

Universidade do Minho
Escola de Engenharia

Eduardo Dias Gomes

Deep learning-based algorithm

for violence detection in audio

data

October 2022

D
ee

p
 l

ea
rn

in
g-

b
as

e
d

 a
lg

o
ri

th
m

 f
o

r
vi

o
le

n
ce

d
et

e
ct

io
n

 in
 a

u
d

io
 d

at
a

Ed

u
ar

d
o

 D
ia

s
G

o
m

es

U
M

in
h

o

|

2
0

2
X

Eduardo Dias Gomes
(A85686)

Deep Learning-based algorithm for violence

detection in audio data

October 2022

MSc Dissertation
[integrated] Master’s in Engineering and Management
of Information Systems

Dissertation performed under supervision of
Vaibhav Hemantkumar Shah

José Luís Mota Pereira

COPYRIGHT

Third parties can use this academic work as long as the internationally accepted rules and

good practices are respected, with regard to copyright and related rights.

Thus, the present work may be used under the terms set out in the license below. If the user

needs permission to be able to use the work under conditions not foreseen in the above-

mentioned licensing, he/she should contact the author, through the RepositóriUM of the

University of Minho.

Atribuição
CC BY
https://creativecommons.org/licenses/by/4.0/

v

DECLARATION OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not

used plagiarism or any form of undue use of information or falsification of results along the

process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University

of Minho.

vi

ABSTRACT

Deep learning-based algorithm for violence detection in audio data

Currently, the mobility services industry lacks a component that guarantees the safety

of both its drivers and customers, which is not in line with the constant evolution of the

technological sector and the exponential increase of IoT devices capable of capturing data

from both the external and internal environment of the vehicle. In this context, Bosch Car

Multimedia introduced the RideCare project, which aims to monitor various data in real time

from the vehicles of a mobility service provider's fleet, being the root where this dissertation

is inserted.

The present work aims to study and develop a Deep Learning-based algorithm capable

of detecting violent scenarios only using audio data as its input. In the experimental phase of

this project, the CRoss Industry Standard Process for Data Mining (CRISP-DM) methodology

was implemented in order to ensure that all project requirements were met in the most

efficient way. Special attention was given to the data preparation phase as well as the

modeling phase to ensure greater accuracy in terms of classification capability. Subsequently,

the models were trained in several test scenarios, composed of several different audio

representations, allowing to carry out a comparative analysis in order to extract the most

competent model, which is comprised by the MobileNet architecture using the Mel-frequency

cepstral coefficients audio feature as input, being able to achieve an accuracy of 81%.

Keywords: Audio Event Classification; Audio Features; CRISP-DM; Deep Learning; Violence

Detection

vii

RESUMO

Algoritmo baseado em deep learning para deteção de violência em dados de áduio

Atualmente, a indústria de serviços de mobilidade carece de uma componente que

garanta a segurança tanto dos seus condutores como dos seus clientes, o que é algo que não

se alinha com a constante evolução do setor tecnológico e com o exponencial aumento de

dispositivos IoT capazes de capturar dados tanto do meio externo como interno do veículo.

Desta forma, a Bosch Car Multimedia introduziu o projeto RideCare que tem vista a

monitorização de vários dados em tempo real dos veículos de uma frota dum prestador de

serviços de mobilidade, sendo a raíz onde esta dissertação se enquadra.

O presente trabalho tem como objetivo estudar e desenvolver um algoritmo baseado

em Deep Learning capaz de detetar cenários violentos apenas usando dados de áudio como

input. Na fase experimental deste projeto a metodologia CRoss Industry Standard Process for

Data Mining (CRISP-DM) foi implementada no sentido de garantir que todos os requisitos do

projeto fossem cumpridos da forma mais eficiente. Foi dada uma especial atenção à fase de

preparação dos dados bem como a fase de modelação para certificar uma maior precisão a

nível de capacidade de classificação. Posteriormente, os modelos foram treinados em vários

cenários de teste, compostos por várias representações de áudio diferentes, permitindo fazer

uma análise comparativa de modo a retirar o modelo mais competente, sendo este

constituído pela arquitetura MobileNet utilizando como input o audio feature Mel-frequency

cepstral coefficients, atingindo uma acuidade de 81%.

Palavras chave: Audio Features; Classificação de eventos de audio; CRISP-DM; Deep Learning;

Deteção de violência

viii

INDEX

Copyright ... iv

Declaration of integrity .. v

Abstract ... vi

Resumo ... vii

List of abbreviations/Acronyms ... xiii

List of figures .. xiv

List of tables ... xvi

1. Introduction .. 17

1.1 Framework and motivation ... 17

1.2 Objectives and Expected results .. 18

1.3 Document structure ... 18

1.4 Dissertation work plan ... 19

2. State of the art .. 22

2.1 Deep Learning .. 22

2.2 Artificial Neural Networks .. 22

2.2.1 Multi-layer Perceptron .. 23

2.2.2 Back propagation .. 24

2.2.3 Activation Functions ... 25

2.3 Convolutional Neural Networks ... 29

2.3.1 Convolutional Layer .. 29

2.3.2 Pooling layer .. 31

2.3.3 Fully-Connected Layer... 32

2.4 Recurrent Neural Network ... 32

ix

2.4.1 Long Short-term Memory ... 33

2.5 Residual Neural Networks .. 34

2.6 Regularization .. 35

2.6.1 L1 and L2 Regularization ... 35

2.6.2 Dropout ... 36

2.6.3 Batch normalization .. 36

2.6.4 Early Stopping ... 37

2.7 Sound and Audio .. 37

2.7.1 Audio Digital Conversion ... 37

2.8 Audio Data preparation for DL architectures .. 38

2.8.1 Spectrum ... 38

2.8.2 Spectrograms .. 39

2.8.3 Mel-Frequency Cepstral Coefficients .. 41

2.8.4 Mel-Spectrograms ... 42

2.8.5 Constant-Q Transform .. 43

2.8.6 Chroma vector... 44

2.9 Data Augmentation .. 45

2.9.1 Spectrogram Augmentation.. 46

2.9.2 Time Shift .. 47

2.9.3 Pitch Shift .. 48

2.9.4 Time Stretch .. 48

2.9.5 Noise Addition ... 49

2.10 Common approaches ... 50

2.11 Related work .. 52

2.11.1 Anomaly Detection ... 53

x

3. Methodology, Technologies, and Tools .. 55

3.1 CRISP-DM ... 55

3.2 Technologies and Tools .. 57

4. Use case – In-car violence detection .. 60

4.1 Business understanding ... 60

4.1.1 Success criteria .. 61

4.2 Data understanding.. 63

4.2.1 Speaker data ... 64

4.2.2 Physical violence data ... 67

4.2.3 Background noise data.. 68

4.2.4 Scene classification data ... 69

4.2.5 Scene activity noises data ... 70

4.2.6 WAV Files .. 71

4.3 Data preparation .. 72

4.4 Modelling ... 76

4.4.1 Model architecture and alterations .. 76

4.4.2 Testing scenarios ... 78

4.4.3 Model training parameterization .. 79

4.4.4 Model Assessment .. 80

4.5 Evaluation ... 89

4.6 Deployment .. 90

5. Conclusions ... 92

5.1 Work summary ... 92

5.2 Contributions ... 93

5.3 Limitations and future work... 94

xi

Bibliography.. 96

Appendix A ... 101

Appendix A.1 Code used for the metadata preparation ... 101

Appendix A.2 Code used for the audio data preparation ... 103

Appendix B ... 110

Appendix B.1 Models’ code implementation and architecture plot 110

Appendix B.2 Model parametrization ... 118

Appendix C ... 120

Appendix C.1 Training and validation plots for the VGG-16 model 120

Appendix C.2 Training and validation plots for the MobileNet model 121

Appendix C.3 Training and validation plots for the ResNet-18 model 122

xiii

LIST OF ABBREVIATIONS/ACRONYMS

NLP Natural Language Processing

DL

ANN

CNN/ConvNet

IoT

ReLU

FC

ADC

FFT

STFT

MFCC

SVM

AE

RNN

WAV

SR

CQT

Deep Learning

Artificial Neural Network

Convolutional Neural Network

Internet of Things

Rectified Linear Unit

Fully Connected Layer

Analog Digital Conversion

Fast Fourier Transformation

Short-Time Fourier Transformation

Mel Frequency Cepstral Coefficient

Support Machine Vector

Auto Encoder

Recurrent Neural Network

Waveform Audio File Format

Sample rate

Constant-Q Transformation

xiv

LIST OF FIGURES

Figure 1 - Dissertation activities Gantt Chart ... 21

Figure 2 - MLP network example ... 24

Figure 3 - ReLU activation function plot ... 26

Figure 4 - Sigmoid Activation Function Plot ... 27

Figure 5 - Tanh Activation function plot... 28

Figure 6 - Sofmax Activation Function Plot .. 29

Figure 7 - Example of a kernel applied to a 2D input, source: https://bit.ly/3vVnEUu 30

Figure 8 - Example of Max Pooling, source: bit.ly/3vWzy0o ... 31

Figure 9 - Training error and test error on CIFAR-10 with 20-layer and 56-layer "plain"

networks. Source: Adapted from [22] .. 34

Figure 10 - Residual block. Source: Adapted from [22] ... 34

Figure 11 - Example of a Spectrum obtained using FFT ... 39

Figure 12 - Example of a Logarithmic Scaled Spectrogram .. 40

Figure 13 - Example of MFCCs representation ... 42

Figure 14 - Example of a Mel-Spectrogram .. 43

Figure 15 - Example of a Constant-Q Transformation ... 44

Figure 16 – Example of a Chroma vector ... 45

Figure 17 - Frequency Masked Mel-Spectrogram .. 46

Figure 18 - Time Masked Mel-Spectrogram ... 47

Figure 19 - Example of a time-shifted signal .. 47

Figure 20 - Example of a pitch-shifted signal ... 48

Figure 21 - Example of a time-stretched signal .. 49

Figure 22 - Example of Gaussian noise added to a signal .. 49

Figure 23 - CRISP-DM Methodology (adapted from Wirth and Hipp, 2000) 56

Figure 24 - Duration, in hours, of the speaker aggressiveness labels 65

Figure 25 - Duration, in minutes, regarding the labeled speaker events 66

Figure 26 - Duration, in minutes, of the labeled physical violence noises 68

Figure 27 - Duration, in hours, regarding the background noises events 69

file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071420
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071421
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071422
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071423
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071424
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071425
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071426
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071427
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071428
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071428
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071429
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071430
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071431
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071432
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071433
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071434
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071435
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071436
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071437
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071438
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071439
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071440
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071441
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071442
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071443
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071444
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071445
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071446

xv

Figure 28 - Duration, in hours, regarding the emotional scene classification for each seat in the

car ... 70

Figure 29 - Duration, in hours, regarding the scene activity labels ... 71

Figure 30 - WAV files sample rate plot ... 72

Figure 31 - Data preparation architecture ... 74

Figure 32 - Label distribution of the metadata dataset ... 75

Figure 33 - Label distribution of all datasets .. 76

Figure 34 - VGG-16 architecture .. 112

Figure 35 - MobileNet architecture .. 114

Figure 36 - ResNet-18 architecture .. 117

Figure 37 - VGG model training plot of all audio features ... 120

Figure 38 - MobileNet model training plot of all audio features ... 121

Figure 39 – ResNet-18 model training plot of all audio features ... 122

file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071447
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071447
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071448
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071449
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071450
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071451
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071452
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071453
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071454
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071455
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071456
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071457
file:///C:/Users/Eduardo/Downloads/Dissertação_V12.docx%23_Toc123071458

xvi

LIST OF TABLES

Table 1 - Tools and Python Libraries .. 58

Table 2 - Model Assessment metrics ... 62

Table 3 - Dataset Labels ... 64

Table 4 - Speaker aggressiveness data description .. 65

Table 5 - Speaker events data description ... 66

Table 6 - Physical violence noises data description ... 67

Table 7 - Background noises data description ... 68

Table 8 - Scene classification data description .. 69

Table 9 - Scene activity noises data description .. 70

Table 10 - Scene activity noises data quality analysis .. 71

Table 11 - Map of scene activity metadata to violent labels ... 73

Table 12 - Crossing matrix between models and possible alterations 77

Table 13 - Scenario description .. 79

Table 14 - Model training parameters and its respective values ... 79

Table 15 - Validation of scenario A .. 80

Table 16 - Scenario A metrics explanation ... 80

Table 17 - Validation of scenario B ... 82

Table 18 - Scenario B metrics explanation ... 82

Table 19 - Validation of scenario C ... 84

Table 20 - Scenario C metrics explanation ... 84

Table 21 - Validation of scenario D .. 86

Table 22 - Scenario D metrics explanation ... 86

Table 23 - Validation of scenario E ... 88

Table 24 - Scenario E metrics explanation ... 88

Table 25 - Table with the best model results per scenario .. 90

17

1. INTRODUCTION

1.1 Framework and motivation

Deep learning is a machine learning subset based on Artificial Neural Networks (ANN),

meaning they try to simulate the behavior of the human brain, which can perform very well

when trained with large quantities of data. These type of algorithms have multiple use cases

such as image classification and segmentation, which can be used for analyzing medical

images more accurately [1], or even self-driving vehicles [2]. Moreover, these have been

applied very successfully on object detection and tracking [3], translating to huge advances on

face recognition and identification [4]. Speech and music are also a popular type of data used

to train DL models, in forms of acoustic research. There are several studies related to speech

generation, and speech recognition which are deeply related to Natural Language Processing

(NLP). On the other hand, music research includes, music generation, genre classification and

beat tracking.

When it comes to violence detection, these types of algorithms are very dependent on

visual data, or a combination of both video and audio. With the constant growth of IoT and

devices, the amount of data available rises exponentially with time [5], auditory data included,

and these signals overflow with relevant information that can easily be processed and used in

a DL system. Although these architectures have been used in the field of environmental sound

classification and anomaly detection, the approach taken in this dissertation aims to explore

an uncommon method in which only auditory data and its features will be used to fit a Deep

Neural Network (DNN) with the purpose of detecting violence, more specifically in-car

violence.

This dissertation project will be developed as part of an Academic Internship at Bosch

Car Multimedia unit in Portugal. This partnership between Bosch and University of Minho

allowed a support combination from my dissertation tutors and the monitoring of my team,

which consequently, helps this project to be developed in an efficient and effective way.

Moreover, Bosch provides a cluster that allowed model training to be way faster, for a quicker

development and comparison of results.

18

1.2 Objectives and Expected results

Objective definition and interpreting expected results are crucial for the successful

development of this dissertation. The main and most important objective for this master

dissertation was the development of a DL model that will be able to detect violent activity

with the highest accuracy possible, solely based on auditory data. It is important to refer that

the dataset used for the development of this architecture was provided by Bosch. It was also

mandatory to research and define the best tools that were meant to be used for the practical

development of this dissertation, as well as task planning for a more organized and efficient

work. The development of technical articles was also expected. Finally, the last defined

objective was the porting of the algorithm to a target device.

1.3 Document structure

The present dissertation is divided in six distinct chapters. Firstly, the Chapter 1

(Introduction) is comprised by the Framework and motivation, Objectives and Expected

results, the Document structure of this dissertation and the Dissertation work plan. Chapter 2

(State of the art) is the most extensive one given that all the relevant concepts for this master

dissertation are described. It starts by explaining the concept behind Deep Learning, followed

by a deep dive into Artificial Neural Networks and its variants. Furthermore, Regularization

methods were studied, and different audio representations were also described. Data

Augmentation is also discussed given that it’s an important step of the Deep Learning pipeline

and the nature of the provided dataset. In order to finish this chapter, Common approaches

on audio classification are also described, and a study regarding Related work on violence

detection using auditory data is conducted.

On Chapter 3 (Methodology, Technologies, and Tools), the methodology that guided the

development of this dissertation is also mentioned, this being CRoss Industry Standard

Process for Data Mining (CRISP-DM). In addition, this chapter also details the Python libraries

and Tools that were used in order to develop the practical aspect of this master dissertation.

Chapter 4 (Use case – In-car violence detection) the Deep Learning architectures and the

testing scenarios results are documented at the light of the adopted methodology, presenting

the business understanding data understanding and preparation, modelling and evaluation.

19

Lastly, in the sixth and last chapter, a conclusion for this dissertation is presented,

summarizing all the work done and its contributions, alongside the project limitations and

plans for future work.

1.4 Dissertation work plan

On this sub-section, a project timeline is presented as well as the tasks that were

developed throughout this dissertation. The planning phase was a crucial step for this master

dissertation since it specifies what tasks and activities that should have been in place, as well

as time resources that were allocated to them. The time requirements for each task were

assigned based on the project objectives as well as the stipulated dates by the authors’ course

direction. All the group tasks are represented on the Figure 1 Gantt Diagram and the final date

refers to the submission of this dissertation report on October 31st.

 The main group of tasks for this dissertation were:

• Dissertation plan (March 7th to April 5th): The purpose behind this task was to

detail the project subject following the structure: Framework and Motivation,

Defining Objectives and Expected Results, Calendarization and Bibliography.

This document was submitted on April 5th.

• Pre-dissertation development (April 5th to May 31st): The pre-dissertation

report aims to take a deeper dive into the contents defined on the previously

described document. In this report an introduction to the subject was made as

well as the expected results and contributions of this dissertation. A literature

review was also conducted as well as the tools and technologies that were

going to be used in the implementation phase. A work plan was presented

alongside the conclusions and the future work for the practical implementation

of the project.

• Practical Implementation (May 31st to October 3rd): This task refers to the

practical implementation phase of this dissertation. Here is where the

metadata and audio preprocessing pipeline were developed in order to apply

the necessary transformations to the audio labels and signals respectively. The

Deep Learning architectures were also defined in this phase alongside its

20

training and result comparison based on various metrics. It is important to note

that this was developed based on the adopted methodology. It was expected

that the writing of the final report was done throughout this phase as well as

the development of scientific documentation.

• Dissertation Report Completion (October 3rd to October 31st): This final group

of tasks were meant to finalize the Dissertation Report. Here, all the results

were discussed in the light of the previously defined objectives, as well as the

identification of limitations (and possible future work) and what were the

contributions of this project. The final sub-task, the Dissertation Submission

refers to the submission of this report which is scheduled for October 31st.

21

Figure 1 - Dissertation activities Gantt Chart

22

2. STATE OF THE ART

2.1 Deep Learning

Deep learning is a Machine Learning subset which combines powerful learning

techniques with knowledge about how the human brain works, statistics and applied

mathematics [6]. Although Deep Learning is a technology created in the mid-40s, this

technique has a higher computational power and a higher capability on dealing with larger

volumes of data than regular Machine Learning approaches, making this concept a big

highlight through the years with constant advances. This particular case of ML is able to learn

and represent data as an hierarchy of concepts, and each of these concepts are divided into

much simpler ones and abstract representations that are a product of more discrete ones [6].

