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Abstract: Background: Most European rivers have not yet achieved “good” ecological status. In
addition, the presence and abundance of microplastics (MPs) in freshwater is a matter of great concern
to the scientific community. Methodology: This study assesses the ecological status of four sampling
sites of Selho (S1–S4) and Costa-Couros (C1–C4) rivers (Guimarães, Portugal), and the abundance of
MPs in sediments and benthic macroinvertebrates (Oligochaeta) from those sites. Results: All sites of
both rivers under higher pressure did not reach a “good” ecological status (S2–S3, C2–C4) based on
the macroinvertebrate community. High levels of nutrients were observed at all sites in both rivers
(except C2), especially phosphorus. In the Oligochaeta’s gut of Costa-Couros river, the high number of
MPs seems to be associated with their weight (95.25± 25.61 to 1069.00 ± 385.30 MPs g/fresh weight),
suggesting the existence of malnutrition and digestive disorders, whereas the highest number of MPs
in gut (134.00± 30.36 to 558.6± 100.70 MPs g/fresh weight) were found for the heaviest organisms of
Selho. Conclusions: Thus, sites with higher ecological status do not necessarily have lower abundance
of MPs. In the sediments, urbanization seems to be the main driver for MP contamination. MP
contamination is pervasive across the sediments and Oligochaeta’s gut in both rivers. Since MPs
have the potential to cause harm to environmental and human health, it is essential to monitor not
only the ecological status of freshwaters, but also emerging pollutants such as MPs.

Keywords: benthic macroinvertebrates; ecological status; freshwater; microplastic; sediments;
aquatic organisms

1. Introduction

Rivers have always played a crucial role in the development of societies, providing
several services of great importance, from drinking water to energy production and trans-
portation [1]. However, they are considered one of the most threatened ecosystems in
Europe [2,3]. With the implementation in 2000 of the Water Framework Directive (WFD;
Directive 2000/60/EC [4]), the definition of water quality according to its uses was replaced
by the creation of a uniform system that allows the adaptation of general quality objectives
to the specific environmental conditions for each type of water body. This gave rise to the
concept of “ecological status” in assessing aquatic ecosystems. However, 18 years after its
implementation, 53.5% of European rivers still failed to achieve at least a “good” ecological
status (or potential), and 4.6% still presented an unknown ecological status [5].

Hydromorphological and diffuse pollution are the major pressures affecting European
rivers, representing almost 70% of all pressures, 34% and 33%, respectively [5]. The physical
modifications caused by hydrological (e.g., low flows, water abstraction, and flash floods)
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and morphological stress (e.g., straightening, bank fixation, and removal of riparian vegeta-
tion) affect the natural functioning of the riverine ecosystems, reducing the connectivity
and habitat quality, and influencing the aquatic communities [6]. Additionally, diffuse
or non-point sources indirectly discharge a great variety of pollutants, often chemicals
or microorganisms, into the “receiving water bodies, via runoff and subsurface flow to
surface waters” [7], resulting in great difficulty in controlling its sources. Furthermore,
diffuse sources can cause microplastic (MP, i.e., plastic fragment less than 5 mm in length)
pollution [7]. MPs are emerging persistent pollutants that have quickly been recognized
as a threat due to their ubiquity and potential to impair ecosystem functions and services,
organisms, and human health [8,9]. They are categorized into primary and secondary based
on their sources. Primary MPs are intentionally manufactured on a microscale (e.g., pellets,
personal care products) or result from the abrasion of large plastic objects during manu-
facturing, use, or maintenance (e.g., tire erosion during driving or abrasion of synthetic
textiles during washing [10]). Most primary MPs come from uncontrolled human activities,
the main entry routes being road runoff (66%) followed by treated effluent from wastewater
treatment plants (25% [10]). Secondary MPs can result from the fragmentation of large
plastics items improperly discarded in the environment by mechanical abrasion, biologi-
cal degradation, or photodegradation [11–13]. Achieving a microsize, these small plastic
fragments are easily transported by wind and currents, reaching even the most remote
areas [13,14]. Once in the natural environments, they can be ingested by aquatic organisms
having the potential for bioaccumulation and causing adverse effects in ecosystems [15–17].
Furthermore, once ingested, they can also transfer dangerous organic chemicals into the
food chain [18].

Rivers are one of the major pathways of MP residues from land-based sources to
oceans [19,20], and estimates suggest that more than 60 billion MP particles enter the ocean
from rivers every day [21]. Even though more than 96% of the research studies on MP
pollution were performed in the marine environment [22], recently, studies have focused
on freshwater systems [23–27] and showed that the abundance of MPs in freshwater
environments could be higher than in the marine one (e.g., [24]). Moreover, in both
freshwater and marine environments, the sediments have always shown significantly
higher levels of MPs than the water column [28].

Sediments provide habitat, substrate, and food to various organisms. An example
of sediment-dwelling organisms is benthic macroinvertebrates, which are well known
for being a major food resource for fish and one of the most important constituents of
fluvial ecosystems [29]. Recent studies suggest that the ingestion of small MPs (<0.3 mm)
by freshwater benthic macroinvertebrates can cause malnutrition, digestive disorders, and
possibly affect larval development and emergence of imagoes in dipteran species [30,31].
Klein et al. [32] also demonstrated that ingestion of MPs by freshwater Oligochaeta (Lum-
briculus variegatus) causes a reduction in their survival and body weight, although MPs
mixed in the sediment affect Oligochaeta more than MPs that are layered on the sedi-
ment surface. Furthermore, contaminants accumulated in macroinvertebrates are likely
to be transferred throughout the aquatic food web, with ensuing toxicological effects [33].
Therefore, contaminated sediment poses a great threat to the health of the entire aquatic
ecosystem [34].

