporating estimates of expected returns 

based on stock characteristics and covariance matrices in mean-variance optimization can produce 

an improved portfolio performance. However, this improvement is almost in all cases only 

noticeable when there is a constraint on weights to be higher than zero (no short selling). These 

results are also dependent on the time period under analysis and the inclusion of small stocks in 

the investment set.  

 

Keywords: Performance analysis, Fundamental analysis, Portfolio construction, Stock market, 

Returns  
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1. Introduction 

There is a vast literature on investment portfolio creation. Constructing a portfolio generally 

consists of estimating expected future stock returns and a covariance matrix and optimally 

allocating wealth across those stocks to maximize the expected return subject to a given risk 

constraint (Lyle & Yohn, 2021). The first contributor to the topic was Markowitz (1952) with its 

mean-variance portfolio approach. Since then, multiple alternatives to portfolio creation have been 

discussed and analyzed in the Finance literature. 

The ability to predict market returns is important in portfolio allocation decisions (Lee et al., 

1999). According to Neely & Rapach (2010), there are two main methods of predicting aggregate 

stock returns: (1) Fundamental analysis and (2) Technical analysis. Fundamental analysis uses 

valuation ratios, interest rates, term and credit spreads, and other economic variables to forecast 

excess stock returns while technical analysis relies on past stock price behavior and trade volume 

to determine future price movements (Neely et al., 2010). Throughout this dissertation, a more 

specific definition of fundamental analysis will be used: the use of fundamentals-based ratios to 

estimate a stock’s intrinsic value (Lyle & Yohn, 2021).  

The main objective of this dissertation is to incorporate fundamental analysis in mean-variance 

portfolio optimization. To do so, data on the United States stock market between July 1998 and 

September 2021 is used. After the creation of the “Fundamental Portfolios”, their ex-post 

performance is compared with other standard portfolio construction alternatives, namely Equal-

Weighted, Minimum Variance, and Expected Returns portfolios. Several performance measures are 

used, including more traditional ones such as the Sharpe and Treynor Ratios, and also alphas and 

information ratios based on multifactor models.  

Accordingly, the main research question is finding if there is any improvement in portfolio 

performance for considering expected returns based on fundamentals for mean-variance portfolio 

optimization. The results are also compared with previous literature with the same methodology 

and approach, namely the recent study of Lyle and Yohn (2021).  

According to Baker and Haugen (1996), there is a common bias in Finance literature related 

to data snooping. This occurs when researchers examine the properties of a database or the results 

of other studies of that database, build predictive models based on the previous results, and then 

test the power of the models on the same database. A relevant feature of this dissertation is that 
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this direct comparability of the results with Lyle and Yohn (2021) study can also help to understand 

possible differences in the databases used for both studies. The data for this dissertation is 

retrieved from Refenitiv Eikon Datastream whereas the original study and a large part of the 

research for the US market are based on data from CRSP and Compustat. Another relevant feature 

is the analysis of results for different time periods from the ones in the original study, which only 

uses data up to 2017. Finally, I also consider some possible technical problems with the original 

study and innovate by providing solutions for them. 

The remaining of this Dissertation is organized as follows: Section 2 is the Literature Review, 

which brings into light the state of the art concerning fundamental analysis, portfolio construction, 

and performance measurement; Section 3 presents the methods used to develop the study; 

Section 4 explains the data that will be collected; Section 5 presents the main results found; and, 

finally, Section 5 concludes the dissertation.  
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2. Literature Review 

2.1 Return predictability and fundamental analysis 

The literature on return predictability is quite extensive. Some academic finance economists 

believe that aggregate stock returns are predictable (Campbell & Thompson, 2008) and others 

argue that market efficiency implies that stock returns are random, and so, cannot be predicted. 

Allen et al. (2019) assert that the partial predictability of returns through the use of publicly 

available information challenges the idea of pure market efficiency. They assume that some 

forecasting ability seems reasonable. However, the forecasts are noisy and the estimation error 

must be considered. 

Campbell and Thompson (2008) argue that several variables are correlated with subsequent 

stock returns, including stock market valuation ratios, levels of short- and long-term interest rates, 

patterns in corporate finance and cross-sectional pricing of individual stocks, and the level of 

consumption to wealth. 

Also, Lyle and Yohn (2021) point to the predictive ability of fundamentals-based ratios, such 

as book-to-market and profitability. Brandt et al. (2009) argue that stock characteristics, such as 

market capitalization, book-to-market ratio, or lagged returns, are related to the expected return, 

variance, and covariance with other stocks.  

Fundamental analysis uses valuation ratios, interest rates, term and credit spreads, and other 

economic variables to forecast excess stock returns (Neely et al., 2010). According to Lyle and 

Yohn (2021), Fundamental analysis can be used to derive an “intrinsic value” estimate of a stock, 

assuming that the stock’s market value will converge to its intrinsic value over time. Also Lee et al. 

(1999) find that when the price is a noisy measure of value, fundamental measures can be 

evaluated in terms of their ability to contribute to return prediction: an investor can use the 

difference between the intrinsic value and the market value to estimate future stock returns. 

One common ratio studied in the literature is the book-to-market value ratio. According to 

Fama and French (2006), a higher book-to-market value ratio implies a higher expected stock 

return. Firms with higher book-to-market ratios (value firms) grow less rapidly than low book-to-

market ratio firms (growth firms). The authors find that, when size and the book-to-market ratio are 

used alone to explain returns, there is a strong positive relation between average return and book-
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to-market ratios and, so, assert that high book-to-market firms have higher average returns than 

low book-to-market firms. 

Baker and Haugen (1996) provide a review of possible explanations across the literature for 

this phenomenon. Some authors believe that value stocks are riskier, and so it is expected for 

these stocks to have a premium. Other authors believe that the premium returns to value stocks 

are unexpected by investors. Investors overreact to firms’ history of success and failure. By 

projecting prolonged and rapid growth, investors in growth stocks can drive prices too high. As the 

market competition forces that drive profits to normal levels come into play sooner than expected, 

future dividends and capital gains on these stocks tend to be smaller than expected and returns 

tend to be relatively low. The opposite tends to occur for value stocks. An important conclusion of 

the authors is that, regardless of whether the relationship is a consequence of risk or overreaction, 

a higher book-to-market value ratio is associated with a higher expected stock return. 

Also according to Baker and Haugen (1996), more profitable firms will tend to grow faster, at 

least until market competition forces profits to normal levels. Regarding the association between 

market capitalization and average returns, Fama and French (2006) find that small firms have 

higher average returns than big firms.  

A wide literature originating from Sloan's (1996) study demonstrates a negative relation 

between accruals and future profitability. Sloan (1996) hypothesizes that investors do not 

understand that earnings are composed of both operating cash flows and accruals, and that 

accruals tend to reverse in future periods. This faster mean reversion of the accruals part of 

earnings leads to a negative relationship between current accruals and future stock returns.  

Many papers extended this original hypothesis and the research has generally found that the 

accrual component of earnings has a negative association with future returns (Richardson et al., 

2010). However, the fact that accruals do not mean revert faster than the cash component of 

earnings suggests that Sloan's (1996) inference cannot in itself explain large spreads in average 

returns associated with accruals (Fama & French, 2006). More recent papers attribute this relation 

to a combination of earnings management and accounting distortions. These papers tend to show 

that the negative relation between accruals and future returns is stronger for accruals reflecting 

earnings management or accounting distortions (Richardson et al., 2010). 
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Sloan (1996) uses changes in balance sheet items and defines accruals as changes in non-

cash working capital minus depreciation scaled by average total assets. This is the narrow definition 

of accruals. A more general definition of accruals is introduced by Richardson et al. (2005) – the 

change in net operating assets. They separate operating from financing activities and reorganize 

the standard balance sheet identity of assets equal to liabilities plus book value of equity: assets 

can be divided into operating assets (operating component) and financial assets (financing 

component), as well as liabilities can be operating liabilities or financial liabilities. Thus, net 

operating assets (operating assets less operating liabilities) are equal to net financial obligations 

(short-term debt plus long debt less financial assets) plus the book value of equity.  

The change in net operating assets includes not only the current accruals of the original 

Sloan's (1996) measure such as changes in inventory, accounts receivables, and accounts 

payable, but also the noncurrent accruals such as intangibles, property, plant and equipment, and 

deferred employment obligations. The main differences are that Sloan’s measure ignores non-

current accruals, excludes taxes payable, and treats depreciation expense as a current accrual 

(Richardson et al., 2010). 

It is relevant to note that this dissertation has not the intent to give an insight into whether or 

not the predictability of returns and the relationship of each of these ratios with future returns is a 

challenge to market efficiency. According to Baker and Haugen (1996), there are three main 

interpretations for these findings: (1) some believe that the evidence is derived from biases in the 

studies (for instance survival bias and data snooping), others believe that, even with possible 

exaggeration through flaws in estimation, the relationships are still observed and (2) are expected 

by investors and caused by differences in risk premiums, that although not explained by the Capital 

Asset Pricing Model, can be consistent with other models, and so the market efficiency is not 

rejected or (3) are not expected by investors and derive from the market over or underreactions to 

numerous events. 

2.2 Portfolio construction approaches 

Markowitz’s influential articles on portfolio selection support many advances in financial 

literature. Its approach is one of the most widely used quantitative methods of portfolio construction 

by practitioners (Allen et al., 2019). However, this traditional approach of first modeling the 

distribution of returns and then solving for the corresponding optimal portfolio weights is difficult to 
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implement for a large number of assets and produces notoriously noisy and unstable results 

(Brandt et al., 2009). 

In the past, investors sought to maximize wealth while minimizing the volatility of returns 

(Bender et al., 2019). However, according to Bender et al. (2019), new portfolio construction ideas 

have proliferated rapidly in the last few years. Now, more than having the objective of identifying 

robust systematic and repeatable sources of return, investors should refocus on isolating sources 

of return that are rewarded and build portfolios that capture these sources in the most risk-efficient 

and cost-efficient way (Bender et al., 2019).  

2.2.1 Markowitz (1952) mean-variance optimal portfolios 

According to Markowitz (1952), the process of selecting a portfolio may be divided into two 

stages: (1) the analysis of the future performance of available securities and (2) the choice of the 

portfolio. The first phase should involve estimates of individual stock’s expected returns, variances, 

and covariances (Brandt et al., 2009).  

Markowitz (1952) discusses that the rule for portfolio choice should not be the maximization 

of discounted expected returns, but the investor should both diversify and maximize expected 

returns instead. He refers to the latter as the "expected returns-variance of returns" rule (Markowitz, 

1952). The portfolio weights should be chosen to maximize the expected portfolio return subject 

to a given risk constraint (Lyle & Yohn, 2021). This implies that the portfolio with the maximum 

expected return is not necessarily the one with minimum variance and there is a trade-off between 

expected return and risk (Lyle & Yohn, 2021; Markowitz, 1952). 

According to Lyle and Yohn (2021), although this method is intuitive and one of the most 

prevalent models for capturing investor preferences (Bender et al., 2019), it has some issues: it is 

difficult to implement because of unreliable expected returns estimates and there can be significant 

errors in the estimation of the covariance matrix. Allen et al. (2019) point out a consensus in the 

literature that estimation error makes mean-variance portfolio strategies inferior to passive equal-

weighted approaches.  

It is important to note, however, that errors in estimation can be addressed and sensible 

parameters can be calibrated, solving the issues concerning the mean-variance approach (Bender 

et al., 2019). Brandt et al. (2009) point to different solutions that, although generally improve the 

properties of the optimized portfolio, require substantial resources. These include the shrinkage of 
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estimates, imposing a factor structure on the covariance matrix, the estimation of expected returns 

from an asset pricing model, and constraining portfolio weights.  

2.2.2 Alternative portfolio construction approaches 

Taking into account the potential issues arising from mean-variance optimization, there are 

several portfolio construction approaches referenced throughout the literature. When it comes to 

weighted portfolios, they are constructed using some set of rules focusing on diversification or risk 

(Bender et al., 2019). There are several definitions and categorizations of portfolio construction 

approaches.  

