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ABSTRACT 

Deep learning-based algorithm for violence detection in audio data 

 

Currently, the mobility services industry lacks a component that guarantees the safety 

of both its drivers and customers, which is not in line with the constant evolution of the 

technological sector and the exponential increase of IoT devices capable of capturing data 

from both the external and internal environment of the vehicle. In this context, Bosch Car 

Multimedia introduced the RideCare project, which aims to monitor various data in real time 

from the vehicles of a mobility service provider's fleet, being the root where this dissertation 

is inserted. 

The present work aims to study and develop a Deep Learning-based algorithm capable 

of detecting violent scenarios only using audio data as its input. In the experimental phase of 

this project, the CRoss Industry Standard Process for Data Mining (CRISP-DM) methodology 

was implemented in order to ensure that all project requirements were met in the most 

efficient way. Special attention was given to the data preparation phase as well as the 

modeling phase to ensure greater accuracy in terms of classification capability. Subsequently, 

the models were trained in several test scenarios, composed of several different audio 

representations, allowing to carry out a comparative analysis in order to extract the most 

competent model, which is comprised by the MobileNet architecture using the Mel-frequency 

cepstral coefficients audio feature as input, being able to achieve an accuracy of 81%. 

 

Keywords: Audio Event Classification; Audio Features; CRISP-DM; Deep Learning; Violence 

Detection 
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RESUMO 

Algoritmo baseado em deep learning para deteção de violência em dados de áduio 

 

Atualmente, a indústria de serviços de mobilidade carece de uma componente que 

garanta a segurança tanto dos seus condutores como dos seus clientes, o que é algo que não 

se alinha com a constante evolução do setor tecnológico e com o exponencial aumento de 

dispositivos IoT capazes de capturar dados tanto do meio externo como interno do veículo. 

Desta forma, a Bosch Car Multimedia introduziu o projeto RideCare que tem vista a 

monitorização de vários dados em tempo real dos veículos de uma frota dum prestador de 

serviços de mobilidade, sendo a raíz onde esta dissertação se enquadra. 

O presente trabalho tem como objetivo estudar e desenvolver um algoritmo baseado 

em Deep Learning capaz de detetar cenários violentos apenas usando dados de áudio como 

input. Na fase experimental deste projeto a metodologia CRoss Industry Standard Process for 

Data Mining (CRISP-DM) foi implementada no sentido de garantir que todos os requisitos do 

projeto fossem cumpridos da forma mais eficiente. Foi dada uma especial atenção à fase de 

preparação dos dados bem como a fase de modelação para certificar uma maior precisão a 

nível de capacidade de classificação. Posteriormente, os modelos foram treinados em vários 

cenários de teste, compostos por várias representações de áudio diferentes, permitindo fazer 

uma análise comparativa de modo a retirar o modelo mais competente, sendo este 

constituído pela arquitetura MobileNet utilizando como input o audio feature Mel-frequency 

cepstral coefficients, atingindo uma acuidade de 81%. 

 

Palavras chave: Audio Features; Classificação de eventos de audio; CRISP-DM; Deep Learning; 

Deteção de violência 
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1. INTRODUCTION 

1.1  Framework and motivation  

Deep learning is a machine learning subset based on Artificial Neural Networks (ANN), 

meaning they try to simulate the behavior of the human brain, which can perform very well 

when trained with large quantities of data. These type of algorithms  have multiple use cases 

such as image classification and segmentation, which can be used for analyzing medical 

images more accurately [1], or even self-driving vehicles [2]. Moreover, these have been 

applied very successfully on object detection and tracking [3], translating to huge advances on 

face recognition and identification [4]. Speech and music are also a popular type of data used 

to train DL models, in forms of acoustic research. There are several studies related to speech 

generation, and speech recognition which are deeply related to Natural Language Processing 

(NLP). On the other hand, music research includes, music generation, genre classification and 

beat tracking.  

When it comes to violence detection, these types of algorithms are very dependent on 

visual data, or a combination of both video and audio. With the constant growth of IoT and 

devices, the amount of data available rises exponentially with time [5], auditory data included, 

and these signals overflow with relevant information that can easily be processed and used in 

a DL system. Although these architectures have been used in the field of environmental sound 

classification and anomaly detection, the approach taken in this dissertation aims to explore 

an uncommon method in which only auditory data and its features will be used to fit a Deep 

Neural Network (DNN) with the purpose of detecting violence, more specifically in-car 

violence. 

This dissertation project will be developed as part of an Academic Internship at Bosch 

Car Multimedia unit in Portugal. This partnership between Bosch and University of Minho 

allowed a support combination from my dissertation tutors and the monitoring of my team, 

which consequently, helps this project to be developed in an efficient and effective way. 

Moreover, Bosch provides a cluster that allowed model training to be way faster, for a quicker 

development and comparison of results. 
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1.2 Objectives and Expected results 

Objective definition and interpreting expected results are crucial for the successful 

development of this dissertation. The main and most important objective for this master 

dissertation was the development of a DL model that will be able to detect violent activity 

with the highest accuracy possible, solely based on auditory data. It is important to refer that 

the dataset used for the development of this architecture was provided by Bosch. It was also 

mandatory to research and define the best tools that were meant to be used for the practical 

development of this dissertation, as well as task planning for a more organized and efficient 

work. The development of technical articles was also expected. Finally, the last defined 

objective was the porting of the algorithm to a target device. 

1.3 Document structure 

The present dissertation is divided in six distinct chapters. Firstly, the Chapter 1 

(Introduction) is comprised by the Framework and motivation, Objectives and Expected 

results, the Document structure of this dissertation and the Dissertation work plan. Chapter 2 

(State of the art) is the most extensive one given that all the relevant concepts for this master 

dissertation are described. It starts by explaining the concept behind Deep Learning, followed 

by a deep dive into Artificial Neural Networks and its variants. Furthermore, Regularization 

methods were studied, and different audio representations were also described. Data 

Augmentation is also discussed given that it’s an important step of the Deep Learning pipeline 

and the nature of the provided dataset. In order to finish this chapter, Common approaches 

on audio classification are also described, and a study regarding Related work on violence 

detection using auditory data is conducted. 

On Chapter 3 (Methodology, Technologies, and Tools), the methodology that guided the 

development of this dissertation is also mentioned, this being CRoss Industry Standard 

Process for Data Mining (CRISP-DM). In addition, this chapter also details the Python libraries 

and Tools that were used in order to develop the practical aspect of this master dissertation. 

Chapter 4 (Use case – In-car violence detection) the Deep Learning architectures and the 

testing scenarios results are documented at the light of the adopted methodology, presenting 

the business understanding data understanding and preparation, modelling and evaluation. 
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Lastly, in the sixth and last chapter, a conclusion for this dissertation is presented, 

summarizing all the work done and its contributions, alongside the project limitations and 

plans for future work. 

1.4 Dissertation work plan  

On this sub-section, a project timeline is presented as well as the tasks that were 

developed throughout this dissertation. The planning phase was a crucial step for this master 

dissertation since it specifies what tasks and activities that should have been in place, as well 

as time resources that were allocated to them. The time requirements for each task were 

assigned based on the project objectives as well as the stipulated dates by the authors’ course 

direction. All the group tasks are represented on the Figure 1 Gantt Diagram and the final date 

refers to the submission of this dissertation report on October 31st. 

 The main group of tasks for this dissertation were: 

• Dissertation plan (March 7th to April 5th): The purpose behind this task was to 

detail the project subject following the structure: Framework and Motivation, 

Defining Objectives and Expected Results, Calendarization and Bibliography. 

This document was submitted on April 5th. 

• Pre-dissertation development (April 5th to May 31st): The pre-dissertation 

report aims to take a deeper dive into the contents defined on the previously 

described document. In this report an introduction to the subject was made as 

well as the expected results and contributions of this dissertation. A literature 

review was also conducted as well as the tools and technologies that were 

going to be used in the implementation phase. A work plan was presented 

alongside the conclusions and the future work for the practical implementation 

of the project. 

• Practical Implementation (May 31st to October 3rd): This task refers to the 

practical implementation phase of this dissertation. Here is where the 

metadata and audio preprocessing pipeline were developed in order to apply 

the necessary transformations to the audio labels and signals respectively. The 

Deep Learning architectures were also defined in this phase alongside its 
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training and result comparison based on various metrics. It is important to note 

that this was developed based on the adopted methodology. It was expected 

that the writing of the final report was done throughout this phase as well as 

the development of scientific documentation. 

• Dissertation Report Completion (October 3rd to October 31st):  This final group 

of tasks were meant to finalize the Dissertation Report. Here, all the results 

were discussed in the light of the previously defined objectives, as well as the 

identification of limitations (and possible future work) and what were the 

contributions of this project. The final sub-task, the Dissertation Submission 

refers to the submission of this report which is scheduled for October 31st. 
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Figure 1 - Dissertation activities Gantt Chart 
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2. STATE OF THE ART 

2.1 Deep Learning 

Deep learning is a Machine Learning subset which combines powerful learning 

techniques with knowledge about how the human brain works, statistics and applied 

mathematics [6]. Although Deep Learning is a technology created in the mid-40s, this 

technique has a higher computational power and a higher capability on dealing with larger 

volumes of data than regular Machine Learning approaches, making this concept a big 

highlight through the years with constant advances. This particular case of ML is able to learn 

and represent data as an hierarchy of concepts, and each of these concepts are divided into 

much simpler ones and abstract representations that are a product of more discrete ones [6]. 

The first DL models were created with the objective of recreating how the human brain 

learns at a computational level, which originated the concept of Artificial Neural Network, 

which then evolved to the current designation. These type of networks, also known by 

Representation Learning, are able to create high level abstractions from the input data, 

utilizing an arbitrary number of layers for processing [6]. The layers are responsible for the 

most part of the input processing, learning its features so it can output value for tasks with 

higher complexity. 

As it was previously mentioned, Artificial Neural Networks are computational models 

based on the processing and learning capability of the human brain, which makes it viable to 

learn non-linear variable relationships, easily identifying patterns making it a powerful 

alternative to traditional Machine Learning methods [7]. There are multiple forms of Neural 

Networks such as Feed Forward Networks, Convolutional Neural Networks, Recurrent Neural 

Networks and Residual Neural Networks, that will be described in the following sub-sections. 

2.2 Artificial Neural Networks 

Artificial Neural Networks are a computational learning system that is composed by a 

network of functions used to understand and translate some sort of data input and output a 
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desired value, usually in another form. In much simpler words, these set of algorithms are 

deeply inspired in how the human brain operates, they have the ability to recognize patterns, 

information and relationships in the given data. 

The simplest form of an ANN is formed by three components:  

1. An input layer – this layer corresponds to the input nodes meaning the 

information from the “outside world” is provided here for the model to learn 

and later, output a value based on the learned features. These nodes are also 

responsive to pass to the next connected layer in a left to right manner. 

2. A hidden layer – this component is made of a set of neurons that are meant to 

perform all the computations on the data received from the input layer. The 

simplest form of an ANN is made of a single hidden layer but there can be as 

many as desired although this might have performance implications. 

3. An output layer – the concept behind this layer is self-explanatory, it corresponds 

to the output of the model derived from the calculations performed on the 

previous layers. The number of nodes in this layer depends on the number of 

possible classes. For example, in a binary classification problem, only one neuron 

is needed on this layer, since the output can only be either 1 or 0.  

2.2.1 Multi-layer Perceptron 

One of the simplest and oldest forms of Artificial Neural Networks is called Multi-layer 

Perception (MLP). The main characteristic of this model is that all of its layers are fully 

connected, meaning a neuron has one weighted connection between itself and the neurons 

of the next layer. For a better understanding of how these types of networks function, a step-

by-step approach was conducted, using Figure 2 as an example of a MLP network.  
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Firstly, all the inputs are multiplied by their weights. Weights are associated to inputs 

in order to identify its coefficient, translating into how impactful a particular input will be 

(which can be a positive or negative reinforcement). After weight assignment a bias variable 

𝑏 is added. This is a constant that is used to help the model fit in the most effective way. In 

other words, before the information is passed from the input layer to the hidden layer, a 

matrix multiplication is performed between vector input 𝑥 with the weight matrix 𝑊(1) and 

later adding the bias variable which returns the net input ℎ(2) = 𝑥𝑊(1) + 𝑏. On the hidden 

layer, the next step is to apply the activation function to the net input previously calculated 

𝑎(2) = 𝑓(ℎ(2)) which returns the activation vector of the second layer. This concept may 

appear to be abstract, but it will be later explained on sub-section 2.2.3. On the third layer 

and final layer, the net input is again calculated using ℎ(2) = 𝑎(2)𝑊(2) + 𝑏 and apply the 

activation function in order to get the predicted output: 𝑦 = 𝑓(ℎ(3)) 

2.2.2 Back propagation 

The process described on the sub-section 2.2.1 is known as forward propagation. 

When training an NN the final step of the forward propagation is the evaluation of the 

predicted output 𝑦 ̂against the expected value 𝑦. This is done by using a cost function 𝐸, also 

known as a loss function. This function is set as a parameter when fitting the model and 

𝑥1 

𝑥2 

𝑦 

𝑆3 

𝑆2 

𝑆1 
ℎ(2) ℎ(3) 

𝑎(2) 

𝑎(3) 

Figure 2 - MLP network example 
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depends on the use case. It is based on this function’s value that the model works its way to 

adjust its parameters in order to get to a closer value to the real one which is present on the 

dataset. This is known as back propagation and was created in order to achieve the minimum 

value of the cost function by adjusting the NN weights and biases (in a positive or negative 

manner) based on the gradients of the cost function [8]. The gradient calculation is done to 

each weight and bias based on the chain rule, and it is done layer by layer in an iterative 

backwards way with the objective of avoiding redundant computations.  

2.2.3 Activation Functions 

As it is described on section 2.2, all the connections have weights associated which are 

taken into account when processing the information and passing it through the different 

layers. In order to recognize patterns and relationships on the data received from the outside 

world, activation functions must be used between layers. These mathematical equations 

determine if a neuron will be fired or not, and it’s done based on the if the inputs are 

important for final model prediction. Activation functions introduce non-linearity to the model 

which is a requirement to learn and recognize complex mappings from data [9], [10]. Let’s say 

the following classification problem is proposed: classify if a customer will buy a product based 

on its age, education level and marital status. A simple linear classifier wouldn’t be able to 

predict very accurately this binary classification problem, simply because the 

pattern/relationship that defines whether the customer will buy a product or not is not linear.  

Furthermore, activation functions are also used to keep the value of the output from a 

neuron restricted to a certain value that depends on the function used. This reduces the 

amplitude of the output signal into a finite value. This operation is known as squashing. 

There are multiple studies regarding activation functions, not only in performance 

comparison [10], [11] but also in ways to find new and more viable ones [12]. In order to keep 

this section short, only four activation functions will be described, these being Rectified Linear 

Unit, Sigmoid, SoftMax and Hyperbolic Tangent Activation Function.  

Rectified Linear Unit (ReLU) 

 As mentioned in [13], the ReLU is the most popular activation function in the world 

right now. This function makes a simple calculation that returns the value provided as input 

or 0 if the input is lower than 0. Because the ReLU function is linear for half the input and 
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nonlinear for the other half, this function is often referred to as a piecewise linear function. 

This implies that on the layers that use this function not all the neurons will be activated, 

which translates to a better performance and efficiency. This function can be mathematically 

defined as 𝑓(𝑥) = max (0, 𝑥) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sigmoid Activation Function 

 The Sigmoid activation function can be defined as 𝜎(𝑥) = (1 + 𝑒−𝑥)−1. It takes an 

input 𝑥 and squashes it between 0.0 and 1.0 which can be interpreted as a probability for that 

specific input. This activation function is often used in the last layer for two-class (binary) 

classification problems.  

 

Figure 3 - ReLU activation function plot 
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Hyperbolic Tangent Function (Tanh) 

 This function is very similar to the previous one, but it is symmetric around the origin 

of the graph, it’s a zero centered activation function. Just as the sigmoid, it also squashes the 

input values, but into a bigger interval, between -1.0 and 1.0. The advantage the Tanh function 

has over the Sigmoid function is that the negative inputs will be mapped in a strongly negative 

way and positive inputs will be mapped strongly positive. This property makes this function 

perfect for binary classification. It can be represented by 𝑓(𝑥) = 2𝑆(2𝑥) − 1, 𝑆 standing for 

the sigmoid function. 