According to previous studies carried out in European rivers, urbanization is a major
driver for the deterioration of the ecological status [35] and for MP contamination in
freshwater ecosystems (e.g., [25,26,36]). Therefore, we tested the hypothesis that sites with
greater urban influence show lower ecological status and a higher abundance of MPs.
In order to address this hypothesis, we assessed (1) the ecological status of two riverine
systems included in the municipality of Guimarães (the Selho and Costa-Couros rivers), at
sites with different land uses, and (2) the presence and abundance of MPs in the sediments
and in the gut of benthic macroinvertebrates collected in the same rivers and sites.
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2. Materials and Methods
2.1. Study Area Description and Sampling Sites

This study was conducted in two urban Northern Portuguese rivers integrated in
Guimarães municipality (Figure 1A): the Selho and the Costa-Couros. The Selho river
(Figure 1B) is almost entirely integrated (>95%) within the municipality of Guimarães [37].
It has its spring in Santa Marinha, in Fafe municipality (spring altitude: 580 m) [37,38]
and runs for approximately 21 km through urbanized, agricultural, and industrial areas,
before flowing into the Ave river in the parish of Gondar, in Guimarães municipality [38,39].
The Costa-Couros river (Figure 1C) is fully integrated within the Guimarães municipal-
ity. It springs from Penha Mountain (spring altitude: 550 m) and runs for about 6.2 km
through nine heavily urbanized parishes before flowing into the Selho river in Veiga de
Creixomil [40].
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Figure 1. Geographical situation. (A) Location of the study area (Guimarães municipality; filled
in black) in Portugal mainland. Location of the sampling sites of the (B) Selho river (S1 to S4) and
(C) Costa-Couros river (C1 to C4).

Four sampling sites were selected in the Selho (S1 to S4; Figure 1B) and Costa-Couros
(C1 to C4; Figure 1C) rivers to assess the ecological status and to evaluate the presence and
abundance of microplastics (MPs). These sites were selected to include different land uses
(Table 1). The Selho river sites are located in an agricultural and forestry area (S1), an urban
area (S2), and agricultural areas (S3 and S4) of Guimarães municipality. The Costa-Couros
river sites are situated in four main areas of the city of Guimarães, which are crossed by this
river, namely, the City Park, the most extensive recreational area of the city (C1), the Parque
das Hortas and the City Market, both situated in urban areas (C2 and C3, respectively), and
in Veiga de Creixomil (C4), a peri-urban agricultural area.
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Table 1. Sampling sites of the Selho (S1 to S4) and Costa-Couros (C1 to C4) rivers, their location
(Parish or Union of Parishes in Guimarães municipality), and land use near river banks.

Site Parish/Union of Parishes in the Left Bank (LB) and Right Bank (RB) Coordinates Land Use

S1 LB and RB: Parish of S. Torcato 41◦29′11′′ N,
8◦15′16′′ W

Forestry
Agricultural
Rural recreational area

S2 LB: Parish of Aldão
RB: Union of Parishes of Selho S. Lourenço and Gominhães

41◦27′52′′ N,
8◦16′51′′ W Artificial surfaces (housing)

S3 LB: Union of Parishes of Candoso S. Tiago and Mascotelos
RB: Parish of Creixomil

41◦26′14′′ N,
8◦19′21′′ W

Agricultural
Peri-urban recreational area

S4 LB: Parish of Serzedelo
RB: Parish of Gondar

41◦24′38′′ N,
8◦22′34′′ W Agricultural

C1 LB and RB: Parish of Costa 41◦26′50′′ N,
8◦16′42′′ W Urban recreational area

C2 LB and RB: Union of Parishes of Oliveira, S. Paio and S. Sebastião 41◦26′29′′ N,
8◦17′14′′ W

Artificial surfaces (housing, commercial,
transport, etc.)
Urban recreational area

C3 LB: Parish of Creixomil
RB: Parish of Urgezes

41◦26′23′′ N,
8◦17′59′′ W

Artificial surfaces (housing, commercial,
transport, etc.)

C4 LB and RB: Parish of Creixomil 41◦26′12′′ N,
8◦18′29′′ W

Agricultural
Peri-urban recreational area

2.2. Ecological Status Assessment

Benthic macroinvertebrates were monitored in the early summer of 2020, following
the national guidelines for the Water Framework Directive (WFD) implementation [41].
Briefly, benthic macroinvertebrates were collected in all existing habitats using a hand
net (mesh-size of 500 µm) and fixed in situ with ethanol 90% (v/v). In the laboratory,
the organisms were sorted out, counted, and identified up to a family level (except for
Oligochaeta—to subclass level) [42]. The ecological status was assessed by determining
the North Invertebrate Portuguese Index (IPtIN [43,44]), and the final quality value was
expressed as the Ecological Quality Ratio (EQR). The EQRs were obtained by dividing
the IPtIN value by the reference value for each specific river type, with the Selho and
Costa-Couros rivers belonging to the “small-sized streams of North of Portugal” type. An
ecological quality class was also assigned (I—“high” to V—“bad”) [43].