The first DL models were created with the objective of recreating how the human brain

learns at a computational level, which originated the concept of Artificial Neural Network,

which then evolved to the current designation. These type of networks, also known by

Representation Learning, are able to create high level abstractions from the input data,

utilizing an arbitrary number of layers for processing [6]. The layers are responsible for the

most part of the input processing, learning its features so it can output value for tasks with

higher complexity.

As it was previously mentioned, Artificial Neural Networks are computational models

based on the processing and learning capability of the human brain, which makes it viable to

learn non-linear variable relationships, easily identifying patterns making it a powerful

alternative to traditional Machine Learning methods [7]. There are multiple forms of Neural

Networks such as Feed Forward Networks, Convolutional Neural Networks, Recurrent Neural

Networks and Residual Neural Networks, that will be described in the following sub-sections.

2.2 Artificial Neural Networks

Artificial Neural Networks are a computational learning system that is composed by a

network of functions used to understand and translate some sort of data input and output a

23

desired value, usually in another form. In much simpler words, these set of algorithms are

deeply inspired in how the human brain operates, they have the ability to recognize patterns,

information and relationships in the given data.

The simplest form of an ANN is formed by three components:

1. An input layer – this layer corresponds to the input nodes meaning the

information from the “outside world” is provided here for the model to learn

and later, output a value based on the learned features. These nodes are also

responsive to pass to the next connected layer in a left to right manner.

2. A hidden layer – this component is made of a set of neurons that are meant to

perform all the computations on the data received from the input layer. The

simplest form of an ANN is made of a single hidden layer but there can be as

many as desired although this might have performance implications.

3. An output layer – the concept behind this layer is self-explanatory, it corresponds

to the output of the model derived from the calculations performed on the

previous layers. The number of nodes in this layer depends on the number of

possible classes. For example, in a binary classification problem, only one neuron

is needed on this layer, since the output can only be either 1 or 0.

2.2.1 Multi-layer Perceptron

One of the simplest and oldest forms of Artificial Neural Networks is called Multi-layer

Perception (MLP). The main characteristic of this model is that all of its layers are fully

connected, meaning a neuron has one weighted connection between itself and the neurons

of the next layer. For a better understanding of how these types of networks function, a step-

by-step approach was conducted, using Figure 2 as an example of a MLP network.

24

Firstly, all the inputs are multiplied by their weights. Weights are associated to inputs

in order to identify its coefficient, translating into how impactful a particular input will be

(which can be a positive or negative reinforcement). After weight assignment a bias variable

𝑏 is added. This is a constant that is used to help the model fit in the most effective way. In

other words, before the information is passed from the input layer to the hidden layer, a

matrix multiplication is performed between vector input 𝑥 with the weight matrix 𝑊(1) and

later adding the bias variable which returns the net input ℎ(2) = 𝑥𝑊(1) + 𝑏. On the hidden

layer, the next step is to apply the activation function to the net input previously calculated

𝑎(2) = 𝑓(ℎ(2)) which returns the activation vector of the second layer. This concept may

appear to be abstract, but it will be later explained on sub-section 2.2.3. On the third layer

and final layer, the net input is again calculated using ℎ(2) = 𝑎(2)𝑊(2) + 𝑏 and apply the

activation function in order to get the predicted output: 𝑦 = 𝑓(ℎ(3))

2.2.2 Back propagation

The process described on the sub-section 2.2.1 is known as forward propagation.

When training an NN the final step of the forward propagation is the evaluation of the

predicted output 𝑦 ̂against the expected value 𝑦. This is done by using a cost function 𝐸, also

known as a loss function. This function is set as a parameter when fitting the model and

𝑥1

𝑥2

𝑦

𝑆3

𝑆2

𝑆1
ℎ(2) ℎ(3)

𝑎(2)

𝑎(3)

Figure 2 - MLP network example

25

depends on the use case. It is based on this function’s value that the model works its way to

adjust its parameters in order to get to a closer value to the real one which is present on the

dataset. This is known as back propagation and was created in order to achieve the minimum

value of the cost function by adjusting the NN weights and biases (in a positive or negative

manner) based on the gradients of the cost function [8]. The gradient calculation is done to

each weight and bias based on the chain rule, and it is done layer by layer in an iterative

backwards way with the objective of avoiding redundant computations.

2.2.3 Activation Functions

As it is described on section 2.2, all the connections have weights associated which are

taken into account when processing the information and passing it through the different

layers. In order to recognize patterns and relationships on the data received from the outside

world, activation functions must be used between layers. These mathematical equations

determine if a neuron will be fired or not, and it’s done based on the if the inputs are

important for final model prediction. Activation functions introduce non-linearity to the model

which is a requirement to learn and recognize complex mappings from data [9], [10]. Let’s say

the following classification problem is proposed: classify if a customer will buy a product based

on its age, education level and marital status. A simple linear classifier wouldn’t be able to

predict very accurately this binary classification problem, simply because the

pattern/relationship that defines whether the customer will buy a product or not is not linear.

Furthermore, activation functions are also used to keep the value of the output from a

neuron restricted to a certain value that depends on the function used. This reduces the

amplitude of the output signal into a finite value. This operation is known as squashing.

There are multiple studies regarding activation functions, not only in performance

comparison [10], [11] but also in ways to find new and more viable ones [12]. In order to keep

this section short, only four activation functions will be described, these being Rectified Linear

Unit, Sigmoid, SoftMax and Hyperbolic Tangent Activation Function.

Rectified Linear Unit (ReLU)

 As mentioned in [13], the ReLU is the most popular activation function in the world

right now. This function makes a simple calculation that returns the value provided as input

or 0 if the input is lower than 0. Because the ReLU function is linear for half the input and

26

nonlinear for the other half, this function is often referred to as a piecewise linear function.

This implies that on the layers that use this function not all the neurons will be activated,

which translates to a better performance and efficiency. This function can be mathematically

defined as 𝑓(𝑥) = max (0, 𝑥)

Sigmoid Activation Function

 The Sigmoid activation function can be defined as 𝜎(𝑥) = (1 + 𝑒−𝑥)−1. It takes an

input 𝑥 and squashes it between 0.0 and 1.0 which can be interpreted as a probability for that

specific input. This activation function is often used in the last layer for two-class (binary)

classification problems.

Figure 3 - ReLU activation function plot

27

Hyperbolic Tangent Function (Tanh)

 This function is very similar to the previous one, but it is symmetric around the origin

of the graph, it’s a zero centered activation function. Just as the sigmoid, it also squashes the

input values, but into a bigger interval, between -1.0 and 1.0. The advantage the Tanh function

has over the Sigmoid function is that the negative inputs will be mapped in a strongly negative

way and positive inputs will be mapped strongly positive. This property makes this function

perfect for binary classification. It can be represented by 𝑓(𝑥) = 2𝑆(2𝑥) − 1, 𝑆 standing for

the sigmoid function.

Figure 4 - Sigmoid Activation Function Plot

28

Softmax activation function

 The Softmax activation function is the generalization of the Sigmoid function, meaning

it’s a combination of multiple Sigmoid functions [9]. As mentioned earlier, the Sigmoid

function returns values between 0 to 1, which can be perceived as the probability for each

class, in a binary classification situation. This function, however, can be used for multiclass

classification problems, returning a probability for each of the values present on the input

vector. It can be mathematically expressed by:

𝜎(𝑧)𝑖 =
ⅇ𝑧𝑖

∑ ⅇ
𝑧𝑗

𝑘

𝑗=1

 for 𝑖 = 1, ..., 𝑘. Where 𝑘 is the number of classes.

Figure 5 - Tanh Activation function plot

29

2.3 Convolutional Neural Networks

Convolutional Neural Networks is a Deep Learning model that takes data that can be

represented in a grid pattern [14], such as images. It assigns learnable and improvable weights

and biases to various features in the data, in order to be able to classify them based on feature

learning. This type of architecture is noted for using a mathematical operation, in at least one

of its layers, called convolution instead of the previously explained matrix multiplication. This

specific characteristic is the reason behind the successful implementations of image

recognition while using CNNs [15]. It allows the model to understand the spatial and temporal

features of an image through the application of filters.

The simplest version of a ConvNet is usually composed by three main layers:

Convolutional Layer, Pooling Layer and Fully Connected layer. In this section, all three will be

described.

2.3.1 Convolutional Layer

Convolutional layers are the center of attention in CNN architectures. This layer

receives a learnable filter that handles the feature detection. This is often referred as a kernel.

A kernel is a two-dimensional array of weights that as a parameterized size and when it is

Figure 6 - Sofmax Activation Function Plot

30

applied to an area of a grid like data, such as an image, a matrix multiplication is calculated

between the input pixels and the filter which is latter outputted to an array. The next step is

shifting this filter by a stride and repeat the same process till the kernel has been applied to

the entirety of the grid data. On an image, the stride defines how many pixels the kernel will

shift, meaning the lower the stride, the higher overlapping that will occur, translating to a

dimensionally larger output [16]. The output of this process is often referred as an activation

map or a convolved feature.

 The main objective of the convolutional operation is to extract high-level features,

such as edges from an input image. The number of convolutional layers is arbitrary, where the

closer they are to the input layer, they will detect more low-level features such has color or

gradient orientation. On the other end, the closer these layers are to the output, the features

will be severely more broken down which means they are responsible for the capture of the

high level spatial and temporal dependencies.

 As mentioned in section 2.2.1, each neuron in a MLP is connected to the previous ones.

If an Artificial Neural Network is trained using images as inputs, it would result on a huge

model that could not be trained effectively. On CNNs, each filter of a convolutional layer is

connected to a certain part of the input, this is called sparse interaction and can be controlled

by adjusting the filter size. Another major difference is that weights on ANNs are independent

of each other, in CNNs rather, each filter applies the same weights at each local region of the

input image. This is called parameter sharing, it presupposes that if one region filter can

compute a certain feature, then there is a chance that it can be useful in another area,

meaning it forces each kernel to detect the same feature across the input.

Figure 7 - Example of a kernel applied to a 2D input, source:
https://bit.ly/3vVnEUu

31

 In addition, convolutional layers also reduce or maintain the dimensionality of their

outputs compared to the inputs, this operation is called padding. Taking a 6x6x1 image as an

example (number of width pixels x number of height pixels x number of channels), if a 3x3x1

kernel is applied and the same padding parameter is used, the output matrix will have a 6x6x1

dimensionality, meaning it ensures that the output has the same size as the input. On the

other hand, if valid padding is used, a matrix with the dimensions of 3x3x1 is returned. Lastly,

full padding can be used, meaning the output dimensions are increased by adding zeros

around the input matrix. After the convolutional operation, an activation function is applied

to the output matrix.

2.3.2 Pooling layer

Pooling layers are used to apply further changes to the output of the convolutional

operation. These layers are also known as down samplers given that their goal is to reduce

spatial size of its inputs culminating in a lower computational load. This procedure is very

similar to what happens in the convolutional layer, but instead of using weights, the filter

applies an aggregation function to the values within it. There are a few variations of this

procedure: Max-pooling, Average Pooling, L1-normalization, Weighted Average Pooling. In

this section, Max and Average Pooling will be the focus point given that they show to be the

most commonly used in Convolutional Neural Networks.

When Max-Pooling is applied, the filter moves across the input, selects the pixel with

highest value and uses it on the output array. This pooling approach is generally the most used

on CNN architectures. On the other hand, when the average pooling algorithm is used, as the

filter shifts on the input it calculates the average value within the receptive field.

Although a lot of information is lost when pooling is applied, the computational cost is

lowered significantly, as well as helping the network become invariant to translations. This

Figure 8 - Example of Max Pooling, source: bit.ly/3vWzy0o

32

means if the input is slightly translated, the pooling operation will produce the same output.

This property, although it doesn’t help detecting the feature location, it does influence on

identifying if the feature is present or not.

2.3.3 Fully-Connected Layer

After the convolutional and pooling operations, the output is generally flattened into

a column vector, a one-dimensional array of numbers, and connected to one, or more fully-

connected layers.

This layer, also referred to as a dense layer, is used in order to classify the inputs based

on the features extracted on the previous layers. This is just a feed-forward network that is

used to learn in a non-linear way, the patterns of the output features of the convolutional

layers. While the layers described in sub-section 2.2.1 usually use ReLU functions, Fully-

Connected Layers often use a SoftMax or Sigmoid activation function depending on the

classification problem, returning a output for each of the input vector values, which can be

interpreted as the probability of each class.

2.4 Recurrent Neural Network

Recurrent Neural Networks (RNN) are a type of Artificial Neural Networks specially

designed to treat sequential data or time series data. The main characteristic of this network

is that they are comprised of neurons with one or more feedback loop [17]. This allows the

network to remember prior inputs, influencing current inputs and outputs. In CNNs and other

types of Neural Networks, it is presupposed that the inputs and outputs are independent of

each other, but in RNNs the outputs depend on prior elements within the temporal sequence.

It is also important to note that these networks, much like CNNs, also use parameter sharing.

Because of the “memory” property of Recurrent Neural Networks, they are often used

in the fields of NLP [18], speech recognition [19] and can also be applied in audio classification

tasks by combining this architecture with convolutional layers [20]. Although this is a very

interesting feature, if long-term memory is needed this type of network is no longer adequate,

which introduces the concept of Long short-term Memory networks which will be described

in the next sub-section.

33

2.4.1 Long Short-term Memory

Long Short-term Memory is a type of Recurrent Neural Network that aims to solve the

short-term memory issue by using a gate mechanism, responsible to control input

information. This architecture was motivated by the inaccessibility to long time lags when

base RNNs are used, meaning that these simpler networks were unable to capture long-term

temporal dependencies [21].

There are three types of gates on these networks: the forget gate, the input gate, and

the output gate. The forget gate is responsible for the identification of what data should be

forgotten. The input gate is able to decide what input data should be stored and finally, the

output gate passes the updated information from the current index on the time series to the

next one [22]. All three gates receive two input vectors 𝑥𝑡 and 𝐻𝑡−1 which refers to the input

vector on the instant 𝑡 and the output vector of the input gate on the instant 𝑡 − 1,

respectivily.

Mathematically the operation that occurs on the forget gate can be define as:

𝑓𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑓 + 𝐻𝑡−1 ∗ 𝑊𝑓)

Where 𝑥𝑡 is the input to the current timestamp, 𝑈𝑓 is the weight associated to the input, 𝐻𝑡−1

is the hidden state of the previous timestamp and 𝑊𝑓 is the weight matrix associated with

that hidden state. A sigmoid function is then applied to the information that will return a

number between 0 and 1. If the value is 0 then the network will forget this information and if

the value is 1 it will forget nothing.

 The operation on the input gate can be defined as:

𝑖𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑓 + 𝐻𝑡−1 ∗ 𝑊𝑓)

After the sigmoid function is applied, a tanh function is also executed returning a value

between 1 and -1. If the value is negative the information is subtracted from the cell state and

if it is negative the value is then added to the cell state.

 Finally, on the output gate the following operation is executed:

𝑜𝑡 = 𝜎(𝑥𝑡 ∗ 𝑈𝑜 + 𝐻𝑡−1 ∗ 𝑊𝑜)

Again, the same functions as the previous gate are calculated in order to get the output for

the next cell.

34

2.5 Residual Neural Networks

One of the biggest problems in training deeper architectures is the existence of

exploding and vanishing gradients. Back propagation is applied to compute the gradients using

the chain rule which can inevitably lead to an exponential growth or vanishment of the

gradients, preventing the weights from updating and thus not allowing the architecture to

perform better. In [23], He et al. show an example of a 20 layer CNN against a much deeper

CNN one. This plot shows a greater training and test error on the deeper network against its

shorter counterpart.

Residual Neural Networks (ResNet) were created to solve the training of very deep

neural networks by using residual blocks. These residual blocks use a type of connection called

skip connection also known as shortcut connections. This type of mapping doesn’t add

additional parameters but allows to add a layers’ output to the following layer.

However, a layer’s output dimension 𝑥 can differ from the spatial dimension of the

output of the following layer 𝐹(𝑥). In order to solve this, the authors propose that the identity

Figure 9 - Training error and test error on CIFAR-10 with 20-layer and 56-layer "plain" networks. Source: Adapted from [22]

Figure 10 - Residual block. Source: Adapted from [22]

35

mapping (the output of the previous layer) is multiplied by a linear projection 𝑊 to increase

its dimensions, matching the following layer (also called the residual), allowing both outputs

to be combined as the input for the next layer. This procedure can be expressed by the

following math function:

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑊𝑖𝑥

In the previously discussed article, He et al. show that by adding residual blocks and increasing

the network depth, networks achieve higher accuracy against its less deep counter parts.

2.6 Regularization

To classify a machine learning model as successful, it needs to achieve a low training

error while minimizing the difference between training and test error. Training error is a

metric that defines the error over the data used for training the model, while the test error is

measured on the predictions made on unseen data, in other words, a validation set.

Commonly, when training a new DL system, a very high training accuracy will be seen, but it

will fall short when predicting on new data, meaning the generalization error is rather high.

This is known as overfitting, and it happens when the model is too complex for the given task

or simply there isn’t enough data to train on.

Regularization methods were introduced to deep learning systems, as a way to reduce

overfitting as well as keeping the training error at a minimum. In this section, the most

commonly used techniques will be described.

2.6.1 L1 and L2 Regularization

L1 and L2 regularization methods are both very common techniques of model

regularization [13; 14; 15]. These procedures update the general cost function by adding

another term designated as the regularization or penalty term. Due to the addition of this

regularization variable to the general cost equation, both approaches try to penalize bigger

weights [27], making the values of the weight matrices tend to decrease. The key difference

between these methods is the term that they add to the cost function. In L1 it can be

expressed as:

36

𝐶𝜆 = 𝐶 +
𝜆

2𝑚
∗ ∑‖𝑤‖

The main purpose of this model is to turn the less important feature’s coefficient into zero,

and consequently remove some irrelevant features altogether. This operation can work

particularly well when a large number of features are present, making it useful to compress

the model. On the other hand, L2 Regularization can be represented as:

𝐶𝜆 = 𝐶 +
𝜆

2𝑚
∗ ∑‖𝑤‖2

This means that it forces the weights to decay towards zero, making the model prefer smaller

weights. This method is generally preferred over L1 when model compression is not required.

2.6.2 Dropout

The dropout regularization method is a very simple method that, at every iteration,

randomly selects a set of nodes and disables them, and consequently, removes all their

incoming and outgoing connections. This means that each iteration has a different set of

nodes resulting in different outputs. This is the same as sampling a sub NN from a larger

network [27]. This emulates a different model architecture at each iteration, translating to a

very computationally cheap and effective way of applying regularization, which makes this

method the most common among data scientists.