Figure 4 - Sigmoid Activation Function Plot 
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Softmax activation function 

 The Softmax activation function is the generalization of the Sigmoid function, meaning 

it’s a combination of multiple Sigmoid functions [9]. As mentioned earlier, the Sigmoid 

function returns values between 0 to 1, which can be perceived as the probability for each 

class, in a binary classification situation. This function, however, can be used for multiclass 

classification problems, returning a probability for each of the values present on the input 

vector. It can be mathematically expressed by: 

𝜎(𝑧)𝑖 =
ⅇ𝑧𝑖

∑ ⅇ
𝑧𝑗

𝑘

𝑗=1

  for 𝑖 = 1, ..., 𝑘. Where 𝑘 is the number of classes. 

 

Figure 5 - Tanh Activation function plot 
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2.3 Convolutional Neural Networks 

Convolutional Neural Networks is a Deep Learning model that takes data that can be 

represented in a grid pattern [14], such as images. It assigns learnable and improvable weights 

and biases to various features in the data, in order to be able to classify them based on feature 

learning. This type of architecture is noted for using a mathematical operation, in at least one 

of its layers, called convolution instead of the previously explained matrix multiplication. This 

specific characteristic is the reason behind the successful implementations of image 

recognition while using CNNs [15]. It allows the model to understand the spatial and temporal 

features of an image through the application of filters. 

The simplest version of a ConvNet is usually composed by three main layers: 

Convolutional Layer, Pooling Layer and Fully Connected layer. In this section, all three will be 

described. 

2.3.1  Convolutional Layer 

Convolutional layers are the center of attention in CNN architectures. This layer 

receives a learnable filter that handles the feature detection. This is often referred as a kernel. 

A kernel is a two-dimensional array of weights that as a parameterized size and when it is 

Figure 6 - Sofmax Activation Function Plot 
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applied to an area of a grid like data, such as an image, a matrix multiplication is calculated 

between the input pixels and the filter which is latter outputted to an array. The next step is 

shifting this filter by a stride and repeat the same process till the kernel has been applied to 

the entirety of the grid data.  On an image, the stride defines how many pixels the kernel will 

shift, meaning the lower the stride, the higher overlapping that will occur, translating to a 

dimensionally larger output [16]. The output of this process is often referred as an activation 

map or a convolved feature.  

 

 

 

 

 

 

 

 

 The main objective of the convolutional operation is to extract high-level features, 

such as edges from an input image. The number of convolutional layers is arbitrary, where the 

closer they are to the input layer, they will detect more low-level features such has color or 

gradient orientation. On the other end, the closer these layers are to the output, the features 

will be severely more broken down which means they are responsible for the capture of the 

high level spatial and temporal dependencies.  

 As mentioned in section 2.2.1, each neuron in a MLP is connected to the previous ones. 

If an Artificial Neural Network is trained using images as inputs, it would result on a huge 

model that could not be trained effectively. On CNNs, each filter of a convolutional layer is 

connected to a certain part of the input, this is called sparse interaction and can be controlled 

by adjusting the filter size. Another major difference is that weights on ANNs are independent 

of each other, in CNNs rather, each filter applies the same weights at each local region of the 

input image. This is called parameter sharing, it presupposes that if one region filter can 

compute a certain feature, then there is a chance that it can be useful in another area, 

meaning it forces each kernel to detect the same feature across the input. 

Figure 7 - Example of a kernel applied to a 2D input, source: 
https://bit.ly/3vVnEUu 
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 In addition, convolutional layers also reduce or maintain the dimensionality of their 

outputs compared to the inputs, this operation is called padding. Taking a 6x6x1 image as an 

example (number of width pixels x number of height pixels x number of channels), if a 3x3x1 

kernel is applied and the same padding parameter is used, the output matrix will have a 6x6x1 

dimensionality, meaning it ensures that the output has the same size as the input. On the 

other hand, if valid padding is used, a matrix with the dimensions of 3x3x1 is returned. Lastly, 

full padding can be used, meaning the output dimensions are increased by adding zeros 

around the input matrix. After the convolutional operation, an activation function is applied 

to the output matrix. 

2.3.2 Pooling layer 

Pooling layers are used to apply further changes to the output of the convolutional 

operation. These layers are also known as down samplers given that their goal is to reduce 

spatial size of its inputs culminating in a lower computational load. This procedure is very 

similar to what happens in the convolutional layer, but instead of using weights, the filter 

applies an aggregation function to the values within it. There are a few variations of this 

procedure: Max-pooling, Average Pooling, L1-normalization, Weighted Average Pooling. In 

this section, Max and Average Pooling will be the focus point given that they show to be the 

most commonly used in Convolutional Neural Networks. 

When Max-Pooling is applied, the filter moves across the input, selects the pixel with 

highest value and uses it on the output array. This pooling approach is generally the most used 

on CNN architectures. On the other hand, when the average pooling algorithm is used, as the 

filter shifts on the input it calculates the average value within the receptive field.  

Although a lot of information is lost when pooling is applied, the computational cost is 

lowered significantly, as well as helping the network become invariant to translations. This 

Figure 8 - Example of Max Pooling, source: bit.ly/3vWzy0o 
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means if the input is slightly translated, the pooling operation will produce the same output. 

This property, although it doesn’t help detecting the feature location, it does influence on 

identifying if the feature is present or not.  

2.3.3 Fully-Connected Layer  

After the convolutional and pooling operations, the output is generally flattened into 

a column vector, a one-dimensional array of numbers, and connected to one, or more fully-

connected layers. 

This layer, also referred to as a dense layer, is used in order to classify the inputs based 

on the features extracted on the previous layers. This is just a feed-forward network that is 

used to learn in a non-linear way, the patterns of the output features of the convolutional 

layers. While the layers described in sub-section 2.2.1 usually use ReLU functions, Fully-

Connected Layers often use a SoftMax or Sigmoid activation function depending on the 

classification problem, returning a output for each of the input vector values, which can be 

interpreted as the probability of each class. 

2.4 Recurrent Neural Network 

Recurrent Neural Networks (RNN) are a type of Artificial Neural Networks specially 

designed to treat sequential data or time series data. The main characteristic of this network 

is that they are comprised of neurons with one or more feedback loop [17]. This allows the 

network to remember prior inputs, influencing current inputs and outputs. In CNNs and other 

types of Neural Networks, it is presupposed that the inputs and outputs are independent of 

each other, but in RNNs the outputs depend on prior elements within the temporal sequence. 

It is also important to note that these networks, much like CNNs, also use parameter sharing. 

Because of the “memory” property of Recurrent Neural Networks, they are often used 

in the fields of NLP [18], speech recognition [19] and can also be applied in audio classification 

tasks by combining this architecture with convolutional layers [20]. Although this is a very 

interesting feature, if long-term memory is needed this type of network is no longer adequate, 

which introduces the concept of Long short-term Memory networks which will be described 

in the next sub-section. 
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2.4.1 Long Short-term Memory  

Long Short-term Memory is a type of Recurrent Neural Network that aims to solve the 

short-term memory issue by using a gate mechanism, responsible to control input 

information. This architecture was motivated by the inaccessibility to long time lags when 

base RNNs are used, meaning that these simpler networks were unable to capture long-term 

temporal dependencies [21]. 

There are three types of gates on these networks: the forget gate, the input gate, and 

the output gate. The forget gate is responsible for the identification of what data should be 

forgotten. The input gate is able to decide what input data should be stored and finally, the 

output gate passes the updated information from the current index on the time series to the 

next one [22]. All three gates receive two input vectors 𝑥𝑡 and 𝐻𝑡−1 which refers to the input 

vector on the instant 𝑡 and the output vector of the input gate on the instant 𝑡 − 1, 

respectivily. 

Mathematically the operation that occurs on the forget gate can be define as: 

𝑓𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑓 + 𝐻𝑡−1 ∗ 𝑊𝑓) 

Where 𝑥𝑡 is the input to the current timestamp, 𝑈𝑓 is the weight associated to the input, 𝐻𝑡−1 

is the hidden state of the previous timestamp and 𝑊𝑓 is the weight matrix associated with 

that hidden state. A sigmoid function is then applied to the information that will return a 

number between 0 and 1. If the value is 0 then the network will forget this information and if 

the value is 1 it will forget nothing. 

 The operation on the input gate can be defined as: 

𝑖𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑓 + 𝐻𝑡−1 ∗ 𝑊𝑓) 

After the sigmoid function is applied, a tanh function is also executed returning a value 

between 1 and -1. If the value is negative the information is subtracted from the cell state and 

if it is negative the value is then added to the cell state. 

 Finally, on the output gate the following operation is executed: 

𝑜𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑜 + 𝐻𝑡−1 ∗ 𝑊𝑜) 

Again, the same functions as the previous gate are calculated in order to get the output for 

the next cell. 
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2.5 Residual Neural Networks 

One of the biggest problems in training deeper architectures is the existence of 

exploding and vanishing gradients. Back propagation is applied to compute the gradients using 

the chain rule which can inevitably lead to an exponential growth or vanishment of the 

gradients, preventing the weights from updating and thus not allowing the architecture to 

perform better. In [23], He et al. show an example of a 20 layer CNN against a much deeper 

CNN one. This plot shows a greater training and test error on the deeper network against its 

shorter counterpart. 

Residual Neural Networks (ResNet) were created to solve the training of very deep 

neural networks by using residual blocks. These residual blocks use a type of connection called 

skip connection also known as shortcut connections. This type of mapping doesn’t add 

additional parameters but allows to add a layers’ output to the following layer.  

 

 

 

 

 

 

 

 

However, a layer’s output dimension 𝑥 can differ from the spatial dimension of the 

output of the following layer 𝐹(𝑥). In order to solve this, the authors propose that the identity 

Figure 9 - Training error and test error on CIFAR-10 with 20-layer and 56-layer "plain" networks. Source: Adapted from [22] 

Figure 10 - Residual block. Source: Adapted from [22] 
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mapping (the output of the previous layer) is multiplied by a linear projection 𝑊 to increase 

its dimensions, matching the following layer (also called the residual), allowing both outputs 

to be combined as the input for the next layer. This procedure can be expressed by the 

following math function: 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) +  𝑊𝑖𝑥 

In the previously discussed article, He et al. show that by adding residual blocks and increasing 

the network depth, networks achieve higher accuracy against its less deep counter parts. 

2.6 Regularization 

To classify a machine learning model as successful, it needs to achieve a low training 

error while minimizing the difference between training and test error. Training error is a 

metric that defines the error over the data used for training the model, while the test error is 

measured on the predictions made on unseen data, in other words, a validation set. 

Commonly, when training a new DL system, a very high training accuracy will be seen, but it 

will fall short when predicting on new data, meaning the generalization error is rather high. 

This is known as overfitting, and it happens when the model is too complex for the given task 

or simply there isn’t enough data to train on. 

Regularization methods were introduced to deep learning systems, as a way to reduce 

overfitting as well as keeping the training error at a minimum. In this section, the most 

commonly used techniques will be described. 

2.6.1 L1 and L2 Regularization 

L1 and L2 regularization methods are both very common techniques of model 

regularization [13; 14; 15]. These procedures update the general cost function by adding 

another term designated as the regularization or penalty term. Due to the addition of this 

regularization variable to the general cost equation, both approaches try to penalize bigger 

weights [27], making the values of the weight matrices tend to decrease. The key difference 

between these methods is the term that they add to the cost function. In L1 it can be 

expressed as: 
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𝐶𝜆 = 𝐶 +
𝜆

2𝑚
∗ ∑‖𝑤‖ 

The main purpose of this model is to turn the less important feature’s coefficient into zero, 

and consequently remove some irrelevant features altogether. This operation can work 

particularly well when a large number of features are present, making it useful to compress 

the model. On the other hand, L2 Regularization can be represented as: 

𝐶𝜆 = 𝐶 +
𝜆

2𝑚
∗ ∑‖𝑤‖2 

This means that it forces the weights to decay towards zero, making the model prefer smaller 

weights. This method is generally preferred over L1 when model compression is not required. 

2.6.2 Dropout 

The dropout regularization method is a very simple method that, at every iteration, 

randomly selects a set of nodes and disables them, and consequently, removes all their 

incoming and outgoing connections. This means that each iteration has a different set of 

nodes resulting in different outputs. This is the same as sampling a sub NN from a larger 

network [27]. This emulates a different model architecture at each iteration, translating to a 

very computationally cheap and effective way of applying regularization, which makes this 

method the most common among data scientists.  

The Dropout technique uses a hyperparameter p which sets the probability for the 

units to be disconnected and it can be tuned in order to achieve better results. 

2.6.3 Batch normalization 

When supervised machine learning is applied, a model will learn the patterns or 

relationships between the input and its labels through training datasets. A common problem 

that happens with these models is that the input distribution can differ from the real-word or 

test data, meaning that the model may make wrong predictions. This obstacle is often referred 

to as covariance shift [28]. Furthermore, internal covariate shift can also occur, given that 

during neural network training, as the parameters of a preceding layer change, the input 

distribution of a layer also changes. This negatively affects the training speed and requires a 

more careful parameter initialization. 
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In order to tackle this problem, Batch Normalization [29] was introduced. It’s a layer 

that applies standardizing and normalizing operations on the input received from the 

precedent layer, without altering its shape. This not only handles internal covariate shift but 

also makes for a faster learning rate and more care-free initialization of parameters. 

2.6.4 Early Stopping 

Early stopping is the simplest method out of regularization techniques. In this specific 

case a monitor is used to keep track of a certain metric, generally being an error metric such 

as the validation loss. When the validation error is getting worse the model simply stops 

training, hence the name, early stopping. Besides the monitor parameter, early stopping also 

takes the number of epochs which sets the interval with no improvement after which training 

will be stopped. Also, a minimum delta can be set which defines the minimum variance change 

that needs to be seen on the monitored metric in order to qualify it as an improvement. 

2.7 Sound and Audio 

In simple terms, sound is a pressure wave which is created by a vibrating object and is 

transmitted through a medium that can be solid, a gas or a liquid. These variations in pressure 

can be represented over time which is often referred to as a sound signal. 

There are periodic and aperiodic sound signals, where in the first, the sound wave 

repeats itself at a period 𝑇, where a phenomenon of compression and rarefaction are seen 

represented by the height of the wave. This height represents the intensity of the sound, and 

it is known as the amplitude (𝐴). On the latter, the same occurrences are also seen, but the 

wave does not oscillate on a repeated pattern. Most sounds fall on this sound signal category, 

like the human voice, a bird chirping or an instrument being played. In order to represent 

these sounds, sound signals with different frequencies can be added together creating 

composite signals. Frequency represents the number of waves that pass a fixed point in time. 

2.7.1 Audio Digital Conversion 

Converting analog audio to its digital form is done by the process called ADC (Analog 

Digital Conversion). There are multiple complex components present on this method, but on 
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this section only the two main concepts will be covered, these being Sampling, and 

Quantization or Resolution.  

 In order to convert analog audio, the ADC module takes measures of amplitude of the 

sound at a fixed interval of time. Each of these measurements is called a sample and the 

number of samples taken per interval of time is called sampling rate. So, during sampling, if a 

22050 Hz sampling rate is used on a 30 second audio clip 661500 samples are returned. 

Quantization refers to the number of bits used to store each sample amplitude point. The 

greater the bit depth, the more accurate the representation of a sound will be, given that a 

wider interval is used in which amplitude can be described. 

2.8 Audio Data preparation for DL architectures 

Historically, audio classification problems were approached with machine learning 

models, depending heavily on digital signal processing techniques to extract audio features 

that are used as inputs [30]. For example, features like zero crossing rate and short time 

energy would be extracted in order to classify environmental sounds [31]. For emotion 

detection, timbral, tonal and rhythmic features would be extracted [32], [33] . This requires a 

lot of audio domain expertise to solve these problems alongside being tuning dependable to 

reach useful results. 

However, with Deep Learning development, these architectures have demonstrated a 

huge success in handling audio. Traditional audio data preparation is no longer needed, and it 

is surpassed by standard data preparation without the need of hand-crafted specific features. 

Although the audio signal can be used as an input, it is very common to transform it into its 

visual representations (also known as audio features) such as spectrograms and later feed it 

into the DL network. 

