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A B S T R A C T

Parkinson’s disease (PD) is a neurodegenerative disease that affects around 1% of the population over

65 and has increased in prevalence in recent years. One of the most disabling motor symptoms and a

major contributor to falls is postural instability, which threatens the independence and well-being of people

with PD. Usually, physicians assess this symptom with a traditional clinical examination named pull test,

which, although easy to administer without requiring any instruments, it is a difficult test to standardize

and lacks sensitivity to small but significant changes. Thus, other approaches based on high technologies

have emerged to provide objective metrics and long-term data on postural stability, complementing clinical

assessment. Wearable sensors appeared as a promising tech-based solution to better capture postural

instability and eliminate the subjectivity of postural-associated clinical examinations.

This dissertation proposes the design, development and validation of a postural assessment tool to per-

form more objective evaluations of postural instability during basic dynamic day-to-day activities. To achieve

this goal, the following steps were accomplished: (i) create a dataset based on 3D motion data of PD pa-

tients performing the pull test and dynamic activities using an inertial measurement unit (IMU); (ii) extract

relevant features from the data collected, conduct an extensive statistical search, and find correlations to

clinical scales; (iii) implement a tool based in artificial intelligence (AI) to classify the level of postural insta-

bility through the data collected. Different deep learning models were designed and several combinations

of data input were considered in order to find the best model to predict the pull test score.

Overall, satisfactory results were achieved as the statistical analysis revealed that many features were

considered relevant to distinguish between the scores of the pull test, for diagnostic purposes and also to

differentiate the several stages of the disease and levels of motor disability.

Regarding the AI-based tool, the results suggest that the combination of IMU-based data with deep learn-

ing may be a promising solution for postural instability assessment. The model that achieved the best

performance in the testing phase with unseen data presented an accuracy, precision, recall and F1-score

of approximately 0.86. The results also show that when fewer daily activities are included in the dataset,
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the complexity of the model reduces, making it more efficient. Despite the promising results, more data

should be collected to assess the actual performance of the model as a postural assessment tool.

Keywords Artificial Intelligence, Inertial Measurement Unit, Parkinson’s Disease, Postural Instability,

Pull Test Score



R E S UM O

A doença de Parkinson (DP) é uma doença neurodegenerativa que afeta cerca de 1% da população

acima de 65 anos e cuja prevalência tem aumentado nos últimos anos. Um dos sintomas motores mais

incapacitantes e um dos principais contribuintes para quedas é a instabilidade postural, que ameaça a

independência e o bem-estar das pessoas com a DP. Normalmente, o teste utilizado para avaliar a insta-

bilidade postural é o pull test, que, embora fácil de executar e não necessitando de qualquer instrumento,

é um teste difícil de padronizar e com falta de sensibilidade para detetar pequenas alterações que podem

ser significativas. Assim, os sensores vestíveis surgiram como uma solução promissora para capturar a

instabilidade postural e eliminar a subjetividade dos exames clínicos associados à postura.

Esta dissertação tem como objetivo o idealizar, desenvolver e validar um instrumento para realizar avali-

ações mais objetivas da instabilidade postural durante atividades dinâmicas básicas do dia-a-dia. Para

atingir esse objetivo, as seguintes etapas foram realizadas: (i) criar um dataset baseado em dados de movi-

mento 3D de pacientes com a DP equanto executam o pull test e atividades dinâmicas através de uma

unidade de medida inercial; (ii) extrair características relevantes dos dados adquiridos, realizar uma ex-

tensa pesquisa estatística e encontrar correlações com escalas clínicas; (iii) implementar uma ferramenta

baseada em inteligência artificial (IA) para classificar o nível de instabilidade postural através dos dados

recolhidos. É de notar que diferentes frameworks de deep learning foram projetados e vários datasets

foram considerados de modo a encontrar o melhor modelo para prever a pontuação da escala do pull test.

No geral, os resultados alcançados foram satisfatórios, pois o estudo estatístico revelou que muitas

das características extraidas dos sinais recolhidos foram consideradas relevantes para distinguir entre as

pontuações do pull test, para fins diagnósticos e também para diferenciar os estágios da doença e os níveis

de incapacidade motora.

Em relação à ferramenta baseada em IA, os resultados apresentados sugerem que o deep learning pode

ser promissor na área de avaliação de instabilidade postural através de IMUs. Omodelo que obteve omelhor

desempenho apresentou uma exatidão, precisão, sensibilidade e F1-score no teste de aproximadamente
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0.86. Os resultados também mostram que dataset com um menor número de actividades diferentes

incluídas leva a que o modelo se torne menos complexo, tornando-o mais eficiente. Apesar dos resultados

promissores, mais dados devem ser recolhidos para avaliar o real desempenho do modelo como ferramenta

de avaliação postural.

Palavras-chave Doença de Parkinson, Escala do Pull test, Inteligência Artificial, Instabilidade Postu-

ral, Unidade de Medição Inercial
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1

I N T R O D U C T I O N

This dissertation, entitled “High-tech aid tool to monitor postural stability in Parkinson’s disease”, presents

the work developed throughout the academic year of 2021-2022 in the scope of the fifth year of the Inte-

grated Master’s in Biomedical Engineering, at University of Minho. The research was developed in the

Biomedical & Bioinspired Robotic Devices Laboratory (BiRD LAB) at the Center for MicroElectroMechanical

Systems (CMEMs) established in University of Minho, Braga, Portugal. Moreover, the experimental trials

with pathological end-users were carried out in Hospital of Braga with the collaboration of the physicians

from Clinical Academic Centre of Braga (2CABraga).

1.1 Motivation, Context and Problem Statement

After Alzheimer’s, Parkinson’s disease (PD) is the most common neurodegenerative disease worldwide,

affecting around 1% of the population over 65, and its increase in prevalence has been documented in the

past decades [1, 2]. PD cardinal features consist of tremor at rest, rigidity, akinesia (absence of movement)

or bradykinesia (slowness of movement) and postural instability, although it is important to point out that

the symptoms and the rate of progression of this disease differ between individuals [3, 4].

Parkinson’s is a disease that affects more men than women and usually appears after the age of 60.

This disease is caused by the impairment or death of the nerve cells in the basal ganglia, which is an area

in the brain that controls movement, leading to a decrease in dopamine production and, consequently, to

movement problems. On the other hand, the non-movement symptoms in PD can be explained by the loss

of nerve endings that produce norepinephrine [4].

3
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Currently, there are no medical tests to accurately detect this disease. PD diagnosis is mainly

based on medical history and a neurological examination. Many times, early Parkinson’s symptoms are

mistaken for the typical effects of aging, as they are subtle and occur gradually. Furthermore, there is still

no cure for PD, although there are specific treatments that can relieve part of the symptoms [4].

The stage of the disease in Parkinson’s is estimated through rating scales. These tools are very useful for

physicians and researchers since they allow gathering information about the course of the disease and help

to evaluate and manage treatment strategies. The rating scales most commonly used are the Unified

Parkinson’s Disease Rating Scale (UPDRS) and Hoehn and Yahr (H&Y) scale but, usually, more

than one rating scale is used to perform the appraisal in order to get a wider perspective of the symptoms

[5].

The UPDRS is a scale that comprises four sections: I - Non-Motor Aspects of Experiences of Daily Living

(13 items); II - Motor Aspects of Experiences of Daily Living (13 items); III - Motor Examination (33 items);

IV - Motor Complications (6 items). Each item is assigned a score from 0 (normal) to 4 (severe problems)

and the total score can go up to 260. The higher the score, the greater the degree of disability. The H&Y

scale divides this pathological condition into seven stages according to the level of disability, as shown in

Figure 1. This is a quick and practical tool that distinguishes a mild-to-moderate stage of the disease (H&Y

1 to 3) from a severe stage (H&Y 4 and 5) [5].

Figure 1: Modified Hoehn and Yahr scale [5].

It is very common for people with PD to go through gait and postural complications, such as freezing,

dysrhythmic and slow gait, flexed posture and decreased postural responses. In fact, postural instability
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is one of the most disabling motor symptoms and a major contributor to falls, and as a result, it

threatens the independence and well-being of people with PD, diminishing their quality of life. Usually, this

feature is only discernible later in the course of the disease. Despite that, it can be present at diagnosis

and, as the disease progresses, becomes more prominent [2, 3, 6].

In order to monitor patients over time and implement an adequate treatment to improve postural sta-

bility and reduce the risk of falls, it is important for physicians to quantify gait and balance deficits and to

perceive motor changes that lead to postural complications. Generally, the clinical examination used to

assess postural instability is a test denominated by pull test, also known as the retropulsion test, which

corresponds to item 12 of the motor section of the UPDRS (Part III). ”The test examines the response to

sudden body displacement produced by a quick, forceful pull on the shoulders while the patient is standing

erect with eyes open and feet comfortably apart and parallel to each other” [7]. To perform the test, the

examiner pulls the patient backwards by the shoulders with enough strength to displace the center of gravity

and make the patient take a step back. After that, the examiner grades the corrective postural response,

based on the number of steps or fall, using a five-point scale (0-4), as shown in Figure 2 [2, 6].

Figure 2: Pull Test - Item 12 of the motor section of the UPDRS [7].

The direction of the perturbation used to perform the pull test is considered one of the most destabilizing.

Nevertheless, healthy subjects are able to regain their balance with two or even one large step, with the help

of the hip and the arms to counterweight. In contrast, PD patients with balance impairment are forced to

take more steps, considering their steps to correct balance are often rapid and shorter and that they have

reduced arm swing due to the increased muscle rigidity [2, 8].
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The pull test is widely used since it is easy to administer, does not require specific instruments

and marks a transition in the H&Y scale to stage 3, allowing to distinguish between a milder stage

of PD (H&Y 1 and 2) and a moderate or severe stage (H&Y 3 to 5). In spite of that, it presents several

limitations which prevent physicians from accurately monitoring the progression of the disease. In fact,

it is difficult to standardize this test considering: (i) the variability of the pull force applied, existing

an inherent subjectivity to interpret and score the examination; (ii) has a very limited scaling; (iii) it lacks

sensitivity to detect small but significant changes in balance and, consequently, the patients that are at a

higher risk of falling; (iv) has poor reliability and is limited by physician’s bias [6, 9, 10].

In addition, the pull test cannot distinguish between healthy subjects and PD patients in which

the impairment of postural responses is not evident, considering these patients are typically able

to regain balance within two steps. In fact, several studies have shown that, in early stages of Parkinson’s,

patients already exhibit decreased postural responses and can be destabilized more easily than healthy

subjects due to inefficient postural adjustments [2, 11].

To overcome the pull test as a standard examination of patients’ postural instability, instrumented analysis

has been proposed with the use of force platforms and motion capture technologies. The force platform

is a technology that allows the measurement of the center of pressure (CoP), defined as the location of

the resultant vertical force on the force platform surface. Through the displacement of this measure, it is

possible to obtain postural movements made by an individual while trying to maintain a balanced position.

Motion capture technologies, such as Microsoft Kinect or MOCAP, use cameras (and other devices) to

identify the position of the joints in order to perform an analysis. Both pieces of equipment increase the

objectivity of the evaluation of postural instability and place minimum constraints on the subject. However,

they have a limited clinical adoption because they are expensive, require a lot of space and time to set up

and lack portability [12, 13].

Wearable sensors emerged as promising solutions to better capture postural instability and

eliminate the subjectivity of postural-associated clinical examinations. Despite being frequently

used in motion assessment research and showing promising results, it is required to gather more scientific

knowledge and further exploration about wearable sensors’ application in clinical settings to monitor the

postural stability of patients with PD. In fact, wearable sensors have not yet been adopted in hospitals

or clinical institutions as a standardized tool to complement clinical examinations. A possible
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reason includes the lack of consensus in terms of sensor configurations (number and placement), but above

all, about the correct protocol and measures to be considered in postural assessment [9, 14, 15].

Furthermore, wearable technology can be used in the context of rehabilitation and assis-

tance to provide biofeedback. Indeed, biofeedback devices emerged as a front-end solution to mitigate

parkinsonian gait-associated disabilities. These systems make use of wearable sensors that enable sensory

acquisition and trigger cue information (biofeedback). Through meaningful sensory cues, patients can im-

prove and become aware of their balance disorders which could lead to a change in their postural control.

The biofeedback cues can be provided through various means, including visual, auditory and/or vibrotactile

cueing and supply information on how to perform or the outcome of a movement. The use of sensory cues

is a well-established technique for treatment of these kinds of impairments and its positive effects have

been verified in multiple studies. Additionally, it can be used to make an event happen with more frequency

(positive reinforcement) or less frequently (negative reinforcement) [15].

Taking all this into consideration, it becomes crucial to study the ability of a robust wearable system

combined with AI algorithms to assess postural instability in PD patients (so a more objective evaluation

can be carried out) and to provide additional sensory information (in order to enhance these patients’ motor

performance).
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1.2 Goals and Research Questions

The main goal of this dissertation is the design, development and validation of a postural assess-

ment tool to make a more objective evaluation of postural instability under dynamic conditions.

Considering this main goal the following objectives were established:

Goal 1: Identification and analysis of the current state-of-the-art of postural-related works in PD aiming

to critically specify their achievements and limitations to take a systematic approach to address on this

dissertation. Chapter 2 presents these surveys.

Goal 2: Create an open-source multimodal dataset of the pull test and physical activities in PD based on

3D motion data and kinematic-driven gait parameters acquisitions through wearable miniaturized inertial

sensors. The details for the data acquisition are stated in chapter 3.

Goal 3: Extraction of gait and postural-related features from the data acquired and conduction of an

extensive statistical research to determine if and which features are considered significant to distinguish

between the different levels of postural instability. Furthermore, accomplishment of clinical correlations to

contribute to a clinical diagnostic tool. This goal is addressed in chapter 4.

Goal 4: Implementation of a new PD-oriented tool to assess dynamical postural instability. It is projected

the design and development of a new AI-based tool capable of assessing patients’ posture instability through

raw inertial data acquired during the execution of dynamic tasks. This goal is addressed in chapters 3 and

5.

In order to achieve the main goal of this dissertation, the following research questions were identified:

RQ1: How is postural instability usually assessed?

RQ2: Is there a more objective way to assess postural instability?

RQ3: Can metrics extracted from inertial data of daily activities be correlated to the pull test score? And

to the UPDRS-III score, the H&Y score or for diagnosis purposes?

RQ4: Can deep learning be used to classify the pull test score through inertial data of daily activities to

increase the objectivity of postural instability assessment?
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1.3 Contribution to Knowledge

The main contributions of this dissertation to knowledge are:

• A review of the use of wearable technology to assess postural responses and provide additional

sensory information in order to improve postural control;

• An open-source multimodal dataset based on 3D motion data of PD patients performing the pull test

and dynamic activities using an inertial measurement unit (IMU) on the CoM;

• An extensive statistical search to determine if the gait and postural-related features extracted from the

inertial data of dynamic activities are considered significant to distinguish between the different levels

of postural instability and of motor disability, the different stages of the disease and for diagnostic

purposes;

• A deep learning solution to assess postural instability by predicting the pull test score through inertial

data of dynamic activities.

The work developed led to the elaboration of a journal paper entitled ”Objective Assessment of Postural

Instability in Parkinson’s Disease under Dynamic Conditions” (under revision).

1.4 Dissertation Outline

This dissertation is organized into 6 chapters, as follows.

Chapter 2 presents the state-of-the-art regarding the use of wearable technology to evaluate postural

responses and provide additional sensory information in order to improve postural control.

Chapter 3 provides an overview of the components and methods used in this dissertation to acquire and

process the data. Additionally, it describes the features of the APP developed in Python to load and process

the inertial data acquired during dynamic tasks in order to estimate gait and postural-related metrics and

to predict the pull test score through an AI-based algorithm.

Chapter 4 comprises a description of the features extracted from the inertial data collected during the

execution of the dynamic tasks and how these are expected to behave with the pull test score. This is

followed by a brief explanation of the statistical analysis that was performed using SPSS, the results and

subsequent analysis of the findings.
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Chapter 5 provides a description of the three deep learning frameworks employed with the purpose of

predicting the pull test score through inertial data acquired during the execution of the dynamic tasks or

through features extracted from the data. Therefore, the chapter starts by summarizing how the datasets

are prepared and the training pipeline, followed by the results, discussion and conclusions taken from the

AI-based algorithms created.

Chapter 6 addresses the main conclusions of this dissertation and provides topics for future work.



2

S TAT E O F T H E A R T

In this chapter is presented a brief literature review regarding existing devices to assess postural instability

in PD to various aims. To that end, the chapter begins with a concise introduction to postural instability in PD

and the main issues of the current rehabilitation programs to enhance motor performance. This is followed

by an analysis of the devices in terms of their technological components (type and configuration), their

protocol to acquire data and evaluate patients’ progress, and the validation methodologies of the studies.

2.1 Introdution

Postural stability or balance can be described as the ability to keep the body’s center of

mass (CoM) within limits of stability (LOS), through static and dynamic conditions. Indeed, postural

stability is crucial to autonomously accomplish basic daily tasks such as walking or even standing,

and it can be achieved by the interaction of the visual, vestibular and somatosensory systems [16].

Postural instability and gait disabilities are amongst the most incapacitating features of PD and threaten

the independence and quality of life of PD patients. In fact, postural instability can be characterized by a de-

crease of the LOS, the magnitude of postural responses and postural reflexes, which affect the performance

of both static and dynamic activities. In order to monitor patients’ postural conditions and implement an

adequate treatment to improve postural stability, it is crucial for physicians to quantify gait and balance

deficits and to perceive changes that lead to postural complications [2, 6]. Physicians benefit from contin-

uous and objective data about the state of patients’ postural stability. To overcome the subjectivity of the

current clinical examinations, as the pull test, tech-based assessment has been proposed by using wear-

able technology [17–20]. Indeed, wearable sensors have proven to be a promising solution to be used in

11
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different settings, like during consultations, but also in patients’ homes. Besides, these solutions are easily

accepted by patients given their low weight and size, and are able to acquire data that can be applied to

empirical mathematical calculations or more intelligent algorithms to estimate relevant postural metrics.

Currently, there is no consensus regarding meaningful metrics to quantify postural instabil-

ity. Several articles have studied the assessment of postural control during quiet stance by extracting sway

measures and concluded that these metrics are relevant to characterise balance and identify individuals

with balance impairments [9, 12, 16, 21]. However, gait can also provide valuable parameters to assess

postural stability [17–19, 22]. Nevertheless, it is not clear which wearable miniaturized sensors could be

applied and which should be their body location to provide these metrics information. Besides, there is no

explicit evidence about which protocols and clinical examinations should be accomplished to

obtain more objective data. Furthermore, there is a need to clarify the posture-related state-of-the-art

in the PD field, if the motor metrics used to assess postural instability have been applied on biofeedback

devices to provide additional sensory information during rehabilitation programs [22, 23].

Surgical and pharmacological treatments are not effective in improving impairments in

balance with the disease progression, and it was even stated that some treatments cause further

deterioration in postural control, leading to an increased risk of falls and limited motor performance [24, 25].

For that reason, motor rehabilitation programs are an essential complement to these typical treatments.

However, patients often do participate in balance training programs due to the expenses, lack of motivation

or availability of physical therapists or because it is required to move to a dedicated rehabilitation space. Even

if some exercises are given to perform at home, patients’ willingness tends to be lower when there is no real-

time feedback about their performance during training sessions. Thus, the use of biofeedback during

rehabilitation training has been shown to improve task learning and retention. Therefore, there

is an interest in developing devices capable of augmenting compromised sensory information by providing

meaningful cues (biofeedback) [2, 16, 26, 27].

In order to provide feedback about patients’ postural behaviour with the main goal of helping them

to accomplish correct postural adjustments, it is necessary to extract suitable posture-related measures.

Wearable miniaturized sensors appeared to provide these outcomes, being easily integrated into patients’

day-to-day activities without interfering with their movements [27, 28].
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In light of the need to better understand the state-of-the-art over the past 12 years, this comprehensive

review critically analyses the scientific contributions of wearable devices for postural assessment (WDPA) in

PD to capture and evaluate posture & balance-related parameters and provide additional sensory cues to

improve overall stability in individuals with PD. Beyond that, an overview of these devices will be presented

concerning their sensor/actuator type and configuration, their protocol to acquire data and evaluate patients’

progress, and the validation methodologies of the studies. Therefore, it is expected this review to answer

the following research questions (RQ): (RQ1) ”How have the WDPA been applied in PD?”; (RQ2) “Which

technologies were integrated in the WDPA, what are their settings parameters and where were they placed

within the body?”; and (RQ3) ”How have the WDPA been clinically validated in PD?”.

2.2 Search Strategy and Eligibility Criteria

A literature search was conducted on three electronic databases (Google Scholar, PubMed and Web of

Science) to identify articles that describe an objective way to assess postural instability in people with PD,

using wearable sensors, and/or a biofeedback strategy to enhance postural control. Additionally, the refer-

ence list of some of the articles identified was searched to find even more relevant studies on the subject.

The survey was performed following the guidelines of Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA), as represented in Figure 3. For that purpose, the keywords used to carry

out the literature search were: [“Parkinson’s Disease AND Postural Instability AND Wearables”]; [“Postural

Instability AND Sensitive Measures AND Instrumented Test”]; [“Pull Test Estimation AND Wearable Sen-

sors”]; [“Biofeedback System AND Postural Control AND Parkinson’s Disease”]; and [“Postural Stability

AND Biofeedback AND Parkinson’s Disease”].

The inclusion criteria the studies had to fulfill to be comprised were: (i) be validated with idiopathic PD;

(ii) integrate wearable technology; (iii) have applicability to assess postural stability and/or improve postural

control through the use of biofeedback systems as part of rehabilitation or assistance strategies; and (iv) be

published in the English language and within the past 12 years.
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2.3 Results

2.3.1 General results

Through the literature search, a total of 123 articles were identified as being potentially eligible for the

review. After removing the duplicates, the articles were screened by title and by abstract, in that order, to

exclude the ones that were not within the correct topic, leaving a total of 36 papers. The remainder of the

studies were thoroughly analysed to assess the ones that met the inclusion criteria and to exclude those that

veered off from the theme and the less appropriate ones. Overall, 17 articles were included in the review.

This approach is represented in more detail in Figure 3.

Figure 3: Flowchart for the search strategy based on PRISMA.

The selected articles were divided into categories regarding the aim of their study (diagnosis, disease

severity/progression, rehabilitation). Furthermore, these were analysed in terms of the technological compo-

nents included in their devices (type, number, location within the body and sampling or vibration frequency

of the sensors and actuators used, when applicable), and their validation methodologies.
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2.3.2 Studies purpose: postural instability in PD

After reading and analysing the selected articles, these were divided into three categories according to

their underlying goal. All of the articles shared a common purpose, which was to characterize postural

stability or related parameters through the means of wearable sensors. Despite that, the metrics identified

were used for the following:

1) Diagnosis – studies that used the data collected to distinguish PD patients from healthy controls

(HC).

2) Disease severity/progression – articles that seek to find a correlation between the data and

clinical scales used to establish the severity of the disease or perceive how the disease is evolving

over time in a patient.

3) Rehabilitation – articles that explore the use of biofeedback to improve postural control in PD

patients.

Table 1 presents the goal, strategy and main contribution of all articles selected.

Table 1: Main goal and description of the articles that study postural instability and related parameters.

Ref Goal Description

[17] Diagnosis Identify mobility deficits in subjects in early stages of PD and with no apparent impair-

ments in motor performance.

[18] Disease severity Find a correlation between gait and turning parameters and disease severity.

[9] Disease severity Find a correlation between sway measures and clinical scales.

[16] Diagnosis Distinguish PD patients in early stages of the disease with no signs of balance problems

through sway measures.

[28] Diagnosis Separate HRPD from PD patients and from HC with the FR distance and sway metrics.

[19] Diagnosis Differentiate PD by examining peak accelerations from gait.

[20] Diagnosis Detect PD by evaluating back rigidity.

[12] Diagnosis Distinguish PD patients by analysing sway metrics using a mobile device.

[21] Disease progression Study of the disease progression over a year by analysing changes in postural sway.

[22] Diagnosis Discriminate PD patients through gait metrics.

[29] Rehabilitation Improve posture, static and dynamic balance and activities of daily living (and retain)

with audio biofeedback.

Continued on next page
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Table 1 – Continued from previous page

Ref Goal Description

[30] Rehabilitation Improve balance by providing biofeedback through vibrotactile cues.

[24] Rehabilitation Improve overall stability (and retain) with vibrotactile biofeedback.

[25] Rehabilitation Discover which type of cue is better to improve dynamic balance.

[26] Rehabilitation Find which coding scheme works better to improve dynamic balance.

[31] Rehabilitation Improve gait performance (and retain) with cued training.

[27] Rehabilitation Improve balance and gait with multimodal biofeedback training.

HRPD - High Risk for Parkinson’s Disease; FR - Functional Reach

2.3.3 Technologies integrated into postural assessment devices in PD

Table 2 depicts some features of the WDPA developed in the past twelve years that quantify postural

responses so that it is possible to make more objective evaluations or even to provide a more effective motor

rehabilitation through biofeedback. All devices included a sensory system responsible for recording body

movement. Additionally, some WDPA also include an actuation system, that provides sensory information

through external cues. For each system, the technologies were analysed regarding the type of sensor or

actuator and, when applicable, their settings, quantity, and location within the body.