The Dropout technique uses a hyperparameter p which sets the probability for the

units to be disconnected and it can be tuned in order to achieve better results.

2.6.3 Batch normalization

When supervised machine learning is applied, a model will learn the patterns or

relationships between the input and its labels through training datasets. A common problem

that happens with these models is that the input distribution can differ from the real-word or

test data, meaning that the model may make wrong predictions. This obstacle is often referred

to as covariance shift [28]. Furthermore, internal covariate shift can also occur, given that

during neural network training, as the parameters of a preceding layer change, the input

distribution of a layer also changes. This negatively affects the training speed and requires a

more careful parameter initialization.

37

In order to tackle this problem, Batch Normalization [29] was introduced. It’s a layer

that applies standardizing and normalizing operations on the input received from the

precedent layer, without altering its shape. This not only handles internal covariate shift but

also makes for a faster learning rate and more care-free initialization of parameters.

2.6.4 Early Stopping

Early stopping is the simplest method out of regularization techniques. In this specific

case a monitor is used to keep track of a certain metric, generally being an error metric such

as the validation loss. When the validation error is getting worse the model simply stops

training, hence the name, early stopping. Besides the monitor parameter, early stopping also

takes the number of epochs which sets the interval with no improvement after which training

will be stopped. Also, a minimum delta can be set which defines the minimum variance change

that needs to be seen on the monitored metric in order to qualify it as an improvement.

2.7 Sound and Audio

In simple terms, sound is a pressure wave which is created by a vibrating object and is

transmitted through a medium that can be solid, a gas or a liquid. These variations in pressure

can be represented over time which is often referred to as a sound signal.

There are periodic and aperiodic sound signals, where in the first, the sound wave

repeats itself at a period 𝑇, where a phenomenon of compression and rarefaction are seen

represented by the height of the wave. This height represents the intensity of the sound, and

it is known as the amplitude (𝐴). On the latter, the same occurrences are also seen, but the

wave does not oscillate on a repeated pattern. Most sounds fall on this sound signal category,

like the human voice, a bird chirping or an instrument being played. In order to represent

these sounds, sound signals with different frequencies can be added together creating

composite signals. Frequency represents the number of waves that pass a fixed point in time.

2.7.1 Audio Digital Conversion

Converting analog audio to its digital form is done by the process called ADC (Analog

Digital Conversion). There are multiple complex components present on this method, but on

38

this section only the two main concepts will be covered, these being Sampling, and

Quantization or Resolution.

 In order to convert analog audio, the ADC module takes measures of amplitude of the

sound at a fixed interval of time. Each of these measurements is called a sample and the

number of samples taken per interval of time is called sampling rate. So, during sampling, if a

22050 Hz sampling rate is used on a 30 second audio clip 661500 samples are returned.

Quantization refers to the number of bits used to store each sample amplitude point. The

greater the bit depth, the more accurate the representation of a sound will be, given that a

wider interval is used in which amplitude can be described.

2.8 Audio Data preparation for DL architectures

Historically, audio classification problems were approached with machine learning

models, depending heavily on digital signal processing techniques to extract audio features

that are used as inputs [30]. For example, features like zero crossing rate and short time

energy would be extracted in order to classify environmental sounds [31]. For emotion

detection, timbral, tonal and rhythmic features would be extracted [32], [33] . This requires a

lot of audio domain expertise to solve these problems alongside being tuning dependable to

reach useful results.

However, with Deep Learning development, these architectures have demonstrated a

huge success in handling audio. Traditional audio data preparation is no longer needed, and it

is surpassed by standard data preparation without the need of hand-crafted specific features.

Although the audio signal can be used as an input, it is very common to transform it into its

visual representations (also known as audio features) such as spectrograms and later feed it

into the DL network.

2.8.1 Spectrum

As mentioned in previous sections, natural sounds cannot be represented by a periodic

single sine function. The Fourier transformation equation allows the decomposition of

complex sound waves into a sum of sine waves oscillating at different frequencies. There are

multiple variations of this method with different outputs, but only Fast Fourier Transformation

39

will be covered on this subsection. After FFT is performed on a sound signal, a spectrum is

returned, moving from the time domain to the frequency domain. It can be seen as a snapshot

of all the frequencies that represent the sound but losing the time aspect of it.

 Although this type of audio representation is not really used on Deep Learning models

as an input, it is useful to study how energy level of each frequency is distributed on the audio

sample. It is often used to calculate amplitude thresholds in order to remove noise from the

sampled data.

2.8.2 Spectrograms

When FFT is performed, a simple representation that averages the presence of the

frequency components across the whole duration of a signal, is returned. So, the frequencies’

magnitude are known but not when they are more or less present. Audio data is characterized

Figure 11 - Example of a Spectrum obtained using FFT

40

by the evolution of its frequency components over time, hence the use of spectrograms on

Deep Learning architectures.

Spectrograms are a feature that can be extracted by applying the Short Time Fourier

Transformation. In order to preserve the important time aspect of sound, FFT is computed at

different intervals with a fixed frame size (e.g., 2048 samples) returning a spectrogram, where

the magnitude is represented as a function of time and frequency. The magnitude dimension

is described by color, allowing us to understand the presence of that frequency on a given

time.

In other words, a Short-time Fourier Transformation is a series of FFTs performed on a

windowed signal, providing time-localized frequency information for data like audio signals,

in which its frequency components vary over time [34].

Mathematically, the STFT equation can be represented as:

𝑋(𝑚, 𝑘) = ∑ 𝑥(𝑛 + 𝑚𝐻) ∙

𝑁−1

𝑛=0

𝑤(𝑛) ∙ 𝑒−𝑖2𝜋𝑛
𝑘
𝑁

Figure 12 - Example of a Logarithmic Scaled Spectrogram

41

This function is characterized by its windowing function 𝑤(𝑛) that its multiplied by the

number of samples present on the frame 𝑥(𝑛 + 𝑚𝐻) where 𝑚 is the current frame and 𝐻 is

the hop length, which describes how many samples the window shifts.

Most of the time, the endpoints of a signal are discontinuous, because they’re not an

integer number of periods. This translates to spectral leakage on the spectrogram, meaning

that these discontinuities appear as high-frequency components that are not present on the

original signal. In order to minimize this problem, the standard procedure is having a smaller

hop length than the frame size, originating frame overlapping which accounts for the

information that is lost on the endpoints of the framed signal.

Moreover, when extracting spectrograms using STFT, there is an important time-

frequency tradeoff that is related to the parametrized frame size. The larger the frame size,

higher the frequency resolution and lower resolution on the time domain, and vice-versa [35].

There are some heuristics that can help choosing the number of samples for the frame size,

but it is mostly dependent on the problem that is being investigated.

2.8.3 Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients are a very widely used feature for audio related

Machine Learning tasks [36], especially on speech recognition [37], [38]. A Mel-frequency

cepstrum (MFC) is a representation of the short-term power spectrum of a sound signal, based

on a linear cosine transformation of a log power spectrum on a Mel-scaled frequency. The

MFCCs are coefficients that collectively form an MFC. The Mel scale is related to how humans

perceive frequency or pitch of a tone to its actual measured frequency. The steps in order to

retrieve MFCCs from an audio signal are:

1. Use a windowing function to break the signal into overlapping frames

2. Perform the Discrete Fourier Transformation to the framed signal.

3. Map the powers of the spectrum obtained on the previous step to the Mel-scale by

using triangular overlapping filters

4. Calculate the log of each of the energies returned on the previous step.

5. Perform the Discrete Cosine Transformation to each of the log filterbank energies in

order to obtain the cepstral coefficients.

42

2.8.4 Mel-Spectrograms

In simple words, Mel-Spectrograms are Spectrograms converted to the Mel-scale. The

Mel-Spectrogram is a very common form of Spectrogram used as input to Convolutional

Neural Networks designed for audio classification. The way these spectrograms are obtained

is quite similar to the MFCC feature extraction. First the signal is divided into windows and the

FFT is computed to each frame. Then the Mel scale is generated by taking the entire frequency

spectrum and separating it into an arbitrary number of mels, becoming evenly spaced

frequencies, in the sense as how humans perceive those frequencies. Finally, for each window

the magnitude is decomposed into its components and the Mel-Spectrogram is obtained.

Figure 13 - Example of MFCCs representation

43

2.8.5 Constant-Q Transform

Constant Q Transforms or CQT for short, are a type of audio signal representation

commonly used in audio classification as well [39]. Its calculation is very similar to the

previously discussed STFT, however the spacing between the first harmonics are based on an

increasing logarithmic space [40]. By increasing its window size for lower frequencies and

increasing this window for higher frequencies a lower computational power is needed, which

is why CQTs are considered an optimized version of the STFT. It also has its draw backs since

reducing the window size for the last harmonics reduces the detail on the upper frequencies.

Figure 14 - Example of a Mel-Spectrogram

44

2.8.6 Chroma vector

The human ear perceives sound pitch in a periodic way, meaning two pitches can be

perceived in the same way if they differ by one or multiple octaves. A chroma vector, or

chromogram is pitch scaled STFT, meaning it shows a 12-element vector for each pitch class.

A pitch class means every pitch that is separated by one octave.

This type of feature can be a useful tool to analyze sound waves from a music file when

pitch is an important tuning feature, being a powerful descriptor of the tonal content of a

musical audio signal.

This type of feature is also very commonly used for audio classification tasks. Research

found that chroma vectors are popular among algorithms for thumbnailing music [41], [42].

Figure 15 - Example of a Constant-Q Transformation

45

2.9 Data Augmentation

Data augmentation is a common technique that can be applied to a dataset in order to

increase its diversity, especially when not enough data is present. This is done by artificially

modifying existing data in small ways.

In image recognition there are some basic approaches to augment the data that are

meant to be used as input to a DL model, these being: image cropping or scaling, image

rotation, color modification or adding noise to the image [43]. Although the new images are a

modification of the original ones, the semantics have not been touched. For instance, a

rotated image of a cat is still considered as a cat, but for a Deep Learning model is a new data

sample that will help the models’ generalization capability.

On audio, the previously discussed augmentations can’t be applied since they change

what the audio features represent, meaning semantics are altered which introduces a lot of

noise on the training data, increasing training error and decreasing its prediction capability.

However, there are also multiple ways to insert data augmentation either on the spectrogram

representation of the signal or on the signal itself [44]. In this section only Spectrogram

Augmentation, Time Shift, Pitch Shift, Time Stretch and Noise Addition will be covered.

Figure 16 – Example of a Chroma vector

46

2.9.1 Spectrogram Augmentation

Normal transformations such as rotation or color alteration cannot be applied to

spectrograms since it would alter the sound that it represents. In 2019 Park et al. introduced

a data augmentation method for automatic speech recognition [45] known as SpecAugment.

They experimented in two ways:

• Frequency Masking: this procedure randomly masks a range of consecutive

frequencies, translating to a horizontal bar on the spectrogram.

• Time Masking: very similar procedure to the frequency mask method, but

instead random ranges of time are blocked from the original spectrogram using

vertical bars.

Figure 17 - Frequency Masked Mel-Spectrogram

47

2.9.2 Time Shift

Time shifting is simply shifting the audio to the right or the left by a random amount.

For sounds with a repeated pattern the audio can be repeated when shifted. In human speech

however, the order of the sound is a must for speech recognition so the gaps created when

shifting can be padded with silence.

Figure 18 - Time Masked Mel-Spectrogram

Figure 19 - Example of a time-shifted signal

48

2.9.3 Pitch Shift

Pitch shifting changes the pitch of a signal by an arbitrary number of semitones without

altering its tempo.

2.9.4 Time Stretch

Time stretching alters the tempo of an audio clip, meaning the speed of the audio can

be altered without changing its pitch. Consequently, the length of the signal will also change,

so padding needs to be added in case the time stretched signal has a smaller input shape and

clipping in case the signal dimensionality becomes too long.

Figure 20 - Example of a pitch-shifted signal

49

2.9.5 Noise Addition

Gaussian noise can be added to the audio signal which makes the input smoother and

easier to learn. It’s a very simple but effective way of applying data augmentation to audio

data.

Figure 21 - Example of a time-stretched signal

Figure 22 - Example of Gaussian noise added to a signal

50

2.10 Common approaches

Since the study object of this dissertation is Violence Detection using audio data, it also

falls into the categories of Sound Event Detection (SED) and Environmental Sound

Classification (ESC), thus, in this section, common approaches for SED and ESC will be

described as well.

Historically, many approaches on Sound Event Classification and Environmental Sound

Classification have heavily relied on speech recognition techniques. This means the feature

extraction was a method of choice to use as inputs. The most common type of features were

Mel Frequency Cepstral Coefficients (MFCCs) [46], [47], [48], Average Zero Crossing Rate [49],

Constant-Q Transformations [39], Mel-band Energy Features [50] and hand-crafted specific

features [51]. These were widely used in combination with Machine Learning classifiers such

as the Non-Negative Matrix Factorization [52].

The state of the art for these classification problems is based on Deep Neural Networks,

including Feed Forward Networks [32; 33], Convolutional Neural Networks [55]–[57], Residual

Neural Networks [58] and the more sophisticated Recurrent Neural Networks with transfer

learning [59]. These allowed to overcome the domain specific knowledge needed to perform

machine learning on audio data, by simply using images as input, such as spectrograms, and

managing to learn high-level features from them.

As this master dissertation will focus on Violence Detection using Deep Convolutional

Neural Networks as a medium for feature extraction and sound classification, it is important

to dive into more detail about this type of approach.

In [55], Salamon and Bello use logarithmic scaled mel-spectrograms as inputs to a CNN

in order to classify environmental sounds present on the Urban8K dataset. They introduce a

problem related to the scarcity of labeled audio event data and propose data augmentation

as a method to solve this issue. This stage included the following augmentations: time

stretching, pitch shifting, dynamic range compression and the addition of background noise.

Although data augmentation should help on creating a larger dataset and thus converging to

a higher accuracy model, this has not been the case for this specific dataset given that the

training time greatly increased and the difference on model accuracy was negligible. The

authors’ model is comprised of 3 convolutional layers with 2 pooling layers between them

followed by 2 dense layers. All the layers were using ReLU as the activation function except

51

for the output layer which used SoftMax. The categorical accuracy reported for this method

was an average of 79%.

Using logarithmic mel-spectrograms and delta feature spectrograms as input features

and the same dataset, Zhang and Zhou in [57] approached this problem with a different

architecture. They identified a research gap, this being that most approaches on

Environmental Sound Classification would use smaller filters on their convolutional layers

which translates to a need of a deeper convolutional network in order to learn log contextual

information. In order to resolve this issue, the authors propose the use of dilated convolution

filters in order to increase the receptive field of the CNN without introducing more parameters

and layers. The first part of the network comprises of 2 dilated convolutional layers running

LeakyReLU as the activation function, and 2 max-pooling layers between them. These were

divided into two channels, one receiving log mel-spectrograms and the other delta feature

spectrograms. The previously described network is then connected to 2 fully connected layers

and these to an output layer with SoftMax as the activation function. It is important to

mention that the authors also used a data augmentation module that applied time stretching

and noise adding to the inputs. The proposed architecture got a solid 81.9% categorical test

accuracy.

In [58] Palanisamy et al. use state-of-the-art techniques to compare sound classification

performance on single and ensemble models using the GTZAN, UrbanSound8K and ESC-50 as

their datasets. They start by extracting multiple audio features and feed them to base-line

model (SoundNet) to understand which type of audio feature would perform best, founding

that the Logarithmic Mel-Spectrogram was the best audio representation for this specific

problem. To fine tune the models’ performance, multiple hop lengths and window sizes were

used to extract the feature and then fed to the models while also comparing accuracy when

using pretrained and random weights. It is also necessary to note that data augmentation has

been implemented, specifically pitch shifting and time stretching. On the final experiment, the

pretrained DenseNet, ResNet and Inception models were tested on all three datasets in a

single and ensemble matter. The DenseNet achieved the higher validation accuracy across the

board, losing only to the ResNet in its ensemble version, specifically on the GTZAN dataset.

Much like SED and ESC, historically, violence detection has been based on feature

extraction from video and images like spatial-temporal features, optical flow, motion

52

information, and acceleration [60] and feeding them to a Machine Learning algorithm [61]

were the most common way to approach this problem. Auditory data has often been

neglected for this type of problem, although some researchers include it, like in [62]

Mahadevan, Li, Bhalodia and Vasconcelos proposed an system that tried to identify violent

scenes based on blood and flame detection combined with motion and sound.

There are multiple approaches that were studied regarding violence detection, but in

this section only state-of-the-art Deep Learning based approaches will be covered since they

are known for easier integrations and better results.

In [63] Abdali and Al-Tuma propose a architecture to classify hockey videos as violent or

non-violent, using a CNN as a spatial feature extractor that feeds its output to a Long Short-

Term Memory cells that then extracts temporal patterns from the inputs which are fed to a

dense layer using sigmoid as the activation function since it’s a binary classification problem.

They use a pre-trained model, the VGG-19 and since the dataset was rather small to get

the best results, they needed to use transfer learning. Firstly, the architecture receives a 4d

tensor, a sequence of frames with the shape (40x160x160x3) corresponding to (frame, height,

width, RGB color channels) where the pre-trained VGG19 processes each one. The output of

the previous step is grouped and flattened into a 2d vector representing a spatial feature for

one frame. Each of the outputs are then processed by the LSTM, global average pooling is

applied in order to get a 1d vector and finally its fed to a fully connected layer which will be

used to get the probability of violence in the given video. On the test set the model achieved

a 98% accuracy.

2.11 Related work

Regarding violence detection tasks using only audio data, only two articles related to

the issue were found [64], [65].

In [64] Theodoros, Dimitirios, Andreas and Sergios described an approach that aims to

be a contribution for automated characterization of multimedia content with respect to

violence. The authors start by extracting six audio features from each segment of an audio file

from the time and frequency domain. These are energy entropy, signal amplitude, short time

energy, zero crossing rate, spectral flux, and spectral roll off. In order to classify these audio

53

signals as violent or non-violent content they use a Support Vector Machine using the

previously described features as normalized inputs. The dataset was divided in half, obtaining

the training and testing sets.

The authors present the classification error rates for each individual feature as well as

the error rates when all the features were used together (8-D case), this was meant for a

better understanding in future feature selection. On the 8-D case, the model recall was 90.5%,

a precision of 82.4% and 85.5% accuracy.

In [65] Giannakopoulos and Pikrakis present a very uncommon approach on classifying

violent content using audio from movies. They use a multi-class classification scheme, dividing

the labels into 6 classes, where 3 of them are considered as violent. Each audio file is broken

into segments and each segment is divided into frames and for each of them, twelve feature

sequences are calculated, these being: zero crossing rate, spectrogram, chroma vector

features, energy entropy, spectral rolloff, pitch, and MFCCs. All these features go through

different statistical calculations except the chroma vector features and MFCCs that go through

multiple equations. Using 30 movies hand-labeled by the authors and feeding them to a

Bayesian Network the authors got a 90.8% recall, 86.6% precision and 89% accuracy for the

violence classification.

