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RESumoO

Abordagens bioinformaticas para engenharia da producao de L-tirosina em Escherichia coli

A [irosina (/-Tyr) tem sido considerada um metabolito apelativo devido a sua ampla variedade
de aplicacdes nas industrias farmacéutica e quimica. Este metabolito € um importante precursor de
varios metabolitos secundarios ou produtos naturais. Estes compostos tém varias propriedades uteis,
incluindo antioxidante, anti-inflamatoria, anticancerigena, antiviral e antidepressiva. Ha varios estudos
onde sdo utilizadas estirpes de Escherichia coli (E. colj) sobre-produtoras de /-Tyr, mas ainda é
necessario aumentar o seu rendimento para tornar o bioprocesso economicamente viavel.

Numerosas ferramentas computacionais tém sido desenvolvidas para a concecao de estirpes
que identificam estratégias de modificacdo genética que aumentam a producado de bioguimicos. A
construcao de um mapa metabdlico, e o desenvolvimento de modelos matematicos e simulacées que
reproduzem dados experimentais e fenotipos em diferentes condicdes, permitem o desenho de células
com apoio da computacdo. Os modelos cinéticos contém um sistema de equacdes diferenciais que
descrevem a evolucdo temporal das concentracdes metabolicas, atividades enzimaticas e fluxos de
reacao, logo tém a capacidade de captar estas interdependéncias.

O objetivo deste trabalho foi realizar a insercao /n silico da via de /-Tyr num modelo cinético do
metabolismo do carbono central de £. coli, o que permitiu identificar os melhores genes alvo para o
desenho da estirpe de sobreproducdo de /-Tyr. Trés modelos estequiométricos (iML1515, iJO1366 e
iJR904), bem como trés modelos cinéticos (Millard, Oliveira e Jahan), foram utilizados para desenhar
um modelo cinético que contivesse todas as reacdes necessarias para produzir /-Tyr. Este novo modelo
foi, entao, utilizado para testar diferentes estratégias de delecao e sobre-expressdo para conceber uma
estirpe sobre-produtora de [-Tyr de £. col.

Com o intuito de desenhar uma estirpe super-produtora de /[-Tyr, foram utilizadas duas
abordagens. Na primeira abordagem, os alvos obtidos pelo Metabolic Course Analysis (MCA) nao
melhoraram significativamente a producao de /-Tyr. Na segunda abordagem foram estudadas a via de
producdo de /-Tyr, bem como diferentes estratégias descritas em literatura que melhoram a producao
de /-Tyr. Foi possivel confirmar que a sobre-expressdo dos genes limitadores de fluxo aroG, arof, arol,

tyrA e tyrB melhora a producao de L-Tyr.

PALAVRAS-CHAVE

Engenharia Metabdlica, /-Tirosina, £scherichia coli; Modelos Cinéticos, Desenho de Estirpes



ABSTRACT

Bioinformatics approaches for engineering L-tyrosine production in Escherichia coli

[tyrosine (/-Tyr) has been considered an appealing metabolite due to its wide variety of
applications in the pharmaceutical and chemical industries. This metabolite is an essential precursor of
various secondary metabolites or natural products. These compounds have various valuable properties,
including antioxidant, anti-inflammatory, anti-cancer, antiviral, and anti-depressant. There are several
studies where Escherichia coli (E. colj) [-Tyr overproducing strains are used, but there is still a need to
increase its yield to make the bioprocess economically feasible.

Numerous computational tools have been developed for strain design to identify genetic
modification strategies that increase targeted biochemical production. The construction of a biochemical
network map, and the development of mathematical models and simulations that reproduce experimental
data and phenotypes under different conditions, allow computer-aided cell design. Kinetic models yield a
system of ordinary differential equations that describe the time evolution of metabolite concentrations,
enzyme activities, and reaction fluxes, therefore potentially capturing these interdependencies.

The aim of this work was to perform the /n silico insertion of /-Tyr pathway in a kinetic model of
the central carbon metabolism of £. co/i, and to identify the best target genes for the design of the /- Tyr
overproducing strain. Three stoichiometric models (iIML1515, iJO1366 and iJR904) and three kinetic
models (Millard, Oliveira and Jahan) were used to design an accurate model containing all the necessary
reactions to produce /-Tyr. The new model was then used to test the different knock-in/out strategies to
design an £. coli [-Tyr overproducing strain.

In order to design an /-Tyr overproducing strain, two optimisation approaches were conducted.
In the first approach, the targets obtained in the Metabolic Course Analysis (MCA) did not improve the /-
Tyr production significantly. In the second approach, the /-Tyr production pathway and different strategies
described in the literature to improve /-Tyr production were tested. It was possible to confirm that the

overexpression of rate-limiting genes aroG, arof, arol, tyrAand fyrBimprove [-Tyr production.

KEYWORDS

Metabolic Engineering, [-tyrosine, £scherichia coli, Kinetic Models, Strain Design
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Chapter 1 - Introduction

1. INTRODUCTION

1.1 Context and Motivation

Aromatic compounds, such as aromatic amino acids (AAA), petrochemical aromatics, and
aromatic polymers, are very important industrial materials. Among them, /-tyrosine (/-Tyr) has been
considered an appealing metabolite to produce due to its wide variety of applications in the
pharmaceutical and chemical industries. This metabolite is an important precursor of a diverse number
of secondary metabolites or natural products, such as phenylpropanoic acids, benzylisoquinoline
alkaloids, flavonoids, curcuminoids, stilbenoids, Parkinson’s disease drug 3,4-dihydroxy-L-phenylalanine
(L-DOPA) and melanin (Cox & Nelson, 2017; Hernandez-Chavez et al., 2019; Kang et al., 2012; Kim et
al., 2018; Machado et al., 2014; Menéndez-Perdomo & Facchini, 2018; Rodrigues et al., 2020;
Rodrigues, Araujo, et al., 2015; Rodrigues, Prather, et al., 2015; Rodriguez et al., 2014). Several of /-
Tyr' s derivatives have drawn increased interest due to their useful properties. Phenylpropanoic acids
have shown antioxidant, anti-inflammatory, anti-cancer, antiviral, anti-diabetic, and anti-depressant
properties (Hernandez-Chavez et al., 2019; Rodrigues, Araujo, et al., 2015). Another example are the
benzylisoquinoline alkaloids with the evidence of anti-cancer, anti-arrhythmic, anti-HIV, and anti-malarial
properties (Menéndez-Perdomo & Facchini, 2018). Curcuminoids also show several beneficial biological
activities, including anti-cancer, antioxidant, anti-inflammatory, and antitumor activities (Machado et al.,
2014; Rodrigues et al., 2020; Rodrigues, Prather, et al., 2015).

L-Tyr can be synthesised in animals and in plants and bacteria (Cox & Nelson, 2017). However,
Escherichia coli (E. coli/has been shown to be a more cost effective microbial cell factory for recombinant
proteins (Rosano et al., 2019). There are several studies where £. coli [-Tyr overproducing strains are
used, but there is still a need to increase its yield to make the bioprocess economically feasible, as it is
observed in the bioprocesses used to synthesise other amino acids (Juminaga et al., 2012; Kim et al.,
2018). This optimisation of /-Tyr production can be beneficial for the increase of microbial production of
many of /-Tyr" s derivatives, like caffeic acid and curcuminoids.

Numerous computational tools have been developed for strain design that identify genetic
modification strategies that increase targeted biochemicals production (Khodayari et al., 2014). The
construction of a biochemical network map, and the development of mathematical models and
simulations that reproduce experimental data and phenotypes under different conditions, allow computer-
aided cell design (Jahan et al., 2016). Stoichiometric models alone cannot quantitatively measure the

effect of concentration levels, enzyme saturation and regulation. Kinetic models yield a system of ordinary
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differential equations that describe the time evolution of metabolite concentrations, enzyme activities and
reaction fluxes, therefore these interdependencies can be detected (Khodayari et al., 2014, 2015). These
types of models can be used to model mutant £. co/i strains to overproduce /-Tyr in a more sustainable

and economic manner.

1.2 Goals

The main goal of this thesis was to design an £. co//strain that overproduces /-Tyr and that could
be further used to test the production of other compounds using a known heterologous pathway (e.g., as
caffeic acid or curcuminoids) (Hernandez-Chavez et al., 2019; Kang et al., 2015; Kim et al., 2018;

Rodrigues, Araujo, et al., 2015; Rodrigues, Prather, et al., 2015).
More specifically, this work aimed to:

= Study and understand the £. coli metabolism, focusing on the metabolic pathway for /-Tyr
production;

= Study the impact of certain variables in parameter determination for /7 silico modelling;

= |nsert the /-Tyr and /-Phe pathways into a kinetic model of the central carbon metabolism of
E. coliand do /n silico modelling of the /-Tyr pathway;

= |dentify the best target genes for the design of the /-Tyr overproducing strain, including the
ones already reported in the literature;

= QOptimise the model to allow the highest production of /-Tyr.

1.3 Thesis Outline

To address the above-mentioned objectives, this thesis has been structured in 7 chapters:
= Chapter 1 - Introduction (Current chapter)
e This chapter includes a brief mention of the importance of /-Tyr and reference to the
current demand for more sustainable and economic processes using microbial cell
factories and how kinetic modelling can aid in its design. The main motivation for this

work is highlighted, and the goals and structure of this thesis are further referenced.

= Chapter 2 - State of the Art
e Inchapter 2 the biological relevance of /-Tyr, its metabolic pathway and known strategies
for its overproduction were revised. In addition, a comprehensive review of metabolic

engineering was conducted, touching the basis of systems biology, systems metabolic
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engineering, and bioinformatic tools for metabolic modelling. The importance of £ coli
as a cell factory and the available stoichiometric and kinetic models for this

microorganism were reviewed.

= Chapter 3 — Materials and Methods
e This chapter includes a brief overview of the selected model and description of the
reactions that need to be inserted into the model and their kinetics, as well information
regarding parameter determination. The way time course simulations were performed

once the model was assembled is also explained.

= Chapter 4 — Results and Discussion
e Inchapter 4 itis included the presentation and discussion of the results obtained through
Vinax Calculation, /n silico simulations of AA production, and comparison with published
results for /n vivo production, and /n silico optimization of AA yields using the methods

that were described in chapter 3.

® Chapter 5 — Conclusion and Future Perspectives

e Finally, chapter 5 presents the conclusions retrieved from the work developed in this

thesis and some prospects for future work.
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2. STATE OF THE ART

2.1 L -Tyrosine

Amino acids are relatively simple monomeric subunits that provide the key to thousands of
different proteins' structure. There are 20 amino acids and this group of precursor molecules may be
seen as the alphabet in which the language of protein structure is written (Cox & Nelson, 2017). These
monomers are a-amino acids, with a carboxyl group and an amino group bonded to the same carbon
atom. The 20 amino acids differ between them in their side chains (R group), making them vary in
structure, size, and electric charge and influence their solubility and chemical properties (Cox & Nelson,
2017).

[-Tyr is considered a conditionally essential amino acid in animals because it can be synthesised
from the essential amino acid phenylalanine (/-Phe). But, to some degree, it is required in young, growing
animals and/or sometimes during illness. As /-Tyr has an aromatic R group, it is relatively nonpolar
(hydrophobic), and its hydroxyl group makes it significantly more polar than other amino acids with a
similar side chain. /-Tyr is both a ketogenic and a glucogenic amino acid, having the ability to form ketone
bodies in the liver and to be converted to glucose and glycogen (Cox & Nelson, 2017)

The pathway to synthesise /-Tyr is different in animals and in plants and bacteria. Animals are
able to yield /-Tyr directly from /-Phe, through hydroxylation at C-4 of the phenyl group by phenylalanine
hydroxylase. As for its production in plants and bacteria, both /-Tyr and /Phe are synthesised from
chorismate, by the common intermediate, prephenate. /-tryptophan (/-Trp) also is synthesised by
chorismite, but in a more complex pathway (Cox & Nelson, 2017).

As previously mentioned, /-Tyr has been considered an interesting metabolite, thanks to its broad
variety of applications in the pharmaceutical and chemical industries. This metabolite is an important
precursor of a diverse number of secondary metabolites or natural products. In plants, one of many
compounds produced from [-Tyr is the rigid polymer lignin, the second most abundant compound in
plant tissues. In animals, some neurotransmitters are synthesised from /-Tyr, including epinephrine,
norepinephrine, and dopamine. Morphine, a metabolite of the class of benzylisoquinoline alkaloids is also
derived from /- Tyr (Cox & Nelson, 2017; Hernandez-Chavez et al., 2019; Kang et al., 2012; Kim et al.,
2018; Machado et al., 2014; Menéndez-Perdomo & Facchini, 2018; Rodrigues et al., 2020; Rodrigues,
Araujo, et al., 2015; Rodrigues, Prather, et al., 2015; Rodriguez et al., 2014).

In Table 2.1, the names of the metabolites produced from /-Tyr and their respective properties

and applications are summarised.
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Table 2.1 - Summary of some metabolites that derive from L-Tyr and their respective properties and applications

Class

Compound Examples

Properties and Applications

References

Phenylpropanoic

Acids

Caffeic Acid

Antioxidant, Anti-Inflammatory,
Anti-Cancer, Antiviral, Anti-

Diabetic and Anti-Depressant

(Hernandez-Chavez et al., 2019;
Rodrigues, Araijo, et al., 2015)

Benzylisoquinoline

Alkaloids

Morphine, Noscapine,

Glaucine

Anti-Cancer, Anti-Arrhythmic,
Anti-HIV, Anti-Malarial, Narcotic

Analgesic

(Menéndez-Perdomo & Facchini,

2018)

Curcuminoids

Curcumin,
Bisdemethoxycurcumin and

Demethoxycurcumin

Antioxidant, Anti-Inflammatory,
Cholesterol lowering and Anti-

Cancer

(Machado et al., 2014; Rodrigues
et al., 2020; Rodrigues, Prather,
etal., 2015)

Flavones, Flavonols,

Flavanones, Flavanonols,

Antioxidant, Anti-Inflammatory,

(Hernandez-Chavez et al., 2019;
Kang et al., 2012; Kim et al.,

Flavonoids 2018; Menéndez-Perdomo &
Flavanols, Anthocyanins Anti-Mutagenic and Anti-Cancer
Facchini, 2018; Panche et al.,
and Chalcones
2016)
(Akinwumi et al., 2018;
Cardioprotection,
Resveratrol, Pterostilbene, Hernandez-Chavez et al., 2019;
Neuroprotection, Anti-Diabetic,
Stilbenoids Gnetol, Kang et al., 2012; Kim et al.,
Depigmentation, Anti-
Piceatannol, Oxyresveratrol 2018; Menéndez-Perdomo &
Inflammatory, Anti-Cancer
Facchini, 2018)
(Cox & Nelson, 2017; Hernandez-
Chavez et al., 2019; Kang et al.,
Amino acid L-DOPA Parkinson’s disease drug 2012; Kim et al., 2018;
Menéndez-Perdomo & Facchini,
2018)
Epinephrine,

Catecholamines

Norepinephrine, and

Dopamine

Changes in blood pressure and

Neurotransmitters

(Cox & Nelson, 2017)

Polymer

Melanin

Pigment, Light Absorbance,
Redox and Chelating

2.1.1 Metabolic pathway for the production of /-Tyrosine

(Hernandez-Chavez et al., 2019;
Kang et al., 2012; Kim et al.,
2018; Menéndez-Perdomo &
Facchini, 2018; Riley, 1997)

The AAA, [-Trp, [-Phe and /-Tyr, are the ultimate products of the aromatic biosynthetic pathway

containing the shikimate pathway, that connects central carbon metabolism (CCM) with the biosynthesis



Bioinformatics approaches for engineering /-tyrosine production in £scherichia coli

of chorismate, which is the last common precursor in the last branches for AAA biosynthesis. These
pathways are present in bacteria and in several eukaryotic organisms, like ascomycetes fungi,
apicomplexans, and plants (Rodriguez et al., 2014).

The biosynthetic pathway of /-Tyr in £. colii from glucose, starts with converting the precursor
into three different molecules, pyruvate (PYR), fructose 6-phosphate, and glyceraldehyde 3-phosphate
(Figure 2.1). The phosphoenolpyruvate (PEP) synthase (PpsA) converts pyruvate into PEP, and the
transketolase A (TktA) converts fructose 6-phosphate and glyceraldehyde 3-phosphate into erythrose 4-
phosphate (E4P). These two intermediary products are catalysed by 3-deoxy-D-arabino-heptulosonic acid
7-phosphate (DAHP) synthase (AroG/F/H), synthesing DAHP. Then, DAHP is converted to 3-
dehydroquinate (DHQ) by the enzyme DHQ synthase (AroB). Afterwards, DHQ is catalysed by DHQ
dehydratase (AroD), generating 3-dehydroshikimic acid. Subsequently, the quinate/shikimate
dehydrogenase (YdiB) and the shikimate dehydrogenase (AroE) convert it to shikimate, and shikimate
kinase I/l (AroK/L) synthesises shikimate 3-phosphate. The 5-enolpyruvylshikimate-3-phosphate (EPSP)
synthase (AroA) allows the synthesis of 5-enolpyruvylshikimate-3-phosphate, which is converted to
chorismate by the chorismate synthase (AroC). Prephenate is produced with the help of
mutase/prephenate dehydrogenase (TyrA) and chorismate mutase-pprephenate dehydratase (PheA),
and, lastly, tyrosine amino-transferase (TyrB) finishes the pathway by synthesising /-Tyr (Chavez-Béjar et
al., 2012; Juminaga et al., 2012; Rodrigues, Prather, et al., 2015; Rodriguez et al., 2014).

DAHP synthase is encoded by aroG, aroF and aroH genes, whose expression is inhibited by the
presence of /-Phe, /[-Tyr, and [-Trp, respectively. Each of the isoenzymes contributes differently to the
overall activity of the enzyme. AroG contributes for 80%, AroF 15% and AroH 5%, approximately. AroG and
AroF are completely inhibited by the /-Phe, [-Tyr, and /-Trp; however, AroH is only partially inhibited by
L-Trp (Rodriguez et al., 2014). Another regulatory point is present at the chorismate branch point with
the enzymes PheA and TyrA. Both these bifunctional enzymes and AroE have shown a feedback regulation
by their end products, /-Phe, [-Tyr, and shikimate (Goldberger, 2012; Rodrigues, Prather, et al., 2015;
Wilson, David B.; Sahm, Hermann; Stahmann, Klaus-Peter; Koffas, 2019; C. Zhang et al., 2013). There
is a transcriptional control mediated by the protein TyrR (tyrosine repressor), adding to the allosteric
inhibition. In case of amino acid overproduction, TyrR can repress arof, aroG, arol, trA and HrB
(Goldberger, 2012; Rodrigues, Prather, etal., 2015; Wilson, David B.; Sahm, Hermann; Stahmann, Klaus-
Peter; Koffas, 2019; C. Zhang et al., 2013).
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Figure 2.1 - E. coli's L-Tyr biosynthesis pathway. CDRPF, 1-(2-carboxyphenylamino)-1-deoxy-D-nbulose-5-phosphate; 13GP, indole 3-

glycerolphosphate; L-Glu, glutamic acid; PRAA, n-(5-phospho{3-D-nbosylanthranilate); X5F, xylulose 5-phosphate and a-KG, a-ketoglutarate.

The enzymes present in this pathway are as follows: AroA (EPSP synthase), AroB (DHQ synthase), AroC (chorismate synthase), AroD (DHG

dehydratase), AroE (shikimate dehydrogenase), AroF (DAHP synthase, Phospho- 2-dehydro- 3-deoxyheptonate aldolase, Tyr-sensitive), AroG

(DAHP synthase, Phospho-2-dehydro-3-deoxyheptonate aldolase, Phe-sensitive), AroH (DAHP synthase, Phospho-2-dehydro-3-

deoxyheptonate aldolase, Trp-sensitive), AroK/L (shikimate kinase 1/1l), PheA (chorismate mutasepprephenate dehydratase), FpsA

(phospho-enojpyruvate synthase), TktA (fransketolase A), TyA (chorismate mutase/prephenate dehydrogenase), TyrB (tyrosine

aminotransferase) and YdiB (quinate/shikimate dehydrogenase) (ChavezBéjar et al., 2012; Goldberger, 2012; Juminaga et al., 2012;

Rodrigues, Prather, et al., 2015, Rodriguez et al., 2014, Wilson, David B.; Sahm, Hermann; Stahmann, Klaus-Peter; Koffas, 2019; Zhang

et al., 2013). 7he blue lines show steps of the pathway that can be inhibited by the end product of the reaction in question, the red lines

represent deviations from the pathway that also partake in the regulation and the black dashed lines represent the inhibition by L-Tyr, L-Trp

and L-Phe (Chavez-Béjar et al., 2012, Goldberger, 2012; Rodrigues, Prather, et al., 2015; Wilson, David B.; Sahm, Hermann; Stahmann,

Klaus-Peter; Koffas, 2019; Zhang et al., 2013).
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2.1.2 Strategies to increase /-Tyr biosynthesis

In the last years, there was an increase in the accessibility to omics-scale data that allowed
vigorous developments in metabolic reconstruction and modelling, which resulted in an improved strain
design. The amplified use of combinatorial and evolutionary methods, powered by a swift growth of
synthetic and molecular biology tools, allowed the opportunity to test new and great combinations of gene
expression systems and genetic backgrounds. Furthermore, the efforts made to optimise the fermentation
conditions allowed scaling-up the production processes of many AAA while providing important feedback
on the engineered strains' physiological performance (Rodriguez et al., 2014).