Water physicochemical parameters were seasonally monitored (summer and autumn
of 2020; winter and spring of 2021). Water temperature, pH, dissolved oxygen (concen-
tration and percentage saturation), conductivity, salinity, and total dissolved solids were
measured in situ using a portable multiparameter prove (HI9828; Hanna Instruments).
Water samples were collected (±5 cm from the surface) at all sites and transported to
the laboratory for further analysis. Nutrients (nitrates, nitrites, ammonium ion and total
phosphorus) and chemical oxygen demand were determined using multiparameter bench
photometers (HI83200 and HI83214; Hanna Instruments). Biochemical oxygen demand
was determined by measuring the amount of oxygen in the water sample after 5 days of
incubation at 20 ◦C (±1 ◦C) in the dark. The obtained results were compared with the
thresholds established for the “good” ecological status in Northern Portuguese rivers [43].

2.3. Microplastics Quantification

Sediment and biological samples were collected to evaluate the presence and abun-
dance of microplastics in the Selho and Costa-Couros rivers during the summer of 2020. For
the sediment sampling, a transept was traced in a deposition zone, with the samples being
collected±3 cm from the top layer (total area of 30 cm× 30 cm). A total of five replicates per
site, with 1 m between them, were collected and placed in properly labeled glass jars (1 L).
For the biological samples, 15 replicates per site of benthic macroinvertebrates (Oligochaeta,
Lumbricid) were collected using a hand net and preserved in 70% ethanol.
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The extraction and quantification of MPs in sediment and biological samples followed
Masura et al. [45] and Prata et al. [46,47], with slight modifications. The sediment samples
were dried (60 ◦C; ±72 h), sieved (5 mm, 1 mm, and 0.5 mm), and weighed. The MPs
present in the sediments with granulometry greater than 0.5 mm were separated and
quantified using the density separation technique. The quantification of MPs between 0.5
and 1 mm was performed using a binocular magnifying glass (Leica EZ4 HD). In case of
doubts, a needle test was performed (i.e., heating the tip of a thin needle and poking a
suspected particle under the stereomicroscope [48]).

The extraction of the MPs from the sediment samples with particle size lower than
0.5 mm was performed by density separation (NaCl 5M; 1:3 ratio), mixing the sediment
with a saturated NaCl solution, shaken vigorously for 3 min, and left to set down during the
night. The supernatants containing MPs were vacuum-filtered onto glass fiber membranes
(Watman, Grade GF/F: 0.7 µm; diameter: 47 mm), treated to remove the organic matter
(30% H2O2 + FeO4S7H2O), and stained with Nile Red dye (1 µg/mL of ethanol). In the
biological samples, organisms were weighed on a precision scale, digested (with 10% KOH;
60 ◦C, ±48 h), filtered, and stained with Nile Red.

The quantification of MPs lower than 0.5 mm in sediments and biological samples
was performed after drying the filters (at room temperature in the dark) in glass Petri
dishes. MPs were counted with an optical microscope (Leica DM300, Leica Microsystems:
Heerbrugg, Switzerland) in a dark room, under 470 nm blue light (Optimax™ OFK-450A,
Spectro-UV: New York, NY, USA). Using an orange filter, particles presenting red fluores-
cence (with defined edges) were counted as MPs.

2.4. Quality Assurance and Quality Control

The ubiquity of MPs requires additional caution during the experience to avoid
contamination and data adulteration. Accordingly, precautionary measures were taken.
Throughout sampling and the sample examination/process, the use of plastic material was
avoided, preferably using glass or aluminum vials/equipment and stainless-steel utensils.
Cotton lab coats were used, all the material was previously acid-washed before use, and
samples were covered with aluminum foil when not used or processed. All solutions
(NaCl, Nile Red, etc.) were previously filtrated before being used. All working spaces were
thoroughly cleaned (alcohol). Procedural blanks were also applied [47].

2.5. Statistical Analysis

Spatial and seasonal variations of water physicochemical parameters in the Selho
and Costa-Couros rivers were subjected to an ordinary two-way ANOVA. All datasets
were subjected to the Shapiro–Wilk normality test to assess Gaussian distribution, selected
for its adequacy for smaller sample sizes (N = 12) [49]. In the analysis of the physico-
chemical parameters, the ROUT method (Q = 0.1%) was applied to identify and remove
definitive outliers.

The datasets containing the number of MPs in the sediments and organisms (Oligochaeta)
collected from the Selho and Costa-Couros rivers were also subjected to the Shapiro–Wilk
normality test to assess Gaussian distribution. When normal distribution was verified, an
ordinary one-way ANOVA and Tukey’s multiple comparison test were performed. When
it was not verified, nonparametric Kruskal–Wallis and Dunn’s multiple comparison tests
were performed. In the analysis of the Oligochaeta weight used in the MP experiments,
definitive outliers were identified and removed according to the ROUT method (Q = 0.1%).
To assess the correlation between the number of MPs in the sediment and in Oligochaeta’s
gut, linear regressions were fitted.