Regarding the sensory system, all the devices integrated inertial measurement units (IMUs) [12, 17–

21, 25–27], accelerometers (Acc) [9, 16, 22, 28, 29, 31] and/or gyroscopes (Gyr) [24, 29, 30]. These

sensors were placed in forearms/wrist [17, 18], shanks [17, 18, 27, 31], thighs [17], feet [19], sternum

[17, 18, 27, 31], 4 corners of the back [20], but mostly in the lower back, near the body’s center of mass

[9, 12, 16, 21, 22, 24–30]. With exception of five of the seventeen studies, that used between four and seven

sensors [17, 18, 20, 27, 31], the majority of the devices comprehend only one [9, 12, 21, 22, 25, 26, 28]

or two [16, 19, 30] sensors. Lastly, the sampling frequency varied between 25 and 200 Hz, although most

studies used either a frequency of 50 [9, 16, 21, 22, 27] or 100 Hz [12, 19, 25, 26, 28] for data acquisition.

However, four studies did not provide this information [20, 24, 29, 30].

Concerning the actuation system, only the studies which aim rehabilitation integrated this kind of setup.

These systems provided information about body motion through auditory [27, 29, 31], visual [25, 27, 31],

vibrotactile [24–26, 30, 31] or even a mix of these types of cues [25, 27]. The devices that used vibrotactile

biofeedback incorporated between 1 and 8 vibrating actuators (motor tactors), depending on the body
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location. The preferred configuration for the tactors was 4 around the waist (front, back, and right and left)

[24–26], near the body’s center of mass, even though there was a study that placed a tactor in the wrist

[31] and another that used 8 around the head [30]. The vibration frequency of the tactors was either fixed

at 250 Hz [25, 30] or varied between 150 to 250 Hz [26] as these values are within the human perception

range, yet this information was omitted in two of the studies [24, 31].

Table 2 also contains information about the processing data methods adopted to prepare and treat the

acquired data from the sensors to measure and estimate the postural metrics to be used on an evaluation

or training/assistance goal. In regard to papers that aimed diagnosis or to study the disease severity/pro-

gression, the data processing was achieved through mathematical methods, in which several metrics were

estimated by performing empirical calculations [9, 12, 16–22, 28, 31]. The remainder of the studies used

threshold [25–27, 30] or range-based methods [24, 26, 29] to provide biofeedback. The threshold-based

methods consisted in defining a threshold value that, when exceeded, a signal was emitted. The range-

based methods are similar, but the signal emitted was modulated, the settings of the sensory cueing were

controlled by a stratified threshold-range, i. e., in the case of vibrotactile biofeedback, the vibration frequency

increased with the deviation of a certain parameter to the threshold value [26].
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Table 2: WDPA developed for PD in the past twelve years.

Ref Goal
Sensor Module Actuation Module

Processing Data Methods
Type Num Location Freq Type Num Location Freq

[17] Diagnosis IMU 7 Forearms, Shanks,

Thighs and Sternum

200 Hz - - - - Mathematical

[18] Disease

severity

IMU 5 Wrist, Shanks and

Sternum

200 Hz - - - - Mathematical

[9] Disease

severity

Acc 1 Lower Back (L5) 50 Hz - - - - Mathematical

[16] Diagnosis Acc 2 Lower Back (L5) 50 Hz - - - - Mathematical

[28] Diagnosis Acc 1 Lower back 100 Hz - - - - Mathematical

[19] Diagnosis IMU 2 Feet (laterally below the

ankle joint)

102.4 Hz - - - - Mathematical

[20] Diagnosis IMU 4 4 corners of the back - - - - - Mathematical

[12] Diagnosis IMU 1 Lower Back (S2) 100 Hz - - - - Mathematical

[21] Disease

progression

IMU 1 Lower Back (L5) 50 Hz - - - - Mathematical

[22] Diagnosis Acc 1 Lower Back 50 Hz - - - - Mathematical

[29] Rehabilitation Acc

and

Gyr

- Lower back (L2-L5) - Auditory - - - Range-based models

[30] Rehabilitation Gyr 2 Lower back (L1-L3) - Vibrotactile 8 Head 250 Hz Threshold-based models

Continued on next page
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Table 2 – Continued from previous page

Ref Goal
Sensor Module Actuation Module

Processing Data Methods
Type Num Location Freq Type Num Location Freq

[24] Rehabilitation Gyr - Lower Back (near the

body’s CoM)

- Vibrotactile 4 Lower back (front, back,

and right and left)

- Range-based models

[25] Rehabilitation IMU 1 Lower Back (L5/S1) 100 Hz Visual and/or

Vibrotactile

4 Lower back (front, back,

and right and left)

250 Hz Threshold-based models

[26] Rehabilitation IMU 1 Lower Back (L5/S1) 100 Hz Vibrotactile 4 Lower back (front, back,

and right and left)

Variable (150-

250 Hz)

Thresholds/Range-based

models

[31] Rehabilitation Acc 5 Each leg and three

placed on the lower

third of the sternum

25 Hz Auditory, Visual,

Somatosensory

or None

1 Wrist - Mathematical

[27] Rehabilitation IMU 6 Upper trunk, lower

trunk and lower limbs

50 Hz Visual and

Auditory

- - - Threshold-based models
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2.3.4 Validation methodology highlights: participants, criteria study,

metrics, and results

Tables 3 and 4 comprise relevant information about the validation methodology of the studies identified.

In Table 3 is highlighted the number and type of participants included in the study, the evaluation of the

participants with PD through rating scales and the inclusion and exclusion criteria used for the participants’

selection. As for Table 4, it summarizes the experimental protocols, the metrics identified in the studies as

being relevant, how the data analysis was performed and significant results.

All of the studies included a group of individuals with PD and the majority of them also had a healthy

control group [9, 12, 16–22, 25, 26, 28] to compare the results. One study that aimed diagnosis even

integrated subjects with high risk for Parkinson’s disease (HRPD) [28].

The scales most commonly used to perform the appraisal of the severity of the disease of the participants

with PD at baseline were UPDRS, UPDRS-III and H&Y. In addition, one study also included the Berg Balance

Scale (BBS) [27] and two others incorporated subs-cores of UPDRS-III, such as Postural Instability and Gait

Difficulty (PIGD), Bradykinesia and Rigidity sub-score [12, 21]. These scores and UPDRS-III help to get a

better perspective of patients’ motor function.

The criteria for the participants selection comprehends a diagnosis of PD, the usage of medication (”on”

[9, 12, 24–27, 30, 31] or ”off” [16–18, 21]) or deep brain stimulation [12, 27], the stage of the disease

(early-to-mid [9, 16–18], mild-to-moderate [12, 17, 27, 31], moderate-to-severe [25–27, 31]), the ability

stand comfortably unaided [12, 25, 27] or to walk independently without a walking aid [12, 16, 24, 27, 29,

31], the absence of serious co-morbidities that could affect gait or balance [25, 29, 30], no other severe

neurological, cardiopulmonary or orthopaedic disorders [9, 12, 16–18, 21, 24–27, 29, 31] and that had

not undergone functional neurosurgery [31]. Some studies that aimed motor rehabilitation included the

presence of bilateral symptoms with impaired postural stability [25, 26] as a criterion. Two of the studies

did not present any criteria for the selection of participants with PD beyond the diagnosis of the disease

[20, 28], but one of them had the criteria for the participants with HRPD [28].
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Table 3: Information about the participants and selection criteria of the studies.

Ref
Participants Criteria

Number Scales Inclusion Exclusion

[17] 12 PD

12 HC

1 - 2.5 H&Y

20 ± 9.4 UPDRS-III

- H&Y scores of I-III.

- Never taken anti-parkinsonian medication.

- Other neurological or orthopedic disorders.

- Other impairments that interfere with gait.

[18] 12 PD

12 HC

1.6 ± 0.5 H&Y

20 ± 9.4 UPDRS-III

- H&Y scores of I-II.

- Never taken anti-parkinsonian medication.

- Other neurological or orthopedic disorders.

- Other impairments that interfere with gait.

[9] 13 PD

12 HC

28.1 ± 11.2 UPDRS - H&Y scores of I-II.

- On-phase of medication.

- Other neurological or orthopedic disorders.

- Other condition that could affect balance.

[16] 13 PD

12 HC

1.8 ± 0.6 H&Y

28.1 ± 11.2 UPDRS

- H&Y scores of I-II.

- Never taken anti-parkinsonian medication.

- Ability to walk independently.

- Other neurological or orthopedic disorders.

- Other condition that could affect balance.

[28] 13 PD

31 HRPD

13 HC

PD: 26.8 ± 11 UPDRS-III

HRPD: 3 ± 3 UPDRS-III

HRPD:

- Presence of an enlarged area of hyperechogenicity in the

mesencephalon on transcranial sonography.

- Presence of one motor sign or two risk and prodromal mark-

ers of PD

HRPD: - PD diagnosis

[19] 100 PD

50 HC

2 ± 0.8 H&Y

16.7 ± 9.2 UPDRS-III

- H&Y scores of I-III. -

[20] 7 PD

7 HC

- - Diagnosis of PD. -

Continued on next page
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Ref
Participants Criteria

Number Scales Inclusion Exclusion

[12] 17 PD

17 HC

2 ± 0.5 H&Y

35.71 ± 11 UPDRS-III

2.29 ± 1.57 PIGD

- H&Y scores of I-III.

- On-phase of medication.

- Ability to stand unaided.

- Other neurological or orthopedic disorders.

- Other condition that could affect balance.

- Use of deep brain stimulation.

- Use of an assistive device for ambulation.

[21] 13 PD

12 HC

1.8 ± 0.2 H&Y

26.6 ± 3.5 UPDRS-III

0.9 ± 0.4 PIGPIGDD

13 ± 1.9 Bradykinesia

5.8 ± 1 Rigidity

- H&Y scores of II.

- Off-phase of medication.

- Presence of orthopedic disorders.

[22] 5 PD

5 HC

2 - 3 H&Y - H&Y scores of II-III. - Presence of orthopedic disorders.

[29] 7 PD 2.5 ± 0.5 H&Y - Ability to walk independently. - Other neurological disorders.

- Other impairments that interfere with gait or balance.

- Presence of clinically significant hearing problems.

[30] 20 PD Feedback / Control group:

17.9 ± 2.7 / 15.4 ± 1.1 UPDRS

1.6 ± 0.1 / 1.6 ± 0.2 H&Y

- Diagnosis of PD.

- On-phase of medication.

- Ability to walk independently.

- Other neurological disorders.

- Other impairments that interfere with balance.

[24] 10 PD 3 - 4 H&Y

>=2 in UPDRS item 33

- Diagnosis of PD.

- On-phase of medication.

- Use a wheelchair.

- Other neurological disorders.

Continued on next page
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Ref
Participants Criteria

Number Scales Inclusion Exclusion

[25] 11 PD

9 HC

3 - 4 H&Y - H&Y scores of III-IV.

- Bilateral symptoms with impaired postural stability.

- On-phase of medication.

- Ability to stand unaided.

- Presented severe distal sensory loss or limited ankle range

of motion.

- Other neurological disorders.

- Other impairments that interfere with balance.

[26] 9 PD

9 HC

3 - 4 H&Y - H&Y scores of III-IV.

- Bilateral symptoms with impaired postural stability.

- On-phase of medication.

- Other neurological or orthopedic disorders.

- Presented severe distal sensory.

- Other impairments that interfere with balance.

[31] 153 PD 2 - 4 H&Y - H&Y scores of II-IV.

- On-phase of medication.

- Ability to walk independently.

- Tremor, rigidity or the bradykinesia score >2.

- Other neurological, cardiopulmonary or orthopedic disor-

ders.

- Undergone functional neurosurgery.

- Participation in a physiotherapy program two months be-

fore the beginning of the study.

[27] 42 PD Experimental / Physiotherapy:

2.7 ± 0.7 / 2.9 ± 0.5 H&Y

16.6 ± 6.8 / 22.3 ± 7.3 UPDRS-III

46.0 ± 9.3 / 42.1 ± 10.9 BBS

- H&Y scores of II-IV.

- On-phase of medication.

- Ability to walk and stand unaided.

- Other neurological disorders.

- Use of deep brain stimulation.
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The experimental protocol during the data acquisition of the selected studies can be divided into three

categories:

1) Gait tasks – involves activities such as walking and turning [17–19, 22, 24, 30, 31].

2) Quiet stance – standing upright under altered surface, stance, or vision [9, 12, 16, 21, 24, 29, 30].

3) Dynamic weight-shifting exercises – exercises focused on controlling weight-shifting [20, 25–29].

Depending on these categories, the metrics vary. When the studies’ protocol involved gait tasks, the

metrics identified included typical gait metrics, such as cadence (step frequency), walking speed, step

length, step/stride regularity, step symmetry, time turn-to-sit, turning velocity and peak trunk rotation. If the

protocol comprised posture analysis in quiet stance, the metrics considered were sway-associated metrics

like jerk - relative smoothness of postural sway, root mean square (RMS) - sway dispersion, mean velocity

(MV), centroidal frequency (CF - frequency at which spectral mass is concentrated), frequency of sway (95%

power frequency - F95), normalized path length and peak-to-peak (amplitude displacement). In protocols

with dynamic weight-shifting exercises, the metrics comprised AP (anterior-posterior)/ML (medial-lateral)

limit of stability (LOS), angular displacements, velocities and movements of the CoM of the body.

Salarian et al. [17, 18] proposed an instrumented version of the Timed Up and Go (TUG) test (iTUG),

studied its sensitivity to the pathology, by identifying mobility deficits in subjects in early stages of PD and

with no apparent impairments in motor performance, [17] and tried to find a correlation between iTUG

components and the disease severity [18]. These studies revealed that, compared to HC, PD subjects

exhibit slow turning and arm swing and a decreased cadence and trunk rotation, even though the traditional

TUG test did not differentiate the two groups. Furthermore, they were able to find a significant correlation

between some of themost discriminatory parameters (peak arm-swing velocity, cadence and average turning

velocity) and motor UPDRS total score and sub-scores (gait/posture, bradykinesia and rigidity). These

findings showed that the impairments in mobility differed between individuals with PD (i.e., a subject with

decreased arm swing could have a cadence comparable to HC) and because of that TUG is an adequate test

since it involves different gait tasks and postural transitions. It is noteworthy that these studies presented

a new mathematical model to detect turning during gait that is not sensitive to noise or artifacts and can

even detect very slow or quick turns, as opposed to the traditional angular velocity threshold methods.
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Mancini et al. [9, 16] used wearable sensors to measure postural control during quiet stance to distin-

guish PD patients in early stages of the disease with no signs of balance problems from HC and compared

the postural sway measures of the wearable sensors to those obtained from a force platform. Additionally,

the sway measures were compared with clinical scales [9]. The studies concluded that the parameter which

best discriminated PD from HC was jerk. PD participants presented higher values of jerk due to frequent

postural corrections, which may reflect increased trunk axial rigidity. Besides that, they showed a larger

RMS and MV and a lower CF. The studies also verified that these metrics were just as sensitive as the

acquired from the force platform to differentiate the two groups, Figure 4. However, they failed to find a

significant correlation with UPDRS and UPDRS-III scores and were not surprised with this result since these

scores only contain one item that evaluates postural stability (the pull test) and UPDRS-III is also related

to bradykinesia, rigidity and tremor. Nonetheless, several metrics, like jerk, RMS, MV and total power, cor-

related considerably with PIGD (sub-score of UPDRS-III – sum of the four items related to posture, gait,

sit-to-stand and pull test).

Figure 4: CoP and Acc traces of a HC, a mild and a moderate untreated PD subject. Adapted from [9].

Hasmann et al. [28] implemented an instrumented version of the functional reach (FR) test (iFR) to verify

if this test can distinguish PD patients from HC and to discover if it can also discriminate HRPD from these

groups, so it can be used as a biomarker in the prodromal phase of the disease. An advantage of this test

is that two parameters can be considered in the evaluation: FR distance and “behaviour” (a participant can

achieve a greater distance due to motivation and, because of that, have poor sway metrics and vice versa).

The study showed that PD participants had a decreased FR distance and AP/ML accelerations which are

related to increased muscle rigidity that leads to inadequate compensatory motor response, and to the

strategy chosen to maintain balance (the PD group tends to adopt a hip strategy while the HC group picks
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an ankle strategy that mainly affects AP metrics). These three metrics and jerk were included in a model

to differentiate HRPD from the two groups, which revealed that a set of metrics was better for recognizing

HRPD than any single metric.

Hannink et al. [19] explored if peak accelerations in the vertical direction during landing and along

movement direction during the loading phase, Figure 5, acquired with wearable sensors on the feet while

walking, can serve as novel markers to characterise postural instability and provide separation between

HC, subjects with PD with postural instability (pull test > 0) and without (pull test = 0). These parameters

can evidence a cautious behaviour of the subject while walking by evaluating the intensity of the impact

during the foot landing and the stride initiation. This is associated with postural stability since higher

accelerations during these phases demand rapid postural control responses. The study concluded that the

markers extracted can detect postural instability and discriminate HC and both PD groups. Compared to PD

subjects without postural impairments, posturally impaired PD subjects present a 14% and 24% decrease

of the peak acceleration during loading and landing, respectively.

Figure 5: Representation of the peak accelerations during loading and landing. Taken from [19].

Phan et al. [20] studied the difference in flexibility or back rigidity to identify participants with PD amongst

HC by detecting the time delay between a sensor in the upper back and another in the lower back during

the pull test. The study revealed that individuals with PD exhibit a significantly longer delay (usually, higher
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than two seconds while for HC is less than a second) and therefore it is possible to distinguish the two

groups through this metric.

Ozinga et al. [12] used a mobile device to capture the movement of the CoM (in 3D) and sway measures

during quiet stance in six different balance conditions (altered surface, stance, and vision) in order to

quantify postural stability and separate HC from participants with PD. The parameters obtained with the

mobile device were compared with those acquired from a motion capture system. Moreover, they tried

to find a correlation between the sway metrics and UPDRS-III score and sub-scores. The study verified

that the sway metrics presented significant differences between the two groups, and the movement of

CoM increased in volume with the difficulty of the tasks in both groups but was consistently larger in

PD participants, Figure 6. This way, the volumes created with the movement of CoM allow to single out

difficulties of patients regarding the visual, vestibular and/ or somatosensory systems. This information

can be useful for diagnostic purposes or treatment management. Furthermore, the tablet proved to be as

accurate and valid as the motion capture system. However, no correlation was found between sway metrics

and UPDRS-III score or sub-scores. This can be explained by the lack of elements related to postural stability

in these evaluations.

Figure 6: Movement of CoM of a patient and a HC (in three balance conditions). Adapted from [12].

Mancini et al. [21] intended to study the disease progression over the course of a year by analysing

changes in postural sway through metrics already proven to be efficient in differentiating PD patients in
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early stages of the disease from HC. It was observed a decline of the sway metrics over the year (i. e., an

increase in ML jerk, sway dispersion, velocity and frequency), even though there were almost no changes

in UPDRS-III score and sub-scores. Therefore, the study concluded that sway metrics are more sensitive

to disease progression than motor scores used in clinical settings. In addition, they verified that ML sway

measures were more useful than AP since sway in the ML direction requires a more prominent involvement

of the hips and trunk muscles, which are usually more affected in PD, whereas sway in the AP direction

resorts a bit more to the ankles.

Yang et al. [22] evaluated the efficiency of an autocorrelation system to estimate gait parameters in real-

time by attempting to discriminate individuals with PD from HC. Compared to HC, PD participants revealed

a walking pattern less regular, with fluctuations and smaller peak magnitudes, steps not as symmetric while

walking at a higher speed and an increased cadence, Figure 7. Hence, it was possible to separate the two

groups. This study also showed that, while walking, the ML component was not as sensitive to mobility

deficits as the AP and VT (vertical) components.

Figure 7: Autocorrelation sequence for for a HC and a PD patient. Taken from [22].

Mirelman et al. [29] investigated if audio biofeedback can positively affect postural stability and if the

results are still discernible after a month without training. The training consisted of 18 sessions (6 weeks) of

static and dynamic balance exercises with biofeedback (with sounds that were modulated in frequency and

amplitude). An evaluation involving several clinical tests (BBS, TUG, UPDRS, chair rise test) was performed

at baseline and a week and a month after the training sessions. These evaluations showed that, although
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subtle, the differences in the balance control measurements were positive both post-training and at one

month follow-up.

Nanhoe-Mahabier et al. [30] conducted a research to discover if biofeedback training with vibrotactile

cues can enhance postural control. To prove this, the PD participants were separated into two groups

in order to compare the results of training (comprising gait and stance tasks) with and without providing

feedback about trunk sway. The training included six tasks, while the evaluation, performed before and after

the training, consisted of 12 to verify if the biofeedback training has carry-over effects. Results showed a

substantial reduction of roll and pitch sway angular velocity (mainly in the AP direction) in the PD group that

received biofeedback during training, comparably to the other group, meaning the training with biofeedback

is a better option to improve balance. Additionally, these parameters were also decreased in tasks not

included in the training, which implies that biofeedback training provides short-term carry-over effect.

Rossi-Izquierdo et al. [24], similarly to [30], evaluated the effect of balance training with vibrotactile

biofeedback in postural stability. The study implemented a daily training over 2 weeks which consisted

in the completion of 6 stance and gait tasks (from Standard Balance Deficit Test - SBDT) while receiving

feedback in the directions that presented values of sway higher than the predefined thresholds. Note that, the

vibration frequency increased with the deviation to the threshold values. The evaluation, consisting of SBDT,

Sensory Organization Test (SOT), Dizziness Handicap Inventory (DHI), Activity-specific Balance Confidence

(ABC) scale and number of falls over the past three months, was carried out at baseline, immediately after

the 2 weeks of training and three months after its finish. The study revealed substantial improvement in all

the measures made in the evaluation, both post-training and at three-month follow-up, with exception of the

SBDT tasks that were not included in the training. This demonstrates that balance training with vibrotactile

biofeedback promotes postural stability and these effects are noticeable up to, at least, three months after

stopping the training. However, no signs of carry-over effect were found.

Lee et al. [25] explored the use of different types of external cues to provide biofeedback to PD patients

while performing dynamic weight-shifting exercises. During the exercises the participants had to shift their

weight to try to accompany a slow-moving target in the ML and in the AP direction, Figure 8, and received

feedback about their relative position to the target through visual and/or vibrotactile cues. The vibrotactile

biofeedback provided was binary (the motor tactors were either ”on” or ”off”) and the tactors activated when

the position error of the participant to the target surpassed a certain value. The visual biofeedback consisted
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on a representation of the position of the body in relation to the target. Prior to and after the exercises the LOS

in the AP and ML direction was acquired for all the participants (which included a group of individuals with

PD and a HC group). Results demonstrate that visual and vibrotactile biofeedback have similar effects and

that multimodal biofeedback (visual and vibrotactile) was the strategy that had a more significant impact on

the participants’ performance of the exercises, since they were able to get a considerably lower position error.

Moreover, all the individuals included in the study showed improvements in the LOS after the completion of

the training, which shows an improvement in postural stability.

Figure 8: Representation of the sensor and tactors location and of the data from a dynamic weight-shifting exercise
in the AP direction. Adapted from [25].

Lee et al. [26] continued the study previously discussed and implemented the same exercises, this time

only with vibrotactile cues, to evaluate the impact of a binary versus a continuous coding scheme. Once

more, the study included a group of individuals with PD and a HC group, and the LOS was acquired before

and after the dynamic weight-shifting exercises. The difference of the continuous coding scheme to the

binary was that the vibration frequency increased with the position error of the participant to the target.

The continuous coding scheme proved to be a better option as it was able to provide a better outcome in

the exercises. This type of coding scheme provides the participants information about the error magnitude,

thus, allowing them to correct more easily their position. In addition, once again, both groups increased the

LOS both in the AP and ML direction after concluding the exercises and, in both studies, it was possible to

distinguish these two groups as the PD participants’ performance in the exercises was significantly worst.
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Rochester et al. [31] evaluated the influence of external cues during training, on motor learning. The

training lasted three weeks and involved walking and turning with or without a tray containing two cups

filled, while receiving either visual, auditory, vibrotactile or no cues. The additional sensory information

consisted in a set of rhythmic cues (sounds, light flashes or pulsed vibrations) to which participants were

asked to synchronize their gait. These exercises were repeated six weeks after the completion of the training

to perceive if the biofeedback effects were retained. The study revealed an improvement in walking speed

and step length which was retained, and that there were no major differences between the different types

of cues during the training.

Carpinella et al. [27] investigated the efficacy of a system that provides both visual and auditory biofeed-

back regarding trunk inclination and position of CoM on postural stability and gait rehabilitation. The protocol

incorporated a 20-session training that comprehended static (quiet stance in several conditions), quasi-

dynamic (weight shifting exercises) and dynamic (walking over obstacles) tasks, and an evaluation, which

incorporated the BBS and 10MWT, that was performed at baseline, post-training and a month after stop-

ping the training. The PD participants were divided into two groups, and while both groups completed the

training, only one received biofeedback. Results showed a substantial and positive difference in BBS scores,

post-training and at one month follow-up, of the group that received biofeedback during training in compar-

ison to the other group, which indicates that biofeedback can enhance balance performance and is better

than physiotherapy.
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Table 4: Goal, protocol, metrics and results of the WDPA.

Ref Goal Relevant Metrics Protocol Data Analysis Relevant Results

[17] Diagnosis - Cadence

- Angular velocity of arm-

swing

- Time turn-to-sit

- Turning velocity

TUG test Comparison between

groups

- Compared to HC, PD subjects presented � turning velocity, angular velocity

of arm swing, cadence and trunk rotation, even though the traditional TUG

test did not differentiate them.

- The most reliable subcomponent of the test was gait and cadence its most

reliable metric. Duration of turns was the most reliable turning metric. PD

subjects performed normally in sit-to-stand.

[18] Disease

severity

- Cadence

- Angular velocity of arm-

swing

- Time turn-to-sit

- Turning velocity

- Peak trunk rotation

TUG test Correlation of metrics

to UPDRS-III and sub-

scores

- The Motor UPDRS correlated significantly with arm swing, cadence and

turning parameters. Turning velocity correlated significantly with bradykine-

sia and Gait/Posture sub-scores, and peak trunk rotation velocity correlated

considerably with rigidity.