For instance, Amenc et al. (2014) create two broad definitions: (1) scientific diversification, 

which includes, for example, minimum variance portfolios and maximum Sharpe ratio portfolios, 

and (2) naive diversification, including equal-weighted portfolios and equal risk contribution 

portfolios.  

Also, Bender et al. (2019) divide portfolio approaches into two types: (1) optimization-based 

weighting schemes and (2) heuristic-based weighting schemes. Optimization-based weighting 

schemes include minimum variance portfolios, maximum decorrelation portfolios, maximum 

diversification portfolios, risk parity portfolios, maximum deconcentration portfolios, and maximum 

Sharpe ratio portfolios. According to the same author, heuristic-based weighting schemes include 

fundamental indexing, equal weighting, and diversity weighting. 

Equal-weighted portfolios do not require any estimates of returns, volatility, or correlations, 

thus not having the estimation problem. Moreover, they are easy to understand (Bender et al., 

2019). Naive equal-weighted portfolios assume that both expected stock returns and covariances 

are cross-sectionally constant and, therefore, that it is optimal to invest equally in each available 

stock (Lyle & Yohn, 2021). 

With minimum variance portfolios, weights are selected to minimize the variance of the 

portfolio, irrespective of the expected rate of return (Baker & Haugen, 1996; Bender et al., 2019). 

Lyle and Yohn (2021) refer to them as Covariance portfolios. In these portfolios, expected returns 

are ignored and the risk of the portfolio is minimized. The underlying assumption is that expected 

stock returns are cross-sectionally constant but covariances differ cross-sectionally (Lyle & Yohn, 

2021). So, they are equivalent to mean-variance portfolios if expected returns across all assets are 

the same (Bender et al., 2019). 
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A special case of minimum variance is maximum decorrelation. These portfolios weigh each 

asset taking into account that the variance of the portfolio has to be minimized, assuming all 

securities have the same volatility. They are equivalent to a mean-variance portfolio if expected 

returns and volatilities are equal (Bender et al., 2019). 

Expected return portfolios assume that expected stock returns differ cross-sectionally but that 

the covariances are cross-sectionally constant. These portfolios are closest to those often used in 

the fundamental analysis literature in which risk is ignored (Lyle & Yohn, 2021). 

In the maximum diversification scheme, the portfolio weights of securities are selected to 

maximize the ratio of weighted-average asset volatilities to portfolio volatility. In this case, they are 

equivalent to a mean-variance portfolio if expected returns are proportional to volatilities (Bender 

et al., 2019). 

Risk parity or equal risk contribution portfolios are characterized by weights based on the 

contribution to portfolio risk. Each asset must have the same contribution to it. It is equivalent to a 

mean-variance portfolio if all assets have the same Sharpe ratio and the correlations between them 

are constant (Bender et al., 2019). 

A maximum deconcentration approach is a modified method of equal weighting that 

maximizes the effective number of stocks. It is equivalent to a mean-variance portfolio if expected 

returns and volatilities are equal and correlations are constant (Bender et al., 2019). 

Finally, in maximum Sharpe ratio portfolios, weights are selected to maximize the Sharpe ratio 

of the portfolio where, in practice, the forecast returns are often assumed to be proportional to 

security volatilities (Bender et al., 2019). 

2.3 Portfolio construction based on stocks characteristics 

According to Lyle and Yohn (2021) and Richardson et al. (2010), the most common approach 

used to demonstrate the predictive ability of fundamentals-based characteristics is to cross-

sectionally rank stocks based on a specific characteristic and form equal-weighted or value-

weighted portfolios of the stocks integrated into the extreme deciles or quintiles. Specifically, it is 

common practice to take a long position in the top extreme quantile and a short position on the 

bottom extreme quantile. This is known as a zero-cost investment strategy.  
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As explained earlier, equal-weighted and value-weighted portfolios are not formed based on 

an objective function nor consider risk. So they are not optimized (Lyle & Yohn, 2021). There has 

been increasing research on creating optimized portfolios taking into account asset characteristics, 

including Factor-Based approaches and Parametric Portfolio Policy approaches. According to Lyle 

and Yohn (2021), they offer performance gains over naive equal-weighted and value-weighted 

portfolios.  

Factor-Based portfolios are based on the belief that factors drive returns and risk (Bender et 

al., 2019). In fact, equity investors increasingly view portfolios as not only a collection of securities 

but also a package of exposures to the factors which drive security returns (Clarke et al., 2016). 

For instance, Bender et al. (2019) examine three price-based characteristics – book-to-market, 

size, and momentum – and show that portfolio returns come from factors previously identified by 

the financial literature.  

In this setting, risk factors with the potential to explain stock returns are identified. Then, 

estimates of expected stock returns are obtained by multiplying the stock’s sensitivity to each factor 

by the estimated rate of return on that factor. The covariance matrix is obtained from the covariance 

of the factor returns, factor sensitivities or factor exposures, and idiosyncratic return variances (Lyle 

& Yohn, 2021). There are relevant properties that make this approach appealing: it reduces the 

number of estimates required in the covariance matrix and eliminates the reliance on expected 

return estimates (Lyle & Yohn, 2021). 

Brandt et al. (2009) propose a Parametric Portfolio Policy model that directly determines the 

portfolio weight in each asset as a function of the asset's characteristics. Then, the coefficients of 

the function are found by optimizing the average utility of the portfolio's return over the sample. 

While mean-variance portfolio optimization endogenously determines the weight function given 

expected returns and covariances, the Parametric Portfolio Policy approach exogenously assumes 

a parametric weight function of firm characteristics (Lyle & Yohn, 2021). This model has several 

advantages. First, it eliminates the need to directly estimate expected returns and the covariance 

matrix (Lyle & Yohn, 2021). It avoids completely the auxiliary and difficult step of modeling the joint 

distribution of returns and characteristics and focuses directly on the portfolio weights (Brandt et 

al., 2009). It is also computationally simple and it reduces the dimensionality of the problem 

(Brandt et al., 2009; Lyle & Yohn, 2021). Finally, it can be easily modified and extended by using 

different objective functions or capturing the effect of transaction costs (Bender et al., 2019). 
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2.4 Portfolio performance metrics 

Several metrics have been used to assess portfolio performance. Some of the most traditional 

measures include the Treynor and the Sharpe ratios. There are also the alpha and information ratio 

associated with multifactor models, such as the Fama and French factor models (with three-, five- 

and six-factor) and the Carhart four-factor model. 

The Treynor ratio is a portfolio performance measure derived from the Capital Asset Pricing 

Model (CAPM). It measures the excess return over systematic risk and is represented by Equation 

(1), where 𝑟𝑝̅ is the average return on the portfolio, 𝑟𝑓̅ is the average risk-free rate, and 𝛽𝑝 is the 

beta of the portfolio. 

 𝑇𝑝 =  
𝑟𝑝̅ − 𝑟𝑓̅

𝛽𝑝
 (1) 

 

The Sharpe (1966) ratio adjusts returns to the standard deviation of a portfolio instead of the 

beta. The author assumes that, under riskless lending and borrowing, the optimal portfolio is the 

one with the highest excess return over standard deviation. This ratio is also known as a reward-

to-variability measure and is defined by Equation (2), where 𝜎𝑝 is the standard deviation of the 

portfolio. 

 𝑆𝑅𝑝 =  
𝑟𝑝̅ −  𝑟𝑓̅

𝜎𝑝
 (2) 

 

Moving to Factor models, the simplest one is the single-index model. Here, the alpha is the 

Jensen (1968) measure. It is an absolute measure and represents the average incremental rate of 

return from possible deviations of the portfolio returns from the CAPM. If it is positive, the portfolio 

performance is above the market portfolio performance, otherwise, the portfolio performance is 

below the market portfolio performance. Jensen's alpha is usually estimated as the intercept in the 

time-series regression presented in Equation (3), where 𝑟𝑚,𝑡 is the market return in period t and 

𝜀𝑝,𝑡 the error term of the regression. 

 𝑟𝑝,𝑡 − 𝑟𝑓,𝑡 =  𝛼𝑝 + 𝛽𝑝(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝜀𝑝,𝑡 
(3) 
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Several issues related to CAPM have been discussed by academics and it was suggested that 

other variables besides the market and risk-free rates also explain returns (Elton & Gruber, 2011). 

Multifactor models emerged due to the empirical failures of the CAPM (Fama & French, 2018) and 

the development of the Arbitrage Pricing Theory (APT) led to a generalization of Jensen’s measure. 

According to Elton et al. (2006), the use of a multifactor model allows for a more appropriate 

measuring and diagnosis of portfolio performance. 

Fama et al. (1993) developed a three-factor model with market, size and book-to-market as 

the main factors. They found that these factors are useful to explain stock returns. The model is 

presented in Equation (4). It introduces the Small-minus-Big (SMB) and High-minus-Low (HML) 

factors, which are the difference in returns between a portfolio of small stocks and a portfolio of 

large stocks and the difference in returns between a portfolio of high book-to-market stocks and a 

portfolio of low book-to-market stocks, respectively.  

 𝑟𝑝,𝑡 − 𝑟𝑓,𝑡 =  𝛼𝑝 + 𝑏𝑝1(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝑏𝑝2(𝑆𝑀𝐵𝑡) + 𝑏𝑝3(𝐻𝑀𝐿𝑡) + 𝜀𝑝,𝑡 (4) 

 

Carhart (1997) adds to the previous model the variable momentum (MOM), which represents 

the difference in the returns of a portfolio of past winners and a portfolio of past losers (Equation 

(5)). This variable was introduced since Jegadeesh and Titman (1993) concluded that there is a 

tendency for a good or bad performance of stocks to persist over several months. 

 
𝑟𝑝,𝑡 − 𝑟𝑓,𝑡 =  𝛼𝑝 + 𝑏𝑝1(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝑏𝑝2(𝑆𝑀𝐵𝑡) + 𝑏𝑝3(𝐻𝑀𝐿𝑡) + 𝑏𝑝4(𝑀𝑂𝑀𝑡)

+ 𝜀𝑝,𝑡 
(5) 

 

Motivated by the dividend discount model, Fama and French (2015) find evidence that 

variations in average returns related to profitability and investment are explanatory of portfolio 

returns. Taking this into account, the authors introduce to the three-factor model two other 

variables: a profitability factor (RMW) defined as the difference between the returns on diversified 

portfolios with robust and weak profitability and an investment factor (CMA) defined as the 

difference between the returns on diversified portfolios of stocks of low and high investment firms 

(Equation (6)). 

 
𝑟𝑝,𝑡 − 𝑟𝑓,𝑡 =  𝛼𝑝 + 𝑏𝑝1(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝑏𝑝2(𝑆𝑀𝐵𝑡) + 𝑏𝑝3(𝐻𝑀𝐿𝑡) + 𝑏𝑝4(𝑅𝑀𝑊𝑡)

+ 𝑏𝑝5(𝐶𝑀𝐴𝑡) + 𝜀𝑝,𝑡 
(6) 
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Fama and French (2018) also use a six-factor model, adding a Momentum factor to the five-

factor model (Equation (7)). According to these authors, the momentum factor was added to the 

five-factor model, despite the absence of theoretical justification. 

 
𝑟𝑝,𝑡 − 𝑟𝑓,𝑡 =  𝛼𝑝 + 𝑏𝑝1(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝑏𝑝2(𝑆𝑀𝐵𝑡) + 𝑏𝑝3(𝐻𝑀𝐿𝑡) + 𝑏𝑝4(𝑅𝑀𝑊𝑡)

+ 𝑏𝑝5(𝐶𝑀𝐴𝑡) + 𝑏𝑝6(𝑀𝑂𝑀𝑡) + 𝜀𝑝,𝑡 
(7) 

 

The information ratio is another measure that can be determined using factor models. It is 

calculated by dividing the alpha by the standard deviation of the residual. So it can be interpreted 

as the excess return over the benchmark portfolio per unit of portfolio risk that is unrelated to the 

benchmark portfolio (Bender et al., 2019; Lyle & Yohn, 2021). The expression for this ratio is 

presented in Equation (8), where 𝜎̂ is the standard deviation of excess returns from the benchmark 

(Goodwin, 1998). As Clarke et al. (2016) point out, it should not be used alone to characterize 

portfolio performance since it does not account for the optimal amount of active risk. 