Comparisons between the number of MPs found in the two rivers (sediment and
Oligochaeta’s gut) were made using an unpaired t-test if the normal distribution was
verified. If data were not normally distributed, the nonparametric Mann–Whitney test
was applied.
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All statistical analyses were performed using GraphPad (GraphPad Prism version
9.0.0 (121) for Windows). A significance level of 0.05 was considered for all tests.

3. Results
3.1. Ecological Status

According to the IPtIN index based on the benthic macroinvertebrate community, the
Selho river presented “high” to “poor” ecological status (Table 2). The most upstream and
downstream sites (S1 and S4, respectively), situated in forestry (S1) and agricultural areas
(S1 and S4), were the only sites of this river with at least a “good” ecological status. The
same index revealed that the ecological status of the Costa-Couros river decreased from the
upstream to downstream sites, with C1, located in the City Park, being the only site of this
river presenting a “good” ecological status (Table 2).

Table 2. Spatial variation of the IPtIN (North Invertebrate Portuguese Index) and the respective
ecological quality class of the sampling sites of Selho (S1 to S4) and Costa-Couros (C1 to C4) rivers.

Sampling Site IPtIN (EQR) Quality Class

S1 0.72 II
S2 0.44 III
S3 0.36 IV
S4 1.65 I

C1 0.79 II
C2 0.45 III
C3 0.27 IV
C4 0.40 IV

Note: IPtIN ecological quality classes established for “small-sized stream of North of Portugal”: IPtIN score ≥ 0.87
(class I—“high” ecological status); IPtIN score 0.68–0.86 (class II—“good” ecological status); IPtIN score 0.44–0.67
(class III—“moderate” ecological status); IPtIN score 0.22–0.43 (class IV—“poor” ecological status).

Most general physicochemical parameters analyzed in Selho and Costa-Couros rivers
showed significant differences among sites and seasons (Table S1). In both rivers, the
parameters dissolved oxygen (concentration and %saturation), pH, water temperature,
and biochemical oxygen demand were more influenced by seasonal than spatial factors
(Table S1). On the contrary, the parameters conductivity, total dissolved solids, salinity,
nitrites, ammonium ion, and total phosphorus were more influenced by spatial than
seasonal factors (Table S1). However, nitrates (NO3

−) and chemical oxygen demand (COD)
were not concordant between the two rivers. While in Costa-Couros river, NO3

− and COD
varied more seasonally and spatially, respectively, the opposite occurred in Selho river
(Table S1).

Overall, the Selho river presented a “good” ecological status considering all the physic-
ochemical parameters analyzed, except for total phosphorus. High levels of phosphorus
(p > 0.10 mg/L) were found at all sampling sites of Selho river, especially at S1, located in a
forestry and agricultural area, when compared to the remaining sites (especially S3 and S4)
(Table 3). The presence of phosphorus was more influenced by spatial than seasonal factors
(spatial: 53.18%; F (3, 32) = 65.11; p < 0.0001; seasonal: 8.17%; F (3, 32) = 10.00; p < 0.0001;
interaction: 29.95%; F (9, 32) = 12.22; p < 0.0001) (Table S1; Figure S1).

In Costa-Couros river, only C2, situated in an urban green area, presented a “good”
ecological status considering all the physicochemical parameters analyzed. Phosphorus
concentrations above the threshold value established for the “good” ecological status
(p > 0.10 mg/L) were found at C1, C3, and C4 (Table 3). For this parameter, the spatial factor
was stronger than the seasonal, but the interaction between them was the strongest factor
(spatial: 38.86%; F (3, 32) = 166.6; p < 0.0001; seasonal: 4.15%; F (3, 32) = 17.80; p < 0.0001;
interaction: 54.50%; F (9, 32) = 77.89; p < 0.0001) (Table S1; Figure S2). Concentrations
of ammonium ion above the established threshold (NH4

+ >1 mg/L) were observed in
C4 during summer and autumn (Table 3). Furthermore, high levels of this parameter
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were observed in C3 during autumn. For ammonium ion, the spatial factor was the
strongest, followed by the interaction of spatial and seasonal differences (spatial: 41.81%;
F (3, 32) = 95,329; p < 0.0001; seasonal: 24.68%; F (3, 32) = 56,263; p < 0.0001; interaction:
33.51%; F (9, 32) = 25,471; p < 0.0001) (Table S1; Figure S2).

Table 3. Spatial and temporal variation of the physicochemical parameters determined in Selho and
Costa-Couros rivers, respectively: water temperature (Temp., ◦C), pH, dissolved oxygen concentra-
tion (DO, mg O2/L), percentage saturation of dissolved oxygen (%DO), conductivity (Cond., µS/cm),
salinity (Sal., PSU), total dissolved solids (TDS, mg/L), nitrates (NO3

−, mg/L), nitrites (NO2
−,

mg/L), ammonium ion (NH4
+, mg/L), total phosphorus (P, mg/L), chemical oxygen demand (COD,

mg/L), and biochemical oxygen demand (BOD5, mg/L). Data are presented as the mean ± SD.