- Impairments in mobility vary between PD subjects.

[9] Disease

severity

- Jerk

- RMS

- MV

- CF

- Total power

Stand upright with EO Comparison between

groups

- Untreated PD subjects compared to HC showed � RMS, MV and jerk.

- No significant correlation was found between sway metrics and UPDRS-III

Score. Several measures showed a considerable correlation with the PIGD.

[16] Diagnosis - Jerk

- RMS

- MV

Stand upright with EO Comparison between

groups

- Postural control is impaired in subjects with untreated PD, even when it

is not clinically apparent.

- Jerk was the parameter that best discriminated postural sway between the

groups.

Continued on next page
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Table 4 – Continued from previous page

Ref Goal Relevant Metrics Protocol Data Analysis Relevant Results

[28] Diagnosis - Jerk

- FR distance

- AP and ML acceleration

FR test Comparison between

groups

- PD patients differed from HC in the following parameters: FR distance,

AP and ML acceleration.

- A set of metrics of the iFR separated HRPD better from HC than any single

metric.

[19] Diagnosis Peak acceleration during

loading and landing

4x10 meters-walk

(40MW)

Comparison between

groups

- The parameters extracted can detect postural instability and provide a

separation of HC and both PD groups since they are reduced in PD patients

and even more so if they have postural instability.

[20] Diagnosis Back flexibility (delay be-

tween two sensor angular

velocity signals)

Pull test Comparison between

groups

- PD patients can be identified amongst controls since they exhibit signifi-

cantly longer delays.

[12] Diagnosis

and Disease

severity

- Normalized path length

- RMS

- Total power

- Peak-to-peak (amplitude

displacement)

6 balance conditions

under altered surface,

stance, and vision

Comparison between

groups

- Sway metrics presented significant differences between the two groups,

and the movement of CoM increased in volume with the difficulty of the

tasks in both groups but were always larger in PD participants.

- The tablet proved to be as accurate and valid as themotion capture system.

- No correlation was found between sway metrics and UPDRS-III score or

sub-scores.

[21] Disease

progression

- Sway dispersion (RMS)

- Sway velocity (MV)

- Frequency of Sway (F95)

- Jerk

Stand upright for 2 min Comparison between

groups

- Objective sway measures depreciate over the course of a year (i. e., � in

ML jerk, sway dispersion, velocity and frequency) even though there were

almost no changes in UPDRS-III score or sub-scores.

- ML sway measures were more sensitive than AP to disease progression.

Continued on next page
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Ref Goal Relevant Metrics Protocol Data Analysis Relevant Results

[22] Diagnosis - Cadence

- Step regularity

- Stride regularity

- Step symmetry

5-meter-walk test (5WMT)

x3

Comparison between

groups

- It was possible to separate the two groups since PD participants revealed a

walking pattern less regular, with fluctuations and smaller peak magnitudes,

steps not as symmetric while walking at a higher speed and an increased

cadence.

- While walking, the ML component was not as sensitive to mobility deficits.

[29] Rehabilitation Trunk inclination and accel-

erations

Training: static and dy-

namic balance exercises;

Evaluation: BBS, TUG,

UPDRS, chair rise test

Comparison of initial

and final results

- Although small, the differences in the balance control measurements were

positive both post-training and at one month follow-up (especially in TUG,

time sit-to-stand, BBS - mostly in items 12 and 13, UPDRS-III - with changes

in the pull test)

[30] Rehabilitation - 90% range of sway angle

and sway angular velocity in

the roll and pitch plane

- Task duration

6 gait and stance tasks

for training and 12 for the

evaluation

Comparison of initial

and final results and

between groups

- Substantial reduction of roll and pitch sway angular velocity (mainly in

the AP direction) in the PD group that received biofeedback during training,

comparably to the other group.

- These parameters were also decreased in tasks not included in the training

(biofeedback training provides short-term carry-over effect).

[24] Rehabilitation Body sway in the roll (ML)

and pitch (AP)

Training: stance and gait

tasks;

Evaluation: SBDT, SOT of

CDP, DHI, ABC scale and

number of falls

Comparison of initial

and end results

- Considerable improvement in all the measures made in the evaluation,

both post-training and at three-month follow-up, with exception of the SBDT

tasks that were no included in the training (no carry-over effect).

Continued on next page
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Ref Goal Relevant Metrics Protocol Data Analysis Relevant Results

[25] Rehabilitation

(and Diagno-

sis)

- AP/ML angular displace-

ments

- AP/ML velocities

- AP/ML LOS

Dynamic weight-shifting

exercises

Comparison of initial

and end results and

between groups

- Visual and vibrotactile biofeedback have similar effects and multimodal

biofeedback (visual and vibrotactile) was the strategy that had a bigger im-

pact on the participants’ performance of the exercises (a considerably lower

position error).

- Both groups showed improvements in the LOS after the completion of the

training.

[26] Rehabilitation

(and Diagno-

sis)

- AP/ML angular displace-

ments

- AP/ML velocities

- AP/ML LOS

Dynamic weight-shifting

exercises

Comparison of initial

and end results and

between groups

- The continuous coding scheme was able to provide a better outcome in

the exercises.

- The groups increased the LOS both in the AP and ML direction after con-

cluding the exercises.

- HC had significantly better performance than the PD group.

[31] Rehabilitation - Gait speed

- Step length

Walk 6m x2 and turn

(with and without a tray)

Comparison of initial

and final results

- Improvement in walking speed and step length which was retained.

- Nomajor differences were found between the different types of cues during

the training.

[27] Rehabilitation - AP/ML trunk angular dis-

placements

- AP/MLmovements of body

CoM

- Knee flexion angle

Training: Exercises

focused on controlling

weight-shifting;

Evaluation: BBS, 10MWT

Comparison between

groups

- There was a substantial and positive difference in BBS scores, post-

training and at one month follow-up of the group that received biofeedback

during training in comparison to the other group.
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2.4 Discussion

2.4.1 How have the WDPA been applied in PD?

Depending on the underlying goal, the WDPA developed in the past 12 years to quantify postural stability

in PD can be divided into three categories: (i) diagnosis, if the data was used to identify individuals with

postural impairments; (ii) disease severity/progression, when there was an attempt to correlate the

measures to clinical scales and/or an analysis of the evolution of these measures over time in a patient;

and (iii) rehabilitation, if the device was used to improve postural control by providing meaningful cues.

It can be observed by Figure 9 that there are a similar number of studies that aimed to used WDPA to help

in PD diagnosis and rehabilitation. These goals are relevant for the clinical environment to perform more

objective evaluations and enhance treatment but there is still a need for further investigation with

more clinical evidence since it was considered that most studies presented a small sample size, despite

the promising results.

Figure 9: Purpose of the selected studies.
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2.4.2 Which technologies were integrated in the WDPA, what are their

setting parameters and where were they placed within the body?

The sensors integrated in the WDPA were used to collect information about the movement of the body

in an attempt to obtain metrics capable of characterizing postural stability. This data can improve diag-

nosis, eliminate the subjectivity of many clinical examinations performed to assess the stage of

the disease, which is relevant to manage treatment, or even detect patients at a higher risk of

falling earlier in the disease [2, 19].

The sensor most frequently applied was the IMU, which can combine three sensors (accelerometers, gy-

roscopes and magnetometers). The studies that did not use IMUs employed one or more of its components.

Table 5 summarizes the outcomes of the IMU components. These kinds of sensors present an affordable,

lightweight and portable solution that allows long continuous monitoring, as they present low-power con-

sumption, and are able to capture body movement in three dimensions. On the other hand, usually, the

data acquired through these sensors needs to be pre-processed so it can supply meaningful measures

[9, 12].

Table 5: Outcomes of the sensors integrated in the WDPA in the past twelve years.

Sensor Type Outcome

IMU

Accelerometer Linear acceleration

Gyroscope Angular velocity (raw, pitch and yaw)

Magnetometer Direction (absolute angular movements relative

to the Earth’s magnetic field)

The number of sensors included in the devices varied between 1 and 7. More sensors represent more

information, but also a bulkier and heavier system with increased complexity. Since some of the most

desired features in a wearable are to be light, have a quick set-up and place minimum constraints on the

subject, the majority of the studies chose to implement only 1 or 2 sensors in the device.

As observed in Figure 10, the sensors were placed in several locations of the body, although the lower

back was certainly the most commonly selected. Lower back inertial data enables to capture information

regarding the CoM of the body, which is directly related to postural reflexes. For the most part, studies that

used more sensors and chose other locations for them, such as the legs or the feet, were the ones that
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involved gait tasks for the data acquisition in order to identify mobility deficits [17, 18, 31]. However, by

using one inertial sensor on the lower back, it is possible to obtain a complete analysis of the gait cycle,

not requiring the use of two sensors in each lower limb and needing less computational power for data

processing [32].

Figure 10: Sensor location.

Besides a sensory system, some of the devices included an actuation system to provide additional sensory

information to the user in order to enhance postural control and/or walking stability. These systems could

improve the existing rehabilitation programs, be used in exercises to practice at home or even as an assistive

device [33].

The actuation systems provided biofeedback through either visual, auditory, vibrotactile or even multi-

modal cues. The studies revealed that cued training has a positive effect on postural control, although

no major differences were found between these types of cues in enhancing motor performance [25, 31].

However, biofeedback training with more than one type of cues was reported to have a more

significant impact on the participants’ postural stability [25]. Despite these results, some studies

emphasize the advantages that vibrotactile cues exhibit when compared to the others, such as being small,

portable and having low-power consumption, making them suitable for wearable systems. Also, it is indi-

cated that vibrotactile actuation systems possess characteristics that make them appropriate for use outside
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the clinical setting, like the ability to be concealed under clothes, not constraining the user movements or

interfering with their visual or auditory fields [26].

Regarding the devices that provided vibrotactile cues, the preferred configuration for the tactors was four

situated on the front, back and sides of the waist. This enabled users to perform postural adjustments with

intuitive information about the direction in which the correction has to be made. Another approach was

employing eight motor tactors around the head in an attempt to decrease delays in sensory transmission

[30]. Furthermore, vibrotactile cues can possess a binary or a continuous coding scheme. Lee et al. [26]

evaluated the impact of these coding schemes and verified that the continuous coding scheme allowed

participants to correct their movements more easily since it provided information about the error

magnitude.

Throughout the articles that aimed motor rehabilitation, biofeedback was used as a mean to indicate

that certain parameters were out of the accepted range, with the exception of one of the articles which

used it to assist the performance of an exercise, in this case, by providing rhythmic cues for participants to

synchronize their gait [31].

2.4.3 How have WDPA been clinically validated in PD?

The protocols, the type of participants comprised and the strategy to evaluate the effectiveness of the

systems differed according to the study’s purpose.

In case the articles aimed to use WDPA for PD diagnosis, the study included both patients with idiopathic

PD, usually in early stages of the disease and with no apparent motor symptoms, and a group of HC. The

protocol consisted in acquiring data while performing a specific clinical examination or exercise, that could

involve walking, turning, weight-shifting or standing upright in different vision, surface or stance conditions.

Data analysis was accomplished by comparing the metrics obtained from PD patients and the HC group.

Considering the investigations that studied disease progression or severity using technologies for postural

assessment, these also comprehended a group of HC and another of PD patients, in early stages of PD

to study the progression of the disease over time or patients in several stages of PD to correlate metrics

collected to scales that evaluate the severity. The protocol involved collecting data while performing specific

motor exercises, and an evaluation to perceive the stage of the disease and the degree of some motor

impairments. In case the article analysed the disease progression [21], the protocol included follow-up
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sessions, where the study was repeated various times over a certain period. The last step of these studies

consisted in trying to find a correlation between the metrics and the scores from the evaluation. It is

noteworthy that some of the studies that captured sway measures compared them to the obtained from

a force platform [9] or a motion capture system [12] to support the experimental validity of the metrics

acquired from the wearable sensors.

Regarding studies that aimed to use WDPA for motor rehabilitation, the vast majority only included PD

patients, which, depending on the paper, varied from milder to a more severe stage of the disease. The

protocol comprised one or more sessions of cued training and an evaluation that was performed at baseline,

post-training and, in some studies, a few weeks or months after the last training session (to perceive if the

biofeedback effects were retained). The evaluation was either done with clinical scales or by repeating

the exercises performed during the training to verify if there was an improvement in the scores or metrics

acquired, respectively. Two of the articles even implemented more exercises on the evaluation so it was

possible to determine if cued training provides carry-over effect [24, 30]. Furthermore, two other studies

separated the PD participants into two groups to compare the differences between training with and without

biofeedback [27, 30].

Results concerning diagnosis revealed that it is possible to collect objective measures from gait, turning,

sway and clinical tests to distinguish individuals with PD from HC, even if these are in very early stages

of the disease and present no evident impairments in motor performance, since these exhibit decreased

postural responses.

Moreover, a study found a correlation between gait and turning metrics and UPDRS-III score and sub-

scores (gait/posture, bradykinesia and rigidity) [18], and another one was able to correlate sway parameters

to PIGD, but not to UPDRS or UPDRS-III as these contain only one item to evaluate postural stability [9].

Mancini et al. [21], which studied the disease progression over the course of a year, concluded that sway

metrics are more sensitive to disease progression than motor scores used in clinical settings, as they were

able to detect a decline in postural stability despite minimal changes in UPDRS-III scores and sub-scores. In

addition, two studies that captured sway measures with wearable sensors verified that these were as valid

and accurate as the collected from a force platform [9] or a motion capture system [12].

In regard to cued training, the studies confirmed that visual, auditory and vibrotactile biofeedback could

enhance overall stability [24–27, 29–31] and these effects could still be detected at least one to three
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months after stopping the cued training [24, 27, 29, 31]. Additionally, the two studies which investigated

the carry-over effect reached opposite conclusions, despite all the similarities in their protocols [24, 30].

A possible reason is the difference in participants selection as the individuals in the study that verified

carry-over effect [30] were in a more advanced stage of the disease.

2.5 Conclusions and Future Perspectives

Based on the findings reported regarding the use of wearable technology to assess postural responses and

provide additional sensory information in order to improve postural control, some highlights and limitations

of the current state-of-the-art were gathered.

The sensory system was often comprised by IMUs, and the preferred configurations were one sensor

placed in the lower back (near the body’s CoM). The data collected made possible the acquisition of

postural-related metrics capable of (i) providing a separation of individuals with PD from a group of HC,

(ii) distinguishing PD patients with different levels of balance and gait impairments, and (iii) the study of

disease progression.

For WDPA integrated on biofeedback devices, the actuation systems provided visual, vibrotactile, audi-

tory or multimodal cues during the exercises, mainly through negative reinforcement. Although results in

improving balance through these three types of cues were similar, some of the articles stated that the vi-

brotactile biofeedback presented more advantages [24, 26]. The most adopted configuration for

this type of biofeedback were 4 tactors around the waist (front, back, left and right) with either a binary or

a continuous coding scheme (even though the continuous coding scheme revealed to be more effective in

correcting the participants’ movements). The studies revealed that cued training could enhance balance

and walking stability, and these improvements are still discernible after a few months.

Even though it is not easy to compare the different configurations of the technologies supporting WDPA,

some parameters should be taken into account while designing these devices, such as the desired outcomes

and the users’ comfort and acceptability. With that in mind, the devices should integrate as little

technology as possible, without losing relevant information, and the sensors and actuators should

have the same location to obtain wearable devices more compact, light and quick and easy to set

up. These are key features for the device to be integrated into a patient’s daily life. Additionally, end-users,

both patients and clinicians involved, will benefit from a unique device able to provide postural assessment
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to analyse the several disease stages, and able to use the postural metrics to provide customized sensory

cues. Clinicians and related community will have access to continuous and objective information about the

postural conditions of their patients, making these devices a support clinical decision tool. The same device

that can measure postural metrics, will be able to be used in rehabilitation centers or patients’ homes to

provide personalized biofeedback.

Despite the observed significant scientific contribution of the state-of-the-art to a more accurate evaluation

and effective rehabilitation of PD patients, there is a need for more clinical evidence, being also required to

increase the number of participants in clinical studies.

Regardless of the investigation’s goal, no study was validated on (near) home-based conditions,

not reliably repeating the daily tasks of patients. The inclusion of these tasks, such as lifting bags

(e.g., in a supermarket) or walking on stairs/ramps, would benefit patients in terms of motor assistance and

rehabilitation by considering functional tasks more similar to their daily context. Also, the validation of the

systems should be more personalized and user-centered, which would allow WDPA functionalities

to address users’ requirements. Further, research will benefit from an assessment of device acceptability

and usability analysis.

Table 6 summarizes the identified limitations regarding technological, adopted strategies, and validation

methodology issues. It is also provided guidelines for their mitigation based on [34], to support user-centered

design of medical devices.

Table 6: Limitations identified regarding the WDPA in PD, end-users’ requirements and guidelines.

Limitations
End-users’

requirements
Guidelines

Sensors/actuators with different config-

urations (number and body location)

Portability, com-

fort, easy set-up

Decrease the number of sensors/actuators and inte-

grate them in a single device

No clear strategy to provide biofeedback Improvements in

overall stability

Investigate metrics in different dynamic activities capa-

ble of assessing postural instability

No validation on (near) home-based con-

ditions or inclusion of daily motor tasks

Personalized

treatments

Perform experimental tests including daily tasks in

home-based scenarios.

Continued on next page
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Table 6 – Continued from previous page

Limitations
End-users’

requirements
Guidelines

No performance of usability tests Acceptability of

the device

Include the users’ opinion in the development of the de-

vice and assess its acceptability and usability analysis
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S O L U T I O N O V E R V I E W

Due to the subjectivity and lack of sensitivity of many clinical examinations, there has been a growing

interest in performing instrumented analysis for a more objective assessment of health-related outcomes.

Technology-based devices may complement the clinical examination as they enable the acquisition of unbi-

ased measurements and a long-term follow-up on previous outcomes, which allows to detect subtle changes

that would normally go unnoticed. Therefore, one of the goals of this dissertation was to create an APP to

quantify gait and balance deficits and to provide a more objective assessment of the pull test score.

There is an increasing number of studies being conducted to reduce the subjectivity of the evaluation of

movement disorders in different diseases, including PD. One research used the IMU from a mobile phone to

characterise the tremor of the hands in PD patients and attempted to correlate the features acquired to the

score of the UPDRS-III section related to tremor [35]. Another study developed a smartphone application to

collect data and quantify the severity of bradykinesia in PD patients while performing some tasks from the

UPDRS-III [36]. However, based on the information gathered, no other study developed an APP to assess

postural instability.

To address the main goal of this dissertation, which consists in the design, development and validation of

a postural assessment tool that enables more objective and continuous evaluations during dynamic tasks,

three objectives were outlined:

(i) Estimation of relevant features for postural stability assessment from inertial data collected during

dynamic motor tasks with a wearable device;

44
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(ii) Identification of critical metrics able to serve as a biomarker for the postural instability level in PD

and that present a correlation with one or more clinical scales;

(iii) Implementation of an AI-based algorithm to increase the objectivity of postural instability assessment

under dynamic conditions (and integration of this algorithm on a user-friendly APP).

To this end, a wearable motion device was used to collect the inertial data under dynamic motor condi-

tions. Since this dissertation was integrated into the +sense project, it was used a wearable technology from

+sense capable of collecting inertial information regarding the CoM. Further, this dissertation contributes to

+sense project with new scientific knowledge about postural assessment in PD. Ergo, this chapter contains

an overview of the components and methods used in this dissertation to acquire and process the data,

starting with an introduction to the +sense project and an explanation of how this dissertation contributed

to the project (including a description of the APP developed), followed by the experimental protocol used for

collecting the data and finishing with the data analysis performed.

3.1 +sense

This dissertation was incorporated and intended to contribute to the +sense project. The main aim of

the +sense project is to enhance the quality of life of patients by promoting motor autonomy while reducing

their reliance on third parties. For that purpose, the project offers front-end personalized high-tech solutions

based on wearable devices capable of acquiring patients’ sensorimotor information, which combined with

artificial intelligence algorithms allows to interpret the data and provide valuable and personalised feedback.

There are four +sense modules, as shown in Figure 11: (1) +sBiofeedback; (2) +sMotion; (3) +sC-support;

and (4) +sImmersive. In particular, the development of this dissertation aimed to have an impact on the

+sMotion and +sC-support.
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Figure 11: Four modules of the +sense project.

3.1.1 +sMotion

The +sMotion module was designed to collect and monitor inertial data from the lower trunk, perform

gait segmentation in real-time, post-process these signals and estimate gait-associated metrics. Therefore,

this module makes use of an instrumented waistband, conceived to easily adapt to different users’ physiog-

nomies, that includes a gait analysis LAB, depicted in Figure 12. Thus, this module comprises:

1) Sensory Acquisition Unit - collects acceleration and angular velocity data through an inertial

measurement unit (MPU-6050).

2) Processing Unit - consists of a STM32F4-Discovery responsible for receiving the data acquired and

detecting gait events (heel-strike, foot-flat, mid-stance, toe-off and heel-off) using an algorithm based

on heuristic rules with adaptive thresholds and ranges to segment the gait cycle of both legs.

3) Data Storage Unit - comprises an OTG USB driver to store the inertial data and the gait events

identified.

4) Mobile App - Android App that connects to the processing unit wirelessly (via Bluetooth) in order to

start/stop data acquisition, manage the operability settings and plot the acquired data.
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5) +S Desktop GUI - interface built in MATLAB® with the goal of estimating gait-associated metrics.

Therefore, it allows to load the data collected, detect and correct the gait events to estimate the

desired metrics.

Figure 12: Overview of the HW and SW of the +sMotion module.

This dissertation addressed the development of a new +S Desktop GUI (in Python using Kivy)

which allows to analyse and estimate, not only gait-associated metrics, but also postural-

related metrics from gait signals and other day-to-day activities such as 90º and 180º turns,

sitting, lying and getting up (from a bed or chair) and also the pull test, as presented in Figure 13.

Figure 13: New +S Desktop GUI built in Python for the +sMotion module.
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3.1.2 +sC-support

The +sC-support module applies AI-based algorithms to the outcomes of the +sMotion module seeking to

correlate motor metrics with clinical scales in order to assess, for example, the disease progression, motor

status and quality of life levels. Through a user-friendly application, this module works as a complementary

diagnosis tool that clinicians can use during their consultations, and it aims to help them better monitor the

progression of the disease and provide more personalized treatments.

This dissertation contributed to this module with an extensive statistical study to verify if it is pos-

sible to use gait and postural-related metrics of day-to-day activities to differentiate between

the various groups of the pull test score, the UPDRS-III score, the H&Y score and between healthy

subjects and PD patients. Moreover, some AI-based algorithms were applied to distinguish the

different scores of the pull test using as input data the metrics estimated or the raw signals acquired

from the inertial measurement unit. The AI-based algorithm with the best results was integrated into the

new +S Desktop GUI, being possible to classify the pull test score based on the acceleration and angular

velocity signals acquired from the CoM while performing one of the tasks.

3.2 User-friendly APP for Diagnostic & Management of Motor Symptoms in

PD

The developed APP aimed to serve as a tool capable of reading the DAT files with acceleration and angular

velocity signals to accurately compute postural and gait metrics and classify postural instability through the

pull test score using an AI-based algorithm.

As can be seen in Figure 15 in the lateral navigation bar, the APP contains four main windows to load,

adjust and process the data: ‘Start’, ‘Activity’, ‘Gait Analysis’ and ‘Metrics’. It is possible to view a video of

the APP using the QR code in Figure 14.

Figure 14: QR code to view a demonstration of the APP.
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3.2.1 Start

Once a user logs into the APP, the initial interface corresponds to the ‘Start’ window which is divided into

four sections: ‘Personal Info’, ‘Date’, ‘Load Data’ and ‘Report’ as presented in Figure 15.

Figure 15: Window from the APP containing the personal information from the patient, to load the data and to
estimate the pull test score.

In the ‘Personal Info’ section, the user can fill out the demographic data of the patient, which includes

the name, age, gender, weight and height, and also some relevant observations. The only field required to

fill for the activities that involve walking is the height of the patient as this value is used to estimate some

of the gait metrics. In the ‘Date’ section, the user can set the day on which the trials were performed by

clicking the button ‘Change’. Regarding the ‘Load Data’ section, the user can choose the activity to load and

load the respective DAT file by pressing the ‘Load’ button. For the activity selected, this section contains

a figure with the steps to perform the task and instructions on how to proceed to acquire the metrics and

generate the report. Before uploading the DAT file, it is possible to change the directory to load and save

the files by clicking on the file symbol in the top left corner. Finally, the ‘Report’ section contains the scores

of several clinical scales regarding the stage of the disease, motor status and quality of life which can be

obtained using the ‘Generate Report’ button.
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3.2.2 Activity

After loading a DAT file, it is necessary to select the start and end of the activity in the ‘Activity’ window,

presented in Figure 16, for the metrics to be estimated only in that interval.

Figure 16: Window from the APP to identify the beginning and end of all activities.

The first step is to click the button ‘Plot’ to plot the six signals from the DAT file. After that, the beginning

and end of the activity can be chosen by pressing the buttons start or end, respectively, and by selecting

the time in one of the plots. Additionally, it is possible to zoom in/out the plots by setting the maximum

and minimum values of the time axis. The last step consists in clicking the button ‘Process’ to estimate the

metrics.

3.2.3 Gait Analysis

When the activity selected involves walking, it becomes necessary to identify, in the acceleration plots,

the times of the initial contact (IC) and final contact (FC) of each leg in order to estimate the gait metrics.

This can be done in the ‘Gait Analysis’ tab, presented in Figure 17.
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Figure 17: Window from the APP to identify the ICs and FCs of the activities that involve walking.