 𝐼𝑅𝑝 =
𝑟𝑝,𝑡 − 𝑟𝑚,𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜎̂
 (8) 
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3. Methodology 

In this section, the methodology used to form the fundamental portfolios as well as other 

portfolios for performance comparison is explained. The first component of this analysis is the 

estimation of expected returns and the covariance matrix. I follow Lyle and Yohn's (2021) approach 

and estimate fundamentals-based expected returns and a full covariance matrix of individual stock 

returns. Those are then used to form mean-variance optimized fundamental portfolios in 

Markowitz's (1952) style.  

After the construction of the portfolios of main interest for this research, alternative 

approaches, namely Expected returns, Minimum Variance and Equal-weighted portfolios, are 

constructed in order to examine performance differences. Finally, some extensions are introduced 

to the model including the consideration of different periods and cardinality constraints. 

3.1 Modeling Expected Returns and Covariances 

In order to calculate the expected returns needed for the mean-variance framework, I follow 

Lyle and Yohn (2021) and construct a model that directly links fundamentals-based ratios to 

expected returns. In the same line as them, rolling five-year time periods with monthly data are 

used for the estimation and portfolios are revised monthly. 

In order to estimate the expected returns, Lyle and Yohn (2021) present a model similar to 

Equation (9), which is linear in firm characteristics. It includes as explanatory variables the inverse 

of the market value of equity (1 𝑀𝑖,𝑡⁄ ), the book to market value of equity ratio (𝐵𝑖,𝑡 𝑀𝑖,𝑡⁄ ), the 

earnings before extraordinary items to market value of equity ratio (𝐸𝑖,𝑡 𝑀𝑖,𝑡⁄ ), the change in net 

operating assets to market value of equity (∆𝑁𝑂𝐴𝑖,𝑡 𝑀𝑖,𝑡⁄ ) and the change in financial assets to 

market value of equity (∆𝐹𝐼𝑁𝑖,𝑡 𝑀𝑖,𝑡⁄ ).  

 
𝑅𝑖,𝑡+1 = 𝛽𝑖,0 + 𝛽𝑖,1

1

𝑀𝑖,𝑡
+ 𝛽𝑖,2

𝐵𝑖,𝑡

𝑀𝑖,𝑡
+ 𝛽𝑖,3

𝐸𝑖,𝑡

𝑀𝑖,𝑡
+ 𝛽𝑖,4

∆𝑁𝑂𝐴𝑖,𝑡

𝑀𝑖,𝑡
+ 𝛽𝑖,5

∆𝐹𝐼𝑁𝑖,𝑡

𝑀𝑖,𝑡

+ Ω𝑖,𝑡𝜀𝑖,𝑡+1 

(9) 

 

It is important to note, however, that returns have monthly data and the independent variables 

of the model are only updated quarterly at the end of the month in which they are reported. So, for 

the model used to create the estimates for expected returns, a variable of lagged three-month 
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returns is added, to guarantee variability of estimates even when the accounting ratios remain 

constant (Equation (10)).  

 
𝑅𝑖,𝑡+1 = 𝛽𝑖,0 + 𝛽𝑖,1

1

𝑀𝑖,𝑡
+ 𝛽𝑖,2

𝐵𝑖,𝑡

𝑀𝑖,𝑡
+ 𝛽𝑖,3

𝐸𝑖,𝑡

𝑀𝑖,𝑡
+ 𝛽𝑖,4

∆𝑁𝑂𝐴𝑖,𝑡

𝑀𝑖,𝑡
+ 𝛽𝑖,5

∆𝐹𝐼𝑁𝑖,𝑡

𝑀𝑖,𝑡

+ 𝛽𝑖,5𝑅𝑖,𝑡−3 + Ω𝑖,𝑡𝜀𝑖,𝑡+1 

(10) 

 

In what concerns outliers, in order to ensure that each predictor is close to mean zero with a 

stable distribution over time, it is cross-sectionally standardized, by converting it into a percentile 

rank, dividing by 99, and subtracting 0.5, in line with Lyle and Yohn (2021) and Green et al. (2011).  

Regarding the estimation, five years of monthly returns historical data are collected for each 

stock. In order to ensure reasonable estimates for the covariance matrix (stock return volatility and 

pairwise correlations), I then remove penny stocks with prices below 1 dollar and/or negative book 

value, which is common practice (Hou et al., 2021). Note that Lyle and Yohn (2021) refer that they 

remove penny stocks and stocks with negative book value as they clean the data and not in each 

estimation period. However, to avoid look-ahead bias, I opt for this procedure.   

 Then, the coefficients are estimated by regressing one month-ahead stock returns on the 

fundamental variables. After the estimation of the model cross-sectionally, an initial estimate of 

expected returns is obtained. Then, following Lyle and Yohn (2021), I form deciles of those expected 

returns and re-estimate the model within each decile. Finally, for each estimation period, the 

estimated in-sample coefficients are applied to the most recent fundamental variables to generate 

the expected returns. Following Lyle and Yohn (2021) as well, these expected return estimates are 

winsorized at the 1% and 99% levels. 

The covariance matrix of stock returns is formed with the residuals from the regressions. A 

nonlinear shrinkage estimator is applied (Ledoit & Wolf, 2020). According to Lyle and Yohn (2021), 

this approach overcomes issues related to estimating large-dimension covariance matrices and is 

easy to implement. I am using a different shrinkage estimation from Lyle and Yohn (2021) since 

this nonlinear shrinkage estimator from Ledoit and Wolf (2020) has two main advantages 

compared to the nonlinear shrinkage estimator from Ledoit and Wolf (2017), namely being faster 

with basically the same accuracy and accommodating covariance matrices of dimension up to 

10,000 and more. 
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After estimating the fundamentals-based expected returns and the covariance matrix of 

individual stock returns, I form four different portfolios – equal-weighted portfolios, covariance 

portfolios, expected return portfolios and mean-variance optimal portfolios. 

3.2 Alternative portfolio approaches 

In order to compare the gains from the fully optimized fundamental portfolios, it is vital to 

understand if these gains arise from the use of the fundamentals-based expected returns, the 

covariance matrix, or both. So, I consider four different portfolio construction approaches with 

distinct characteristics in terms of expected returns and covariance: (1) Equal-weighted portfolios, 

(2) Covariance portfolios, (3) Expected return portfolios, and (4) Fully optimized fundamental 

portfolios. As referenced in the Literature Review (Section 2.2.2), these portfolios have different 

assumptions for what is cross-sectionally constant: expected returns, covariances, or both. 

Considering this, Table 1 presents a summary of the different assumptions of the portfolios 

regarding expected returns and covariances. Taking this into account, (1) Covariance portfolios can 

be compared with Equal-weighted portfolios to analyze performance gains from cross-sectional 

differences in covariances, (2) the gains from cross-sectional differences in expected returns are 

obtained comparing Expected return portfolios relative to Equal-weighted portfolios, and, finally, (3) 

gains arising from cross-sectional differences in expected returns and covariances are found 

comparing Fully optimized portfolios relative to Covariance, Expected return, and naive Equal-

weighted portfolios (Lyle & Yohn, 2021). 

Table 1: Portfolio construction assumptions regarding the cross-sectional 
constancy/variability of expected returns and covariances 

 Expected returns Covariances 

Equal-weighted portfolio Constant Constant 
Covariance portfolio Constant Variable 

Expected return portfolios Variable Constant 
Fundamental portfolios Variable Variable 

 

Regarding the methodology for the creation of these portfolios, the weights for the Equal-

weighted portfolios are obtained by dividing one by the number of stocks in the portfolio, 𝑁. This 

is represented in Equation (11), where 𝑒 is a 𝑁 × 1 vector of ones. 

 𝑤𝐸𝑊 =
1

𝑁
𝑒 (11) 
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For the Covariance portfolios, I minimize portfolio variance and ignore expected returns 

(Equations (12) and (13)). This results in the optimal portfolio policy presented in Equation (14). Σ 

is a 𝑁 × 𝑁 covariance matrix, and 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑁)𝑇 is a 𝑁 × 1 vector of portfolio weights 

 min
𝑤

1

2
𝑤𝑇Σ𝑤 (12) 

 𝑠. 𝑡. 𝑤𝑇𝑒 = 1 (13) 

 

 𝑤𝐶𝑂𝑉 =
Σ−1𝑒

𝑒𝑇Σ−1𝑒
 

(14) 

 

For the Expected returns portfolios, I assume the covariance matrix to be an Identity matrix 

and maximize expected returns subject to this risk constraint (Equations (15), (16) and (17)). The 

consequent portfolio policy is expressed in Equation (18), where 𝜇 is a 𝑁 × 1 vector of expected 

returns 

 max
𝑤

𝑤𝑇𝜇 (15) 

 𝑠. 𝑡. 𝑤𝑇Σ𝑤 =  𝑒 (16) 

 𝑤𝑇𝑒 = 1 (17) 

 

 𝑤𝐸𝑅 =
𝜇

𝑒𝑇𝜇
 (18) 

 

Finally, for the Fully optimized fundamental portfolios, I apply both the covariance matrix and 

expected returns previously explained, maximizing the expected return of the portfolio subject to a 

given portfolio variance (Equations (19), (20) and (21)). 

 max
𝑤

𝑤𝑇𝜇 (19) 

 𝑠. 𝑡. 𝑤𝑇Σ𝑤 =  Σ𝑝 (20) 

 𝑤𝑇𝑒 = 1 (21) 
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This maximization of the expected portfolio returns per unit of portfolio volatility results in the 

optimal portfolio policy presented in Equation (22). 

 𝑤𝐹𝑂𝑃 =
Σ−1𝜇

𝑒𝑇Σ−1𝜇
 (22) 

 

I form both long-short and long-only portfolios since taking short positions may not be feasible 

and, even when feasible, implementation costs may be high (Lyle & Yohn, 2021). In the same line 

as Lyle and Yohn (2021), I rebalance the portfolios monthly and examine the out-of-sample 

performance of the portfolio over the period. 

3.3 Portfolio performance comparison 

In order to analyze the differences in portfolio performance of Equal-weighted portfolios, 

Covariance portfolios, Expected return portfolios, and Fundamental portfolios, I report (for all of 

them) key portfolio performance metrics, including the average returns, the standard deviation of 

returns, the Treynor ratio, and the Sharpe ratio. To better understand gains in performance across 

portfolios, I test the differences in Sharpe ratios for each pair of portfolios using the approach of 

Ledoit and Wolf (2008). This approach is based on studentized bootstrap inference and, because 

of that, does not present the common problems of other testing methods such as not being robust 

against tails heavier than the normal distribution, which is quite common with financial returns. 

Then, I report the Fundamental Optimized portfolio alphas and Information ratios relative to, 

the CAPM, Fama-French three-, five- and six-factor models, and Carhart four-factor model. 

3.4 Extensions 

In order to further analyze gains in performance, I extend the methodology with: (1) different 

time periods, and (2) samples of different market capitalization firms.  

Regarding the performance for different time periods, I first construct a timeframe exactly 

equal to one of the subperiods used by Lyle and Yohn (2021). This provides the possibility for a 

direct comparison of results. Secondly, I divide the sample time period into two non-overlapping 

nine-year periods (October 2003 – September 2012 and October 2012 – September 2021) and 

replicate the performance comparison methodology previously explained for each one.  
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According to Lyle and Yohn (2021), excluding smaller stocks from the sample reduces the 

likelihood of investors facing liquidity issues and higher transaction costs. So, I also form and 

compare performances of portfolios only containing only the 500, 200, and 100 largest stocks. 

3.5 Portfolios on the extreme deciles of fundamentals-based expected 

returns 

My next analysis is inspired by the original work of forming portfolios on the extreme deciles 

of stocks. However, I adapt this approach and form all portfolios (Equal-weighted, Value-weighted, 

Expected returns, Covariance and Fully Optimized portfolios) in the top decile of expected returns. 