2.11.1 Anomaly Detection

 Anomaly Detection using audio sources is a fairly common investigated subject, and

since violent scenarios can be considered as anomalies, this subsection will be used in order

to describe these types of work.

Historically, the most common way to perform anomaly detection is using Auto

Encoders [66] which are a form of a feedforward, fully connected neural where the output

layer has the same dimensionality as the input layer. This network compresses the input,

encoding it in a reduced dimension, known as the latent space, learning the most important

relationships. This distorted version of the input is later decoded, and it is reconstructed back

to the original dimensions in an unsupervised manner. The difference between the output

vector and the input is called the reconstruction error and by using a threshold it is possible

to detect anomalies.

54

Although auto encoders are known by their low computational needs, new architectures

are also being explored with better performances such as transfer learning techniques,

features can be extracted from different audio representations by Deep Neural Networks like

Recurrent Neural Networks and then fed into an AE [59].

Another example is the use of a LSTM neural network with 10 units in order to detect

anomalies in 3D-printers [67]. MFCCs and mel filter banks were the author’s choice as inputs

and since acquiring printing anomaly recordings is very time-consuming, data augmentation

techniques were also used to increase training data.

Rushe and Namee did a research on using raw audio signals paired with a convolutional

autoregressive architecture [68] and presenting significant performance gains over deep

autoencoders when it comes to anomaly detection. They used the WaveNet architecture,

training it to predict the next sequence using non-anomalous samples, meaning the network

will learn the conditional distribution across normal data that anomalous sequences won’t

follow. The model then predicts the next sequence, compares it with the subsequent actual

value and if the mean squared error is high then it is indicative of an anomaly.

This type of architecture has benefits over Recurrent Neural Networks by using dilated

causal filters in order to increase the receptive field and ReLU units are replaced by gated units

in order to obtain the benefits of a LTSM without the need of a recurrent algorithm, since

these are known for their difficulty on parallelizing backpropagation through time, slowing the

network training process.

55

3. METHODOLOGY, TECHNOLOGIES, AND TOOLS

With the purpose of understanding the fundamental concepts for this master

dissertation, deep research for article pre-selection was conducted. The platforms used were

ScienceDirect, Google Scholar, Semantic Scholar, Google and Web of Science. Title, abstract

and number of citations for each article were the properties chosen by the author in order to

identify relevant work for this dissertation.

A methodology is a study of the best methods that are used in a specific domain in order

to achieve a certain goal of knowledge. In this dissertation the CRoss-Industry Standard

Process for Data Mining was the adopted methodology to structure the plan of action. The

reason behind this choice is that this methodology is more complete than, for example,

SEMMA or PMML. It offers superior advantages over them, such as: greater project feasibility,

greater project viability and faster development and lower development costs [69]. Moreover,

this methodology has previously been studied and applied by the author in previous projects.

In addition, to contextualize the practical development of this dissertation there is a

need to identify the technologies and tools that are meant to be used for its implementation,

thus, a summary of all the chosen technologies, tools, and libraries were also conducted in

this chapter.

3.1 CRISP-DM

CRISP-DM, Cross-Industry Standard Process for Data Mining, was developed in 1996 and

later published in 1999, with the purpose of orienting the development of Data Mining

projects [70], guarantying a lower project complexity, lower development costs and a

management ease.

This methodology, presented on Figure 18, is comprised by six different steps and each

of them is defined by a second level series of tasks that can either be applied or not. This

methodology can be applied to the process of Machine Learning implementation, providing a

lower project complexity, and ensuring that the requirements are fulfilled.

56

Ideally, the transition between the six phases of the CRISP-DM methodology should be

done in a linear form. However, Machine Learning projects suffer from great complexity and

the transition between phases can, and most likely will be done in a circular motion, meaning

that it is possible to backtrack to previous steps.

1. Business Understanding: The output of this step is the necessities and business

objectives. It is also expected an objective definition in order to establish a plan

of action for the different requirements. It is very common to backtrack to this

step when the project is in an advanced state, given that the requirements can

change over time.

2. Data Understanding: Data collection and data analysis is performed on this step.

This is meant to detect data incoherence and understand the relationships

between the variables. It is always possible to go back to this step, regardless of

the project state, either because the dataset has been altered or new data has

appeared.

Figure 23 - CRISP-DM Methodology (adapted from Wirth and Hipp, 2000)

57

3. Data Preparation: A very important phase where the problems detected on the

previous step are dealt with. This involves data processing and treatment, and

when new issues are found on modelling and deployment it is possible to go back

to this step.

4. Modelling: In this phase is where the modelling techniques are chosen in order

to be applied to the problem at hand. It is mandatory to learn the different model

requirements regarding the project limitations. The parameters of the model

should also be adjusted in order to obtain the best results.

5. Evaluation: On this step is where all the previous models will be assessed in order

to determine which model will be used in the future implementation. There is a

common back and forth between this phase and modelling, this is known as

hyperparameter optimization.

6. Deployment: Lastly, a result assessment is planned, including the steps and how

to execute them. A final report is developed, and a project revision is done. In

certain cases, the final model can be implemented on a real environment.

3.2 Technologies and Tools

In this section, the different technologies and tools that were used on the practical

development of this dissertation are described. Given the nature of this dissertation, it was

developed entirely in the programming language Python. Python is a programming language

created in 1991 by Guido van Rossum and it is often used to build websites, software, task

automation and data analysis. There are multiple languages that could be used for Machine

Learning purposes, such as R Programming Language, C++ or Java.

The main reason this language was chosen in detriment of others, is because the amount

of experience the author has with it and the wide number of libraries that can help with pre-

processing tasks and modelling. Furthermore, Python is the most used programming language

for Machine Learning, meaning there is a vast support available online. In Table 1, there is a

brief description about the libraries and packages that were relevant in the practical

development of this dissertation.

58

Table 1 - Tools and Python Libraries

Name Description Version

Pandas

Pandas is a package made on top of NumPy and is most widely

used for data science and data analysis tasks. It uses a tabular data

structure known as dataframe, that allows to execute functions

over the data that it contains. Because Pandas is so widely used, it

works very well with most Machine Learning libraries.

1.4.1

NumPy

NumPy is the library of choice to perform mathematical

operations on multidimensional python arrays. It utilizes powerful

data structures that allows efficient and fast calculations with

matrices being essential for Machine Learning tasks.

1.22.4

Matplotlib

Matplotlib is a library that allows the user to create data

visualizations, using NumPy. This tool also as an API that permits

the integration of its plots in real applications, allowing to create

animated and interactive visualizations. In this dissertation it will

be used to plot signals and its respective spectrograms. It will be

important to plot training and validation metrics to evaluate the

models’ performance.

3.1

Librosa

Librosa is a python package used for music and audio analysis. This

package is the starting point for this dissertation. It will allow to

analyze and transform audio signals into its derivates. It allows to

extract spectrograms, mel-spectrograms, and various audio

features.

0.9.1

Audiomentations

Audiomentations is a Python library that is used for audio data

augmentation. Its execution is very fast and supports a wide

variety of audio augmentation methods which is perfect for

increasing the amount of training samples.

0.24.0

Scikit-Learn

Scikit-Learn is a Python library that includes mathematical and

statistical algorithms that are meant for Machine Learning tasks.

It also has modelling modules for regression, classification, and

clustering.

1.1.0

TensorFlow

TensorFlow is Python and JavaScript library, created by Google,

that allows to build Machine Learning pipelines. It also takes

advantage of data augmentation algorithms. It has embedded

state-of-the-art techniques such as RNNs, CNNs and LTSMs that

can be used for end-to-end audio classification.

2.9.0

59

Visual Studio

Code

Visual Studio Code is a code editor with support for development

operations like debugging, task running and version control. It

includes syntax highlighting, code completion, snippets and code

refactoring. It is also a very modular IDE since it allows to install

extensions to further increase its features.

1.67

MobaXterm

MobileXterm is a software that allows for remote computing. It

will be used in order to connect to Bosch’s cluster in order to have

dataset access and train the developed deep learning model.

22.0

60

4. USE CASE – IN-CAR VIOLENCE DETECTION

This chapter includes all the practical work developed in all the CRISP-DM methodology

phases which aids a better understanding of the project requirements. As a consequence, this

chapter is divided in all of the CRISP-DM steps: business comprehension, data understanding,

data preparation, modelling, evaluation and implementation.

On the Business understanding section the use-case is contextualized with the purpose

of defining the business objectives, data mining objectives as well as the success criteria. The

following section describes the dataset provided by Bosch and how it was obtained. A deep

data analysis is also conducted along a data quality report of the chosen metadata which is

used for the modeling phase. In the Data preparation section, all the data transformations to

the WAV files and metadata are included and a data preparation architecture is also

presented. On the Modelling phase, all the models used are described along the alterations

done to its architectures, following by a description of all the test scenarios and their

evaluation. Finally, on the Evaluation section the best model of each test scenario were

compared in order to obtain the best combination of audio features and model architecture.

Furthermore, since there is an increasing amount of devices capable of audio recording

in and processing in real time, all the code and additional information has been included in

multiple appendices so that this investigation can be easily replicated in similar contexts.

4.1 Business understanding

For mobility service providers, vehicle safety must be ensured at all times, any problem

regarding the condition of a car must be reported in a transparent way to ensure drivers and

passengers safety as well as reducing vehicle down time.

In addition, there are multiple reports regarding assaults in mobility service providers,

for example, Uber mentioned in a safety report 3824 sexual assaults reported in its US

platform in 2019 and 2020 while 20 people were killed in assaults. These types of companies

heavily rely on costumer safety and satisfaction as well as its drivers which cannot be

measured in real-time. In addition, mobility service providers often offer a driver rating system

61

which can most definitely support the costumer choice, but nothing can ensure that violence

related incidents between driver and passenger or vice-versa won’t happen. Furthermore,

these types of events can only be addressed after the fact, instead they should be

communicated to the fleet manager in real-time.

In this context, Bosch’s RideCare project aims to provide a device capable of car damage

detection using a sensor to classify damages into different categories (as well as storing GPS

coordinates and timestamp). Smoke detection is another feature that reports the smoking

event and its duration in real-time as well as anomaly driving detection which aims to identify

irresponsible drivers and ultimately reduce the risk of car accidents.

This dissertation project is developed with the purpose of improving the current device

by adding a new feature: in-car violence detection. This investigation aimed to achieve Bosch’s

business objective, it being whether in-car violent scenarios can be detected by only using

auditory data as an input to a DL algorithm. Following this business objective, the data mining

objective can easily be defined: classifying auditory data into non-violent or violent labels with

the highest accuracy possible, meaning it’s a binary classification problem.

4.1.1 Success criteria

In order to measure the investigation results it is essential to define metrics and criteria

that can evaluate the results obtained by the different models proposed on the modeling

phase. The selected metrics for the models’ evaluation were accuracy, recall, precision, area

under curve, F1-score and Binary Cross Entropy as the loss function. The mathematic formulas

of the previously mentioned metrics are described in this sub-section. On Table 2 all the

metrics are contextualized in this use-case as well as its utility and why they have been chosen.

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

62

F1-Score = 2 ∗
𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅ⅇ𝑐𝑎𝑙𝑙

𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛+𝑅ⅇ𝑐𝑎𝑙𝑙

Binary Cross Entropy =
1

𝑁
∑ −(𝑦𝑖 ∗ log (𝑁

𝑖=1 𝑝𝑖) + (1 − 𝑦𝑖) ∗ log (1 − 𝑝𝑖))

Where 𝑝𝑖 is the probability of the violent class (1) and (1 − 𝑝𝑖) is the probability of

the non-violent class (0)

In order to understand the previously described formulas it is mandatory to

understand that:

• 𝑇𝑃 means true positive, this corresponds to the number of samples from the

positive class that were classified by the model as positive. In this dissertation

use-case a 𝑇𝑃 means that the model classified a violent scenario correctly.

• 𝑇𝑁 means true negative, thus, it describes the number of negative samples

classified as negative. In this use-case, it describes the number of non-violent

scenarios classified as such.

• 𝐹𝑃 means false positive. It corresponds to the number of negative examples

classified as positive (incorrectly). Thus, in this use-case it refers to the number

of non-violent scenarios classified as violent.

• 𝐹𝑁 means false negative. This corresponds to the number of examples from

the positive class that were classified as negative. In this use-case it describes

the number of violent scenarios classified as non-violent.

Table 2 - Model Assessment metrics

Metric Description Justification

Accuracy

Proportion of correctly classified records

(positive or negative).

It’s a very good base-line metric as well as

defining very well how a model performs.

It is important to have a high accuracy with

a low error rate.

Recall

Proportion of positive records correctly

classified as such.

It measures the capacity of the model to

identify correctly true positives, in this

case: violent scenarios. This metric is very

important since an imbalanced dataset is

63

used which describes the real world quite

well.

AUC

Measure of the model's discriminatory

capacity.

Metric that identifies the model’s

capability to differentiate the possible

targets. For example, if in 100 scenarios

where 80 are non-violent and 20 are

violent and a random model predicts that

all of them are non-violent it would have

an 80% accuracy, however its capability to

distinguish violent and non-violent

scenarios is very low, hence the

importance of this metric

Precision
Proportion of classified positive records

that are true positives.

The same principle as the previous metric.

F1-score

Reliability measure of the classifier. In this use case, recall and precision are

both very important metrics. F1-score is a

combination of both which allows to

understand the balance between them.

Binary Cross

Entropy

The binary cross entropy loss function

compares the models’ output probabilities

to the actual real values. It penalizes the

probabilities based on the distance

between the output and the expected real

value. Since it is a measure of “distance”,

this metric should be minimized.

Since this use-case is a binary classification

problem, this makes it the perfect loss

function for the models training, since all

the probabilities lie between 0 and 1.

4.2 Data understanding

The dataset used in this master’s dissertation is provided by Bosch and it was created

by recording different scenarios using the camera of the target device and interpreted by paid

actors. The metadata present for each audio file were manually annotated following a specific

label scheme structured by Bosch.

 Although this dissertation aims to study about violence detection using auditory data,

the dataset has both audio and video files and the metadata is divided in six different

64

categories, these being: “speaker”, “background_noise”, “scene_acitivities_noises”,

“physical_violence_noises”, “scene_classification” and “silence” each of them having different

labels that can be found on Table 3.

Moreover, each of these categories were described by plotting its label durations and

complementing it with additional information about each attribute, such as its description,

examples and important observations.

Table 3 - Dataset Labels

Type Possible Labels

speaker

Speaker events Speaker aggressiveness

laughing; shouting; sigh; whispering;

screaming; singing; activated_speech;

crying; coughing; cheering; struggle;

vocalization

no_agg; agg_low; agg_medium;

agg_high

background_noise

buckle_off; buckle_on; fan; door_closing; laughing; talking; coughing; shouting;

music; other; door_opening; radio_voice; radio_music; dropping_something;

radio_voice; radio_music; animal_noise; traffic; signal-horn; construction_work;

brakes; phone_ringing; children; train; rain; wind; thunder; bicycle; car_driving;

engine; window_opening; window_closing; car_trunk; car_hood;

bumping_intocar; uncertain; undefined

scene_activities_noises

anomaly_arguing; anomaly_conversation; anomaly_driving;

anomaly_interaction; anomaly_violence; anomaly_uncertain;

normal_no_interaction; normal_conversation; normal_arguing; normal_driving;

normal_interaction; normal_radio_music; normal_uncertain

physical_violence_noises struggle; slapping; hitting; punching; kicking; uncertain

scene_classification

neutral_emotion_backseat; negative_emotion_backseat;

neutral_emotion_fronseat_ positivite_emotion_backseat;

negative_emotion_frontseat; positive_emotion_front_seat

silence silence

4.2.1 Speaker data

On the speaker set each is composed by two sub-categories: speaker aggressiveness

and speaker events. For the speaker aggressiveness sub-set, each entry represents an actor,

65

containing its seat position, gender, and the level of aggressiveness as well as the interval of

time this entry occurred. On Figure 24 the duration of each label regarding the speaker

aggressiveness, is demonstrated. Moreover, on Figure 25 the same described properties are

shown but for the speaker events.

Table 4 - Speaker aggressiveness data description

Attribute Description Type Observations Examples

actor_id
Identifies which

actor is speaking
Integer - 1; 4

gender
Identifies actors’

gender
Char - ‘m’ or ‘f’

seat_info
Specifies what

seat the actor is in
Integer - 1; 3

aggressiveness

Identifies actors’

level of

aggressiveness

String -
“no_agg”,

“agg_high”

time_start
Specifies when

the label sarts
Float - 0.0; 12.2

Figure 24 - Duration, in hours, of the speaker aggressiveness labels

66

time_end
Specifies when

the label ends
Float - 17.3 ; 64.2

Table 5 - Speaker events data description

Attribute Description Type Observations Examples

actor_id
Identifies which

actor is speaking
Integer - 1; 3

gender
Identifies actors’

gender
Char - ‘m’ or ‘f’

seat_info
Specifies what

seat the actor is in
Integer - 1; 4

event

Identifies actors’

type of action
String

Contains 2

misplaced labels

(“struggle” and

“vocalization”)

“singing”;

“laughing”

time_start
Specifies when

the label sarts
Float - 0.0; 15.4

time_end
Specifies when

the label ends
Float - 11.7; 33.1

Figure 25 - Duration, in minutes, regarding the labeled speaker events

67

 Although speaker data contains a lot of information regarding the level of

aggressiveness of each speaker, it was not chosen as the metadata for the modeling phase.

The reason behind this, is that each entry represents an actor which can create overlapping

of aggressiveness labels making it difficult to understand what label represents best a scene

interval which would create a lot of outliers. The main objective is to have an output regarding

the overall scenario and not pinpoint which person is being labeled as aggressive, which would

be extremely hard to do using only auditory data and probably result in a very inaccurate

model.

4.2.2 Physical violence data

 Physical violence noises describe the noise generated by a physical encounter between

the actors inside the car. This would be usable to identify what is happening in a violent

scenario using computer vision thus not suitable for this dissertation use case. Furthermore,

a few events were misplaced such as “fan” and “radio_music” which are not considered as

physical violence noises.

Table 6 - Physical violence noises data description

Attribute Description Type Observations Examples

event

Identifies what

physical noise is

playing

String
Multiple

misplaced labels

“slapping”,

“hitting”

time_start
Specifies when

the label sarts
Float - 0.0; 15.4

time_end
Specifies when

the label ends
Float - 11.7; 33.1

68

4.2.3 Background noise data

 Background noise and silence labels are self-explanatory, describing the overall

background noise on each time interval and where silence is present which make for a big part

of this dataset. The silence set has about 2 hours of silence labels, hence it isn’t plotted in this

sub-section. Although the highest background noise label in terms of duration is “undefined”

and a few misplaced labels such as “screaming” and “hitting”, with the right data preparation

this set could be useful in a sound event classification use case.