Practical metabolic engineering approaches for the design of £. coli strains capable of
overproducing AAA include (Rodriguez et al., 2014):

=  Enhancing the availability of the precursors' PEP and E4P;

=  Enhancing the enzymatic reaction catalysed by AroG/F/H;

=  Enhancing the carbon flow by removing the transcriptional and allosteric regulation and

avoiding its loss to competing pathways;

= |dentifying and relieving rate-limiting enzymatic reactions;

=  Enhancing product export;

= |nhibiting product degradation or re-internalization.

Feedback resistant (fbr) variants AroG* and AroF* resulted from identifying specific amino acid
residues involved in the allosteric sites. Subsequently, intensification and deregulation of AroG/F/H
activity are fundamental to overproduce shikimate, therefore aromatic compounds. The introduction of
the plasmid-encoded copies of arof* and aroG> in combination with ##4 gene, or their chromosomal
integrations in gene clusters, resulted in an improved carbon flow from the CCM to the shikimate pathway
(Rodriguez et al., 2014).

It was possible to increase carbon flux through the shikimate pathway by removing the
transcriptional and allosteric control points and alleviating some restrictive enzymatic reactions. The
reactions catalysed by AroB, AroK/L and YdiB are some examples, being the last only limiting for the
design of /-Tyr overproducing strains. To reduce the impact of these rate-limiting steps, during the design
of shikimate and AAA production strains there are some techniques that can be used (Rodriguez et al.,
2014). These techniques include the overexpression of several genes using plasmids, the co-expression
in a modular operon under control of different promoters using plasmids or the expression of
supplementary gene copies by chromosomal integration or by engineering the endogenous promoters

(Juminaga et al., 2012; Rodriguez et al., 2014).
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Metabolic engineering methods to overproduce /-Tyr typically include modifications in TyrR
and/or #rp regulons. Inactivation of TyrR-mediated regulation by deletion of #7# and overexpression of
aro@Gand tyrAr, combined with the overexpression of CCM genes, such as ppsA and A, and genes of
the [-Tyr biosynthetic pathway, such as 7B, aroC, and aroA, have shown an increase in the production
of [-Tyr in diverse £. coli strains (Rodriguez et al., 2014).

However, in a more recent study (Kim et al., 2018), gene manipulations were made to the wild-
type and to #7rR knockout strains to conclude whether the #7” knockout is essential to improve /-Tyr
production. Comparing the individual overexpression of aroGr and #rA», with the combination of the
overexpression of aro@», arol, and the gene that encodes cyclohexadienyl dehydrogenase (#7C) through
a plasmid in the wild-type managed to get the highest /-Tyr production amongst the strains and plasmid
constructs observed in this study. This study was able to conclude that the #r# gene knockout was not
mandatory to increase /-Tyr production (Kim et al., 2018). In the same study, the strains' performance
was enhanced by removing the /-Tyr specific and/or general AAA transporters, demonstrating that
transporters can be potential manipulation targets for further strain optimisation for the /-Tyr production
(Kim et al., 2018).

Another report (Na et al., 2013) revealed that it was created a synthetic SRNA library for targeted
gene expression silencing to aid in the identification and modulation of the expression of target genes for
metabolic engineering in £. coli It was possible to confirm the advantages of this approach by
overproducing L-Tyr through the overexpression of ppsA, thtA, arof, aroK, tyrC, aroG and fyrA genes, and
the simultaneous silencing of #7A, csrA (enconding a regulatory protein of carbohydrate metabolism), pgi
(encoding phosphoglucose isomerase) and ppc (encoding phosphoenolpyruvate carboxylase) genes
generating numerous £. coli strains when testing multiple combinations. It was possible to select a strain
(£. coliS17-1frRand csrA repressing) that could yield up to 21.9 g/L of L-Tyr in high-density (Na et al.,
2013; Rodriguez et al., 2014).

Table 2.2 contains a variety of £. coli strains engineered for the overproduction of /-Tyr published

in the last few years.
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Table 2.2 — Escherichia coli strains engineered for the overproduction of L-Tyrosine since 2013. ptsG - glucose-specific PTS enzyme IIBC
component; pykA - pyruvate kinase 2; pykF — pyruvate kinase 1, glk — glucokinase, feaB — phenylacetaldehyde dehydrogenase;, UTR -
untranslated region,; ptsHI — phosphocarrier protein HPr and PTS enzyme I; galP — galactose:H symporter; MAGE — Multiplex Automated
Genome Engineering; hpaC — 4-hydroxypheniacetate 3-hydroxylase; mao-paa — cluster; lacl — DNA-binding transcriptional repressor Lacl;
trP - tyrosine.H symporter; tyrC — prephenate dehydrogenase; crr — PIS system glucose-specific ENA component; IdhA — D-lactate
dehydrogenase, adhE - Aldehyde-alcohol dehydrogenase,; pfiDC — putative formate acetyltransferase 2/pyruvate formate lyase activating

enzyme; ascF — [-glucoside-specific PTS enzyme IIBC component

Titer or
Strain Related genotype and features Reference
Yield
E. coliBW25113 AptsG:FRT AtyrR:FRT ApykA::FRT ApykF:FRT
0.1071 g/g
BKTH ApheA:FRT with pYBT5 (pMB1 ori with Paws and Pe; AMpr Peas (Yao et al., 2013)
glucose
aroG tyrAr arof, Pw. ppsA thiA gik)
Not (Bai et al., 2014;

BMGA E. coliMG1655 AfeaB ApykA ApykF AtyrR ApheA
mentioned Jiang et al., 2016)

E. coliK-12 FArph-1 IN(rmD,rrnf)1 AtyrR aroG.:Psea s

0.102 g/g
SCK5 SYNUTRue-@r0G tyrA::Pess_sio-SyNUTRyw- (1A Paroscoisys- (Kim et al., 2015)
glucose
UTRamAECmea: . Pssagzamo—syn UTRaroABCDEuva PppsA-UTRppsA: . Paaa,mmo-syn UTRppsANA)
ACOS1 E. coliCA1(DE3); AtyrR:: tyrAr, aroG 450 mg/L (Kang et al., 2015)
AROM-2 (pQE-
E. coliBW25113, AtyrR, AcsrA, AptsH, Acrr 366.2 mg/L (Wei et al., 2016)
hpaBC)
E. coli ATCC31882 ptsHt: Puworglk-galP ApykF ApykA ApheA (Noda et al.,
CFT56 1620 mg/L
AtyrA pZA2 3tyrAv 2016)
DOPA-30

E. coliBW25113, MAGE strain with the artificial 5’-UTR
(pQE30- 546.8 mg/L (Wei et al., 2016)

sequence of the ApaC
2hpaBC)

E. coliBW25113 AptsG, AtyrR, ApykA, ApykF, ApheA Amao-
BAK11 401.5 mg/L (Zhou et al., 2017)
paa cluster::Puwes-aroGe-tyrAe-aroE Alack:Pe-ppsA thtA gik

BTY2.13 E. coliBL21(DE3) AtyrPpBK1::Px, aroG-arol, Pw, tyrC 43.14 g/L (Kim et al., 2018)
E. coliHMS174(DE3) [BBR1 or7 cat Plac-UV5aroE-aroD-aroBOPT
HMS174 - (Trantas et al.,
PLtetO-1-aroG-ppsAthtA dbl term] [pl5a ori bla Plac-UV5-tyrB- 6.23 mM
Tyree 2019)
tyrA-aroC T1 term Plrc-aroA-arol dbl term)
E. coliBL21 AtyrRAptsGAcrrPT7-galP-glkA pheA Pr-aroGe- (Fordjour et al.,
LP-7 461.7 mg/L
tyrAv- Pr-galp-gik-ppsA thiA pykFA 2019)
HRP E. coli HGX™ A pheA/ tyrR with pAP-aroG-tyrA» plasmid 5.84 g/L (Xu et al., 2020)

YR Prn-aroGe IdhA::PrwetyrAr adhE::Prw-ppsA pDC. wvwsorthtA | 0.22 mol/mol | (Koma et al.,
DYKF::Pru-aroALC ascF:.Pru-arofDB glucose 2020)

M-PAR-121

*E. coli HG (L-Tyr auxotrophic, carrying pAP-BO3 plasmid with pAeA and aro™ genes, Kan) without pAP-BO3 plasmid

10
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2.2 Metabolic Engineering

Metabolic engineering covers the analysis and modification of metabolic pathways. This field has
gained power over the past few decades in various areas, such as biological and biochemical engineering,
cell physiology, and applied microbiology. Even though pathway manipulation was not new, it was Bailey
in 1991 that suggested that metabolic engineering was a crucial discipline in its own right, which he
defined as the improvement of cellular activities by manipulations of enzymatic, transport, and regulatory
functions of the cell with the use of recombinant DNA technology (Bailey, 1991; Keasling, 2010; Nielsen,
2001; Stephanopoulos et al., 1998).

Stephanopoulos defined metabolic engineering as the direct improvement of product formation
or cellular properties through the modification of specific biochemical reaction(s) or the introduction of
new one(s) with the use of recombinant DNA technology (Stephanopoulos et al., 1998).

Researchers in the biotechnology field have been manipulating metabolic pathways to provide
desirable properties to mutant microorganisms. In order to accomplish the expressed goal, molecular
biology techniques are used, allowing the amplification, inhibition or deletion, transfer, or deregulation of
the genes or enzymes that are involved in the reaction targets (Bailey, 1991; Keasling, 2010; Nielsen,
2001; Stephanopoulos et al., 1998).

Like all fields of engineering, metabolic engineering focuses on analysis, synthesis, and design
(Keasling, 2010; Nielsen, 2001; Stephanopoulos et al., 1998). It is necessary to analyse the cellular
function to start a metabolic engineering approach. Then, an improved strain is designed and constructed

by genetic engineering, taking into account the results (Nielsen, 2001), as illustrated in Figure 2.2.

- - -
Synthesis Analysis Design

Genetic Modifications: Metabolic Characterisation, The results of the analysis are interpreted
Using molecular biology techniques, such using analytical techniques, like: and possible modifications are designed
as recombinant DNA - Expression Analysis (DNA arrays)

Protein analysis

Metabolite levels

Flux Analysis

Figure 2.2 — The cycle of metabolic engineering. Adapted from (Nielsen, 2001)

Initially, the predominant technique used for metabolic engineering was DNA recombination. This
field was considered the technological manifestation of applied molecular biology (Keasling, 2010;
Nielsen, 2001; Stephanopoulos et al., 1998) by using diverse techniques such as the expression of new
genes in various host cells, amplification of endogenous enzymes, deletion of genes or modulation of

enzymatic activity, transcriptional or enzymatic deregulation (Stephanopoulos et al., 1998). However, as
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modern analytical techniques and cloning techniques have evolved rapidly, it has become possible to
implement directed genetic changes swiftly and subsequently analyse the effects of the changes
implemented at the cellular level (Nielsen, 2001).

Metabolic engineering focuses on joined metabolic pathways instead of individual reactions,
examining the broad biochemical networks and their interacting reactions, regarding the pathway
synthesis, thermodynamic feasibility, and pathway flux and its control (Nielsen, 2001; Stephanopoulos et
al., 1998).

The metabolic fluxes and their control under /n vivo conditions is the main focus of metabolic
engineering. What differentiates this field from others is the combination of analytical methods that
quantify fluxes and their control, with molecular biological techniques that implement suggested genetic

modifications (Nielsen, 2001; Stephanopoulos et al., 1998).

2.2.1 Systems Biology

The development of more recent high-throughput (HT) technologies enabled the identification of
most molecules that compose cells, resulting in high quantities of data available, which allows us to
understand the composition of cells and organisms under certain conditions. Understanding the chemical
interactions between many of these components allows the reconstruction of the biochemical reaction
networks on a genome-scale. The high quantity of data forced the need to integrate various omics data
types into a consistent whole and to consider cellular functions as systems (Palsson, 2015).

Klipp et al. defined systems biology as the scientific discipline that studies the systemic properties
and dynamic interactions in a biological object, being it a cell, an organism, a virus, or an infected host,
in a qualitative and quantitative manner and by combining experimental studies with mathematical
modelling (Klipp et al., 2016).

Systems biology has been at the forefront of research and development, focused on life science
(Palsson, 2011). The focus of systems biology does not rely only on the components but on how the
connecting links and the functional states of the biochemical networks work. Systems biology aims to
complete the relationship between all the chemical components of a cell, its genetic bases and
physiological functions (Palsson, 2015).

Systems biology allows explaining the whole network, cell, or organism behaviour (Palsson,
2011), which enables the understanding of how the cell adapts to gene disruptions, such as mutations,
how the physical structures are built, maintained, and reproduced, how the metabolic state is changing,

and how signalling and regulation systems allow cells to adjust to their environment (Klipp et al., 2016).
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Reconstructed networks are essential in systems biology because of their multiple usages, like data
interpretation, comparing organism capabilities and computing their functional states (Palsson, 2011).
However, there is also the need to consider the global dynamics between the networks' components,
which is why mathematical models are important (Klipp et al., 2016).

For several years, mathematical modelling has been used in biology, having shaped the discipline
differently. Models enable the testing of hypotheses and the development of quantitative predictions or
the disclosure of discrepancies or contradictions in previous claims, enabling the understanding of
biochemical processes. As previously mentioned, a high amount of biological data (genomic and
proteomic) allows the development of computational models of cells, integrating the data into networks
and dynamical simulation models (Klipp et al., 2016).

The fundamental paradigm of Systems Biology emerged due to the availability of thorough lists
of biological components, their interactions, and genome-wide data sets. The following core sequence of
events (Figure 2.3) is the fundamental paradigm of a bottom-up mechanistic methodology to systems

biology (Palsson, 2015):

Reconstruction Math Representation COBRA tools
Components —— Networks In sifico models

Physiology

Figure 2.3 - Core sequence of events of the bottom-up mechanistic method of Systems Biology. COBRA stands for COnstraint-Basea

Reconstruction and Analysis Adapted from (Palsson, 2015).

The fundamental paradigm of systems biology is represented in Figure 2.4.
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DNA

Determine the biological components of the system

Gene
Study the interactions between the components to Transcript

Protein

form a network

Reaction

Conversion to a mathematical model s

Discovery, understanding, design

Figure 2.4 — The Systems Biology Paradigm. Adapted from (Palsson, 2015).
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The Core Paradigm is constituted of four main steps. Each one of these steps relies on different

disciplines (Palsson, 2015) and techniques:

1.

Measuring biological components

Define and enumerate the biological components that participate in a cellular process. This

step uses omics data sets - genomics, transcriptomics, proteomics, metabolomics,

fluxomics, and bibliomics. Such data sets are produced from HT technologies based on

miniaturisation, automation, and multiplexing (Palsson, 2015).

Reconstruction of biochemical reactions networks

This step is the interface between HT data and /7 silico analysis. The interactions between

these components are studied with a comprehensive review of the literature, allowing the

reconstruction of the ‘wiring diagrams’ of genetic circuits and forming genome-scale maps.

There are defined procedures for determining which data are included, depending on the

components' validation level and their interactions in the target cell. The reconstruction

process may follow two different approaches (Palsson, 2015):

= Bottom-up: mechanistic method to reconstruct the network — characterises all available
knowledge from that organism or genome, resulting in a biochemically, genetically, and
genomically (BiGG) curated knowledge base (Palsson, 2015).

=  Top-down: this method includes going through the omics data sets, using statistical
approaches to interpret the ties between biological components (Palsson, 2015).

Conversion to a mathematical model allowing in silico analysis

The biochemical network is converted into a mathematical format, becoming an /n silico

model of the knowledge that it represents. These computer models are created to analyse,

interpret, and predict the biological functions from reconstructed networks, allowing to

determine the properties of the BiGG knowledge base and the consistency of the

physiological states with the original data. Several tools, such as topology, constraints, gap-

filling, dynamics, sensitivity, noise, and modularisation, are available for this step. A detailed

curation and validation of a genome-scale model against available data are also performed

(Palsson, 2015).

Prospective uses: discovery, understanding, and design

Once an organism-specific knowledge base has been formed, it can be used prospectively.

Currently, there are a few main uses and applications. First, to analyse and data-map omics

through HT data analysis and the systematic discovery focused on any missing pieces in the
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knowledge base. An /n silico model can help understand a complex biological process, like
adaptation or disease progression. Lastly, a predictive /n7 silico model can be used to design
synthetic biology at the network scale. These /7 silico models of reconstructed networks can

be enhanced iteratively (Palsson, 2015).

2.2.2 Systems Metabolic Engineering

The focus of metabolic engineering has been on analysing cellular metabolism and predicting
optimal rewiring of metabolic networks through a systems-level view. There have been substantial
developments for obtaining high-resolution specifics about the cellular state. In response, this recent skill
enabled Systems Metabolic Engineering to emerge as a paradigm that associates metabolic engineering
goals with the field of systems biology (Alper, 2013).

Yang and co-workers defined systems metabolic engineering as an interdisciplinary field of study
which integrates traditional metabolic engineering with systems biology, synthetic biology, and
evolutionary engineering to provide a holistic approach to microbial metabolism for enhanced production
of target chemicals while considering upstream to downstream bioprocesses (Yang et al., 2020).

In addition to creative genome-wide engineering, this field integrates large-scale data collection,
HT biology and /n silico modelling efforts to achieve the task of improving a cellular phenotype or pathway
flux. There is a continuous expansion of the global system-level view of metabolic engineering through
these innovations and initiatives, emphasising individual pathways to the collective, interconnected nature
of metabolism and regulation. Due to the improvements of systems biology, there is a growth of the HT
collection of genomic, transcriptomic, proteomic, metabolomic, and fluxomic data. However, this vast
snapshot of cells creates a great challenge for data collection, integration, interpretation, synthesis, and
ultimately perturbation to the cell (Alper, 2013).

Systems Metabolic Engineering's ultimate aim is to systematically and robustly identify the
precise perturbations required to modify a cellular phenotype. The desired concrete outcome is a
complete cell model capable of simulating cell and metabolic function and predicting phenotypic response
to media changes by gene knockouts, under/overexpression, or integration of heterologous pathways
(Alper, 2013).

An innovative era of industrial strain engineering — the design of tailor-made overproducers
optimised globally - starts with the convergence of system-wide omics, genome-scale modelling and
simulation, synthetic biology, and evolutionary engineering (Wittmann & Lee, 2012). This discipline

considers the complete metabolic and regulatory networks and the midstream (fermentation) and
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downstream (recovery and purification) processes, to establish the engineering objectives. During the
metabolic engineering techniques, the effect of the changes on the entire metabolism is examined.
Through the iterative mode of operation of metabolic engineering, the developed strain's performance is
evaluated, and the ultimate metabolic phenotype desired can be achieved (Park & Lee, 2008).
Numerous systems of metabolic engineering tools have facilitated the design of novel strain
engineering tasks to achieve the requirement to design industrially competitive microorganisms. These
tools help construct new metabolic pathways, genome-wide identification of metabolic engineering
targets, refinement and control of gene expression, multiplex genome engineering, design of synthetic
circuits, and growing tolerance to target chemicals or intermediates when desired. Such tools and
strategies have been employed for strain development and the optimisation of bioprocess variables such
as medium composition, pH, aeration, cultivation mode, and nutrient feeding strategies (Chae et al.,

2017).

2.2.3 Bioinformatics in Metabolic Engineering

Biotechnology requires bioinformatics to look for biological "rules" and "principles" on which the
design of biological systems can depend. For this, engineering approaches for the operation and design
of integrated systems must be used to study the hierarchical relationship between genetics and physiology
(Edwards & Palsson, 1998).

In genome-wide research, bioinformatics is essential to understand cell physiology at different
cellular levels — genome, transcriptome, proteome, and metabolome. The several bioinformatics fields
provide valuable information on the global cellular status and comprehensive cell analysis for system
biology and metabolic engineering systems (Chen & Wu, 2013). Some of the computational tools have
been developed to aid in the metabolic engineering field by identifying genetic strategies, like strain
designs, facilitating the enhancement of chemical production (Long et al., 2015; Patil et al., 2005).

In bioinformatics, genetic knowledge leads to a comparative genomic study that contributes to
the systems metabolic biology for genetic circuits targeting and engineering to generate desirable cellular
phenotypes. DNA microarrays are used in transcriptome profiling to decipher the expression levels of
genes under different biological conditions. Based on the response to genetic variations and
environmental changes of regulatory genes when conducting systematic research, this technique can be
useful for selecting which genes to use to alter the molecular networks (Chen & Wu, 2013).

These technigues may also be used to recognize new variables in metabolic pathways that

enhance heterologous product development. Proteome profiling is used to obtain transcriptome-profiling
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data at a protein level. The metabolome contains all the information on metabolites present in and/or
out of the cell under detailed conditions. It contributes expressively to understanding the cell and the
synthetic circuit engineering in its metabolic pathways (Chen & Wu, 2013). It is possible to model the
integration of product biosynthesis pathways with host metabolism with the information acquired and
then forecast how metabolic and regulatory changes will affect the yields, titers and productivities of the
chemical productions (Long et al., 2015; Yang et al., 2020).

In metabolic engineering, genome-scale constraint-based models have been used to account for
a cell's maximum metabolic and regulatory capabilities and do not require precise kinetic parameters to
construct them (Long et al., 2015; Patil et al., 2005; Tepper & Shlomi, 2009). Several software packages
can swiftly generate Constraint-based models using the organism's genomic, biochemical, and
physiological data. Constraint-based models use two types of constraints when defining a metabolic
solution space: steady-state mass balances, meaning that the metabolite production and consumption
rates are the same, and flux bounds, that set maximum and minimum limits for metabolic fluxes based
on an enzyme’s capacity and directionality (Long et al., 2015).

Several databases that describe the reactions that known enzymes can catalyse are available,
such as KEGG (Kyoto Encyclopedia of Genes and Genomes), BioCyc and BRENDA. These databases can
be used to improve reaction networks unique to organisms and full reaction networks comprising known
biochemical reactions. Graphical and modelling approaches can be used to discriminate native and non-
native pathways leading to product formation from these reaction networks (Long et al., 2015).