2.8.1 Spectrum 

As mentioned in previous sections, natural sounds cannot be represented by a periodic 

single sine function. The Fourier transformation equation allows the decomposition of 

complex sound waves into a sum of sine waves oscillating at different frequencies. There are 

multiple variations of this method with different outputs, but only Fast Fourier Transformation 
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will be covered on this subsection. After FFT is performed on a sound signal, a spectrum is 

returned, moving from the time domain to the frequency domain. It can be seen as a snapshot 

of all the frequencies that represent the sound but losing the time aspect of it.  

 

 

 Although this type of audio representation is not really used on Deep Learning models 

as an input, it is useful to study how energy level of each frequency is distributed on the audio 

sample. It is often used to calculate amplitude thresholds in order to remove noise from the 

sampled data. 

2.8.2 Spectrograms 

When FFT is performed, a simple representation that averages the presence of the 

frequency components across the whole duration of a signal, is returned. So, the frequencies’ 

magnitude are known but not when they are more or less present. Audio data is characterized 

Figure 11 - Example of a Spectrum obtained using FFT 
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by the evolution of its frequency components over time, hence the use of spectrograms on 

Deep Learning architectures.  

Spectrograms are a feature that can be extracted by applying the Short Time Fourier 

Transformation. In order to preserve the important time aspect of sound, FFT is computed at 

different intervals with a fixed frame size (e.g., 2048 samples) returning a spectrogram, where 

the magnitude is represented as a function of time and frequency. The magnitude dimension 

is described by color, allowing us to understand the presence of that frequency on a given 

time. 

In other words, a Short-time Fourier Transformation is a series of FFTs performed on a 

windowed signal, providing time-localized frequency information for data like audio signals, 

in which its frequency components vary over time [34].   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Mathematically, the STFT equation can be represented as: 

𝑋(𝑚, 𝑘) = ∑ 𝑥(𝑛 + 𝑚𝐻) ∙

𝑁−1

𝑛=0

𝑤(𝑛) ∙ 𝑒−𝑖2𝜋𝑛
𝑘
𝑁 

Figure 12 - Example of a Logarithmic Scaled Spectrogram 



 

 

41 

This function is characterized by its windowing function 𝑤(𝑛) that its multiplied by the 

number of samples present on the frame 𝑥(𝑛 + 𝑚𝐻) where 𝑚 is the current frame and 𝐻 is 

the hop length, which describes how many samples the window shifts. 

Most of the time, the endpoints of a signal are discontinuous, because they’re not an 

integer number of periods. This translates to spectral leakage on the spectrogram, meaning 

that these discontinuities appear as high-frequency components that are not present on the 

original signal. In order to minimize this problem, the standard procedure is having a smaller 

hop length than the frame size, originating frame overlapping which accounts for the 

information that is lost on the endpoints of the framed signal. 

Moreover, when extracting spectrograms using STFT, there is an important time-

frequency tradeoff that is related to the parametrized frame size. The larger the frame size, 

higher the frequency resolution and lower resolution on the time domain, and vice-versa [35]. 

There are some heuristics that can help choosing the number of samples for the frame size, 

but it is mostly dependent on the problem that is being investigated. 

2.8.3 Mel-Frequency Cepstral Coefficients 

Mel-Frequency Cepstral Coefficients are a very widely used feature for audio related 

Machine Learning tasks [36], especially on speech recognition [37], [38]. A Mel-frequency 

cepstrum (MFC) is a representation of the short-term power spectrum of a sound signal, based 

on a linear cosine transformation of a log power spectrum on a Mel-scaled frequency. The 

MFCCs are coefficients that collectively form an MFC. The Mel scale is related to how humans 

perceive frequency or pitch of a tone to its actual measured frequency. The steps in order to 

retrieve MFCCs from an audio signal are: 

1. Use a windowing function to break the signal into overlapping frames 

2. Perform the Discrete Fourier Transformation to the framed signal. 

3. Map the powers of the spectrum obtained on the previous step to the Mel-scale by 

using triangular overlapping filters 

4. Calculate the log of each of the energies returned on the previous step. 

5. Perform the Discrete Cosine Transformation to each of the log filterbank energies in 

order to obtain the cepstral coefficients. 
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2.8.4 Mel-Spectrograms 

In simple words, Mel-Spectrograms are Spectrograms converted to the Mel-scale. The 

Mel-Spectrogram is a very common form of Spectrogram used as input to Convolutional 

Neural Networks designed for audio classification. The way these spectrograms are obtained 

is quite similar to the MFCC feature extraction. First the signal is divided into windows and the 

FFT is computed to each frame. Then the Mel scale is generated by taking the entire frequency 

spectrum and separating it into an arbitrary number of mels, becoming evenly spaced 

frequencies, in the sense as how humans perceive those frequencies. Finally, for each window 

the magnitude is decomposed into its components and the Mel-Spectrogram is obtained. 

 

Figure 13 - Example of MFCCs representation 
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2.8.5 Constant-Q Transform 

Constant Q Transforms or CQT for short, are a type of audio signal representation 

commonly used in audio classification as well [39]. Its calculation is very similar to the 

previously discussed STFT, however the spacing between the first harmonics are based on an 

increasing logarithmic space [40]. By increasing its window size for lower frequencies and 

increasing this window for higher frequencies a lower computational power is needed, which 

is why CQTs are considered an optimized version of the STFT. It also has its draw backs since 

reducing the window size for the last harmonics reduces the detail on the upper frequencies. 

Figure 14 - Example of a Mel-Spectrogram 
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2.8.6 Chroma vector 

The human ear perceives sound pitch in a periodic way, meaning two pitches can be 

perceived in the same way if they differ by one or multiple octaves. A chroma vector, or 

chromogram is pitch scaled STFT, meaning it shows a 12-element vector for each pitch class. 

A pitch class means every pitch that is separated by one octave.  

This type of feature can be a useful tool to analyze sound waves from a music file when 

pitch is an important tuning feature, being a powerful descriptor of the tonal content of a 

musical audio signal. 

This type of feature is also very commonly used for audio classification tasks. Research 

found that chroma vectors are popular among algorithms for thumbnailing music [41], [42]. 

 

 

 

 

 

 

 

Figure 15 - Example of a Constant-Q Transformation 



 

 

45 

 

 

 

 

 

 

 

 

 

 

 

 

2.9 Data Augmentation 

Data augmentation is a common technique that can be applied to a dataset in order to 

increase its diversity, especially when not enough data is present. This is done by artificially 

modifying existing data in small ways. 

In image recognition there are some basic approaches to augment the data that are 

meant to be used as input to a DL model, these being: image cropping or scaling, image 

rotation, color modification or adding noise to the image [43]. Although the new images are a 

modification of the original ones, the semantics have not been touched. For instance, a 

rotated image of a cat is still considered as a cat, but for a Deep Learning model is a new data 

sample that will help the models’ generalization capability. 

On audio, the previously discussed augmentations can’t be applied since they change 

what the audio features represent, meaning semantics are altered which introduces a lot of 

noise on the training data, increasing training error and decreasing its prediction capability. 

However, there are also multiple ways to insert data augmentation either on the spectrogram 

representation of the signal or on the signal itself [44]. In this section only Spectrogram 

Augmentation, Time Shift, Pitch Shift, Time Stretch and Noise Addition will be covered. 

Figure 16 – Example of a Chroma vector 
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2.9.1 Spectrogram Augmentation 

Normal transformations such as rotation or color alteration cannot be applied to 

spectrograms since it would alter the sound that it represents. In 2019 Park et al. introduced 

a data augmentation method for automatic speech recognition [45] known as SpecAugment.  

They experimented in two ways: 

• Frequency Masking: this procedure randomly masks a range of consecutive 

frequencies, translating to a horizontal bar on the spectrogram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Time Masking: very similar procedure to the frequency mask method, but 

instead random ranges of time are blocked from the original spectrogram using 

vertical bars. 

Figure 17 - Frequency Masked Mel-Spectrogram 
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2.9.2 Time Shift 

Time shifting is simply shifting the audio to the right or the left by a random amount. 

For sounds with a repeated pattern the audio can be repeated when shifted. In human speech 

however, the order of the sound is a must for speech recognition so the gaps created when 

shifting can be padded with silence. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 - Time Masked Mel-Spectrogram 

Figure 19 - Example of a time-shifted signal 



 

 

48 

2.9.3 Pitch Shift 

Pitch shifting changes the pitch of a signal by an arbitrary number of semitones without 

altering its tempo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.9.4 Time Stretch 

Time stretching alters the tempo of an audio clip, meaning the speed of the audio can 

be altered without changing its pitch. Consequently, the length of the signal will also change, 

so padding needs to be added in case the time stretched signal has a smaller input shape and 

clipping in case the signal dimensionality becomes too long. 

 

 

 

 

 

 

 

 

Figure 20 - Example of a pitch-shifted signal 
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2.9.5 Noise Addition 

Gaussian noise can be added to the audio signal which makes the input smoother and 

easier to learn. It’s a very simple but effective way of applying data augmentation to audio 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 - Example of a time-stretched signal 

Figure 22 - Example of Gaussian noise added to a signal 
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2.10 Common approaches 

Since the study object of this dissertation is Violence Detection using audio data, it also 

falls into the categories of Sound Event Detection (SED) and Environmental Sound 

Classification (ESC), thus, in this section, common approaches for SED and ESC will be 

described as well. 

Historically, many approaches on Sound Event Classification and Environmental Sound 

Classification have heavily relied on speech recognition techniques. This means the feature 

extraction was a method of choice to use as inputs. The most common type of features were 

Mel Frequency Cepstral Coefficients (MFCCs) [46], [47], [48], Average Zero Crossing Rate [49], 

Constant-Q Transformations [39], Mel-band Energy Features [50] and hand-crafted specific 

features [51]. These were widely used in combination with Machine Learning classifiers such 

as the Non-Negative Matrix Factorization [52]. 

The state of the art for these classification problems is based on Deep Neural Networks, 

including Feed Forward Networks [32; 33], Convolutional Neural Networks [55]–[57], Residual 

Neural Networks [58] and the more sophisticated Recurrent Neural Networks with transfer 

learning [59]. These allowed to overcome the domain specific knowledge needed to perform 

machine learning on audio data, by simply using images as input, such as spectrograms, and 

managing to learn high-level features from them. 

As this master dissertation will focus on Violence Detection using Deep Convolutional 

Neural Networks as a medium for feature extraction and sound classification, it is important 

to dive into more detail about this type of approach. 

In [55], Salamon and Bello use logarithmic scaled mel-spectrograms as inputs to a CNN 

in order to classify environmental sounds present on the Urban8K dataset. They introduce a 

problem related to the scarcity of labeled audio event data and propose data augmentation 

as a method to solve this issue. This stage included the following augmentations: time 

stretching, pitch shifting, dynamic range compression and the addition of background noise. 

Although data augmentation should help on creating a larger dataset and thus converging to 

a higher accuracy model, this has not been the case for this specific dataset given that the 

training time greatly increased and the difference on model accuracy was negligible. The 

authors’ model is comprised of 3 convolutional layers with 2 pooling layers between them 

followed by 2 dense layers. All the layers were using ReLU as the activation function except 
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for the output layer which used SoftMax. The categorical accuracy reported for this method 

was an average of 79%. 

Using logarithmic mel-spectrograms and delta feature spectrograms as input features 

and the same dataset, Zhang and Zhou in [57] approached this problem with a different 

architecture. They identified a research gap, this being that most approaches on 

Environmental Sound Classification would use smaller filters on their convolutional layers 

which translates to a need of a deeper convolutional network in order to learn log contextual 

information. In order to resolve this issue, the authors propose the use of dilated convolution 

filters in order to increase the receptive field of the CNN without introducing more parameters 

and layers. The first part of the network comprises of 2 dilated convolutional layers running 

LeakyReLU as the activation function, and 2 max-pooling layers between them. These were 

divided into two channels, one receiving log mel-spectrograms and the other delta feature 

spectrograms. The previously described network is then connected to 2 fully connected layers 

and these to an output layer with SoftMax as the activation function. It is important to 

mention that the authors also used a data augmentation module that applied time stretching 

and noise adding to the inputs. The proposed architecture got a solid 81.9% categorical test 

accuracy. 

In [58] Palanisamy et al. use state-of-the-art techniques to compare sound classification 

performance on single and ensemble models using the GTZAN, UrbanSound8K and ESC-50 as 

their datasets. They start by extracting multiple audio features and feed them to base-line 

model (SoundNet) to understand which type of audio feature would perform best, founding 

that the Logarithmic Mel-Spectrogram was the best audio representation for this specific 

problem. To fine tune the models’ performance, multiple hop lengths and window sizes were 

used to extract the feature and then fed to the models while also comparing accuracy when 

using pretrained and random weights. It is also necessary to note that data augmentation has 

been implemented, specifically pitch shifting and time stretching. On the final experiment, the 

pretrained DenseNet, ResNet and Inception models were tested on all three datasets in a 

single and ensemble matter. The DenseNet achieved the higher validation accuracy across the 

board, losing only to the ResNet in its ensemble version, specifically on the GTZAN dataset. 

Much like SED and ESC, historically, violence detection has been based on feature 

extraction from video and images like spatial-temporal features, optical flow, motion 
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information, and acceleration [60] and feeding them to a Machine Learning algorithm [61] 

were the most common way to approach this problem. Auditory data has often been 

neglected for this type of problem, although some researchers include it, like in [62] 

Mahadevan, Li, Bhalodia and Vasconcelos proposed an system that tried to identify violent 

scenes based on blood and flame detection combined with motion and sound. 

There are multiple approaches that were studied regarding violence detection, but in 

this section only state-of-the-art Deep Learning based approaches will be covered since they 

are known for easier integrations and better results. 

In [63] Abdali and Al-Tuma propose a architecture to classify hockey videos as violent or 

non-violent, using a CNN as a spatial feature extractor that feeds its output to a Long Short-

Term Memory cells that then extracts temporal patterns from the inputs which are fed to a 

dense layer using sigmoid as the activation function since it’s a binary classification problem. 

They use a pre-trained model, the VGG-19 and since the dataset was rather small  to get 

the best results, they needed to use transfer learning. Firstly, the architecture receives a 4d 

tensor, a sequence of frames with the shape (40x160x160x3) corresponding to (frame, height, 

width, RGB color channels) where the pre-trained VGG19 processes each one. The output of 

the previous step is grouped and flattened into a 2d vector representing a spatial feature for 

one frame. Each of the outputs are then processed by the LSTM, global average pooling is 

applied in order to get a 1d vector and finally its fed to a fully connected layer which will be 

used to get the probability of violence in the given video. On the test set the model achieved 

a 98% accuracy.  

2.11 Related work 

Regarding violence detection tasks using only audio data, only two articles related to 

the issue were found [64], [65].  

In [64] Theodoros, Dimitirios, Andreas and Sergios  described an approach that aims to 

be a contribution for automated characterization of multimedia content with respect to 

violence. The authors start by extracting six audio features from each segment of an audio file 

from the time and frequency domain. These are energy entropy, signal amplitude, short time 

energy, zero crossing rate, spectral flux, and spectral roll off. In order to classify these audio 
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signals as violent or non-violent content they use a Support Vector Machine using the 

previously described features as normalized inputs. The dataset was divided in half, obtaining 

the training and testing sets. 

The authors present the classification error rates for each individual feature as well as 

the error rates when all the features were used together (8-D case), this was meant for a 

better understanding in future feature selection. On the 8-D case, the model recall was 90.5%, 

a precision of 82.4% and 85.5% accuracy. 

In [65] Giannakopoulos and Pikrakis present a very uncommon approach on classifying 

violent content using audio from movies. They use a multi-class classification scheme, dividing 

the labels into 6 classes, where 3 of them are considered as violent. Each audio file is broken 

into segments and each segment is divided into frames and for each of them, twelve feature 

sequences are calculated, these being: zero crossing rate, spectrogram, chroma vector 

features, energy entropy, spectral rolloff, pitch, and MFCCs. All these features go through 

different statistical calculations except the chroma vector features and MFCCs that go through 

multiple equations. Using 30 movies hand-labeled by the authors and feeding them to a 

Bayesian Network the authors got a 90.8% recall, 86.6% precision and 89% accuracy for the 

violence classification. 