Sampling Site Season/Year

S1 S2 S3 S4 Summer 2020 Autumn 2020 Winter 2021 Spring 2021

Selho
river

Temp. 12.94 ± 1.62 14.46 ± 1.54 16.08 ± 2.21 14.74 ± 2.59 15.69 ± 1.81 12.34 ± 0.48 13.66 ± 1.05 16.53 ± 1.80
pH 6.81 ± 0.53 6.71 ± 0.14 6.76 ± 0.22 6.99 ± 0.20 6.80 ± 0.36 7.05 ± 0.32 6.94 ± 0.06 6.51 ± 0.13
DO 9.40 ± 1.62 9.14 ± 0.87 7.98 ± 1.37 9.16 ± 1.07 7.82 ± 1.42 8.81 ± 0.76 10.21 ± 0.94 8.84 ± 1.04

%DO 92.18 ± 15.30 91.53 ± 7.78 84.37 ± 14.79 92.12 ± 7.92 81.05 ± 14.47 84.93 ± 6.27 100.20 ± 8.40 93.98 ± 7.56
Cond. 51.50 ± 12.70 90.83 ± 23.96 141.8 ± 47.44 131.8 ± 39.6 136.50 ± 51.99 129.80 ± 49.84 70.75 ± 23.28 78.92 ± 25.58
Sal. 0.03 ± 0.01 0.04 ± 0.01 0.07 ± 0.02 0.06 ± 0.02 0.07 ± 0.02 0.06 ± 0.02 0.03 ± 0.01 0.04 ± 0.01
TDS 26.00 ± 6.89 45.25 ± 11.99 71.00 ± 23.56 65.75 ± 19.59 68.17 ± 25.73 65.08 ± 24.51 35.25 ± 11.97 39.50 ± 12.76

NO3
− 10.49 ± 2.71 20.96 ± 2.41 21.10 ± 4.60 22.05 ± 3.69 23.35 ± 5.74 17.13 ± 5.52 15.47 ± 4.39 18.65 ± 5.01

NO2
− 0.04 ± 0.01 0.05 ± 0.02 0.37 ± 0.31 0.18 ± 0.11 0.34 ± 0.10 0.17 ± 0.05 0.03 ± 0.01 0.05 ± 0.02

NH4
+ 0.06 ± 0.08 0.10 ± 0.10 0.90 ± 0.63 0.12 ± 0.09 0.48 ± 0.73 0.45 ± 0.49 0.07 ± 0.06 0.18 ± 0.21

P 0.38 ± 0.08 0.33 ± 0.09 0.28 ± 0.06 0.19 ± 0.03 0.30 ± 0.12 0.25 ± 0.07 0.33 ± 0.09 0.31 ± 0.11
COD 10.50 ± 13.81 8.50 ± 11.52 9.33 ± 9.60 14.08 ± 12.11 5.17 ± 4.13 8.25 ± 4.77 0.00 ± 0.00 29.00 ± 3.52
BOD5 3.47 ± 1.68 3.39 ± 0.77 2.75 ± 1.31 3.66 ± 1.15 2.58 ± 1.24 2.90 ± 0.66 4.90 ± 0.85 2.90 ± 0.75

C1 C2 C3 C4 Summer 2020 Autumn 2020 Winter 2021 Spring 2021

Costa-
Couros

river

Temp. 14.72 ± 1.72 15.57 ± 2.35 15.96 ± 2.70 15.61 ± 1.86 18.52 ± 1.11 13.64 ± 0.22 13.54 ± 0.40 16.16 ± 0.57
pH 6.99 ± 0.34 6.95 ± 0.21 7.07 ± 0.13 7.04 ± 0.03 7.04 ± 0.10 7.18 ± 0.18 7.06 ± 0.08 6.77 ± 0.20
DO 7.89 ± 0.71 8.23 ± 1.32 7.98 ± 1.56 6.69 ± 0.78 8.57 ± 1.54 7.74 ± 0.90 8.25 ± 0.19 6.24 ± 0.36
%

DO 81.18 ± 4.51 85.40 ± 15.65 84.45 ± 18.66 69.88 ± 5.70 94.44 ± 18.62 76.97 ± 9.03 80.52 ± 1.53 68.99 ± 3.46

Cond. 142.80 ± 43.12 151.50 ± 38.90 73.92 ± 64.41 215.80 ± 68.58 173.80 ±
102.60 159.00 ± 98.10 113.20 ± 20.56 138.00 ± 20.00

Sal. 0.07 ± 0.02 0.07 ± 0.02 0.03 ± 0.03 0.10 ± 0.03 0.08 ± 0.05 0.08 ± 0.05 0.05 ± 0.01 0.06 ± 0.01
TDS 71.25 ± 21.50 76.00 ± 19.50 37.00 ± 32.18 108.00 ± 34.15 89.11 ± 41.34 79.50 ± 49.06 56.58 ± 10.63 69.25 ± 9.75

NO3
− 19.07 ± 4.23 24.96 ± 5.38 18.16 ± 6.51 19.62 ± 12.67 29.72 ± 3.96 17.83 ± 5.12 12.52 ± 8.06 21.74 ± 1.35

NO2
− 0.16 ± 0.10 0.18 ± 0.07 0.30 ± 0.13 0.54 ± 0.21 0.48 ± 0.23 0.27 ± 0.17 0.15 ± 0.09 0.26 ± 0.16

NH4
+ 0.17 ± 0.23 0.29 ± 0.20 1.32 ± 0.81 2.43 ± 2.07 1.73 ± 1.91 1.78 ± 1.66 0.31 ± 0.14 0.40 ± 0.34

P 0.20 ± 0.07 0.10 ± 0.07 0.35 ± 0.13 0.34 ± 0.22 0.28 ± 0.20 0.25 ± 0.18 0.19 ± 0.16 0.28 ± 0.14
COD 8.67 ± 3.89 2.25 ± 2.18 15.92 ± 4.06 12.50 ± 8.99 8.00 ± 5.77 9.17 ± 8.64 12.50 ± 6.25 9.65 ± 8.40
BOD5 2.14 ± 1.09 3.00 ± 1.47 3.43 ± 1.69 1.82 ± 1.20 3.41 ± 1.84 2.36 ± 0.80 3.72 ± 0.04 0.88 ± 0.22