For those desirable compounds with no known biological synthesis network, there is a need to
find novel routes and enzymes that can catalyse new reactions. Several methods allow us to identify these
new reaction pathways and possible enzymes that catalyse them. These approaches use Biochemical
Reaction Operators (BROs), which are generic reaction rules that act on a reaction centre. This method
targets metabolites and enumerates potential filtered or ranked reactions based on thermodynamics, and
other methods suggest enzymes that could catalyse the wanted reactions (Long et al., 2015).

After identifying the biosynthesis pathway, the necessary enzymes are expressed in the host.
There may be also the need to adjust other aspects of native host metabolism so that sufficient
precursors, ATP (Adenosine Triphosphate), redox carriers, and cofactors can be provided. Experimentally,
the modification of the strain metabolism to overproduce a target metabolite can be done using various
genetic methods - gene knockout, insertion of heterologous reactions or de novo reactions, gene

upregulation, and gene downregulation. Thus, several computational strain design algorithms have been
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developed to enhance the production of a target metabolite using one or a combination of techniques

(Long et al., 2015; Patil et al., 2005; Tepper & Shlomi, 2009; Yang et al., 2020).

2.2.4 Stochiometric Models

A Genome-Scale Metabolic (GSM) model represents the metabolic network in the form of a
stoichiometric matrix. Additionally, these models are based on the steady-state supposition and can be
used to determine intracellular metabolic fluxes (Orth et al., 2010). The classical principles of chemical
engineering, combined with a steady-state approximation that assumes no changes in the system
(Edelstein-Keshet, 2005), enable the representation of a biological system's dynamic mass balances as

shown in equation 1 (Orth et al., 2010).
Sv=20 (1)

Where the S stands for the stoichiometric matrix and the v for the flux vector, most GSM models
are underdetermined systems since there are more reactions than metabolites (Orth et al., 2010).

Some algorithms can predict chemical production rates for a set of genetic manipulations using
“gene perturbation” constraint-based modelling tools, like flux-balance analysis (FBA) or minimization of
metabolic adjustment (MOMA) (Long et al., 2015; Patil et al., 2005; Tepper & Shlomi, 2009; Yang et al.,
2020).

FBA, a linear programming strategy that predicts the phenotypic responses forced by
environmental elements and factors using metabolic models, is the leading tool for simulating and
manipulating cell production /7 silico (Cuevas et al., 2016). This technique maximises or minimises the
objective function, for instance, the maximisation of biomass production (Long et al., 2015; Orth et al.,
2010; Patil et al., 2005). Parsimonious Flux Balance Analysis (pFBA) derives from FBA and includes a
bi-level optimisation. Firstly, the biological objective chosen is optimised like in FBA. Afterwards, under
the optimality condition, the sum of all fluxes is minimised by removing the flux distribution of reactions
that are not necessary for the cell work or growth (Sa-Correia, 2019; Vilaca et al., 2018).

In order to predict production phenotypes, computational methods, as FBA and pFBA, depend
primarily on structural details, like the reaction stoichiometry. So, it is impossible to differentiate between
different steps in a linear pathway to find rate-limiting ones. It is also hard to predict how gene expression
changes will influence flux using stoichiometric models, as removing a gene will eliminate flux through

related reactions (Long et al., 2015; Patil et al., 2005).
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Flux Variability Analysis (FVA) is an effective approach, based on linear programming, for
calculating the entire range of possible values for each flux to obtain optimal or sub-optimal objective
states. This is one of the most common methods for determining the limits of a constraint-based model's
viable domain (Vilaca et al., 2018). This method requires selecting a target flux and a pivot flux. The
procedure starts by separating the range of all possible pivot flux values into numerous phases. The value
of the pivot flux is fixed for each step, and the maximum and minimum values for the target flux are
determined (Vilaca et al., 2018).

Heuristic methods, such as EA, are usually computationally less expensive approaches for
countless optimisation problems. Even though these methods do not guarantee that the overall optimal
solutions are determined, the definition of optimisation frameworks with a set of objective functions is
allowed, like biomass-product coupled yield (BPCY) and product yield with minimum biomass (YIELD),
encouraging a clear separation of the strain optimisation from the phenotype simulation layers, while
allowing optimisation over larger search spaces (Vilaca et al., 2018). The algorithm starts by randomly
generating an initial set of candidate solutions, and each is decoded into a set of reaction deletions, which
are converted into constraints. Each of these candidate solutions is simulated using one of the phenotype
simulations, followed by the assignment of a fitness value by the objective function defined by the user.
Then, the algorithm enters an iterative phase, initially with a selection step, selecting solutions as primary
candidates for the reproduction in a stochastic way, depending on their assigned fitness, where fitter
individuals are more likely to generate offspring solutions. Lastly, a new population is attained and re-
evaluated by combining the chosen individuals through crossover or mutation operators. This cycle is
repeated until the wanted phenotype is achieved or another termination criterion is met (Vilaca et al.,

2018).

2.2.5 Kinetic Models

Metabolism Kinetic models were first assembled for small networks with simplified rate
expressions from /n vitro parameters with low predictive capacity. Recent advances allowed
parameterization of genome-scale kinetic models with full mechanistic descriptions only from /7 vivo data.
The resulting models can predict reactions operating almost to equilibrium, allosteric control points,
catalytic efficiency, and rate-limiting steps across metabolism (Foster et al., 2021).

Kinetic models are based on the principles of biochemical kinetics. Therefore, they rely on the
Law of Mass Action and the Michaelis-Menten model for the rate of an irreversible one-substrate reaction

(Klipp et al., 2016) or other rates.
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Almost all kinetic models are described with coupled differential equations rather than explicit
algebraic functions, and the simulators use the appropriate methods to resolve these systems of ordinary
differential equations (ODEs) (Mendes & Kell, 1998).

The Law of Mass Action states that the reaction rate is proportional to the probability of a collision
of the reactants. This probability is proportional to the concentration of reactants to the molecularity's
power, which is the number in which the molecule species enters the reaction. For a simple reaction like
Equation 2, the reaction rate is like Equation 3. The basic quantities are the concentration of a substrate

S, and the concentration of a product P (Klipp et al., 2016).
S;+S,=2P (2)
v=v, —v_=k.S; S, — k_P? (3)

In Equation 3, v is the net rate, and v, and v_ are the rates of the forward and backward
reactions, respectively. k, and k_ are the kinetic or rate constants, meaning, the respective
proportionality factors (Klipp et al., 2016).

Michaels-Menten (Michaelis & Menten, 1913) kinetics are represented by Equation 4. K,,, value

is @ major characteristic of the interaction between enzyme and substrate (Klipp et al., 2016).

— Vimax'S (4)
Km+S

Equation 5 was proposed by Brown (Brown, 1902), and it comprises a reversible formation of
an enzyme-substrate complex, ES, from the free enzyme, E, and the substrate, S, and an irreversible

product P (Klipp et al., 2016).

L} k2
E+S ES—2 ,E+P (5)
k
-1

The ODE system for the reaction dynamics represented in Equation 5 is represented in Equations

6 to 9 (Klipp et al., 2016).

S =k E-S+k_4ES (6)
S = kiE S — (koy + ky)ES (7)
dE
E - _klE " S + (k—l + kz)ES (8)

ap
= = kyES (9)
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The reaction rate is equal to the substrate's negative decay rate and the rate of product formation

(Equation 10) (Klipp et al., 2016).

p=-B_92 (10)

dt dat

This ODE system (Equations 6 to 10) cannot be solved analytically. Thus, it must be solved
graphically instead (Klipp et al., 2016). Different assumptions have been used to simplify this ODE
system. Michaelis and Menten (Michaelis & Menten, 1913) considered a quasi-equilibrium between the
free enzyme and the enzyme-substrate complex, meaning that the reversible conversion of E and S to
ES is much faster than the decomposition of ES into E and P (k,,k_; > k) (Klipp et al., 2016).

Briggs and Haldane (Briggs & Haldane, 1925) assumed that throughout a reaction, a state is
reached where the concentration of the ES complex remains constant, the quasi-steady state. This
assumption can only be justified if the initial substrate concentration is greatly superior than the enzyme
concentration, S(t = 0) > E, otherwise such a state will never be reached (Klipp et al., 2016).

Deriving an expression for the reaction rate from the ODE system (Equations 6 to 9) and
assuming the quasi-steady-state assumption for E'S, it is possible to obtain Equation 11 representing the
reaction rate (Klipp et al., 2016).

K2Etotal’S

V= ko) k) ts (11)

Comparing equation 11 with the one that follows the Michaelis-Menten kinetics (Equation 4), it
is possible to obtain the parameters for the maximal velocity (Equation 12) — the maximal rate attained
when the enzyme is completely saturated with substrate — and the Michaelis constant (K,,) (Equation

13) - equal to the substrate concentration that yields the half-maximal reaction rate (Klipp et al., 2016).

Vmax = kZEtotal (12)
k_1+k
Ko = *2022 (13)

For the quasi-equilibrium assumption, K,, = k_; /k,. The maximum velocity divided by the

enzyme concentration (ky = Vipax/Etotar) is Often called the turnover number, k., (Klipp etal., 2016).
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Recent advances have allowed the development of kinetic models using a variety of kinetic

formalisms. Figure 2.5 provides an overview of the generalized workflow (Foster et al., 2021).

Data and literature

- Selection of rate curation
Data consolidation ) 9 BRENDA ||
law formalism )
Omics data Dataset $BloCYC
ODEs examples S¥KiMoSys
Regulation inference Network
Obtained from experimental data reconstruction
Kinetic Metabolic
parameterisation Engineering

Figure 2.5 - Generalised workflow for Metabolic Kinetic Model construction and use in Metabolic Engineering. First, datasets and literature
are used to select kinetic rate law formalisms. A systematic regulatory inference using experimental data is also necessary because it gives
the metabolic response to different metabolite concentrations. The final metabolic/regulatory network involves a reaction network based on
metabolic reconstructions from literature, regulations gathered from databases, and newly defined regulations. A kinetic model is
parameterised using the network and chosen kinetic formalisms. To define engineering methods for a desired metabolic outcome, the

parameterized model is then used. ODEs stands for Ordinary Differential Equations. Adapted from Foster et al. (2021).

The development of kinetic models allows strain design algorithms to be improved, enabling the
rapid construction, evaluation and improvement of metabolically engineered strains (Long et al., 2015;
Patil et al., 2005).

Kinetic simulation software measures internal metabolite concentration values based on kinetic
functions, parameter values and external metabolite concentration values. Two different types of
simulations can be used with kinetic models: time courses that value the variables determined in a time
series and steady states in which the values of the variables are calculated for a state with no metabolite
concentration changes. These simulations allow for an efficient analysis of the model's behaviour’s
reliance on its parameters, thus becoming more effective in predicting the effect of parameter alterations
(Mendes & Kell, 1998).

The simulation is carried along with optimisation techniques to obtain the parameters' values as
the desired optimum. Parameter estimation, a well-established field of biochemical kinetics where enzyme
kinetic parameters are regularly estimated in many laboratories, is used to solve the problem when most
kinetic parameters are unknown (Mendes & Kell, 1998).

Kinetic models establish mechanistic relations between metabolic reaction rates, enzyme levels,

and metabolite concentrations, allowing the quantitative description of metabolic phenotypes. Therefore,
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kinetic models offer more effective metabolic interventions than stoichiometric methods. The used
methods are not limited to gene knockouts or up/downregulations but also include optimally tuning
enzyme levels, detecting reactions operating close to equilibrium and modifying the concentration and,
consequently, the strength of allosteric regulators (Foster et al., 2021).

Stoichiometric models only require reaction stoichiometry and directionality constraints when
doing FBA. However, kinetic models require significant upfront investment to identify the proper kinetic

formalisms for each reaction and data for parameterization (Foster et al., 2021).

2.2.6 Optimisation

The use of these tools enables the development of engineered strains, for instance, £. coli that
can more cost-effectively produce diverse natural products (Yang et al., 2020).

There are several tools available, such as COPASI (Hoops et al., 2006), OptimModels (Correia et
al., 2017) and MEWpy (Pereira et al., 2021) able to design and optimise the desired strain for the systems
biology purpose.

2.2.6.1 OptimModels

OptimModels is a Python package that implements Evolutionary Algorithms (EA)-based strain
design methods on large-scale kinetic models. It has been shown to find which genes should be knocked

out or/and their optimum up/down-regulation levels (Correia et al., 2017).

2.2.6.2 MEWpy

MEWpy is a metabolic engineering Python workbench that covers various approaches to
metabolic and regulatory modelling and algorithms for phenotype simulation and computational strain
optimization. This tool enables the modelling and optimisation of microbial production on GSM by defining
gene-protein-reaction associations and transcriptional and translational layers that improve the models.
Metaheuristics, like EA, Simulated Annealing (SA) and multi-objective methods, allow the choice of the
best set of enzymes, genes or reactions to under/overexpress or delete to optimise the maximisation of

the production of a target compound (Pereira et al., 2021).

2.2.6.3 COPASI

COPASI is a user-friendly software for biochemical simulation that combines generic numerical
methods with computational systems biology. This tool provides an easier way to shift between distinctive

simulation approaches (stochastic and deterministic). It contains features like hybrid deterministic—
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stochastic methods, parameter scans, optimisation of arbitrary expressions, and calculation of
parameters simultaneously using time course and steady-state data (Hoops et al., 2006).

To simulate the dynamics of any given model, COPASI can employ two different methods:
deterministic and stochastic approaches and hybrid methods (COPASI, 2020g). It may also divide
reversible reactions into forward and backward directions to help users adapt deterministic rate equations
to stochastic equivalents and perform stochastic corrections on rate equations (Bergmann et al., 2017;
Hoops et al., 2006).

COPASI uses as default the deterministic methods LSODA (Solver for Ordinary Differential
Equations) or LSODAR (Ordinary Differential Equation Solver for Stiff or Non-Stiff System with root-finding),
both present in the ODEPACK library (Hindmarsh, 1983). These approaches are modified versions of the
Livermore Solver of Ordinary Differential Equations (LSODE). LSODA automatically selects between non-
stiff and stiff methods, monitoring the data to decide which method to use to obtain more efficient results.
LSODAR also has root-finding capabilities that detect the exact time point to each event (COPASI, 2020a;
Petzold, 1983). COPASI automatically selects the most suited approach (COPASI, 2020a).

COPASI offers multiple methods that use stochastic formalisms to determine the system solution
(COPASI, 2020f; Pahle, 2009), such as the Next-Reaction (Gibson & Bruck, 2000), the Direct (Daniel T
Gillespie, 1976), t-Leap (D. T. Gillespie, 2001), or adaptive SSA/t-leap (Cao et al., 2007).

In addition, COPASI includes algorithms that combine deterministic and stochastic methods in a
more time-efficient way. These hybrid approaches are the Hybrid RungeKutta, the Hybrid LSODA, and
the Hybrid RK-45 (COPASI, 2020b). The Hybrid RungeKutta and the Hybrid LSODA determine the particle
number for each reaction, using a deterministic approach if it is below a threshold and a stochastic
approach if it is above. The Hybrid RK-45, on the other hand, allows the user to choose which method to
employ for each reaction (Bergmann et al., 2017).

Metabolic Control Analysis (MCA) develops a method for quantitatively determining the degree of
control that a specific enzyme exerts on flux and metabolite concentrations, thus replacing the intuitive,
qualitative concept of rate-limiting steps. Furthermore, MCA aids in understanding the methods by which
a given enzyme exerts high or low control and why numerous enzymes and transporters share the
pathway's control. MCA identifies which steps should be changed in biotechnological or clinical pathways
to change flux or metabolite concentration successfully.

The MCA identifies the critical steps by calculating three different metrics: the elasticity
coefficients, flux control coefficients (FCC), and concentration control coefficients (Almquist et al., 2014;

COPASI, 2020c). The FCC is the most critical indicator for strain optimising out of the three. FCC is
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defined as the degree of control each enzyme exerts on a metabolic pathway flux (Saavedra & Moreno-
Séanchez, 2013). This metric assesses a single reaction and returns a value for each of the system's
remaining reactions, representing how affected its flux was. However, even if the results are not
indisputable and precise, the FCC acts as a guideline for identifying prospective genetic alteration targets,
facilitating the optimisation (Almquist et al., 2014).

COPASI can perform optimisation tasks to minimise or maximise a user-defined objective function
by scanning one or more parameters over a given range. To meet the objective function, any parameter
of a reaction, or even from multiple reactions, can be minimised or maximised. In addition, COPASI also
informs to which extent such parameters should be modified (COPASI, 2020d). To achieve this, COPASI
supports several different optimisation methods to find the best values toward the set goal (COPASI,
2020d): Evolutionary Programming (Fogel, 1994), Evolutionary Strategy (SRES) (Runarsson & Yao,
2000), Genetic Algorithm (Back & Schwefel, 1993), Genetic Algorithm SR (Runarsson & Yao, 2000),
Hooke & Jeeves (Hooke & Jeeves, 1961), Levenberg — Marquardt (Kennedy & Eberhart, 1963; Levenberg,
1944), Nelder — Mead (Nelder & Mead, 1965), NL2SOL (Dennis et al., 1981), Particle Swarm (Kennedy
& Eberhart, 1963), Praxis (Brent, 1974), Random Search (COPASI, 2020e), Simulated Annealing
(Kirkpatrick et al., 1983), Steepest Descent (Fogel, 1994), and Truncated Newton (Nash, 1984).

2.3 Escherichia coli

In the last years a huge amount of omics-scale data have been published, allowing for major
advances in metabolic reconstruction and modelling, which encouraged a better strain development.
Furthermore, with the growing use of combinatorial and evolutionary methods, coupled with the rapid
expansion of synthetic molecular methods, new and sizable combinations of gene expression systems
and genetic backgrounds have been tested (Rodriguez et al., 2014).

Prokaryotic cells are excellent models to study many essential biochemical and molecular
biological aspects. £. coliis the preferred organism to study molecular genetics’ fundamental processes
(Cooper, 2019; Yang et al., 2020). This choice is justified by its relative simplicity and ease of study in
the laboratory. Moreover, the small size of the £. col/s genome, which consists of approximately 4.6
million base pairs and contains about 4000 genes, provides advantages for genetic analysis. For instance,
E. coliis three times less complex than the yeast Saccharomyces cerevisiae (Cooper, 2019).

Molecular genetic experiments are further facilitated by £. col/s swift growth under well-defined
laboratory conditions, duplicating every 20 minutes (Cooper, 2019). As the cells can be easily isolated as

a colony, it is straightforward and rapid to select and analyse different genetic variants of an £. coli strain
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using different culture mediums. Besides, £. co//s ability to carry out biosynthetic reactions in simple
defined media is advantageous to elucidate the involved heterologous pathways (Cooper, 2019; Rosano
etal., 2019; Yang et al., 2020).

Regarding the production of AAA, like /-Tyr, the physiological and molecular knowledge, as well
as the availability of well-established operational tools and techniques for metabolic engineering is not
distributed equally among the microorganisms currently used (Rodriguez et al., 2014; Yang et al., 2020).

Such characteristics and available information have rendered £. colithe organism with the most
recorded success cases and has contributed to a large range of well-characterised strains for AAA
overproduction (Rodriguez et al., 2014; Yang et al., 2020). The use of £. colias a microbial cell factory
for recombinant proteins has shown to lower the cost of production and improve the yields (Rosano et
al., 2019) and, since it is the best-studied organism, there are available several systems metabolic

engineering tools and strategies, including the best-curated GSM models (Yang et al., 2020).

2.3.1 Review of stoichiometric models

BiGG (King et al., 2016) database lists several GSM models that can be used to optimize the

production of a specific metabolite in £. co/i. Table 2.3 presents several options of GSM models of £. co/.

Table 2.3 — GSM models of E. coli and their features.

Number of Number of Number of
BiGG id References

metabolites reactions genes
iJR904 761 1075 904 (BiGG, 2019b; Reed et al., 2003)
iJO1366 1805 2583 1367 (BiGG, 2019a; Orth et al., 2011)
IML1515 1877 2712 1516 (BiGG, 2019c; Monk et al., 2017)

2.3.2 Review of kinetic models

BioModels (Le Novere et al., 2006) and KiMoSys (Mochéao et al., 2020) databases list several
kinetic models that can be used to optimize the production of a specific metabolite in £. co/i Table 2.4

presents several options of kinetic models of £. coli
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Table 2.4 — Kinetic models of E. coli and their features.

Number of Number of Number of
Model References
metabolites reactions parameters

(Chassagnole et al., 2002; KiMoSys
Chassagnole2002 | 18 + 7 co-metabolites | 48 125

(https://kimosys.org), 2014a)

(KiMoSys (https://kimosys.org),
Singh2006 12 11 45

2018d; Singh & Ghosh, 2006)

(Kadir et al., 2010; KiMoSys
Kadir2010 23 + 9 co-metabolites | 30 173

(https://kimosys.org), 2018a)

(Khodayari et al., 2014; KiMoSys
Khodayari2014 93 138 1474

(https://kimosys.org), 2014b)
Maria2014 Not mentioned Not mentioned 17 (Maria, 2014)

(KiMoSys (https://kimosys.org),
Mannan2015 30 37 214

2018c; Mannan et al., 2015)

(Jahan et al., 2016; KiMoSys
Jahan2016 52 129 341

(https://kimosys.org), 2018b)
Millard2017 62 68 449 (Millard et al., 2017)

(KiMoSys (https://kimosys.org),
Kurata2018 27 44 351

2018e; Kurata & Sugimoto, 2018)
Oliveira2020 88 87 Not mentioned | (Oliveira et al., 2021)

The Chassagnole2002 model represents the glycolysis and the pentose-phosphate pathway in £.
coli. This dynamic model facilitated the CCM exploration and was designed and validated with measured
metabolite concentrations at transient conditions. This model's structure was the first to link the kinetics
of phosphotransferase system (PTS) — sugar transporter — with the CCM for £. coli (Chassagnole et al.,
2002). In addition to the features present in Table 2.4, this model contains two compartments and 11
regulators - six activations and seven inhibitions (KiMoSys (https://kimosys.org), 2014a).