Table 7 - Background noises data description

Attribute Description Type Observations Examples

event

Identifies what

background noise

is playing

String
Multiple

misplaced labels

“fan”;

“radio_music”

time_start
Specifies when

the label starts
Float - 0.0; 15.4

time_end
Specifies when

the label ends
Float - 11.7; 33.1

Figure 26 - Duration, in minutes, of the labeled physical violence noises

69

4.2.4 Scene classification data

 Scene classification represents the overall emotion in a specific time interval either

on the front seat or back seat. Although it could be used for this master dissertation use case

it suffers from the same problem as the speaker labels, meaning that there are overlapping

labels between negative and positive emotion which would create outliers for this specific

problem. It would be more appropriate for an emotion classification problem when location

is also a prediction variable.

Table 8 - Scene classification data description

Attribute Description Type Observations Examples

events

Identifies the

overall

emotion from

each seat

String

Multiple

misplaced

labels

“neutral_emotion_backseat”;

“negative_emotion_frontseat”

time_start
Specifies when

the label sarts
Float - 0.0; 15.4

time_end
Specifies when

the label ends
Float - 11.7; 33.1

Figure 27 - Duration, in hours, regarding the background noises events

70

4.2.5 Scene activity noises data

Scene activity noises were the category chosen as the target variable for the future

model. It has no overlapping intervals and generalizes each one into a label making the perfect

data for a binary classification problem. It also divides into “normal” and “anomaly” labels that

can be considered as nonviolent and violent respectively.

Table 9 - Scene activity noises data description

Attribute Description Type Observations Examples

event

Identifies the

overall scene

activity

String

A few labels with

the same

meaning

“normal_conversation”;

“anomaly_violence”

time_start
Specifies when

the event starts
Float - 0.0; 15.4

time_end
Specifies when

the event ends
Float - 11.7; 33.1

Figure 28 - Duration, in hours, regarding the emotional scene classification for each seat in the car

71

Since this set has been chosen in detriment of others to create the final dataset, a quality

analysis was also conducted with the objective of identifying possible incoherencies and

missing values on the data.

Table 10 - Scene activity noises data quality analysis

Attribute
Data

type

Row

Count

Missing

values

Unique

values
mean std min max

event String 34678 0 21 - - - -

time_start Float64 34678 0 1697 47.36 47.54 0 355.2

time_end Float64 34678 0 3273 52.80 48.61 0.1 356.91

4.2.6 WAV Files

This dataset is composed by 2169 WAV files with a combined duration of near 52 hours.

It was also necessary to conduct an analysis on sample rate since all the inputs for the models

had to have the same length and dimensions. In Figure 30 is presented the sample rate count

of the WAV files which shows that they had to be resampled to a fixed SR. Not only that but 3

corrupted files were found so they weren’t used on the final dataset.

Figure 29 - Duration, in hours, regarding the scene activity labels

72

4.3 Data preparation

Data preparation is a very important CRISP-DM phase which aims to prepare data before

it is fed to the ML model which can heavily affect performance. The most common activities

are attribute selection which, in this dissertation, was done in the prior phase since another

dataset will be created in the current adopted methodology phase. In a classic machine

learning problem, data cleaning is a very important step to improve data quality, however, no

inconsistencies were found in the scene activity noises data during the Data understanding

step of the CRISP-DM methodology when it comes to missing values and misplaced labels.

However, a few labels do have the same meaning which had to be mapped to existing ones.

Another way to increase data quality is to check whether the events are correctly

labeled or not, unfortunately the only way to execute this, is to manually check each recording

and confirm its authenticity, which would be very time consuming and not cost-effective.

In Figure 31 the data preparation pipeline is presented which effectively shows the data

flow needed for this project. This pipeline is divided into metadata preparation and audio

transformations. The first one is responsible for the creation of the new dataset with the

violent related labels, and the latter applies all the necessary transformations to the audio

files for later input to the model.

Figure 30 - WAV files sample rate plot

73

On the metadata preparation, for each metadata file, scene activity noises entries were

extracted and then mapped to violent and nonviolent labels. The way that these labels were

mapped is described on Table 11. The next step all the labels are transformed into fixed sized

windows with a fixed time step, in this case a 3 second window with a 3 second step was

chosen. This means that labels with a higher duration than 3 seconds are divided into 3 second

windows and the ones with a lower duration are later padded with silence to guarantee that

all the inputs have the same size. After this process is done for each metadata file, the

nonviolent and violent labels are encoded to 0 and 1 respectively.

Table 11 - Map of scene activity metadata to violent labels

Labels Mapped label Description

“normal_*” non_violent

All the labels starting with

“normal” were mapped

to “non_violent”

“anomaly_*” violent

All the labels starting with

“anomaly” were mapped

to “violent”

“talking”;

“normal_talking”;

“vocalization”

non_violent

These labels are

considered as

“normal_conversation”

which maps to

“non_violent”

“radio_voice”;

“radio_music”;
non_violent

These labels are all

considered as

“normal_radio” which

maps to “non_violent”

“undefined”;

“anomaly_uncertain”;

“normal_uncertain”;

“anomaly_driving”;

“normal_driving”

-

Undefined and uncertain

labels were not

considered and removed

from the dataset. Driving

labels were also removed

since they do not describe

the problem at hand.

74

Figure 31 - Data preparation architecture

75

This code, that can be found in Appendix A.1, returns a new dataset containing the WAV

file path, label, start and end times as well as the duration. The previously discussed dataset

has a label distribution described on Figure 32.

On the audio transformation pipeline, the previously discussed dataset is split into train,

validation and test sets using a very standard 80% of the data for training 10% for validation

and the final 10% for testing data. For each WAV file, a window signal is loaded, resampled to

22050Hz, and then padded with zeros (silence) to correspond to a 3 second window if needed.

Since the dataset used is quite imbalanced, which truly describes the real world, data

augmentation is applied by either randomly time stretching the signal or pitch shifting. This is

done to only 50% of the train dataset, which is divided in a stratified manner to maintain the

class weights. The reason behind only training data being augmented is that artificially

augmenting the validation and test sets can lead to overly confident performance which

would describe poorly how the model would perform in a real word use case.

Finally, using the signal, the desired audio features are extracted, min max normalized

and saved as images for later usage. In Figure 33 the final label distribution for all the extracted

datasets is presented. The code used for the audio processing and data augmentation can be

found in Appendix A.2.

Figure 32 - Label distribution of the metadata dataset

76

4.4 Modelling

Following the data preparation phase the modelling stage was executed. Here is where

a set of models were selected as well as the creation of various scenarios as a way to translate

the business objectives.

4.4.1 Model architecture and alterations

In this sub-section the reason behind the model’s choice is explained as well as the

specific architecture alterations that were required and executed to solve overfitting

problems. These possible alterations can be considered regularization methods and they were

also mentioned in section 2.6. However, network depth and width were concepts introduced

in this sub-section since they refer specifically to network layers and neurons distribution.

In Table 12 a crossing matrix is presented between the models and the alterations

done to its architectures as well as if the early stopping callback was used but an in-depth

choice justification and architecture alterations were also conducted. All the models’

architectures can be found in Appendix B.1 as well as its implementation code.

Figure 33 - Label distribution of all datasets

77

Table 12 - Crossing matrix between models and possible alterations

Alterations

Architecture

Reduce network

depth
Reduce network width Added dropout

VGG-16 X X X

MobileNet X

ResNet-18 X

VGG-16

This model architecture was chosen due to it being a “true” CNN architecture. It is

composed by 13 convolutional layers and two fully connected layers which produced a good

baseline of how CNNs can perform when fed audio features as an input to solve a violence

detection problem. Moreover, it has previously been shown that this architecture presents

good results in an audio classification problem. In [71] Hershey got a 0.911 AUC using 70

million audio clips with 3000 labels which is very promising.

For this dissertation use case, a smaller variation of this model is used. The reason

behind this is that the dataset provided by Bosch is considerably smaller and by using the

regular VGG-16 network with 138 million parameters would lead to overfitting.

To avoid this problem, a narrower and shorter version of this network is implemented,

meaning the number of filters and layers were changed. The last 6 convolutional layers were

removed and the number of filters present on the dense layers were lowered to 256, 128, 1

in this specific order. The last activation is also altered to a Sigmoid function since it’s a binary

classification problem. Multiple dropout layers were also introduced as a regularization

method.

MobileNet

 Since the target device is a very computational limited platform and the violence

detection algorithm has to be executed in very short intervals of time, an efficient neural

network is needed, hence the choice behind the MobileNet architecture.

 This model is designed to be used on mobile devices being super lightweight in regards

of computational power requirements making it a suitable choice for the nature of this

dissertation. It uses depthwise separable convolution which splits a kernel into 2 separate

78

kernels that perform two convolutions: depthwise and pointwise convolution [72]. On the

depthwise convolution, a spatial feature map of all the inputs channels is returned and then

the pointwise convolution with a 1 by 1 kernel is applied in order to change its dimension

which makes it way more efficient with a low impact on accuracy.

 Alterations were done regarding network depth as a way to introduce the dropout

regularization method. In order to achieve this the Global Average Pooling layer has been

removed and five fully connected layers were added with three dropout layers with a 0.4

dropout rate. The last layer activation function was also changed to Sigmoid and the number

of neurons to 1.

ResNet-18

 Previous tests showed a clear early overfitting when using deeper networks thus the

reason behind choosing the ResNet architecture. The state-of-art section also revealed that

NN architectures can heavily benefit from an increasing number of layers when used alongside

short connections. Moreover, in the Common approaches section the Residual Neural

Network architecture showed an impressive performance regarding sound classification.

To introduce the dropout regularization method, the last fully connected layer was

removed and four were added with 128, 64, 32, 1 as the number of filters in this order.

Furthermore, the last activation function was changed to Sigmoid.

4.4.2 Testing scenarios

To test model performance, multiple testing scenarios were created. A scenario is

comprised by a combination of input variables, models, and validation techniques. As inputs,

the Constant-Q Transformations, Mel-Spectrograms, MFCCs and Chroma vector were chosen

since this master dissertation literature review shows that these features are very commonly

used in audio classification tasks. The Short-Fourier Transformation was also tested since all

the previous features apply the STFT equation in order to be extracted, meaning that the STFT

is a way faster feature to extract making it a suitable input for this use case.

79

Table 13 - Scenario description

Scenario Inputs Architectures
Validation

techniques

A Mel-Spectrograms All Train-Test Split

B
Constant-Q

Transformation
All Train-Test Split

C Chroma vector All Train-Test Split

D MFCCs All Train-Test Split

E STFT All Train-Test Split

4.4.3 Model training parameterization

On Table 14 all the parameters used for each training are described. In addition to

these parameters a TensorFlow callback was also used which is known as model checkpoint.

Similarly, to the early stopping callback, this function allows to monitor any chosen metric

which, saving model weights or the entire model when a new optimized value is achieved on

an epoch-by-epoch basis. In this case, the chosen metric is the validation F1-score since the

dataset is heavily unbalanced which makes it a better metric than accuracy to evaluate the

models. After each model training, the optimized weights for F1-score are loaded and the

architecture is evaluated on the test set. All the code for the parametrization and the callback

function can be found in Appendix B.2.

Table 14 - Model training parameters and its respective values

Parameter Value

Epochs 100

Batch size 32

Learning rate 0.005

Decay Rate Learning rate / Epochs (=) 0.005 / 100 = 0.00005

Optimizer SGD

Loss function Binary Cross entropy

Class weights {0: 0.6742, 1: 1.9357}

80

4.4.4 Model Assessment

After selecting the model architectures and defining the training parameters, the ANNs

were trained using each scenario input and then evaluated using the respective test set. To

understand model performance, the metrics defined on Success criteria subsection were

registered.

It is important to note that the results presented on the following tables were obtained

by using the test set and applying the model weights optimized for the highest validation F1-

Score which were obtained by using TensorFlow’s model checkpoint callback during training.

The training plots regarding each test scenario can be found in Appendix C.

Scenario A

 Regarding scenario A, in which Mel-Spectrograms were used as each model’s input,

the best performing architecture was the MobileNet since it has the highest values for

accuracy, precision, F1-Score and AUC and the lowest registered value for the used loss

function.

Table 15 - Validation of scenario A

Model Accuracy Precision Recall F1-Score AUC

Binary

Cross

entropy

VGG-16 0.7561 0.5190 0.7873 0.6256 0.8609 0.4736

MobileNet 0.7972 0.5810 0.7724 0.6632 0.8843 0.3733

ResNet-18 0.7936 0.5839 0.7012 0.6372 0.8670 0.4019

Table 16 - Scenario A metrics explanation

Model Accuracy Precision Recall F1-Score AUC

Binary

Cross

entropy

VGG-16

The model

correctly

classified

75.61% of all

the samples

This means

that when

the model

classified a

scenario as

This means

that the

model

correctly

classified

This means

that the

ability of the

model to

identify

86.09%

represents

the

probability

of the model

The model

had an

average of

corrected

probabilities

81

in the test

set (non-

violent and

violent).

violent from

the test set it

was correct

51.90% of

the time.

78.73% of all

the violent

scenarios in

the test set.

violent

scenarios

and to be

accurate

with those

cases is

62.56%.

to

distinguish

violent

scenarios

from non-

violent ones.

of 47.36%,

meaning it

was on

average

47.36% far

off from the

real

expected

values

(violent and

non-violent),

MobileNet

The model

correctly

classified

79.72% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

58.10% of

the time.

This means

that the

model

correctly

classified

77.24% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

cases is

66.32%.

88.43%

represents

the

probability

of the model

to

distinguish

violent

scenarios

from non-

violent ones.

The model

had an

average of

corrected

probabilities

of 37.33%,

meaning it

was on

average

37.33% far

off from the

real

expected

values

(violent and

non-violent),

ResNet-18

The model

correctly

classified

79.36% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

58.39% of

the time.

This means

that the

model

correctly

classified

70.12% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

86.70%

represents

the

probability

of the model

to

distinguish

violent

scenarios

The model

had an

average of

corrected

probabilities

of 40.19%,

meaning it

was on

average

40.19% far

82

cases is

63.72%.

from non-

violent ones.

off from the

real

expected

values

(violent and

non-violent),

Scenario B

 On scenario B, Constant-Q Transformations were used as inputs and again, the

MobileNet architecture was the best performing model. It had the best metric values, losing

on Recall to the VGG-16 model and having a higher loss function than the ResNet architecture.

Table 17 - Validation of scenario B

Model Accuracy Precision Recall F1-Score AUC

Binary

Cross

entropy

VGG-16 0.7879 0.5681 0.7469 0.6454 0.8723 0.4352

MobileNet 0.8101 0.6120 0.7246 0.6636 0.8824 0.4147

ResNet-18 0.8074 0.6247 0.6380 0.6312 0.8737 0.3941

Table 18 - Scenario B metrics explanation

Model Accuracy Precision Recall F1-Score AUC

Binary

Cross

entropy

VGG-16

The model

correctly

classified

78.79% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

56.81% of

the time.

This means

that the

model

correctly

classified

74.69% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

86.09%

represents

the

probability

of the model

to

distinguish

violent

scenarios

The model

had an

average of

corrected

probabilities

of 43.52%,

meaning it

was on

average

43.52% far

83

cases is

64.54%.

from non-

violent ones.

off from the

real

expected

values

(violent and

non-violent),

MobileNet

The model

correctly

classified

81.01% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

61.20% of

the time.

This means

that the

model

correctly

classified

72.46% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

cases is

66.36%.

88.24%

represents

the

probability

of the model

to

distinguish

violent

scenarios

from non-

violent ones.

The model

had an

average of

corrected

probabilities

of 41.47%,

meaning it

was on

average

41.47% far

off from the

real

expected

values

(violent and

non-violent),

ResNet-18

The model

correctly

classified

80.74% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

62.47% of

the time.

This means

that the

model

correctly

classified

63.80% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

cases is

63.12%.

87.37%

represents

the

probability

of the model

to

distinguish

violent

scenarios

from non-

violent ones.

The model

had an

average of

corrected

probabilities

of 39.41%,

meaning it

was on

average

39.41% far

off from the

real

expected

values

84

(violent and

non-violent),

Scenario C

 Scenario C was the worst out of all testing scenarios which shows that Chroma vectors

are not suitable for this use case. Nonetheless, the MobileNet architecture proved again to be

the best performer out of the 3 models, only losing in the recall metric to the VGG-16

architecture.

Table 19 - Validation of scenario C

Model Accuracy Precision Recall F1-Score AUC

Binary

Cross

entropy

VGG-16 0.6844 0.4440 0.8767 0.5895 0.8070 0.4772

MobileNet 0.7108 0.4663 0.8246 0.5957 0.8230 0.4487

ResNet-18 0.7007 0.4556 0.8102 0.5832 0.8103 0.4725

Table 20 - Scenario C metrics explanation

Model Accuracy Precision Recall F1-Score AUC

Binary

Cross

entropy

VGG-16

The model

correctly

classified

68.44% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

44.40% of

the time.

This means

that the

model

correctly

classified

87.67% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

cases is

58.95%.

80.70%

represents

the

probability

of the model

to

distinguish

violent

scenarios

from non-

violent ones.

The model

had an

average of

corrected

probabilities

of 47.72%,

meaning it

was on

average

47.72% far

off from the

real

expected

85

values

(violent and

non-violent),

MobileNet

The model

correctly

classified

71.08% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

46.63% of

the time.

This means

that the

model

correctly

classified

82.46% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

cases is

59.57%.

82.30%

represents

the

probability

of the model

to

distinguish

violent

scenarios

from non-

violent ones.

The model

had an

average of

corrected

probabilities

of 44.87%,

meaning it

was on

average

44.87% far

off from the

real

expected

values

(violent and

non-violent),

ResNet-18

The model

correctly

classified

70.07% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

45.56% of

the time.

This means

that the

model

correctly

classified

81.02% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

cases is

58.32%.

81.03%

represents

the

probability

of the model

to

distinguish

violent

scenarios

from non-

violent ones.

The model

had an

average of

corrected

probabilities

of 47.25%,

meaning it

was on

average

47.25% far

off from the

real

expected

values

(violent and

non-violent),

86

Scenario D

The MFCC scenario was clearly the best audio feature out of all testing scenarios

concluding in a very close call between all the models. In this scenario the VGG-16 wins in both

accuracy and precision, MobileNet has better AUC and loss function values and lastly ResNet

has the highest recall and F1-score. Since the difference on metric values is quite low, the

inference time was considered in order to decide which model performs best in which

MobileNet performs best against the other two architectures.