This implies that the long-short portfolios in this analysis are not formed with a long position in the 

top decile and a short position in the bottom decile. They are not zero-cost strategies. Instead, I 

apply the maximization problems presented in Subsection 3.2 to the stocks in the top decile of 

expected returns each month.  

This analysis has two main advantages. First, for an investor, it has fewer costs for an investor 

than the original zero-cost strategy. Second, it can give an insight into the predictive power of the 

models used. If the portfolios created using a sample of stocks from the top decile of expected 

returns have higher returns than the portfolios based on the entire sample, it indicates that the 

expected returns can to a certain degree predict ex-post returns.  
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4. Data 

The data for this dissertation is mainly retrieved from the Refinitiv Eikon Datastream platform. 

The sample includes all US market-listed stocks. The necessary data for the study includes three 

different types of variables: (1) static data on stock characteristics, (2) stock market variables and 

(3) accounting variables. The static data on stock characteristics is used to create a comprehensive 

list of US stocks. The stock market variables are used to calculate returns. And, the accounting 

variables are used to compute the explanatory variables of the regression model. Regarding the 

data for computing the factor models, the risk-free rate and factor portfolios are collected from 

Kenneth French’s data library 

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).  

Data sources and data processing can have a very significant impact on empirical research 

conclusions (Landis & Skouras, 2021). Guidelines from Landis and Skouras (2021), specifically 

taking into account specificities for the US market, are used to derive high-quality equity data from 

Refinitiv Eikon Datastream data. Their approach improves data accuracy, filters problematic data 

and reduces survivorship bias and data staleness.  

4.1 Data extraction 

The stock universe should include not only stocks active at the moment of the study, but also 

stocks that have become inactive, for instance, because of mergers, acquisitions, or failure,  but 

have some of their price history throughout the period under analysis. According to Baker and 

Haugen (1996), if a significant number of firms that have become inactive are systematically 

excluded, the data can suffer from survival bias. This bias is exacerbated since providers tend to 

add companies that are larger and more successful when the records are backfilled.  

In order to create the initial stock universe, various Constituent Lists of stocks provided by 

Datastream are merged. Three types of lists are included: lists with currently active stocks (whose 

name starts with “FUSALL”), those including delisted stocks (whose name starts with “DEADUS”) 

and Worldscope lists (whose name starts with “WSUS”). With this approach, a dataset of 137,521 

stocks is obtained. However, this includes duplicates and stocks that are wrongly categorized in 

the constituent list. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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The guidelines from Landis and Skouras (2021) invoke the extraction of information for all 

equities traded in all stock exchanges of the country using Datastream’s Navigator GUI, instead of 

relying on this market specific constituent lists of equities provided by Datastream and Worldscope. 

However, this process is extremely time-consuming, especially when considering a country with a 

large stock market, such as the US.  

For all the stocks on the above-mentioned lists, several variables were retrieved. namely: Type 

of Instrument (TYPE), Datastream Code (DSCD), Base Date (BDATE), Expanded Security Name 

(ENAME), Datastream Exchange Mnemonic (EXMNEM), Geographical Classification of company 

(GEOGN), ISIN (ISIN), Primary Indicator Flag (ISINID), Code Local (LOC), Currency (PCUR) and 

Security Type Code (TRAC). The description of each of these variables can be found in Appendix 

A, Panel 1. 

4.2 Data Filters 

In this subsection, there is a description of the several filters applied to the data obtained 

previously. They are mainly based on Landis and Skouras (2021) guidelines. It is important to keep 

in mind that, first, there is always a trade-off between too much and too little filtering and, second, 

the order in which the filters are applied can have an impact on the final result. These filters can 

be divided into two categories: stock filters and stockday filters. Stock filters exclude the entire 

history of an instrument whereas stockday filters exclude a specific day of a specific stock.  

4.2.1 Filters based on static information 

This subsection includes a description of the filters based on the static information explained 

above that will contribute to filtering the data. Table 2 is a summary of these filters. The filters are 

numbered by the order they are applied in this dissertation. The column ”Variable” indicates the 

variable used to do the specific filter and the column “Accepted Values” refers to the specific values 

the variable can take to the stock being accepted. Finally, the column “Number of observations 

after the filter” presents the total number of stocks after applying the filter. It is important to note 

that whereas Landis and Skouras (2021) apply each filter independently of the others, the numbers 

in this column are cumulative. 
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Table 2: Stock filters based on static information description 

Number Variable Accepted values 
Number of 

observations 
after the filter 

1 
Type of 

Instrument 
(TYPE) 

“EQ” 111,363 

2 

Datastream 
Exchange 
Mnemonic 
(EXMNEM) 

"NAS", "NYS", "OTC", "ASE", "XSQ", "XBQ", "NMS", "BOS", 
"MID", "PSE", "PHL" 

110,685 

3 
Security Type 
Code (TRAC) 

"ORD", "ORDSUBR","FULLPAID", "UKNOWN", "UNKNOW", 
"KNOW", “NA” 

102,166 

4 
Expanded 

Security Name 
(ENAME) 

Do not contain  
“TRUST”, “REPR”, “RIGHT”, “SERIES”,”NV”, “IV TST”, “REAL 

ESTATE INVESTMENT”, “REALTY”, “RLTY”, “ROYALTY 
INVESTMENT”, “ASSET INVESTMENT”, “CAPITAL 

INVESTMENT”, “ASSET MANAGEMENT”, “CAPITAL 
MANAGEMENT”, “INVESTMENT MANAGEMENT”, “VENTURE 

CAPITAL”, “FINANCIAL SHBI”, “PROPERTY INVESTORS”, 
“INCOME PROPERTY”, “UNITS”, “UNIT”, “LIMITED 

PARTENERSHIP”, “FUND”, “EQUITY PARTNERS”, “LIMITED 
VOTING”, “SUB VOTING”, “TIER ONE SUB”, “VARIABLE 

VOTING”, “NON VOTINGREIT”, “RESIDENTIAL”, “R E I T”, 
“BENEFICIAL”, “BENEFICIARY”, “BENEFIT INTEREST”, “BEN 
INTEREST”, “SH BEN INT”, “WARRANT”, “WRTS”, “L P”, “L P 
INTEREST”, “LP UT”, “HOLDINGS LP”, “PARTENERS UNIT”, 

“PART INT”, “UNIT PARTENERSHIP”, “UNIT LIMITED”, 
“MORTGAGE”, “REAL ESTATE”, “CERTIFICATE”, “NO PAR 

VALUE”, “HOLDING UNIT”, “BACKED”, “ST MIN”, “CORTS”, 
“TORPS”, “TOPRS “, “SECURITIES TRUPS”, “QUIPS”, 

“STRATS HIGH YIELD”, “TOTAL RETURN”, “DIVERSIFIED 
HOLDINGS”, “(SICAV)”, “DEPOSITARY”, “DEPOSITOR”, 

“RECEIPT”, “REP & SHARES”, “GLOBAL SHARES”, “ADR”, 
“GDR”, “EXPD.”, “EXPIRED”, “DUPLICATE”, “CONVERTIBLE”, 

“CNVRT.”, “CONVRT.”, “EXCH.”, “DEBANTURE”, “(DEB)”, 
“NIL PAID”, “STRUCTURED ASSET”, “CALLABLE”, 

“FLOATING RATE”, “ADJUSTABLE”, “REDEEMABLE”, 
“PAIRED CTF”, “CONSOLIDATED”, “INSURED”, “CAPITAL 
SHARES”, “DEBT STRATEGIES”, “LIQUIDATING”, “LIQUID 
UNIT”, “L UNIT”, “- LASD”, “ACQUISITION”, “CAP UNIT”, 

“INCOME UNIT”, “PREFERRED” 
Nor 

“(NYS)”, “(NAS)”, “(ASE)”, “(OTC)”, “(XSQ)”, “(XQB)” 

68,966 

5 

Geographical 
Classification of 

company 
(GEOGN) 

"UNITED STATES" 67,811 

6 Currency (PCUR) "U$" 67,809 

7 

Code Local 
(LOC) 
and 

Primary Indicator 
Flag (ISINID) 

No duplicated codes – if duplicated remove if ISINID is not P, 
as long as there exists one stock with this LOC that does have 

ISINID equal to P 
35,678 

8 
Datastream Code 

(DSCD) 
No duplicated codes 35,198 
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The first filter applied is to make sure that all the observations are Equities (the Type of 

instrument is ”EQ”). Since the authors manually locate all instruments in the Category Equities 

and Type Equity, this filter is automatically done by them. However, by using the constituent lists, 

other types of securities are also found in the data, including, for instance, Unit Trusts (UT), 

American Depository Receipts (ADR) and Closed-end Funds (CF). 

The next filter excludes stocks that are not traded on US Exchanges. According to Landis and 

Skouras (2021), some authors choose to exclude stocks listed in secondary exchanges, by 

assuming that stocks in secondary exchanges are likely to be small. However, a major limitation of 

this approach when applied to Datastream data, is that the platform only reports current exchange 

classifications. Consequently, excluding stocks from secondary exchanges would possibly cause 

the exclusion of stocks that were previously in a primary exchange and have been demoted due to 

poor performance (sample selection bias). The US has twelve exchanges plus the OTC market. The 

twelve Exchanges include: NYSE (NYS), NYSE MKT (ASE), NYSE ARCA (XC), NASDAQ (NAS), 

NASDAQ/NMS (NMS), OTC Bulletin (XBQ), Non-Nasdaq OTC (OTC), Boston (BOS), Chicago (MID), 

Pacific (PSE), Philadelphia (PHL), and BATS (E1) 

Then, I exclude all instruments that cannot be classified as common stocks. To do so, I exclude 

all stocks with security type code (TRAC) taking any value other than "ORD", "ORDSUBR", 

"FULLPAID", "UKNOWN", "UNKNOW" and "KNOW" and “NA”. I maintain all the values with 

unknown content since, first, they correspond to a large part of the sample and it is very unlikely 

that all the securities classified as unknown would not be common equity and, second, this 

happens frequently in delisted stocks, which can cause an unsuspecting user to filter out delisted 

stocks instead of noncommon stocks, biasing the filtered sample. 

In order to filter even more securities to only include common stocks, I use Filter 5. This filter 

searches for specific text strings in the extended name of the security (ENAME) which identify a 

stock that is non-common. This varies by country, so Table 2 presents the ones used for the US 

Market. Another common issue that can be solved using the extended name is the presence of 

Cross-listed stocks. Stocks that are listed in another country usually have on their name a string 

that suggests it is the local listing of a stock primarily traded elsewhere, for instance having the 

code of the US exchange.  
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Another relevant filter is the exclusion of stocks that are not domiciliated in the US. I remove 

any security for which the geographical classification (GEOGN) is not the United States. Similarly, 

in the next filter, I remove all securities traded in a currency (PCUR) other than the US dollar. 

The last two filters in this category remove the duplicated observations. First, I use the Local 

Code (datatype LOC), by excluding all stocks which have a nonunique Local code and their ISINID 

is not P, as long as there exists one stock with that local code that has ISINID equal to P. Second, 

I remove duplicated Datastream codes. After the application of all the above filters, the sample 

included 35,198 US common stocks. 

4.2.2 Filters based on return index information 

For the 35,198 stocks previously found, I retrieve the daily Return Indices, Prices, Unadjusted 

Prices and Adjustment Factors between December 1984 and September 2021. The sample starts 

in December 1984 since Landis and Skouras (2021) found that Datastream data for the US is 

more reliable after this date. I extend the period to the most recent information available at the 

beginning of this study. 

Although, as explained in the Methodology section, the models are based on monthly data, I 

retrieve daily data since, according to Landis and Skouras (2021), this makes it possible to identify 

data problems that would be difficult to recognize with monthly data. 

When retrieving this data, I use the Datastream DPL function and round the values to the 

largest available number of decimal places, which is six. Especially with small values, the standard 

rounding of Datastream (two or four decimal places) would have a large impact on returns 

calculations.  

The filters based on the times series data are summarized in Table 3. They include stockday 

filters and stock filters (third column of the table).  