The Singh2006 model was developed to help develop anti-tuberculous drugs to target the
persistent tubercule bacilli. This dynamic model consists of the glyoxylate bypass in £. co/j, and it validates
the pathway modelling protocol and demonstrates that it is possible to estimate changes in metabolic flux
from gene expression data (Singh & Ghosh, 2006). In addition to the features present in Table 2.4, this
model contains one compartment (KiMoSys (https://kimosys.org), 2018d).

The model Kadir2010 considers the primary metabolism of £. colj, therefore helping with the
simulation of the metabolic changes in response to alterations of the environment and specific gene

knockouts. This dynamic model includes pathways like glycolysis, pentose phosphate (PP) pathway and

27



Bioinformatics approaches for engineering /-tyrosine production in £scherichia coli

tricarboxylic acid (TCA) cycle, allowing to estimate the ATP, NADPH and CO. production rates, which
allowed the estimation of growth rate, flux of the oxidative PP pathway and cell yield, respectively (Kadir
et al., 2010). In addition to the features present in Table 2.4, this model contains one compartment and
15 regulators (KiMoSys (https://kimosys.org), 2018a).

The Khodayari2014 model represents the core metabolism of £. coli using ensemble modelling
concepts to fulfil the wild-type and seven mutant strains fluxomic data. This dynamic model includes the
glycolysis/gluconeogenesis, PP pathway, TCA cycle, pyruvate metabolism, anaplerotic reactions and
several other reactions of the metabolism (Khodayari et al., 2014). In addition to the features present in
Table 2.4, this model contains two compartments and 60 regulators (Khodayari et al., 2014; KiMoSys
(https://kimosys.org), 2014b).

The Maria2014 model represents a simplified but versatile version of a glycolysis model. This
reduced model contains the necessary information to simulate the cell energy potential using the A(MDT)P
level, and also simulate the role of ATP/ADP ratio in glycolysis (Maria, 2014).

The Mannan2015 model represents the whole CCM of £. co/i, containing the whole glycolysis,
the PP pathway, the TCA cycle, the glyoxylate shunt, and anaplerotic and acetate production reactions.
This dynamic model incorporates all the available knowledge about the kinetic mechanism and the
metabolic of every enzyme, and it was built adopting the bottom-up approach (Mannan et al., 2015).
Besides the features present in Table 2.4, this model contains 37 regulators (KiMoSys
(https://kimosys.org), 2018c; Mannan et al., 2015).

The Jahan2016 model represents the CCM of £. coliin a batch culture, containing: the glycolytic
pathway, TCA cycle, PP pathway, Entner-Doudoroff pathway, anaplerotic pathway, glyoxylate shunt,
oxidative phosphorylation, PTS, non-PTS and four protein transcription factors (cAMP receptor, catabolite
repressor/activator, pyruvate dehydrogenase complex repressor and isocitrate lyase regulator),
responsible for the metabolic gene regulations (Jahan et al., 2016). In addition to the features present in
Table 2.4, this model contains one compartment (KiMoSys (https://kimosys.org), 2018b).

The Millard2017 model represents the central metabolism of £. co/i cultivated on glucose under
aerobic conditions. This dynamic model contains: the glucose PTS, glycolysis and gluconeogenesis,
pentose phosphate and Entner-Doudoroff pathways, anaplerotic reactions, TCA cycle, glyoxylate shunt,
acetate metabolism, nucleotide interconversion reactions and oxidative phosphorylation. A reaction was
included to account for metabolic precursors' consumption, reducing equivalents and energy, thus

connecting metabolism with cell proliferation. Besides the features present in Table 2.4, this model
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contains 34 regulators and three compartments — environment, periplasm and cytoplasm (Millard et al.,
2017).

The Kurata2018 model was developed to solve some problems of the model Jahan2016,
therefore representing: the CCM of £. coli, containing the glycolytic pathway, PP pathway, Entner-
Doudoroff pathway, anaplerotic pathway, TCA cycle, glyoxylate cycle and oxidative phosphorylation,
alongside with the transcription factors of catabolite repressor/activator, cAMP receptor protein, pyruvate
dehydrogenase complex repressor and acetate operon repressor. The improvements made on the
Jahan2016 model were: adding missing typical dynamics of the TCA and glyoxylate cycles (Kurata &
Sugimoto, 2018). Besides the features present in Table 2.4, this model contains one compartment
(KiMoSys (https://kimosys.org), 2018g).

The Oliveira2020 model is an extension of the Millard2017 model to include Glycerol, Malonyl-
CoA, and Beta-Alanine production. The purpose of this dynamic model was to use as a base to insert
three independent heterologous pathways for 3-hydroxypropionate and acrylic acid production (Oliveira
et al., 2021).

The Chassagnole2002, Kadir2010, Mannan2015, Jahan2016 and Kurata2018 models also
integrate biomass production rate equations in their features (Chassagnole et al., 2002; Jahan et al.,

2016; Kadir et al., 2010; Kurata & Sugimoto, 2018; Mannan et al., 2015).
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3. MATERIALS AND METHODS

3.1 Model Selection

From the ten previously described models, the Oliveira2020 metabolic model (Oliveira et al.,
2021) (Figure 3.1) was selected. This model extends the Millard2017 (Millard et al., 2017) model (Figure
3.2) to include glycerol, malonyl-CoA, and B-alanine production. Therefore, it offers a detailed description
of the CCM and side reactions that are important for AAA production, like the conversion of o-KG to /-
Glu. The Oliveira2020 model contains 88 metabolites, 90 reactions, 34 regulators and three
compartments — environment, periplasm and cytoplasm (Oliveira et al., 2021). The SBML version of the
metabolic models used is available for download in the BIOMODELS database (Le Novére et al., 2006)
with the identifiers MODEL2010030001 (Qliveira, 2020) and MODEL1505110000 (Millard et al., 2017).

This model does not contain the biosynthesis of /-Tyr, which is commonly synthesized by £. coli.
Therefore, the first step toward /n7 silico overproduction of /-Tyr is the extension of the CCM to synthesize
this AAA. Also, with the intent to experiment with biomass production rate equations, the Jahan2016
2016) model was used. This model is available for download in KiMoSys (Mochao et al.,

(Jahan et al.,

2020) with the identifier Model EntrylD 44 (KiMoSys (https://kimosys.org), 2018d).
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Figure 3.2 — Representation of the dynamic model of E. coli central carbon metabolism developed by Millard et al. (2016). Metabolites are

shown in blue and enzymes in green. This model has a total of 62 metabolites and 68 reactions. Retrieved from Millard et al. (2017).

3.2 Kinetic Modelling

The model's development was divided into three phases: the extension of the CCM to include the

production of /-Tyr, the production of /-Phe and the integration of the biomass production rate equation.

3.2.1 Parameter Selection and Determination

Online databases and available literature were used to find kinetic equations and the respective
parameters for the reactions of interest. BioCyc (Karp et al., 2018) and BRENDA (Placzek et al., 2017)
databases were used to obtain K,,, and K; values. Additionally, the equilibrium constants (K,) needed
for the reversible reactions were determined with eQuilibrator (Flamholz et al., 2012).

Due to its high specificity for the enzyme concentration, the V},,,, parameter is not usually

available in the literature. Consequently, a method was designed to estimate the V,,,, of reactions
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present in the native metabolism of £. coli This designed method was similar to the one used by
Chassagnole et al. (2002). Thus, to predict the flux of the reactions added to the model, a study was
conducted to analyse the effects of different variables on the reactions’ flux and the resulting kinetic
model. The first step was to determine the steady-state flux distribution of the Millard2017 model using
COPASI (Hoops et al., 2006) since it was the base model of Oliveira2020. The fluxes obtained were used
to set the environmental conditions on the common reactions between the kinetic and stoichiometric
models when performing an FVA with MEWpy (Pereira et al., 2021). The FVA allowed estimating flux (v)
of the reactions to be added to the kinetic model. Equation 14 was used to determine the V4, of the

reaction by equalizing v to the reaction's rate law:

V= Vhuar  FOOK) © Vg = 7 (14

in which, X is a vector of parameters and K a vector of steady-state concentrations for the metabolites.

The steady-state concentration for the new metabolites was assumed to be 1 mM.

3.2.1.1 Variables Impact on Parameter Determination

For this study, five variables important to determine the V,,,, of reactions present in the native

metabolism of £. coliwere evaluated, including:

1) The stoichiometric model;

2) The interval for the environmental conditions
3) The objective function;

4) The optimisation method used for the FVA;

5) The kinetic mechanism of the Synth Reactions.

Regarding 1), three different GSM models of £. coli K-12 MG1655 were compared, iML1515
(Monk et al., 2017), iJO1366 (Orth et al., 2011) and iJ904 (Reed et al., 2003). All selected models
represent £. coli K-12 MG1655 and contain all /-Tyr and /-Phe pathways’ genes. These models were
selected to assess the influence of the model characteristics (number of metabolites, reactions, and
genes) in this process.

Regarding 2), the environmental conditions were established with three different approaches: a)
intervals of +1% for the Upper Bound and -1% for the Lower Bound; b) +10% for the Upper Bound and -
10% for the Lower Bound; and c¢) +0.1 mM for the Upper Bound and -0.1 mM for the Lower Bound.
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Variable 3) allowed evaluating the relevance of three different objective functions: a) biomass
maximisation; b) /-Tyr maximisation; and c) chorismate maximisation, which involved adding the reaction
representing the chorismate drain to all stoichiometric models. Whereas variable 4) assessed two
optimisation methods, FBA and pFBA.

Finally, variable 5) allowed assessing the two kinetic mechanisms for the Synth reactions. Two
different approaches were found in literature, Oliveira et. al (2021) used the Mass Action mechanism
(Equation 15), and Machado et. Al (2014) used Michaelis-Menten kinetics (Equation 4) with K,,, equal to
1 (Machado et al., 2014).

v="ky-S (15)
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Figure 3.3 - Representation of the TyrOpt Model. This dynamic model contains the central carbon metabolism of E. coli and the addiction of the L-Tyr and L-Phe production pathaway. The reactions represented in

black are all present in the original model (Oliveira2020 ). The pink arrows represent the twelve reactions that were added to obtain L-Tyr and L-Phe. The purple arrows show the Synth reactions. AroA (EPSP synthase),
AroB (DHQ synthase), AroC (chorismate synthase), AroD (DHQ dehydratase), AroE (shikimate dehydrogenase), AroF (DAHP synthase, Phospho- 2-dehydro- 3-deoxyheptonate aldolase, Tyr-sensitive), AroG (DAHF

synthase, Phospho-2-dehydro-3-deoxyheptonate aldolase, Phe-sensitive), AroH (DAHP synthase, Phospho-2-dehydro-3-deoxyheptonate aldolase, Trp-sensitive), AroK/L (shikimate kinase /1), PheA (chorismate mutase-

p-prephenate dehydratase), PosA (phospho-enolpyruvate synthase), ThiA (transketolase A), TyrA (chorismate mutase/prephenate dehydrogenase), TyrB (tyrosine aminotransterase) and YdiB (quinate/shikimate
dehydrogenase), P (Phosphate), H:0 (Water), NADPH (Nicotinamide Adenine Dinucleotide Phosphate reduced), NADP (Nicotinamide Adenine Dinucleotide Phosphate), ATP (Adenosine Triphosphate), ADP (Adenosine

Diphosphate), PEP (Phosphoenolpyruvate), CO: (Carbon Dioxide), L-Glu (Glutamic Acid) and a-KG (a-ketoglutarate).
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3.2.2 Model Extension

After determining the V4, Vvalues using the previously described method, the Oliveira2020
model was extended to include the /-Tyr and /-Phe production pathway and the biomass production rate
equations, creating the TyrOpt model (Figure 3.3). When a kinetic mechanism of a certain reaction is not
specified in literature, the Michaelis-Menten kinetics was used for single substrate reactions, and Bi Bi

kinetics for two substrates reactions.

3.2.2.1 [-Tyr Production

Considering the pathway for /-Tyr production (Figure 2.1) and the model composition, it was
necessary to add the substrates and the reactions after the PEP formation to the model.

The reactions and their respective stoichiometry are shown below:

AroF/G/H PEP + E4P — DAHP + P (16)
AroB DAHP — DHQ + P (17)
AroD DHQ < 3-Dehydroshikimic acid + H.O (18)
YdiB/AroE 3-Dehydroshikimic acid + NADPH + H — Shikimate + NADP (19)
AroK/L Shikimate + ATP — Shikimate 3-Phosphate + ADP (20)
AroA Shikimate 3-Phosphate + PEP < EPSP + P (21)
AroC EPSP — Chorismate + P (22)
TyrA/PheA Chorismate — Prephenate (23)
TyrA Prephenate + NAD — 4-Hydroxyphenylpyruvate + CO2 + NADH (24)
TyrB_Tyr 4-Hydroxyphenylpyruvate + Glutamic Acid < /-Tyr + a-Ketoglutarate (25)

AroF/G/H These isoenzymes catalyse the conversion of PEP and E4P to DAHP (Equation 16). Therefore,
to assess this dynamic in the kinetic model, three separate reactions were included in this model. The
kinetic properties of AroF/G/H were fully characterized in the work of Ahmad and colleagues (Ahmad et
al., 1987). They did not identify the kinetic mechanism of the enzymes. However, to accommodate the
kinetic properties documented, the Random Bi Bi mechanism equation was adapted.

AroF showed values of Ky, of 0.16 mM (K, ) and 0.33 mM (K, ), for PEP and E4P,
respectively (Ahmad et al., 1987). [-Tyr inhibition was mixed-type when PEP was the variable substrate
and the K; value was 18 uM (K; ). Since the K parameter was not reported nor possible to estimate,
the inhibition was considered non-competitive in the kinetic equation. /-Tyr was considered an

uncompetitive inhibitor against E4P, and the K; value was 32 uM (K, ).
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AroG showed K, values of 0.32 mM (K;, ) and 1.1 mM (K, ,), for PEP and E4P,
respectively (Ahmad et al., 1987). /-Phe inhibition was considered non-competitive against PEP as the
variable substrate and uncompetitive against E4P as the substrate. K; values of 9 uM (K; ;) and 4 uM
(K;,) were obtained with respect to PEP and E4P, respectively.

AroH has K, values of 0.9 mM (K, ) and 0.3 mM (K, ), for PEP and E4P, respectively

(Ahmad et al., 1987). [-Trp was a non-competitive inhibitor with PEP as the variable substrate and an

uncompetitive inhibitor with E4P as the variable substrate. K; values of 0.48 mM (K; ) and 0.56

mM (K;,) were obtained with respect to PEP and E4P, respectively.

AroB AroB catalyses the irreversible transformation of DAHP to DHQ (Equation 17). According to (Mehdi
et al., 1987), the K,,, for DAHP is reported to be between 33 and 50 uM. To accommaodate this range,
the mean of these values (41.5 M) was used, as well as a single substrate Michaelis-Menten kinetics,

as in the literature the mechanism was not mentioned.

AroD AroD catalyzes the conversion of DHQ to 3-dehydroshikimic acid (Equation 18). Liu and colleagues
(Liu et al., 2015) presented a K,,, for DHQ of 187.68 uM. Even tought this reaction is described as
reversible (Mitsuhashi & Davis, 1954), the K,,, for 3-dehydroshikimic acid was not found. Therefore, a

single substrate Michaelis-Menten kinetics was used.

YdiB/AroE YdiB/AroE catalyses the irreversible transformation of 3-dehydroshikimic acid to shikimate
(Equation 19). This enzyme has been described by Dell and Frost (Dell & Frost, 1993). They reported a
Ky, for DHS of 0.072 mM (K, ;) and for NADPH of 0.03 mM (K, ,). Shikimate was a mixed-type
inhibitor and the K value was 0.16 mM. However, since the parameter K; was not reported nor possible
to estimate, the inhibition was considered non-competitive in the kinetic equation. There was no reference

to a kinetic mechanism, so the Random Bi Bi was used.

AroK/L The AroK/L catalyses the conversion of shikimate to shikimate 3-phosphate (Equation 20). The
kinetic parameters of this enzyme were described by Noble and colleagues (Noble et al., 2006), in which
they reported a K,,, of 0.028 mM (Kma) for shikimate and of 0.19 mM (Kmb) for ATP. In their study,
the kinetic equation for the Order BiBi mechanism and the inhibition constant for both products of the

reaction was represented — 0.12 mM (K,p) for shikimate 3-phosphate and 0.09 mM (K,q) for ADP.
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AroA AroA catalyses the conversion of shikimate 3-phosphate and PEP to EPSP (Equation 21).
Shuttleworth and Evans (Shuttleworth & Evans, 1996) presented a kinetic description of this enzyme, in
which K, values of 0.135 mM (K, ), 0.1 mM (K, ), 0.011 mM (Kmp), and 4.6 mM (Kmq), were

reported for shikimate 3-phosphate, PEP, EPSP, and phosphate, respectively.
eQuilibrator (Flamholz et al., 2012) was used to estimate the K., (860) for this reaction.

Unfortunately, the underlying mechanism of this enzyme was not specified in this study. Therefore, a

Reversible Ping-Pong Bi Bi mechanism was used.

AroC The AroC catalyses the irreversible transformation of EPSP to chorismate (Equation 22). According
to Macheroux and colleagues (Macheroux et al., 1999), the K,,, for EPSP is reported to be between 1.3
and 2.2 uM. To accommaodate this range, the mean of these values (1.75 uM) was used, as well as a

single substrate Michaelis-Menten kinetic, as in literature, the mechanism was not mentioned.

TyrA/PheA TyrA/PheA catalyse the conversion of chorismate to prephenate (Equation 23). Zhang and
colleagues (S. Zhang et al., 2003) presented a K,,, for chorismate of 296 uM. Unfortunately, the
underlying mechanism of these enzymes was not specified in this study, so a single substrate Michaelis-

Menten kinetic was used.

TyrA TyrA also catalyses the irreversible transformation of prephenate to 4-hydroxyphenylpyruvate
(Equation 24). This reaction has been described by Christendat and Turnbull (Christendat & Turnbull,
1999). They reported a K, of 0.044 mM (K, ) for prephenate and of 0.103 mM (K, ) for NAD. The

study referred a random mechanism, thus Random Bi Bi was used.

TyrB_Tyr The TyrB also catalyses the reversible transformation of 4-hydroxyphenylpyruvate and glutamic
acid to /-Tyr and a-ketoglutarate (Equation 25). Powell and Morrison (Powell & Morrison, 1978) presented
a kinetic description of this enzyme in which Ky, values of 0.032 mM (K, ), 0.28 mM (K, ), 0.042

mM (Kmp), and 0.23 mM (Kmq), were reported for 4-hydroxyphenylpyruvate, glutamic acid, Z-Tyr, and

a-ketoglutarate, respectively. Furthermore, they also reported that this enzyme exhibited a Reversible
Ping-Pong Bi Bi kinetics. Since K., was not found in literature, eQuilibrator (Flamholz et al., 2012) was

used to estimate this reaction’s equilibrium constant (0.9).

All relevant information regarding reactions is condensed in Table 3.1
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Table 3.1 - Rate Law (RL), equations, and respective parameters of the reactions that belong to the L-Tyr pathway. The following abbreviations were used: RBB - Random Bi Bi; MM - Michaelis-Menten, OBB - Order
Bi Bi and PPBB - Ping-Pong Bi Bi.

Reaction RL Equation Parameters Reference
Kpy,=0.16 mM
AroF/G/H Vinax A + Vinax - B K, =0.33mM
(Arof) RBB (Kma +A) ) (1 n %a) Ky + B - (1 n %b) K., 0,018 mM (Ahmad et al., 1987)
K,,=0.032 mM
Kp,=0.32mM
AroF/G/H Vinax * A + Vinax - B Km, =1.1mM
. RBB (Kma +4)- (1 + %a) Ky, + B - (1 + %b) K,,- 9 M (Ahmad et al., 1987)
K= 4uM
Kp,= 0.9 mM
AroF/G/H Vinax * A + Vinax - B K, =0.3mM
vt RBB (Kma +4)- (1 + %a) Ky, + B - (1 + %b) K,,- 048 mM (Ahmad et al., 1987)
K,,=0.56 mM
AroB MM Va4 K,, = 0.0415 mM (Mehdi et al., 1987)
Ky + A
AroD MM Vg - 4 K,, = 0.18768 mM (Liu et al., 2015)
Ky + A
Vm—wfa 4B Kp,=0.072 mM
AroE RBB I+g Ky, =0.03 mM (Dell & Frost, 1993)
Km, Kn, +A Ky, +B-Kpn, +A-B K, =0.16 mM
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Table 3.1 — Rate Law (RL), equations, and respective parameters of the reactions that belong to the L-Tyr pathway. The following abbreviations were used: RBB - Random Bi Bi; MM - Michaelis-Menten,; OBB - Order
Bi Bi and PPBB - Ping-Pong Bi Bi (continuation).