Table 21 - Validation of scenario D

Model Accuracy Precision Recall F1-Score AUC

Binary

Cross

entropy

VGG-16 0.8160 0.6219 0.7352 0.6738 0.8906 0.3723

MobileNet 0.8142 0.6174 0.7395 0.6730 0.8902 0.3625

ResNet-18 0.8103 0.6052 0.7645 0.6756 0.8901 0.3872

Table 22 - Scenario D metrics explanation

Model Accuracy Precision Recall F1-Score AUC

Binary

Cross

entropy

VGG-16

The model

correctly

classified

81.60% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

62.19% of

the time.

This means

that the

model

correctly

classified

73.52% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

cases is

67.38%.

89.06%

represents

the

probability

of the model

to

distinguish

violent

scenarios

from non-

violent ones.

The model

had an

average of

corrected

probabilities

of 37.23%,

meaning it

was on

average

37.23% far

off from the

real

expected

values

87

(violent and

non-violent),

MobileNet

The model

correctly

classified

81.42% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

61.74% of

the time.

This means

that the

model

correctly

classified

73.95% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

cases is

67.30%.

89.02%

represents

the

probability

of the model

to

distinguish

violent

scenarios

from non-

violent ones.

The model

had an

average of

corrected

probabilities

of 36.25%,

meaning it

was on

average

36.25% far

off from the

real

expected

values

(violent and

non-violent),

ResNet-18

The model

correctly

classified

81.03% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

60.52% of

the time.

This means

that the

model

correctly

classified

76.45% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

cases is

67.56%.

89.01%

represents

the

probability

of the model

to

distinguish

violent

scenarios

from non-

violent ones.

The model

had an

average of

corrected

probabilities

of 38.72%,

meaning it

was on

average

38.72% far

off from the

real

expected

values

(violent and

non-violent),

88

Scenario E

For the last scenario, the STFT audio feature was used, and the registered metrics show

that, again, the MobileNet architecture outperformed the other two models having better

results for recall, F1-Score, AUC and loss function values.

Table 23 - Validation of scenario E

Model Accuracy Precision Recall F1-Score AUC

Binary

Cross

entropy

VGG-16 0.8013 0.5911 0.7501 0.6612 0.8834 0.4176

MobileNet 0.8027 0.5897 0.7778 0.6708 0.8891 0.3735

ResNet-18 0.8101 0.6151 0.7087 0.6586 0.8810 0.3745

Table 24 - Scenario E metrics explanation

Model Accuracy Precision Recall F1-Score AUC

Binary

Cross

entropy

VGG-16

The model

correctly

classified

80.13% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

59.11% of

the time.

This means

that the

model

correctly

classified

75.01% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

cases is

66.12%.

88.34%

represents

the

probability

of the model

to

distinguish

violent

scenarios

from non-

violent ones.

The model

had an

average of

corrected

probabilities

of 41.76%,

meaning it

was on

average

41.76% far

off from the

real

expected

values

(violent and

non-violent),

MobileNet
The model

correctly

This means

that when

This means

that the

This means

that the

88.91%

represents

The model

had an

89

classified

80.27% of all

the samples

in the test

set (non-

violent and

violent).

the model

classified a

scenario as

violent from

the test set it

was correct

58.97% of

the time.

model

correctly

classified

77.78% of all

the violent

scenarios in

the test set.

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

cases is

67.08%.

the

probability

of the model

to

distinguish

violent

scenarios

from non-

violent ones.

average of

corrected

probabilities

of 37.35%,

meaning it

was on

average

37.35% far

off from the

real

expected

values

(violent and

non-violent),

ResNet-18

The model

correctly

classified

81.01% of all

the samples

in the test

set (non-

violent and

violent).

This means

that when

the model

classified a

scenario as

violent from

the test set it

was correct

61.51% of

the time.

This means

that the

model

correctly

classified

70.87% of all

the violent

scenarios in

the test set.

This means

that the

ability of the

model to

identify

violent

scenarios

and to be

accurate

with those

cases is

65.86%.

88.10%

represents

the

probability

of the model

to

distinguish

violent

scenarios

from non-

violent ones.

The model

had an

average of

corrected

probabilities

of 37.45%,

meaning it

was on

average

37.45% far

off from the

real

expected

values

(violent and

non-violent),

4.5 Evaluation

The evaluation phase from the CRISP-DM methodology is one of the most important

stages of the project since it aggregates all the models and scenarios as well as the obtained

90

results. This type of analysis generates a greater view on what model performs best regarding

this master dissertation use case, meaning the most suitable model for in-car violence

detection only using auditory data with the highest predictive capability was extracted from

this step.

Table 25 - Table with the best model results per scenario

Metric

Scenario

Accuracy Precision Recall F1-Score AUC

Binary

Cross

entropy

Model

A 0.7972 0.5810 0.7724 0.6632 0.8843 0.3733 MobileNet

B 0.8101 0.6120 0.7246 0.6636 0.8824 0.4147 MobileNet

C 0.7108 0.4663 0.8246 0.5957 0.8230 0.4487 MobileNet

D 0.8142 0.6174 0.7395 0.6730 0.8902 0.3625 MobileNet

E 0.8027 0.5897 0.7778 0.6708 0.8891 0.3735 MobileNet

The Table 25 is created by extracting the best model per scenario which are explained

on the Model Assessment sub-phase. All the scenarios share the same best model, which

means the MobileNet architecture is the one which will be used for the CRISP-DM’s

deployment phase.

Scenario D achieved the highest values when it comes to the success criteria which

allows to conclude that from all the audio features tested, the MFCC audio feature is the best

data to use as an input for in-car violence detection. In other words, the MobileNet

architecture and MFCC image representation should be the chosen model architecture and

audio feature, respectively, for the following phase of the CRISP-DM methodology.

4.6 Deployment

Although it was anticipated that the proposed architecture would be ported to a target

device the results did not meet Bosch’s success criteria. Moreover, due to time constraints it

was impossible to perform real-life experiments using the final model in the RideCare use-

case context. Despite this fact, the present work presented valid contributions when it comes

to understanding how these architectures work and how well they perform on violence

detection, using audio data (in its visual representation form) related tasks.

91

In the context of the RideCare project, the deployment phase would correspond to the

integration of the extracted model on the evaluation phase on the target device. This implies

that a similar but new pipeline would have to be integrated as well, meaning transforming the

audio signals into its MFCC representation and then feed it to the trained MobileNet

architecture which in turn would predict whether it represents a violent scenario or not.

Finally, this pipeline would then alert the mobility service provider of the incident which allows

the person in charge to take action, guaranteeing a security improvement of all parties

involved.

92

5. CONCLUSIONS

This last chapter presents an overview of all the work done with a special focus on the

extracted conclusions from its practical implementation. Therefore, it is divided into three

main sections, the first one being a summary of all the work done throughout this dissertation,

the second aims to evaluate all the contributions of this master’s dissertation by comparing

the previously defined objectives to the completed ones and finally, the third section

describes these projects limitations as well as future work that can be developed to improve

it.

5.1 Work summary

Deep Learning has been used in various subjects such as image recognition, fraud

detection, natural language processing and audio classification. This dissertation aimed to

develop a DL architecture that can detect violent scenarios based on auditory data. It also

contributes to a better understanding on if audio inputs in combination with a Deep Neural

Network is enough to detect in-car violent scenarios which has never been researched before.

Initially, in the Introduction section, the problem was contextualized in order to identify

the research gap and what the project requirements are. The objectives and expected result

are also discussed in this phase. A work plan was also defined in order to specify the different

project milestones and to temporally organize the different tasks. Additionally, the specified

tasks were also described. This work plan was a visual reference designed for an efficient

implementation of this project, guarantying an easier time allocation to reach the project

requirements.

A literature review was also conducted in order to describe and explain the various

concepts associated with the task at hand, framing the issue in a conceptual form with the

explaining of Deep Learning, Artificial Neural Networks, Convolutional Neural Networks,

Recurrent Neural Networks, Residual Neural Networks and the different representations of

audio features, alongside its possible augmentations for future use on the DL architecture.

Artificial Neural Networks and its variants were the focus of this chapter since it was the

93

machine learning variant associated to the practical implementation of this master

dissertation. In this chapter, regularization methods were also discussed since they are a very

important option to explore on the practical development of this dissertation in order to

minimize overfitting and improve model generalization, helping with predictions on real-word

and unseen data.

Finally, a deep dive in related work and common approaches was taken, which was

extremely important since it lighted the path on how these networks are implemented and

how can they perform on acoustic event detection and sound classification, which highly

influenced the final solution architecture.

In order to lower the project complexity and organize it in different steps, the

methodologic approach CRISP-DM was also discussed. Furthermore, the reason behind using

Python is explained alongside the libraries and tools that were used for the practical

development of this master dissertation.

In chapter 4 the use case was contextualized as well as the practical execution of the

CRISP-DM methodology, assuring that every requirement is met. Here the business

understanding is described and all the steps for the meta and audio data extraction are

represented. Finally, in the end of this chapter the results are presented as well as a comparing

table and the best performing model is selected.

5.2 Contributions

Concluding the practical work of this dissertation it is possible to summarize the current

situation status regarding the initially defined objectives and the actual acquired results. It is

safe to say that most of the expectations were met and that the present work fulfilled with

the main goal of developing a deep learning-based model that is able to classify violent

scenarios using only auditory data with more than 80% accuracy.

Although it was expected that the model will be implemented on a target device, this

requirement has not been met due to the results not meeting Bosch’s success criteria. As per

the criteria, in the given use case, a model should be capable of near perfect violent scenario

detections, but the solution architecture doesn’t allow that, given that it uses audio features

which makes it very sensitive to frequency and amplitude and not semantics or even physical

94

altercations. Another pre-defined objective was the development of a scientific article which

was not met due to time constraints and the need to allocate more time resources to other

tasks such as implementation and testing of scenarios.

For the violence detection using auditory data domain, the state-of-the-art review

allowed to understand that deep learning solutions are very uncommon approach for this

problem, making this investigation a baseline for future ones. The practical development of

this dissertation also contributed in a scientific way, allowing a higher understanding of how

well a deep learning architecture, while using audio features as inputs, can perform on a

violence classification task. Not only that, but the MFCC testing scenario showed the highest

metric values which implies that it is the best option for this use case.

5.3 Limitations and future work

The solution presented in this Master’s dissertation and the results obtained alongside

it, can be considered a solid baseline for a future machine learning implementation on the

mobile service industry specifically for in-car violence detection. Nonetheless, there are a few

limitations and aspects that should be considered as future work which will be explained in

this section.

The presented solution, considering it’s a deep learning approach, is computationally

inexpensive. On the other hand, the usage of audio feature representations as input makes it

highly dependent on frequency and amplitude, which means that in a situation where a

violent discussion or altercation is in place and these two variables are not very much present

the model could classify the scenario incorrectly. This opens a possible new approach, by

combining a speech to text model and feeding its outputs to a DL architecture capable of text

classification.

Furthermore, for the practical implementation of this master dissertation a dataset was

needed to be created from the provided one, potentially introducing data noise which can

heavily influence the models’ classification capability. In addition, for deep learning standards

the number of samples was rather low. Hence, in the future, a more suitable and increasing

set of data could possibly improve the models results, in this context or in others.

95

In the practical development of this investigation, only three deep learning model

architectures were tested, meaning that in the future more variations of Neural Networks

should be tested as well as the inclusion of more audio features. Furthermore, audio features

can also be stacked, meaning multiple inputs can be fed to the models. This means that

feature selection algorithms could also be used in order to improve the final architecture

performance.

Finally, the solution should be deployed and followed by a business validation. This

means that the developed prototype should be first tested in a controlled environment where

an analysis should be conducted in order to understand the solution classification capability

against real world data, its ability to learn from the said information and its computational

performance in real-time.

96

BIBLIOGRAPHY

[1] L. Cai, J. Gao, and D. Zhao, “A review of the application of deep learning in medical image

classification and segmentation,” Ann Transl Med, vol. 8, no. 11, p. 713, Jun. 2020, doi:
10.21037/atm.2020.02.44.

[2] M. Daily, S. Medasani, R. Behringer, and M. Trivedi, “Self-Driving Cars,” Computer, vol.
50, no. 12, pp. 18–23, Dec. 2017, doi: 10.1109/MC.2017.4451204.

[3] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object Detection With Deep Learning: A
Review,” IEEE Trans. Neural Netw. Learning Syst., vol. 30, no. 11, pp. 3212–3232, Nov.
2019, doi: 10.1109/TNNLS.2018.2876865.

[4] S. Balaban, “Deep learning and face recognition: the state of the art,” Baltimore,
Maryland, United States, May 2015, p. 94570B. doi: 10.1117/12.2181526.

[5] A. Sheth, “Internet of Things to Smart IoT Through Semantic, Cognitive, and Perceptual
Computing,” IEEE Intell. Syst., vol. 31, no. 2, pp. 108–112, Mar. 2016, doi:
10.1109/MIS.2016.34.

[6] I. Goodfellow and Y. Bengio, Deep Learning. MIT Press, 2016. [Online]. Available:
http://www.deeplearningbook.org

[7] A. Esteva et al., “A guide to deep learning in healthcare,” Nat Med, vol. 25, no. 1, pp. 24–
29, Jan. 2019, doi: 10.1038/s41591-018-0316-z.

[8] B. J. Wythoff, “Backpropagation neural networks,” Chemometrics and Intelligent
Laboratory Systems, vol. 18, no. 2, pp. 115–155, Feb. 1993, doi: 10.1016/0169-
7439(93)80052-J.

[9] S. Sharma, S. Sharma, and A. Athaiya, “ACTIVATION FUNCTIONS IN NEURAL NETWORKS,”
IJEAST, vol. 04, no. 12, pp. 310–316, May 2020, doi: 10.33564/IJEAST.2020.v04i12.054.

[10] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions:
Comparison of trends in Practice and Research for Deep Learning,” 2018, doi:
10.48550/ARXIV.1811.03378.

[11] B. Karlik and A. V. Olgac, “Performance Analysis of Various Activation Functions in
Generalized MLP Architectures of Neural Networks,” International Journal of Artificial
Intelligence and Expert Systems, vol. 1, no. 4, pp. 111–122, 2011.

[12] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation Functions,” 2017, doi:
10.48550/ARXIV.1710.05941.

[13] S. Sharma, “Activation Functions in Neural Networks,” https://towardsdatascience.com/.
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
(accessed Mar. 25, 2022).

[14] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an
overview and application in radiology,” Insights Imaging, vol. 9, no. 4, pp. 611–629, Aug.
2018, doi: 10.1007/s13244-018-0639-9.

[15] M. Pak and S. Kim, “A review of deep learning in image recognition,” in 2017 4th
International Conference on Computer Applications and Information Processing
Technology (CAIPT), Kuta Bali, Aug. 2017, pp. 1–3. doi: 10.1109/CAIPT.2017.8320684.

[16] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,” 2015, doi:
10.48550/ARXIV.1511.08458.

97

[17] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent Advances in
Recurrent Neural Networks.” arXiv, Feb. 22, 2018. Accessed: May 22, 2022. [Online].
Available: http://arxiv.org/abs/1801.01078

[18] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative Study of CNN and RNN for Natural
Language Processing.” arXiv, Feb. 07, 2017. Accessed: May 22, 2022. [Online]. Available:
http://arxiv.org/abs/1702.01923

[19] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural
networks,” in 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, Vancouver, BC, Canada, May 2013, pp. 6645–6649. doi:
10.1109/ICASSP.2013.6638947.

[20] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Convolutional recurrent neural networks for
music classification,” in 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), New Orleans, LA, Mar. 2017, pp. 2392–2396. doi:
10.1109/ICASSP.2017.7952585.

[21] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A
Search Space Odyssey,” IEEE Trans. Neural Netw. Learning Syst., vol. 28, no. 10, pp.
2222–2232, Oct. 2017, doi: 10.1109/TNNLS.2016.2582924.

[22] S. Siami-Namini, N. Tavakoli, and A. Siami Namin, “A Comparison of ARIMA and LSTM in
Forecasting Time Series,” in 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), Orlando, FL, Dec. 2018, pp. 1394–1401. doi:
10.1109/ICMLA.2018.00227.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition.” arXiv,
Dec. 10, 2015. Accessed: Sep. 28, 2022. [Online]. Available:
http://arxiv.org/abs/1512.03385

[24] M. Q. Pham, B. Oudompheng, J. I. Mars, and B. Nicolas, “A Noise-Robust Method with
Smoothed ℓ 1 / ℓ 2 Regularization for Sparse Moving-Source Mapping,” Signal
Processing, vol. 135, pp. 96–106, Jun. 2017, doi: 10.1016/j.sigpro.2016.12.022.

[25] B. Bilgic et al., “Fast image reconstruction with L2-regularization: Fast Reconstruction
With L2-Regularization,” J. Magn. Reson. Imaging, vol. 40, no. 1, pp. 181–191, Jul. 2014,
doi: 10.1002/jmri.24365.

[26] O. Demir-Kavuk, M. Kamada, T. Akutsu, and E.-W. Knapp, “Prediction using step-wise L1,
L2 regularization and feature selection for small data sets with large number of features,”
BMC Bioinformatics, vol. 12, no. 1, p. 412, Dec. 2011, doi: 10.1186/1471-2105-12-412.

[27] H. Soumare, A. Benkahla, and N. Gmati, “Deep learning regularization techniques to
genomics data,” Array, vol. 11, p. 100068, Sep. 2021, doi: 10.1016/j.array.2021.100068.

[28] N. Tripuraneni, B. Adlam, and J. Pennington, “Covariate Shift in High-Dimensional
Random Feature Regression,” arXiv:2111.08234 [cs, stat], Nov. 2021, Accessed: May 10,
2022. [Online]. Available: http://arxiv.org/abs/2111.08234

[29] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift,” arXiv:1502.03167 [cs], Mar. 2015, Accessed: May 10,
2022. [Online]. Available: http://arxiv.org/abs/1502.03167

[30] Guodong Guo and S. Z. Li, “Content-based audio classification and retrieval by support
vector machines,” IEEE Trans. Neural Netw., vol. 14, no. 1, pp. 209–215, Jan. 2003, doi:
10.1109/TNN.2002.806626.

98

[31] F. Rong, “Audio Classification Method Based on Machine Learning,” in 2016 International
Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha,
China, Dec. 2016, pp. 81–84. doi: 10.1109/ICITBS.2016.98.

[32] S. Cunningham, H. Ridley, J. Weinel, and R. Picking, “Supervised machine learning for
audio emotion recognition: Enhancing film sound design using audio features, regression
models and artificial neural networks,” Pers Ubiquit Comput, vol. 25, no. 4, pp. 637–650,
Aug. 2021, doi: 10.1007/s00779-020-01389-0.