2.11.1 Anomaly Detection 

 Anomaly Detection using audio sources is a fairly common investigated subject, and 

since violent scenarios can be considered as anomalies, this subsection will be used in order 

to describe these types of work. 

Historically, the most common way to perform anomaly detection is using Auto 

Encoders [66] which are a form of a feedforward, fully connected neural where the output 

layer has the same dimensionality as the input layer. This network compresses the input, 

encoding it in a reduced dimension, known as the latent space, learning the most important 

relationships. This distorted version of the input is later decoded, and it is reconstructed back 

to the original dimensions in an unsupervised manner. The difference between the output 

vector and the input is called the reconstruction error and by using a threshold it is possible 

to detect anomalies. 
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Although auto encoders are known by their low computational needs, new architectures 

are also being explored with better performances such as transfer learning techniques, 

features can be extracted from different audio representations by Deep Neural Networks like 

Recurrent Neural Networks and then fed into an AE [59]. 

Another example is the use of a LSTM neural network with 10 units in order to detect 

anomalies in 3D-printers [67]. MFCCs and mel filter banks were the author’s choice as inputs 

and since acquiring printing anomaly recordings is very time-consuming, data augmentation 

techniques were also used to increase training data.  

Rushe and Namee did a research on using raw audio signals paired with a convolutional 

autoregressive architecture [68] and presenting significant performance gains over deep 

autoencoders when it comes to anomaly detection. They used the WaveNet architecture, 

training it to predict the next sequence using non-anomalous samples, meaning the network 

will learn the conditional distribution across normal data that anomalous sequences won’t 

follow. The model then predicts the next sequence, compares it with the subsequent actual 

value and if the mean squared error is high then it is indicative of an anomaly. 

This type of architecture has benefits over Recurrent Neural Networks by using dilated 

causal filters in order to increase the receptive field and ReLU units are replaced by gated units 

in order to obtain the benefits of a LTSM without the need of a recurrent algorithm, since 

these are known for their difficulty on parallelizing backpropagation through time, slowing the 

network training process. 
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3. METHODOLOGY, TECHNOLOGIES, AND TOOLS 

With the purpose of understanding the fundamental concepts for this master 

dissertation, deep research for article pre-selection was conducted. The platforms used were 

ScienceDirect, Google Scholar, Semantic Scholar, Google and Web of Science. Title, abstract 

and number of citations for each article were the properties chosen by the author in order to 

identify relevant work for this dissertation. 

A methodology is a study of the best methods that are used in a specific domain in order 

to achieve a certain goal of knowledge. In this dissertation the CRoss-Industry Standard 

Process for Data Mining was the adopted methodology to structure the plan of action. The 

reason behind this choice is that this methodology is more complete than, for example, 

SEMMA or PMML. It offers superior advantages over them, such as: greater project feasibility, 

greater project viability and faster development and lower development costs [69]. Moreover, 

this methodology has previously been studied and applied by the author in previous projects. 

In addition, to contextualize the practical development of this dissertation there is a 

need to identify the technologies and tools that are meant to be used for its implementation, 

thus, a summary of all the chosen technologies, tools, and libraries were also conducted in 

this chapter. 

3.1 CRISP-DM 

CRISP-DM, Cross-Industry Standard Process for Data Mining, was developed in 1996 and 

later published in 1999, with the purpose of orienting the development of Data Mining 

projects [70], guarantying a lower project complexity, lower development costs and a 

management ease.  

This methodology, presented on Figure 18, is comprised by six different steps and each 

of them is defined by a second level series of tasks that can either be applied or not. This 

methodology can be applied to the process of Machine Learning implementation, providing a 

lower project complexity, and ensuring that the requirements are fulfilled. 
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Ideally, the transition between the six phases of the CRISP-DM methodology should be 

done in a linear form. However, Machine Learning projects suffer from great complexity and 

the transition between phases can, and most likely will be done in a circular motion, meaning 

that it is possible to backtrack to previous steps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Business Understanding: The output of this step is the necessities and business 

objectives. It is also expected an objective definition in order to establish a plan 

of action for the different requirements. It is very common to backtrack to this 

step when the project is in an advanced state, given that the requirements can 

change over time. 

2. Data Understanding: Data collection and data analysis is performed on this step. 

This is meant to detect data incoherence and understand the relationships 

between the variables. It is always possible to go back to this step, regardless of 

the project state, either because the dataset has been altered or new data has 

appeared. 

Figure 23 - CRISP-DM Methodology (adapted from Wirth and Hipp, 2000) 
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3. Data Preparation: A very important phase where the problems detected on the 

previous step are dealt with. This involves data processing and treatment, and 

when new issues are found on modelling and deployment it is possible to go back 

to this step. 

4. Modelling: In this phase is where the modelling techniques are chosen in order 

to be applied to the problem at hand. It is mandatory to learn the different model 

requirements regarding the project limitations. The parameters of the model 

should also be adjusted in order to obtain the best results. 

5. Evaluation: On this step is where all the previous models will be assessed in order 

to determine which model will be used in the future implementation. There is a 

common back and forth between this phase and modelling, this is known as 

hyperparameter optimization. 

6. Deployment: Lastly, a result assessment is planned, including the steps and how 

to execute them. A final report is developed, and a project revision is done. In 

certain cases, the final model can be implemented on a real environment. 

3.2 Technologies and Tools 

In this section, the different technologies and tools that were used on the practical 

development of this dissertation are described. Given the nature of this dissertation, it was 

developed entirely in the programming language Python. Python is a programming language 

created in 1991 by Guido van Rossum and it is often used to build websites, software, task 

automation and data analysis. There are multiple languages that could be used for Machine 

Learning purposes, such as R Programming Language, C++ or Java.  

The main reason this language was chosen in detriment of others, is because the amount 

of experience the author has with it and the wide number of libraries that can help with pre-

processing tasks and modelling. Furthermore, Python is the most used programming language 

for Machine Learning, meaning there is a vast support available online. In Table 1, there is a 

brief description about the libraries and packages that were relevant in the practical 

development of this dissertation. 
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Table 1 - Tools and Python Libraries 

Name Description Version 

Pandas 

Pandas is a package made on top of NumPy and is most widely 

used for data science and data analysis tasks. It uses a tabular data 

structure known as dataframe, that allows to execute functions 

over the data that it contains. Because Pandas is so widely used, it 

works very well with most Machine Learning libraries. 

1.4.1 

NumPy 

NumPy is the library of choice to perform mathematical 

operations on multidimensional python arrays. It utilizes powerful 

data structures that allows efficient and fast calculations with 

matrices being essential for Machine Learning tasks. 

1.22.4 

Matplotlib 

Matplotlib is a library that allows the user to create data 

visualizations, using NumPy. This tool also as an API that permits 

the integration of its plots in real applications, allowing to create 

animated and interactive visualizations. In this dissertation it will 

be used to plot signals and its respective spectrograms. It will be 

important to plot training and validation metrics to evaluate the 

models’ performance. 

3.1 

Librosa 

Librosa is a python package used for music and audio analysis. This 

package is the starting point for this dissertation. It will allow to 

analyze and transform audio signals into its derivates. It allows to 

extract spectrograms, mel-spectrograms, and various audio 

features. 

0.9.1 

Audiomentations 

Audiomentations is a Python library that is used for audio data 

augmentation. Its execution is very fast and supports a wide 

variety of audio augmentation methods which is perfect for 

increasing the amount of training samples. 

0.24.0 

Scikit-Learn 

Scikit-Learn is a Python library that includes mathematical and 

statistical algorithms that are meant for Machine Learning tasks. 

It also has modelling modules for regression, classification, and 

clustering. 

1.1.0 

TensorFlow 

TensorFlow is Python and JavaScript library, created by Google, 

that allows to build Machine Learning pipelines. It also takes 

advantage of data augmentation algorithms. It has embedded 

state-of-the-art techniques such as RNNs, CNNs and LTSMs that 

can be used for end-to-end audio classification. 

2.9.0 
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Visual Studio 

Code 

Visual Studio Code is a code editor with support for development 

operations like debugging, task running and version control. It 

includes syntax highlighting, code completion, snippets and code 

refactoring. It is also a very modular IDE since it allows to install 

extensions to further increase its features. 

1.67 

MobaXterm 

MobileXterm is a software that allows for remote computing. It 

will be used in order to connect to Bosch’s cluster in order to have 

dataset access and train the developed deep learning model. 

22.0 
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4. USE CASE – IN-CAR VIOLENCE DETECTION 

This chapter includes all the practical work developed in all the CRISP-DM methodology 

phases which aids a better understanding of the project requirements. As a consequence, this 

chapter is divided in all of the CRISP-DM steps: business comprehension, data understanding, 

data preparation, modelling, evaluation and implementation. 

On the Business understanding section the use-case is contextualized with the purpose 

of defining the business objectives, data mining objectives as well as the success criteria. The 

following section describes the dataset provided by Bosch and how it was obtained. A deep 

data analysis is also conducted along a data quality report of the chosen metadata which is 

used for the modeling phase. In the Data preparation section, all the data transformations to 

the WAV files and metadata are included and a data preparation architecture is also 

presented. On the Modelling phase, all the models used are described along the alterations 

done to its architectures, following by a description of all the test scenarios and their 

evaluation. Finally, on the Evaluation section the best model of each test scenario were 

compared in order to obtain the best combination of audio features and model architecture. 

Furthermore, since there is an increasing amount of devices capable of audio recording 

in and processing in real time, all the code and additional information has been included in 

multiple appendices so that this investigation can be easily replicated in similar contexts. 

4.1 Business understanding 

For mobility service providers, vehicle safety must be ensured at all times, any problem 

regarding the condition of a car must be reported in a transparent way to ensure drivers and 

passengers safety as well as reducing vehicle down time. 

In addition, there are multiple reports regarding assaults in mobility service providers, 

for example, Uber mentioned in a safety report 3824 sexual assaults reported in its US 

platform in 2019 and 2020 while 20 people were killed in assaults. These types of companies 

heavily rely on costumer safety and satisfaction as well as its drivers which cannot be 

measured in real-time. In addition, mobility service providers often offer a driver rating system 
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which can most definitely support the costumer choice, but nothing can ensure that violence 

related incidents between driver and passenger or vice-versa won’t happen. Furthermore, 

these types of events can only be addressed after the fact, instead they should be 

communicated to the fleet manager in real-time. 

In this context, Bosch’s RideCare project aims to provide a device capable of car damage 

detection using a sensor to classify damages into different categories (as well as storing GPS 

coordinates and timestamp). Smoke detection is another feature that reports the smoking 

event and its duration in real-time as well as anomaly driving detection which aims to identify 

irresponsible drivers and ultimately reduce the risk of car accidents. 

This dissertation project is developed with the purpose of improving the current device 

by adding a new feature: in-car violence detection. This investigation aimed to achieve Bosch’s 

business objective, it being whether in-car violent scenarios can be detected by only using 

auditory data as an input to a DL algorithm. Following this business objective, the data mining 

objective can easily be defined: classifying auditory data into non-violent or violent labels with 

the highest accuracy possible, meaning it’s a binary classification problem. 

4.1.1 Success criteria 

In order to measure the investigation results it is essential to define metrics and criteria 

that can evaluate the results obtained by the different models proposed on the modeling 

phase. The selected metrics for the models’ evaluation were accuracy, recall, precision, area 

under curve, F1-score and Binary Cross Entropy as the loss function. The mathematic formulas 

of the previously mentioned metrics are described in this sub-section. On Table 2 all the 

metrics are contextualized in this use-case as well as its utility and why they have been chosen. 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
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F1-Score = 2 ∗
𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅ⅇ𝑐𝑎𝑙𝑙

𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛+𝑅ⅇ𝑐𝑎𝑙𝑙
 

 

Binary Cross Entropy = 
1

𝑁
∑ −(𝑦𝑖 ∗ log (𝑁

𝑖=1 𝑝𝑖) + (1 − 𝑦𝑖) ∗ log (1 − 𝑝𝑖)) 

Where 𝑝𝑖 is the probability of the violent class (1) and (1 − 𝑝𝑖) is the probability of 

the non-violent class (0) 

 

In order to understand the previously described formulas it is mandatory to 

understand that: 

• 𝑇𝑃 means true positive, this corresponds to the number of samples from the 

positive class that were classified by the model as positive. In this dissertation 

use-case a 𝑇𝑃 means that the model classified a violent scenario correctly. 

• 𝑇𝑁 means true negative, thus, it describes the number of negative samples 

classified as negative. In this use-case, it describes the number of non-violent 

scenarios classified as such. 

• 𝐹𝑃 means false positive. It corresponds to the number of negative examples 

classified as positive (incorrectly). Thus, in this use-case it refers to the number 

of non-violent scenarios classified as violent. 

• 𝐹𝑁 means false negative. This corresponds to the number of examples from 

the positive class that were classified as negative. In this use-case it describes 

the number of violent scenarios classified as non-violent. 

 

Table 2 - Model Assessment metrics 

Metric Description Justification 

Accuracy 

Proportion of correctly classified records 

(positive or negative). 

It’s a very good base-line metric as well as 

defining very well how a model performs. 

It is important to have a high accuracy with 

a low error rate. 

Recall 

Proportion of positive records correctly 

classified as such. 

It measures the capacity of the model to 

identify correctly true positives, in this 

case: violent scenarios. This metric is very 

important since an imbalanced dataset is 
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used which describes the real world quite 

well. 

AUC 

Measure of the model's discriminatory 

capacity. 

Metric that identifies the model’s 

capability to differentiate the possible 

targets. For example, if in 100 scenarios 

where 80 are non-violent and 20 are 

violent and a random model predicts that 

all of them are non-violent it would have 

an 80% accuracy, however its capability to 

distinguish violent and non-violent 

scenarios is very low, hence the 

importance of this metric 

Precision 
Proportion of classified positive records 

that are true positives. 

The same principle as the previous metric.  

F1-score 

Reliability measure of the classifier. In this use case, recall and precision are 

both very important metrics. F1-score is a 

combination of both which allows to 

understand the balance between them. 

Binary Cross 

Entropy 

The binary cross entropy loss function 

compares the models’ output probabilities 

to the actual real values. It penalizes the 

probabilities based on the distance 

between the output and the expected real 

value. Since it is a measure of “distance”, 

this metric should be minimized. 

Since this use-case is a binary classification 

problem, this makes it the perfect loss 

function for the models training, since all 

the probabilities lie between 0 and 1. 

 

4.2 Data understanding 

The dataset used in this master’s dissertation is provided by Bosch and it was created 

by recording different scenarios using the camera of the target device and interpreted by paid 

actors. The metadata present for each audio file were manually annotated following a specific 

label scheme structured by Bosch. 

 Although this dissertation aims to study about violence detection using auditory data, 

the dataset has both audio and video files and the metadata is divided in six different 
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categories, these being: “speaker”, “background_noise”, “scene_acitivities_noises”, 

“physical_violence_noises”, “scene_classification” and “silence” each of them having different 

labels that can be found on Table 3. 

Moreover, each of these categories were described by plotting its label durations and 

complementing it with additional information about each attribute, such as its description, 

examples and important observations. 

 

Table 3 - Dataset Labels 

Type Possible Labels 

speaker 

Speaker events Speaker aggressiveness 

laughing; shouting; sigh; whispering; 

screaming; singing; activated_speech; 

crying; coughing; cheering; struggle; 

vocalization 

no_agg; agg_low; agg_medium; 

agg_high 

background_noise 

buckle_off; buckle_on; fan; door_closing; laughing; talking; coughing; shouting; 

music; other; door_opening; radio_voice; radio_music; dropping_something; 

radio_voice; radio_music; animal_noise; traffic; signal-horn; construction_work; 

brakes; phone_ringing; children; train; rain; wind; thunder; bicycle; car_driving; 

engine; window_opening; window_closing; car_trunk; car_hood; 

bumping_intocar; uncertain; undefined 

scene_activities_noises 

anomaly_arguing; anomaly_conversation; anomaly_driving; 

anomaly_interaction; anomaly_violence; anomaly_uncertain; 

normal_no_interaction; normal_conversation; normal_arguing; normal_driving; 

normal_interaction; normal_radio_music; normal_uncertain 

physical_violence_noises struggle; slapping; hitting; punching; kicking; uncertain 

scene_classification 

neutral_emotion_backseat; negative_emotion_backseat; 

neutral_emotion_fronseat_ positivite_emotion_backseat; 

negative_emotion_frontseat; positive_emotion_front_seat 

silence silence 

 

4.2.1 Speaker data 

On the speaker set each is composed by two sub-categories: speaker aggressiveness 

and speaker events. For the speaker aggressiveness sub-set, each entry represents an actor, 
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containing its seat position, gender, and the level of aggressiveness as well as the interval of 

time this entry occurred. On Figure 24 the duration of each label regarding the speaker 

aggressiveness, is demonstrated. Moreover, on Figure 25 the same described properties are 

shown but for the speaker events. 