Ky, =0.028 mM
Vmax -4 - B K, =0.19 mM
AroK/L 0BB P Q (Noble et al., 2006)
(Kma(1+m>+A>(Kmb(1+Wq>+B> K1p=0.12mM
K, =009 mM
P.o K, =0.1 mM
Vmax'(B'A_K ) K., =0.135 mM
eq mb - . m
p Shuttleworth &
AroA PPBB Kmb‘B+Kma‘A+Kma‘Kmb'K—+Kma‘Kmb'KL+B‘A+ Ky, =0.011 mM (
mp mq Evans, 1996)
B'P'Kmb+A'Q‘Kma+Kma‘Kmb'P'Q Ky, =46 mM
Ko, Kong Koy~ Komg
K,, = 860
Viax - A (Macheroux et al.,
AroC MM K,, = 0.00175 mM
Kn+A 1999)
Vnax + 4 (S. Zhanget al.,
TyrA/PheA MM K,, = 0.296 mM
Ky, + A 2003)
Vinax - A B K, =0.044 mM (Christendat &
TyrA RBB
Ky Kmp +A-Kpny +B Ky, +A-B Ky, =0.103 mM Turnbull, 1999)
P.o Ky, =0.28 mM
Vmax'(B'A_[( ) K, =0.032 mM
eq mp ~ Y- m
P Powell & Morrison,
TyrB_Tyr PPBB Kmb‘B+Kma‘A+Kma‘Kmb'K—+Kma‘Kmb'KL+B‘A+ K, =0.042 mM (
- mp mq P 1978)
B'P'Kmb+A'Q'Kma+Kma'Kmb'P'Q Kmq=0.23mM
Ko, Kong Koy~ Komg
Ko =0.9
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3.2.2.2 [-Phe Production

As [-Phe is an inhibitor for AroG and prephenate is converted to /-Phe, reactions associated with

[-Phe synthesis were included in the model to obtain more accurate results. This pathway consists of two
steps catalysed by enzymes present in the previously described reactions.
The reactions and their respective stoichiometry are shown below:

PheA Prephenate — Phenylpyruvate + CO. + H:0 (26)

TyrB_Phe Phenylpyruvate + Glutamic Acid < /-Phe + a-Ketoglutarate (27)

PheA PheA, in addition to converting chorismate to prephenate, also catalyses the irreversible
transformation of prephenate to phenylpyruvate (Equation 26). This enzyme is characterised by a single

substrate Michaelis-Menten kinetic, with a K,,; of 0.559 mM (S. Zhang et al., 2000).

TyrB_Phe The TyrB also catalyses the reversible transformation of phenylpyruvate and glutamic acid to
[-Phe and a-Ketoglutarate (Equation 27). Powell and Morrison (Powell & Morrison, 1978) presented a
kinetic description of this enzyme in which K, values of 0.056 mM (K, ), 0.28 mM (K, ), 0.06 mM

(Kmp), and 0.23 mM (Kmq), were reported for phenylpyruvate, glutamic acid, /-Phe, and a-

ketoglutarate, respectively. Furthermore, they reported that this enzyme exhibited a Reversible Ping-Pong
Bi Bi kinetics. As K,q was not found in literature, eQuilibrator was used to estimate the reaction’s

equilibrium constant (0.9).

All the relevant information regarding all the reactions is condensed in Table 3.2.

Table 3.2 - Rate Law (RL), equations, and respective parameters of the reactions that belong to the L-Phe pathway. The following
abbreviations were used: MM - Michaelis-Menten and PPBB - Ping-Pong Bi Bi.

Reaction RL Equation Parameters Reference
Vinax - 4 (S. Zhang et
PheA MM K,, = 0.559 mM
Km + A al., 2000)
K, =0.28 mM
p- _
Vinax * (B A — Kqu) Kmb =0.056 mM (POWe” &
P
TyrB PPBB | Ky Bt Ky At Ky Komy g =t Ko Ko Kimq +B-A+ | Ky, =0.06mM Morrison,
B-P-Ky, A-Q-Kp, Kn, ~Kn,-P-
R4 e g Sng ey 28 Ky, =023 mM 1978)
Keq =09

40




Chapter 3 — Materials and Methods

3.2.2.3 Biomass

The biomass equation present in Jahan2016 (Jahan et al., 2016) model was adapted to add the
biomass production rate equations.

The reaction and its respective stoichiometry are shown below:

Biomass o X (28)
All the relevant information regarding this reaction is shown in Table 3.3.

Table 3.3 — Equation and respective parameters of the reaction that represents the Biomass.

Reaction ‘ Equation ‘ Parameters ‘ Reference
. mu-X
Biomass ‘ ‘ kATP =1.317324e-5 ‘ (Jahan et al., 2016)
Volume

Here, X represents the concentration of biomass, mu is a variable dependent on the

concentration of ATP and kAT P is an adjustable constant (Equation 29).

mu = [ATP] - kATP (29)
3.2.2.4 Synth Reactions

The Synth reactions were added to the model to simulate the drain of metabolites to alternative
pathways. These reactions’ parameters were determined following the method mentioned in Section
3.2.1, by adding up the fluxes of all reactions that metabolize the intermediary metabolites in the
stoichiometric model.

Five metabolites required adding these reactions: DHQ, Chorismate, Prephenate, /-Tyr, and

Phenylpyruvate.

3.2.2.5 Exchange Reactions

Exchange reactions allow /-Tyr (LTYRex) and [-Phe (LPHEex) to be transported from the
cytoplasm to the extracellular compartment. As it was impossible to find kinetic data for these transport
reactions, as in previous studies (Millard et al., 2017; Oliveira et al., 2021), reactions representing the
outer membrane diffusion were included in the model (Mendes et al., 2015). Additionally, as per (Millard
et al., 2017), reversible Michaelis-Menten kinetics (Equation 4) with a V4, of 100 mM/s and a K,,, of

10 mM were used.
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3.3 Time Course Simulation

The time course simulations were conducted to calculate the AAA, /-Tyr and /-Phe production,
the biomass, and the consumption of the precursor, glucose. COPASI (Hoops et al., 2006) was used,
following a deterministic method (LSODA) and a duration of ten thousand and eight hundred seconds
(approximately 3 hours), the time necessary to consume all the carbon source. The initial glucose

concentration was 55.5 mM (10 g/L) (Millard et al., 2017).

3.4 Optimisation Strategies

With the TyrOpt model, two new models that represent the first mutant strain (Mutant 0) were
created. The first was an identical replica of the model used to run the optimisation and the AAA
production simulation, and it was named TyrOpt_SIM_MO. The other one is the same model but
converted to a chemostat system to perform the MCA, and it was named TyrOpt_MCA_MO.

As mentioned in Chapter 2, genetic engineering primarily uses gene over/under expressions and
knockouts to optimise a pathway. Performing these changes in kinetic models requires adjusting the
Vinax- According to Equation 12, to allow a gene to be overexpressed ten times, the concentration of the
corresponding enzyme should have a tenfold increase, which demands a tenfold higher V},,4,. Similarly,
a tenfold under expression is characterised by a tenfold lower V;,,,. Knockouts, on the other hand, are
replicated by establishing the V,,,,,, as zero, however, it is crucial to confirm whether the reaction belongs
to the list of essential reactions of the organism as their knock-out /7 vivo may completely limit the
organism's growth.

Hence, to begin the optimisation process, the FCC was calculated through an MCA, using the
chemostat models. The control each reaction has over AAA formation is shown through these coefficients.
As a result, the reaction with the greatest influence was selected and modified to enhance the pathway
yields, resulting in novel mutant strains.

Then, the optimisation task in COPASI (Hoops et al., 2006) was used to maximise the [-Tyr
production, now using the batch models. Thus, new /7 silico mutant strains were created (Mutant 1). In
the optimisation, the method used was random search, which identifies the best solution by comparing
the objective function's value to random values for the adjustable parameters within the user-defined
bounds. As the probability of finding a solution for the objective function is correlated to the number of

iterations, it is necessary to have a large number of iterations to attain good results (COPASI, 2020e).
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Furthermore, it is essential to mention that this method aims to identify reactions that could be
optimized and not to predict the greatest /-Tyr yield precisely. As a result, over/under expressions were
limited to 50 times the initial V;,,,, value in the lower or upper bound and a limit of 1000 iterations.

Lastly, this approach was repeated to optimise mutant strains with the new mutant models until

the glucose feed restricted AAA synthesis.
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4, ReSULTS AND DISCUSSION

4.1 V,,.. Calculation

The parameter V., is not usually available in the literature due to its high specificity for the
enzyme concentration. Consequently, stoichiometric models were used to determine the V},,, of the

enzymes that catalyse reactions from the native metabolism of £. col

4.1.1 Variables Impact on Parameter Determination

A study was performed de on the impact of five variables — 1) Objective Function; 2) Optimisation
Method; 3) Kinetic Mechanism; 4) Stoichiometric Models; and 5) Environmental Conditions — on the
reaction fluxes and the kinetic model. For this study, a total of 108 models (Appendix 1) were created,
the outcome was compared to assess differences and which combination of variables created the model
best suited for /n vivo laboratory experiments. The selected variables consisted of all existing variables
when performing an FVA.

The values of V,,,,, obtained for the twelve reactions necessary to produce /-Tyr and /-Phe and
the five synth reactions can be found in Appendix 2. The overall observations and final /-Tyr concentration
obtained for each kinetic model designed are presented in Appendix 3.

The first variable - objective function - allowed to make some conclusions. Besides /[-Tyr,
chorismate was the only precursor of /-Tyr with flux in the Synth reaction. Therefore, it was important to
test the maximization of its concentration. When maximising /-Tyr and chorismate concentrations, a
condition for the biomass flux was added to the environmental conditions, namely the biomass flux
obtained with the biomass maximisation (adding or subtracting the same interval as the rest of the
environmental conditions). The maximisation of /-Tyr concentration provided 10 (over 36), functional
models, as the FVA showed in higher fluxes for most reactions, resulting in higher 1}, for each reaction
causing the model to fail due to lack of factors essential for cell survival, such as ATP. The same issue
was not observed to the same extent when chorismate concentration was maximised, as the reactions
that lead to the synthesis of chorismate have the same flux in both maximisations, but the fluxes of the
following reactions were lower when chorismate concentration is maximised, allowing 20 (over 36)
models to function. The biomass maximisation allowed obtaining 24 (out of 36) functional models and is
thus the most accurate objective function (Appendix 3).

The other three variables — Optimisation Method, Kinetic Mechanism, and Stoichiometric Models

- did not significantly impact the final kinetic models. For the optimization method, FBA and pFBA
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methods were compared. As detailed in Section 2.1.3, pFBA starts with a standard FBA, but then
minimization of the sum of all the reaction fluxes is performed, removing the flux distribution of reactions
that are not necessary for the cell to grow (Vilaca et al., 2018). Therefore, a difference was expected
between the fluxes obtained through FBA and pFBA, but it was not observed, probably due to the level of
constraint that the environmental conditions provide. Out of 54 pairs of models, only eight showed
differences, in four pairs it was the difference between being a functional or not functional model
(Appendix 3).

For the kinetic mechanism used when the synth reactions were added to the kinetic models,
Mass-Action and Michaelis-Menten kinetics were compared. The differences between the results obtained
through these models were small, almost non-existent, except in four out of 54 pair of models where it
was the difference between a functional or not functional model (Appendix 3).

Three different stoichiometric models were evaluated (iIML1515, iJO1366 and iJR904). Kinetic
models created with fluxes obtained from the iML1515 model led to higher /-Tyr production (average of
41.67 mg/L), whereas the iJR904 model led to the lowest (average of 33.19 mg/L). These results
(Appendix 3) seem proportional to the number of reactions in the stoichiometric model, where a higher
number of reactions results in higher production of /-Tyr.

Regarding the environmental condition’s interval variable (Appendix 3), it was possible to observe
that the interval +/-0.1 mM seems to be too wide, designing models with high fluxes that do not allow
the models to run for very long, probably due to lack of co-factors, providing only four (out of 36) functional
models. On the contrary, when using the interval +/-1%, the problem seems to be the narrowness, with
20 (out of 36) functional models. In this case, not only did the models stop running before hour three,
but /-Tyr did not stabilise probably because of a particularly high flux for the synth reaction. The interval
that seemed to provide more precise and analytically more working models was +/-10%, with 30 (out of
36) functional models, showing that this interval provides the ideal gap to obtain reactions’ fluxes.

After all variables were assessed and the results evaluated, three kinetic models that better
represented the /7 vivo production of /-Tyr, out of the 108 designed were selected. All models obtained
with the environmental conditions’ interval of +/-0.1 mM and designed through the maximisation of /-
Tyr were ignored as these exhibit higher concentrations of /-Tyr (average of 44.16 mg/L). The models
obtained for the chorismate maximisation resulted in lower concentrations of /-Tyr (average of 31.88

mg/L) and were therefore discarded.
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The chosen models and respective variables are presented in Table 4.1. For an easier distinction
between models, the three selected models were renamed to TyrOptl, TyrOpt2 and TyrOpt3. All models

are constituted of 113 reactions and 121 metabolites.

Table 4.1 — Kinetic models developed to produce L-Tyr and L-Phe from glucose and respective variables used in its design.

TyrOptl TyrOpt2 TyrOpt3
Previous name TyrOpt_3A_Bi_a TyrOpt_1A_Bii_c TyrOpt_2B_Bi_c
1) Objective Function Biomass Biomass Biomass
2) Optimisation Method FBA FBA pFBA
3) Kinetic Mechanism Mass-Action Michaelis-Menten Mass-Action
4) Stoichiometric Model iJRO04 iML1515 iJO1366
5) Environmental Conditions’

+/-1% +/-10% +/-10%

Interval

4.1.2 Models TyrOptl, TyrOpt2 and TyrOpt3

Out of the five synth reactions, only one, for TyrOptl (Synth Chorismate), and two, for TyrOpt2
and TyrOpt3 (Synth Chorismate and Synth /-Tyr), have a flux; thus, the other three were discarded. For
an easier distinction Synth Chorismate and Synth /-Tyr were renamed to Synthl and Synth2,
respectively).

The values obtained for the 12 reactions required to produce /-Tyr and /-Phe and the synth

reactions for the three models are presented in Table 4.2 and 4.3.

Table 4.2 - Vi, Values calculated for the reactions necessary to produce L-Tyr and L-Phe in TyrOptl, TyrOpt2 and TyrOpt3 models.

TyrOptl TyrOpt2 TyrOpt3
Reaction Vimax (mM/s) Vimax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1210 0.1487 0.1486
AroF/G/H (AroG) 0.5183 0.6371 0.6365
AroF/G/H (AroH) 0.0112 0.0138 0.0138
AroB 0.0058 0.0071 0.0071
AroD 0.0066 0.0081 0.0081
YdiB/AroE 0.0445 0.0547 0.0546
AroK/L 0.0231 0.0284 0.0284
AroA 0.0660 0.0811 0.0810
AroC 0.0056 0.0068 0.0068
TyrA/PheA 0.0054 0.0075 0.0075
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Table 4.2 - Vy, 4, Values calculated for the reactions necessary to produce L-Tyr and L-Phe in TyrOptl, TyrOpt? and TyrOpt3 models

(continuation).

TyrOptl TyrOpt2 TyrOpt3
Reaction Vimax (mM/s) Vimax (mM/s) Vinax (mM/s)
TyrA 0.0021 0.0029 0.0028
TyrB_Tyr 0.1504 0.2072 0.2070
PheA 0.0037 0.0052 0.0052
TyrB_Phe 0.1641 0.2305 0.2303

Table 4.3 - Vi, 4, andkq values calculated for the synth reactions necessary to produce L-Tyr and L-Phe in TyrOptl, TyrOpt2 and TyrOpt3

models.

TyrOptl TyrOpt2 TyrOpt3
Synth Reaction ki (1/s) Vinax (mM/s) ki (1/s)
Synth1 0.0014 0.0021 0.0010
Synth2 0 7.995 e-06 3.994 e-06

4.2 AAA Production

Before proceeding to the model optimisation, it was essential to analyse how the model performs

with the new reactions.

All models were capable of consuming the 10 g/L of glucose in simulated time frame (3 h).

Figures 4.1, 4.2 and 4.3 represent the time course for each model.
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Figure 4.1 — Results of the TyrOptl model regarding glucose (GLC) consumption (A), and the production of L-Tyr (LTYR) (B), L-Phe (LPHE)

(C), and Biomass (D).
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Figure 4.2 — Results of the TyrOpt2 model regarding glucose (GLC) consumption (A), and the production of L-Tyr (LTYR) (B), L-Phe (LPHE)
(C), and Biomass (D).
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Figure 4.3 — Results of the TyrOpt3 model regarding glucose (GLC) consumption (A), and the production of L-Tyr (LTYR) (B), L-Phe (LPHE)
(C), and Biomass (D).
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The concentrations of /-Tyr, /-Phe and Biomass obtained for each model are presented in Table

4.4.

Table 4.4 — Concentrations of L-Tyr, L-Phe and Biomass obtained for each model in the 3h Time Course.

TyrOptl TyrOpt2 TyrOpt3
[L-Tyr] (mg/L) 29.395 39.126 39.112
[L-Phe] (mg/L) 33.606 45.676 45.740
[Biomass] (mg/L) 258.560 258.456 258.455

The higher [-Tyr and [-Phe concentration in TyrOpt2 and TyrOpt3 compared to TyrOptl,
probably, is the effect of the different environmental conditions’ interval used in the parameter
determination, where TyrOptl were more constrained. This difference resulted in higher V,,,,, values,
and, consequently, higher concentrations.

It is worth noting that when all the glucose was consumed, there was a minor decline of the /-
Tyr and /-Phe concentration, 0.409% and 0.237% for TyrOptl, 0.328% and 0.163% for TyrOpt2 and
0.322% and 0.162% for TyrOpt3, respectively. This slight decline may be related to the fact that when
there is a lack of glucose, some of the precursors stop being produced, their concentration drops to zero,
and the organism consumes L-Tyr leading to a slight decline.

The higher production of /-Phe compared to L-Tyr in all models was experimentally confirmed by
Kim and colleagues in a wild-type strain (Kim et al. 2018).

Regarding the biomass results, the difference between models was almost insignificant. The basis
of the Jahan2016 model is quite different from the one used as an original base, Millard2017 in which
the biomass equation was poorly explained. Hence, it is impossible to ensure that the biomass equation
is correctly implemented in these models, which can help explain the nearly insignificant difference.

The results obtained were compared to the yields retrieved from the available literature. The
models were used to simulate the synthesis of /-Tyr from a different concentration of glucose to recreate

the studies found in the literature (Table 4.5).

Table 4.5 - Comparison of the yields obtained to available literature.

Paper nitial [£-Tyr] paper [£-Tyr] TyrOptl | [L-Tyr] TyrOpt2 | [L-Tyr] TyrOpt3
[Glucose]
100 mg/L (value
Kim et al.. 2015 40g/L estimated froma | 108.370 mg/L 147.515 mg/L 147.471 mg/L
graphic)
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The TyrOpt1l model was able to obtain a concentration of /-Tyr similar to the one obtained /n vivo
in the Kim et al. (2015) study. However, TyrOpt2 and TyrOpt3 obtained a concentration slightly higher
than the documented one. This shows how more precise TyrOptl is when predicting /-Tyr concentration,
probably due the more constrained parameter determination. No studies were found to compare the /-

Phe production.

4.3 Optimisation

A stable steady-state must be found to obtain the best targets for optimisation through an MCA.
However, in order to be able to find a steady-state, the search resolution was highly increased, rendering
the results unreliable.

Hence, two different optimisation approaches were executed:

= QOptimisation of targets obtained through the MCA and COPASI;
= QOptimisation of targets used in strategies found in the literature.

Therefore, these optimisations' results should serve as a guide in the search for strain

improvement strategies. Quantitative comparisons between different pathway designs should not be
performed but should be rather regarded as a general idea of the best targets for increasing /-Tyr

production /n7 vivo.

4.3.1 Optimisation of the targets obtained through the MCA and COPASI

The first MCA was performed in the TyrOptl_MCA_MO, TyrOpt2_MCA_MO and
TyrOpt3_MCA_MO models (Appendix 4). The FCC obtained through this analysis were not significantly
different between models. The reaction with higher control over /-Tyr production seemed to be the /-
glutamate dehydrogenase (GluD) - highest positive FCC (Figure 4.4). As observed in Figure 3.1, GluD is
the reversible reaction that converts /-Glu to o-KG. The positive FCC shows GluD as a potential
bottleneck for /-Tyr production and, therefore, a target for overexpression. The models were optimised
using COPASI’s optimization task. The results and improved production yields obtained for the modified

models are shown in Table 4.6.

50



Chapter 4 - Results and Discussion

TyrOpt1_MCA_MO

TyrOpt2_MCA_MO

TyrOpt3_MCA_MO

Figure 4.4 — Flux Control Coefficients for the mutant O of the three TyrOpt models, where the reaction with the most impact in the production

of L-Tyr is highlighted in green correspondent to L-glutamate dehydrogenase (GluD).

Table 4.6 - Results obtained for the first optimisation (GluD reaction) of L-Tyr production.

Original Optimised Vonax Original Optimised [L-Tyr]

Hlodel Vinax mM/s) | V.o, (mM/s) | Variation | [L-Tyr] (mg/L) | [L-Tyr] (mg/L) | Variation
TyrOptl 0.1716 2.153 125x 1 29.395 30.451 3.59%
TyrOpt2 0.1716 0.592 35x 1T 39.126 40.240 2.85%
TyrOpt3 0.1716 1.014 59x 1T 39.112 40.407 3.31%

Although GluD was overexpressed, the variation in /-Tyr concentration was negligible,
demonstrating that this reaction is not the ideal first target.