By pressing the ‘Plot’ button the acceleration signals appear in the window and, through a gait event

detection algorithm, the times of the IC and FC are determined and appear in the plots as red/blue dots.

The dots in the upper plot (acceleration in the x-axis – VT direction) correspond to the FC time values and

the ones on the plot below (acceleration in the z-axis – AP direction) to the IC time values. As the gait event

algorithm is not 100% accurate given the heterogeneity of walking of subjects with PD, some adjustments

can be performed by selecting the ‘Right’/’Left’ and ‘Add’/’Delete’ buttons depending on the action to be

executed. By selecting the ‘Delete’ button, any dot that was placed incorrectly can be excluded and by

choosing the ‘Add’ button, a dot regarding the right or left leg can be added if the button selected is the

‘Right’ or ‘Left’, respectively. Once more, the plots can be zoomed in/out by specifying the maximum and

minimum time/acceleration values. The gait metrics can be acquired using the ‘Process’ button.

Note that, the algorithm for the gait event detection was previously validated and described in [37], being

based on heuristic rules with adaptive thresholds and ranges to detect foot initial and final contact from

both legs (with a mean sensitivity of 99,53% and an accuracy of 97,42%).

3.2.4 Metrics

Once the previous steps are completed, it is possible to analyse the metrics estimated in the ‘Metrics’

tab, which can be observed in Figure 18.
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Figure 18: Window from the APP to analyse the metrics estimated.

The features in the posture and activity sections are calculated for all the different tasks using the ‘Process’

button in the ‘Activity’ tab. The features included in the dynamic metrics section are only computed, in the

‘Gait Analysis’ tab by pressing the ‘Process’ button, if the task loaded involves walking. All features can be

saved in an excel file using the ‘Save’ button in the bottom right corner of the window in the lateral navigation

bar.

3.3 Data Acquisition

A number of public datasets were taken into consideration to train and evaluate the AI-based algorithms

to differentiate the scores of the pull test. However, none of the datasets found, satisfied the goals of this

dissertation as most of these did not include PD patients performing all sorts of day-to-day activities like

turning, lying or sitting, or the data was not acquired with an inertial measurement unit on the lower back.

Therefore, a new dataset was developed.

The data acquisition with pathological end-users was carried out in Hospital of Braga, with the collabora-

tion of the physicians from 2CABraga, following the Helsinki Declaration and the Oviedo Convention, in ac-

cordance with the ethical guidelines of the Ethics Committee in Life and Health Sciences (CEICVS147/2021).

All participants provided their informed consent to be part of the study.
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3.3.1 Participants

Twenty-three patients with idiopathic PD (fourteen males and nine females) and ten healthy subjects (five

males and five females) were recruited and accepted to participate in the data acquisition. The two groups

do not have significant differences in terms of age, sex, height and weight as is possible to observe in Figure

19 and Table 7. Furthermore, Figure 19 presents the distribution of the patients regarding the stage of the

disease (H&Y score), motor disability (UPDRS-III score) and postural instability (pull test score).

Figure 19: Distribution of the participants in terms of gender and age and of the PD patients in terms of the scores
on the clinical rating scales.

A list of the inclusion and exclusion criteria was outlined in order to select the participants with PD for

the experimental data collection. Participants were recruited if they: i) had between 45 and 80 years of

age; ii) had a diagnosis of PD according to the UK PD Society Brain Bank criteria; and iii) were able to stand

independently. On the other hand, subjects were excluded if they: i) presented any neurological disorder

other than PD; ii) had any other condition that could affect their balance or gait. Table 7 presents the partic-

ipants’ detailed demographic and clinical data. Note that, patients participated while “on” antiparkinsonian

medication.

Table 7: Participants demographic data and clinical rating scores.

Participant

ID

Age

(years)

Gender

(M/F)

Weight

(Kg)

Height

(cm)

UPDRS-III

score

H&Y

score

Pull test

score

P1 71 F 72 160 L 2 1

Continued on next page
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Table 7 – Continued from previous page

Participant

ID

Age

(years)

Gender

(M/F)

Weight

(Kg)

Height

(cm)

UPDRS-III

score

H&Y

score

Pull test

score

P2 84 F 63 155 M 4 4

P3 76 M 74 175 L 1 2

P4 69 F 70 160 H 4 3

P5 70 F 72 160 M 3 3

P6 73 F 62 160 H 4 4

P7 75 M 75 165 M 3 3

P8 57 M 86 174 L 1 1

P9 76 M 75 172 L 1 2

P10 64 M 60 170 L 2 1

P11 70 M 61 170 L 1 0

P12 49 M 80 170 L 1 0

P13 75 M 65 175 M 3 1

P14 65 M 73 162 L 1 0

P15 61 F 62 169 M 2 2

P16 59 M 78 180 L 2 2

P17 79 F 40 150 H 4 4

P18 73 M 78 167 M 3 2

P19 56 M 66 168 L 1 1

P20 64 F 97 163 M 2 3

P21 55 M 75 166 H 3 3

P22 67 F 73 164 H 3 4

P23 72 M 63 164 H 3 4

H1 77 F 62 165 - 0 0

H2 71 F 63 167 - 0 0

H3 69 M 83,5 172 - 0 0

H4 76 F 58 164 - 0 0

H5 67 F 69 165 - 0 0

H6 65 F 68 167 - 0 0

H7 63 M 80 176 - 0 0

H8 73 M 74 168 - 0 0

H9 48 M 92 174 - 0 0

Continued on next page
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Table 7 – Continued from previous page

Participant

ID

Age

(years)

Gender

(M/F)

Weight

(Kg)

Height

(cm)

UPDRS-III

score

H&Y

score

Pull test

score

H10 50 M 84 180 - 0 0

P mean ±
std

67.83

(± 8.67)
-

70.43

(± 11.02)

166.04

(± 6.99)
- - -

H mean ±
std

65.80

(± 9.92)
-

72.22

(± 11.26)

169.80

(± 5.41)
- - -

* The UPDRS-III score was divided in three categories: Low (L) if below 32, Medium (M) if between 32 and 64 and High (H) if above 64.

3.3.2 Materials

The setup for the data acquisition comprised:

• Participants’ demographic registration document;

• UPDRS-III and H&Y scales to assess the participants’ motor disability and the stage of the disease,

respectively;

• +sMotion (instrumented waistband), a single wearable device to collect inertial information

regarding the CoM, at a frame rate of 100 Hz;

• Xsens® to be used as the ground-truth of the inertial data collected.

3.3.3 Data collection methods and study variables

In order to acquire the dataset, a protocol comprising the criteria for participant selection, the tasks for

the data acquisition and the evaluation to be performed was delineated and is detailed in Appendix A.

The first step of the experimental procedure, as can be seen in Figure 20, was to get the participants’

informed consent signatures and their demographic data (age, gender, weight and height). Before beginning

the execution of the motor tasks to collect the inertial data, the participants with PD also had to undergo an

evaluation to record the current stage of the disease (H&Y score) and their motor disability level (UPDRS-III

score).
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Figure 20: Diagram representing the steps for the data acquisition.

Afterwards, the participants were instructed to put on the +sMotion and Xsens equipment. Note that the

IMUs of the two systems were placed in the lower back (L3-L5 level), near the CoM, and as close as possible

to guarantee that the signals could be compared. To avoid a misalignment in the sensors outcomes, it was

always the same person to place the sensors in participants.

The data acquisition started with the execution of the pull test. Subsequently, all participants followed

the tasks described in the protocol, which involved sitting and getting up from a chair, lying and getting up

from a bed, walking 10 meters in a straight line and performing 180º and 90º turns (both to the left and the

right), as shown in Figure 21. Each task was explained and demonstrated before starting to collect the data

and each one was executed three times for a higher statistical significance during movement evaluation.
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Figure 21: Tasks comprised in the experimental protocol for the data acquisition.

3.4 Data Analysis

Once the acquisition was completed, the inertial data collected from the Xsens was stored as text files

and the data from the +sMotion as DAT files for a subsequent validation through Python. The raw signals

of acceleration and angular velocity in the three axes (x, y and z) from the two systems were then overlaid.

By observing the collected signals with both systems, it was possible to detect a mild difference in the

mean value of the acceleration in z and y, which may be due to the positioning of the IMUs, as these could

not be precisely placed in the exact same location. However, by removing the DC component, the signals
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overlap, being possible to conclude that the signals acquired from the +sMotion are as accurate and valid

as the Xsens. Further, this observation was supported by a previous benchmarking analysis of +sMotion

with Xsens, where non-statistical differences were measured between both systems (𝜌 ≥ 0.19) [37].

Once the eligibility of +sMotion data was validated, an APP was developed in Python to load and process

the inertial data in order to estimate the desired postural and gait metrics. Through the metrics acquired, a

statistical analysis was carried out to find if the features extracted from basic daily activities can distinguish

between the different levels of postural instability. Subsequently, another script was developed to implement

AI-based algorithms to predict the pull test score from the raw signals acquired while performing the activities.

The best model created was then included in the APP.
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S TAT I S T I C A L - B A S E D A P P R O A CH TO S U P P O R T P O S T U R A L A S S E S S M E N T

Recent studies demonstrated that IMUs are an affordable and portable solution to assess postural sway,

which provides features sensitive to balance disorders. However, based on the information collected, no

study tried to correlate the features acquired to the pull test score and no study was performed on (near)

home-based conditions or even included features from functional tasks more similar to the daily context.

Hence, this research focused on investigating if it is possible to differentiate between all the scores of the

pull test through postural and gait metrics extracted from raw acceleration and angular velocity signals from

the CoM acquired while performing basic day-to-day tasks.

This chapter comprises a description of the features extracted from the inertial data collected during the

execution of the tasks present in the protocol described in the previous chapter and how these are expected

to behave with the pull test score. This is followed by a brief explanation of the statistical analysis that was

performed using SPSS, the results and subsequent analysis of the findings.

4.1 Data Analysis

As stated before, the Python environment was used to extract several features of the acceleration and

angular velocity signals. The features extracted for each trial were chosen and studied based on the related

state-of-the-art presented in Chapter 2 and consisted in:

• Duration of the activity - it is expected for this feature to increase with the pull test score as

postural instability affects the execution of even the most basic tasks.
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• Jerk (mean and standard deviation) - the first-time derivate of the acceleration; represents the relative

smoothness of postural sway so, while for standing, patients with a higher score on the pull test

may present a higher variation of jerk (an increased standard deviation) due to frequent postural

corrections, for dynamic activities the expected is the opposite as the LOS decreases with postural

instability which leads to a more cautious behaviour to perform the exercises.

• RMS (of the acceleration and angular velocity) - this value relates to the vibration levels of a signal,

so once more, especially on the angular velocity signals, the RMS may decrease as the pull test score

gets higher.

• RoM (of the acceleration and angular velocity) - keeping the same line of thought, the range of the

signals is also expected to diminish as the pull test score increases.

• Pitch and Roll (mean and standard deviation) - if the pitch (ML rotation) and roll (AP rotation) are

acquired while standing, both values are expected to get higher with the pull test score due to frequent

postural adjustments. However, during dynamic tasks, as postural instability leads to performing the

tasks more carefully, the standard deviation values of the Roll should get lower as the pull test score

increases in the activities that require more rotation of the trunk in the AP direction as lying on the bed

or walking but, above all, turning. This value could also get higher in activities that do not involve as

much trunk rotation in the AP direction as people with postural instability perform more corrections

to keep balanced. In regard to the pitch, the standard deviation value is expected to increase in

general with the pull test score for the same reason. This should be noticeable especially during the

execution of the pull test as people with higher postural instability get destabilized more easily and

are not able to recover as quickly or smoothly.

For the walking trials, the following gait metrics were estimated by previously performing gait segmen-

tation to identify the initial contact (IC) that corresponds to the heel strike and the final contact (FC) or

toe-off.

• Step and Stride time/length - as aforementioned, patients with higher postural instability tend to

present a more cautious behaviour in performing the tasks, which leads to slower and smaller steps.

• Velocity and cadence - as the pull test score increases it is expected a lower velocity and conse-

quently cadence.
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• Number of steps - as the patients with higher pull test scores may present smaller steps, the

number of steps needed to walk a certain distance gets bigger.

• Stance, Swing and Double support time/phase - with a reduced LOS, the swing time tends to

decrease and the double support phase to increase.

• Asymmetry (AS) and standard deviation (SD) of step length/time, velocity and stance/swing

time - it is expected for patients with decreased postural stability to have walking patterns less regular

and with fluctuations, as well as steps not symmetric, therefore these values may increase with the

pull test score.

Before estimating these values, it was necessary to pre-process the data. This is a crucial step as it

allows to eliminate irrelevant information. The pre-processing included converting the acceleration signals

to 𝑚/𝑠2 and normalizing them, for the values to be between -1 and 1. After that, the angular velocity

signals were converted to 𝑟𝑎𝑑/𝑠 and calibrated so the mean of the signal was 0 when the participant

was standing still. Lastly, the beginning and end of the task execution were selected for the metrics to be

estimated only on that interval.

Subsequently, a statistical analysis was performed using the SPSS software. The PD patients were split

according to their score on the pull test and two healthy participants were also included so each of the five

groups contained information regarding five participants. The next step involved acquiring the descriptive

statistics to summarize the information of each of the groups and applying the Shapiro-Wilk test to find out

which features followed a normal distribution with a significance (sig) level of 5%. A certain population was

considered normally distributed if the sig value was higher than 0.05.

As most of the features did not present a normal distribution, the test chosen to determine which features

are capable of distinguishing the groups of the different pull test scores was the Kruskal-Wallis. This is a

non-parametric test, which means that it is not necessary for the population to have a certain distribution

for these methods of statistical analysis to be performed. The results of this test are presented in Tables 9

to 17 in Appendix B, in which the difference of a certain feature between the several groups is considered

significant if the sig value is smaller than 0.05. When a feature was considered suitable to distinguish

between the groups, it was also performed multiple comparisons to determine which groups had significant
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differences. The tables present the significant sig values of the Kruskal-Wallis test and of the multiple

comparisons highlighted.

Furthermore, the Pearson product-moment correlation (with a 95% confidence interval for each correla-

tion coefficient) was used to assess the correlation between the selected features and the pull test score.

The closer this value is to one, in module, the stronger the linear correlation between the feature and the pull

test score. The values of the Pearson product-moment correlation can be observed in Table 21 in Appendix

B. If the correlation was considered strong, which means if it was above 0.4 in module, then the values

appear highlighted on the table.

Finally, a multiple linear regression was performed for each of the different activities to verify if the

features extracted could be used to predict the pull test score. The results given in Table 26 contain the

variables that were included in each of the models, the adjusted R squared of the model and the sig value

of the ANOVA. The R squared determines the ratio of variance in the pull test score that can be described

by the features included in the model. The closer to one, the better the data fits the model. The sig value

of the ANOVA reveals if the relationship between the pull test score and features included in the model is

statistically significant. The correlation is considered significant if the sig value is smaller than 0.05.

The same approach was followed to investigate whether these features were also suitable to distinguish

between patients with PD and healthy subjects, the scores of the H&Y and the scores of the UPDRS-III. The

results of these studies are presented in Appendix B. Note that to differentiate between PD patients and

healthy subjects the test used instead of the Kruskal-Wallis was the Mann Whitney as in this case it was

only necessary to make a distinction between two groups.

4.2 Results

The Kruskal-Wallis test revealed that most of the features estimated (167 out of the 229) are able to

differentiate between at least two groups of the pull test score, as presented in Tables 9 to 17. Despite

that, none of the metrics acquired while performing the pull test were considered significant to distinguish

between the distinct pull test scores. Five metrics were considered relevant in all motor tasks, with exception

of the pull test, which were the duration of the activity and the RMS and RoM of the angular velocity in the

AP and VT directions.
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It is also important to note that only the task of getting up from a bed had metrics capable of differentiating

between all the groups of the pull test score. The tasks that included sitting or getting up from a chair did not

have features to discern between scores 2 and 3, and the tasks that involved walking and turning could not

discriminate between the participants in the lower end of the pull test score. In specific, the data acquired

while performing turns of 180º only provided metrics to discriminate between participants with no posture

instability and the maximum score on the pull test.

The Kruskal-Wallis test also confirmed that many of the features can distinguish the healthy participants

from the patients with PD as depicted in Table 18, the patients in different stages of the disease (H&Y score)

as shown in Table 19, and the patients with distinct levels of motor disability (UPDRS-III score) as presented

in Table 20. In all the cases, the activity considered less significant to distinguish between the groups was

the pull test. Regarding the UPDRS-III score, all the activities were able to make a distinction between all

of the levels, except for the tasks involving sitting and turning 180º which could not separate patients with

medium and higher scores of motor disability. Besides that, almost all the activities could discern all the

stages of the disease. The exceptions were the ones that consisted in sitting and lying, which could not

differentiate between milder stages of the disease and the transition to a moderate stage, respectively, and

turning 180º which could only separate between a milder and moderate stage of the disease.

By observation of Table 21 which contains the values of the Pearson product-moment correlation (with

a 95% confidence interval for each correlation coefficient) between the selected features and the pull test

score, it is possible to infer that, of all the features extracted, the ones that presented a higher correlation

to the pull test score were the duration of the activity, the variation of roll in the tasks that included turning

and the RMS and RoM of the angular velocity, especially in the AP direction.

It is noteworthy that the features mentioned above also present a high correlation to the stage of the

disease, the level of motor disability and the diagnosis of the disease. Tables 23 and 24 demonstrate that

the RMS of the acceleration in the AP and ML directions also correlate highly with the H&Y and UPDRS-III

scores. As for distinguishing patients with PD from HC, other features that significantly correlated were the

variation of jerk in the AP and ML directions, and the RoM of the acceleration, as can be seen in Table 22.

In regard to the gait-associated metrics, by observation of Table 25 it is possible to conclude that, the

features with a higher correlation to the pull test score, the H&Y score, the UPDRS-III score and to distinguish
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between PD patients and HC were all the same and consisted in the step/stride length, velocity and number

of steps.

The multiple linear regression results, presented in Table 26, revealed that, with exception of the pull test

and the task that consisted in getting up from a chair, it was possible to create a model for each activity

that could explain at least 50% of the variability of the pull test score. The metrics most included in the

models were RMS and RoM of the angular velocity and acceleration in the direction of movement of the task

execution. Other relevant features were the duration of the activity for the tasks that involved turning and

the mean jerk of the acceleration in the AP direction for tasks that involved lying or getting up from a bed.

Additionally, similar conclusions can be taken from the models created to predict the H&Y and the UPDRS-

III scores. As for predicting if a participant is a PD patient or HC, relevant features in the models, besides

RMS and RoM, were activity duration in the tasks involving sitting and getting up from a chair and the pull

test, mean jerk of the acceleration in the VT direction for tasks that involved lying or getting up from a bed,

and pitch mean for activities including 90º turns.

4.3 Discussion

The key finding in this study was that the features extracted from the acceleration and angular velocity

signals from the CoM while performing day-to-day tasks can distinguish between all of the pull test scores. In

fact, the results presented previously indicate that IMU-based technology may be a useful mean to monitor

the progression of postural instability in PD patients in day-to-day settings.

Based on the information acquired, no other study has been made under these conditions or to the end

of discriminating between all the scores of the pull test. Most of the studies found on this subject involved

using IMUs to analyse postural instability during quiet stance in different conditions (altered surface, stance

and/or vision) or during weight-shifting exercises with the goal of extracting metrics capable of differentiating

patients with PD from HC [9, 12, 16, 21, 24–27, 29, 30]. There was even a study that, through IMUs placed

on the feet, attempted to analyse gait to detect postural instability and provide a separation of HC and two PD

groups (with and without postural instability) [19]. One of the studies had an acquisition protocol including

the dynamic activities comprised on the TUG test, however, the data collection was made with more IMUs

in different locations of the body, and it only attempted to correlate the features extracted with the level of

motor disability [18].
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Through the statistical analysis of the features extracted, it was possible to conclude that all the day-

to-day activities performed during the data collection include metrics relevant to distinguish between at

least two groups of the pull test score. This result was expected as postural instability compromises the

execution of even the simplest daily tasks. Interestingly, the pull test was the only task from which no

metrics extracted were able to separate between any of the 5 groups. Furthermore, as PD patients present

other motor symptoms that progress over time and with the stage of the disease which also affect basic

dynamic activities, all the tasks, with exception of the pull test, provided significant features to differentiate

patients with PD from HC, the several stages of the disease and the levels of motor disability (scores of the

UPDRS-III).

The Pearson product-moment correlation between the selected features and the pull test score revealed

that the hypotheses aforementioned regarding how the features evolve with the pull test score were verified.

In fact, as patients with higher postural instability exhibit decreased LOS, magnitude of postural responses

and postural reflexes, they tend to perform the tasks more carefully. While performing dynamic tasks, this

behaviour leads to slower execution of the activities, smaller variation of jerk, decreased RMS and RoM

of the angular velocity, decreased RoM of the acceleration in the direction of movement during the task

execution (which was mostly in the AP and VT direction) and also a smaller variation of the roll especially

in the tasks that involved turning.

Regarding the gait-associated metrics, the result once more was the expected, and it is possible to

conclude that, during the execution of activities that involved walking, the participants with higher postural

instability display slower and smaller steps, which lead to an increased number of steps and decreased

cadence. Moreover, the time in the double support phase increases and the walking pattern gets less

regular and with less symmetric steps.

The metrics that presented a higher correlation to the pull test score were the duration of the activity, the

variation of roll in the tasks that included turning, the RMS and RoM of the angular velocity, especially in

the AP direction, step/stride length, velocity and number of steps. Curiously, all these metrics also highly

correlated to the stage of the disease, the level of motor disability and the diagnosis of the disease.

With respect to the multiple linear regression models created, the activities that could better predict the

pull test score were lying or getting up from a bed, walking and turning 90º. The variables with most impact

in all these models were the RoM and RMS of the acceleration and angular velocity signals in the direction
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of movement of the execution of the task, emphasizing once more that postural instability leads to a more

cautious behaviour, leading to slower movements and with less magnitude/lower range.
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A I - B A S E D A P P R O A CH TO S U P P O R T P O S T U R A L A S S E S S M E N T

Deep learning has become well-known in the areas of speech and image classification, however, its’

potential to analyse wearable sensor data has not yet been completely investigated. Therefore, the goal of

this research was to explore deep learning as an approach for IMU-based postural instability evaluation.

This chapter describes the three deep learning frameworks employed to classify the postural stability

level of PD patients through the raw acceleration and angular velocity signals from the CoM acquired while

performing basic day-to-day tasks or through features extracted from these signals. Therefore, the chapter

starts by summarizing how the datasets are prepared and the training pipeline, followed by the results,

discussion and conclusions taken from the AI-based algorithms created.

5.1 Dataset Preparation

The data acquired during the trials consisted of the acceleration and angular velocity (on each of the

three axes – x, y, z) of the CoM of the subject while performing several day-to-day activities, as presented

in Chapter 3. Each acquisition corresponded to a single activity of a participant and the inertial data was

stored in DAT files.

In order to prepare the data to be used in the AI-based algorithms for postural assessment, two python

scripts were developed (one for the raw signals of acceleration and angular velocity and another for the

features extracted of these signals). The first script, mentioned in the previous chapter, was used to extract

features from the raw signals, which were then stored in a csv file with the corresponding label of the pull

test score. Regarding the second script, the first step consisted in converting each DAT file to csv format.
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Subsequently, a label with the pull test score was added to each csv file and the signals were shortened so

their length was a multiple of the timestep in which the signal was going to be analysed.

Afterwards, before splitting the data from both scripts into different datasets (training, validation and

testing), all the activities were shuffled for the datasets to be representative of the whole distribution. Finally,

the data was split to create 4 datasets as presented in Figure 22, in which:

• Training dataset to find the best hyperparameters: 80% of the data was selected to perform

a grid search for the best hyperparameters;

• Training dataset: 80% of the first training dataset was selected to train the model with the best

hyperparameters;

• Validation dataset: The remaining 20% of the first training dataset was selected for validation in

the final training phase;

• Testing dataset: The 20% remaining of all the data was selected to test the model;

The percentage chosen to split the data was based on prior similar studies [38, 39].

Figure 22: Diagram representing how the data was split into the four datasets.
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5.2 Training Pipeline

After preparing the datasets, a script in python using Keras and TensorFlow was developed to implement

the neural network algorithms for postural assessment.

As can be observed in Figure 23, the process starts with loading the csv files with the four datasets and

pre-processing the data, which, in the case of using the raw signals as input data, consisted in dividing the

signals of acceleration and angular velocity of each task in non-overlapping segments of 2.4 seconds and

normalizing their values. The size of the window was based on a previous study regarding human activity

recognition using deep learning [40]. The size of the window has to be adjusted to the study as small

window sizes may not include enough data to capture a pattern, while large window sizes lead to a longer

training process and could contain patterns too sophisticated. Note that, for using the features extracted

from the signals as input data, the prepossessing consisted solely in normalizing the values.

Subsequently, a grid search was performed for hyperparameter optimization. The range of possible

hyperparameters was manually specified and based on previous studies [38, 39]. The search for the best

hyperparameters included a cross-validation technique, k-fold cross-validation, with 10 folds, meaning that,

for every combination of hyperparameters, the data was divided into 10 parts and the training of the model

was executed 10 times always leaving 1 different subset of the data out for it to be used to validate the

model. The average performance of the 10 models was then estimated. The set of hyperparameters was

chosen based on the F1-score as this is a measure commonly used for class imbalance (classes that do

not contain an equal number of instances).

Once the grid search was completed the model was trained using the training dataset and the best

hyperparameters, and the metrics were estimated with the validation dataset. The model was then saved,

and a final set of metrics was estimated using the test dataset.
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Figure 23: Diagram representing the steps implemented in the neural network algorithms.