Note: Threshold values established for the “good” ecological status in Northern Portuguese rivers: pH (6–9); DO
(≥5 mg O2/L); %DO (60–120%); NO3

− (≤25 mg/L); NH4
+ (≤1 mg/L); P (≤0.10 mg/L); BOD5 (≤6 mg O2/L).

3.2. Analysis of Microplastics Contamination

The results showed that MP contamination is widespread both in the sediment
(Figure 2A,C) and in the digestive tract of Oligochaeta (Figure 2B,D) collected at all sampling
sites of Selho and Costa-Couros rivers (Figure 3). Selho river showed an abundance of MPs
between 932.5± 130.9 particles·kg−1 of dry weight and 1593.2± 190.3 particles·kg−1 of dry
weight, and Costa-Couros river showed an abundance of MPs between
2130.3± 377.6 particles·kg−1 of dry weight and 3018.2± 416.8 particles·kg−1 of dry weight.

Significant differences were observed among Selho river sites for the number of MPs
in the sediment (F (3, 16) = 5.845, p = 0.0068; Figure 2A), with a higher number of MPs in S2
(1593 ± 190.3 MPs·kg−1 of dry weight in S2), compared to the S1 (958.7 ± 69.26 MPs·kg−1

of dry weight) and S3 (932.5 ± 130.9 MPs·kg−1 of dry weight) sites. When MP sizes found
in the sediments (>0.5 mm vs. <0.5 mm) were compared at each sampling site, there
were more MPs with size <0.5 mm than MPs with size >0.5 mm at all sites (S1: t = 13.91,
df = 4.002, p = 0.0002; S2: t = 8.381, df = 4.000, p = 0.0011; S3: t = 7.036 df = 4.002, p = 0.0021;
S4: t = 13.60, df = 4.002, p = 0.0002). Significant differences were also observed among
Selho river sites for the number of MPs existing inside the gut of Oligochaeta, with higher
abundances occurring in S1 (558.6 ± 100.7 MPs·g−1 of fresh weight) compared to the
remaining sites (H = 20.54, p = 0.0001; Figure 2B). The size (in µm) of the MPs ingested by
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Oligochaeta collected from Selho river ranged from 10 to 70 µm (Table 4), but the size of
the ingested MPs did not differ significantly among sites. Comparing the weight of the
Oligochaeta sampled at the sampling sites of Selho river, organisms from S1 and S4 had
significantly higher weight compared to the organisms from S2 and S3 (F (3, 53) = 11.73;
p < 0.0001; Table 5).
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Table 4. Minimum, maximum, and mean ± SEM sizes of random samples of ten MPs existing in the
digestive tract of Oligochaeta collected from four sampling sites of Selho (S1 to S4) and Costa-Couros
(C1 to C4) rivers.

Selho River Costa-Couros River

S1 S2 S3 S4 C1 C2 C3 C4

Min. (µm) 20 20 10 20 20 30 40 20
Max. (µm) 60 70 70 60 70 70 90 40
Mean (µm) 42 35 34 36 44 47 53 31

±SEM ±5.12 ±6.01 ±6.18 ±4.99 ±5.62 ±3.96 ±4.96 ±3.15

Table 5. Minimum, maximum, and mean ± SEM weight of the Oligochaeta collected from Selho (S1
to S4) and Costa-Couros (C1 to C4) rivers, analyzed after removing outliers.

Selho River Costa-Couros River

S1 S2 S3 S4 C1 C2 C3 C4

Min. (g) 0.008 0.007 0.006 0.008 0.076 0.007 0.158 0.008
Max. (g) 0.169 0.021 0.017 0.215 0.134 0.520 0.744 0.019
Mean (g) 0.080 0.014 0.011 0.063 0.111 0.081 0.464 0.010

±SEM ±0.013 ±0.001 ±0.001 ±0.015 ±0.005 ±0.046 ±0.045 ±0.001

In Costa-Couros river, significant differences among sites were found for the number of
MPs existing in the digestive tract of Oligochaeta, with a lower abundance of MPs occurring
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in C3 (95.25 ± 25.61 MPs·g−1 of fresh weight) compared to the remaining sampling sites
(H = 23.23; p < 0.0001; Figure 2D). Results also showed that Oligochaeta ingested particles
of different sizes ranging from 20 to 90 µm (Table 4), and the size of the MPs ingested by
Oligochaeta was significantly different between C3 and C4 (F (3, 36) = 4.224; p = 0.0117).
Significant differences among sites were also found for the weight of Oligochaeta, with
higher weights occurring in C3 compared to the other sites (F (3, 46) = 36.88; p < 0.0001;
Table 5). Although no significant differences were found among sites of Costa-Couros river
for the number of MPs in the sediments (F (3, 16) = 0.9520, p = 0.4391; Figure 2C), there
were significantly more MPs with size < 0.5 mm than MPs with size >0.5 at all sampling
sites (C1: t = 5.631, df = 4.000, p = 0.0049; C2: t = 5.243, df = 4.000, p = 0.0063; C3: t = 5.469,
df = 4.000, p = 0.0054; C4: t = 7.182, df = 4.000, p = 0.0020).