Although the last section’s filters lead to a sample of 35,198 stocks, only 31,171 of them had 

return index data available. I retrieve not only the RI series, but also the RI#S and RI#T series. In 

Datastream, adding the “#T” after the symbol of the series displaying N/A after the series goes 

dead, rather than padding the last real value. Adding “#S” removes padded values for non-trading 

days. 
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Table 3: Stock and stockday filters based on return index information description 

Number Filter 
Stock filter vs 
Stockday filter 

Number of observations after 
the filter 

1 Return index availability Stock filter 31,171 

2 
Remove returns beyond the last trading 

date 
Stockday filter 29,906 

3 
Identify stocks with more than 95% of zero 

returns 
Stock filter 27,642 

4 Implausibility filter Stock filter 27,561 
5 Outlier errors Stockday filter 27,561 

6 Holidays Stockday filter 27,561 

7 
Remove stocks with few observations 

1250 
Stock filter 20,166 

8 High volatility Stock filter 16,217 
9 Low volatility Stock filter 16,217 

10 Staleness Stockday filter 16,217 
11 Adjustment inconsistencies Stockday filter 16,217 

12 Nonsense values Stockday filter 16,217 

13 
Remove stocks with few observations 

1250 
Stock filter 15,713 

14 
Remove stocks from Utilities and Financial 

industries  
Stock filter 12,619 

 

Datastream delisting dates typically occur later than the last date for which return index data 

is available. This means that many stocks appear with padded values for return indexes towards 

the end of their series even when the series has been truncated at their delisting dates. I retrieve 

de delisting date (TIME) for each stock. I compare the last non-zero return date of the RI, RI#S and 

RI#T series and the delisting date. If the delisting date is not available or if there is a difference of 

more than 10 days between the last non-zero return and the delisting date, I remove the tenth and 

subsequent padded daily observations. Otherwise, I use as the end date of the series the date 

retrieved directly from Datastream. Although this is a stockday filter, the entire history of 1,265 

stocks was removed, as all their return indexes had the same value.  

In the third filter, I remove stocks for which the returns are zero in more than 95% of their 

sample. Then, I apply an “implausibility filter” which removes stocks of which more than 98% of 

the non-zero daily returns are either non-negative or non-positive. According to Landis and Skouras 

(2021), the underlying problem is that Datastream bases its return index calculation on a dividend 

yield factor, suggesting that a dividend was paid out every day for which data is available. 

In order to reduce outliers in returns caused by errors in adjustments, I apply the following 

methodology: (1) if the daily return on a date is greater than 100% and the daily return on the next 
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day is lower than -50% or (2) if the daily return on a date is lower than -50% and the return on next 

day is greater than 100%, then both days are eliminated.  

Another set of days that should be removed from the sample is holidays and days when 

markets are closed. I identify and remove these days by analyzing if for a day the percentage of 

non-zero returns is below 20%. After this, I also confirm if the identified dates are correct by 

searching the exchanges’ calendars. Taking into account that, as explained in the Methodology 

section, at least five years of data for each stock are needed, I require 1250 valid daily observations. 

The next two stock filters are related to volatility. A daily standard deviation of more than 40% 

is a regular occurrence in Datastream. This can be caused, for instance, by missing observations 

that are filled with padded return indexes, large errors in adjustments for corporate events or 

extreme illiquidity which leads to very rare price updates. I remove all stocks of standard deviation 

above this value. Landis and Skouras (2021) also eliminate stocks with a daily standard deviation 

of less than 0.01 bps. This filter had no impact on my sample at this stage. 

Still related to the staleness caused by padded prices, if 30 consecutive return indexes are 

identical, all subsequent observations are eliminated until the next change. This has a significant 

impact on the number of daily observations.  

The next filters are related to prices. Sometimes, there can be an inconsistency between 

adjusted prices and the prices implied from unadjusted prices and adjustment factors. I filter out 

cases where there is a discrepancy of more than 5% between the two. I filter out all days for which 

the price is more than 5% different from the unadjusted price times the adjustment factor. I also 

make sure there are no stockdays for which unadjusted prices contain non-sense values, 

specifically zero or negative values. 

After the application of all the filters, I again remove stocks with less than 1250 daily 

observations. The sample is composed of 15,713 stocks. For these stocks, a series of monthly 

returns is calculated. Also, for these series, I apply the outliers filter, which removed 26,666 

observations, and remove 233 stocks with less than 60 months of data.  

Finally, since accounting is different for firms in the financial and utilities industries due to 

heavy regulations (Hou et al., 2021; Lyle & Yohn, 2021; Palazzo, 2012), I also remove them from 

the sample, guaranteeing comparability across results. I exclude from the dataset stocks with SIC 
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codes between 4900 and 4999 and between 6000 and 6999. This reduces the number of stocks 

for the study to 12,619. 

4.3 Accounting variables 

In order to reproduce the study, data on accounting variables need to be updated every three 

months. Datastream provides data from Worldscope on various accounting variables, both annually 

and interim. However, coverage is significantly different: for some variables only annual data is 

available; for other variables, although interim data is available, the number of companies covered 

is drastically lower than the annual counterpart. Another relevant issue is the lack of data for the 

early years. Interim data is only available from 1998, which implies that, although return index data 

is available from December 1984, this study can only be conducted after 1998. 

Table 4 contains a brief summary of all the variables retrieved from Datastream: the code, 

name and if the data used in the study is interim or annual. Interim variables have the same 

datatype as annual variables, but include an “A” at the end. As per previous sections, a brief 

description of the variables is presented in Appendix A. Each of the next subsections explains how 

each of the explanatory variables used in Equation (9) is obtained. 

Table 4: Refinitiv Datastream Static Datatypes, description and availability 

Datatype Name Interim vs Annual 

WC02999 Total assets Interim 
WC03351 Total liabilities Interim 

WC04101 Deferred Income Taxes & Investment Tax Credit Annual 
WC03451 Preferred Stock Interim 

WC01551 Net Income Before Extraordinary Items/Preferred Dividends Interim 
WC02001 Cash & Short-Term Investments Interim 

WC03051 Short-Term Debt & Current Portion of Long-Term Debt Interim 
WC03251 Long-Term Debt Interim 

WC03426 Minority Interest Interim 
WC03501 Common Equity Interim 

WC02008 Short-term investments Annual 
WC02258 Long-Term Receivables Annual 

WC02250 Other Investments Annual 

 

4.3.1 Book value of equity 

In order to obtain the Book value of equity in each moment of time, I use Equation (23), 

following Fama and French (2006), Hou et al. (2014), and Palazzo (2012). Deferred Income Taxes 

& Investment Tax Credit and Preferred Stock are assumed to be zero if not available. I also tested 
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the possibility of using the datatype “shareholders equity” instead of calculating Total Assets minus 

Total Liabilities. For most observations, the values coincided, however, I decided to apply the 

calculation presented below. The Worldscope variable Deferred Income Taxes & Investment Tax 

Credit (WC04101) has no interim series associated, which means that it is only available with an 

annual frequency.  

 

𝐵𝑜𝑜𝑜𝑘 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐸𝑞𝑢𝑖𝑡𝑦

= 𝑇𝑜𝑡𝑎𝑙 𝑎𝑠𝑠𝑒𝑡𝑠 (𝑊𝐶02999) − 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (𝑊𝐶03351)

+  𝐷𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝐼𝑛𝑐𝑜𝑚𝑒 𝑇𝑎𝑥𝑒𝑠 & 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑇𝑎𝑥 𝐶𝑟𝑒𝑑𝑖𝑡 (𝑊𝐶04101)

−   𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑆𝑡𝑜𝑐𝑘 (𝑊𝐶03451)  

(23) 

 

4.3.2 Earnings before extraordinary items 

Earnings before extraordinary items are simply obtained from retrieving the Worldscope 

variable Net Income Before Extraordinary Items/Preferred Dividends, whose code is WC01551. 

4.3.3 Net operating assets 

Net operating assets are defined as the difference between all operating assets and all 

operating liabilities (Hirshleifer et al., 2004). According to Hou et al. (2014), operating assets are 

total assets minus cash and short-term investment (Equation (25)). Operating liabilities are total 

assets minus short-term debt, minus long-term debt, minus minority interest, minus preferred 

stocks, and minus common equity (Equation (26)). Variables Short-Term Debt, Long-Term Debt, 

Minority Interest and Preferred Stock are considered zero if the value is missing. 

 𝑁𝑒𝑡 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐴𝑠𝑒𝑒𝑡𝑠 = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐴𝑠𝑠𝑒𝑡𝑠 − 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠  (24) 

 

 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐴𝑠𝑠𝑒𝑡𝑠

=   𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠 (𝑊𝐶02999)

−  𝐶𝑎𝑠ℎ 𝑎𝑛𝑑 𝑆ℎ𝑜𝑟𝑡 𝑇𝑒𝑟𝑚 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 (𝑊𝐶02001) 

(25) 
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𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

=  𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠 (𝑊𝐶02999)

−  𝑆ℎ𝑜𝑟𝑡 𝑇𝑒𝑟𝑚 𝐷𝑒𝑏𝑡 (𝑊𝐶03051)

−  𝐿𝑜𝑛𝑔 𝑇𝑒𝑟𝑚 𝐷𝑒𝑏𝑡 (𝑊𝐶03251)

−  𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑊𝐶03426)

−  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑆𝑡𝑜𝑐𝑘 (𝑊𝐶03451)

−  𝐶𝑜𝑚𝑚𝑜𝑛 𝐸𝑞𝑢𝑖𝑡𝑦 (𝑊𝐶03501)  

(26) 

4.3.4 Financial assets 

Although Lyle and Yohn (2021) do not specify what they consider to be financial assets in the 

model, I use Net financial assets, since this is the common approach in literature. Karpoff and Lou 

(2010) assert that the change in net financial assets is the change in short-term investments and 

long-term investments less the change in short-term debt, long-term debt, and preferred stock. Hou 

et al. (2014) describe this relation as net financial assets being financial assets minus financial 

liabilities. Financial assets are short-term investments plus long-term investments. In Refinitiv 

Datastream, long-term investments correspond to the variables Long-term Receivables and Other 

Investments. Financial liabilities are equal to Long-term Debt plus Short-term Debt plus Preferred 

Stocks (Equation (27)). As done with net operating assets, missing values in Short-term Debt, Long-

term Debt, Short-term Investments, Long-term Investments, and Preferred Stocks are set to zero, 

as long as they are not all missing.  

 

𝑁𝑒𝑡 𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝐴𝑠𝑒𝑒𝑡𝑠

= [𝑆ℎ𝑜𝑟𝑡 𝑡𝑒𝑟𝑚 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠 (𝑊𝐶02008)

+  𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠 (𝑊𝐶02258 +  𝑊𝐶02250)]

− [𝐿𝑜𝑛𝑔 𝑡𝑒𝑟𝑚 𝑑𝑒𝑏𝑡 (𝑊𝐶03251)

+  𝐷𝑒𝑏𝑡 𝑖𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (𝑊𝐶03051)

+  𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑆𝑡𝑜𝑐𝑘 (𝑊𝐶03451)] 

(27) 
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5. Empirical results 

This section provides a description and analysis of the results found in this study. It starts with 

an analysis of the quality of the model suggested in Equation (9). Then, the results for the base 

methodology of this research are presented, followed by the analysis for different time periods, 

cardinality constraints and the portfolios in the top decile.  

5.1 Precision of the model 

Table 5 presents the fixed effects estimation results of several models. For all the models the 

dependent variable is the actual return at time t +1 multiplied by 100. In models 1 to 5, each of 

the independent variables in Equation (9) is taken as the only explanatory variable. Model 6 

combines all these variables in one model.  

Table 5: Regression analysis: Dependent variable is 𝟏𝟎𝟎𝑹𝒕+𝟏 

1 𝑀𝑡⁄  is the inverse of the market value of equity, 𝐵𝑡 𝑀𝑡⁄  is the book to market value of equity ratio, 𝐸𝑡 𝑀𝑡⁄  is the 

earnings before extraordinary items to market value of equity ratio, ∆𝑁𝑂𝐴𝑡 𝑀𝑡⁄  is  the change in net operating 

assets to market value of equity, and ∆𝐹𝐼𝑁𝑡 𝑀𝑡⁄  is  the change in financial assets to market value of equity.  