The deep learning algorithms chosen to classify postural instability in PD patients based on the raw

signals of acceleration and angular velocity were the convolutional neural networks (CNN) and long short-

term memory networks (LSTM). The CNN are known for creating feature maps to learn from the given data

which significantly improves the classification accuracy and the LSTM is a well-known deep learning model

adequate for processing time series and multi-classification problems.

The CNN deep learning framework employed two convolutional neural network layers with rectified linear

units (ReLUs), a dropout layer, one max-pooling layer, a layer to flatten the data into a single dimension

instead of two, and two fully connected layers (one with ReLUs and another with a softmax for classification).

The architecture described is presented in Figure 24.

In the convolutional layers a kernel is convolved with the inputs to generate a tensor of outputs which is

then transformed using ReLUs. Several convolutional layers can be stacked for features with higher levels

of abstraction to be learned from the data. With the output from the convolutional layers a random dropout

and the max pooling operation are applied in order to reduce the overfitting of the network. The dropout

mechanism randomly drops a certain percentage of units of the layer and the max pooling process extracts

themaximum value of patches of the output from the previous layer, generating a down-sampled feature map.

This feature map is then flattened, and the first fully connected layer attempts to acquire features suitable for

the classification step. The last fully connected layer uses the softmax activation function to determine the

probability of each class. The number of neurons in the output layers corresponds to the number of classes

that can be predicted, in this case, 5. The output neuron with the highest value (probability) corresponds

to the class predicted.
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Figure 24: Architecture of the CNN deep learning framework.

The LSTM deep learning framework presented an input layer with batch normalization, three bidirectional

LSTM layers with dropout, a layer to flatten the data into a single dimension instead of two, a dropout

layer and two fully connected layers (one with ReLUs and another with a softmax for classification). The

architecture described is presented in Figure 25.
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Figure 25: Architecture of the LSTM deep learning framework.

In the batch normalization layer, the batches of input data are standardized and normalized for the neural

networks to be more stable and faster by decreasing the number of epochs needed for the training. The

subsequent LSTM layers contain a specific gate structure in order to ‘remember’ crucial information and

‘forget’ unnecessary information learned previously. Additionally, by continuously backpropagating useful
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information, these layers are capable of learning long-term dependencies. The bidirectional LSMT is the

combination of two LSTM, which allows to analyse both past and future events by having a LSTM moving

forward on the data and another onemoving backwards. After the final LSTM layer, the outputs are converted

to a single dimension in the flatten layer and go through a process of random dropout to reduce overfitting.

Finally, the fully connected layers learn to recognize features to perform the classification.

To enhance this study, based on the promising results from the statistical analysis of the metrics esti-

mated, and to continue evaluating the importance of the deep learning models, the multilayer perceptron

networks (MLP) were chosen to classify postural instability in PD patients based on the metrics estimated

with the +sMotion APP as there was no need for this model to be as deep as the others since it was not

necessary to analyse time series to extract features.

The MLP deep learning framework employed two dropout layers and three fully connected layers (two

with ReLUs and another with a softmax for classification). The architecture described is presented in Figure

26.

The neurons in the first two dense layers identify characteristics from the input data suitable for the

classification step. In turn, the output layer determines the probability of each class using the softmax

activation function.

As stated before, to find the best hyperparameters to train the model, a range of values was manually

set for each of the three algorithms. The first hyperparameter specified was the batch size for the data

to be fed to the network in batches to speed up the learning process. However, larger batch sizes may

lead to an under-generalized model not capable of fitting new data well. After that, it was defined the

number of neurons in the hidden fully connected layers and also the number of epochs, which consists of

the number of times the data is going to be presented to the network during the training. The number of

neurons in these layers and the number of epochs should not be too high or too low since that could result

in overfitting (learning so much from the data that the model is not able to generalize) or underfitting (not

learning properly), respectively. Another hyperparameter established was the learning rate which reflects

how quickly the weights of the network are going to be updated. Higher learning rates speed up the process

but may cause divergent behaviour in the loss function, whereas small learning rates require more epochs as

the updates to the weights are smaller. Regarding the convolutional layers, the hyperparameters configured

were the number of filters applied and the size of the kernel. As for the max polling layer, it was the poll
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size. Finally, for the dropout layers, it was the dropout rate in order to avoid overfitting. This value has to

be adjusted as higher values can result in under-learning and lower values may have a minimal effect.

Figure 26: Architecture of the MLP deep learning framework.
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5.3 Metrics Evaluation

In order to assess the efficacy of the classifiers, several performance metrics were estimated:

• Accuracy: one of the most common measures and can be described as the ratio between the

correct predictions of the model and the total number of predictions;

• Recall: it is a mean of how good the model is to predict each of the scores of the pull test and

can be defined as the proportion of the number of times one class was correctly classified and the

number of times the class should have been predicted;

• Precision: it is a mean of how many of the predictions are correct for each of the scores of the pull

test and can be defined as the fraction of the number of times one class was correctly classified and

the number of times the class was predicted;

• F1-score: harmonic mean of the recall and precision, in order to combine these two metrics into

one;

• AUC: it is the area under the receiver operating characteristics (ROC) curve; this metric shows how

well the model can distinguish between the different scores of the pull test and correctly classify each

one of the classes;

• Loss: score that compares the predicted probability of each class with the expected output; the

higher the value the more the predicted probability diverges from the desired output.
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5.4 Results

Table 8 summarizes the performance metrics acquired for the models using different datasets and types of neural networks, and Figure 27 presents

the confusion matrix for the model of each dataset that presented the best results when tested with previously unseen data.

Table 8: Performance metrics of the best models of each dataset and NN type.

Dataset NN Type Epochs Hyperparameters Step Loss Accuracy Precision Recall F1 AUC

All CNN 300

Batch size

Filter

Kernel size

Pool size

Neurons

Dropout rate

Learn rate

64

64

6

3

60

0.5

0.001

Train 0.3804 0.8454 0.8884 0.8028 0.8430 0.9810

Validation 1.2105 0.5934 0.6582 0.5125 0.5747 0.8713

Test 1.0139 0.7001 0.7470 0.6078 0.6679 0.9045

All LSTM 183

Batch size

Filter

Kernel size

Pool size

Neurons

Dropout rate

Learn rate

64

-

-

-

60

0.3

0.001

Train 0.1043 0.9627 0.9676 0.9569 0.9621 0.9984

Validation 3.5087 0.6173 0.6228 0.6008 0.6115 0.8156

Test 2.8517 0.6122 0.6168 0.6037 0.6101 0.8362

Continued on next page
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Table 8 – Continued from previous page

Dataset NN Type Epochs Hyperparameters Step Loss Accuracy Precision Recall F1 AUC

All except

Pull Test
Conv1D 292

Batch size

Filter

Kernel size

Pool size

Neurons

Dropout rate

Learn rate

64

32

6

3

100

0.3

0.001

Train 0.3746 0.8502 0.8918 0.8089 0.8479 0.9818

Validation 1.1955 0.6981 0.7486 0.6091 0.6693 0.8879

Test 1.3561 0.6261 0.6390 0.5462 0.5881 0.8660

All except

Pull Test
LSTM 200

Batch size

Filter

Kernel size

Pool size

Neurons

Dropout rate

Learn rate

64

-

-

-

60

0.3

0.001

Train 0.1252 0.9528 0.9558 0.9453 0.9504 0.9969

Validation 2.8974 0.6132 0.6288 0.6078 0.6180 0.8285

Test 3.0723 0.5918 0.5887 0.5737 0.5810 0.8208

Walking

Activities
CNN 142

Batch size

Filter

Kernel size

Pool size

Neurons

Dropout rate

Learn rate

64

64

6

3

100

0.3

0.001

Train 0.1475 0.9407 0.9487 0.9349 0.9417 0.9971

Validation 0.5534 0.8357 0.8693 0.8049 0.8355 0.9626

Test 0.7119 0.8076 0.8341 0.8078 0.8206 0.9465

Continued on next page
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Table 8 – Continued from previous page

Dataset NN Type Epochs Hyperparameters Step Loss Accuracy Precision Recall F1 AUC

Walking

Activities
LSTM 74

Batch size

Filter

Kernel size

Pool size

Neurons

Dropout rate

Learn rate

64

-

-

-

60

0.3

0.001

Train 0.0763 0.9696 0.9681 0.9656 0.9669 0.9989

Validation 0.3239 0.9130 0.9163 0.9104 0.9134 0.9819

Test 0.5552 0.8625 0.8599 0.8599 0.8599 0.9696

Metrics MLP 386

Batch size

Filter

Kernel size

Pool size

Neurons

Dropout rate

Learn rate

256

-

-

-

100

0.2

0.01

Train 0.1451 0.9555 0.9552 0.9434 0.9492 0.9959

Validation 0.7606 0.8571 0.8571 0.8571 0.8571 0.9491

Test 2.1934 0.7810 0.7789 0.7714 0.7751 0.9318
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By analysing the performance of the models using as a dataset the raw acceleration and angular velocity

signals of all the activities while tested with unseen data, it can be concluded that the best results were

obtained with the CNN algorithm. The accuracy, precision, recall and F1-score were all between 60% and

75%. The metric with the lowest value was the recall and the metric with the highest percentage was the

precision. This indicates that there are more false negatives (FN) than false positives (FP), which means

that on average, for a certain class, it is more likely to get a prediction wrong when the level of postural

instability in question corresponds to that class, than to predict that a person with another level of postural

instability corresponds to that class. Note that the performance metrics acquired from the training were

significantly higher which may imply overfitting, the model being too adapted to the training data.

In an attempt to improve the performance of the model, two other datasets were created with fewer

activities included:

• All except the pull test: this dataset comprised only the day-to-day activities;

• Walking activities: this dataset included all the activities that involved walking (walking 10m, turn-

ing 90º and 180º).

By observation of Table 8, it is possible to verify that the models created with the dataset containing

only day-to-day activities (all except the pull test) got worse metrics when tested with unseen data. However,

these models showed better results in the training and validation which implies higher overfitting of the data,

not being able to fit new data as well.

Regarding the models using as a dataset the activities that involved walking, the performance metrics

while testing with new data, with the training data and with the validation data were significantly better than

the best model using as a dataset all the activities. In this case, the best results were achieved with the

LSTM algorithm in which the values of accuracy, precision, recall and F1-score of the test were approximately

0.86.

Finally, as aforementioned, there was also a model created using as a dataset the metrics extracted from

the signals of acceleration and angular velocity with +sMotion APP. This model was able to get better metrics

in the training, validation and testing steps than the best model using as dataset all activities, but worse in

comparison to the best model using as dataset the walking activities.
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(a) Confusion Matrix of the model with the CNN algorithm

and using the dataset that includes all activities.

(b) Confusion Matrix of the model with the CNN algorithm

and using the dataset that includes all activities except the

pull test.

(c) Confusion Matrix of the model with the LSTM algorithm

and using the dataset that includes all activities that involve

walking.

(d) Confusion Matrix of the model with the MLP algorithm

and using as dataset metrics extracted from the inertial data.

Figure 27: Confusion Matrix for the best model created with each dataset

Observing the confusion matrixes presented in Figure 27, it is possible to perceive that especially when

using the dataset with all the activities or only the ones that involve walking, people with a pull test score of

0 are more easily identifiable than people who present postural instability. People with a pull test score of 1

may get mixed up with someone with no postural instability when their gait is being evaluated, but also with
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people with even more postural complications when all the activities are analysed. Moreover, to confirm the

results stated before, the model created with the walking dataset was the model capable of getting more

correct predictions in all the different scores of the pull test, with exception of a pull test score of 4 in which

it was possible to get more predictions correct with the model using as dataset the features extracted from

the inertial data collected.

5.5 Discussion

The purpose of this research was to investigate the use of deep learning as an approach to assess the

level of postural instability through raw data collected from a wearable IMU located in the CoM of a user

while performing basic daily tasks. Even though the research had some limitations, the results presented

suggest that deep learning may be promising in the area of IMU-based postural instability assessment.

Deep learning has already been used for PD diagnosis or to detect certain motor symptoms, but based on

the information collected, it has not been applied to the field of postural instability analysis. There is a study

that uses deep learning to predict if PD patients present bradykinesia from inertial data collected with IMUs

on the wrist while performing movement exercises with the upper limbs [41]. Another study implemented

a deep learning algorithm to distinguish between people with PD from HC by extracting gait metrics from

data acquired with an IMU on the CoM while walking [39]. In contrast to these last two studies, which only

perform a binary classification, the models presented in this research execute multi-category classification.

One of the studies found also predicted more than two classes, the aim was to classify the severity of the

disease through the data gathered from force sensors on the feet while walking [38].

The major advantages of deep learning consist in (i) not needing to rely on features determined by experts,

neural networks are able to extract very meaningful features; (ii) similarly to an expert evaluation, it allows

to analyse the signal segment of a task as one, providing a single output; (iii) with new data becoming

available, the framework can be improved and be able to generalize to new data better, producing better

results. Note that, for this last step to improve the model, it is necessary that the data collected is labelled

by clinical experts.

Based on the results presented in the previous section, it is possible to infer that the model that achieved

the best performance metrics was the LSTM algorithm with the walking activities as a dataset. Hence, the

network benefited from having less variability of activities. As can be observed in Table 8, when the dataset
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includes all the different tasks, the models end up overfitting, not being able to generalize as well, and, as a

result, may not be suitable in wider clinical and scientific settings. This may be happening due to the high

number of features being introduced in the model in comparison to the number of subjects participating in

the research. Therefore, reducing the number of different activities to train the model reduces the complexity

of the model, making it more efficient.

The confusion matrixes confirmed that the model best suited to predict basically any of the pull test

scores was the LSTM algorithm using as dataset only activities that involved walking. The confusion matrix

also revealed that the scores with more correct predictions were the 0 and 2. In contrast, the scores with

less correct predictions were the 1 and 4. People with a pull test score of 1 could be mistaken for someone

with no postural instability, as for people with the highest level of postural instability, some were mixed up

with people with a score of 2.

The limitations of this research included (i) the execution of the trials in a clinical setting instead of an

actual home-like environment; (ii) the limited number of participants; and (iii) given the subjectivity of the

pull test, the labels might not be completely accurate. In regard to the second limitation, additional data is

required to increase the performance of the classification as deep learning relies deeply on the database.

However, the results from this research support the argument for a more in-depth analysis of deep learning-

based postural instability assessment through inertial data.



6

C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

Postural instability and gait disabilities are amongst the most incapacitating features of PD and threaten

the independence and quality of life of PD patients. Regarding the first research question (RQ1 - How is

postural instability usually assessed?), the clinical examination used to assess postural instability is the

pull test. This test is widely used since it is easy to administer and does not require specific instruments,

however, it is a difficult test to standardize and therefore subjective and lacks sensitivity to detect small

but significant changes. Additionally, it is essential for physicians to quantify gait and balance deficits and

to perceive motor changes that lead to postural complications in order to monitor patients over time and

implement an adequate treatment to improve postural stability and reduce the risk of falls. Hence, wearable

sensors emerged as promising solutions to better capture postural instability and eliminate the subjectivity

of postural-associated clinical examinations.

The state-of-the-art in wearable technology to assess postural responses and provide additional sensory

information in order to improve postural control allowed to address the second research question (RQ2 - Is

there a more objective way to assess postural instability?) and revealed that there is a lack of investigation

on assessing postural instability in dynamic conditions like while executing basic daily tasks. Most of the

studies found on this subject focused on acquiring postural sway metrics through IMUs during quiet stance

in different conditions (altered surface, stance and/or vision) with the goal of differentiating patients with PD

from HC. Therefore, the main goal of this dissertation consisted in the design, development and validation

of a postural assessment tool to make a more objective evaluation of postural instability under dynamic

conditions.
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This work addressed the development of a desktop APP to analyse raw inertial signals from basic daily

activities to estimate gait and postural-related features and to predict the pull test score through an AI-based

algorithm.

Through the application, the gait and postural-related features of all the data collected during the trials

were estimated and an extensive statistical study was performed to answer the third research question (RQ3

- Can metrics extracted from inertial data of daily activities be correlated to the pull test score? And to the

UPDRS-III score, the H&Yscore or for diagnosis purposes?) by verifying if it is possible to use these features

to distinguish between the different groups of the pull test score, the UPDRS-III score, the H&Y score and

between healthy subjects and PD patients. The results revealed to be promising as, through the features

acquired, it was possible to differentiate all the scores of the pull test, of the H&Y, of the UPDRS-III and

between PD patients and healthy subjects. This indicates that inertial-based technology may be a useful

mean to monitor the progression of postural instability in PD patients in day-to-day settings. The results

also uncovered that, of all the exercises performed during the data acquisition, the pull test was considered

less significant to distinguish between any of the groups and emphasised that postural instability leads to

a more cautious behaviour even while executing basic daily tasks, leading to slower movements and with

less magnitude/lower range.

Furthermore, in order to determine the AI-based algorithm to classify the pull test score of PD patients and

answer the fourth research question (RQ4 - Can deep learning be used to classify pull test score through

inertial data of daily activities to increase the objectivity of postural instability assessment?), three deep

learning frameworks were employed (CNN, LSTM and MLP) and four datasets were created (one including

all the activities comprised in the protocol, another excluding only the pull test, one only with the tasks that

involved walking and the last using the features estimated with the application). The results showed that

the model that achieved the best performance metrics was the LSTM algorithm with the walking activities

as a dataset. This implies that the network benefited from having fewer types of activities as it reduces the

complexity of the model. In the cases in which the dataset included more activities, the model was not able

to generalize as well to new data and ended up overfitting.

All of the goals set for this dissertation were achieved, however, future work should address the following

points: (i) include a larger population to increase the performance of the classification of the deep learning

model; (ii) enhance the quality of the acquired data by executing the trials on an actual home-like environ-
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ment instead of in a clinical setting; (iii) develop and validate a biofeedback strategy to make PD patients

aware of the required postural adjustments in real-time for a more effective motor rehabilitation.
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1 
 

Experimental Protocol 

Postural Assessment in Parkinson's Disease 
 

Purpose: 

OB1: Create an open-source multimodal dataset of the pull test and physical activities in 

Parkinson’s Disease based on 3D motion data and kinematic-driven gait parameters acquisitions 

through wearable miniaturized inertial sensors.  

OB2: Assess dynamic postural instability. 

OB3: Automatic estimation of pull test score based on artificial intelligence models. 

 

Study design: 

▪ Cross-sectional study. 

 

Local: 

▪ Hospital of Braga – 2CA Braga Academic Clinical Center. 

 

Study chronology: 

▪ T0: Patients’ selection and recruitment 

▪ T1: Experimental procedure 

▪ T2: Data analysis 

▪ T3: Dissemination 

 

 

Figure 1 - Study chronology (W: week). 

 

Participants: 

▪ Number of participants: 15 participants with PD + 10 healthy controls  

Table 1 - Inclusion and exclusion criteria 

Inclusion Criteria Exclusion Criteria 

• Diagnosis of PD according to the UK 

Parkinson's Disease Society Brain Bank 

criteria 

• Hoen & Yahr scale ≤ 4 

• Age between 45-85 years old 

• Can stand independently 

 

• Co-morbid disorders likely to affect gait, 
including stroke, rheumatologic disease 
and musculoskeletal disorders  

• Cognitive impairment 

• Obvious motor impairments 

• Cognitive impairments 

• Visual acuity deficits 

• Audiometric deficits 

• Other neurological disease 

• Pain that may affect walking 
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2 
 

Material: 

▪ Hoehn & Yar scale (H&Y) 

▪ Unified Parkinson's Disease Rating Scale (UPDRS-III) 

▪ Pull test score 

▪ Participants demographic registration document 

▪ +Sense waistband: +senseMotion 

▪ Xsens: 

o 1 sensor: back lower trunk (L3-L5 level) of the participant 

o MTManager SW 

 

Data acquisition and outcomes: 

Table 2 - Acquired variables and respective necessary material 

Type Variables Material 

C
lin

ic
 Disease stage H&Y 

Motor disability UPDRS-III 

D
e

m
o

gr
ap

h
ic

 Age [years] 

Participants demographic 

registration document 

Gender [F/M/Non-binary] 

Weight [Kg] 

Height [cm] 

M
o

ti
o

n
 

1. 3D motion data 

2. Kinematic-driven gait parameters: 

• Rhythm: step/stride time and stance/swing/double-

support phase. 

• Pace: step/stride length, velocity, and cadence. 

• Variability: step length/time, velocity, and stance/swing 

phase standard deviation. 

• Asymmetry: step length/time, velocity, and stance/swing 

phase asymmetry. 

3. Postural related metrics: 

• Trunk pitch and roll. 

• Range of motion. 

• Root mean square 

• JERK. 

+senseMotion 

Xsens 

 

 

Experimental procedure: 

Step 1. Get participants’ informed consent signature. 

Step 2. Record participants’ demographic data. 

Step 3. Assess and record the participants’ clinical scales (UPDRS-III except point 3.12). 

Step 4. Put the Xsens on the participant. 

Step 5. Put the +Sense on the participant. 

Step 6. Turn on +Sense and pair with +S APP (table 3). 

Step 7. Explain the first task (point 3.12 of UPDRS-III – pull test) to perform on data discrete 

type acquisition (table 4 and figure 2) and, if necessary, demonstrate it. 
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Step 8. In +S APP configure +sense to execute a motion monitoring acquisition as described 

in table 3. 

Step 9. Connect +sense with Xsens base station via wire. 

Step 10. Start data acquisition:  

a. Press start button in +S APP (table 3). 

b. Confirm in the Xsens desktop that the data acquisition has started and disconnect 

+sense to Xsens base station. 

c. Instruct the participant to start the explained task.  

d. Record the time the participants start a new activity transition.  

Step 11. Finish data acquisition:  

a. Instruct the participant to finish the first motion trial. 

b. Press stop button in +S APP (table 3). 

c. Confirm in Xsens desktop if stopped data acquisition. 

Step 12. Repeat the procedure from step 8 until subsequently complete the tasks indicated 

on table 4 referred to data acquisition discrete type. 

Step 13. In +S APP, plot acquired data to confirm that no losses have occurred during trials 

acquisition (table 3). 

Step 14. Exit +S APP, turn off the +sense and remove it from the participant (table 3). 

Estimated time per subject: ~30min 

 

 
Table 3 - +S APP configuration for respective experimental step and +sense strategy 

+S APP configuration 
Experimental 

procedure 
+sense command 

 

Step 7 Bluetooth pairing 

 

Step 9 Motion monitoring 
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+S APP configuration 
Experimental 

procedure 
+sense command 

 

Step 11 Start trial 

 

Step 12 Stop trial 

 

Step 14 Plot acquired data 

  

Step 15 Exit +SAPP 
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Data acquisition: human motor-related activities 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Experimental procedure tasks for human motor-related activities: (A) Sit in a chair, (B) Get up from a char, 
(C) Lie on a bed, (D) Get up from a bed, (E) Walk/Stand, (F) Right/Left 90° turning, (G) Right 180° turning, (H) Left 

180° turning.  
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Table 4 - Data acquisition type (discrete and continuous), physical activity and corresponding tasks, and estimated 
and total estimate time 

 
Activity Tasks 

Estimated time 

 Per trial Total 

Pull-test (3.12 point of UPDRS-III) 15s ~1min 

H
u

m
an

 m
o

to
r-

re
la

te
d

 a
ct

iv
it

ie
s 

(1) Sit in a chair 10s standing + sit in a chair + 10s sitting 25s 

~12min 

(2) Get up from a chair 10s sitting + get up + 10s standing 25s 

(3) Sit in a chair 10s standing + sit in a chair + 10s sitting 25s 

(4) Get up from a chair 10s sitting + get up + 10s standing 25s 

(5) Sit in a chair 10s standing + sit in a chair + 10s sitting 25s 

(6) Get up from a chair 10s sitting + get up + 10s standing 25s 

(7) Lie on a bed 10s standing + lie on a bed + 10s lying 25s 

(8) Get up from a bed 10s lying + get up + 10s standing 25s 

(9) Lie on a bed 10s standing + lie on a bed + 10s lying 25s 

(10) Get up from a bed 10s lying + get up + 10s standing 25s 

(11) Lie on a bed 10s standing + lie on a bed + 10s lying 25s 

(12) Get up from a bed 10s lying + get up + 10s standing 25s 

(13) Walk 10s standing + 10m walk + 10s standing 10s 

(14) Walk 10s standing + 10m walk + 10s standing 10s 

(15) Walk 10s standing + 10m walk + 10s standing 10s 

(16) 180° turning 5s standing + 

(10m walk + right 180° turn + 10m walk + left 180° turn) * 3  

+ 10m walk + 5s standing 

75s 

(17) Right 90° turning 5s standing + 5m walk + 90° turn + 5m walk + 5s standing 25s 

(18) Left 90° turning 5s standing + 5m walk + 90° turn + 5m walk + 5s standing 25s 

(19) Right 90° turning 5s standing + 5m walk + 90° turn + 5m walk + 5s standing 25s 

(20) Left 90° turning 5s standing + 5m walk + 90° turn + 5m walk + 5s standing 25s 

(21) Right 90° turning 5s standing + 5m walk + 90° turn + 5m walk + 5s standing 25s 

(22) Left 90° turning 5s standing + 5m walk + 90° turn + 5m walk + 5s standing 25s 

 

 

Data analysis:  

Table 5 - Variables and methods designation to achieve respective study purposes 

Purpose Variables Method 

Create an open-source multimodal dataset 

of physical activities in Parkinson’s Disease 

based on 3D motion data and kinematic-

driven gait parameters acquisitions through 

on wearable miniaturized inertial sensors. 

Motion data 

Open-source database guidelines 

(https://www.dbta.com/Editorial/Trends-and-

Applications/A-Practical-Guide-to-Adopting-an-

Open-Source-Database-for-Enterprise-IT-Use-

66368.aspx) 

Assess posture instability and estimate the 

pull test score using the created dataset. 
AI-based models and statistical analysis 

Descriptive and visual analysis of clinical 

and demographic data. 