 

 

 

Table 4 - Speaker aggressiveness data description 

Attribute Description Type Observations Examples 

actor_id 
Identifies which 

actor is speaking 
Integer - 1; 4 

gender 
Identifies actors’ 

gender 
Char - ‘m’ or ‘f’ 

seat_info 
Specifies what 

seat the actor is in 
Integer - 1; 3 

aggressiveness 

Identifies actors’ 

level of 

aggressiveness 

String - 
“no_agg”, 

“agg_high” 

time_start 
Specifies when 

the label sarts 
Float - 0.0; 12.2 

Figure 24 - Duration, in hours, of the speaker aggressiveness labels 
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time_end 
Specifies when 

the label ends 
Float - 17.3 ; 64.2 

 

 

Table 5 - Speaker events data description 

Attribute Description Type Observations Examples 

actor_id 
Identifies which 

actor is speaking 
Integer - 1; 3 

gender 
Identifies actors’ 

gender 
Char - ‘m’ or ‘f’ 

seat_info 
Specifies what 

seat the actor is in 
Integer - 1; 4 

event 

Identifies actors’ 

type of action 
String 

Contains 2 

misplaced labels 

(“struggle” and 

“vocalization”) 

“singing”; 

“laughing” 

time_start 
Specifies when 

the label sarts 
Float - 0.0; 15.4 

time_end 
Specifies when 

the label ends 
Float - 11.7; 33.1 

 

Figure 25 - Duration, in minutes, regarding the labeled speaker events 
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 Although speaker data contains a lot of information regarding the level of 

aggressiveness of each speaker, it was not chosen as the metadata for the modeling phase. 

The reason behind this, is that each entry represents an actor which can create overlapping 

of aggressiveness labels making it difficult to understand what label represents best a scene 

interval which would create a lot of outliers. The main objective is to have an output regarding 

the overall scenario and not pinpoint which person is being labeled as aggressive, which would 

be extremely hard to do using only auditory data and probably result in a very inaccurate 

model.  

4.2.2 Physical violence data 

 Physical violence noises describe the noise generated by a physical encounter between 

the actors inside the car. This would be usable to identify what is happening in a violent 

scenario using computer vision thus not suitable for this dissertation use case. Furthermore, 

a few events were misplaced such as “fan” and “radio_music” which are not considered as 

physical violence noises. 

Table 6 - Physical violence noises data description 

Attribute Description Type Observations Examples 

event 

Identifies what 

physical noise is 

playing 

String 
Multiple 

misplaced labels 

“slapping”, 

“hitting” 

time_start 
Specifies when 

the label sarts 
Float - 0.0; 15.4 

time_end 
Specifies when 

the label ends 
Float - 11.7; 33.1 
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4.2.3 Background noise data 

  Background noise and silence labels are self-explanatory, describing the overall 

background noise on each time interval and where silence is present which make for a big part 

of this dataset. The silence set has about 2 hours of silence labels, hence it isn’t plotted in this 

sub-section. Although the highest background noise label in terms of duration is “undefined” 

and a few misplaced labels such as “screaming” and “hitting”, with the right data preparation 

this set could be useful in a sound event classification use case. 

Table 7 - Background noises data description 

Attribute Description Type Observations Examples 

event 

Identifies what 

background noise 

is playing 

String 
Multiple 

misplaced labels 

“fan”; 

“radio_music” 

time_start 
Specifies when 

the label starts 
Float - 0.0; 15.4 

time_end 
Specifies when 

the label ends 
Float - 11.7; 33.1 

Figure 26 - Duration, in minutes, of the labeled physical violence noises 
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4.2.4 Scene classification data 

 Scene classification represents the overall emotion in a specific time interval either 

on the front seat or back seat. Although it could be used for this master dissertation use case 

it suffers from the same problem as the speaker labels, meaning that there are overlapping 

labels between negative and positive emotion which would create outliers for this specific 

problem. It would be more appropriate for an emotion classification problem when location 

is also a prediction variable. 

Table 8 - Scene classification data description 

Attribute Description Type Observations Examples 

events 

Identifies the 

overall 

emotion from 

each seat 

String 

Multiple 

misplaced 

labels 

“neutral_emotion_backseat”; 

“negative_emotion_frontseat” 

time_start 
Specifies when 

the label sarts 
Float - 0.0; 15.4 

time_end 
Specifies when 

the label ends 
Float - 11.7; 33.1 

Figure 27 - Duration, in hours, regarding the background noises events 



 

 

70 

 

4.2.5 Scene activity noises data 

Scene activity noises were the category chosen as the target variable for the future 

model. It has no overlapping intervals and generalizes each one into a label making the perfect 

data for a binary classification problem. It also divides into “normal” and “anomaly” labels that 

can be considered as nonviolent and violent respectively.  

Table 9 - Scene activity noises data description 

Attribute Description Type Observations Examples 

event 

Identifies the 

overall scene 

activity 

String 

A few labels with 

the same 

meaning 

“normal_conversation”; 

“anomaly_violence” 

time_start 
Specifies when 

the event starts 
Float - 0.0; 15.4 

time_end 
Specifies when 

the event ends 
Float - 11.7; 33.1 

Figure 28 - Duration, in hours, regarding the emotional scene classification for each seat in the car 
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Since this set has been chosen in detriment of others to create the final dataset, a quality 

analysis was also conducted with the objective of identifying possible incoherencies and 

missing values on the data. 

Table 10 - Scene activity noises data quality analysis 

Attribute 
Data 

type 

Row 

Count 

Missing 

values 

Unique 

values 
mean std min max 

event String 34678 0 21 - - - - 

time_start Float64 34678 0 1697 47.36 47.54 0 355.2 

time_end Float64 34678 0 3273 52.80 48.61 0.1 356.91 

4.2.6 WAV Files 

This dataset is composed by 2169 WAV files with a combined duration of near 52 hours. 

It was also necessary to conduct an analysis on sample rate since all the inputs for the models 

had to have the same length and dimensions. In Figure 30 is presented the sample rate count 

of the WAV files which shows that they had to be resampled to a fixed SR. Not only that but 3 

corrupted files were found so they weren’t used on the final dataset. 

Figure 29 - Duration, in hours, regarding the scene activity labels 
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4.3 Data preparation 

Data preparation is a very important CRISP-DM phase which aims to prepare data before 

it is fed to the ML model which can heavily affect performance. The most common activities 

are attribute selection which, in this dissertation, was done in the prior phase since another 

dataset will be created in the current adopted methodology phase. In a classic machine 

learning problem, data cleaning is a very important step to improve data quality, however, no 

inconsistencies were found in the scene activity noises data during the Data understanding 

step of the CRISP-DM methodology when it comes to missing values and misplaced labels. 

However, a few labels do have the same meaning which had to be mapped to existing ones. 

Another way to increase data quality is to check whether the events are correctly 

labeled or not, unfortunately the only way to execute this, is to manually check each recording 

and confirm its authenticity, which would be very time consuming and not cost-effective. 

In Figure 31 the data preparation pipeline is presented which effectively shows the data 

flow needed for this project. This pipeline is divided into metadata preparation and audio 

transformations. The first one is responsible for the creation of the new dataset with the 

violent related labels, and the latter applies all the necessary transformations to the audio 

files for later input to the model. 

Figure 30 - WAV files sample rate plot 
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On the metadata preparation, for each metadata file, scene activity noises entries were 

extracted and then mapped to violent and nonviolent labels. The way that these labels were 

mapped is described on Table 11. The next step all the labels are transformed into fixed sized 

windows with a fixed time step, in this case a 3 second window with a 3 second step was 

chosen. This means that labels with a higher duration than 3 seconds are divided into 3 second 

windows and the ones with a lower duration are later padded with silence to guarantee that 

all the inputs have the same size. After this process is done for each metadata file, the 

nonviolent and violent labels are encoded to 0 and 1 respectively. 

Table 11 - Map of scene activity metadata to violent labels 

Labels Mapped label Description 

“normal_*” non_violent 

All the labels starting with 

“normal” were mapped 

to “non_violent” 

“anomaly_*” violent 

All the labels starting with 

“anomaly” were mapped 

to “violent” 

“talking”; 

“normal_talking”; 

“vocalization” 

non_violent 

These labels are 

considered as 

“normal_conversation” 

which maps to 

“non_violent” 

“radio_voice”; 

“radio_music”; 
non_violent 

These labels are all 

considered as 

“normal_radio” which 

maps to “non_violent” 

“undefined”; 

“anomaly_uncertain”; 

“normal_uncertain”; 

“anomaly_driving”; 

“normal_driving” 

- 

Undefined and uncertain 

labels were not 

considered and removed 

from the dataset. Driving 

labels were also removed 

since they do not describe 

the problem at hand. 
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Figure 31 - Data preparation architecture 
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This code, that can be found in Appendix A.1, returns a new dataset containing the WAV 

file path, label, start and end times as well as the duration. The previously discussed dataset 

has a label distribution described on Figure 32. 

On the audio transformation pipeline, the previously discussed dataset is split into train, 

validation and test sets using a very standard 80% of the data for training 10% for validation 

and the final 10% for testing data. For each WAV file, a window signal is loaded, resampled to 

22050Hz, and then padded with zeros (silence) to correspond to a 3 second window if needed. 

Since the dataset used is quite imbalanced, which truly describes the real world, data 

augmentation is applied by either randomly time stretching the signal or pitch shifting. This is 

done to only 50% of the train dataset, which is divided in a stratified manner to maintain the 

class weights. The reason behind only training data being augmented is that artificially 

augmenting the validation and test sets can lead to overly confident performance which 

would describe poorly how the model would perform in a real word use case. 

Finally, using the signal, the desired audio features are extracted, min max normalized 

and saved as images for later usage. In Figure 33 the final label distribution for all the extracted 

datasets is presented. The code used for the audio processing and data augmentation can be 

found in Appendix A.2. 

Figure 32 - Label distribution of the metadata dataset 
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4.4 Modelling 

Following the data preparation phase the modelling stage was executed. Here is where 

a set of models were selected as well as the creation of various scenarios as a way to translate 

the business objectives.  

4.4.1 Model architecture and alterations 

In this sub-section the reason behind the model’s choice is explained as well as the 

specific architecture alterations that were required and executed to solve overfitting 

problems. These possible alterations can be considered regularization methods and they were 

also mentioned in section 2.6. However, network depth and width were concepts introduced 

in this sub-section since they refer specifically to network layers and neurons distribution.  

In Table 12 a crossing matrix is presented between the models and the alterations 

done to its architectures as well as if the early stopping callback was used but an in-depth 

choice justification and architecture alterations were also conducted. All the models’ 

architectures can be found in Appendix B.1 as well as its implementation code. 

Figure 33 - Label distribution of all datasets 
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Table 12 - Crossing matrix between models and possible alterations 

Alterations 

 

Architecture 

Reduce network 

depth 
Reduce network width Added dropout 

VGG-16 X X X 

MobileNet   X 

ResNet-18   X 

 

VGG-16 

This model architecture was chosen due to it being a “true” CNN architecture. It is 

composed by 13 convolutional layers and two fully connected layers which produced a good 

baseline of how CNNs can perform when fed audio features as an input to solve a violence 

detection problem. Moreover, it has previously been shown that this architecture presents 

good results in an audio classification problem. In [71] Hershey got a 0.911 AUC using 70 

million audio clips with 3000 labels which is very promising. 

For this dissertation use case, a smaller variation of this model is used. The reason 

behind this is that the dataset provided by Bosch is considerably smaller and by using the 

regular VGG-16 network with 138 million parameters would lead to overfitting. 

To avoid this problem, a narrower and shorter version of this network is implemented, 

meaning the number of filters and layers were changed. The last 6 convolutional layers were 

removed and the number of filters present on the dense layers were lowered to 256, 128, 1 

in this specific order. The last activation is also altered to a Sigmoid function since it’s a binary 

classification problem. Multiple dropout layers were also introduced as a regularization 

method.  

MobileNet 

 Since the target device is a very computational limited platform and the violence 

detection algorithm has to be executed in very short intervals of time, an efficient neural 

network is needed, hence the choice behind the MobileNet architecture.  

 This model is designed to be used on mobile devices being super lightweight in regards 

of computational power requirements making it a suitable choice for the nature of this 

dissertation. It uses depthwise separable convolution which splits a kernel into 2 separate 



 

 

78 

kernels that perform two convolutions: depthwise and pointwise convolution [72].  On the 

depthwise convolution, a spatial feature map of all the inputs channels is returned and then 

the pointwise convolution with a 1 by 1 kernel is applied in order to change its dimension 

which makes it way more efficient with a low impact on accuracy. 

 Alterations were done regarding network depth as a way to introduce the dropout 

regularization method. In order to achieve this the Global Average Pooling layer has been 

removed and five fully connected layers were added with three dropout layers with a 0.4 

dropout rate. The last layer activation function was also changed to Sigmoid and the number 

of neurons to 1. 

ResNet-18 

 Previous tests showed a clear early overfitting when using deeper networks thus the 

reason behind choosing the ResNet architecture. The state-of-art section also revealed that 

NN architectures can heavily benefit from an increasing number of layers when used alongside 

short connections. Moreover, in the Common approaches section the Residual Neural 

Network architecture showed an impressive performance regarding sound classification. 

To introduce the dropout regularization method, the last fully connected layer was 

removed and four were added with 128, 64, 32, 1 as the number of filters in this order. 

Furthermore, the last activation function was changed to Sigmoid. 

4.4.2 Testing scenarios 

To test model performance, multiple testing scenarios were created. A scenario is 

comprised by a combination of input variables, models, and validation techniques. As inputs, 

the Constant-Q Transformations, Mel-Spectrograms, MFCCs and Chroma vector were chosen 

since this master dissertation literature review shows that these features are very commonly 

used in audio classification tasks. The Short-Fourier Transformation was also tested since all 

the previous features apply the STFT equation in order to be extracted, meaning that the STFT 

is a way faster feature to extract making it a suitable input for this use case. 
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Table 13 - Scenario description 

Scenario Inputs Architectures 
Validation 

techniques 

A Mel-Spectrograms All Train-Test Split 

B 
Constant-Q 

Transformation 
All Train-Test Split 

C Chroma vector All Train-Test Split 

D MFCCs All Train-Test Split 

E STFT All Train-Test Split 

4.4.3 Model training parameterization  

On Table 14 all the parameters used for each training are described. In addition to 

these parameters a TensorFlow callback was also used which is known as model checkpoint. 

Similarly, to the early stopping callback, this function allows to monitor any chosen metric 

which, saving model weights or the entire model when a new optimized value is achieved on 

an epoch-by-epoch basis. In this case, the chosen metric is the validation F1-score since the 

dataset is heavily unbalanced which makes it a better metric than accuracy to evaluate the 

models. After each model training, the optimized weights for F1-score are loaded and the 

architecture is evaluated on the test set. All the code for the parametrization and the callback 

function can be found in Appendix B.2. 

Table 14 - Model training parameters and its respective values 

Parameter Value 

Epochs 100 

Batch size 32 

Learning rate 0.005 

Decay Rate Learning rate / Epochs (=) 0.005 / 100 = 0.00005 

Optimizer SGD 

Loss function Binary Cross entropy 

Class weights {0: 0.6742, 1: 1.9357} 
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4.4.4 Model Assessment 

After selecting the model architectures and defining the training parameters, the ANNs 

were trained using each scenario input and then evaluated using the respective test set. To 

understand model performance, the metrics defined on Success criteria subsection were 

registered. 

It is important to note that the results presented on the following tables were obtained 

by using the test set and applying the model weights optimized for the highest validation F1-

Score which were obtained by using TensorFlow’s model checkpoint callback during training.  