T-statistics in parenthesis.  
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
1

𝑀𝑡
 

21.963***     21.969*** 
(1.677)     (1.298) 

𝐵𝑡

𝑀𝑡
 

 7.165***    0.501 

 (1.026)    (0.909) 
𝐸𝑡

𝑀𝑡
 

  2.608***   3.748*** 

  (0.362)   (0.346) 
∆𝐹𝐼𝑁𝑡

𝑀𝑡
 

   0.690***  0.261*** 

   (0.074)  (0.073) 
∆𝑁𝑂𝐴𝑡

𝑀𝑡
 

    -1.119*** -0.882*** 

    (0.101) (0.091) 

Num.Obs. 462,925 462,925 462,925 462,925 462,925 462,925 
R2 0.174 0.167 0.165 0.164 0.164 0.176 

R2 Adj. 0.168 0.162 0.159 0.158 0.159 0.171 

 

The overall results are similar to the ones found by Lyle and Yohn (2021). In Model 1, I find 

a positive and significant relation between the inverse of the firm size and returns. This relationship 

persists in Model 6. This is consistent with the previous literature that finds that small firms tend 

to have higher average returns than big firms. 

In Model 2, higher book-to-market ratios are, on average, associated with higher stock returns. 

This is also in line with previous findings that high book-to-market (value) firms have higher average 
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returns than low book-to-market (growth) firms. However, this association is no longer significant 

when the other variables are added to the model.  

Model 3 also presents a common association in literature: more profitable firms tend to grow 

faster and have higher returns. The relationship between returns and one-month lagged earnings 

over market value is positive and statistically significant in both Models 3 and 6.  

In what concerns the relationship between the change in financial assets over the market 

value and future returns, it appears to be positive and statistically significant. This result is 

consistent with the one found by Lyle and Yohn (2021) in the same setting. 

Finally, there is a negative and significant association between the change in net operating 

assets over the market value and future returns in Models 4 and 6. This result is in accordance 

with the literature. As noted in the literature review section of this dissertation, the change in net 

operating assets is the broad measure of accruals and research tends to show a negative relation 

between accruals and future returns.  

The adjusted R-squared for all the models is between 0.158 and 0.171, having Model 6 the 

highest value. However, I emphasize that this evidence that certain characteristics explain returns 

is not inconsistent with market efficiency. 

5.2 Comparing nested portfolios  

5.2.1 Average returns, standard deviations, Sharpe ratios and Treynor ratios 

Table 6 Panel A presents values for average returns, standard deviations, Sharpe ratios and 

Treynor ratios for the portfolios created in the period between July 2003 and September 2021. 

The Equal-weighted portfolios have an average monthly return of approximately 1.3% and a 

standard deviation of 5.5%. The Sharpe ratio for these portfolios is 21.5%. 

The Covariance portfolios provide, on average, a return of 1.1% if short sales are allowed and 

1.2% if not. The standard deviation is also slightly higher for the long-only portfolios (4.4% vs 4.3%). 

The Sharpe ratios for long-short and long-only Covariance portfolios are 23.3% and 25.4%, 

respectively.  
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Table 6: Nested Portfolio analysis  

EW = Equal-weight portfolio; COV = Covariance portfolio; ER = Expected returns portfolio; FOP = Fully optimized 
portfolio 
Mean and Standard deviation are shown as a percentage. 
* p < 0.05, ** p < 0.01, *** p < 0.001 

Panel A: Portfolio summary statistics – Average returns, standard deviations, Sharpe ratios and 
Treynor ratios 

  Long-short Long-only 
 EW COV ER FOP COV ER FOP 

Mean 1.279 1.092 2.350 1.559 1.220 1.459 1.682 
SD 5.486 4.279 10.025 7.705 4.417 5.409 4.775 

SR 0.215 0.233 0.225 0.190 0.254 0.252 0.332 
TR 0.010 0.011 0.015 0.031 0.012 0.011 0.017 

Panel B: Differences in Sharpe ratios 

Portfolio COV-EW ER-EW ER-COV FOP-COV FOP-ER FOP-EW 
Long-Short 0.017 0.010 -0.007 -0.042 -0.035 -0.025 

Long-Only 0.039 0.036** -0.002 0.077** 0.080** 0.116** 

 

The long-short Expected return portfolios provide a higher average return (about 2.4%). 

However, this is also accompanied by a larger standard deviation (10.0%). This is translated into a 

Sharpe ratio of 22.5%. In the long-only scenario, the average return is 1.5% with a standard 

deviation of 5.4%. The associated Sharpe ratio is 25.2%.  

Finally, Fully optimized portfolios provide an average return of 1.6% and 1.7% in the long-short 

and long-only scenarios, respectively. The standard deviation is higher for the long-short portfolios 

(7.7% vs 4.8%). This translates into a Sharpe ratio of 19.0% when short sales are allowed and 

33.2% when short sales are not allowed.  

Treynor ratios are very similar across portfolios, except for the long-short Fully optimized 

portfolios, which have the highest Treynor ratio, at 0.031. Although the standard deviation for this 

portfolio is high, the beta is relatively low. This explains the difference between the Sharpe ratio 

and Treynor ratio ranking of portfolios being so different at first glance. Lyle and Yohn (2021) also 

concluded that Fully optimized portfolios tend to have lower betas. 

Table 6 Panel B presents the differences in Sharpe ratios for each pair of portfolios. Regarding 

the long-short portfolios, there are no significant differences in Sharpe ratios. Using this measure, 

there is no evidence that any of the portfolios has a better performance compared to the others. 

However, with the constraint of no short selling, Expected returns portfolios have a higher Sharpe 

ratio than Equal-weight portfolios. This indicates that considering expected returns cross-sectional 

differences when constructing a portfolio improves performance. On the other hand, there is no 
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evidence that Covariance portfolios have superior performance relative to Equal-weight portfolios. 

Expected returns portfolios and Covariance portfolios have no significant differences in Sharpe 

ratios. Finally, Fully optimized portfolios have superior performance relative to all other portfolios, 

indicating that both the covariances and expected returns can be associated with performance 

gains.  

The biggest differences relative to the original results of Lyle and Yohn (2021) are the higher 

standard deviation of the long-short Expected returns and Fully optimized portfolios and the much 

lower average return on the Fully optimized portfolios. Figure 1 gives an insight into the causes of 

these deviations. The Expected returns portfolios series presents a set of unexpected high returns, 

especially the one in April 2009 of more than 110%. In the same month, the Fully optimized 

portfolio had a return of approximately -86%.   

In order to understand the cause of these unexpectedly high and low portfolio returns, I chose 

a subset of the biggest and lowest monthly stock returns in April 2009. For these stocks, I used 

another database (Yahoo Finance) and confirmed that the Return Indices data retrieved from 

Datastream is correct. After that, I also searched for events that could explain big changes in Prices 

for each of these firms. For some of them, there were key events during this month, for example, 

the announcement of positive results on a clinical trial by a pharmaceutical company, the 

announcement of an acquisition of more hotel units by a resort company, or the announcement of 

the expansion of a company to a new country. However, there is no clear answer to the question 

of which was the cause for these unexpected returns: the volatility of the period, data issues, or 

both.  

To a certain degree, these issues could be diminished by imposing constraints on weights. 

For instance, Lyle and Yohn (2021) construct portfolios with weights constrained to between -2.5% 

and 2.5% and 0% and 2.5% for long-only portfolios. I do not follow this approach as I have delimited 

my analysis to quadratic programming and imposing this kind of constraint involves other classes 

of optimization algorithms. With such a large number of assets, using these algorithms would be 

extremely time-consuming and there would always be the possibility of not achieving convergency 

when applying the model.  
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Figure 1: Portfolio Excess returns versus Market excess returns: full sample period 

EW = Equal-weight portfolio; COV = Covariance portfolio; ER = Expected returns portfolio; FOP = Fully optimized portfolio 

 

 

 

 

5.2.2 Multifactor models: alphas and information ratios 

Other measures of performance include alphas and information ratios based on factor models. 

Figure 1 presents the times series of out-of-sample excess returns of each of the portfolios created 
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versus the market excess return. The alpha in the single-factor model is a measure of the 

differences in these series across time.  

Table 7 presents a summary of the alphas and information ratios of the Fully optimized 

portfolios found using different factor models. For the portfolios with the assumption of no short 

selling, the alpha values are always positive and statistically significant for the 0.1% level and range 

between 0.007 and 0.008. The associated Information ratios range between 0.290 and 0.396. 

Comparing these results with the original work of Lyle and Yohn (2021), the signal and 

significance of alphas are identical. However, both the value of alphas and information ratios are 

below the original results. It is important to note, however, that the authors do this analysis based 

on portfolios with weights constrained between -2.5% and 2.5% (or 0% and 2.5% for long-only 

portfolios) and, as stated previously, I do not impose these constraints.  

Regarding the portfolios with no restrictions on short sales, the alphas are positive in all 

models, however with different statistical significance levels (10% and 5% depending on the model). 

The information ratios are lower than the ones for the previous case, ranging between 0.121 and 

0.154. Lyle & Yohn (2021) achieved positive statistically significant alphas for these portfolios 

across all models, and the alpha’s values and information ratios were superior to the ones found 

for long-only portfolios. 

Table 7: Factor models: alphas and Information ratios of Fully optimized portfolios 

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

 Long-short Long-only 
 alpha IR alpha IR 

1 factor 0.010* 0.141 0.007*** 0.290 
3 factor 0.010+ 0.137 0.008*** 0.370 

4 factor 0.008+ 0.121 0.008*** 0.377 
5 factor 0.011* 0.154 0.008*** 0.388 

6 factor 0.009+ 0.139 0.008*** 0.396 

 

5.3 Comparing nested portfolios: January 2008 to December 2017 

In order to better understand if the differences in results with the original study are driven by 

differences in the data sample or caused by the use of different time periods, I provide an analysis 

of the results for the only exact subperiod provided by the authors that can be replicated with my 

data – from January 2008 to December 2017. However, it is important to mention that also in this 
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case the authors only provide the results for portfolios with weights constrained to between -2.5% 

and 2.5% (or 0% and 2.5% for long-only) and I do not impose these restrictions.  

5.3.1 Average returns, standard deviations, Sharpe ratios and Treynor ratios 

As presented in Table 8, the results are similar to the ones found in the entire sample period 

case. All the Sharpe ratios decreased in this example, especially the Sharpe ratio for Fully optimized 

portfolios. This was expected since the biggest contributor month (April 2009) to the poor results 

for this portfolio was included in the subperiod. Once again, the biggest outlier in the Treynor ratio 

comparison are the long-short Fully optimized portfolios due to a low beta.  

For Lyle and Yohn (2021), this subperiod portfolios produced lower returns (except the long-

only Covariance portfolios) and higher standard deviations (except the Fully optimized portfolios) 

compared to the entire sample. In consequence, the Sharpe ratios for this period were smaller 

than the ones found for the entire period, as in this study. 

This comparison indicates that the data used in each study and the slight differences in 

methodology have an impact on the magnitude of expected returns, standard deviations and 

Sharpe ratios obtained. However, it also shows that when faced with specific market environments, 

the trends in portfolio statistics are similar. 