[33] T. Petri, “Exploring relationships between audio features and emotion in music,” Front.
Hum. Neurosci., vol. 3, 2009, doi: 10.3389/conf.neuro.09.2009.02.033.

[34] B. Rajoub, “Characterization of biomedical signals: Feature engineering and extraction,”
in Biomedical Signal Processing and Artificial Intelligence in Healthcare, Elsevier, 2020,
pp. 29–50. doi: 10.1016/B978-0-12-818946-7.00002-0.

[35] N. Kehtarnavaz, “Frequency Domain Processing,” in Digital Signal Processing System
Design, Elsevier, 2008, pp. 175–196. doi: 10.1016/B978-0-12-374490-6.00007-6.

[36] B. Logan, “Mel Frequency Cepstral Coefficients for Music Modelling,” Proc. 1st Int.
Symposium Music Information Retrieval, 2000.

[37] R. Hasan, M. Jamil, G. Rabbani, and S. Rahman, “Speaker Indentification Using Mel
Frequency Cepstral Coefficients,” Proceedings of the 3rd International Conference on
Eletrical and Computer Engineering (ICECE 2004), Dec. 2004.

[38] L. Muda, M. Begam, and I. Elamvazuthi, “Voice Recognition Algorithms using Mel
Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques.”
arXiv, Mar. 22, 2010. Accessed: May 21, 2022. [Online]. Available:
http://arxiv.org/abs/1003.4083

[39] M. Henaff, K. Jarrett, K. Kavukcuoglu, and Y. LeCun, “UNSUPERVISED LEARNING OF
SPARSE FEATURES FOR SCALABLE AUDIO CLASSIFICATION,” ISMIR, p. 6, 2011.

[40] J. C. Brown, “Calculation of a constant Q spectral transform,” The Journal of the
Acoustical Society of America, vol. 89, no. 1, pp. 425–434, Jan. 1991, doi:
10.1121/1.400476.

[41] M. A. Bartsch and G. H. Wakefield, “Audio thumbnailing of popular music using chroma-
based representations,” IEEE Trans. Multimedia, vol. 7, no. 1, pp. 96–104, Feb. 2005, doi:
10.1109/TMM.2004.840597.

[42] D. P. W. Ellis and G. E. Poliner, “Identifying `Cover Songs’ with Chroma Features and
Dynamic Programming Beat Tracking,” in 2007 IEEE International Conference on
Acoustics, Speech and Signal Processing - ICASSP ’07, Honolulu, HI, Apr. 2007, p. IV-1429-
IV–1432. doi: 10.1109/ICASSP.2007.367348.

[43] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep
Learning,” J Big Data, vol. 6, no. 1, p. 60, Dec. 2019, doi: 10.1186/s40537-019-0197-0.

[44] S. Wei, S. Zou, F. Liao, and weimin lang, “A Comparison on Data Augmentation Methods
Based on Deep Learning for Audio Classification,” J. Phys.: Conf. Ser., vol. 1453, no. 1, p.
012085, Jan. 2020, doi: 10.1088/1742-6596/1453/1/012085.

[45] D. S. Park et al., “SpecAugment: A Simple Data Augmentation Method for Automatic
Speech Recognition,” 2019, doi: 10.48550/ARXIV.1904.08779.

[46] T. Heittola, A. Mesaros, T. Virtanen, and A. Eronen, “Sound Event Detection in
Multisource Environments Using Source Separation,” Machine Listening in Multisource
Environments, p. 5, 2011.

99

[47] T. K. Chan and C. S. Chin, “A Comprehensive Review of Polyphonic Sound Event
Detection,” IEEE Access, vol. 8, pp. 103339–103373, 2020, doi:
10.1109/ACCESS.2020.2999388.

[48] J. Salamon, C. Jacoby, and J. P. Bello, “A Dataset and Taxonomy for Urban Sound
Research,” in Proceedings of the 22nd ACM international conference on Multimedia,
Orlando Florida USA, Nov. 2014, pp. 1041–1044. doi: 10.1145/2647868.2655045.

[49] T. Zhang and C.-C. J. Kuo, “Audio content analysis for online audiovisual data
segmentation and classification,” IEEE Trans. Speech Audio Process., vol. 9, no. 4, pp.
441–457, May 2001, doi: 10.1109/89.917689.

[50] S. Chu, S. Narayanan, and C.-C. J. Kuo, “Environmental Sound Recognition With Time–
Frequency Audio Features,” IEEE Trans. Audio Speech Lang. Process., vol. 17, no. 6, pp.
1142–1158, Aug. 2009, doi: 10.1109/TASL.2009.2017438.

[51] M. Papakostas et al., “Deep Visual Attributes vs. Hand-Crafted Audio Features on
Multidomain Speech Emotion Recognition,” Computation, vol. 5, no. 4, p. 26, Jun. 2017,
doi: 10.3390/computation5020026.

[52] J. F. Gemmeke, L. Vuegen, P. Karsmakers, B. Vanrumste, and H. Van hamme, “An
exemplar-based NMF approach to audio event detection,” in 2013 IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, Oct. 2013,
pp. 1–4. doi: 10.1109/WASPAA.2013.6701847.

[53] P. Khunarsal, C. Lursinsap, and T. Raicharoen, “Very short time environmental sound
classification based on spectrogram pattern matching,” Information Sciences, vol. 243,
pp. 57–74, Sep. 2013, doi: 10.1016/j.ins.2013.04.014.

[54] Z. Kons and O. Toledo-Ronen, “Audio event classification using deep neural networks,”
in Interspeech 2013, Aug. 2013, pp. 1482–1486. doi: 10.21437/Interspeech.2013-384.

[55] J. Salamon and J. P. Bello, “Deep Convolutional Neural Networks and Data Augmentation
for Environmental Sound Classification,” IEEE Signal Process. Lett., vol. 24, no. 3, pp. 279–
283, Mar. 2017, doi: 10.1109/LSP.2017.2657381.

[56] K. J. Piczak, “Environmental sound classification with convolutional neural networks,” in
2015 IEEE 25th International Workshop on Machine Learning for Signal Processing
(MLSP), Boston, MA, USA, Sep. 2015, pp. 1–6. doi: 10.1109/MLSP.2015.7324337.

[57] X. Zhang, Y. Zou, and W. Shi, “Dilated convolution neural network with LeakyReLU for
environmental sound classification,” in 2017 22nd International Conference on Digital
Signal Processing (DSP), London, Aug. 2017, pp. 1–5. doi: 10.1109/ICDSP.2017.8096153.

[58] K. Palanisamy, D. Singhania, and A. Yao, “Rethinking CNN Models for Audio
Classification,” 2020, doi: 10.48550/ARXIV.2007.11154.

[59] R. Müller, F. Ritz, S. Illium, and C. Linnhoff-Popien, “Acoustic Anomaly Detection for
Machine Sounds based on Image Transfer Learning,” 2020, doi:
10.48550/ARXIV.2006.03429.

[60] M. Ramzan et al., “A Review on State-of-the-Art Violence Detection Techniques,” IEEE
Access, vol. 7, pp. 107560–107575, 2019, doi: 10.1109/ACCESS.2019.2932114.

[61] T. Hassner, Y. Itcher, and O. Kliper-Gross, “Violent flows: Real-time detection of violent
crowd behavior,” in 2012 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, Providence, RI, USA, Jun. 2012, pp. 1–6. doi:
10.1109/CVPRW.2012.6239348.

[62] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos, “Anomaly detection in crowded
scenes,” in 2010 IEEE Computer Society Conference on Computer Vision and Pattern

100

Recognition, San Francisco, CA, USA, Jun. 2010, pp. 1975–1981. doi:
10.1109/CVPR.2010.5539872.

[63] A.-M. R. Abdali and R. F. Al-Tuma, “Robust Real-Time Violence Detection in Video Using
CNN And LSTM,” in 2019 2nd Scientific Conference of Computer Sciences (SCCS), Baghdad,
Iraq, Mar. 2019, pp. 104–108. doi: 10.1109/SCCS.2019.8852616.

[64] T. Giannakopoulos, D. Kosmopoulos, A. Aristidou, and S. Theodoridis, “Violence Content
Classification Using Audio Features,” in Advances in Artificial Intelligence, vol. 3955, G.
Antoniou, G. Potamias, C. Spyropoulos, and D. Plexousakis, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 502–507. doi: 10.1007/11752912_55.

[65] T. Giannakopoulos, A. Pikrakis, and S. Theodoridis, “A Multi-Class Audio Classification
Method With Respect To Violent Content In Movies Using Bayesian Networks,” in 2007
IEEE 9th Workshop on Multimedia Signal Processing, Chania, Crete, Greece, 2007, pp.
90–93. doi: 10.1109/MMSP.2007.4412825.

[66] M. Meire and P. Karsmakers, “Comparison of Deep Autoencoder Architectures for Real-
time Acoustic Based Anomaly Detection in Assets,” in 2019 10th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications (IDAACS), Metz, France, Sep. 2019, pp. 786–790. doi:
10.1109/IDAACS.2019.8924301.

[67] P. Becker, C. Roth, A. Roennau, and R. Dillmann, “Acoustic Anomaly Detection in Additive
Manufacturing with Long Short-Term Memory Neural Networks,” in 2020 IEEE 7th
International Conference on Industrial Engineering and Applications (ICIEA), Bangkok,
Thailand, Apr. 2020, pp. 921–926. doi: 10.1109/ICIEA49774.2020.9102002.

[68] E. Rushe and B. M. Namee, “Anomaly Detection in Raw Audio Using Deep Autoregressive
Networks,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Brighton, United Kingdom, May 2019, pp. 3597–3601. doi:
10.1109/ICASSP.2019.8683414.

[69] A. Azevedo and M. Santos, “KDD, semma and CRISP-DM: A parallel overview,” Jun. 2008.
[70] R. Wirth and H. Jochen, “CRISP-DM: Towards a standard process model for data mining,”

Proceedings of the Fourth International Conference on the Practical Application of
Knowledge Discovery and Data Mining, pp. 29–39, 2000.

[71] S. Hershey et al., “CNN architectures for large-scale audio classification,” in 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), New
Orleans, LA, Mar. 2017, pp. 131–135. doi: 10.1109/ICASSP.2017.7952132.

[72] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications,” 2017, doi: 10.48550/ARXIV.1704.04861.

101

Appendix A

Appendix A.1 Code used for the metadata preparation

VIOLENT_LABELS = ["anomaly_arguing", "anomaly_conversation",

"anomaly_fighting", "anomaly_interaction", "anomaly_talking",

"anomaly_violence"]

NON_VIOLENT_LABELS = ["normal_arguing", "normal_conversation",

"normal_interaction", "normal_nointeraction", "normal_talking",

 "normal_radio_music","radio_music", "talking"]

def get_label(label):

 if label in VIOLENT_LABELS:

 return "violent"

 elif label in NON_VIOLENT_LABELS:

 return "non_violent"

 else:

 return None

def load_json(file_path):

 with open(file_path, "r") as f:

 data = json.load(f)

 if "scene_activities_noises" in data['audio_metadata']:

 return data["audio_metadata"]["scene_activities_noises"]

 else:

 return []

def get_data(json_path, wav_path):

 scene_data = load_json(json_path)

 data = {

 "File_path" : [],

 "Time_start" : [],

 "Time_end": [],

 "Duration": [],

 "Label" : [],

 }

 for scene_noise in scene_data:

 if "event" in scene_noise:

 label = get_label(scene_noise["event"])

 if label == None:

 continue

 data["Label"].append(label)

 data["Time_start"].append(float(scene_noise["time_start"]))

 data["Time_end"].append(float(scene_noise["time_end"]))

 data["Duration"].append(round(float(scene_noise["time_end"])

- float(scene_noise["time_start"]), 2))

 data["File_path"].append(wav_path)

102

 else:

 continue

 df = pd.DataFrame(data)

 df = df.sort_values(['Time_start', 'Time_end'], ascending=[True,

True])

 return df

def prepare_dataset(dataset_path, window_size, step_size, output_dir):

 df_structure = {

 "File_path" : [],

 "Time_start" : [],

 "Time_end" : [],

 "Duration" : [],

 "Label" : []

 }

 df = pd.DataFrame(df_structure)

 for root, dirnames, filenames in os.walk(dataset_path):

 for f in filenames:

 if f.endswith('json'):

 json_path = os.path.join(root, f)

 wav_file = f.replace(".json",

"_center_top_wav_audio_ros.wav")

 wav_file_path = os.path.join(root,

wav_file).replace(os.sep, '/')

 data = get_data(json_path, wav_file_path)

 for row in data.itertuples():

 start_time = row.Time_start

 end_time = row.Time_end

 while start_time < end_time:

 if start_time + step_size < end_time:

 window_time_end = start_time + step_size

 duration = window_size

 else:

 window_time_end = end_time

 duration = end_time - start_time

 duration = round(duration, 2)

 data_df = pd.DataFrame({'File_path':

[row.File_path], 'Time_start': [start_time],

 'Time_end':

[window_time_end],'Duration': [duration],

 'Label': [row.Label]})

 df = pd.concat([df,data_df],axis=0)

 start_time += step_size

 label_encoder = preprocessing.LabelEncoder()

 df['LabelID'] = label_encoder.fit_transform(df["Label"])

 df.to_csv(output_dir)

 print(df[["Label", "LabelID"]].value_counts())

 print(df["Duration"].mean())

 print(df["Duration"].min())

 print(df["Duration"].max())

if __name__ == "__main__":

103

 RANDOM_JSON_FILE =

"fs/datasets/av/dataset_main/Hanau02/i3/Hanau02_i3_027.json"

 DATASET_PATH = "fs/datasets/av/dataset_main/"

 STEP_SIZE = 3

 WIN_SIZE = 3

 OUTPUT_DIR =

"data_preparation/metadata_preprocessing/results/dataset_san_{}win_{}step

.csv".format(WIN_SIZE, STEP_SIZE)

 prepare_dataset(DATASET_PATH,WIN_SIZE, STEP_SIZE, OUTPUT_DIR)

Listing 1 - Metadata preparation code

Appendix A.2 Code used for the audio data preparation

class Loader:

 def __init__(self, sample_rate, mono): # offset being time_start and

duration is the window_size(seconds)

 self.sample_rate = sample_rate

 self.mono = mono

 def load(self, file_path, offset, time_end):

 duration = time_end - offset

 signal, sr = librosa.load(file_path, offset=offset,

duration=duration, mono=self.mono, res_type="kaiser_fast")

 return signal, sr

 def get_sample(self, signal, offset, time_end, original_sample_rate):

 offset_samples = offset * original_sample_rate

 duration_samples = (time_end - offset) * original_sample_rate

 return signal[offset_samples:offset_samples + duration_samples]

 def resample(self, signal, original_sr):

 if self.sample_rate != original_sr:

 signal = librosa.resample(signal, original_sr,

self.sample_rate, res_type="kaiser_fast")

 return signal

class Padder: #

 def __init__(self, num_expected_samples, mode = "constant"):

 self.num_expected_samples = num_expected_samples

 self.mode = mode

 def is_padding_needed(self, len_arr):

 return True if self.num_expected_samples > len_arr else False

 def pad(self, array): # padding on the end of the original array

 if self.is_padding_needed(len(array)):

104

 num_missing_samples = self.num_expected_samples - len(array)

 array = np.pad(array, (0, num_missing_samples),

mode=self.mode)

 return array

class MelSpecExtractor:

 def __init__(self, sample_rate, type_feature_name = "mel", type_yaxis

= "mel"):

 self.sample_rate = sample_rate

 self.type_feature_name = type_feature_name

 self.type_yaxis = type_yaxis

 def extract(self, signal):

 mel_signal = librosa.feature.melspectrogram(y=signal,

sr=self.sample_rate)[:-1]

 spectogram = np.abs(mel_signal)

 log_spec = librosa.amplitude_to_db(spectogram)

 return log_spec, self.type_feature_name, self.type_yaxis

class STFT_Extractor:

 def __init__(self, sample_rate, type_feature_name = "stft",

type_yaxis = "log"):

 self.sample_rate = sample_rate

 self.type_feature_name = type_feature_name

 self.type_yaxis = type_yaxis

 def extract(self, signal):

 stft = librosa.stft(y=signal)

 stft = np.abs(stft)

 log_spec = librosa.amplitude_to_db(stft)

 return log_spec, self.type_feature_name, self.type_yaxis

class MFCCExtractor:

 def __init__(self, sample_rate, type_feature_name = "mfcc",

type_yaxis = "mel"):

 self.sample_rate = sample_rate

 self.type_feature_name = type_feature_name

 self.type_yaxis = type_yaxis

 def extract(self, signal):

 mfccs_features = librosa.feature.mfcc(y=signal,

sr=self.sample_rate, n_mfcc=40)

 return mfccs_features, self.type_feature_name, self.type_yaxis

class CQT_Extractor:

 def __init__(self, sample_rate, type_feature_name = "cqt", type_yaxis

= "cqt_note"):

 self.sample_rate = sample_rate

 self.type_feature_name = type_feature_name

 self.type_yaxis = type_yaxis

105

 def extract(self, signal):

 cqt = np.abs(librosa.cqt(signal, sr=self.sample_rate))

 cqt = librosa.amplitude_to_db(cqt)

 return cqt, self.type_feature_name, self.type_yaxis

class Chroma_Extractor:

 def __init__(self, sample_rate, type_feature_name = "chroma",

type_yaxis = "chroma"):

 self.sample_rate = sample_rate

 self.type_feature_name = type_feature_name

 self.type_yaxis = type_yaxis

 def extract(self, signal):

 chroma = np.abs(librosa.feature.chroma_stft(signal,

sr=self.sample_rate))

 chroma = librosa.amplitude_to_db(chroma)

 return chroma, self.type_feature_name, self.type_yaxis

class MinMaxNormaliser:

 def __init__(self, min_val, max_val):

 self.min = min_val

 self.max = max_val

 def normalise(self, array):

 a = (array - array.min())

 b = (array.max() - array.min())

 norm_array = np.divide(a, b, out=np.zeros_like(a), where=b!=0)

 norm_array = norm_array * (self.max - self.min) + self.min

 return norm_array

class Saver:

 def __init__(self, base_feature_save_dir, duration, step_size):

 self.base_feature_save_dir = base_feature_save_dir

 self.duration = duration

 self.step_size = step_size

 def save_feature(self, feature, type_feature, file_path, offset,

time_end, label, type_df, format_type, y_axis="mel"):

 feature_save_dir =

"{}/{}_{}_{}win_{}step/{}/{}/".format(self.base_feature_save_dir,

type_feature, format_type, self.duration, self.step_size, type_df, label)

 save_path = self._generate_save_path(feature_save_dir, file_path,

offset, time_end, format_type)

 if format_type == "img":

 self.save_img(feature, save_path, y_axis)

 else :

 self.save_npy(feature, save_path)

 def save_img(self, feature, save_path, y_axis):

 fig = plt.figure()

 ax = fig.add_subplot(111)