Clinical and demographic 

data 

Statistical descriptive (mean ± standard 

deviation) * 

*SPSS will be used to accomplish the statistical analysis. 

 

  

OB1 

OB2/3 
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Schedule: 

Tasks 

Week 

1  2 3 4 5 6 7 8 9 10 11 12 

Recruitment  
 

                    
 

Experimental 
procedures 

             

Data analysis               

Dissemination                  
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B
TA B L E S S TAT I S T I C A L A N A LY S I S

B.1 Descriptive Statistics, Normality Test and Test to Compare Between

Independent Groups

B.1.1 Pull test score

Table 9: Descriptive statistics and results of the Kruskal-Wallis test for the pull test.

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

Duration of

the activity

0 3.656 1.042

0.439

1 2.784 0.796

2 3.324 0.658

3 2.978 1.155

4 3.452 1.309

Jerk mean

Acc x

0 -5.19E-04 3.66E-04

0.203

1 -4.32E-04 6.93E-04

2 -2.02E-04 4.57E-04

3 3.30E-04 8.53E-04

4 1.10E-03 2.15E-03

Jerk mean

Acc y

0 2.23E-04 4.88E-04

0.407

1 -5.29E-04 7.34E-04

2 -6.55E-04 1.55E-03

3 5.08E-04 1.65E-03

4 -1.64E-03 3.38E-03

Continued on next page
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Table 9 – Continued from previous page

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

Jerk mean

Acc z

0 1.34E-03 1.41E-03

0.839

1 1.10E-03 2.61E-03

2 8.87E-04 2.34E-03

3 1.85E-03 6.37E-03

4 6.67E-03 1.15E-02

Jerk std

Acc x

0 0.743 0.552

0.609

1 0.555 0.372

2 0.477 0.242

3 0.840 0.749

4 0.989 0.578

Jerk std

Acc y

0 1.084 0.805

0.685

1 0.638 0.474

2 0.435 0.211

3 0.856 0.681

4 1.015 1.017

Jerk std

Acc z

0 1.080 0.862

0.881

1 0.968 0.937

2 0.528 0.369

3 1.351 1.813

4 1.294 1.307

RMS Acc x

0 9.604 0.102

0.363

1 9.568 0.185

2 9.576 0.286

3 9.353 0.435

4 9.043 1.015

RMS Acc y

0 1.595 0.795

0.193

1 1.330 0.803

2 1.094 0.430

3 2.161 0.444

4 1.817 0.928

RMS Acc z

0 3.123 1.806

0.647

1 2.860 1.684

2 3.216 1.341

3 3.935 2.470

4 4.753 2.747

Continued on next page
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Table 9 – Continued from previous page

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

RMS Gyr x

0 22.086 12.226

0.236

1 9.724 10.152

2 5.661 7.493

3 12.506 20.632

4 3.225 6.444

RMS Gyr y

0 18.628 5.545

0.649

1 12.298 12.149

2 10.137 13.615

3 23.668 40.846

4 5.226 10.271

RMS Gyr z

0 9.747 3.915

0.165

1 4.305 5.048

2 2.642 3.519

3 6.048 9.991

4 1.452 2.835

RoM Acc x

0 11.753 5.697

0.644

1 7.716 4.365

2 9.483 4.703

3 10.713 7.323

4 12.803 6.175

RoM Acc y

0 14.871 8.143

0.613

1 9.619 7.930

2 7.117 3.428

3 11.457 5.985

4 16.828 20.026

RoM Acc z

0 16.880 10.231

0.840

1 13.000 9.167

2 11.326 7.351

3 17.533 20.665

4 17.369 13.824

RoM Gyr x

0 190.098 148.684

0.175

1 54.395 61.814

2 32.773 43.176

3 93.161 166.625

4 23.030 45.320

Continued on next page
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Table 9 – Continued from previous page

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

RoM Gyr y

0 138.718 60.012

0.486

1 86.689 90.141

2 78.352 113.587

3 170.344 320.469

4 36.550 69.422

RoM Gyr z

0 67.966 17.675

0.136

1 31.962 37.952

2 19.456 25.760

3 39.038 67.231

4 10.954 21.244

Pitch mean

0 -3.617 3.087

0.178

1 -0.988 3.104

2 -3.125 5.184

3 -0.197 6.579

4 -9.535 8.108

Pitch std

0 4.318 0.973

0.339

1 5.448 1.846

2 6.235 3.296

3 6.409 5.653

4 10.790 7.361

Roll mean

0 -0.208 1.607

0.193

1 0.140 0.441

2 1.021 1.469

3 0.958 1.230

4 -0.253 1.547

Roll std

0 1.881 0.842

0.329

1 1.095 0.376

2 1.364 0.218

3 1.841 0.856

4 1.384 0.642
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Table 10: Descriptive statistics and results of the Kruskal-Wallis test for the task involving sitting.

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 3.315 1.114 1.000 0.033 0.019 0.062

1 3.396 0.638 0.264 0.170 0.435

2 4.376 1.093 1.000 1.000

3 5.375 2.626 1.000

Duration of

the activity

4 4.244 0.958

0.002

0 3.00E-04 1.14E-03 1.000 1.000 1.000 0.021

1 -7.24E-05 2.93E-04 0.480 1.000 0.001

2 6.38E-04 1.06E-03 1.000 0.629

3 1.81E-04 1.50E-03 0.182

Jerk mean

Acc x

4 1.53E-03 1.26E-03

0.002

0 1.09E-04 1.68E-03 0.237 1.000 0.174 0.030

1 -8.38E-04 9.81E-04 0.222 1.000 1.000

2 1.30E-04 9.84E-04 0.162 0.028

3 -9.26E-04 1.01E-03 1.000

Jerk mean

Acc y

4 -1.16E-03 1.21E-03

0.003

0 6.27E-03 3.60E-03 0.444 1.000 0.606 1.000

1 3.41E-03 2.59E-03 1.000 1.000 0.051

2 5.09E-03 4.84E-03 1.000 1.000

3 3.54E-03 3.63E-03 0.077

Jerk mean

Acc z

4 7.97E-03 4.39E-03

0.020

0 0.224 0.074 1.000 1.000 0.348 1.000

1 0.208 0.128 0.288 0.016 1.000

2 0.277 0.117 1.000 1.000

3 0.315 0.097 0.785

Jerk std

Acc x

4 0.264 0.156

0.023

0 0.174 0.055 1.000 1.000 0.237 1.000

1 0.180 0.224 0.327 0.002 1.000

2 0.197 0.083 1.000 1.000

3 0.248 0.085 0.135

Jerk std

Acc y

4 0.167 0.080

0.004

0 0.253 0.094 0.050 1.000 1.000 1.000

1 0.207 0.236 0.462 0.007 0.561

2 0.238 0.108 1.000 1.000

3 0.267 0.071 1.000

Jerk std

Acc z

4 0.230 0.117

0.011

Continued on next page
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Table 10 – Continued from previous page

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 9.471 0.091 1.000 1.000 0.018 1.000

1 9.420 0.314 1.000 0.016 1.000

2 9.293 0.361 0.744 1.000

3 9.182 0.239 0.972

RMS Acc x

4 9.359 0.178

0.009

0 0.837 0.320 1.000 1.000 0.629 1.000

1 0.777 0.548 1.000 0.060 0.418

2 0.738 0.232 0.120 0.717

3 1.126 0.382 1.000

RMS Acc y

4 0.996 0.329

0.025

0 2.532 1.018 1.000 0.641 1.000 0.111

1 2.230 0.564 0.212 0.730 0.028

2 3.264 1.366 1.000 1.000

3 3.372 1.800 1.000

RMS Acc z

4 3.494 1.087

0.013

0 6.832 3.865 0.393 0.016 0.551 0.096

1 3.446 3.916 1.000 1.000 1.000

2 2.496 3.391 1.000 1.000

3 6.290 9.097 1.000

RMS Gyr x

4 2.397 4.744

0.023

0 24.216 7.986 0.166 0.041 0.004 0.004

1 12.623 10.629 1.000 1.000 1.000

2 8.257 10.114 1.000 1.000

3 9.312 12.188 1.000

RMS Gyr y

4 6.055 11.999

0.002

0 4.948 1.862 0.814 0.006 0.190 0.106

1 2.901 2.523 0.875 1.000 1.000

2 1.715 2.173 1.000 1.000

3 2.742 3.732 1.000

RMS Gyr z

4 1.704 3.353

0.010

0 4.916 1.974

1 5.266 3.029

2 5.516 2.037

3 5.399 1.762

RoM Acc x

4 4.764 1.710

0.665

Continued on next page
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Table 10 – Continued from previous page

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 2.878 1.680 1.000 1.000 0.641 1.000

1 3.146 4.899 0.829 0.006 0.370

2 2.818 1.213 0.890 1.000

3 4.367 2.288 1.000

RoM Acc y

4 3.020 1.333

0.017

0 6.895 1.784

1 6.752 4.308

2 8.132 2.344

3 7.415 2.955

RoM Acc z

4 7.655 2.248

0.127

0 39.251 25.329 0.144 0.048 0.401 0.019

1 16.992 19.367 1.000 1.000 1.000

2 14.014 18.324 1.000 1.000

3 39.359 55.503 1.000

RoM Gyr x

4 10.318 20.244

0.016

0 107.946 36.206 0.170 0.048 0.013 0.001

1 52.568 44.647 1.000 1.000 1.000

2 37.176 45.195 1.000 1.000

3 46.076 59.794 1.000

RoM Gyr y

4 25.480 50.039

0.001

0 28.141 14.005 1.000 0.019 0.203 0.013

1 14.490 12.839 1.000 1.000 1.000

2 9.376 11.862 1.000 1.000

3 16.043 21.747 1.000

RoM Gyr z

4 7.483 14.616

0.009

0 -0.290 5.691

1 3.904 4.336

2 0.281 10.197

3 3.604 6.918

Pitch mean

4 -1.222 5.254

0.138

0 10.732 2.279 1.000 0.785 1.000 1.000

1 9.511 3.103 0.059 1.000 0.090

2 14.004 5.145 0.410 1.000

3 10.717 5.356 0.572

Pitch std

4 13.090 4.312

0.019

Continued on next page
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Table 10 – Continued from previous page

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 0.392 1.355 0.003 1.000 0.011 0.955

1 -2.017 1.390 0.029 1.000 0.500

2 -0.112 1.211 0.085 1.000

3 -2.154 2.332 1.000

Roll mean

4 -0.992 2.286

0.000

0 1.612 0.811 1.000 1.000 0.401 0.021

1 1.813 0.621 1.000 1.000 0.099

2 1.718 0.799 0.678 0.043

3 2.799 1.822 1.000

Roll std

4 2.901 1.061

0.006

Table 11: Descriptive statistics and results of the Kruskal-Wallis test for the task involving getting up from a chair.

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 3.088 0.787 1.000 0.778 1.000 0.035

1 3.519 0.725 1.000 1.000 1.000

2 3.892 1.886 1.000 1.000

3 3.773 2.334 0.239

Duration of

the activity

4 4.144 1.087

0.040

0 2.88E-05 1.17E-03 1.000 0.307 0.641 0.007

1 -9.12E-05 4.79E-04 0.606 1.000 0.018

2 -9.68E-04 3.55E-03 1.000 1.000

3 -6.09E-04 2.13E-03 1.000

Jerk mean

Acc x

4 -1.90E-03 1.96E-03

0.003

0 -7.02E-05 1.62E-03 0.939 1 0.385 0.282

1 6.73E-04 9.96E-04 0.500 1.000 1.000

2 1.26E-04 2.58E-03 0.186 0.132

3 1.42E-03 2.04E-03 1.000

Jerk mean

Acc y

4 9.63E-04 1.29E-03

0.025

0 -6.98E-03 3.27E-03

1 -5.11E-03 2.00E-03

2 -8.90E-03 7.68E-03

3 -5.75E-03 3.57E-03

Jerk mean

Acc z

4 -8.16E-03 5.10E-03

0.262

Continued on next page
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Table 11 – Continued from previous page

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 0.175 0.081 1.000 0.178 0.010 1.000

1 0.136 0.038 0.002 0.000 0.087

2 0.303 0.150 1.000 1.000

3 0.432 0.253 0.480

Jerk std

Acc x

4 0.278 0.205

0.000

0 0.160 0.128 0.190 1.000 0.007 1.000

1 0.093 0.023 0.001 0.000 0.057

2 0.189 0.082 0.520 1.000

3 0.268 0.098 0.029

Jerk std

Acc y

4 0.171 0.120

0.000

0 0.200 0.088 0.182 1.000 0.018 1.000

1 0.129 0.035 0.002 0.000 0.016

2 0.276 0.170 0.757 1.000

3 0.370 0.161 0.203

Jerk std

Acc z

4 0.241 0.129

0.000

0 9.464 0.082 1.000 1.000 0.385 1.000

1 9.449 0.225 1.000 0.033 1.000

2 9.197 0.950 0.691 1.000

3 9.158 0.301 0.151

RMS Acc x

4 9.461 0.138

0.041

0 0.877 0.316

1 0.728 0.447

2 1.198 1.776

3 1.056 0.525

RMS Acc y

4 1.069 0.373

0.080

0 2.131 0.960 1.000 0.500 0.007 0.194

1 2.247 0.438 1.000 0.048 0.800

2 2.735 0.830 1.000 1.000

3 3.669 1.565 1.000

RMS Acc z

4 2.979 1.203

0.005

0 6.157 2.485 0.114 0.141 0.453 0.033

1 2.988 2.843 1.000 1.000 1.000

2 2.539 3.179 1.000 1.000

3 4.738 6.444 1.000

RMS Gyr x

4 1.931 3.837

0.030

Continued on next page
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Table 11 – Continued from previous page

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 26.072 8.228 0.355 0.138 0.132 0.001

1 14.271 12.028 1.000 1.000 0.814

2 10.166 12.346 1.000 1.000

3 11.992 16.240 1.000

RMS Gyr y

4 6.850 13.719

0.004

0 4.594 2.885 0.540 0.135 0.162 0.013

1 2.438 2.155 1.000 1.000 1.000

2 1.911 2.410 1.000 1.000

3 1.945 2.574 1.000

RMS Gyr z

4 1.597 3.173

0.020

0 5.539 2.031 0.572 1.000 1.000 0.128

1 4.313 1.346 0.075 0.194 1.000

2 7.048 4.440 1.000 0.011

3 6.119 2.421 0.035

RoM Acc x

4 4.404 3.206

0.002

0 3.075 3.104 0.691 1.000 0.248 1.000

1 1.807 0.504 0.010 0.000 0.500

2 3.328 2.176 1.000 1.000

3 3.183 0.878 0.355

RoM Acc y

4 2.657 1.566

0.001

0 6.767 2.465 1.000 0.704 0.040 1.000

1 5.875 1.277 0.148 0.004 1.000

2 8.417 3.054 1.000 1.000

3 8.900 2.231 0.370

RoM Acc z

4 7.089 2.471

0.003

0 37.886 16.480 0.046 0.049 0.730 0.003

1 15.582 14.269 1.000 1.000 1.000

2 13.604 17.688 1.000 1.000

3 28.459 36.448 0.678

RoM Gyr x

4 9.398 19.120

0.004

0 115.779 37.030 0.389 0.045 0.341 0.001

1 65.794 55.746 1.000 1.000 0.793

2 43.521 53.067 1.000 1.000

3 52.583 67.510 0.89

RoM Gyr y

4 29.864 58.714

0.003

Continued on next page
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Table 11 – Continued from previous page

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 23.773 14.567 0.462 0.208 0.471 0.011

1 12.005 10.572 1.000 1.000 1.000

2 9.846 12.245 1.000 1.000

3 11.213 14.059 1.000

RoM Gyr z

4 7.713 15.351

0.024

0 14.179 3.594

1 12.880 2.149

2 17.426 13.042

3 14.323 9.398

Pitch mean

4 18.441 10.204

0.296

0 8.596 1.977 1.000 0.037 1.000 1.000

1 8.516 1.937 0.046 1.000 1.000

2 13.294 6.284 1.000 0.362

3 10.426 4.070 1.000

Pitch std

4 9.569 3.849

0.023

0 -0.059 2.549 1.000 1.000 0.327 0.046

1 -0.050 1.359 1.000 0.691 0.120

2 2.434 14.097 0.104 0.011

3 1.699 2.334 1.000

Roll mean

4 2.099 3.635

0.003

0 1.484 0.838

1 1.574 0.686

2 3.748 8.603

3 1.826 1.177

Roll std

4 2.074 0.765

0.426

Table 12: Descriptive statistics and results of the Kruskal-Wallis test for the task involving lying on a bed.

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 5.189 0.653 1.000 0.947 0.000 0.014

1 6.611 2.756 1.000 0.013 1.000

2 6.855 2.663 0.019 1.000

3 12.348 5.320 1.000

Duration of

the activity

4 8.539 3.630

0.000

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 1.70E-02 3.03E-03 0.520 0.000 0.000 0.034

1 1.33E-02 4.76E-03 0.123 0.120 1.000

2 4.78E-03 1.18E-02 1.000 1.000

3 8.07E-03 5.27E-03 1.000

Jerk mean

Acc x

4 1.15E-02 4.41E-03

0.000

0 2.79E-03 1.78E-02

1 4.42E-03 1.59E-02

2 7.46E-03 1.24E-02

3 6.50E-03 5.74E-03

Jerk mean

Acc y

4 1.06E-02 3.91E-03

0.727

0 3.70E-03 6.09E-03 1.000 0.101 1.000 1.000

1 4.53E-03 2.12E-03 0.009 0.653 1.000

2 7.10E-04 2.46E-03 1.000 0.393

3 2.39E-03 3.29E-03 1.000

Jerk mean

Acc z

4 3.28E-03 2.07E-03

0.014

0 0.253 0.106 0.264 0.972 1.000 1.000

1 0.178 0.064 1.000 0.087 1.000

2 0.185 0.051 0.393 1.000

3 0.337 0.206 1.000

Jerk std

Acc x

4 0.253 0.140

0.047

0 0.322 0.147 0.009 0.054 1.000 0.453

1 0.169 0.041 1.000 0.294 1.000

2 0.184 0.055 1.000 1.000

3 0.242 0.100 1.000

Jerk std

Acc y

4 0.247 0.167

0.007

0 0.303 0.152 0.059 0.020 1.000 1.000

1 0.187 0.102 1.000 0.276 1.000

2 0.161 0.033 0.111 1.000

3 0.304 0.181 1.000

Jerk std

Acc z

4 0.230 0.114

0.006

0 6.381 0.741 1.000 0.032 0.362 0.540

1 6.754 0.791 1.000 1.000 1.000

2 7.262 0.625 1.000 1.000

3 7.024 1.145 1.000

RMS Acc x

4 6.977 0.776

0.048

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 7.008 0.807 1.000 0.075 0.178 0.014

1 6.615 0.782 1.000 1.000 0.355

2 6.159 0.626 1.000 1.000

3 4.825 2.938 1.000

RMS Acc y

4 5.890 0.733

0.009

0 3.420 0.745 1.000 0.237 1.000 1.000

1 2.964 1.185 1.000 0.704 0.062

2 2.529 0.745 0.050 0.002

3 4.043 1.703 1.000

RMS Acc z

4 4.459 1.685

0.002

0 16.948 9.367 0.248 0.001 0.004 0.004

1 8.323 7.154 0.814 1.000 1.000

2 2.974 3.811 1.000 1.000

3 6.133 7.702 1.000

RMS Gyr x

4 2.366 4.645

0.000

0 22.799 4.423 0.051 0.000 0.000 0.000

1 11.985 10.016 0.561 0.771 0.859

2 5.674 7.222 1.000 1.000

3 5.279 6.368 1.000

RMS Gyr y

4 3.988 7.569

0.000

0 28.592 4.990 0.155 0.000 0.000 0.000

1 13.494 12.103 0.435 0.059 0.020

2 6.669 8.541 1.000 1.000

3 5.126 7.283 1.000

RMS Gyr z

4 3.401 6.521

0.000

0 12.276 1.617 1.000 0.073 1.000 1.000

1 11.414 3.031 0.800 1.000 0.972

2 9.818 1.540 0.109 0.007

3 12.823 5.878 1.000

RoM Acc x

4 13.342 3.117

0.009

0 13.572 3.684 1.000 0.029 0.348 0.166

1 11.888 1.623 0.083 0.771 0.401

2 10.195 0.986 1.000 1.000

3 9.734 3.340 1.000

RoM Acc y

4 10.622 1.360

0.008

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 9.124 2.441 1.000 0.029 1.000 1.000

1 8.320 2.360 0.313 0.704 1.000

2 6.334 1.763 0.001 0.096

3 11.224 4.971 1.000

RoM Acc z

4 8.671 2.027

0.002

0 104.851 62.912 0.227 0.000 0.031 0.002

1 47.959 42.281 0.471 1.000 1.000

2 18.701 24.196 1.000 1.000

3 43.307 54.715 1.000

RoM Gyr x

4 9.889 17.868

0.000

0 123.028 40.503 0.135 0.000 0.009 0.002

1 64.777 55.102 0.253 1.000 1.000

2 31.711 39.034 1.000 1.000

3 41.829 52.599 1.000

RoM Gyr y

4 24.487 46.037

0.000

0 93.749 31.645 0.288 0.000 0.001 0.000

1 48.314 43.767 0.123 0.800 0.276

2 23.686 30.776 1.000 1.000

3 29.800 38.735 1.000

RoM Gyr z

4 12.390 22.681

0.000

0 -17.673 8.559 0.972 0.000 1.000 1.000

1 -12.484 14.900 0.075 1.000 0.540

2 12.592 30.898 0.000 0.000

3 -23.236 19.951 1.000

Pitch mean

4 -23.908 18.008

0.000

0 28.870 19.024 1.000 0.248 1.000 1.000

1 20.779 20.240 1.000 0.070 1.000

2 18.998 19.532 0.005 0.510

3 39.092 22.835 1.000

Pitch std

4 31.755 21.689

0.006

0 5.162 45.936

1 11.199 40.065

2 15.438 33.143

3 26.085 20.914

Roll mean

4 33.998 9.664

0.650

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 35.064 3.304

1 33.470 5.112

2 29.838 5.669

3 24.825 13.956

Roll std

4 34.031 5.526

0.148

Table 13: Descriptive statistics and results of the Kruskal-Wallis test for the task involving getting from a bed.

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 5.563 0.867 1.000 1.000 0.001 0.010

1 6.651 1.572 1.000 0.224 0.972

2 6.840 2.088 0.188 0.844

3 10.079 3.978 1.000

Duration of

the activity

4 8.527 2.611

0.001

0 -1.63E-02 4.33E-03 0.393 0.002 0.003 0.045

1 -1.22E-02 3.73E-03 0.955 1.000 1.000

2 -6.82E-03 9.32E-03 1.000 1.000

3 -1.05E-02 7.31E-03 1.000

Jerk mean

Acc x

4 -1.10E-02 3.16E-03

0.001

0 -3.70E-03 1.65E-02

1 -3.27E-03 1.48E-02

2 -8.95E-03 9.67E-03

3 -7.68E-03 8.27E-03

Jerk mean

Acc y

4 -9.54E-03 3.17E-03

0.735

0 -3.33E-03 5.30E-03

1 -4.34E-03 1.64E-03

2 -1.08E-03 2.69E-03

3 -2.33E-03 5.01E-03

Jerk mean

Acc z

4 -2.61E-03 1.63E-03

0.091

0 0.186 0.048 0.072 1.000 1.000 0.730

1 0.124 0.050 0.037 0.004 1.000

2 0.229 0.164 1.000 0.444

3 0.301 0.211 0.087

Jerk std

Acc x

4 0.144 0.061

0.001

Continued on next page



B.1. Descriptive Statistics, Normality Test and Test to Compare Between Independent Groups 116

Table 13 – Continued from previous page

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 0.190 0.064 0.028 1.000 1.000 0.771

1 0.121 0.043 0.081 0.025 1.000

2 0.188 0.076 1.000 1.000

3 0.287 0.272 0.717

Jerk std

Acc y

4 0.146 0.053

0.007

0 0.201 0.038 0.008 1.000 1.000 0.044

1 0.135 0.048 0.227 0.023 1.000

2 0.190 0.074 1.000 0.785

3 0.257 0.156 0.114

Jerk std

Acc z

4 0.149 0.047

0.001

0 7.664 0.393

1 8.104 0.393

2 7.958 0.832

3 7.678 0.902

RMS Acc x

4 7.806 0.490

0.185

0 5.498 0.542

1 4.919 0.615

2 5.137 1.424

3 4.202 2.479

RMS Acc y

4 5.189 0.735

0.453

0 2.966 0.669

1 2.698 0.824

2 2.567 0.486

3 3.583 1.646

RMS Acc z

4 3.776 1.423

0.051

0 12.370 5.792 0.155 0.001 0.222 0.000

1 7.221 6.281 1.000 1.000 0.334

2 2.833 3.560 1.000 1.000

3 4.921 6.205 0.237

RMS Gyr x

4 1.453 2.711

0.000

0 20.670 6.164 0.341 0.001 0.006 0.000

1 11.156 9.727 0.859 1.000 0.075

2 6.425 7.904 1.000 1.000

3 6.126 7.502 1.000

RMS Gyr y

4 3.500 6.789

0.000

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 23.655 4.393 0.065 0.001 0.000 0.000

1 10.330 9.146 1.000 0.203 0.015

2 6.610 8.228 1.000 0.629

3 4.143 5.302 1.000

RMS Gyr z

4 1.902 3.450

0.000

0 11.237 1.457 0.150 0.135 1.000 1.000

1 9.241 2.314 1.000 0.242 1.000

2 9.229 1.974 0.220 1.000

3 10.715 3.017 1.000

RoM Acc x

4 10.218 2.078

0.024

0 11.602 2.107

1 10.712 1.406

2 9.627 1.375

3 9.080 4.100

RoM Acc y

4 9.545 1.150

0.052

0 8.788 1.293 1.000 0.008 1.000 0.048

1 8.150 2.156 0.075 0.215 0.320

2 6.262 0.845 0.000 1.000

3 10.860 2.416 0.000

RoM Acc z

4 6.529 1.868

0.000

0 65.903 31.912 0.217 0.003 0.672 0.000

1 38.497 34.630 1.000 1.000 0.567

2 15.330 20.025 0.685 1.000

3 29.091 36.147 0.178

RoM Gyr x

4 8.498 16.231

0.000

0 95.919 39.512 0.691 0.018 0.109 0.000

1 57.598 52.046 1.000 1.000 0.075

2 34.653 42.531 1.000 1.000

3 34.536 41.689 0.520

RoM Gyr y

4 17.182 33.229

0.000

0 67.796 14.144 0.079 0.002 0.000 0.000

1 31.465 28.673 1.000 1.000 0.025

2 21.182 27.959 1.000 0.500

3 19.820 24.082 1.000

RoM Gyr z

4 6.447 11.587

0.000

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 58.915 53.196 1.000 0.000 1.000 1.000

1 31.142 43.525 0.025 1.000 1.000

2 0.229 13.208 0.000 0.001

3 66.894 57.260 1.000

Pitch mean

4 66.818 56.676

0.000

0 30.622 22.878 0.435 0.009 1.000 1.000

1 17.552 18.709 1.000 0.444 1.000

2 13.926 15.052 0.010 0.282

3 32.038 20.512 1.000

Pitch std

4 30.309 21.930

0.003

0 -10.210 55.239

1 -13.822 53.537

2 -28.756 32.074

3 -36.464 22.482

Roll mean

4 -51.604 11.672

0.111

0 33.137 2.221 0.595 0.040 0.034 0.435

1 28.991 5.619 1.000 1.000 1.000

2 26.145 8.787 1.000 1.000

3 22.148 13.041 1.000

Roll std

4 29.057 5.231

0.024

Table 14: Descriptive statistics and results of the Kruskal-Wallis test for the task involving walking.