Table 8: Nested Portfolio analysis (January 2008 to December 2017) 

EW = Equal-weight portfolio; COV = Covariance portfolio; ER = Expected returns portfolio; FOP = Fully optimized 
portfolio 
Mean and Standard deviation are shown as a percentage. 
* p < 0.05, ** p < 0.01, *** p < 0.001 

Panel A: Portfolio summary statistics – Average returns, standard deviations, Sharpe ratios and 
Treynor ratios 

  Long-short Long-only 

 EW COV ER FOP COV ER FOP 
Mean 1.117 0.867 2.489 1.290 1.040 1.325 1.572 

SD 5.657 4.249 12.073 9.525 4.459 5.549 4.809 
SR 0.193 0.198 0.204 0.133 0.228 0.234 0.322 

TR 0.009 0.010 0.015 0.062 0.011 0.011 0.017 
Panel B: Differences in Sharpe ratios 

Portfolio COV-EW ER-EW ER-COV FOP-COV FOP-ER FOP-EW 
Long-Short 0.005 0.011 0.006 -0.065 -0.071 -0.060 

Long-Only 0.034 0.041** 0.007 0.094* 0.087* 0.128* 
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Figure 2: Portfolio Excess returns versus Market excess returns: 2008-2017 

EW = Equal-weight portfolio; COV = Covariance portfolio; ER = Expected returns portfolio; FOP = Fully optimized portfolio 

  

 

 

 

5.3.2 Multifactor models: alphas and information ratios 

Similarly to Figure 1, Figure 2 gives an overview of the time series of the excess returns of 

each portfolio versus the market, but, in this case, it focuses on the period between 2008 and 
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2017. Regarding the alphas and information ratios for this period, the long-only Fully optimized 

portfolios maintain their positive and significant alphas and information ratios in the same ranges 

as before. However, for the long-short portfolios, the alpha is only statistically significant and 

positive in the six-factor model at a 5% significance level (Table 9).  

Table 9: Factor models: alphas and Information ratios of Fully optimized portfolios (January 
2008 to December 2017) 

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

 Long-short Long-only 

 alpha IR alpha IR 
1 factor 0.011 0.116 0.008*** 0.332 

3 factor 0.010 0.108 0.008*** 0.373 
4 factor 0.010 0.125 0.008*** 0.377 

5 factor 0.014 0.161 0.009*** 0.394 
6 factor 0.015* 0.199 0.009*** 0.396 

 

5.1 Comparing nested portfolios: Dividing the sample into two 9-year 

periods 

To analyze possible differences in performance across other periods, I now divide the entire 

period into two subperiods of nine years each: from October 2003 to September 2012 and from 

October 2012 to September 2021. As the entire period was eighteen years and three months, July, 

August and September 2003 were suppressed from this analysis.  

5.1.1 Average returns, standard deviations, Sharpe ratios and Treynor ratios 

In the first period under analysis, Sharpe ratios are generally low, especially for the long-short 

Fully optimized portfolios (5.9%). On the other hand, the highest Sharpe ratio, 22.1%, is found in 

the long-only Fully optimized portfolios. The first period is marked by lower average returns and 

higher standard deviations (Table 10). These results were expected since the 2008 financial crisis 

occurred during it.  

In this subperiod, there are no significant differences in Sharpe ratios between portfolios 

except in two cases: (1) long-only Expected return portfolios have higher Sharpe ratios than Equal 

weighted portfolios and (2) long-only Fully optimized portfolios have higher Sharpe ratios than long-

only Expected return portfolios. These findings suggest that taking into account differences in 

Expected returns in portfolio construction conducts in gains in performance.  
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Table 10: Nested Portfolio analysis over time 

EW = Equal-weight portfolio; COV = Covariance portfolio; ER = Expected returns portfolio; FOP = Fully optimized 
portfolio 
Mean and Standard deviation are shown as a percentage. 
* p < 0.05, ** p < 0.01, *** p < 0.001 

Panel A: Portfolio summary statistics – Average returns, standard deviations, Sharpe ratios and 
Treynor ratios 

Panel A1: October 2003 to September 2012 

  Long-short Long-only 

 EW COV ER FOP COV ER FOP 
Mean 1.144 0.794 2.570 0.741 0.890 1.283 1.288 

SD 5.881 4.536 12.715 10.077 4.712 5.811 5.183 
SR 0.170 0.144 0.191 0.059 0.158 0.196 0.221 

TR 0.008 0.007 0.014 0.027 0.008 0.009 0.012 
Panel A2: October 2012 to September 2021 

  Long-short Long-only 
 EW COV ER FOP COV ER FOP 

Mean 1.345 1.318 2.073 2.247 1.479 1.552 1.969 
SD 5.125 4.025 6.521 4.138 4.125 5.026 4.322 

SR 0.253 0.315 0.310 0.531 0.346 0.299 0.444 
TR 0.011 0.014 0.017 0.029 0.016 0.013 0.021 

Panel B: Differences in Sharpe ratios 

Panel B1: October 2003 to September 2012 

Portfolio COV-EW ER-EW ER-COV FOP-COV FOP-ER FOP-EW 
Long-Short -0.026 0.021 0.047 -0.084 -0.131 -0.111 

Long-Only -0.012 0.026* 0.038 0.062* 0.025 0.051 

Panel B2: October 2012 to September 2021 

Portfolio COV-EW ER-EW ER-COV FOP-COV FOP-ER FOP-EW 
Long-Short 0.062 0.058 -0.004 0.216** 0.219 0.277** 

Long-Only 0.093* 0.046** -0.047 0.097** 0.144** 0.190** 

 

The second period finds better performance results: average returns are higher for all 

portfolios, except for long-short Expected returns portfolios, and standard deviations decreased. 

This results in overall higher Sharpe ratios, especially for Fully optimized portfolios. In this case, 

the average return for long-short portfolios is 2.2% and for long-only portfolios is 2.0%. the standard 

deviations are 4.1% and 4.3% respectively. The Sharpe ratios are above 53% and 44% respectively. 

This was also expected since the major detractor month for the performance of Fully Optimized 

portfolios (April 2009) is not included in the period. 

For this period, Equal-weight portfolios have significantly lower Sharpe ratios than all other 

portfolios and, in opposition, Fully optimized portfolios have significantly higher Sharpe ratios than 

the other portfolios, except for long-short Fully optimized portfolios versus Expected return 
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portfolios. Contrarily to all the prior analyses, the results for this period present a higher Sharpe 

ratio for the long-short than for the long-only Fully optimized portfolios. 

Although Lyle and Yohn (2021) find that the performance gains of Fully optimized portfolios 

are persistent through time, these results show that the superior performance of these portfolios 

is dependent on the time period, especially for long-short portfolios.   

5.1.2 Multifactor models: alphas and information ratios 

The analysis of the alphas and Information ratios corroborates the previous analysis (Table 

11). For the first period, for the long-short portfolios, the alphas are not statistically significant and 

the Information ratios are low. For the long-only portfolios, the alphas are positive and statistically 

significant at least at a 5% level and the information ratios are between 0.239 and 0.287.  

For the second period, alphas are positive and statistically significant at a 0.1% level in all 

models (the exception is the long-only portfolio in the single factor model with significance at the 

1% level) and are higher for the long-short portfolios. The Information ratios varied between 0.331 

and 0.628. 

Table 11: Factor models over time: alphas and Information ratios of Fully optimized 
portfolios 

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

Panel A: October 2003 to September 2012 

 Long-short Long-only 

 alpha IR alpha IR 
1 factor 0.005 0.049 0.006* 0.239 

3 factor 0.004 0.045 0.006* 0.245 
4 factor 0.003 0.033 0.006* 0.249 

5 factor 0.012 0.129 0.007** 0.285 
6 factor 0.012 0.168 0.007** 0.287 

Panel B: October 2012 to September 2021 

 Long-short Long-only 

 alpha IR alpha IR 
1 factor 0.013*** 0.441 0.008** 0.331 

3 factor 0.015*** 0.616 0.010*** 0.543 
4 factor 0.015*** 0.628 0.010*** 0.553 

5 factor 0.015*** 0.614 0.010*** 0.542 
6 factor 0.015*** 0.625 0.010*** 0.552 
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5.2 Comparing nested portfolios: cardinality constraints  

This subsection aims of identifying the impact on ex-post performance when the sample is 

constrained to the X biggest stocks, with X, in this study, being 100, 200 and 500. I note that I do 

not constrain weights between any specific interval.  

Table 12: Cardinality constraints – Nested Portfolio analysis  

EW = Equal-weight portfolio; COV = Covariance portfolio; ER = Expected returns portfolio; FOP = Fully optimized 
portfolio 
Mean and Standard deviation are shown as a percentage. 
* p < 0.05, ** p < 0.01, *** p < 0.001 

Panel A: Portfolio summary statistics – Average returns, standard deviations, Sharpe ratios and 
Treynor ratios 

Panel A1: 100 stocks 

  Long-short Long-only 

 EW COV ER FOP COV ER FOP 
Mean 1.130 0.833 1.143 100.597 0.945 1.228 0.980 

SD 3.984 3.214 4.930 1454.947 3.154 4.187 3.687 
SR 0.259 0.229 0.212 0.069 0.269 0.270 0.240 

TR 0.016 0.021 0.014 -0.026 0.020 0.016 0.017 
Panel A2: 200 stocks 

  Long-short Long-only 
 EW COV ER FOP COV ER FOP 

Mean 1.167 0.857 2.071 -0.812 0.926 1.250 0.942 

SD 4.277 3.133 9.728 0.247 3.181 4.464 3.499 
SR 0.250 0.243 0.203 -0.037 0.261 0.258 0.242 

TR 0.011 0.014 0.019 -0.034 0.014 0.011 0.012 
Panel A3: 500 stocks 

  Long-short Long-only 
 EW COV ER FOP COV ER FOP 

Mean 1.244 0.945 2.207 0.387 1.040 1.372 1.417 
SD 4.808 3.139 10.410 24.709 3.490 4.934 4.181 

SR 0.239 0.270 0.202 0.012 0.270 0.259 0.316 
TR 0.010 0.014 0.025 -0.006 0.013 0.011 0.015 

Panel B: Differences in Sharpe ratios 

Panel B1: 100 stocks 

Portfolio COV-EW ER-EW ER-COV FOP-COV FOP-ER FOP-EW 
Long-Short -0.030 -0.047 -0.017 -0.159 -0.143 -0.190 

Long-Only 0.009 0.011 0.002 -0.029 -0.031 -0.020 
Panel B2: 200 stocks 

Portfolio COV-EW ER-EW ER-COV FOP-COV FOP-ER FOP-EW 
Long-Short -0.007 -0.047 -0.040 -0.279 -0.240 -0.286 

Long-Only 0.010 0.008 -0.002 -0.019 -0.017 -0.009 
Panel B3: 500 stocks 

Portfolio COV-EW ER-EW ER-COV FOP-COV FOP-ER FOP-EW 
Long-Short 0.031 -0.036 -0.067 -0.258 -0.191 -0.226 

Long-Only 0.031 0.020 -0.011 0.045 0.057 0.076* 
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5.2.1 Average returns, standard deviations, Sharpe ratios and Treynor ratios 

Table 12 presents the results for average returns, standard deviations and Sharpe ratios and 

each panel corresponds to the optimizations considering a different number of stocks in the 

sample.  

Firstly, addressing the unusually large values in the long-short Fully optimized portfolios for 

the biggest 100 stocks, this happens because of extremely high weights on some months for stocks 

that performed poorly in those months. These portfolios have a Sharpe ratio of only 6.9% and a 

negative Treynor ratio.  

Secondly, it is noticeable that, except for the Fully Optimized portfolios, the Sharpe ratios 

obtained when considering only a small number of stocks are similar or even higher than the ones 

obtained with an entire sample. 

Table 13: Cardinality constraints – Factor models: alphas and Information ratios of Fully 
optimized portfolios  

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

Panel A: 100 stocks 

 Long-short Long-only 
 alpha IR alpha IR 

1 factor 1.534 0.107 0.002+ 0.120 

3 factor 1.376 0.097 0.002 0.114 
4 factor 1.420 0.100 0.002 0.109 

5 factor 1.315 0.093 0.001 0.076 
6 factor 1.359 0.096 0.001 0.070 

Panel B: 200 stocks 

 Long-short Long-only 

 alpha IR alpha IR 
1 factor -0.011 -0.046 0.002+ 0.123 

3 factor -0.013 -0.052 0.002 0.106 
4 factor -0.021 -0.100 0.002 0.105 

5 factor -0.008 -0.035 0.002 0.084 
6 factor -0.017 -0.080 0.001 0.083 

Panel C: 500 stocks 

 Long-short Long-only 

 alpha IR alpha IR 
1 factor 0.007 0.030 0.006*** 0.277 

3 factor 0.004 0.015 0.005*** 0.271 
4 factor -0.004 -0.017 0.005*** 0.268 

5 factor 0.006 0.026 0.005*** 0.259 
6 factor -0.001 -0.005 0.005*** 0.257 
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Finally, across the three experiments, Fully optimized portfolios in the long-short form perform 

poorly compared to their counterparts; however, these differences are not statistically significant. 