A second iteration using the Mutantl models — TyrOptl_MCA_M1, TyrOpt2_MCA_M1 and
TyrOpt3_MCA_M1 - was performed (Appendix 4). Even though the targets showed in each model
appeared to be the same, the FCC values obtained were different between models (Figure 4.5). The
reaction that seemed to have higher control over [-Tyr production was the malate quinone
oxidoreductase (MQO) reaction, with the lowest negative FCC (Figure 4.4). MQO, as observed in Figure
3.2, is the reaction that converts malate to oxaloacetate. Oxaloacetate is a metabolite present in the
TCA, where a-KG is synthesised. Oxaloacetate also can be converted to /-aspartate in a reaction where
[-Glu is converted to o-KG. Since /-Glu is necessary for the TyrB reaction, the underexpression of the
MQO reaction was expected. The negative FCC shows that this reaction impairs /-Tyr's production,

being therefore a target for underexpression. The models were optimized using COPASI's optimisation
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task. The results obtained, as well as the improved production yield for the modified models are present

in Table 4.7.

TyrOptl_MCA_M1

TyrOpt2_MCA_M1

TyrOpt3_MCA_M1

Figure 4.5 — Flux Control Coefficients for the mutant 1 of the three TyrOpt models, where the reaction with the most impact in the production

of L-Tyr is highlighted in green correspondent to malate quinone oxidoreductase (MQO).

Table 4.7 - Results obtained for the second optimisation (MQO reaction) of the L-Tyr production.

Original Optimised Vonax Original Optimised [L-Tyr]

Hlodel Vinax mM/s) | V.o, (mM/s) | Variation | [L-Tyr] (mg/L) | [L-Tyr] (mg/L) | Variation
TyrOptl 4.623 7.627 16x 1T 30.451 30.463 0.042%
TyrOpt2 4.623 84.513 183x 1T 40.240 40.315 0.034%
TyrOpt3 4.623 21.035 46x 1T 40.407 40.488 0.200%

Contrary to what was expected by the FCC value, MQO was overexpressed, but it barely increased

L-Tyr production.
A third iteration using the Mutant2 models — TyrOptl_MCA_M2, TyrOpt2_MCA_M2 and

TyrOpt3_MCA_M2 - was performed to finalise the optimisation process through this approach

(Appendix 4). Each model’s targets seem to be the same, but the obtained FCC values were different,

as previously observed (Figure 4.7). The reaction that seems to have higher control over /-Tyr production

was the glycerol-3-phosphate phosphatase (G3pP) reaction, with the lowest negative FCC (Figure 4.4).

GluD is a potential target, but the optimisation result is higher than 50-time fold the original V,,,,, value,

thus, it was discarded. G3pP deviates dihydroxyacetone phosphate that can be converted to

glyceraldehyde-3-phosphate, a metabolite required at the beginning of the pathway that synthesises /-
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Tyr (TktA reaction). Therefore, the negative FCC shows G3pP reaction as a negative effect for /-Tyr's
production and consequently a target for underexpression. The models were optimized using COPASI's
optimization task. The results obtained and the improved production yield for the modified models are

shown in Table 4.8.

TyrOptl_MCA_M2

TyrOpt2_MCA_M2

TyrOpt3_MCA_M2

Figure 4.6 — Flux Control Coefficients for the mutant 2 of the three TyrOpt models, where the reaction with the most impact in the production

of L-Tyr is highlighted in green correspondent to glycerol-3-phosphate phosphatase (G3pF).

Table 4.8 - Results obtained for the third optimisation (G3pP reaction) of the L-Tyr production.

Original Optimised Vonax Original Optimised [L-Tyr]

Hlodel Vinax mM/s) | V.o, (mM/s) | Variation | [L-Tyr] (mg/L) | [L-Tyr] (mg/L) | Variation
TyrOptl 0.7741 0.823 Lix T 30.463 30.463 0.001%
TyrOpt2 0.7741 0.205 38x 1 40.315 40.326 0.028%
TyrOpt3 0.7741 0.205 38x 1 40.488 40.492 0.009%

G3pP was underexpressed in two models, whereas in TyrOptl it was overexpressed. TyrOptl
was the only model in which 1},,,, values were calculated using an +/- 1% interval in the environmental
conditions (the others used a +/- 10% interval was used). The use of a +/- 1% interval probably constrained
the model so much, that the V,,,,,, of the G3pP reaction was already optimised. These modifications only
led to a negligible increase in L-Tyr production.

These optimisations allowed an overall increase of 3.636%, 3.067% and 3.527% in the production

of [-Tyr — TyrOptl, TyrOpt2 and TyrOpt3, respectively. Most improvements were observed in the first
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optimisation, causing an overlap of the production of /-Tyr for Mutantl, Mutant2 and Mutant3 of TyrOpt

(Figure 4.7).
TyrOptl TyrOpt2 TyrOpt3
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Figure 4.7 - L-Tyr production from the four mutants of each TyrOpt model. The simulations were conducted with 10 g/L of glucose for al
the mutants. Mutant O - model with the heterologous pathway,; Mutant 1 - increase in the Vg, of the GluD,; Mutant 2 - increase in the Vi, g

of the MQO, Mutant 3 - increase/decrease in the Vp,q, of the GSpP.

4.3.2 Optimisation of the targets used in strategies found in literature

Since the MCA did not allow identifying targets similar to the ones used in strategies described
in literature, and the identified targets did not significantly improve the L-Tyr production, another approach
was used. Here, the /-Tyr production pathway (Figure 2.6) and different strategies reported to improve /-
Tyr production (Table 2.4) were analysed.

In the first optimisation, the selected targets were AroF/G/H (AroG), TyrB_Tyr, PheA and
TyrB_Phe. AroF/G/H is catalysed by three isoenzymes, in which AroG was shown to have the highest
impact on /-Tyr improvement (Rodriguez et al., 2014). TyrB_Tyr is the limiting last step in the pathway
that produces /-Tyr. PheA and TyrB_Phe are reactions that deviate metabolites from the /-Tyr pathway
to produce /-Phe.

The results obtained and the improved production yields for the modified models are shown in

Table 4.9.
Table 4.9 — Results obtained for the first optimisation of the L-Tyr production using targets available in literature.

Original | Optimised

Original Optimised Vonax [L-Tyr]
Model Reaction [£L-Tyr] [L-Tyr]
Vinax (MM/S) | V0 (mM/s) | Variation Variation
(mg/L) | (mg/L)
AroF/G/H
0.5183 3.148 6.1x T
(AroG)
TyrOptl TyrB_Tyr 0.1504 0.751 50x T 29.395 33.736 14.770%
PheA 0.0037 8.074 E-05 456x 1
TyrB_Phe 0.1641 0.117 14x |
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Table 4.9 — Results obtained for the first optimisation of the L-Tyr production using targets available in literature (continuation).

Original | Optimised
Original Optimised Vonax [L-Tyr]
Model Reaction [L-Tyr] [L-Tyr]
Voiax MM/s) | V.., (mM/s) | Variation Variation
(mg/L) (mg/L)
AroF/G/H
0.6371 3.002 47x 1
(AroG)
TyrOpt2 TyrB_Tyr 0.2072 8.082 39.0x T 39.126 44.264 13.131%
PheA 0.0052 1.270 E-04 40.8x 1
TyrB_Phe 0.2305 0.155 15x {
AroF/G/H
0.6365 3.493 55x T
(AroG)
TyrOpt3 TyrB_Tyr 0.2070 8.448 408x T 39.112 47.416 21.232%
PheA 0.0001 1.939 E-05 53x {
TyrB_Phe 0.2303 0.217 L.1x !

As expected, AroF/G/H (AroG) and TyrB_Tyr were overexpressed, and PheA and TyrB_Phe
under-expressed. The increase in [-Tyr concentration was more promising than in the previous
approach.

In the second optimisation, the selected targets were YdiB/AroE, AroK/L, TyrA/PheA and TyrA.
YdiB/AroE and AroK/L are two limiting steps of the SHK pathway. TyrA/PheA and TyrA are the two steps
of the /-Phe pathway, that deviate Prephenate from the /-Tyr pathway.

The results obtained and the improved production yield for the modified models are shown in

Table 4.10.

Table 4.10 — Results obtained for the second optimisation of the L-Tyr production using targets available in literature.

Original | Optimised
Original Optimised Vnax [L-Tyr]
Model | Reaction [£-Tyr] [£Tyr]
Vinax (MM/s) Vnax (mM/s) | Variation Variation
(mg/L) (mg/L)
YdiB/AroE 0.0445 0.094 2.1x 7
AroK/L 0.0231 0.165 7.1x 7T
TyrOptl 33.736 79.803 136.549%
TyrA/PheA 0.0054 0.131 244x 1T
TyrA 0.0021 5.282 E-03 26x 1
YdiB/AroE 0.0547 0.434 79x 17
AroK/L 0.0284 1.370 482x T
TyrOpt2 44.264 89.338 101.830%
TyrA/PheA 0.0075 0.181 24.1x 1T
TyrA 0.0029 6.056 E-03 21x 1
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Table 4.10 — Results obtained for the second optimisation of the L-Tyr production using targets available in literature (continuation).

Original | Optimised
Original Optimised Vnax [L-Tyr]
Model | Reaction [£-Tyr] [£Tyr]
Viax mM/s) | V... (mM/s) | Variation Variation
(mg/L) | (mg/L)
YdiB/AroE 0.0546 0.287 52x T
AroK/L 0.0284 0.650 229x 1T
TyrOpt3 47.416 82.614 74.231%
TyrA/PheA 0.0075 0.227 30.2x T
TyrA 0.0028 5.149 E-03 1.8x 17T

As expected, YdiB/AroE, AroK/L, TyrA/PheA and TyrA were overexpressed. The increase in -Tyr

concentration showed truly promising results.

These two optimisations allowed an overall increase of 171.488%, 128.332% and 111.222% in

the production of /-Tyr — TyrOpt1, TyrOpt2 and TyrOpt3, respectively (Figure 4.8). When doing the same

optimisations, but, with each reaction individually, TyrA reported the hightest impact in increasing the

concentration of /-Tyr. These results confirmed the model's functionality, as the optimisation was done

on targets already studied /77 vivo.
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Figure 4.8 - L-Tyr production from the three mutants of each TyrOpt model. The simulations were conducted with 10 g/L of glucose for all

the mutants. Mutant O - model with the heterologous pathway,; Mutant 1 - increase in the V. of the AroF/G/H (AroG) and TyrB_Tyr and

decrease in the Vpq, Of the PheA and TyrB_Phe; Mutant 2 - increase in the Vi, q, of the YdiB/Arof, AroK/L, TyrA/PheA and TyrA.
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Chapter 4 - Results and Discussion

5. CONCLUSION AND FUTURE PERSPECTIVES

5.1 Conclusions

The aim of this work was to perform the /n7 sifico insertion of the /-Tyr pathway in a kinetic model
of the central carbon metabolism of £. coli and to identify the best target genes to design a [-Tyr
overproducing strain.

In conclusion, it is possible to affirm that the main goal of this thesis was achieved. This work
resulted in the development of three models that allow the production of /-Tyr and /-Phe using glucose
as a carbon source (Table 4.1). Comparing the results provided from these models with published /n7 vivo
results, it seems that TyrOptl was more precise when predicting the concentration of /-Tyr than TyrOpt?2
and TyrOpt3.

The parameter V., is usually not available in the literature due to its high specificity for the
enzyme concentration. Thus, a study on the impact of five variables — Objective Function, Optimisation
Method, Kinetic Mechanism, Stoichiometric Models and Environmental Conditions Interval — on the
reaction fluxes and the kinetic model was performed. A best set of variables was not found when analysing
and comparing all 108 models. Yet it was possible to analyse the impact different variables had on
parameter determination and in the designed model.

Finally, as the /-Tyr yield remains too low to be economically used and sustainably feasible in
industrial-scale production, there is a need for optimisation strategies that allow an increase in /-Tyr
synthesis, so two different approaches were conducted. A stable steady-state must be found to perform
the MCA and obtain the best optimisation targets. However, the search resolution had to be highly
increased. Therefore, the results obtained were not reliable. Nonetheless, the targets obtained in the MCA
were tested but did not provide a significant increase in production. Thus, a different optimisation route
was conducted. The expression of target genes already tested in literature, such as aroG, arof, arol, tyrA
and #yrB, was optimised, and the results obtained using these targets provided a much more substantial
increase in /-Tyr's production. The underexpression of the /-Phe production pathway, that deviates

prephenate from the /-Tyr pathway, was able to increase the yield of /-Tyr.
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5.2 Future Perpectives

In the future, more work is needed to enhance the designed kinetic models. It would be interesting
to expand the model to contain the synthesis of different metabolites produced from £-Tyr, such as caffeic
acid and curcuminoids.

Testing different tools for kinetic model optimisation, like MEWpy or OptimModels, would also be
essential to search for new additional targets for /-Tyr maximisation.

Finally, the optimisation results should be validated. For that reason, these new designed strains

should be implemented /7 vivo, to evaluate the validity of the obtained results.
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SUPPLEMENTARY INFORMATION

Appendix 1
Set of models designed to evaluate the impact of certain variables - Objective Function,
Optimisation Method, Kinetic Mechanism, Stoichiometric Models and Environmental Conditions

Interval — in parameter determination.

Appendix 2

Vinax Values calculated for the reactions necessary to produce £-Tyr and /-Phe for all 108 models.
Appendix 3
Observations made and L-Tyr concentration from each kinetic model designed on the study of

the impact that different variables have on parameter determination.

Appendix 4

Heatmaps made from the FCC values from each MCA performed in all models.
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Appendix 1 - Set of models designed to evaluate the impact of certain variables in parameter determination. Mass Action (MA), Michaelis-Menten (MM), Flux Balance Analysis (FBA), Parsimonious Flux Balance

Analysis (pFBA), L-Tyrosine (L-Tyr)

Environmental

Conditions Interval

Stoichiometric

Model

Kinetic

Mechanism

FBA

pFBA

Bioinformatics approaches for engineering /-tyrosine production in £scherichia coli

Biomass

[L-Tyr]

[Chorismate]

Biomass

[L-Tyr]

[Chorismate]

+/- 1%

iML1515

MA

TyrOpt_1A_Bi_a

TyrOpt_1A_Ti_a

TyrOpt_1A_Ci_a

TyrOpt_1B_Bi_a

TyrOpt_1B_Ti_a

TyrOpt_1B_Ci_a

TyrOpt_1A_Bii_a

TyrOpt_1A_Tii_a

TyrOpt_1A_Cii_a

TyrOpt_1B_Bii_a

TyrOpt_1B_Tii_a

TyrOpt_1B_Cii_a

iJ01366

MA

TyrOpt_2A_Bi_a

TyrOpt_2A_Ti_a

TyrOpt_2A_Ci_a

TyrOpt_2B_Bi_a

TyrOpt_2B_Ti_a

TyrOpt_2B_Ci_a

TyrOpt_2A_Bii_a

TyrOpt_2A_Tii_a

TyrOpt_2A_Cii_a

TyrOpt_2B_Bii_a

TyrOpt_2B_Tii_a

TyrOpt_2B_Cii_a

iJR904

MA

TyrOpt_3A_Bi_a

TyrOpt_3A_Ti_a

TyrOpt_3A_Ci_a

TyrOpt_3B_Bi_a

TyrOpt_3B_Ti_a

TyrOpt_3B_Ci_a

TyrOpt_3A_Bii_a

TyrOpt_3A_Tii_a

TyrOpt_3A_Cii_a

TyrOpt_3B_Bii_b

TyrOpt_3B_Tii_a

TyrOpt_3B_Cii_a

+/-0.1mM

iML1515

MA

TyrOpt_1A_Bi_b

TyrOpt_1A_Ti_b

TyrOpt_1A_Ci_b

TyrOpt_1B_Bi_b

TyrOpt_1B_Ti_b

TyrOpt_1B_Ci_b

TyrOpt_1A_Bii_b

TyrOpt_1A_Tii_b

TyrOpt_1A_Cii_b

TyrOpt_1B_Bii_b

TyrOpt_1B_Tii_b

TyrOpt_1B_Cii_b

iJ01366

MA

TyrOpt_2A_Bi_b

TyrOpt_2A_Ti_b

TyrOpt_2A_Ci_b

TyrOpt_2B_Bi_b

TyrOpt_2B_Ti_b

TyrOpt_2B_Ci_b

TyrOpt_2A_Bii_b

TyrOpt_2A_Tii_b

TyrOpt_2A_Cii_b

TyrOpt_2B_Bii_b

TyrOpt_2B_Tii_b

TyrOpt_2B_Cii_b

iJR904

MA

TyrOpt_3A_Bi_b

TyrOpt_3A_Ti_b

TyrOpt_3A_Ci_b

TyrOpt_3B_Bi_b

TyrOpt_3B_Ti_b

TyrOpt_3B_Ci_b

TyrOpt_3A_Bii_b

TyrOpt_3A_Tii_b

TyrOpt_3A_Cii_b

TyrOpt_3B_Bii_b

TyrOpt_3B_Tii_b

TyrOpt_3B_Cii_b

+/-10%

iML1515

MA

TyrOpt_1A_Bi_c

TyrOpt_1A_Ti_c

TyrOpt_1A_Ci_c

TyrOpt_1B_Bi_c

TyrOpt_1B_Ti_c

TyrOpt_1B_Ci_c

TyrOpt_1A_Bii_c

TyrOpt_1A_Tii_c

TyrOpt_1A_Cii_c

TyrOpt_1B_Bii_c

TyrOpt_1B_Tii_c

TyrOpt_1B_Cii_c

iJ01366

MA

TyrOpt_2A_Bi_c

TyrOpt_2A_Ti_c

TyrOpt_2A_Ci_c

TyrOpt_2B_Bi_c

TyrOpt_2B_Ti_c

TyrOpt_2B_Ci_c

TyrOpt_2A_Bii_c

TyrOpt_2A_Tii_c

TyrOpt_2A_Cii_c

TyrOpt_2B_Bii_c

TyrOpt_2B_Tii_c

TyrOpt_2B_Cii_c

iJR904

MA

TyrOpt_3A_Bi_c

TyrOpt_3A_Ti_c

TyrOpt_3A_Ci_c

TyrOpt_3B_Bi_c

TyrOpt_3B_Ti_c

TyrOpt_3B_Ci_c

TyrOpt_3A_Bii_c

TyrOpt_3A_Tii_c
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Appendix 2 — Vi, Values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models.

TyrOpt_1A_Bi_a

TyrOpt_1A_Bii_a

TyrOpt_1B_Bi_a

TyrOpt_1B_Bii_a

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1283 0.1283 0.1283 0.1283
AroF/G/H (AroG) 0.5496 0.5496 0.5496 0.5496
AroF/G/H (AroH) 0.0119 0.0119 0.0119 0.0119
AroB 0.0061 0.0061 0.0061 0.0061
AroD 0.0070 0.0070 0.0070 0.0070
YdiB/AroE 0.0472 0.0472 0.0472 0.0472
AroK/L 0.0245 0.0245 0.0245 0.0245
AroA 0.0699 0.0699 0.0699 0.0699
AroC 0.0059 0.0059 0.0059 0.0059
TyrA/PheA 0.0068 0.0068 0.0068 0.0068
TyrA 0.0035 0.0035 0.0035 0.0035
TyrB_Tyr 0.2523 0.2523 0.2523 0.2523
PheA 0.0034 0.0034 0.0034 0.0034
TyrB_Phe 0.1523 0.1523 0.1523 0.1523
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0007 0.0014 0.0007 0.0014
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 0.0014 0.0028 0.0014 0.0028
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_1A_Ti_a

TyrOpt_1A_Tii_a

Bioinformatics approaches for engineering L-tyrosine production in £scherichia coli

TyrOpt_1B_Ti_a

TyrOpt_1B_Tii_a

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1283 0.1283 0.1198 0.1198
AroF/G/H (AroG) 0.5496 0.5496 0.5131 0.5131
AroF/G/H (AroH) 0.0119 0.0119 0.0111 0.0111
AroB 0.0061 0.0061 0.0057 0.0057
AroD 0.0070 0.0070 0.0065 0.0065
YdiB/AroE 0.0472 0.0472 0.0440 0.0440
AroK/L 0.0245 0.0245 0.0229 0.0229
AroA 0.0699 0.0699 0.0653 0.0653
AroC 0.0059 0.0059 0.0055 0.0055
TyrA/PheA 0.0068 0.0068 0.0063 0.0063
TyrA 0.0035 0.0035 0.0031 0.0031
TyrB_Tyr 0.2547 0.2547 0.2219 0.2219
PheA 0.0034 0.0034 0.0034 0.0034
TyrB_Phe 0.1508 0.1508 0.1508 0.1508
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0007 0.0014 0.0007 0.0014
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 0.0010 0.0021 0.0010 0.0021
Synth Phenylpyruvate 0 0 0 0

74




Supplementary Information

Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_1A_Ci_a

TyrOpt_1A_Cii_a

TyrOpt_1B_Ci_a

TyrOpt_1B_Cii_a

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1283 0.1283 0.1198 0.1198
AroF/G/H (AroG) 0.5496 0.5496 0.5131 0.5131
AroF/G/H (AroH) 0.0119 0.0119 0.0111 0.0111
AroB 0.0061 0.0061 0.0057 0.0057
AroD 0.0070 0.0070 0.0065 0.0065
YdiB/AroE 0.0472 0.0472 0.0440 0.0440
AroK/L 0.0245 0.0245 0.0229 0.0229
AroA 0.0699 0.0699 0.0653 0.0653
AroC 0.0059 0.0059 0.0055 0.0055
TyrA/PheA 0.0063 0.0063 0.0063 0.0063
TyrA 0.0031 0.0031 0.0031 0.0031
TyrB_Tyr 0.2219 0.2219 0.2219 0.2219
PheA 0.0034 0.0034 0.0034 0.0034
TyrB_Phe 0.1508 0.1508 0.1508 0.1508
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0007 0.0014 0.0007 0.0014
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 0.0010 0.0021 0.0010 0.0021
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_2A_Bi_a

TyrOpt_2A_Bii_a

Bioinformatics approaches for engineering L-tyrosine production in £scherichia coli