The training plots regarding each test scenario can be found in Appendix C. 

Scenario A 

 Regarding scenario A, in which Mel-Spectrograms were used as each model’s input, 

the best performing architecture was the MobileNet since it has the highest values for 

accuracy, precision, F1-Score and AUC and the lowest registered value for the used loss 

function. 

Table 15 - Validation of scenario A 

Model Accuracy Precision Recall F1-Score AUC 

Binary 

Cross 

entropy 

VGG-16 0.7561 0.5190 0.7873 0.6256 0.8609 0.4736 

MobileNet 0.7972 0.5810 0.7724 0.6632 0.8843 0.3733 

ResNet-18 0.7936 0.5839 0.7012 0.6372 0.8670 0.4019 

 

Table 16 - Scenario A metrics explanation 

Model Accuracy Precision Recall F1-Score AUC 

Binary 

Cross 

entropy 

VGG-16 

The model 

correctly 

classified 

75.61% of all 

the samples 

This means 

that when 

the model 

classified a 

scenario as 

This means 

that the 

model 

correctly 

classified 

This means 

that the 

ability of the 

model to 

identify 

86.09% 

represents 

the 

probability 

of the model 

The model 

had an 

average of 

corrected 

probabilities 
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in the test 

set (non-

violent and 

violent). 

violent from 

the test set it 

was correct 

51.90% of 

the time. 

78.73% of all 

the violent 

scenarios in 

the test set. 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

62.56%. 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

of 47.36%, 

meaning it 

was on 

average 

47.36% far 

off from the 

real 

expected 

values 

(violent and 

non-violent), 

MobileNet 

The model 

correctly 

classified 

79.72% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

58.10% of 

the time. 

This means 

that the 

model 

correctly 

classified 

77.24% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

66.32%. 

88.43% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

The model 

had an 

average of 

corrected 

probabilities 

of 37.33%, 

meaning it 

was on 

average 

37.33% far 

off from the 

real 

expected 

values 

(violent and 

non-violent), 

ResNet-18 

The model 

correctly 

classified 

79.36% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

58.39% of 

the time. 

This means 

that the 

model 

correctly 

classified 

70.12% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

86.70% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

The model 

had an 

average of 

corrected 

probabilities 

of 40.19%, 

meaning it 

was on 

average 

40.19% far 
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cases is 

63.72%. 

from non-

violent ones. 

off from the 

real 

expected 

values 

(violent and 

non-violent), 

 

Scenario B 

 On scenario B, Constant-Q Transformations were used as inputs and again, the 

MobileNet architecture was the best performing model. It had the best metric values, losing 

on Recall to the VGG-16 model and having a higher loss function than the ResNet architecture. 

Table 17 - Validation of scenario B 

Model Accuracy Precision Recall F1-Score AUC 

Binary 

Cross 

entropy 

VGG-16 0.7879 0.5681 0.7469 0.6454 0.8723 0.4352 

MobileNet 0.8101 0.6120 0.7246 0.6636 0.8824 0.4147 

ResNet-18 0.8074 0.6247 0.6380 0.6312 0.8737 0.3941 

 

Table 18 - Scenario B metrics explanation 

Model Accuracy Precision Recall F1-Score AUC 

Binary 

Cross 

entropy 

VGG-16 

The model 

correctly 

classified 

78.79% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

56.81% of 

the time. 

This means 

that the 

model 

correctly 

classified 

74.69% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

86.09% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

The model 

had an 

average of 

corrected 

probabilities 

of 43.52%, 

meaning it 

was on 

average 

43.52% far 
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cases is 

64.54%. 

from non-

violent ones. 

off from the 

real 

expected 

values 

(violent and 

non-violent), 

MobileNet 

The model 

correctly 

classified 

81.01% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

61.20% of 

the time. 

This means 

that the 

model 

correctly 

classified 

72.46% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

66.36%. 

88.24% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

The model 

had an 

average of 

corrected 

probabilities 

of 41.47%, 

meaning it 

was on 

average 

41.47% far 

off from the 

real 

expected 

values 

(violent and 

non-violent), 

ResNet-18 

The model 

correctly 

classified 

80.74% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

62.47% of 

the time. 

This means 

that the 

model 

correctly 

classified 

63.80% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

63.12%. 

87.37% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

The model 

had an 

average of 

corrected 

probabilities 

of 39.41%, 

meaning it 

was on 

average 

39.41% far 

off from the 

real 

expected 

values 
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(violent and 

non-violent), 

 

Scenario C 

 Scenario C was the worst out of all testing scenarios which shows that Chroma vectors 

are not suitable for this use case. Nonetheless, the MobileNet architecture proved again to be 

the best performer out of the 3 models, only losing in the recall metric to the VGG-16 

architecture. 

Table 19 - Validation of scenario C 

Model Accuracy Precision Recall F1-Score AUC 

Binary 

Cross 

entropy 

VGG-16 0.6844 0.4440 0.8767 0.5895 0.8070 0.4772 

MobileNet 0.7108 0.4663 0.8246 0.5957 0.8230 0.4487 

ResNet-18 0.7007 0.4556 0.8102 0.5832 0.8103 0.4725 

 

Table 20 - Scenario C metrics explanation 

Model Accuracy Precision Recall F1-Score AUC 

Binary 

Cross 

entropy 

VGG-16 

The model 

correctly 

classified 

68.44% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

44.40% of 

the time. 

This means 

that the 

model 

correctly 

classified 

87.67% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

58.95%. 

80.70% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

The model 

had an 

average of 

corrected 

probabilities 

of 47.72%, 

meaning it 

was on 

average 

47.72% far 

off from the 

real 

expected 
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values 

(violent and 

non-violent), 

MobileNet 

The model 

correctly 

classified 

71.08% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

46.63% of 

the time. 

This means 

that the 

model 

correctly 

classified 

82.46% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

59.57%. 

82.30% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

The model 

had an 

average of 

corrected 

probabilities 

of 44.87%, 

meaning it 

was on 

average 

44.87% far 

off from the 

real 

expected 

values 

(violent and 

non-violent), 

ResNet-18 

The model 

correctly 

classified 

70.07% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

45.56% of 

the time. 

This means 

that the 

model 

correctly 

classified 

81.02% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

58.32%. 

81.03% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

The model 

had an 

average of 

corrected 

probabilities 

of 47.25%, 

meaning it 

was on 

average 

47.25% far 

off from the 

real 

expected 

values 

(violent and 

non-violent), 
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Scenario D 

The MFCC scenario was clearly the best audio feature out of all testing scenarios 

concluding in a very close call between all the models. In this scenario the VGG-16 wins in both 

accuracy and precision, MobileNet has better AUC and loss function values and lastly ResNet 

has the highest recall and F1-score. Since the difference on metric values is quite low, the 

inference time was considered in order to decide which model performs best in which 

MobileNet performs best against the other two architectures. 

Table 21 - Validation of scenario D 

Model Accuracy Precision Recall F1-Score AUC 

Binary 

Cross 

entropy 

VGG-16 0.8160 0.6219 0.7352 0.6738 0.8906 0.3723 

MobileNet 0.8142 0.6174 0.7395 0.6730 0.8902 0.3625 

ResNet-18 0.8103 0.6052 0.7645 0.6756 0.8901 0.3872 

 

Table 22 - Scenario D metrics explanation 

Model Accuracy Precision Recall F1-Score AUC 

Binary 

Cross 

entropy 

VGG-16 

The model 

correctly 

classified 

81.60% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

62.19% of 

the time. 

This means 

that the 

model 

correctly 

classified 

73.52% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

67.38%. 

89.06% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

The model 

had an 

average of 

corrected 

probabilities 

of 37.23%, 

meaning it 

was on 

average 

37.23% far 

off from the 

real 

expected 

values 
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(violent and 

non-violent), 

MobileNet 

The model 

correctly 

classified 

81.42% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

61.74% of 

the time. 

This means 

that the 

model 

correctly 

classified 

73.95% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

67.30%. 

89.02% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

The model 

had an 

average of 

corrected 

probabilities 

of 36.25%, 

meaning it 

was on 

average 

36.25% far 

off from the 

real 

expected 

values 

(violent and 

non-violent), 

ResNet-18 

The model 

correctly 

classified 

81.03% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

60.52% of 

the time. 

This means 

that the 

model 

correctly 

classified 

76.45% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

67.56%. 

89.01% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

The model 

had an 

average of 

corrected 

probabilities 

of 38.72%, 

meaning it 

was on 

average 

38.72% far 

off from the 

real 

expected 

values 

(violent and 

non-violent), 
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Scenario E 

For the last scenario, the STFT audio feature was used, and the registered metrics show 

that, again, the MobileNet architecture outperformed the other two models having better 

results for recall, F1-Score, AUC and loss function values.  

Table 23 - Validation of scenario E 

Model Accuracy Precision Recall F1-Score AUC 

Binary 

Cross 

entropy 

VGG-16 0.8013 0.5911 0.7501 0.6612 0.8834 0.4176 

MobileNet 0.8027 0.5897 0.7778 0.6708 0.8891 0.3735 

ResNet-18 0.8101 0.6151 0.7087 0.6586 0.8810 0.3745 

 

Table 24 - Scenario E metrics explanation 

Model Accuracy Precision Recall F1-Score AUC 

Binary 

Cross 

entropy 

VGG-16 

The model 

correctly 

classified 

80.13% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

59.11% of 

the time. 

This means 

that the 

model 

correctly 

classified 

75.01% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

66.12%. 

88.34% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

The model 

had an 

average of 

corrected 

probabilities 

of 41.76%, 

meaning it 

was on 

average 

41.76% far 

off from the 

real 

expected 

values 

(violent and 

non-violent), 

MobileNet 
The model 

correctly 

This means 

that when 

This means 

that the 

This means 

that the 

88.91% 

represents 

The model 

had an 
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classified 

80.27% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

58.97% of 

the time. 

model 

correctly 

classified 

77.78% of all 

the violent 

scenarios in 

the test set. 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

67.08%. 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

average of 

corrected 

probabilities 

of 37.35%, 

meaning it 

was on 

average 

37.35% far 

off from the 

real 

expected 

values 

(violent and 

non-violent), 

ResNet-18 

The model 

correctly 

classified 

81.01% of all 

the samples 

in the test 

set (non-

violent and 

violent). 

This means 

that when 

the model 

classified a 

scenario as 

violent from 

the test set it 

was correct 

61.51% of 

the time. 

This means 

that the 

model 

correctly 

classified 

70.87% of all 

the violent 

scenarios in 

the test set. 

This means 

that the 

ability of the 

model to 

identify 

violent 

scenarios 

and to be 

accurate 

with those 

cases is 

65.86%. 

88.10% 

represents 

the 

probability 

of the model 

to 

distinguish 

violent 

scenarios 

from non-

violent ones. 

The model 

had an 

average of 

corrected 

probabilities 

of 37.45%, 

meaning it 

was on 

average 

37.45% far 

off from the 

real 

expected 

values 

(violent and 

non-violent), 

 

4.5 Evaluation 

The evaluation phase from the CRISP-DM methodology is one of the most important 

stages of the project since it aggregates all the models and scenarios as well as the obtained 
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results. This type of analysis generates a greater view on what model performs best regarding 

this master dissertation use case, meaning the most suitable model for in-car violence 

detection only using auditory data with the highest predictive capability was extracted from 

this step. 

Table 25 - Table with the best model results per scenario 

Metric 

 

Scenario 

Accuracy Precision Recall F1-Score AUC 

Binary 

Cross 

entropy 

Model 

A 0.7972 0.5810 0.7724 0.6632 0.8843 0.3733 MobileNet 

B 0.8101 0.6120 0.7246 0.6636 0.8824 0.4147 MobileNet 

C 0.7108 0.4663 0.8246 0.5957 0.8230 0.4487 MobileNet 

D 0.8142 0.6174 0.7395 0.6730 0.8902 0.3625 MobileNet 

E 0.8027 0.5897 0.7778 0.6708 0.8891 0.3735 MobileNet 

 

The Table 25 is created by extracting the best model per scenario which are explained 

on the Model Assessment sub-phase. All the scenarios share the same best model, which 

means the MobileNet architecture is the one which will be used for the CRISP-DM’s 

deployment phase. 

Scenario D achieved the highest values when it comes to the success criteria which 

allows to conclude that from all the audio features tested, the MFCC audio feature is the best 

data to use as an input for in-car violence detection. In other words, the MobileNet 

architecture and MFCC image representation should be the chosen model architecture and 

audio feature, respectively, for the following phase of the CRISP-DM methodology. 

4.6 Deployment 

Although it was anticipated that the proposed architecture would be ported to a target 

device the results did not meet Bosch’s success criteria. Moreover, due to time constraints it 

was impossible to perform real-life experiments using the final model in the RideCare use-

case context.  Despite this fact, the present work presented valid contributions when it comes 

to understanding how these architectures work and how well they perform on violence 

detection, using audio data (in its visual representation form) related tasks. 
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In the context of the RideCare project, the deployment phase would correspond to the 

integration of the extracted model on the evaluation phase on the target device. This implies 

that a similar but new pipeline would have to be integrated as well, meaning transforming the 

audio signals into its MFCC representation and then feed it to the trained MobileNet 

architecture which in turn would predict whether it represents a violent scenario or not. 

Finally, this pipeline would then alert the mobility service provider of the incident which allows 

the person in charge to take action, guaranteeing a security improvement of all parties 

involved. 
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5. CONCLUSIONS 

This last chapter presents an overview of all the work done with a special focus on the 

extracted conclusions from its practical implementation. Therefore, it is divided into three 

main sections, the first one being a summary of all the work done throughout this dissertation, 

the second aims to evaluate all the contributions of this master’s dissertation by comparing 

the previously defined objectives to the completed ones and finally, the third section 

describes these projects limitations as well as future work that can be developed to improve 

it. 

5.1 Work summary 

Deep Learning has been used in various subjects such as image recognition, fraud 

detection, natural language processing and audio classification. This dissertation aimed to 

develop a DL architecture that can detect violent scenarios based on auditory data. It also 

contributes to a better understanding on if audio inputs in combination with a Deep Neural 

Network is enough to detect in-car violent scenarios which has never been researched before. 

Initially, in the Introduction section, the problem was contextualized in order to identify 

the research gap and what the project requirements are. The objectives and expected result 

are also discussed in this phase. A work plan was also defined in order to specify the different 

project milestones and to temporally organize the different tasks. Additionally, the specified 

tasks were also described. This work plan was a visual reference designed for an efficient 

implementation of this project, guarantying an easier time allocation to reach the project 

requirements. 

A literature review was also conducted in order to describe and explain the various 

concepts associated with the task at hand, framing the issue in a conceptual form with the 

explaining of Deep Learning, Artificial Neural Networks, Convolutional Neural Networks, 

Recurrent Neural Networks, Residual Neural Networks and the different representations of 

audio features, alongside its possible augmentations for future use on the DL architecture. 

Artificial Neural Networks and its variants were the focus of this chapter since it was the 
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machine learning variant associated to the practical implementation of this master 

dissertation. In this chapter, regularization methods were also discussed since they are a very 

important option to explore on the practical development of this dissertation in order to 

minimize overfitting and improve model generalization, helping with predictions on real-word 

and unseen data. 

Finally, a deep dive in related work and common approaches was taken, which was 

extremely important since it lighted the path on how these networks are implemented and 

how can they perform on acoustic event detection and sound classification, which highly 

influenced the final solution architecture.  

In order to lower the project complexity and organize it in different steps, the 

methodologic approach CRISP-DM was also discussed. Furthermore, the reason behind using 

Python is explained alongside the libraries and tools that were used for the practical 

development of this master dissertation. 

In chapter 4 the use case was contextualized as well as the practical execution of the 

CRISP-DM methodology, assuring that every requirement is met. Here the business 

understanding is described and all the steps for the meta and audio data extraction are 

represented. Finally, in the end of this chapter the results are presented as well as a comparing 

table and the best performing model is selected. 

5.2 Contributions 

Concluding the practical work of this dissertation it is possible to summarize the current 

situation status regarding the initially defined objectives and the actual acquired results. It is 

safe to say that most of the expectations were met and that the present work fulfilled with 

the main goal of developing a deep learning-based model that is able to classify violent 

scenarios using only auditory data with more than 80% accuracy. 