In both the Selho and the Costa-Couros rivers, no correlation was found between
the numbers of MPs in the sediment and the number of MPs in Oligochaeta’s gut (Selho:
R2 = 0.0351; F(1, 58) = 2.111; p = 0.1517; Costa-Couros: R2 = 0.0277; F(1, 58) = 1.651;
p = 0.2039). When the two rivers were compared, significant differences were found for
the abundance of MPs in the sediment (t = 5.967, df = 38; p < 0.0001) and inside the gut
of Oligochaeta (U = 1245; n1 = n2 = 60 p = 0.0033), with Costa-Couros river presenting a
greater abundance of MPs in both cases compared to Selho river (Figure 4).
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Figure 4. Total number of MPs extracted in the sediment (A) and Oligochaeta’s gut (B) of all sampling
sites in the Selho and Costa-Couros rivers. Data are presented as the mean ± SEM (sediment: n = 20;
organisms: n = 60). Different letters indicate significant differences (p < 0.05).

4. Discussion
4.1. Ecological Status

The Water Framework Directive (WFD [4]) requires that the ecological status of a
river is determined by the ecological quality element most affected by human activity
(i.e., the element with the worst ecological status). In this sense, neither the Selho nor the
Costa-Couros river reached a “good” ecological status because of the results obtained with
the biological quality element analyzed (below “good” in S2 and S3 in Selho river and C2
to C4 in Costa-Couros river) and/or the presence of high levels of nutrients in both rivers
(Table 3), especially phosphorus (exceeded maximum limit value established for the “good”
ecological status at all sites, except in C2 in Costa-Couros river).

Regarding the physicochemical parameters, phosphorus is a fundamental element for
plant growth and one of the key components of inorganic fertilizers [50,51]. This nutrient
is not readily available, and plants do not use it efficiently, which leads to a continuous
application in agricultural fields. Therefore, an uncontrolled accumulation of phosphorus
in the soil [51] may later be leached into aquatic ecosystems by surface runoff or soil
erosion [1,51] and trigger eutrophication processes, threatening aquatic life [1,50,51]. In
Selho and Costa-Couros rivers, the presence of phosphorus seems to be more influenced
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by spatial than seasonal factors, as significant differences were found between sampling
sites but not between seasons (Table S1). In the Selho river, S4 showed lower phosphorus
concentration compared to the other sampling sites (S1 to S3), which may be due to the
existence of more naturalized banks in S4 than the other sites. This may have resulted in a
greater capacity of the riparian strip of this site to act as a “filter”, reducing the amount
of nutrients and suspended sediments carried in runoff destined for the river [52,53]. In
Costa-Couros river, higher phosphorus concentrations were observed in C3 (urban area)
and C4 (peri-urban agricultural area) throughout the year. These two sites are located after
the Costa-Couros river reappears at the surface after being under the city of Guimarães.
This may suggest a continuous discharge of effluents when the river is under urban soil [54],
reinforcing the influence of urban pressure in the river’s water quality.

The concentration of ammonium ion also exceeded the threshold value for the estab-
lishment of “good” ecological status at C4, with high concentrations of this nutrient in
surface waters generally associated with contamination from raw sewage, industrial efflu-
ent, or fertilizer inflow [51,55]. Higher values of this nutrient in C4 (peri-urban agricultural
zone) compared to C3 (urban zone) in summer and autumn seem to be associated with
agricultural activities practiced on marginal land, since nutrients from fertilizers applied on
agricultural fields may be transported to surface watercourses through irrigation channels,
erosion, or rain water [51].

In both study rivers, the sites that did not reach at least a “good” ecological status based
on the benthic macroinvertebrate community were those under higher urban pressure (S2,
C2, and C3) or simultaneously under urban and agricultural pressure (S3 and C4), with
increased hydromorphological modifications. These include the loss of riparian vegetation
(C4) and the replacement of natural banks by artificial walls (S2, S3, C2, and C3), resulting
in a decrease in riverbank vegetation and contributing to the reduction in infiltration in
favor of surface runoff [37], and the presence of physical structures in the riverbed (S2
and C2), altering river dynamics, and acting as obstacles to water drainage and sediment
transport [38]. Moreover, all sampling sites with ecological quality below “good” showed
low diversity of organic (e.g., low abundance of macrophytes leading to a low value of
families that depend on them as habitat and sources of food [42]) and inorganic (e.g.,
S2, S3, C2, and C3 there was a predominance of fine substrate, with this substrate often
referred to as poor in terms of diversity [56]) habitats in the river bed. These factors have
negatively impacted the macroinvertebrate communities in these sites, leading to a decline
in the diversity of benthic macroinvertebrate species, a prevalence of taxa more tolerant
to anthropogenic pressures (such as organisms of the phylum Mollusca, class Turbellaria,
subclass Oligochaeta, and family Chironomidae).