TyrOpt_2B_Bi_a

TyrOpt_2B_Bii_a

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1234 0.1234 0.1234 0.1234
AroF/G/H (AroG) 0.5285 0.5285 0.5285 0.5285
AroF/G/H (AroH) 0.0115 0.0115 0.0115 0.0115
AroB 0.0059 0.0059 0.0059 0.0059
AroD 0.0051 0.0051 0.0051 0.0051
YdiB/AroE 0.0347 0.0347 0.0347 0.0347
AroK/L 0.0181 0.0181 0.0181 0.0181
AroA 0.0514 0.0514 0.0514 0.0514
AroC 0.0043 0.0043 0.0043 0.0043
TyrA/PheA 0.0048 0.0048 0.0048 0.0048
TyrA 0.0018 0.0018 0.0018 0.0018
TyrB_Tyr 0.1315 0.1315 0.1315 0.1315
PheA 0.0033 0.0033 0.0033 0.0033
TyrB_Phe 0.1463 0.1463 0.1463 0.1463
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate -0.0013 -0.0027 -0.0013 -0.0027
Synth Chorismate 0.0007 0.0013 0.0007 0.0013
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 2.54 E-06 5.07 E-06 2.54 E-06 5.07 E-06
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_2A_Ti_a

TyrOpt_2A_Tii_a

TyrOpt_2B_Ti_a

TyrOpt_2B_Tii_a

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1283 0.1283 0.1283 0.1283
AroF/G/H (AroG) 0.5496 0.5496 0.5496 0.5496
AroF/G/H (AroH) 0.0119 0.0119 0.0119 0.0119
AroB 0.0061 0.0061 0.0061 0.0061
AroD 0.0070 0.0070 0.0070 0.0070
YdiB/AroE 0.0472 0.0472 0.0472 0.0472
AroK/L 0.0245 0.0245 0.0245 0.0245
AroA 0.0699 0.0699 0.0699 0.0699
AroC 0.0059 0.0059 0.0059 0.0059
TyrA/PheA 0.0068 0.0068 0.0068 0.0068
TyrA 0.0036 0.0036 0.0036 0.0036
TyrB_Tyr 0.2642 0.2642 0.2642 0.2642
PheA 0.0033 0.0033 0.0033 0.0033
TyrB_Phe 0.1448 0.1448 0.1448 0.1448
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate -1.55 E-20 -3.10 E-20 0 0
Synth Chorismate 0.0007 0.0013 0.0007 0.0013
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 2.51 E-06 5.02 E-06 2.51 E-06 5.02 E-06
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, 4, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_2A_Ci_a

TyrOpt_2A_Cii_a

Bioinformatics approaches for engineering L-tyrosine production in £scherichia coli

TyrOpt_2B_Ci_a

TyrOpt_2B_Cii_a

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1283 0.1283 0.1283 0.1283
AroF/G/H (AroG) 0.5496 0.5496 0.5496 0.5496
AroF/G/H (AroH) 0.0119 0.0119 0.0119 0.0119
AroB 0.0061 0.0061 0.0061 0.0061
AroD 0.0070 0.0070 0.0070 0.0070
YdiB/AroE 0.0472 0.0472 0.0472 0.0472
AroK/L 0.0245 0.0245 0.0245 0.0245
AroA 0.0699 0.0699 0.0699 0.0699
AroC 0.0059 0.0059 0.0059 0.0059
TyrA/PheA 0.0047 0.0068 0.0047 0.0068
TyrA 0.0018 0.0036 0.0018 0.0036
TyrB_Tyr 0.1302 0.2642 0.1302 0.2642
PheA 0.0033 0.0033 0.0033 0.0033
TyrB_Phe 0.1448 0.1448 0.1448 0.1448
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0007 0.0013 0.0007 0.0013
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 2.51 E-06 5.02 E-06 2.51 E-06 5.02 E-06
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_3A_Bi_a

TyrOpt_3A_Bii_a

TyrOpt_3B_Bi_a

TyrOpt_3B_Bii_a

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1210 0.1210 0.1210 0.1210
AroF/G/H (AroG) 0.5183 0.5183 0.5183 0.5183
AroF/G/H (AroH) 0.0112 0.0112 0.0112 0.0112
AroB 0.0058 0.0058 0.0058 0.0058
AroD 0.0066 0.0066 0.0066 0.0066
YdiB/AroE 0.0445 0.0445 0.0445 0.0445
AroK/L 0.0231 0.0231 0.0231 0.0231
AroA 0.0660 0.0660 0.0660 0.0660
AroC 0.0056 0.0056 0.0056 0.0056
TyrA/PheA 0.0054 0.0054 0.0054 0.0054
TyrA 0.0021 0.0021 0.0021 0.0021
TyrB_Tyr 0.1504 0.1504 0.1504 0.1504
PheA 0.0037 0.0037 0.0037 0.0037
TyrB_Phe 0.1641 0.1641 0.1641 0.1641
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0014 0.0028 0.0014 0.0028
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 0 0 0 0
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_3A_Ti_a

TyrOpt_3A_Tii_a

Bioinformatics approaches for engineering L-tyrosine production in £scherichia coli

TyrOpt_3B_Ti_a

TyrOpt_3B_Tii_a

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF /G/H (AroF) 0.1211 0.1211 0.1211 0.1211
AroF/G/H (AroG) 0.5186 0.5186 0.5186 0.5186
AroF/G/H (AroH) 0.0112 0.0112 0.0112 0.0112
AroB 0.0058 0.0058 0.0058 0.0058
AroD 0.0066 0.0066 0.0066 0.0066
YdiB/AroE 0.0445 0.0445 0.0445 0.0445
AroK/L 0.0232 0.0232 0.0232 0.0232
AroA 0.0660 0.0660 0.0660 0.0660
AroC 0.0056 0.0056 0.0056 0.0056
TyrA/PheA 0.0054 0.0054 0.0054 0.0054
TyrA 0.0021 0.0021 0.0021 0.0021
TyrB_Tyr 0.1538 0.1538 0.1538 0.1538
PheA 0.0036 0.0036 0.0036 0.0036
TyrB_Phe 0.1624 0.1624 0.1624 0.1624
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0014 0.0028 0.0014 0.0028
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 0 0 0 0
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_3A_Ci_a

TyrOpt_3A_Cii_a

TyrOpt_3B_Ci_a

TyrOpt_3B_Cii_a

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1211 0.1211 0.1211 0.1211
AroF/G/H (AroG) 0.5186 0.5186 0.5186 0.5186
AroF/G/H (AroH) 0.0112 0.0112 0.0112 0.0112
AroB 0.0058 0.0058 0.0058 0.0058
AroD 0.0066 0.0066 0.0066 0.0066
YdiB/AroE 0.0445 0.0445 0.0445 0.0445
AroK/L 0.0232 0.0232 0.0232 0.0232
AroA 0.0660 0.0660 0.0660 0.0660
AroC 0.0056 0.0056 0.0056 0.0056
TyrA/PheA 0.0053 0.0053 0.0053 0.0053
TyrA 0.0020 0.0020 0.0020 0.0020
TyrB_Tyr 0.1458 0.1458 0.1458 0.1458
PheA 0.0036 0.0036 0.0036 0.0036
TyrB_Phe 0.1624 0.1624 0.1624 0.1624
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0007 0.0013 0.0014 0.0028
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 0 0 0 0
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_1A_Bi_b

TyrOpt_1A_Bii_b
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TyrOpt_1B_Bi_b

TyrOpt_1B_Bii_b

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.3135 0.3135 0.3135 0.3135
AroF/G/H (AroG) 1.3428 1.3428 1.3428 1.3428
AroF/G/H (AroH) 0.0291 0.0291 0.0291 0.0291
AroB 0.0150 0.0150 0.0150 0.0150
AroD 0.0171 0.0171 0.0171 0.0171
YdiB/AroE 0.1153 0.1153 0.1153 0.1153
AroK/L 0.0600 0.0600 0.0600 0.0600
AroA 0.1709 0.1709 0.1709 0.1709
AroC 0.0144 0.0144 0.0144 0.0144
TyrA/PheA 0.0158 0.0158 0.0158 0.0158
TyrA 0.0060 0.0060 0.0060 0.0060
TyrB_Tyr 0.4367 0.4367 0.4367 0.4367
PheA 0.0109 0.0109 0.0109 0.0109
TyrB_Phe 0.4858 0.4858 0.4858 0.4858
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0022 0.0044 0.0022 0.0044
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 8.43 E-06 1.69 E-05 8.43 E-06 1.69 E-05
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_1A_Ti_b

TyrOpt_1A_Tii_b

TyrOpt_1B_Ti_b

TyrOpt_1B_Tii_b

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 1.8730 1.8730 1.8730 1.8730
AroF/G/H (AroG) 8.0230 8.0230 8.0230 8.0230
AroF/G/H (AroH) 0.1739 0.1739 0.1739 0.1739
AroB 0.0896 0.0896 0.0896 0.0896
AroD 0.1022 0.1022 0.1022 0.1022
YdiB/AroE 0.6888 0.6888 0.6888 0.6888
AroK/L 0.3582 0.3582 0.3582 0.3582
AroA 1.0209 1.0209 1.0209 1.0209
AroC 0.0862 0.0862 0.0862 0.0862
TyrA/PheA 0.1090 0.1090 0.1090 0.1090
TyrA 0.0896 0.0896 0.0896 0.0896
TyrB_Tyr 6.5081 6.5081 6.5081 6.5081
PheA 0.0098 0.0098 0.0098 0.0098
TyrB_Phe 0.4373 0.4373 0.4373 0.4373
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0020 0.0039 0.0020 0.0039
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 7.58 E-06 1.52 E-05 7.58 E-06 1.52 E-05
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_1A_Ci_b

TyrOpt_1A_Cii_b

Bioinformatics approaches for engineering L-tyrosine production in £scherichia coli

TyrOpt_1B_Ci_b

TyrOpt_1B_Cii_b

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 1.8730 1.8730 1.8730 1.8730
AroF/G/H (AroG) 8.0230 8.0230 8.0230 8.0230
AroF/G/H (AroH) 0.1739 0.1739 0.1739 0.1739
AroB 0.0896 0.0896 0.0896 0.0896
AroD 0.1022 0.1022 0.1022 0.1022
YdiB/AroE 0.6888 0.6888 0.6888 0.6888
AroK/L 0.3582 0.3582 0.3582 0.3582
AroA 1.0209 1.0209 1.0209 1.0209
AroC 0.0862 0.0862 0.0862 0.0862
TyrA/PheA 0.0143 0.0143 0.0143 0.0143
TyrA 0.0054 0.0054 0.0054 0.0054
TyrB_Tyr 0.3930 0.3930 0.3930 0.3930
PheA 0.0098 0.0098 0.0098 0.0098
TyrB_Phe 0.4373 0.4373 0.4373 0.4373
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0020 0.0039 0.0020 0.0039
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 7.58 E-06 1.52 E-05 7.58 E-06 1.52 E-05
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_2A_Bi_b

TyrOpt_2A_Bii_b

TyrOpt_2B_Bi_b

TyrOpt_2B_Bii_b

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.8472 0.8472 0.8472 0.8472
AroF/G/H (AroG) 3.6290 3.6290 3.6290 3.6290
AroF/G/H (AroH) 0.0787 0.0787 0.0787 0.0787
AroB 0.0405 0.0405 0.0405 0.0405
AroD 0.0462 0.0462 0.0462 0.0462
YdiB/AroE 0.3115 0.3115 0.3115 0.3115
AroK/L 0.1620 0.1620 0.1620 0.1620
AroA 0.4618 0.4618 0.4618 0.4618
AroC 0.0390 0.0390 0.0390 0.0390
TyrA/PheA 0.0428 0.0428 0.0428 0.0428
TyrA 0.0162 0.0162 0.0162 0.0162
TyrB_Tyr 1.1802 1.1802 1.1802 1.1802
PheA 0.0295 0.0295 0.0295 0.0295
TyrB_Phe 1.3131 1.3131 1.3131 1.3131
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0059 0.0118 0.0059 0.0118
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 2.28 E-05 4.55 E-05 2.28 E-05 4.55 E-05
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, Values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_2A_Ti_b TyrOpt_2A_Tii_b TyrOpt_2B_Ti_b TyrOpt_2B_Tii_b
Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 3.6386 3.6386 3.6386 3.6386
AroF/G/H (AroG) 15.5862 15.5862 15.5862 15.5862
AroF/G/H (AroH) 0.3378 0.3378 0.3378 0.3378
AroB 0.1741 0.1741 0.1741 0.1741
AroD 0.1985 0.1985 0.1985 0.1985
YdiB/AroE 1.3380 1.3380 1.3380 1.3380
AroK/L 0.6960 0.6960 0.6960 0.6960
AroA 1.9834 1.9834 1.9834 1.9834
AroC 0.1674 0.1674 0.1674 0.1674
TyrA/PheA 0.2165 0.2165 0.2165 0.2165
TyrA 0.1919 0.1919 0.1919 0.1919
TyrB_Tyr 13.9436 13.9436 13.9436 13.9436
PheA 0.0006 0.0006 0.0006 0.0006
TyrB_Phe 0.0272 0.0272 0.0272 0.0272
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0001 0.0002 0.0001 0.0002
Synth Prephenate 0 0 0 0
Synth /-Tyrosine 4.72 E-07 9.43 E-07 4.72 E-07 9.43 E-07
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_2A_Ci_b

TyrOpt_2A_Cii_b

TyrOpt_2B_Ci_b

TyrOpt_2B_Cii_b

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 3.6386 3.6386 3.6386 3.6386
AroF/G/H (AroG) 15.5862 15.5862 15.5862 15.5862
AroF/G/H (AroH) 0.3378 0.3378 0.3378 0.3378
AroB 0.1741 0.1741 0.1741 0.1741
AroD 0.1985 0.1985 0.1985 0.1985
YdiB/AroE 1.3380 1.3380 1.3380 1.3380
AroK/L 0.6960 0.6960 0.6960 0.6960
AroA 1.9834 1.9834 1.9834 1.9834
AroC 0.1674 0.1674 0.1674 0.1674
TyrA/PheA 0.0009 0.0009 0.0009 0.0009
TyrA 0.0003 0.0003 0.0003 0.0003
TyrB_Tyr 0.0244 0.0244 0.0244 0.0244
PheA 0.0006 0.0006 0.0006 0.0006
TyrB_Phe 0.0272 0.0272 0.0272 0.0272
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0001 0.0002 0.0001 0.0002
Synth Prephenate 0 0 0 0
Synth /-Tyrosine 4.72 E-07 9.43 E-07 4.72 E-07 9.43 E-07
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_3A_Bi_b

TyrOpt_3A_Bii_b

Bioinformatics approaches for engineering L-tyrosine production in £scherichia coli

TyrOpt_3B_Bi_b

TyrOpt_3B_Bii_b

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.5858 0.5858 0.5858 0.5858
AroF/G/H (AroG) 2.5092 2.5092 2.5092 2.5092
AroF/G/H (AroH) 0.0544 0.0544 0.0544 0.0544
AroB 0.0280 0.0280 0.0280 0.0280
AroD 0.0320 0.0320 0.0320 0.0320
YdiB/AroE 0.2154 0.2154 0.2154 0.2154
AroK/L 0.1120 0.1120 0.1120 0.1120
AroA 0.3193 0.3193 0.3193 0.3193
AroC 0.0270 0.0270 0.0270 0.0270
TyrA/PheA 0.0260 0.0260 0.0260 0.0260
TyrA 0.0099 0.0099 0.0099 0.0099
TyrB_Tyr 0.7177 0.7177 0.7177 0.7177
PheA 0.0180 0.0180 0.0180 0.0180
TyrB_Phe 0.7998 0.7998 0.7998 0.7998
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0068 0.0136 0.0068 0.0136
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 0 0 0 0
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_3A_Ti_b

TyrOpt_3A_Tii_b

TyrOpt_3B_Ti_b

TyrOpt_3B_Tii_b

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 2.3583 2.3583 2.3583 2.3583
AroF/G/H (AroG) 10.1018 10.1018 10.1018 10.1018
AroF/G/H (AroH) 0.2190 0.2190 0.2190 0.2190
AroB 0.1128 0.1128 0.1128 0.1128
AroD 0.1287 0.1287 0.1287 0.1287
YdiB/AroE 0.8672 0.8672 0.8672 0.8672
AroK/L 0.4511 0.4511 0.4511 0.4511
AroA 1.2855 1.2855 1.2855 1.2855
AroC 0.1085 0.1085 0.1085 0.1085
TyrA/PheA 0.1325 0.1325 0.1325 0.1325
TyrA 0.1057 0.1057 0.1057 0.1057
TyrB_Tyr 7.6845 7.6845 7.6845 7.6845
PheA 0.0162 0.0162 0.0162 0.0162
TyrB_Phe 0.7198 0.7198 0.7198 0.7198
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0061 0.0123 0.0061 0.0123
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 0 0 0 0
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, Values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_3A_Ci_b

TyrOpt_3A_Cii_b

Bioinformatics approaches for engineering L-tyrosine production in £scherichia coli

TyrOpt_3B_Ci_b

TyrOpt_3B_Cii_b

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 2.6635 2.6635 2.6635 2.6635
AroF/G/H (AroG) 11.4091 11.4091 11.4091 11.4091
AroF/G/H (AroH) 0.2473 0.2473 0.2473 0.2473
AroB 0.1274 0.1274 0.1274 0.1274
AroD 0.1453 0.1453 0.1453 0.1453
YdiB/AroE 0.9794 0.9794 0.9794 0.9794
AroK/L 0.5094 0.5094 0.5094 0.5094
AroA 1.4518 1.4518 1.4518 1.4518
AroC 0.1226 0.1226 0.1226 0.1226
TyrA/PheA 0.0234 0.0234 0.0234 0.0234
TyrA 0.0089 0.0089 0.0089 0.0089
TyrB_Tyr 0.6459 0.6459 0.6459 0.6459
PheA 0.0162 0.0162 0.0162 0.0162
TyrB_Phe 0.7198 0.7198 0.7198 0.7198
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0061 0.0123 0.0061 0.0123
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 0 0 0 0
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_1A_Bi_c

TyrOpt_1A_Bii_c

TyrOpt_1B_Bi_c

TyrOpt_1B_Bii_c

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1487 0.1487 0.1487 0.1487
AroF/G/H (AroG) 0.6371 0.6371 0.6371 0.6371
AroF/G/H (AroH) 0.0138 0.0138 0.0138 0.0138
AroB 0.0071 0.0071 0.0071 0.0071
AroD 0.0081 0.0081 0.0081 0.0081
YdiB/AroE 0.0547 0.0547 0.0547 0.0547
AroK/L 0.0284 0.0284 0.0284 0.0284
AroA 0.0811 0.0811 0.0811 0.0811
AroC 0.0068 0.0068 0.0068 0.0068
TyrA/PheA 0.0075 0.0075 0.0075 0.0075
TyrA 0.0029 0.0029 0.0029 0.0029
TyrB_Tyr 0.2072 0.2072 0.2072 0.2072
PheA 0.0052 0.0052 0.0052 0.0052
TyrB_Phe 0.2305 0.2305 0.2305 0.2305
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0010 0.0021 0.0010 0.0021
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 4.00 E-06 8.00 E-06 4.00 E-06 8.00 E-06
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_1A_Ti_c

TyrOpt_1A_Tii_c

Bioinformatics approaches for engineering L-tyrosine production in £scherichia coli

TyrOpt_1B_Ti_c

TyrOpt_1B_Tii_c

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1677 0.1677 0.1677 0.1677
AroF/G/H (AroG) 0.7184 0.7184 0.7184 0.7184
AroF/G/H (AroH) 0.0156 0.0156 0.0156 0.0156
AroB 0.0080 0.0080 0.0080 0.0080
AroD 0.0091 0.0091 0.0091 0.0091
YdiB/AroE 0.0617 0.0617 0.0617 0.0617
AroK/L 0.0321 0.0321 0.0321 0.0321
AroA 0.0914 0.0914 0.0914 0.0914
AroC 0.0077 0.0077 0.0077 0.0077
TyrA/PheA 0.0088 0.0088 0.0088 0.0088
TyrA 0.0044 0.0044 0.0044 0.0044
TyrB_Tyr 0.3166 0.3166 0.3166 0.3166
PheA 0.0047 0.0047 0.0047 0.0047
TyrB_Phe 0.2075 0.2075 0.2075 0.2075
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0009 0.0019 0.0009 0.0019
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 3.60 E-06 7.20 E-06 3.60 E-06 7.20 E-06
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_1A_Ci_c

TyrOpt_1A_Cii_c

TyrOpt_1B_Ci_c

TyrOpt_1B_Cii_c

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1677 0.1677 0.1677 0.1677
AroF/G/H (AroG) 0.7184 0.7184 0.7184 0.7184
AroF/G/H (AroH) 0.0156 0.0156 0.0156 0.0156
AroB 0.0080 0.0080 0.0080 0.0080
AroD 0.0091 0.0091 0.0091 0.0091
YdiB/AroE 0.0617 0.0617 0.0617 0.0617
AroK/L 0.0321 0.0321 0.0321 0.0321
AroA 0.0914 0.0914 0.0914 0.0914
AroC 0.0077 0.0077 0.0077 0.0077
TyrA/PheA 0.0068 0.0068 0.0068 0.0068
TyrA 0.0026 0.0026 0.0026 0.0026
TyrB_Tyr 0.1865 0.1865 0.1865 0.1865
PheA 0.0047 0.0047 0.0047 0.0047
TyrB_Phe 0.2075 0.2075 0.2075 0.2075
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0009 0.0019 0.0009 0.0019
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 3.60 E-06 7.20 E-06 3.60 E-06 7.20 E-06
Synth Phenylpyruvate 0 0 0 0
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TyrOpt_2A_Bi_c