Although it was expected that the model will be implemented on a target device, this 

requirement has not been met due to the results not meeting Bosch’s success criteria. As per 

the criteria, in the given use case, a model should be capable of near perfect violent scenario 

detections, but the solution architecture doesn’t allow that, given that it uses audio features 

which makes it very sensitive to frequency and amplitude and not semantics or even physical 
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altercations. Another pre-defined objective was the development of a scientific article which 

was not met due to time constraints and the need to allocate more time resources to other 

tasks such as implementation and testing of scenarios. 

For the violence detection using auditory data domain, the state-of-the-art review 

allowed to understand that deep learning solutions are very uncommon approach for this 

problem, making this investigation a baseline for future ones. The practical development of 

this dissertation also contributed in a scientific way, allowing a higher understanding of how 

well a deep learning architecture, while using audio features as inputs, can perform on a 

violence classification task. Not only that, but the MFCC testing scenario showed the highest 

metric values which implies that it is the best option for this use case. 

5.3 Limitations and future work 

The solution presented in this Master’s dissertation and the results obtained alongside 

it, can be considered a solid baseline for a future machine learning implementation on the 

mobile service industry specifically for in-car violence detection. Nonetheless, there are a few 

limitations and aspects that should be considered as future work which will be explained in 

this section. 

The presented solution, considering it’s a deep learning approach, is computationally 

inexpensive. On the other hand, the usage of audio feature representations as input makes it 

highly dependent on frequency and amplitude, which means that in a situation where a 

violent discussion or altercation is in place and these two variables are not very much present 

the model could classify the scenario incorrectly. This opens a possible new approach, by 

combining a speech to text model and feeding its outputs to a DL architecture capable of text 

classification. 

Furthermore, for the practical implementation of this master dissertation a dataset was 

needed to be created from the provided one, potentially introducing data noise which can 

heavily influence the models’ classification capability. In addition, for deep learning standards 

the number of samples was rather low. Hence, in the future, a more suitable and increasing 

set of data could possibly improve the models results, in this context or in others. 
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In the practical development of this investigation, only three deep learning model 

architectures were tested, meaning that in the future more variations of Neural Networks 

should be tested as well as the inclusion of more audio features. Furthermore, audio features 

can also be stacked, meaning multiple inputs can be fed to the models. This means that 

feature selection algorithms could also be used in order to improve the final architecture 

performance. 

Finally, the solution should be deployed and followed by a business validation. This 

means that the developed prototype should be first tested in a controlled environment where 

an analysis should be conducted in order to understand the solution classification capability 

against real world data, its ability to learn from the said information and its computational 

performance in real-time. 
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Appendix A  

Appendix A.1 Code used for the metadata preparation 

VIOLENT_LABELS = ["anomaly_arguing", "anomaly_conversation", 

"anomaly_fighting", "anomaly_interaction", "anomaly_talking", 

"anomaly_violence"] 

NON_VIOLENT_LABELS = ["normal_arguing", "normal_conversation", 

"normal_interaction", "normal_nointeraction", "normal_talking",  

                        "normal_radio_music","radio_music", "talking"] 

 

 

def get_label(label): 

    if label in VIOLENT_LABELS: 

        return "violent" 

    elif label in NON_VIOLENT_LABELS: 

        return "non_violent" 

    else: 

        return None 

 

def load_json(file_path): 

    with open(file_path, "r") as f: 

        data = json.load(f) 

        if "scene_activities_noises" in data['audio_metadata']: 

            return data["audio_metadata"]["scene_activities_noises"] 

        else: 

            return [] 

 

def get_data(json_path, wav_path): 

    scene_data = load_json(json_path) 

 

    data = { 

        "File_path" : [], 

        "Time_start" : [], 

        "Time_end": [], 

        "Duration": [], 

        "Label" : [], 

 

    } 

    for scene_noise in scene_data: 

        if "event" in scene_noise: 

            label = get_label(scene_noise["event"]) 

            if label == None: 

                continue 

            data["Label"].append(label) 

            data["Time_start"].append(float(scene_noise["time_start"])) 

            data["Time_end"].append(float(scene_noise["time_end"])) 

            data["Duration"].append(round(float(scene_noise["time_end"]) 

- float(scene_noise["time_start"]), 2)) 

            data["File_path"].append(wav_path) 
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        else: 

            continue 

     

    df = pd.DataFrame(data) 

    df = df.sort_values(['Time_start', 'Time_end'], ascending=[True, 

True]) 

    return df 

 

def prepare_dataset(dataset_path, window_size, step_size, output_dir): 

    df_structure = { 

        "File_path" : [], 

        "Time_start" : [], 

        "Time_end" : [], 

        "Duration" :  [], 

        "Label" : [] 

    } 

    df = pd.DataFrame(df_structure) 

    for root, dirnames, filenames in os.walk(dataset_path): 

            for f in filenames: 

                if f.endswith('json'): 

                    json_path = os.path.join(root, f) 

                    wav_file = f.replace(".json", 

"_center_top_wav_audio_ros.wav") 

                    wav_file_path = os.path.join(root, 

wav_file).replace(os.sep, '/') 

                    data = get_data(json_path, wav_file_path) 

                    for row in data.itertuples(): 

                        start_time = row.Time_start 

                        end_time = row.Time_end 

                        while start_time < end_time: 

                            if start_time + step_size < end_time:   

                                window_time_end = start_time + step_size 

                                duration = window_size 

                            else: 

                                window_time_end = end_time 

                                duration = end_time - start_time 

                            duration = round(duration, 2) 

                            data_df = pd.DataFrame({'File_path': 

[row.File_path], 'Time_start': [start_time], 

                                        'Time_end': 

[window_time_end],'Duration': [duration], 

                                        'Label': [row.Label]}) 

 

                            df = pd.concat([df,data_df],axis=0) 

                            start_time += step_size 

                     

    label_encoder = preprocessing.LabelEncoder() 

    df['LabelID'] = label_encoder.fit_transform(df["Label"]) 

    df.to_csv(output_dir) 

    print(df[["Label", "LabelID"]].value_counts()) 

    print(df["Duration"].mean()) 

    print(df["Duration"].min()) 

    print(df["Duration"].max()) 

 

 

if __name__ == "__main__": 
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    RANDOM_JSON_FILE = 

"fs/datasets/av/dataset_main/Hanau02/i3/Hanau02_i3_027.json" 

    DATASET_PATH = "fs/datasets/av/dataset_main/" 

    STEP_SIZE = 3 

    WIN_SIZE = 3     

    OUTPUT_DIR = 

"data_preparation/metadata_preprocessing/results/dataset_san_{}win_{}step

.csv".format(WIN_SIZE, STEP_SIZE) 

 

    prepare_dataset(DATASET_PATH,WIN_SIZE, STEP_SIZE, OUTPUT_DIR) 

 

Listing 1 - Metadata preparation code 

 

Appendix A.2 Code used for the audio data preparation 

class Loader: 

 

    def __init__(self, sample_rate, mono):  # offset being time_start and 

duration is the window_size(seconds) 

        self.sample_rate = sample_rate 

        self.mono = mono 

 

    def load(self, file_path, offset, time_end): 

        duration = time_end - offset 

        signal, sr = librosa.load(file_path, offset=offset, 

duration=duration, mono=self.mono, res_type="kaiser_fast") 

        return signal, sr 

     

    def get_sample(self, signal, offset, time_end, original_sample_rate): 

        offset_samples = offset * original_sample_rate 

        duration_samples = (time_end - offset) * original_sample_rate 

        return signal[offset_samples:offset_samples + duration_samples] 

     

    def resample(self, signal, original_sr): 

        if self.sample_rate != original_sr: 

            signal = librosa.resample(signal, original_sr, 

self.sample_rate, res_type="kaiser_fast") 

        return signal 

 

 

class Padder:  # 

    def __init__(self, num_expected_samples, mode = "constant"): 

        self.num_expected_samples = num_expected_samples 

        self.mode = mode 

 

    def is_padding_needed(self, len_arr): 

        return True if self.num_expected_samples > len_arr else False 

 

    def pad(self, array):  # padding on the end of the original array 

        if self.is_padding_needed(len(array)): 
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            num_missing_samples = self.num_expected_samples - len(array) 

            array = np.pad(array, (0, num_missing_samples), 

mode=self.mode) 

        return array 

 

 

class MelSpecExtractor: 

 

    def __init__(self, sample_rate, type_feature_name = "mel", type_yaxis 

= "mel"): 

        self.sample_rate = sample_rate 

        self.type_feature_name = type_feature_name 

        self.type_yaxis = type_yaxis 

 

    def extract(self, signal): 

        mel_signal = librosa.feature.melspectrogram(y=signal, 

sr=self.sample_rate)[:-1] 

        spectogram = np.abs(mel_signal) 

        log_spec = librosa.amplitude_to_db(spectogram) 

        return log_spec, self.type_feature_name, self.type_yaxis 

 

class STFT_Extractor: 

 

    def __init__(self, sample_rate, type_feature_name = "stft", 

type_yaxis = "log"): 

        self.sample_rate = sample_rate 

        self.type_feature_name = type_feature_name 

        self.type_yaxis = type_yaxis 

 

    def extract(self, signal): 

        stft = librosa.stft(y=signal) 

        stft = np.abs(stft) 

        log_spec = librosa.amplitude_to_db(stft) 

        return log_spec, self.type_feature_name, self.type_yaxis 

 

 

class MFCCExtractor: 

 

    def __init__(self, sample_rate, type_feature_name = "mfcc", 

type_yaxis = "mel"): 

        self.sample_rate = sample_rate 

        self.type_feature_name = type_feature_name 

        self.type_yaxis = type_yaxis 

 

    def extract(self, signal): 

        mfccs_features = librosa.feature.mfcc(y=signal, 

sr=self.sample_rate, n_mfcc=40) 

        return mfccs_features, self.type_feature_name, self.type_yaxis 

 

class CQT_Extractor: 

     

    def __init__(self, sample_rate, type_feature_name = "cqt", type_yaxis 

= "cqt_note"): 

        self.sample_rate = sample_rate 

        self.type_feature_name = type_feature_name 

        self.type_yaxis = type_yaxis 
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    def extract(self, signal): 

        cqt = np.abs(librosa.cqt(signal, sr=self.sample_rate)) 

        cqt = librosa.amplitude_to_db(cqt) 

        return cqt, self.type_feature_name, self.type_yaxis 

 

class Chroma_Extractor: 

     

    def __init__(self, sample_rate, type_feature_name = "chroma", 

type_yaxis = "chroma"): 

        self.sample_rate = sample_rate 

        self.type_feature_name = type_feature_name 

        self.type_yaxis = type_yaxis 

 

    def extract(self, signal): 

        chroma = np.abs(librosa.feature.chroma_stft(signal, 

sr=self.sample_rate)) 

        chroma = librosa.amplitude_to_db(chroma) 

        return chroma, self.type_feature_name, self.type_yaxis 

 

class MinMaxNormaliser: 

 

    def __init__(self, min_val, max_val): 

        self.min = min_val 

        self.max = max_val 

 

    def normalise(self, array): 

        a = (array - array.min()) 

        b = (array.max() - array.min()) 

        norm_array = np.divide(a, b, out=np.zeros_like(a), where=b!=0) 

        norm_array = norm_array * (self.max - self.min) + self.min 

        return norm_array 

 

 

class Saver: 

 

    def __init__(self, base_feature_save_dir, duration, step_size): 

        self.base_feature_save_dir = base_feature_save_dir 

        self.duration = duration 

        self.step_size = step_size 

 

    def save_feature(self, feature, type_feature, file_path, offset, 

time_end, label, type_df, format_type, y_axis="mel"): 

        feature_save_dir = 

"{}/{}_{}_{}win_{}step/{}/{}/".format(self.base_feature_save_dir, 

type_feature, format_type, self.duration, self.step_size, type_df, label) 

        save_path = self._generate_save_path(feature_save_dir, file_path, 

offset, time_end, format_type) 

        if format_type == "img":  

            self.save_img(feature, save_path, y_axis)  

        else :  

            self.save_npy(feature, save_path) 

 

    def save_img(self, feature, save_path, y_axis): 

        fig = plt.figure() 

        ax = fig.add_subplot(111) 
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        ax.axes.get_xaxis().set_visible(False) 

        ax.axes.get_yaxis().set_visible(False) 

        ax.set_frame_on(False) 

        librosa.display.specshow(feature, x_axis = "time", y_axis=y_axis) 

        plt.savefig(save_path, bbox_inches='tight', pad_inches = 0) 

        plt.clf() 

        plt.close("all") 

 

    def save_npy(self, feature, save_path): 

        feature = feature[..., np.newaxis] 

        np.save(save_path, feature) 

 

    def _generate_save_path(self, feature_save_dir, file_path, offset, 

time_end, format_type): 

        format = "png" if format_type == "img" else "npy" 

        ending_str = "_{}_{}.{}".format(offset, time_end, format) 

        file_name = os.path.split(file_path)[1][:-4] + ending_str 

        save_path = feature_save_dir + file_name 

        return save_path 

 

 

class PreProcessingPipeline: 

 

    def __init__(self, loader, padder, feature_extractors, saver, 

normaliser, format_type): 

        self.loader = loader 

        self.padder = padder 

        self.feature_extractors = feature_extractors 

        self.normaliser = normaliser 

        self.saver = saver 

        self.format_type = format_type 

 

    def _extract_feature(self, feature_extractor, signal, file_path, 

offset, time_end, label, type_df): 

        feature, type_feature_name, type_yaxis = 

feature_extractor.extract(signal) 

        feature = self.normaliser.normalise(feature) 

        self.saver.save_feature(feature, type_feature_name, file_path, 

offset, time_end, label, type_df, self.format_type, type_yaxis) 

 

    def _process_file(self, file_path, offset, time_end, label, type_df): 

        signal, sr = self.loader.load(file_path, offset, time_end) 

        signal = self.loader.resample(signal, sr) 

        signal = self.padder.pad(signal) 

        for feature_extactor in self.feature_extractors: 

            self._extract_feature(feature_extactor, signal, file_path, 

offset, time_end, label, type_df) 

 

    def get_train_val_df(self, df_input, stratify_colname='LabelID', 

frac_train = 0.8, frac_val = 0.1, frac_test = 0.1, random_state = None): 

         

        X = df_input 

        y = df_input[[stratify_colname]] 

 

 

        df_train, df_temp, y_train, y_temp = train_test_split(X, 
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                                                            y, 

                                                            stratify=y, 

                                                            

test_size=(1.0 - frac_train), 

                                                            

random_state=random_state) 

 

        relative_frac_test = frac_test / (frac_val + frac_test) 

         

        df_val, df_test, y_val, y_test = train_test_split(df_temp, 

                                                            y_temp, 

                                                            stratify = 

y_temp, 

                                                            test_size = 

relative_frac_test, 

                                                            random_state 

= random_state) 

        return df_train, df_val, df_test 

      

 

    def process(self, dataframe, type): 

        for row in dataframe.itertuples(): 

            try: 

                self._process_file(row.File_path, row.Time_start, 

row.Time_end, row.Label, type) 

            except: 

                print(row.File_path, row.Time_start, row.Time_end) 

                continue 

 

 

if __name__ == "__main__": 

    DURATION = 3 

    STEP_SIZE = 3 

    SAMPLE_RATE = 22050 

    NUM_EXPECTED_SAMPLES = DURATION * SAMPLE_RATE 

    MONO = True 

    FORMAT_TYPE = "img" 

    DATASET_DIR = 

"/home/goe2brg/DL_Violence_Detection_v7/data_preparation/metadata_preproc

essing/results/dataset_san_{}win_{}step_mnt.csv".format(DURATION, 

STEP_SIZE) 

    BASE_FEATURE_SAVE_DIR = "/home/goe2brg/DL_Violence_Detection_v7/data" 

    TRAIN_DATASET_OUTPUT_DIR = 

"/home/goe2brg/DL_Violence_Detection_v7/data_preparation/audio_preprocess

ing/datasets/processing_datasets/" 

    TRAIN_DATASET_NAME = 

"train_dataset_san_{}win_{}step_mnt.csv".format(DURATION, STEP_SIZE) 