106

 ax.axes.get_xaxis().set_visible(False)

 ax.axes.get_yaxis().set_visible(False)

 ax.set_frame_on(False)

 librosa.display.specshow(feature, x_axis = "time", y_axis=y_axis)

 plt.savefig(save_path, bbox_inches='tight', pad_inches = 0)

 plt.clf()

 plt.close("all")

 def save_npy(self, feature, save_path):

 feature = feature[..., np.newaxis]

 np.save(save_path, feature)

 def _generate_save_path(self, feature_save_dir, file_path, offset,

time_end, format_type):

 format = "png" if format_type == "img" else "npy"

 ending_str = "_{}_{}.{}".format(offset, time_end, format)

 file_name = os.path.split(file_path)[1][:-4] + ending_str

 save_path = feature_save_dir + file_name

 return save_path

class PreProcessingPipeline:

 def __init__(self, loader, padder, feature_extractors, saver,

normaliser, format_type):

 self.loader = loader

 self.padder = padder

 self.feature_extractors = feature_extractors

 self.normaliser = normaliser

 self.saver = saver

 self.format_type = format_type

 def _extract_feature(self, feature_extractor, signal, file_path,

offset, time_end, label, type_df):

 feature, type_feature_name, type_yaxis =

feature_extractor.extract(signal)

 feature = self.normaliser.normalise(feature)

 self.saver.save_feature(feature, type_feature_name, file_path,

offset, time_end, label, type_df, self.format_type, type_yaxis)

 def _process_file(self, file_path, offset, time_end, label, type_df):

 signal, sr = self.loader.load(file_path, offset, time_end)

 signal = self.loader.resample(signal, sr)

 signal = self.padder.pad(signal)

 for feature_extactor in self.feature_extractors:

 self._extract_feature(feature_extactor, signal, file_path,

offset, time_end, label, type_df)

 def get_train_val_df(self, df_input, stratify_colname='LabelID',

frac_train = 0.8, frac_val = 0.1, frac_test = 0.1, random_state = None):

 X = df_input

 y = df_input[[stratify_colname]]

 df_train, df_temp, y_train, y_temp = train_test_split(X,

107

 y,

 stratify=y,

test_size=(1.0 - frac_train),

random_state=random_state)

 relative_frac_test = frac_test / (frac_val + frac_test)

 df_val, df_test, y_val, y_test = train_test_split(df_temp,

 y_temp,

 stratify =

y_temp,

 test_size =

relative_frac_test,

 random_state

= random_state)

 return df_train, df_val, df_test

 def process(self, dataframe, type):

 for row in dataframe.itertuples():

 try:

 self._process_file(row.File_path, row.Time_start,

row.Time_end, row.Label, type)

 except:

 print(row.File_path, row.Time_start, row.Time_end)

 continue

if __name__ == "__main__":

 DURATION = 3

 STEP_SIZE = 3

 SAMPLE_RATE = 22050

 NUM_EXPECTED_SAMPLES = DURATION * SAMPLE_RATE

 MONO = True

 FORMAT_TYPE = "img"

 DATASET_DIR =

"/home/goe2brg/DL_Violence_Detection_v7/data_preparation/metadata_preproc

essing/results/dataset_san_{}win_{}step_mnt.csv".format(DURATION,

STEP_SIZE)

 BASE_FEATURE_SAVE_DIR = "/home/goe2brg/DL_Violence_Detection_v7/data"

 TRAIN_DATASET_OUTPUT_DIR =

"/home/goe2brg/DL_Violence_Detection_v7/data_preparation/audio_preprocess

ing/datasets/processing_datasets/"

 TRAIN_DATASET_NAME =

"train_dataset_san_{}win_{}step_mnt.csv".format(DURATION, STEP_SIZE)

 df = pd.read_csv(DATASET_DIR, index_col=0)

 loader = Loader(SAMPLE_RATE, MONO)

 padder = Padder(NUM_EXPECTED_SAMPLES)

 feature_extractors = [MelSpecExtractor(SAMPLE_RATE),

MFCCExtractor(SAMPLE_RATE), CQT_Extractor(SAMPLE_RATE),

STFT_Extractor(SAMPLE_RATE), Chroma_Extractor(SAMPLE_RATE)]

 min_max_normaliser = MinMaxNormaliser(0, 1)

 saver = Saver(BASE_FEATURE_SAVE_DIR, DURATION ,STEP_SIZE)

108

 pipeline = PreProcessingPipeline(loader, padder, feature_extractors,

saver, min_max_normaliser, FORMAT_TYPE)

 df_train, df_val, df_test = pipeline.get_train_val_df(df, "LabelID",

frac_train = 0.8, frac_val=0.1, frac_test = 0.1,random_state=691)

 df_train.to_csv(TRAIN_DATASET_OUTPUT_DIR + TRAIN_DATASET_NAME)

 print(DATASET_DIR)

 print(BASE_FEATURE_SAVE_DIR)

 pipeline.process(df_train, "training")

 pipeline.process(df_val, "validation")

 pipeline.process(df_test, "testing")

Listing 2 - Audio data preparation code

class DataAugmentation:

 def __init__(self, sr):

 self.sr = sr

 def add_white_noise(self, signal, noise_percentage_factor = 0.2):

 noise = np.random.normal(0, signal.std(), signal.size)

 augmented_signal = signal + noise * noise_percentage_factor

 return augmented_signal

 def random_gain(self, signal, min_factor=0.1, max_factor=0.12):

 gain_rate = random.uniform(min_factor, max_factor)

 augmented_signal = signal * gain_rate

 return augmented_signal

 def time_strecth(self, signal, strech_rate = 0.2):

 return librosa.effects.time_stretch(signal, strech_rate)

 def pitch_scale(self, signal, num_semitones = 4):

 return librosa.effects.pitch_shift(signal, self.sr,

num_semitones)

class PreProcessingPipeline:

 def __init__(self, loader, padder, feature_extractors, saver,

normaliser, data_augmentation, format_type):

 self.loader = loader

 self.padder = padder

 self.feature_extractors = feature_extractors

 self.normaliser = normaliser

 self.saver = saver

 self.format_type = format_type

 self.data_augmentation = data_augmentation

109

 def _extract_feature(self, feature_extractor, signal, file_path,

offset, time_end, label, type_df):

 feature, type_feature_name, type_yaxis =

feature_extractor.extract(signal)

 feature = self.normaliser.normalise(feature)

 self.saver.save_feature(feature, type_feature_name, file_path,

offset, time_end, label, type_df, self.format_type, type_yaxis)

 def get_dataset(self, df_input, frac = 0.5, random_state = None):

 df_aug, df_trash = train_test_split(df_input,

 stratify=df["LabelID"],

 test_size=frac,

 random_state=random_state)

 return df_aug

 def _process_file(self, file_path, offset, time_end,label, type_df):

 signal,sr = self.loader.load(file_path, offset, time_end)

 signal = self.loader.resample(signal, sr)

 signal = self.padder.pad(signal)

 augmentation = random.randint(0,1)

 if augmentation == 0:

 signal = self.data_augmentation.add_white_noise(signal)

 else:

 signal = self.data_augmentation.time_strecth(signal)

 for feature_extactor in self.feature_extractors:

 self._extract_feature(feature_extactor, signal, file_path,

offset, time_end, label, type_df)

 def process(self, dataframe, type):

 for row in dataframe.itertuples():

 try:

 self._process_file(row.File_path, row.Time_start,

row.Time_end, row.Label, type)

 except:

 print(row.File_path, row.Time_start, row.Time_end)

 continue

if __name__ == "__main__":

 DURATION = 3

 STEP_SIZE = 3

 SAMPLE_RATE = 22050

 NUM_EXPECTED_SAMPLES = DURATION * SAMPLE_RATE

 MONO = True

 FORMAT_TYPE = "img"

 DATASET_DIR =

"/home/goe2brg/DL_Violence_Detection_v7/data_preparation/audio_preprocess

ing/datasets/processing_datasets/train_dataset_san_{}win_{}step_mnt.csv".

format(DURATION, STEP_SIZE) #CHANGE THIS ON CLUSTER

 BASE_FEATURE_SAVE_DIR = "/home/goe2brg/DL_Violence_Detection_v7/data"

 df = pd.read_csv(DATASET_DIR, index_col=0)

 loader = Loader(SAMPLE_RATE, MONO)

 padder = Padder(NUM_EXPECTED_SAMPLES)

110

 min_max_normaliser = MinMaxNormaliser(0, 1)

 feature_extractors = [MelSpecExtractor(SAMPLE_RATE),

MFCCExtractor(SAMPLE_RATE), CQT_Extractor(SAMPLE_RATE),

STFT_Extractor(SAMPLE_RATE), Chroma_Extractor(SAMPLE_RATE)]

 data_augmentation = DataAugmentation(SAMPLE_RATE)

 saver = Saver(BASE_FEATURE_SAVE_DIR, DURATION ,STEP_SIZE)

 pipeline = PreProcessingPipeline(loader, padder, feature_extractors,

saver, min_max_normaliser,data_augmentation, FORMAT_TYPE)

 df = pipeline.get_dataset(df, frac=0.50, random_state=691)

 pipeline.process(df, "training")

Listing 3 - Data augmentation code

Appendix B

Appendix B.1 Models’ code implementation and architecture plot

def create_vgg(input_shape, n_classes, last_activation = "sigmoid"):

 model = Sequential()

 model.add(layers.Conv2D(32, (3, 3), input_shape=input_shape,

activation = "relu"))

 model.add(layers.MaxPool2D((2, 2)))

 model.add(layers.Conv2D(64, (3, 3), activation = "relu"))

 model.add(layers.MaxPool2D((2, 2)))

 model.add(layers.Conv2D(128, (3, 3), activation = "relu",))

 model.add(layers.MaxPool2D((2, 2)))

 model.add(layers.Conv2D(256, (3, 3), activation = "relu",))

 model.add(layers.MaxPool2D((2, 2)))

 model.add(layers.Flatten())

 model.add(layers.Dense(128, activation = "relu"))

 model.add(layers.Dropout(0.4))

 model.add(layers.Dense(64, activation = "relu"))

 model.add(layers.Dropout(0.4))

 model.add(layers.Dense(32, activation = "relu"))

 model.add(layers.Dropout(0.4))

 model.add(layers.Dense(n_classes, activation=last_activation))

111

 return model

Listing 4 - VGG-16 implementation code

112

Figure 34 - VGG-16 architecture

113

def depth_block(x, strides):

 x = DepthwiseConv2D(3,strides=strides,padding='same',

use_bias=False)(x)

 x = BatchNormalization()(x)

 x = ReLU()(x)

 return x

def single_conv_block(x,filters):

 x = Conv2D(filters, 1,use_bias=False)(x)

 x= BatchNormalization()(x)

 x = ReLU()(x)

 return x

def combo_layer(x,filters, strides):

 x = depth_block(x,strides)

 x = single_conv_block(x, filters)

 return x

def MobileNet(input_shape=(224,224,3),n_classes = 1,

activation="sigmoid"):

 input = Input (input_shape)

 x = Conv2D(32,3,strides=(2,2),padding = 'same', use_bias=False)

(input)

 x = BatchNormalization()(x)

 x = ReLU()(x)

 x = combo_layer(x,64, strides=(1,1))

 x = combo_layer(x,128,strides=(2,2))

 x = combo_layer(x,128,strides=(1,1))

 x = combo_layer(x,256,strides=(2,2))

 x = combo_layer(x,256,strides=(1,1))

 x = combo_layer(x,512,strides=(2,2))

 for _ in range(5):

 x = combo_layer(x,512,strides=(1,1))

 x = combo_layer(x,1024,strides=(2,2))

 x = combo_layer(x,1024,strides=(1,1))

 x = Flatten()(x)

 x = Dense(512, activation='relu')(x)

 x = Dropout(0.4)(x)

 x = Dense(256, activation='relu')(x)

 x = Dropout(0.4)(x)

 x = Dense(128, activation='relu')(x)

 x = Dropout(0.4)(x)

 x = Dense(64, activation='relu')(x)

 output = Dense(n_classes,activation=activation)(x)

 model = Model(input, output)

 return model

Listing 5 - MobileNet implementation code

114

Figure 35 - MobileNet architecture

115

class ResnetBlock(Model):

 def __init__(self, channels: int, down_sample=False):

 super().__init__()

 self.__channels = channels

 self.__down_sample = down_sample

 self.__strides = [2, 1] if down_sample else [1, 1]

 KERNEL_SIZE = (3, 3)

 INIT_SCHEME = "he_normal"

 self.conv_1 = Conv2D(self.__channels, strides=self.__strides[0],

 kernel_size=KERNEL_SIZE, padding="same",)

 self.conv_2 = Conv2D(self.__channels, strides=self.__strides[1],

 kernel_size=KERNEL_SIZE, padding="same",)

 self.merge = Add()

 if self.__down_sample:

 self.res_conv = Conv2D(

 self.__channels, strides=2, kernel_size=(1, 1),

kernel_initializer=INIT_SCHEME, padding="same")

 def call(self, inputs):

 res = inputs

 x = self.conv_1(inputs)

 x = tf.nn.relu(x)

 x = self.conv_2(x)

 if self.__down_sample:

 res = self.res_conv(res)

 x = self.merge([x, res])

 out = tf.nn.relu(x)

 return out

class ResNet18(Model):

 def __init__(self, num_classes, last_activation="sigmoid", **kwargs):

 super().__init__(**kwargs)

 self.conv_1 = Conv2D(64, (7, 7), strides=2,

 padding="same",

kernel_initializer="he_normal")

 self.pool_2 = MaxPool2D(pool_size=(2, 2), strides=2,

padding="same")

 self.res_1_1 = ResnetBlock(64)

 self.res_1_2 = ResnetBlock(64)

 self.res_2_1 = ResnetBlock(128, down_sample=True)

 self.res_2_2 = ResnetBlock(128)

 self.res_3_1 = ResnetBlock(256, down_sample=True)

 self.res_3_2 = ResnetBlock(256)

 self.res_4_1 = ResnetBlock(512, down_sample=True)

116

 self.res_4_2 = ResnetBlock(512)

 self.flat = Flatten()

 self.fc_1 = Dense(128, activation='relu')

 self.drop_out_1 = Dropout(0.5)

 self.fc_2 = Dense(64, activation='relu')

 self.drop_out_2 = Dropout(0.5)

 self.fc_3 = Dense(32, activation='relu')

 self.fc_4 = Dense(num_classes, activation=last_activation)

 def call(self, inputs):

 out = self.conv_1(inputs)

 out = tf.nn.relu(out)

 out = self.pool_2(out)

 for res_block in [self.res_1_1, self.res_1_2, self.res_2_1,

self.res_2_2, self.res_3_1, self.res_3_2, self.res_4_1, self.res_4_2]:

 out = res_block(out)

 out = self.flat(out)

 out = self.fc_1(out)

 out = self.drop_out_1(out)

 out = self.fc_2(out)

 out = self.drop_out_2(out)

 out = self.fc_3(out)

 out = self.fc_4(out)

 return out

Listing 6 - ResNet-16 implementation code

117

Figure 36 - ResNet-18 architecture

118

Appendix B.2 Model parametrization

if __name__ == "__main__":

 RUN_NUMBER = 2

 DURATION = 3

 STEP_SIZE = 3

 FORMAT_TYPE = "img"

 INPUT_TYPE = "mel"

 INPUT_SHAPE = (254, 254, 3)

 TRAINING_DIR =

"/home/goe2brg/DL_Violence_Detection_v7/data/{}_{}_{}win_{}step/training/

".format(INPUT_TYPE, FORMAT_TYPE, DURATION, STEP_SIZE)

 VALIDATION_DIR =

"/home/goe2brg/DL_Violence_Detection_v7/data/{}_{}_{}win_{}step/validatio

n/".format(INPUT_TYPE, FORMAT_TYPE, DURATION, STEP_SIZE)

 TESTING_DIR =

"/home/goe2brg/DL_Violence_Detection_v7/data/{}_{}_{}win_{}step/testing/"

.format(INPUT_TYPE, FORMAT_TYPE, DURATION, STEP_SIZE)

 METRICS = [

 metrics.BinaryAccuracy(name="acc", threshold=0.5),

 metrics.Precision(name='precision'),

 metrics.Recall(name='recall'),

 f1_score,

 metrics.AUC(name='auc'),

 metrics.TrueNegatives(name="tn"),

 metrics.TruePositives(name="tp"),

 metrics.FalseNegatives(name="fn"),

 metrics.FalsePositives(name="fp"),

]

 BATCH_SIZE = 32

 EPOCHS = 100

 LEARNING_RATE = 5e-3

 DECAY_RATE = LEARNING_RATE / EPOCHS

 LOSS = BinaryCrossentropy()

 model_checkpoint_callback_f1_score = ModelCheckpoint(

 filepath=MODEL_PATH_F1SCORE,

 save_best_only = True,

 save_weights_only = True,

 monitor='val_f1_score',

 verbose = 1,

 mode='max',

)

 CALLBACKS = [model_checkpoint_callback_f1_score]

 image_gen = ImageDataGenerator(rescale=1./255)

 train_gen = image_gen.flow_from_directory(TRAINING_DIR,

 target_size =

(INPUT_SHAPE[0], INPUT_SHAPE[1]),

 batch_size = BATCH_SIZE,

119

 class_mode = 'binary',

 shuffle = True

)

 val_gen = image_gen.flow_from_directory(VALIDATION_DIR,

 target_size =

(INPUT_SHAPE[0], INPUT_SHAPE[1]),

 batch_size = BATCH_SIZE,

 class_mode = 'binary',

 shuffle = True

)

 test_gen = image_gen.flow_from_directory(TESTING_DIR,

 target_size =

(INPUT_SHAPE[0], INPUT_SHAPE[1]),

 batch_size = BATCH_SIZE,

 class_mode = 'binary',

)

 class_weights = class_weight.compute_class_weight(

 class_weight = 'balanced',

 classes = np.unique(train_gen.classes),

 y = train_gen.classes)

 CLASS_WEIGHTS = {

 0: class_weights[0],

 1: class_weights[1],

 }

 optimizer = SGD(learning_rate=LEARNING_RATE,

decay=LEARNING_RATE/EPOCHS)

Listing 7 - Models' parameter initialization

120

Appendix C

Appendix C.1 Training and validation plots for the VGG-16 model

Figure 37 - VGG model training plot of all audio features

121

Appendix C.2 Training and validation plots for the MobileNet model

Figure 38 - MobileNet model training plot of all audio features

122

Appendix C.3 Training and validation plots for the ResNet-18 model

Figure 39 – ResNet-18 model training plot of all audio features