The Sharpe ratio for the long-only portfolios increases as the number of stocks included also 

increases, being 31.6% with a sample of the biggest 500 stocks. This last portfolio, at a 5% 

significance level, has a higher Sharpe ratio than the Equal-weight portfolio. Lyle and Yohn (2021) 

also find that as the sample size increases, the Sharpe ratio of both long-only and long-short 

portfolios increases. However, the results presented in this section do not allow for the conclusion 

provided by the authors that the full optimization performance gains are robust even when 

eliminating small capitalization firms from the investment set. 

5.2.2 Multifactor models: alphas and information ratios 

The multifactor analysis points to non-significant alphas across the three samples and all 

models for the Fully optimized long-short portfolios, accompanied by low Information ratios (Table 

13). In the Long-only portfolios case, alphas are positive and become statistically significant as the 

sample extends to 500 stocks and Information ratios increase to around 0.25. 

5.3 Portfolios in the extreme deciles  

This subsection provides performance results of the applicability of different portfolio creation 

methodologies to the expected returns top extreme decile stocks. As explained in the methodology 

section, I perform a slightly different type of analysis than the traditional approach. I reduce the 

sample to only the stocks with expected returns in the top decile and create different portfolios with 

these stocks. In this sense, I remark that the long-short portfolios are not created by taking a long 

position in the top decile and a short position in the bottom decile; they take both long and short 

positions on stocks on the top decile. 

5.3.1 Average returns, standard deviations, Sharpe ratios and Treynor ratios 

If expected returns and covariances were a good estimate of actual returns and covariances, 

we would expect that portfolios created with the top predicted performers would have a better 

performance than the counterparts based on the total sample. Table 14 confirms this expectation. 

The average returns are around 2% for all portfolios and the standard deviation ranged between 5% 
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and 7%. Regarding the Treynor ratios, the biggest values are associated with the Fully optimized 

portfolios, both long-short and long-only. 

There is also a large improvement in Sharpe ratios when compared with the total sample 

values. Fully optimized portfolios have Sharpe ratios above 40%. The lowest Sharpe ratio found is 

for the Value-weight portfolio (28.9%). Comparing Sharpe ratios across portfolios, it is found that 

there are no significant differences in this statistic between Expected returns and Covariance 

portfolios, Covariance and Equal-weight portfolios, and Fully optimized and Covariance portfolios. 

The three portfolios that involve optimization have higher Sharpe ratios than the Value-Weight 

portfolio. Finally, both Expected return portfolios and Fully optimized portfolios have higher Sharpe 

ratios than the Equal-weight portfolios. These results are in line with Lyle and Yohn's (2021) 

conclusion that Fully optimized portfolios outperform equal-weight and value-weight portfolios of 

stocks in the extreme decile of expected returns. 

Table 14: Top decile portfolios – Nested Portfolio analysis  

Panel A: Portfolio summary statistics – Average returns, standard deviations, Sharpe ratios and 
Treynor ratios 

EW = Equal-weight portfolio; VW = Value-weight portfolio; COV = Covariance portfolio; ER = Expected returns 
portfolio; FOP = Fully optimized portfolio 
Mean and Standard deviation are shown as a percentage. 
* p < 0.05, ** p < 0.01, *** p < 0.001 

   Long-short Long-only 

 EW VW COV ER FOP COV ER FOP 
Mean 2.038 1.990 2.063 2.108 2.350 2.140 2.108 2.294 

SD 5.674 6.543 5.127 5.694 5.370 5.299 5.694 5.445 
SR 0.342 0.289 0.384 0.352 0.420 0.386 0.353 0.404 

TR 0.017 0.015 0.021 0.017 0.024 0.021 0.017 0.023 

Panel B: Differences in Sharpe ratios 
Portfolio COV-EW ER-EW ER-COV FOP-COV FOP-ER FOP-EW VW-COV VW-ER VW-FOP 
Long-Short 0.042 0.011* -0.030 0.036 0.066* 0.078* -0.094* -0.064* -0.130** 

Long-Only 0.043 0.011* -0.032 0.018 0.050 0.061* -0.096** -0.064* -0.114** 

 

5.3.1 Multifactor models: alphas and information ratios 

The Fully optimized portfolios also see a big performance improvement when measured by 

alphas and information ratios (Table 15). Alphas are positive and statistically significant across all 

models for both long-only and long-short portfolios (between 0.014 and 0.015). The associated 

Information ratios are also higher, ranging between 0.37 and 0.44.  
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Table 15: Top decile portfolios – Factor models: alphas and Information ratios of Fully 
optimized portfolios  

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001 

 Long-short Long-only 

 alpha IR alpha IR 
1 factor 0.014*** 0.390 0.014*** 0.372 

3 factor 0.015*** 0.435 0.014*** 0.437 
4 factor 0.015*** 0.432 0.014*** 0.443 

5 factor 0.015*** 0.443 0.014*** 0.444 
6 factor 0.015*** 0.441 0.014*** 0.452 
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6. Conclusion 

This dissertation had the objective to test if incorporating expected returns and covariances 

estimated based on firm characteristics in Markowitz style optimization would provide any gains in 

performance. I found that these gains are dependent on several matters, such as the database 

used, the time period under analysis, and the number of stocks used for the construction.  

If all the stocks of the US market are considered during a period between 2003 and 2021, 

there is no evidence that Fully optimized portfolios have a higher Sharpe ratio than all the other 

portfolios under analysis. However, if a restriction of no short sales is applied, Fully optimized 

portfolios have a higher Sharpe ratio than the nested portfolios. When performance is measured 

based on factor models, alphas are positive and statistically significant for both long-short and long-

only fully optimized portfolios.  

If the sample period is divided into two sections (October 2003 - September 2012 and October 

2012 - September 2021), the first subperiod is characterized by generality low returns and Sharpe 

ratios and high standard deviations. In the second period, Fully optimized portfolios provide high 

Sharpe ratios and positive and statistically significant alphas. Their Sharpe ratios are higher than 

the nested portfolios ones.  

When testing the possibility of obtaining improved performance by using a number of stocks 

with the highest capitalization, Fully optimized portfolios show poor results, with low Sharpe ratios. 

Only with 500 stocks and no short sales allowed the alphas are positive and statistically significant.  

If the sample is divided into deciles by expected returns, and the portfolios in this analysis are 

constructed in the top extreme decile, the performance of Fully optimized portfolios is higher in 

terms of Sharpe ratios and positive significant alphas.  

Generally, the authors’ conclusion that Covariance portfolios outperform Equal-weight 

portfolios is not validated by this dissertation. However, in almost all cases under analysis, in a 

long-only setting, portfolios that incorporate only estimates of expected returns based on stock 

characteristics outperform Equal-weight portfolios, as in the original study. Another similar 

conclusion is that portfolio performance between Expected return portfolios and Covariance 

portfolios is not statistically different.  
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The most relevant difference between the results found in the two studies lies in the 

performance of long-short Fully optimized portfolios. In this dissertation, in the majority of cases, 

they do not significantly outperform all other portfolios under test – this only happens in the period 

between October 2012 and September 2021. Regarding the long-only portfolios, they generally 

perform better than the remaining portfolios and have positive alphas.  

These findings suggest that mean-variance optimization based on expected returns and 

covariance matrix estimated with stock characteristics brings improvements to portfolio 

performance, specifically with restrictions on short sales. However, these results are dependent on 

the time period under analysis and the inclusion of small stocks in the investment universe, as 

there is no evidence that the higher performance is not driven by illiquid stocks or other anomalies. 

There are several points worth mentioning regarding these results. First, regarding the 

database, although a consistent and in-depth data cleaning process was performed, it is likely that 

the data used still displays some differences when compared to data from CRSP and Compustat. 

As discussed previously, this can have an impact on the results. Additionally, I had to combine the 

information on accounting variables with annual and quarterly frequency which was not the case 

in the study of Lyle and Yohn (2021). Suggestions for future research could be (1) testing if the 

use of only annual data would improve results; (2) adding weight constraints to the portfolio 

construction; and (3) extending the analysis to other countries.   
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Appendices 

A. Datastream and Worldscope Datatypes: Code, Name and Description 

1. Static datatypes 

Datatype Name Definition 
TYPE Type of Instrument Type of instrument 

DSCD Datastream Code Unique six-digit code allocated by Datastream 

BDATE Base Date 
Date from which Datastream holds information about the 

issue 

ENAME 
Expanded Security 

Name 
Expanded (unabbreviated) name of the quote 

EXMNEM 
Datastream Exchange 

Mnemonic 

Datastream exchange code based on the ISO standard 
exchange code. The code is a three-character alpha 
mnemonic identifying the source of the default price 

datatypes for a given equity 

GEOGN 
Geographical 

Classification of 
company 

Home or listing country of a security 

ISIN ISIN International Security Identification Number 

ISINID Primary Indicator Flag 
Returns either P or S -- P indicates that the equity record is 
primary (domestic listing of the share), and S indicates that 

the equity record is secondary (foreign listing of a share) 

LOC Code - Local 
Identification code based on the official local exchange code. 
It comprises up to 12 characters, prefixed by an alphabetic 

country code 

PCUR Currency 
Currency in which the price of a security is quoted and 

displayed 

TRAC Security Type Code 
Type of share as defined by the Thomson Reuters 

classification system 
TIME Time – Latest value Date or time of the latest equity price data 

2. Time series datatypes 

AF 
Adjustment Factor 

(Accumulated) 
Datastream factor accumulated to stock base date. 

RI Total Return Index 

A theoretical growth in value of a share holding over a 
specified period, assuming that dividends are re-

invested to purchase additional units of an equity or unit 
trust at the closing price applicable on the ex-dividend 

date 

UP Unadjusted Price 
Closing price which has not been historically adjusted 

for bonus and rights issues 

P Price – Trade 
Official closing price. Unadjusted Price adjusted for 

subsequent capital actions 

MV Market value (Capital) 
Share price multiplied by the number of ordinary shares 

in issue 
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3. Wordescope datatypes 

WC02999 Total assets Sum of total current assets, long-term receivables, 
investment in unconsolidated subsidiaries, other 

investments, net property plant and equipment and 
other assets. 

WC03351 Total liabilities All short- and long-term obligations expected to be 
satisfied by the company 

WC04101 Deferred Income Taxes 
& Investment Tax Credit 

Increase or decrease in the deferred tax liability from 
one year to the next resulting from timing differences in 

recognition of revenues and expenses for tax and 
financial reporting purposes 

WC03451 Preferred Stock Claim prior to the common shareholders on the 
earnings of a company and on the assets in the event of 

liquidation 
WC04199 Deferred Income Taxes 

(Cash Flow) 
Increase or decrease in the deferred tax liability from 

one year to the next resulting from timing differences in 
recognition of revenue and expenses for tax and 

financial reporting purposes 
WC01551A Net Income Before 

Extraordinary 
Items/Preferred 

Dividends 

Income before extraordinary items and preferred and 
common dividends, but after operating and non-

operating income and expense, reserves, income taxes, 
minority interest and equity in earnings 

WC02001 Cash & Short-Term 
Investments 

Sum of cash and short-term investments 

WC03051 Short-Term Debt & 
Current Portion of Long-

Term Debt 

Portion of debt payable within one year including current 
portion of long-term debt and sinking fund requirements 

of preferred stock or debentures 
WC03251 Long-Term Debt All interest-bearing financial obligations, excluding 

amounts due within one year, net of premium or 
discount. 

WC03426 Minority Interest Portion of the net worth (at par or stated value) of a 
subsidiary pertaining to shares not owned by the 

controlling company and its consolidated subsidiaries 
WC03501 Common Equity Common shareholders' investment in a company 
WC02008 Short−term investments Temporary investments of excess cash in marketable 

securities that can be readily converted into cash 
WC02258 Long-Term Receivables Amounts due from customers that will not be collected 

within the normal operating cycle of the company 
WC02250 Other Investments Any other long-term investment except for investments 

in unconsolidated subsidiaries 
 