 

    df = pd.read_csv(DATASET_DIR, index_col=0) 

    loader = Loader(SAMPLE_RATE, MONO) 

    padder = Padder(NUM_EXPECTED_SAMPLES) 

    feature_extractors = [MelSpecExtractor(SAMPLE_RATE), 

MFCCExtractor(SAMPLE_RATE), CQT_Extractor(SAMPLE_RATE), 

STFT_Extractor(SAMPLE_RATE), Chroma_Extractor(SAMPLE_RATE)] 

    min_max_normaliser = MinMaxNormaliser(0, 1) 

    saver = Saver(BASE_FEATURE_SAVE_DIR, DURATION ,STEP_SIZE) 
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    pipeline = PreProcessingPipeline(loader, padder, feature_extractors, 

saver, min_max_normaliser, FORMAT_TYPE) 

    df_train, df_val, df_test = pipeline.get_train_val_df(df, "LabelID", 

frac_train = 0.8, frac_val=0.1, frac_test = 0.1,random_state=691) 

    df_train.to_csv(TRAIN_DATASET_OUTPUT_DIR + TRAIN_DATASET_NAME) 

     

    print(DATASET_DIR) 

    print(BASE_FEATURE_SAVE_DIR) 

 

    pipeline.process(df_train, "training") 

    pipeline.process(df_val, "validation") 

    pipeline.process(df_test, "testing") 

 

Listing 2 - Audio data preparation code 

 

class DataAugmentation: 

 

    def __init__(self, sr): 

        self.sr = sr 

         

 

    def add_white_noise(self, signal, noise_percentage_factor = 0.2): 

        noise = np.random.normal(0, signal.std(), signal.size) 

        augmented_signal = signal + noise * noise_percentage_factor 

        return augmented_signal 

     

    def random_gain(self, signal, min_factor=0.1, max_factor=0.12): 

        gain_rate = random.uniform(min_factor, max_factor) 

        augmented_signal = signal * gain_rate 

        return augmented_signal 

     

    def time_strecth(self, signal, strech_rate = 0.2): 

        return librosa.effects.time_stretch(signal, strech_rate) 

     

    def pitch_scale(self, signal, num_semitones = 4): 

        return librosa.effects.pitch_shift(signal, self.sr, 

num_semitones) 

 

 

 

class PreProcessingPipeline: 

 

    def __init__(self, loader, padder, feature_extractors, saver, 

normaliser, data_augmentation, format_type): 

        self.loader = loader 

        self.padder = padder 

        self.feature_extractors = feature_extractors 

        self.normaliser = normaliser 

        self.saver = saver 

        self.format_type = format_type 

        self.data_augmentation = data_augmentation 
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    def _extract_feature(self, feature_extractor, signal, file_path, 

offset, time_end, label, type_df): 

        feature, type_feature_name, type_yaxis = 

feature_extractor.extract(signal) 

        feature = self.normaliser.normalise(feature) 

        self.saver.save_feature(feature, type_feature_name, file_path, 

offset, time_end, label, type_df, self.format_type, type_yaxis) 

 

    def get_dataset(self, df_input, frac = 0.5, random_state = None): 

        df_aug, df_trash = train_test_split(df_input, 

                                        stratify=df["LabelID"], 

                                        test_size=frac, 

                                        random_state=random_state) 

        return df_aug 

 

    def _process_file(self, file_path, offset, time_end,label, type_df): 

        signal,sr = self.loader.load(file_path, offset, time_end) 

        signal = self.loader.resample(signal, sr) 

        signal = self.padder.pad(signal) 

        augmentation = random.randint(0,1) 

        if augmentation == 0: 

            signal = self.data_augmentation.add_white_noise(signal) 

        else: 

            signal = self.data_augmentation.time_strecth(signal) 

 

        for feature_extactor in self.feature_extractors: 

            self._extract_feature(feature_extactor, signal, file_path, 

offset, time_end, label, type_df) 

 

    def process(self, dataframe, type): 

        for row in dataframe.itertuples(): 

            try: 

                self._process_file(row.File_path, row.Time_start, 

row.Time_end, row.Label, type) 

            except: 

                 print(row.File_path, row.Time_start, row.Time_end) 

                 continue 

 

 

if __name__ == "__main__": 

    DURATION = 3 

    STEP_SIZE = 3 

    SAMPLE_RATE = 22050 

    NUM_EXPECTED_SAMPLES = DURATION * SAMPLE_RATE 

    MONO = True 

    FORMAT_TYPE = "img" 

    DATASET_DIR = 

"/home/goe2brg/DL_Violence_Detection_v7/data_preparation/audio_preprocess

ing/datasets/processing_datasets/train_dataset_san_{}win_{}step_mnt.csv".

format(DURATION, STEP_SIZE) #CHANGE THIS ON CLUSTER 

    BASE_FEATURE_SAVE_DIR = "/home/goe2brg/DL_Violence_Detection_v7/data" 

    df = pd.read_csv(DATASET_DIR, index_col=0) 

 

     

    loader = Loader(SAMPLE_RATE, MONO) 

    padder = Padder(NUM_EXPECTED_SAMPLES) 
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    min_max_normaliser = MinMaxNormaliser(0, 1) 

    feature_extractors = [MelSpecExtractor(SAMPLE_RATE), 

MFCCExtractor(SAMPLE_RATE), CQT_Extractor(SAMPLE_RATE), 

STFT_Extractor(SAMPLE_RATE), Chroma_Extractor(SAMPLE_RATE)] 

    data_augmentation = DataAugmentation(SAMPLE_RATE) 

    saver = Saver(BASE_FEATURE_SAVE_DIR, DURATION ,STEP_SIZE) 

    pipeline = PreProcessingPipeline(loader, padder, feature_extractors, 

saver, min_max_normaliser,data_augmentation, FORMAT_TYPE) 

 

    df = pipeline.get_dataset(df, frac=0.50, random_state=691) 

   

    pipeline.process(df, "training") 

 

Listing 3 - Data augmentation code 

 

Appendix B  

Appendix B.1 Models’ code implementation and architecture plot 

def create_vgg(input_shape, n_classes, last_activation = "sigmoid"): 

    model = Sequential() 

    model.add(layers.Conv2D(32, (3, 3), input_shape=input_shape, 

activation = "relu")) 

    model.add(layers.MaxPool2D((2, 2))) 

 

    model.add(layers.Conv2D(64, (3, 3), activation = "relu")) 

    model.add(layers.MaxPool2D((2, 2))) 

 

    model.add(layers.Conv2D(128, (3, 3), activation = "relu", )) 

    model.add(layers.MaxPool2D((2, 2))) 

 

    model.add(layers.Conv2D(256, (3, 3), activation = "relu", )) 

    model.add(layers.MaxPool2D((2, 2))) 

 

    model.add(layers.Flatten()) 

 

    model.add(layers.Dense(128, activation = "relu")) 

    model.add(layers.Dropout(0.4)) 

 

    model.add(layers.Dense(64, activation = "relu")) 

    model.add(layers.Dropout(0.4)) 

 

    model.add(layers.Dense(32, activation = "relu")) 

    model.add(layers.Dropout(0.4)) 

 

    model.add(layers.Dense(n_classes, activation=last_activation)) 
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    return model 

 

Listing 4 - VGG-16 implementation code 
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Figure 34 - VGG-16 architecture 
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def depth_block(x, strides):    

    x = DepthwiseConv2D(3,strides=strides,padding='same',  

use_bias=False)(x) 

    x = BatchNormalization()(x) 

    x = ReLU()(x) 

    return x 

 

def single_conv_block(x,filters):     

    x = Conv2D(filters, 1,use_bias=False)(x) 

    x= BatchNormalization()(x) 

    x = ReLU()(x) 

    return x 

 

def combo_layer(x,filters, strides): 

    x = depth_block(x,strides) 

    x = single_conv_block(x, filters) 

    return x 

 

def MobileNet(input_shape=(224,224,3),n_classes = 1, 

activation="sigmoid"):     

    input = Input ( input_shape) 

 

    x = Conv2D(32,3,strides=(2,2),padding = 'same', use_bias=False) 

(input) 

    x =  BatchNormalization()(x) 

    x = ReLU()(x) 

 

    x = combo_layer(x,64, strides=(1,1))     

     

    x = combo_layer(x,128,strides=(2,2)) 

    x = combo_layer(x,128,strides=(1,1))     

     

    x = combo_layer(x,256,strides=(2,2)) 

    x = combo_layer(x,256,strides=(1,1))    

     

    x = combo_layer(x,512,strides=(2,2)) 

    for _ in range(5): 

        x = combo_layer(x,512,strides=(1,1))      

     

    x = combo_layer(x,1024,strides=(2,2)) 

    x = combo_layer(x,1024,strides=(1,1))      

     

    x = Flatten()(x) 

     

    x = Dense(512, activation='relu')(x) 

    x = Dropout(0.4)(x) 

    x = Dense(256, activation='relu')(x) 

    x = Dropout(0.4)(x) 

    x = Dense(128, activation='relu')(x) 

    x = Dropout(0.4)(x) 

    x = Dense(64, activation='relu')(x) 

 

    output = Dense(n_classes,activation=activation)(x)      

    model = Model(input, output) 

    return model 

Listing 5 - MobileNet implementation code 
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Figure 35 - MobileNet architecture 
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class ResnetBlock(Model): 

    def __init__(self, channels: int, down_sample=False): 

        super().__init__() 

 

        self.__channels = channels 

        self.__down_sample = down_sample 

        self.__strides = [2, 1] if down_sample else [1, 1] 

 

        KERNEL_SIZE = (3, 3) 

        INIT_SCHEME = "he_normal" 

 

        self.conv_1 = Conv2D(self.__channels, strides=self.__strides[0], 

                             kernel_size=KERNEL_SIZE, padding="same", ) 

        self.conv_2 = Conv2D(self.__channels, strides=self.__strides[1], 

                             kernel_size=KERNEL_SIZE, padding="same", ) 

 

        self.merge = Add() 

 

        if self.__down_sample: 

            self.res_conv = Conv2D( 

                self.__channels, strides=2, kernel_size=(1, 1), 

kernel_initializer=INIT_SCHEME, padding="same") 

 

 

    def call(self, inputs): 

        res = inputs 

 

        x = self.conv_1(inputs) 

        x = tf.nn.relu(x) 

        x = self.conv_2(x) 

 

 

        if self.__down_sample: 

            res = self.res_conv(res) 

 

        x = self.merge([x, res]) 

        out = tf.nn.relu(x) 

        return out 

 

 

class ResNet18(Model): 

 

    def __init__(self, num_classes, last_activation="sigmoid", **kwargs): 

        super().__init__(**kwargs) 

        self.conv_1 = Conv2D(64, (7, 7), strides=2, 

                             padding="same", 

kernel_initializer="he_normal") 

        self.pool_2 = MaxPool2D(pool_size=(2, 2), strides=2, 

padding="same") 

        self.res_1_1 = ResnetBlock(64) 

        self.res_1_2 = ResnetBlock(64) 

        self.res_2_1 = ResnetBlock(128, down_sample=True) 

        self.res_2_2 = ResnetBlock(128) 

        self.res_3_1 = ResnetBlock(256, down_sample=True) 

        self.res_3_2 = ResnetBlock(256) 

        self.res_4_1 = ResnetBlock(512, down_sample=True) 
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        self.res_4_2 = ResnetBlock(512) 

        self.flat = Flatten() 

        self.fc_1 = Dense(128, activation='relu') 

        self.drop_out_1 = Dropout(0.5) 

        self.fc_2 = Dense(64, activation='relu') 

        self.drop_out_2 = Dropout(0.5) 

        self.fc_3 = Dense(32, activation='relu') 

        self.fc_4 = Dense(num_classes, activation=last_activation) 

 

    def call(self, inputs): 

        out = self.conv_1(inputs) 

        out = tf.nn.relu(out) 

        out = self.pool_2(out) 

        for res_block in [self.res_1_1, self.res_1_2, self.res_2_1, 

self.res_2_2, self.res_3_1, self.res_3_2, self.res_4_1, self.res_4_2]: 

            out = res_block(out) 

        out = self.flat(out) 

        out = self.fc_1(out) 

        out = self.drop_out_1(out) 

        out = self.fc_2(out) 

        out = self.drop_out_2(out) 

        out = self.fc_3(out) 

        out = self.fc_4(out) 

        return out 

 

Listing 6 - ResNet-16 implementation code 
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Figure 36 - ResNet-18 architecture 
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Appendix B.2 Model parametrization 

 

if __name__ == "__main__": 

    RUN_NUMBER = 2 

    DURATION = 3 

    STEP_SIZE = 3 

    FORMAT_TYPE = "img" 

    INPUT_TYPE = "mel" 

    INPUT_SHAPE = (254, 254, 3) 

    TRAINING_DIR = 

"/home/goe2brg/DL_Violence_Detection_v7/data/{}_{}_{}win_{}step/training/

".format(INPUT_TYPE, FORMAT_TYPE, DURATION, STEP_SIZE) 

    VALIDATION_DIR = 

"/home/goe2brg/DL_Violence_Detection_v7/data/{}_{}_{}win_{}step/validatio

n/".format(INPUT_TYPE, FORMAT_TYPE, DURATION, STEP_SIZE) 

    TESTING_DIR = 

"/home/goe2brg/DL_Violence_Detection_v7/data/{}_{}_{}win_{}step/testing/"

.format(INPUT_TYPE, FORMAT_TYPE, DURATION, STEP_SIZE) 

 

    METRICS = [ 

        metrics.BinaryAccuracy(name="acc", threshold=0.5), 

        metrics.Precision(name='precision'), 

        metrics.Recall(name='recall'), 

        f1_score, 

        metrics.AUC(name='auc'), 

        metrics.TrueNegatives(name="tn"), 

        metrics.TruePositives(name="tp"), 

        metrics.FalseNegatives(name="fn"), 

        metrics.FalsePositives(name="fp"), 

    ] 

    BATCH_SIZE = 32 

    EPOCHS = 100 

    LEARNING_RATE = 5e-3 

    DECAY_RATE = LEARNING_RATE / EPOCHS 

    LOSS = BinaryCrossentropy() 

 

    model_checkpoint_callback_f1_score = ModelCheckpoint( 

    filepath=MODEL_PATH_F1SCORE, 

    save_best_only = True, 

    save_weights_only = True, 

    monitor='val_f1_score', 

    verbose = 1, 

    mode='max', 

    ) 

 

    CALLBACKS = [model_checkpoint_callback_f1_score] 

    image_gen = ImageDataGenerator(rescale=1./255) 

    train_gen = image_gen.flow_from_directory(TRAINING_DIR, 

                                            target_size = 

(INPUT_SHAPE[0], INPUT_SHAPE[1]), 

                                            batch_size = BATCH_SIZE, 
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                                            class_mode = 'binary', 

                                            shuffle = True 

                                            ) 

 

    val_gen = image_gen.flow_from_directory(VALIDATION_DIR, 

                                            target_size = 

(INPUT_SHAPE[0], INPUT_SHAPE[1]), 

                                            batch_size = BATCH_SIZE, 

                                            class_mode = 'binary', 

                                            shuffle = True 

                                            )                                 

    test_gen = image_gen.flow_from_directory(TESTING_DIR, 

                                            target_size = 

(INPUT_SHAPE[0], INPUT_SHAPE[1]), 

                                            batch_size = BATCH_SIZE, 

                                            class_mode = 'binary', 

                                            ) 

 

 

    class_weights = class_weight.compute_class_weight( 

                class_weight = 'balanced', 

                classes = np.unique(train_gen.classes),  

                y = train_gen.classes) 

     

    CLASS_WEIGHTS = { 

        0: class_weights[0], 

        1: class_weights[1], 

    } 

 

 

    optimizer = SGD(learning_rate=LEARNING_RATE, 

decay=LEARNING_RATE/EPOCHS) 

 

Listing 7 - Models' parameter initialization 
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Appendix C  

Appendix C.1 Training and validation plots for the VGG-16 model 

 

 

 

 

 

 

 

Figure 37 - VGG model training plot of all audio features 
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Appendix C.2 Training and validation plots for the MobileNet model 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38 - MobileNet model training plot of all audio features 



 

 

122 

Appendix C.3 Training and validation plots for the ResNet-18 model 

 

 

 

Figure 39 – ResNet-18 model training plot of all audio features 