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 10.011 0.516 1.000 1.000 0.040 0.000

1 11.220 2.699 1.000 0.351 0.004

2 10.662 0.959 1.000 0.032

3 16.033 7.888 1.000

Duration of

the activity

4 18.923 5.747

0.000

0 7.64E-05 1.98E-04

1 3.57E-05 1.54E-04

2 5.22E-05 2.58E-04

3 -5.71E-05 5.94E-04

Jerk mean

Acc x

4 -4.08E-05 1.07E-04

0.475

Continued on next page
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Table 14 – Continued from previous page

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 1.94E-04 4.53E-04

1 1.49E-05 3.05E-04

2 4.81E-05 2.87E-04

3 -2.00E-05 2.93E-04

Jerk mean

Acc y

4 -1.56E-05 2.75E-04

0.731

0 -7.05E-05 6.06E-04

1 -1.13E-04 4.36E-04

2 -3.28E-04 3.09E-04

3 -2.66E-04 6.02E-04

Jerk mean

Acc z

4 -3.97E-05 3.49E-04

0.322

0 0.651 0.180 1.000 0.490 1.000 0.003

1 0.550 0.149 1.000 1.000 0.081

2 0.498 0.089 0.111 0.906

3 0.773 0.342 0.000

Jerk std

Acc x

4 0.384 0.154

0.000

0 0.664 0.275 1.000 1.000 1.000 0.000

1 0.542 0.170 1.000 1.000 0.000

2 0.495 0.077 1.000 0.010

3 0.597 0.231 0.000

Jerk std

Acc y

4 0.289 0.074

0.000

0 0.829 0.315 1.000 0.595 1.000 0.000

1 0.743 0.327 1.000 1.000 0.001

2 0.602 0.132 1.000 0.155

3 0.751 0.281 0.001

Jerk std

Acc z

4 0.386 0.137

0.000

0 9.818 0.223 1.000 1.000 0.320 0.033

1 9.750 0.062 1.000 1.000 0.814

2 9.835 0.097 0.104 0.008

3 9.630 0.344 1.000

RMS Acc x

4 9.641 0.171

0.003

0 1.535 0.562 1.000 1.000 0.042 0.641

1 1.465 0.485 1.000 0.033 0.540

2 1.311 0.149 0.001 0.034

3 1.977 0.329 1.000

RMS Acc y

4 1.859 0.560

0.000

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 2.416 1.210 1.000 1.000 0.085 1.000

1 2.140 0.487 1.000 0.077 1.000

2 1.940 0.326 0.014 0.500

3 3.228 1.415 1.000

RMS Acc z

4 2.549 0.972

0.008

0 19.856 3.884 0.348 0.004 0.001 0.000

1 10.487 9.732 1.000 0.859 0.111

2 7.169 9.040 1.000 1.000

3 6.932 8.677 1.000

RMS Gyr x

4 3.636 6.838

0.000

0 15.061 6.258 0.208 0.024 0.166 0.000

1 9.183 9.212 1.000 1.000 0.051

2 5.950 7.401 1.000 0.385

3 4.929 5.838 0.066

RMS Gyr y

4 1.583 2.824

0.000

0 16.115 2.562 0.208 0.002 0.000 0.000

1 8.299 8.020 1.000 0.385 0.002

2 4.825 5.800 1.000 0.190

3 3.078 3.626 1.000

RMS Gyr z

4 2.143 4.085

0.000

0 12.394 3.698 0.313 1.000 1.000 0.000

1 9.277 1.619 1.000 0.253 0.453

2 9.722 1.331 1.000 0.066

3 12.581 4.256 0.000

RoM Acc x

4 7.651 1.380

0.000

0 11.310 5.721 1.000 1.000 1.000 0.003

1 9.344 3.501 1.000 1.000 0.031

2 8.482 1.635 1.000 0.052

3 10.412 3.395 0.001

RoM Acc y

4 6.242 1.215

0.001

0 12.872 6.101 1.000 1.000 1.000 0.002

1 11.200 4.333 1.000 1.000 0.004

2 9.414 2.894 1.000 0.294

3 11.296 3.337 0.002

RoM Acc z

4 6.566 2.500

0.000

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 139.282 70.522 0.385 0.010 0.019 0.000

1 61.042 55.028 1.000 1.000 0.186

2 40.850 50.303 1.000 1.000

3 50.775 62.997 1.000

RoM Gyr x

4 20.513 38.064

0.000

0 108.474 55.288 0.158 0.015 0.520 0.000

1 66.599 67.354 1.000 1.000 0.282

2 36.885 44.809 1.000 1.000

3 40.910 50.930 0.077

RoM Gyr y

4 11.308 20.082

0.000

0 101.035 23.356 0.288 0.006 0.001 0.000

1 56.870 55.170 1.000 0.837 0.001

2 30.376 36.182 1.000 0.110

3 25.173 30.606 0.381

RoM Gyr z

4 13.331 25.335

0.000

0 0.029 2.138

1 0.955 1.700

2 1.070 1.269

3 1.782 3.416

Pitch mean

4 1.389 1.486

0.374

0 2.201 0.466 0.418 0.028 1.000 1.000

1 1.819 0.352 1.000 0.007 1.000

2 1.680 0.345 0.000 0.186

3 2.737 0.976 0.471

Pitch std

4 2.022 0.384

0.000

0 0.820 1.106 1.000 0.044 0.056 1.000

1 0.360 0.625 0.771 0.906 1.000

2 -0.383 0.854 1.000 0.083

3 -0.379 1.521 0.104

Roll mean

4 0.598 1.001

0.005

0 1.805 0.303

1 1.656 0.374

2 1.560 0.281

3 1.636 0.737

Roll std

4 1.510 0.458

0.165

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 0.636 0.088 1.000 1.000 0.096 0.000

1 0.591 0.100 1.000 1.000 0.006

2 0.665 0.113 0.029 0.000

3 0.531 0.064 0.385

Step length

4 0.455 0.043

0.000

0 1.255 0.162 1.000 1.000 0.186 0.000

1 1.181 0.195 1.000 1.000 0.006

2 1.324 0.229 0.041 0.000

3 1.069 0.135 0.313

Stride length

4 0.910 0.088

0.000

0 1.195 0.150 1.000 1.000 0.054 0.000

1 1.087 0.182 1.000 1.000 0.002

2 1.190 0.191 0.106 0.000

3 0.968 0.188 0.096

Velocity

4 0.766 0.081

0.000

0 113.300 4.411

1 111.517 12.528

2 108.274 8.324

3 110.149 9.085

Cadence

4 102.471 17.794

0.061

0 13.000 1.464 0.932 1.000 0.000 0.000

1 16.067 4.415 1.000 0.070 0.003

2 14.700 2.644 0.017 0.000

3 22.800 8.546 1.000

Number

of steps

4 25.200 6.753

0.000

0 0.533 0.021

1 0.550 0.062

2 0.560 0.043

3 0.582 0.129

Step time

4 0.607 0.094

0.071

0 1.066 0.039

1 1.095 0.123

2 1.119 0.086

3 1.165 0.254

Stride

time

4 1.212 0.188

0.063

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 0.645 0.046 1.000 0.972 0.410 0.006

1 0.688 0.072 1.000 1.000 0.551

2 0.693 0.073 1.000 0.744

3 0.704 0.079 1.000

Stance

time

4 0.777 0.136

0.016

0 0.420 0.037

1 0.407 0.063

2 0.426 0.047

3 0.461 0.258

Swing

time

4 0.435 0.056

0.135

0 21.090 6.535 0.109 1.000 0.007 0.005

1 25.509 4.930 1.000 1.000 1.000

2 23.765 6.883 0.313 0.237

3 28.249 6.537 1.000

Double

support

phase

4 27.644 4.021

0.001

0 60.568 3.430 0.094 1.000 0.037 0.008

1 62.974 2.842 1.000 1.000 1.000

2 61.882 3.463 0.678 0.237

3 61.479 10.943 1.000

Stance

phase

4 63.991 1.946

0.004

0 38.580 4.221 0.174 1.000 0.174 0.001

1 35.369 3.785 1.000 1.000 1.000

2 36.389 4.209 1.000 0.194

3 39.723 19.640 1.000

Swing

phase

4 33.347 2.482

0.003

0 1.09E-01 6.52E-02 1.000 1.000 0.653 1.000

1 1.32E-01 1.02E-01 0.829 0.444 1.000

2 7.00E-02 4.62E-02 1.000 0.123

3 6.75E-02 5.39E-02 0.054

AS step

length

4 1.39E-01 7.61E-02

0.022

0 2.44E-02 2.27E-02

1 3.20E-02 4.73E-02

2 3.49E-02 2.58E-02

3 6.48E-02 1.03E-01

AS step

time

4 4.42E-02 3.20E-02

0.220

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 2.13E-01 1.17E-01 1.000 0.510 1.000 1.000

1 2.30E-01 1.26E-01 0.270 1.000 1.000

2 1.30E-01 7.80E-02 1.000 0.034

3 1.65E-01 1.37E-01 0.203

AS velocity

4 2.64E-01 1.25E-01

0.021

0 2.03E-02 1.86E-02

1 2.65E-02 3.16E-02

2 2.68E-02 1.52E-02

3 1.19E-01 3.71E-01

AS stance

time

4 3.30E-02 3.37E-02

0.499

0 1.96E-02 1.54E-02

1 2.13E-02 2.44E-02

2 2.71E-02 1.41E-02

3 1.19E-01 3.75E-01

AS swing

time

4 3.30E-02 3.43E-02

0.253

0 9.11E-02 2.98E-02 1.000 0.199 1.000 1.000

1 9.40E-02 4.58E-02 0.757 1.000 1.000

2 6.52E-02 2.25E-02 0.012 0.015

3 1.12E-01 5.84E-02 1.000

SD step

length

4 1.00E-01 3.01E-02

0.007

0 3.82E-02 2.05E-02 1.000 1.000 0.035 0.064

1 4.95E-02 2.16E-02 0.751 1.000 1.000

2 3.74E-02 1.72E-02 0.019 0.036

3 1.77E-01 4.45E-01 1.000

SD step

time

4 6.10E-02 2.19E-02

0.002

0 1.72E-01 5.46E-02 1.000 0.081 0.989 1.000

1 1.74E-01 6.43E-02 0.066 1.000 1.000

2 1.17E-01 3.43E-02 0.000 0.014

3 2.01E-01 5.16E-02 1.000

SD step

velocity

4 1.79E-01 4.74E-02

0.000

0 3.50E-02 1.80E-02 0.453 1.000 0.065 0.007

1 4.66E-02 1.62E-02 1.000 1.000 1.000

2 4.22E-02 1.65E-02 0.717 0.132

3 2.35E-01 6.88E-01 1.000

SD stance

time

4 6.28E-02 2.35E-02

0.005

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 3.43E-02 1.92E-02 1.000 1.000 0.114 0.248

1 4.08E-02 1.74E-02 1.000 1.000 1.000

2 3.35E-02 1.57E-02 0.144 0.307

3 2.27E-01 6.85E-01 1.000

SD swing

time

4 5.62E-02 2.98E-02

0.025

Table 15: Descriptive statistics and results of the Kruskal-Wallis test for the task involving turning 180º.

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 68.540 2.845 1.000 0.857 0.143 0.017

1 77.258 18.111 1.000 1.000 0.392

2 77.324 3.661 1.000 1.000

3 110.876 49.430 1.000

Duration of

the activity

4 149.038 73.832

0.019

0 3.21E-05 4.20E-05

1 1.10E-06 1.04E-05

2 2.33E-06 3.52E-05

3 -1.25E-05 2.74E-05

Jerk mean

Acc x

4 -3.23E-05 3.97E-05

0.088

0 5.97E-05 1.19E-04

1 -8.90E-06 9.42E-05

2 4.03E-05 6.77E-05

3 1.18E-05 5.61E-05

Jerk mean

Acc y

4 -2.14E-06 8.02E-06

0.467

0 -3.47E-06 9.11E-05

1 -2.58E-05 3.56E-05

2 -1.85E-05 5.28E-05

3 -6.90E-07 5.38E-05

Jerk mean

Acc z

4 -2.85E-05 9.38E-05

0.940

0 0.729 0.193

1 0.719 0.161

2 0.531 0.073

3 0.780 0.402

Jerk std

Acc x

4 0.437 0.165

0.087

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 0.728 0.337

1 0.687 0.214

2 0.530 0.097

3 0.555 0.203

Jerk std

Acc y

4 0.360 0.128

0.081

0 0.907 0.366

1 0.943 0.416

2 0.623 0.134

3 0.728 0.329

Jerk std

Acc z

4 0.445 0.157

0.072

0 9.856 0.224

1 9.808 0.055

2 9.852 0.075

3 9.731 0.163

RMS Acc x

4 9.656 0.215

0.334

0 1.623 0.604

1 1.664 0.559

2 1.343 0.156

3 1.804 0.470

RMS Acc y

4 1.949 0.598

0.378

0 2.503 1.364

1 2.373 0.570

2 1.987 0.318

3 2.587 0.895

RMS Acc z

4 2.536 0.990

0.775

0 40.090 4.862 1.000 0.392 0.068 0.009

1 22.848 22.317 1.000 1.000 0.317

2 14.326 18.794 1.000 1.000

3 10.592 13.949 1.000

RMS Gyr x

4 5.029 10.207

0.009

0 17.819 8.077

1 11.973 13.034

2 6.903 9.001

3 5.452 6.889

RMS Gyr y

4 1.787 3.425

0.074

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 19.326 4.213 1.000 0.392 0.068 0.011

1 10.568 10.984 1.000 1.000 0.392

2 5.462 7.110 1.000 1.000

3 3.374 4.244 1.000

RMS Gyr z

4 2.509 5.152

0.010

0 13.647 3.481

1 13.426 3.093

2 11.561 1.625

3 15.005 2.984

RoM Acc x

4 9.863 2.217

0.103

0 13.404 6.571

1 13.956 4.919

2 11.003 2.057

3 11.877 2.319

RoM Acc y

4 9.366 1.951

0.310

0 15.826 6.337

1 16.642 6.324

2 11.473 2.176

3 14.549 2.693

RoM Acc z

4 9.877 3.246

0.119

0 301.878 92.796 1.000 0.481 0.060 0.013

1 176.929 173.183 1.000 0.938 0.317

2 100.909 132.004 1.000 1.000

3 87.844 115.153 1.000

RoM Gyr x

4 37.466 75.515

0.009

0 146.376 85.013

1 105.590 118.116

2 54.861 73.089

3 56.979 72.720

RoM Gyr y

4 16.109 30.763

0.163

0 126.070 34.542 1.000 0.938 0.099 0.011

1 85.830 85.008 1.000 0.857 0.161

2 41.959 54.277 1.000 1.000

3 33.857 43.576 1.000

RoM Gyr z

4 17.673 35.724

0.009

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 -0.788 3.839

1 1.033 3.300

2 0.261 1.525

3 1.913 4.402

Pitch mean

4 1.291 2.293

0.898

0 2.474 0.709

1 2.463 0.814

2 2.312 0.201

3 3.289 0.343

Pitch std

4 2.433 0.254

0.081

0 1.174 1.108

1 -0.405 1.378

2 -0.142 0.744

3 -0.679 1.378

Roll mean

4 0.912 1.535

0.196

0 3.286 0.792

1 2.811 1.266

2 1.866 0.443

3 2.028 0.362

Roll std

4 1.808 0.376

0.068

Table 16: Descriptive statistics and results of the Kruskal-Wallis test for the task involving turning 90º to the right.

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 11.743 1.554 0.792 0.471 0.017 0.000

1 14.007 3.323 1.000 1.000 0.007

2 13.659 1.411 1.000 0.016

3 17.723 6.751 0.466

Duration of

the activity

4 21.502 5.397

0.000

0 5.86E-05 1.58E-04

1 -8.46E-06 1.42E-04

2 -8.35E-06 1.68E-04

3 -2.89E-05 1.85E-04

Jerk mean

Acc x

4 4.32E-05 9.53E-05

0.528

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 1.70E-04 3.90E-04

1 -1.19E-04 3.39E-04

2 -1.02E-04 4.28E-04

3 5.59E-05 3.33E-04

Jerk mean

Acc y

4 6.80E-05 3.69E-04

0.159

0 3.20E-05 4.67E-04 1.000 1.000 0.253 1.000

1 -1.08E-04 2.77E-04 1.000 1.000 0.199

2 -1.94E-04 2.96E-04 1.000 0.039

3 -4.14E-04 5.35E-04 0.002

Jerk mean

Acc z

4 1.72E-04 2.22E-04

0.002

0 0.683 0.209 1.000 0.348 1.000 0.006

1 0.631 0.137 0.583 1.000 0.012

2 0.498 0.075 0.128 1.000

3 0.826 0.417 0.001

Jerk std

Acc x

4 0.435 0.148

0.000

0 0.691 0.327 1.000 1.000 1.000 0.004

1 0.593 0.150 1.000 1.000 0.002

2 0.509 0.113 1.000 0.182

3 0.573 0.265 0.081

Jerk std

Acc y

4 0.360 0.142

0.001

0 0.845 0.335 1.000 0.418 1.000 0.002

1 0.831 0.299 0.410 1.000 0.002

2 0.596 0.189 1.000 0.859

3 0.733 0.370 0.199

Jerk std

Acc z

4 0.447 0.151

0.001

0 9.842 0.260 1.000 1.000 1.000 0.155

1 9.764 0.094 0.800 1.000 1.000

2 9.847 0.062 0.300 0.013

3 9.738 0.154 1.000

RMS Acc x

4 9.660 0.199

0.015

0 1.563 0.590 1.000 1.000 0.041 0.471

1 1.556 0.475 1.000 0.083 0.800

2 1.295 0.177 0.000 0.009

3 1.949 0.245 1.000

RMS Acc y

4 1.910 0.544

0.000

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 2.469 1.272

1 2.263 0.492

2 2.042 0.243

3 2.557 1.015

RMS Acc z

4 2.551 0.945

0.391

0 24.830 4.135 0.378 0.015 0.000 0.000

1 14.100 12.762 1.000 0.378 0.026

2 9.262 11.295 1.000 0.540

3 8.078 9.894 1.000

RMS Gyr x

4 4.301 8.191

0.000

0 17.313 7.129 0.378 0.062 0.077 0.000

1 10.606 10.690 1.000 1.000 0.026

2 7.376 8.961 1.000 0.190

3 4.890 5.651 0.155

RMS Gyr y

4 1.639 2.884

0.000

0 18.016 3.896 0.186 0.002 0.000 0.000

1 8.920 8.660 1.000 0.270 0.007

2 5.274 6.423 1.000 0.435

3 3.061 3.568 1.000

RMS Gyr z

4 2.413 4.593

0.000

0 12.436 3.525 1.000 0.235 1.000 0.000

1 10.295 1.667 1.000 0.520 0.086

2 9.688 1.254 0.062 0.666

3 13.089 4.227 0.000

RoM Acc x

4 8.311 1.317

0.000

0 10.952 5.842 1.000 1.000 1.000 0.485

1 10.393 3.002 1.000 1.000 0.026

2 8.971 1.998 1.000 0.397

3 10.127 3.344 0.096

RoM Acc y

4 7.472 1.591

0.030

0 12.508 4.636 1.000 0.294 1.000 0.010

1 12.601 4.112 0.144 1.000 0.004

2 9.289 3.491 0.939 1.000

3 10.696 2.938 0.054

RoM Acc z

4 7.564 2.510

0.001

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 157.314 65.453 0.859 0.026 0.021 0.000

1 80.995 70.509 1.000 1.000 0.013

2 52.901 64.874 1.000 0.540

3 58.674 73.945 0.629

RoM Gyr x

4 23.154 43.815

0.000

0 114.015 52.381 0.341 0.018 0.300 0.000

1 80.144 82.523 1.000 1.000 0.087

2 45.681 58.269 1.000 1.000

3 39.219 47.317 0.101

RoM Gyr y

4 11.119 19.336

0.000

0 110.804 30.704 0.444 0.005 0.000 0.000

1 64.819 61.291 1.000 0.237 0.003

2 32.601 39.773 1.000 0.327

3 23.719 28.293 1.000

RoM Gyr z

4 14.889 28.082

0.000

0 -1.050 2.404 0.057 1.000 1.000 0.138

1 1.407 2.025 1.000 1.000 1.000

2 0.163 1.607 1.000 1.000

3 1.630 3.698 1.000

Pitch mean

4 0.389 0.889

0.045

0 2.114 0.589 1.000 1.000 0.170 1.000

1 1.865 0.511 1.000 0.002 1.000

2 1.789 0.184 0.002 1.000

3 2.806 1.011 0.307

Pitch std

4 1.992 0.286

0.001

0 0.698 1.133 0.629 0.111 0.068 1.000

1 -0.181 1.229 1.000 1.000 0.151

2 -0.431 0.935 1.000 0.019

3 -0.495 1.453 0.011

Roll mean

4 0.933 1.013

0.001

0 2.218 0.456 1.000 0.013 0.000 0.001

1 1.887 0.362 0.922 0.012 0.151

2 1.619 0.235 1.000 1.000

3 1.446 0.103 1.000

Roll std

4 1.508 0.398

0.000
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Table 17: Descriptive statistics and results of the Kruskal-Wallis test for the task involving turning 90º to the left.