TyrOpt_2A_Bii_c

Bioinformatics approaches for engineering L-tyrosine production in £scherichia coli

TyrOpt_2B_Bi_c

TyrOpt_2B_Bii_c

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1486 0.1486 0.1486 0.1486
AroF/G/H (AroG) 0.6365 0.6365 0.6365 0.6365
AroF/G/H (AroH) 0.0138 0.0138 0.0138 0.0138
AroB 0.0071 0.0071 0.0071 0.0071
AroD 0.0081 0.0081 0.0081 0.0081
YdiB/AroE 0.0546 0.0546 0.0546 0.0546
AroK/L 0.0284 0.0284 0.0284 0.0284
AroA 0.0810 0.0810 0.0810 0.0810
AroC 0.0068 0.0068 0.0068 0.0068
TyrA/PheA 0.0075 0.0075 0.0075 0.0075
TyrA 0.0028 0.0028 0.0028 0.0028
TyrB_Tyr 0.2070 0.2070 0.2070 0.2070
PheA 0.0052 0.0052 0.0052 0.0052
TyrB_Phe 0.2303 0.2303 0.2303 0.2303
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0010 0.0021 0.0010 0.0021
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 3.99 E-06 7.99 E-06 3.99 E-06 7.99 E-06
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_2A_Ti_c

TyrOpt_2A_Tii_c

TyrOpt_2B_Ti_c

TyrOpt_2B_Tii_c

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1676 0.1676 0.1676 0.1676
AroF/G/H (AroG) 0.7178 0.7178 0.7178 0.7178
AroF/G/H (AroH) 0.0156 0.0156 0.0156 0.0156
AroB 0.0080 0.0080 0.0080 0.0080
AroD 0.0091 0.0091 0.0091 0.0091
YdiB/AroE 0.0616 0.0616 0.0616 0.0616
AroK/L 0.0321 0.0321 0.0321 0.0321
AroA 0.0913 0.0913 0.0913 0.0913
AroC 0.0077 0.0077 0.0077 0.0077
TyrA/PheA 0.0088 0.0088 0.0088 0.0088
TyrA 0.0044 0.0044 0.0044 0.0044
TyrB_Tyr 0.3164 0.3164 0.3164 0.3164
PheA 0.0047 0.0047 0.0047 0.0047
TyrB_Phe 0.2073 0.2073 0.2073 0.2073
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0009 0.0021 0.0009 0.0021
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 3.59 E-06 7.19 E-06 3.59 E-06 7.19 E-06
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_2A_Ci_c

TyrOpt_2A_Cii_c
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TyrOpt_2B_Ci_c

TyrOpt_2B_Cii_c

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1676 0.1676 0.1676 0.1676
AroF/G/H (AroG) 0.7178 0.7178 0.7178 0.7178
AroF/G/H (AroH) 0.0156 0.0156 0.0156 0.0156
AroB 0.0080 0.0080 0.0080 0.0080
AroD 0.0091 0.0091 0.0091 0.0091
YdiB/AroE 0.0616 0.0616 0.0616 0.0616
AroK/L 0.0321 0.0321 0.0321 0.0321
AroA 0.0913 0.0913 0.0913 0.0913
AroC 0.0077 0.0077 0.0077 0.0077
TyrA/PheA 0.0068 0.0068 0.0068 0.0068
TyrA 0.0026 0.0026 0.0026 0.0026
TyrB_Tyr 0.1863 0.1863 0.1863 0.1863
PheA 0.0047 0.0047 0.0047 0.0047
TyrB_Phe 0.2073 0.2073 0.2073 0.2073
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0009 0.0021 0.0009 0.0021
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 3.59 E-06 7.19 E-06 3.59 E-06 7.19 E-06
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_3A_Bi_c

TyrOpt_3A_Bii_c

TyrOpt_3B_Bi_c

TyrOpt_3B_Bii_c

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1495 0.1495 0.1495 0.1495
AroF/G/H (AroG) 0.6403 0.6403 0.6403 0.6403
AroF/G/H (AroH) 0.0139 0.0139 0.0139 0.0139
AroB 0.0072 0.0072 0.0072 0.0072
AroD 0.0082 0.0082 0.0082 0.0082
YdiB/AroE 0.0550 0.0550 0.0550 0.0550
AroK/L 0.0286 0.0286 0.0286 0.0286
AroA 0.0815 0.0815 0.0815 0.0815
AroC 0.0069 0.0069 0.0069 0.0069
TyrA/PheA 0.0066 0.0066 0.0066 0.0066
TyrA 0.0025 0.0025 0.0025 0.0025
TyrB_Tyr 0.1831 0.1831 0.1831 0.1831
PheA 0.0046 0.0046 0.0046 0.0046
TyrB_Phe 0.2041 0.2041 0.2041 0.2041
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0017 0.0035 0.0017 0.0035
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 0 0 0 0
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_3A_Ti_c

TyrOpt_3A_Tii_c
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TyrOpt_3B_Ti_c

TyrOpt_3B_Tii_c

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1677 0.1677 0.1591 0.1591
AroF/G/H (AroG) 0.7184 0.7184 0.6814 0.6814
AroF/G/H (AroH) 0.0156 0.0156 0.0148 0.0148
AroB 0.0080 0.0080 0.0076 0.0076
AroD 0.0091 0.0091 0.0087 0.0087
YdiB/AroE 0.0617 0.0617 0.0585 0.0585
AroK/L 0.0321 0.0321 0.0304 0.0304
AroA 0.0914 0.0914 0.0867 0.0867
AroC 0.0077 0.0077 0.0073 0.0073
TyrA/PheA 0.0088 0.0088 0.0074 0.0074
TyrA 0.0044 0.0044 0.0036 0.0036
TyrB_Tyr 0.3166 0.3166 0.2591 0.2591
PheA 0.0047 0.0047 0.0041 0.0041
TyrB_Phe 0.2075 0.2075 0.1837 0.1837
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0016 0.0031 0.0016 0.0031
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 0 0 0 0
Synth Phenylpyruvate 0 0 0 0
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Appendix 2 - Vy, o, values calculated for the reactions necessary to produce L-Tyr and L-Phe for all 108 models (continuation).

TyrOpt_3A_Ci_c

TyrOpt_3A_Cii_c

TyrOpt_3B_Ci_c

TyrOpt_3B_Cii_c

Reaction Viax (mM/s) Viax (mM/s) Viax (mM/s) Vinax (mM/s)
AroF/G/H (AroF) 0.1591 0.1591 0.1591 0.1591
AroF/G/H (AroG) 0.6814 0.6814 0.6814 0.6814
AroF/G/H (AroH) 0.0148 0.0148 0.0148 0.0148
AroB 0.0076 0.0076 0.0076 0.0076
AroD 0.0087 0.0087 0.0087 0.0087
YdiB/AroE 0.0585 0.0585 0.0585 0.0585
AroK/L 0.0304 0.0304 0.0304 0.0304
AroA 0.0867 0.0867 0.0867 0.0867
AroC 0.0073 0.0073 0.0073 0.0073
TyrA/PheA 0.0060 0.0060 0.0060 0.0060
TyrA 0.0023 0.0023 0.0023 0.0023
TyrB_Tyr 0.1648 0.1648 0.1648 0.1648
PheA 0.0041 0.0041 0.0041 0.0041
TyrB_Phe 0.1837 0.1837 0.1837 0.1837
Synth Reaction ki (1/s) Viax (mM/s) kq (1/s) Vinax (mM/s)
Synth 3-Dehydroquinate 0 0 0 0
Synth Chorismate 0.0016 0.0031 0.0016 0.0031
Synth Prephenate 0 0 0 0
Synth L-Tyrosine 0 0 0 0
Synth Phenylpyruvate 0 0 0 0
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Appendix 3 — Observations made and L-Tyr concentration from each kinetic model designed on the studly of the impact that different variables have on parameter determination.

Model Observations [LTyr] (mM/L) [L-Tyr] (mg/L)
TyrOpt_1A_Bi_a L-Tyrosine does not stabilise and there is an error at 9844.36s 0.245 44.423
TyrOpt_1A_Bii_a L-Tyrosine does not stabilise and there is an error at 9848.49s 0.235 42.596
TyrOpt_2A_Bi_a L-Tyrosine stabilises and there is no error 0.144 26.101
TyrOpt_2A_Bii_a L-Tyrosine stabilises and there is no error 0.144 26.092
TyrOpt_3A_Bi_a L-Tyrosine stabilises and there is no error 0.162 29.395
TyrOpt_3A_Bii_a L-Tyrosine stabilises and there is no error 0.162 29.386
TyrOpt_1A _Ti_a L-Tyrosine does not stabilise and there is an error at 9832.59s 0.251 45.475
TyrOpt_1A_Tii_a L-Tyrosine does not stabilise and there is an error at 9743.35s 0.243 44.066
TyrOpt_2A_Ti_a L-Tyrosine stabilises and there is an error at 9791.94s 0.270 49.005
TyrOpt_2A_Tii_a L-Tyrosine stabilises and there is an error at 9791.81s 0.270 48.987
TyrOpt_3A_Ti_a L-Tyrosine stabilises and there is no error 0.166 29.987
TyrOpt_3A_Tii_a L-Tyrosine stabilises and there is no error 0.165 29.978
TyrOpt_1A _Ci_a L-Tyrosine does not stabilise and there is no error 0.223 40.343
TyrOpt_1A_Cii_a L-Tyrosine does not stabilise and there is no error 0.216 39.104
TyrOpt_2A _Ci_a L-Tyrosine stabilises and there is no error 0.145 26.275
TyrOpt_2A_Cii_a L-Tyrosine stabilises and there is no error 0.145 26.331
TyrOpt_3A_Ci_a L-Tyrosine stabilises and there is no error 0.160 28.912
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Appendix 3 — Observations made and L-Tyr concentration from each kinetic model designed on the study of the impact that different variables have on parameter determination (continuation).

Model Observations [£-Tyr] (mM/L) [L-Tyr] (mg/L)
TyrOpt_3A_Cii_a L-Tyrosine stabilises and there is no error 0.160 28.977
TyrOpt_1B_Bi_a L-Tyrosine does not stabilise and there is an error at 9844.36s 0.245 44.423
TyrOpt_1B_Bii_a L-Tyrosine does not stabilise and there is an error at 9848.49s 0.235 42.596
TyrOpt_2B_Bi_a L-Tyrosine stabilises and there is no error 0.144 26.101
TyrOpt_2B_Bii_a L-Tyrosine stabilises and there is no error 0.144 26.092
TyrOpt_3B_Bi_a L-Tyrosine stabilises and there is no error 0.162 29.395
TyrOpt_3B_Bii_b L-Tyrosine stabilises and there is no error 0.162 29.386
TyrOpt_1B_Ti_a L-Tyrosine does not stabilise and there is no error 0.221 40.074
TyrOpt_1B_Tii_a L-Tyrosine does not stabilise and there is an error at 9899.62s 0.214 38.773
TyrOpt_2B_Ti_a [-Tyrosine stabilises and there is an error at 9791.94s 0.270 49.005
TyrOpt_2B_Tii_a L-Tyrosine stabilises and there is an error at 9721.81s 0.270 48.987
TyrOpt_3B_Ti_a L-Tyrosine stabilises and there is no error 0.166 29.987
TyrOpt_3B_Tii_a L-Tyrosine stabilises and there is no error 0.165 29.978
TyrOpt_1B_Ci_a L-Tyrosine does not stabilise and there is no error 0.221 40.074
TyrOpt_1B_Cii_a L-Tyrosine does not stabilise and there is an error at 9899.62s 0.214 38.773
TyrOpt_2B_Ci_a L-Tyrosine stabilises and there is no error 0.145 26.275
TyrOpt_2B_Cii_a L-Tyrosine stabilises and there is no error 0.145 26.331
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Appendix 3 — Observations made and L-Tyr concentration from each kinetic model designed on the study of the impact that different variables have on parameter determination (continuation).

Model Observations [L-Tyr] (mM/L) [L-Tyr] (mg/L)
TyrOpt_3B_Ci_a L-Tyrosine stabilises and there is no error 0.158 28.634
TyrOpt_3B_Cii_a L-Tyrosine stabilises and there is no error 0.158 28.640
TyrOpt_1A_Bi_b L-Tyrosine stabilises and there is no error 0.431 78.075
TyrOpt_1A_Bii_b L-Tyrosine stabilises and there is no error 0.431 78.029
TyrOpt_2A_Bi_b [-Tyrosine stabilises and there is an error at 145.747s 0.017 3.108
TyrOpt_2A_Bii_b L-Tyrosine stabilises and there is an error at 144.732s 0.017 3.108
TyrOpt_3A_Bi_b [-Tyrosine stabilises and there is an error at 371.097s 0.019 3.481
TyrOpt_3A_Bii_b [-Tyrosine stabilises and there is an error at 366.645s 0.019 3.481
TyrOpt_1A Ti b L-Tyrosine stabilises and there is an error at 61.1497s 0.020 3.671
TyrOpt_1A_Tii_b [-Tyrosine stabilises and there is an error at 61.0875s 0.020 3.671
TyrOpt_2A_Ti_b [-Tyrosine stabilises and there is an error at 36.0282s 0.023 4,143
TyrOpt_2A_Tii_b L-Tyrosine stabilises and there is an error at 36.0271s 0.023 4,143
TyrOpt_3A_Ti_b [-Tyrosine stabilises and there is an error at 52.1449s 0.020 3.629
TyrOpt_3A_Tii_b [-Tyrosine stabilises and there is an error at 52.0143s 0.020 3.629
TyrOpt_1A _Ci_b L-Tyrosine stabilises and there is an error at 49.9199s 0.015 2.808
TyrOpt_1A_Cii_b [-Tyrosine stabilises and there is an error at 49.9199s 0.015 2.808
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Appendix 3 — Observations made and L-Tyr concentration from each kinetic model designed on the study of the impact that different variables have on parameter determination (continuation).

Model Observations [L-Tyr] (mM/L) [£-Tyr] (mg/L)
TyrOpt_2A_Cii_b L-Tyrosine stabilises and there is an error at 28.9382s 0.011 2.005
TyrOpt_3A_Ci_b L-Tyrosine stabilises and there is an error at 41.2039s 0.016 2.877
TyrOpt_3A_Cii_b [-Tyrosine stabilises and there is an error at 41.2041s 0.016 2.877
TyrOpt_1B_Bi_b L-Tyrosine stabilises and there is no error 0.431 78.075
TyrOpt_1B_Bii_b L-Tyrosine stabilises and there is no error 0.431 78.029
TyrOpt_2B_Bi_b L-Tyrosine stabilises and there is an error at 145.747s 0.017 3.108
TyrOpt_2B_Bii_b [-Tyrosine stabilises and there is an error at 144.732s 0.017 3.108
TyrOpt_3B_Bi_b [-Tyrosine stabilises and there is an error at 371.097s 0.019 3.481
TyrOpt_3B_Bii_b [-Tyrosine stabilises and there is an error at 366.645s 0.019 3.481
TyrOpt_1B_Ti_b [-Tyrosine stabilises and there is an error at 61.1497s 0.020 3.671
TyrOpt_1B_Tii_b L-Tyrosine stabilises and there is an error at 61.0875s 0.020 3.671
TyrOpt_2B_Ti_b [-Tyrosine stabilises and there is an error at 36.0282s 0.023 4,143
TyrOpt_2B_Tii_b L-Tyrosine stabilises and there is an error at 36.0271s 0.023 4,143
TyrOpt_3B_Ti_b L-Tyrosine stabilises and there is an error at 52.1449s 0.020 3.629
TyrOpt_3B_Tii_b [-Tyrosine stabilises and there is an error at 52.0143s 0.020 3.629
TyrOpt_1B_Ci_b [-Tyrosine stabilises and there is an error at 49.9199s 0.015 2.808
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Appendix 3 — Observations made and L-Tyr concentration from each kinetic model designed on the study of the impact that different variables have on parameter determination (continuation).

Model Observations [L-Tyr] (mM/L) [£-Tyr] (mg/L)
TyrOpt_2B_Ci_b L-Tyrosine stabilises and there is an error at 28.9382s 0.011 2.005
TyrOpt_2B_Cii_b L-Tyrosine stabilises and there is an error at 28.9382s 0.011 2.005
TyrOpt_3B_Ci_b L-Tyrosine stabilises and there is an error at 41.2039s 0.016 2.877
TyrOpt_3B_Cii_b L-Tyrosine stabilises and there is an error at 41.2041s 0.016 2.877
TyrOpt_1A Bi_c L-Tyrosine stabilises and there is no error 0.216 39.144
TyrOpt_1A_Bii_c L-Tyrosine stabilises and there is no error 0.216 39.126
TyrOpt_2A Bi_c L-Tyrosine stabilises and there is no error 0.216 39.112
TyrOpt_2A_Bii_c L-Tyrosine stabilises and there is no error 0.216 39.095
TyrOpt_3A_Bi_c L-Tyrosine stabilises and there is no error 0.193 34.990
TyrOpt_3A_Bii_c L-Tyrosine stabilises and there is no error 0.193 34.979
TyrOpt_1A Ti_c L-Tyrosine stabilises and there is no error 0.320 57.908
TyrOpt_1A Tii_c [-Tyrosine stabilises and there is an error at 9472.71s 0.319 57.887
TyrOpt_2A _Ti_c L-Tyrosine stabilises and there is no error 0.319 57.880
TyrOpt_2A_Tii_c [-Tyrosine stabilises and there is an error at 9473.24s 0.319 57.859
TyrOpt_3A_Ti_c [-Tyrosine stabilises and there is an error at 9201.59s 0.316 57.296
TyrOpt_3A_Tii_c L-Tyrosine stabilises and there is an error at 9144.24s 0.315 57.095
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Appendix 3 — Observations made and L-Tyr concentration from each kinetic model designed on the study of the impact that different variables have on parameter determination (continuation).

Model Observations [L-Tyr] (mM/L) [£-Tyr] (mg/L)
TyrOpt_1A_Cii_c L-Tyrosine stabilises and there is no error 0.200 36.152
TyrOpt_2A_Ci_c L-Tyrosine stabilises and there is no error 0.199 36.011
TyrOpt_2A_Cii_c L-Tyrosine stabilises and there is no error 0.199 36.122
TyrOpt_3A_Ci_c L-Tyrosine stabilises and there is no error 0.177 32.119
TyrOpt_3A_Cii_c L-Tyrosine stabilises and there is no error 0.178 32.236
TyrOpt_1B_Bi_c L-Tyrosine stabilises and there is no error 0.216 39.144
TyrOpt_1B_Bii_c L-Tyrosine stabilises and there is no error 0.216 39.126
TyrOpt_2B_Bi_c L-Tyrosine stabilises and there is no error 0.216 39.112
TyrOpt_2B_Bii_c L-Tyrosine stabilises and there is no error 0.216 39.095
TyrOpt_3B_Bi_c L-Tyrosine stabilises and there is no error 0.193 34.990
TyrOpt_3B_Bii_c L-Tyrosine stabilises and there is no error 0.193 34.979
TyrOpt_1B_Ti_c L-Tyrosine stabilises and there is no error 0.320 57.908
TyrOpt_1B_Tii_c [-Tyrosine stabilises and there is an error at 9472.71s 0.319 57.887
TyrOpt_2B_Ti_c L-Tyrosine stabilises and there is no error 0.319 57.880
TyrOpt_2B_Tii_c [-Tyrosine stabilises and there is an error at 9473.24s 0.319 57.859
TyrOpt_3B_Ti_c L-Tyrosine stabilises and there is no error 0.265 48.053
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Appendix 3 — Observations made and L-Tyr concentration from each kinetic model designed on the study of the impact that different variables have on parameter determination (continuation).

Model Observations [L-Tyr] (mM/L) [£-Tyr] (mg/L)
TyrOpt_1B_Ci_c L-Tyrosine stabilises and there is no error 0.199 36.040
TyrOpt_1B_Cii_c L-Tyrosine stabilises and there is no error 0.200 36.152
TyrOpt_2B_Ci_c L-Tyrosine stabilises and there is no error 0.199 36.011
TyrOpt_2B_Cii_c L-Tyrosine stabilises and there is no error 0.199 36.122
TyrOpt_3B_Ci_c L-Tyrosine stabilises and there is no error 0.177 32.119
TyrOpt_3B_Cii_c L-Tyrosine stabilises and there is no error 0.178 32.236
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Appendix 4. 1 — Heatmap obtained with the values of Flux Control Coefficients from the Metabolic Course Reaction performed on TyrOptl_MCA_MO.
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Appendix 4. 2 — Heatmap obtained with the values of Flux Control Coefficients from the Metabolic Course Reaction performed on TyrOpt2_MCA_MO.
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Appendix 4. 3 — Heatmap obtained with the values of Flux Control Coefficients from the Metabolic Course Reaction performed on TyrOpt3_MCA_MO.
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Appendix 4. 4 — Heatmap obtained with the values of Flux Control Coefficients from the Metabolic Course Reaction performed on TyrOptl_MCA_M1.
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Appendix 4. 5 — Heatmap obtained with the values of Flux Control Coefficients from the Metabolic Course Reaction performed on TyrOpt2_MCA_M1.
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Appendix 4. 6 — Heatmap obtained with the values of Flux Control Coefficients from the Metabolic Course Reaction performed on TyrOpt3_MCA_M1.
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Appendix 4. 7 — Heatmap obtained with the values of Flux Control Coefficients from the Metabolic Course Reaction performed on TyrOptl_MCA_M2.
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Appendix 4. 8 — Heatmap obtained with the values of Flux Control Coefficients from the Metabolic Course Reaction performed on TyrOpt2_MCA_M2.
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Appendix 4. 9 — Heatmap obtained with the values of Flux Control Coefficients from the Metabolic Course Reaction performed on TyrOpt3_MCA_M2.
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