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 11.649 1.215 0.814 0.288 0.013 0.000

1 13.844 3.104 1.000 1.000 0.004

2 13.546 1.332 1.000 0.021

3 17.517 6.381 0.409

Duration of

the activity

4 22.439 7.040

0.000

0 7.64E-05 2.07E-04

1 -9.41E-06 1.06E-04

2 9.66E-05 2.14E-04

3 2.81E-05 1.64E-04

Jerk mean

Acc x

4 -7.61E-06 7.48E-05

0.333

0 1.47E-04 5.08E-04

1 5.69E-05 2.54E-04

2 -8.60E-05 3.71E-04

3 -3.25E-08 4.06E-04

Jerk mean

Acc y

4 2.35E-04 3.59E-04

0.144

0 1.66E-05 4.37E-04 1.000 0.106 0.186 1.000

1 -1.73E-06 2.71E-04 0.070 0.125 1.000

2 -3.51E-04 2.39E-04 1.000 0.045

3 -3.53E-04 4.07E-04 0.083

Jerk mean

Acc z

4 -1.33E-05 2.20E-04

0.003

0 0.704 0.195 1.000 0.276 1.000 0.008

1 0.680 0.163 0.294 1.000 0.009

2 0.517 0.099 0.094 1.000

3 0.832 0.414 0.002

Jerk std

Acc x

4 0.443 0.154

0.000

0 0.704 0.305 1.000 1.000 1.000 0.001

1 0.647 0.194 1.000 1.000 0.001

2 0.516 0.114 1.000 0.123

3 0.575 0.263 0.073

Jerk std

Acc y

4 0.359 0.132

0.000

0 0.891 0.358 1.000 0.510 1.000 0.001

1 0.903 0.343 0.334 0.717 0.000

2 0.632 0.222 1.000 0.435

3 0.740 0.391 0.190

Jerk std

Acc z

4 0.455 0.148

0.000

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 9.837 0.246 1.000 1.000 1.000 0.148

1 9.777 0.109 1.000 1.000 1.000

2 9.853 0.077 0.444 0.019

3 9.741 0.183 1.000

RMS Acc x

4 9.647 0.209

0.021

0 1.628 0.583 1.000 1.000 0.106 0.771

1 1.621 0.576 0.844 0.264 1.000

2 1.343 0.194 0.001 0.016

3 2.001 0.269 1.000

RMS Acc y

4 1.958 0.566

0.001

0 2.512 1.283

1 2.354 0.550

2 2.068 0.213

3 2.561 1.047

RMS Acc z

4 2.613 0.937

0.409

0 26.126 4.905 0.490 0.002 0.000 0.000

1 14.045 12.883 0.844 0.203 0.032

2 9.477 11.876 1.000 1.000

3 7.554 9.326 1.000

RMS Gyr x

4 4.274 8.073

0.000

0 17.974 8.081 0.212 0.045 0.065 0.000

1 10.424 10.708 1.000 1.000 0.049

2 7.584 9.212 1.000 0.227

3 4.760 5.441 0.166

RMS Gyr y

4 1.697 2.993

0.000

0 18.572 3.769 0.282 0.002 0.000 0.000

1 9.446 8.945 1.000 0.128 0.004

2 5.457 6.587 1.000 0.480

3 3.100 3.593 1.000

RMS Gyr z

4 2.479 4.714

0.000

0 12.516 3.594 1.000 0.751 1.000 0.002

1 11.168 1.794 1.000 1.000 0.012

2 10.162 1.673 0.196 0.520

3 12.779 3.692 0.000

RoM Acc x

4 8.485 1.504

0.000

Continued on next page
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Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 11.026 5.782 1.000 1.000 1.000 0.401

1 11.543 3.812 1.000 1.000 0.004

2 9.311 2.281 1.000 0.351

3 11.166 3.429 0.012

RoM Acc y

4 7.442 1.734

0.004

0 12.859 5.048 1.000 0.551 1.000 0.001

1 14.332 5.775 0.073 0.875 0.000

2 10.053 3.908 1.000 0.595

3 10.873 3.382 0.043

RoM Acc z

4 7.225 2.157

0.000

0 148.557 43.080 0.572 0.002 0.010 0.000

1 77.261 71.518 0.678 1.000 0.048

2 52.565 66.600 1.000 1.000

3 54.719 66.725 1.000

RoM Gyr x

4 22.741 42.553

0.000

0 120.704 64.216 0.248 0.018 0.410 0.000

1 81.124 86.317 1.000 1.000 0.178

2 48.290 61.923 1.000 1.000

3 44.313 55.018 0.101

RoM Gyr y

4 10.777 18.390

0.000

0 115.454 31.289 0.785 0.022 0.000 0.000

1 70.307 65.355 1.000 0.123 0.001

2 37.587 45.605 1.000 0.092

3 22.769 26.844 1.000

RoM Gyr z

4 15.317 28.996

0.000

0 0.222 1.216

1 0.670 2.252

2 1.347 1.669

3 2.635 2.968

Pitch mean

4 0.792 1.745

0.053

0 1.979 0.201 1.000 0.829 0.730 1.000

1 1.852 0.439 1.000 0.111 1.000

2 1.787 0.163 0.004 0.194

3 2.384 0.902 1.000

Pitch std

4 2.053 0.335

0.006

Continued on next page
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Table 17 – Continued from previous page

Metric
Pull Test

score
Mean

Std.

Deviation

Kruskal

Wallis (sig)

Pairwise Comparison (Adj. sig)

1 2 3 4

0 0.768 0.955 0.155 0.008 0.462 1.000

1 -0.275 1.128 1.000 1.000 0.178

2 -0.464 0.673 1.000 0.009

3 -0.111 0.964 0.520

Roll mean

4 0.803 1.777

0.001

0 2.285 0.365 0.444 0.001 0.000 0.002

1 1.898 0.421 0.444 0.040 0.844

2 1.576 0.242 1.000 1.000

3 1.392 0.424 1.000

Roll std

4 1.552 0.417

0.000
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B.1.2 PD patients vs HC

Table 18: Results of the Kruskal-Wallis test for all the activities, highlighting the metrics with a value smaller than 0.05.

Metric Pull Test Sitting Sit Get Up Lie On Bed Get Up Bed Walk 180 Turning Right Turning Left Turning

Duration of the activity

Jerk mean in Acc_x

Jerk mean in Acc_y

Jerk mean in Acc_z

Jerk std in Acc_x

Jerk std in Acc_y

Jerk std in Acc_z

RMS Acc_x

RMS Acc_y

RMS Acc_z

RMS Gyr_x

RMS Gyr_y

RMS Gyr_z

RoM Acc_x

RoM Acc_y

RoM Acc_z

RoM Gyr_x

RoM Gyr_y

RoM Gyr_z

Pitch mean

Pitch std

Roll mean

Roll std
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B.1.3 H&Y score

Table 19: Results of the Kruskal-Wallis test for all the activities, highlighting the metrics with a value smaller than 0.05.

Metric Pull Test Sitting Sit Get Up Lie On Bed Get Up Bed Walk 180 Turning Right Turning Left Turning

Duration of the activity

Jerk mean in Acc_x

Jerk mean in Acc_y

Jerk mean in Acc_z

Jerk std in Acc_x

Jerk std in Acc_y

Jerk std in Acc_z

RMS Acc_x

RMS Acc_y

RMS Acc_z

RMS Gyr_x

RMS Gyr_y

RMS Gyr_z

RoM Acc_x

RoM Acc_y

RoM Acc_z

RoM Gyr_x

RoM Gyr_y

RoM Gyr_z

Pitch mean

Pitch std

Roll mean

Roll std
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B.1.4 UPDRS-III score

Table 20: Results of the Kruskal-Wallis test for all the activities, highlighting the metrics with a value smaller than 0.05.

Metric Pull Test Sitting Sit Get Up Lie On Bed Get Up Bed Walk 180 Turning Right Turning Left Turning

Duration of the activity

Jerk mean in Acc_x

Jerk mean in Acc_y

Jerk mean in Acc_z

Jerk std in Acc_x

Jerk std in Acc_y

Jerk std in Acc_z

RMS Acc_x

RMS Acc_y

RMS Acc_z

RMS Gyr_x

RMS Gyr_y

RMS Gyr_z

RoM Acc_x

RoM Acc_y

RoM Acc_z

RoM Gyr_x

RoM Gyr_y

RoM Gyr_z

Pitch mean

Pitch std

Roll mean

Roll std
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B.2 Pearson product-moment correlation

B.2.1 Pull test score

Table 21: Pearson product-moment correlation (with a 95% confidence interval for each correlation coefficient) between the selected features of each task and the pull
test score.

Metric Pull Test Sitting Sit Get Up Lie On Bed Get Up Bed Walk 180 Turning Right

Turning

Left Turning

Activity Duration -0.031 0.340 0.223 0.431 0.463 0.570 0.585 0.611 0.613

Jerk mean Acc x 0.487 0.314 -0.285 -0.299 0.263 -0.150 -0.555 -0.048 -0.113

Jerk mean Acc y -0.208 -0.290 0.219 0.204 -0.199 -0.196 -0.194 -0.011 0.043

Jerk mean Acc z 0.275 0.121 -0.089 -0.115 0.133 -0.027 -0.056 -0.009 -0.161

Jerk std Acc x 0.216 0.221 0.373 0.167 0.096 -0.187 -0.305 -0.162 -0.198

Jerk std Acc y 0.017 0.064 0.253 -0.090 0.078 -0.449 -0.533 -0.410 -0.451

Jerk std Acc z 0.106 0.016 0.314 -0.030 0.029 -0.428 -0.492 -0.406 -0.430

RMS Acc x -0.370 -0.246 -0.089 0.241 -0.032 -0.310 -0.411 -0.309 -0.317

RMS Acc y 0.245 0.241 0.116 -0.355 -0.135 0.329 0.226 0.314 0.286

RMS Acc z 0.310 0.335 0.377 0.313 0.303 0.184 0.047 0.074 0.066

RMS Gyr x -0.382 -0.153 -0.227 -0.525 -0.545 -0.538 -0.635 -0.566 -0.583

RMS Gyr y -0.111 -0.461 -0.412 -0.629 -0.579 -0.561 -0.572 -0.579 -0.578

RMS Gyr z -0.359 -0.317 -0.329 -0.682 -0.708 -0.658 -0.663 -0.658 -0.665

RoM Acc x 0.132 -0.011 -0.022 0.142 -0.035 -0.267 -0.278 -0.245 -0.304

RoM Acc y 0.079 0.081 0.040 -0.414 -0.338 -0.338 -0.363 -0.285 -0.275

RoM Acc z 0.065 0.110 0.204 0.087 -0.106 -0.397 -0.411 -0.418 -0.436

RoM Gyr x -0.368 -0.154 -0.260 -0.511 -0.510 -0.515 -0.611 -0.533 -0.543

RoM Gyr y -0.112 -0.447 -0.429 -0.539 -0.521 -0.531 -0.512 -0.540 -0.519

RoM Gyr z -0.382 -0.340 -0.328 -0.586 -0.632 -0.626 -0.609 -0.634 -0.638

Pitch mean -0.262 -0.044 0.162 -0.140 0.138 0.233 0.234 0.180 0.204

Pitch std 0.428 0.191 0.130 0.160 0.094 0.121 0.179 0.146 0.187

Continued on next page
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Table 21 – Continued from previous page

Metric Pull Test Sitting Sit Get Up Lie On Bed Get Up Bed Walk 180 Turning Right

Turning

Left Turning

Roll mean 0.079 -0.206 0.130 0.309 -0.368 -0.146 -0.084 0.017 0.027

Roll std -0.054 0.417 0.052 -0.182 -0.251 -0.188 -0.600 -0.610 -0.574

B.2.2 PD patients vs HC

Table 22: Pearson product-moment correlation (with a 95% confidence interval for each correlation coefficient) between the selected features of each task and the
diagnosis of PD.

Metric Pull Test Sitting Sit Get Up Lie On Bed Get Up Bed Walk 180 Turning Right

Turning

Left Turning

Activity Duration -0.219 -0.486 -0.350 -0.379 -0.466 -0.339 -0.338 -0.505 -0.471

Jerk mean Acc x 0.017 0.026 0.101 0.589 -0.633 0.179 0.420 0.286 -0.026

Jerk mean Acc y -0.167 0.140 -0.030 -0.087 0.072 0.264 0.205 0.197 -0.016

Jerk mean Acc z -0.118 0.316 -0.132 0.147 -0.156 -0.073 -0.329 -0.042 0.028

Jerk std Acc x 0.198 0.354 0.052 0.461 0.414 0.415 0.495 0.372 0.371

Jerk std Acc y 0.266 0.139 -0.069 0.472 0.268 0.605 0.628 0.555 0.534

Jerk std Acc z 0.115 0.388 0.097 0.457 0.464 0.509 0.562 0.487 0.465

RMS Acc x 0.257 0.223 0.158 -0.179 -0.266 0.362 0.500 0.321 0.282

RMS Acc y 0.280 -0.142 -0.094 0.215 0.263 0.145 0.334 0.159 0.163

RMS Acc z 0.080 0.061 -0.088 -0.013 0.052 0.106 0.354 0.240 0.261

RMS Gyr x 0.326 0.109 0.249 0.455 0.466 0.363 0.341 0.373 0.386

RMS Gyr y 0.075 0.417 0.315 0.431 0.473 0.429 0.439 0.431 0.456

RMS Gyr z 0.311 0.194 0.268 0.354 0.443 0.306 0.295 0.314 0.316

RoM Acc x 0.107 0.315 0.137 0.425 0.576 0.542 0.561 0.453 0.453

RoM Acc y 0.189 -0.102 -0.075 0.453 0.424 0.654 0.702 0.581 0.451

RoM Acc z 0.102 0.258 0.181 0.335 0.512 0.540 0.628 0.535 0.448

Continued on next page
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Table 22 – Continued from previous page

Metric Pull Test Sitting Sit Get Up Lie On Bed Get Up Bed Walk 180 Turning Right

Turning

Left Turning

RoM Gyr x 0.283 0.058 0.168 0.408 0.415 0.422 0.350 0.405 0.388

RoM Gyr y 0.054 0.387 0.319 0.349 0.489 0.435 0.440 0.414 0.429

RoM Gyr z 0.277 0.167 0.212 0.289 0.343 0.355 0.364 0.358 0.328

Pitch mean 0.103 0.020 -0.032 -0.165 0.237 -0.380 -0.269 -0.465 -0.418

Pitch std -0.386 0.140 -0.018 0.288 0.455 0.100 0.254 0.126 0.225

Roll mean -0.044 0.309 -0.051 0.052 0.003 0.268 0.465 0.182 0.114

Roll std 0.427 -0.221 -0.074 0.346 0.484 0.323 0.425 0.499 0.524

B.2.3 H&Y score

Table 23: Pearson product-moment correlation (with a 95% confidence interval for each correlation coefficient) between the selected features of each task and the
H&Y score.

Metric Pull Test Sitting Sit Get Up Lie On Bed Get Up Bed Walk 180 Turning Right

Turning

Left Turning

Activity Duration -0.144 0.321 0.171 0.454 0.362 0.678 0.651 0.693 0.704

Jerk mean Acc x 0.331 0.520 -0.412 -0.215 0.136 -0.089 -0.382 -0.028 0.015

Jerk mean Acc y -0.106 -0.474 0.297 0.067 -0.083 0.008 0.057 0.225 0.123

Jerk mean Acc z 0.340 0.121 -0.060 -0.264 0.171 0.284 0.323 0.322 0.257

Jerk std Acc x 0.487 0.079 0.248 0.113 0.027 -0.174 -0.245 -0.185 -0.218

Jerk std Acc y 0.393 0.035 0.242 -0.060 0.045 -0.294 -0.386 -0.394 -0.371

Jerk std Acc z 0.327 -0.011 0.274 0.087 0.015 -0.207 -0.271 -0.291 -0.308

RMS Acc x -0.363 -0.138 0.014 0.417 0.070 -0.310 -0.446 -0.356 -0.403

RMS Acc y 0.526 0.427 0.166 -0.516 -0.263 0.523 0.462 0.526 0.478

RMS Acc z 0.539 0.454 0.581 0.470 0.559 0.505 0.553 0.529 0.527

RMS Gyr x -0.002 0.076 -0.015 -0.194 -0.229 -0.372 -0.485 -0.401 -0.414

Continued on next page
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Table 23 – Continued from previous page

Metric Pull Test Sitting Sit Get Up Lie On Bed Get Up Bed Walk 180 Turning Right

Turning

Left Turning

RMS Gyr y 0.148 -0.218 -0.215 -0.354 -0.359 -0.374 -0.384 -0.438 -0.438

RMS Gyr z -0.011 -0.013 -0.059 -0.475 -0.522 -0.486 -0.500 -0.501 -0.502

RoM Acc x 0.359 -0.070 -0.044 0.205 -0.041 -0.118 -0.015 -0.191 -0.259

RoM Acc y 0.315 0.106 0.065 -0.306 -0.317 -0.047 0.076 -0.135 -0.015

RoM Acc z 0.251 0.074 0.312 0.177 0.003 -0.125 -0.012 -0.219 -0.172

RoM Gyr x 0.088 0.036 -0.042 -0.202 -0.218 -0.282 -0.435 -0.316 -0.342

RoM Gyr y 0.142 -0.212 -0.231 -0.244 -0.323 -0.276 -0.243 -0.342 -0.280

RoM Gyr z -0.069 -0.058 -0.074 -0.388 -0.451 -0.445 -0.437 -0.460 -0.487

Pitch mean -0.257 0.059 0.100 -0.131 0.175 -0.088 -0.059 -0.114 -0.038

Pitch std 0.391 0.178 0.103 0.112 0.147 0.196 0.257 0.249 0.198

Roll mean -0.180 -0.274 0.116 0.125 -0.177 0.070 -0.030 0.082 0.169

Roll std 0.087 0.537 0.036 -0.286 -0.274 -0.303 -0.589 -0.636 -0.482

B.2.4 UPDRS-III score

Table 24: Pearson product-moment correlation (with a 95% confidence interval for each correlation coefficient) between the selected features of each task and the
UPDRS-III score.

Metric Pull Test Sitting Sit Get Up Lie On Bed Get Up Bed Walk 180 Turning Right

Turning

Left Turning

Activity Duration -0.109 0.236 0.339 0.378 0.339 0.518 0.611 0.583 0.575

Jerk mean Acc x 0.236 0.300 0.049 -0.172 0.049 -0.187 -0.286 -0.065 -0.061

Jerk mean Acc y 0.096 -0.420 -0.119 0.076 -0.119 -0.013 -0.040 0.287 0.232

Jerk mean Acc z 0.178 0.033 0.216 -0.230 0.216 0.192 0.187 0.207 0.069

Jerk std Acc x 0.502 0.125 0.273 0.335 0.273 -0.004 -0.110 -0.018 -0.047

Jerk std Acc y 0.248 0.032 0.290 0.175 0.290 -0.222 -0.324 -0.249 -0.241

Continued on next page
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Table 24 – Continued from previous page

Metric Pull Test Sitting Sit Get Up Lie On Bed Get Up Bed Walk 180 Turning Right

Turning

Left Turning

Jerk std Acc z 0.388 -0.032 0.269 0.252 0.269 -0.111 -0.192 -0.155 -0.164

RMS Acc x -0.106 -0.017 -0.024 0.207 -0.024 -0.209 -0.365 -0.282 -0.308

RMS Acc y 0.435 0.423 -0.166 -0.356 -0.166 0.592 0.525 0.583 0.551

RMS Acc z 0.360 0.219 0.501 0.494 0.501 0.481 0.561 0.553 0.547

RMS Gyr x -0.018 0.026 -0.271 -0.250 -0.271 -0.361 -0.464 -0.389 -0.398

RMS Gyr y 0.114 -0.253 -0.374 -0.374 -0.374 -0.370 -0.377 -0.417 -0.412

RMS Gyr z -0.009 -0.061 -0.496 -0.456 -0.496 -0.449 -0.460 -0.457 -0.461

RoM Acc x 0.352 -0.143 0.285 0.381 0.285 -0.018 0.005 -0.061 -0.147

RoM Acc y 0.117 0.067 -0.164 -0.244 -0.164 -0.031 -0.019 -0.072 -0.036

RoM Acc z 0.299 0.009 0.059 0.268 0.059 -0.122 -0.018 -0.198 -0.175

RoM Gyr x 0.074 -0.013 -0.257 -0.242 -0.257 -0.290 -0.426 -0.324 -0.336

RoM Gyr y 0.125 -0.245 -0.344 -0.258 -0.344 -0.296 -0.261 -0.339 -0.279

RoM Gyr z -0.053 -0.093 -0.428 -0.386 -0.428 -0.422 -0.426 -0.434 -0.462

Pitch mean -0.152 0.177 0.331 -0.176 0.331 -0.037 -0.085 -0.092 0.041

Pitch std 0.207 0.076 0.340 0.304 0.340 0.214 0.420 0.335 0.202

Roll mean -0.024 -0.121 -0.263 0.181 -0.263 0.100 0.256 0.143 0.374

Roll std 0.104 0.476 -0.094 -0.090 -0.094 -0.232 -0.481 -0.569 -0.395
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B.2.5 Walking metrics

Table 25: Pearson product-moment correlation (with a 95% confidence interval for each correlation coefficient) be-
tween the selected gait features of each task and the pull test score, H&Y score, UPDRS-III score and PD
diagnosis.

Metric Pull Test Score H&Y Score UPDRS-III Score PD patients vs HC

Step length -0.534 -0.512 -0.530 0.450

Stride length -0.518 -0.503 -0.527 0.410

Velocity -0.613 -0.629 -0.531 0.453

Cadence -0.281 -0.341 -0.101 0.066

Number of steps 0.621 0.677 0.613 -0.412

Step time 0.315 0.417 0.217 -0.132

Stride time 0.319 0.421 0.221 -0.062

Stance time 0.422 0.418 0.160 -0.196

Swing time 0.096 0.240 0.171 0.061

Double support phase 0.358 0.249 0.130 -0.219

Stance phase 0.137 -0.019 -0.078 -0.129

Swing phase -0.092 0.053 0.079 0.161

AS step length -0.009 -0.089 -0.143 -0.038

AS step time 0.187 0.260 0.240 -0.180

AS velocity 0.041 0.026 -0.050 -0.048

AS stance time 0.100 0.213 0.196 -0.071

AS swing time 0.105 0.207 0.200 0.037

SD step length 0.124 0.204 0.160 0.256

SD step time 0.123 0.231 0.216 -0.088

SD step velocity 0.102 0.169 0.151 0.285

SD stance time 0.112 0.223 0.205 -0.072

SD swing time 0.107 0.217 0.207 0.031
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B.3 Multiple Linear Regression

Table 26: Multiple linear regression between the features of each activity and the pull test score, H&Y score, UPDRS-III score and PD diagnosis.

Pull Test Score H&Y Score UPDRS-III Score PD patients vs HC

Activity
Variables

in the model

Adj. R

squared

ANOVA

sig

Variables

in the model

Adj. R

squared

ANOVA

sig

Variables

in the model

Adj. R

squared

ANOVA

sig

Variables

in the model

Adj. R

squared

ANOVA

sig

Pull Test Jerk mean Acc x 0.204 0.014 RMS Acc z 0.257 0.008 Jerk std Acc x 0.252 0.015

Roll std

Pitch std

Activity Duration

0.419 0.000

Sitting

RMS Gyr y

Roll std

Pitch std

Jerk mean Acc y

0.513 0.000

Roll std

Jerk mean Acc x

Jerk mean Acc y

Roll mean

0.554 0.000

Roll std

RoM Gyr y

RMS Acc y

RoM Acc y

Roll mean

Jerk mean Acc y

Pitch mean

RMS Acc z

0.652 0.000

Activity Duration

RMS Gyr y

Jerk std Acc x

0.475 0.000

Sit Get Up

RoM Gyr y

RMS Acc z

RMS Gyr x

0.331 0.000

RMS Acc z

RMS Acc x

RMS Acc y

0.486 0.000 RMS Acc z 0.123 0.002

Activity Duration

RoM Gyr y

Pitch mean

Jerk mean Acc z

RoM Acc z

0.356 0.000

Continued on next page
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Table 26 – Continued from previous page

Pull Test Score H&Y Score UPDRS-III Score PD patients vs HC

Activity
Variables

in the model

Adj. R

squared

ANOVA

sig

Variables

in the model

Adj. R

squared

ANOVA

sig

Variables

in the model

Adj. R

squared

ANOVA

sig

Variables

in the model

Adj. R

squared

ANOVA

sig

Lie On Bed

RMS Gyr y

RMS Acc z

Roll mean

RoM Gyr y

RoM Gyr x

Jerk mean Acc z

RMS Gyr x

0.709 0.000

RMS Gyr z

RMS Acc z

RMS Acc x

RoM Acc x

RMS Gyr x

RoM Acc z

Pitch mean

RoM Gyr x

0.756 0.000

RMS Acc z

RMS Gyr z

RoM Acc x

Jerk mean Acc z

0.600 0.000

Jerk mean Acc x

RMS Gyr x

Jerk std Acc x

RoM Gyr z

RMS Gyr y

Pitch std

Pitch mean

0.755 0.000

Get Up Bed

RMS Gyr y

Pitch mean

RMS Acc z

Jerk mean Acc z

RoM Gyr y

RoM Acc z

0.689 0.000

RMS Acc z

RMS Gyr z

RMS Gyr x

Jerk mean Acc z

Jerk mean Acc x

Jerk mean Acc y

0.693 0.000

RMS Acc z

RMS Gyr z

Pitch mean

Jerk std Acc y

RoM Acc z

0.677 0.000

Jerk mean Acc x

RoM Gyr y

Jerk std Acc x

Jerk std Acc y

RoM Acc z

RoM Gyr z

RMS Gyr y

RoM Acc x

Activity Duration

0.732 0.000

Walk

RMS Gyr z

RMS Acc z

RoM Acc z

Step length

0.705 0.000

Activity Duration

RMS Acc z

Roll std

Stance time

Stride length

RMS Acc y

RMS Acc x

0.781 0.000

RMS Acc y

Stride length

RoM Acc z

AS velocity

RoM Acc y

RMS Acc z

RMS Acc x

Pitch mean

Jerk mean Acc z

0.828 0.000

RoM Acc y

RoM Acc x

Roll mean

Pitch mean

Cadence

Roll std

0.579 0.000

Continued on next page
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Table 26 – Continued from previous page

Pull Test Score H&Y Score UPDRS-III Score PD patients vs HC

Activity
Variables

in the model

Adj. R

squared

ANOVA

sig

Variables

in the model

Adj. R

squared

ANOVA

sig

Variables

in the model

Adj. R

squared

ANOVA

sig

Variables

in the model

Adj. R

squared

ANOVA

sig

180

Turning

RMS Gyr z

Activity Duration
0.566 0.000

Activity Duration

RMS Acc z

Jerk mean Acc x

0.610 0.000

Activity Duration

RMS Acc z

Roll mean

Pitch std

RoM Acc z

0.768 0.000
RoM Acc y

Jerk mean Acc y
0.541 0.000

Right

Turning

RMS Gyr z

Activity Duration

RMS Acc y

RoM Acc z

Jerk std Acc z

0.665 0.000

Activity Duration

RMS Acc z

RMS Gyr z

Jerk mean Acc z

RMS Acc y

0.711 0.000

Activity Duration

RMS Acc z

RMS Acc y

RoM Acc z

Jerk std Acc z

Jerk std Acc y

Pitch std

0.760 0.000

Pitch mean

Activity Duration

RMS Acc z

Jerk mean Acc x

RoM Gyr x

RMS Gyr z

RoM Gyr z

0.665 0.000

Left

Turning

RMS Gyr z

Activity Duration
0.600 0.000

Activity Duration

RMS Acc z

RMS Gyr z

0.666 0.000

Activity Duration

RMS Acc z

Roll mean

RoM Gyr y

RMS Acc y

Jerk mean Acc y

0.671 0.000

Jerk std Acc y

Pitch mean

RMS Gyr z

RMS Gyr x

0.504 0.000
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