The sites that achieved at least a “good” ecological status based on the macroinver-
tebrate community (C1, S1, and S4) showed fewer hydromorphological modifications
than the other sites and presented more diverse habitats in the riverbed, providing better
conditions for the development of a more stable and diverse community of benthic macroin-
vertebrates. As expected, in the Costa-Couros river, C1, which is located at the City Park,
achieved the highest ecological status in this river (“good” ecological status). However, in
Selho river, although S1 showed a “good” ecological status, the highest ecological status
(i.e., “high” ecological status) was obtained in S4. The flow conditions in S4 led to the
presence of a high number of organisms of the Hydropsychidae family [42], which was
essential for the increase in the value of the IPtIN index.

4.2. Microplastic Contamination

Microplastic (MP) contamination is pervasive across the sediments of the Selho and
Costa-Couros rivers. The comparison of the abundance of MPs in the sediments of Selho
and Costa-Couros rivers with other rivers is limited due to the lack of standardization of
methodologies and measurement units, as well as because MPs’ abundance can be spatially
and temporally variable [19]. Both rivers presented higher and similar abundances of MPs
in the sediments compared to those reported in other European rivers. For example, they
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showed higher abundances of MPs than those reported for Tame (165 particles·kg−1 of dry
weight [36]), Kelvin (161–432 particles·kg−1 of dry weight [19]), and Thames (66 particles
100 g—which is the equivalent to 660 particles per kilogram [23]) rivers in UK or Vistula
river in Poland (190–580 particles·kg−1 of dry weight [57]). However, MPs in the sediments
of Selho and Costa-Couros rivers were similar to those found in the sediments of Rhine
(228 to 3763 particles·kg−1 of dry weight) and Main (786 to 1368 particles·kg−1 of dry
weight) in Germany [58], and especially to those found in other Mediterranean rivers, such
as the Ebro (2052 ± 746 particles·kg−1 of dry weight [59]) and the Henares (maximum of
2910 particles·kg−1 of dry weight [60]) rivers, both located in Spain. In Portugal, most stud-
ies evaluating the presence and abundance of MPs in the sediments were oriented toward
marine ecosystems, with MPs being only analyzed in sediments of the Antuã (Aveiro) and
Lis (Leiria) rivers. Our study revealed that Selho and Costa-Couros rivers have a higher
abundance of MPs in the sediments than the Antuã river (18 to 629 particles· kg−1 of dry
weight [25]) but very similar to those found in the Lis river (102.22 to 2206.59 particles · kg−1

of dry weight [27]).
The spatial distribution of MPs in the sediments of both studied rivers showed different

patterns. In Selho river, S2, located in an urbanized area, stood out for having more MPs in
sediments compared to the remaining sites (agricultural and forestry areas). Similar results
were also observed in previous studies conducted in rivers, where the most urbanized sites
showed higher MP contamination [25,26,36]. In the Costa-Couros river, although there
were no significant differences among sites for the number of MPs in the sediments, the
abundance of these particles increased along the river, with the lowest number of MPs
occurring in the most upstream site (C1). However, the abundance of MPs in C1 was higher
than those observed at all sites of Selho river, probably because it is located in a recreational
area within the urban center and, therefore, has a strong influence of human activities. Our
findings align with Nel et al. [30], who found higher abundances of MPs in the sediments
of more densely populated sites and recreational areas.

Both rivers displayed a higher number of MPs with a size < 0.5 mm than MPs with a
size > 0.5 mm at all sites, suggesting that the MPs contaminating both rivers are mainly
primary MPs (such as microbeads that usually tend to range between >0.1 µm to ≤1 mm
in size [61]). Primary MPs have been used in a variety of personal care products (e.g.,
toothpaste, shampoo, cosmetic products, shaving cream [13,62]), the plastic production
industry (virgin pellets [23]), industrial cleaning products (e.g., scrubbers for removal
of rust or paint), and air blasting technology [13,62,63]. For example, a great quantity
of microbeads with an average particle size of 100 µm [64] or smaller [65] are used in
cosmetic products. Furthermore, previous research also revealed that primary MPs are
more common in urban freshwater systems than secondary MPs, with a dominance of
microbeads in sediments [28,66].

Several physical factors (e.g., wind, salinity, temperature, precipitation, river current,
and geomorphology) can influence the distribution of MPs in riverine sediments [57,62].
According to Hurley et al. [28], MPs are efficiently flushed from river catchments during
flood events. Given that sediment samples of this study were collected during the summer,
the high number of MPs found in both rivers can also be related to the lack of rain events
and low river currents, very characteristic of this season, allowing the withholding of these
particles in the sediment.

The Costa-Couros river showed a higher abundance of MPs in the sediments than the
Selho river. As mentioned above, the Costa-Couros river crosses the city of Guimarães,
which makes it more vulnerable to urbanization. Moreover, this river’s low current and flow
characteristics, especially during summer, make it even more prone to MP contamination
than most of the urban catchments of Guimarães, including the Selho river [28].

Oligochaeta are one of the most widely distributed freshwater taxa that ingest sed-
iment, extracting nutrients mainly from the organic matter to feed themselves (limni-
vores) [67]. This way of feeding makes these organisms one of the most susceptible to
the ingestion of MPs that tend to sink and accumulate in the sediments. Once ingested
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by benthic organisms, MPs have a very long residence period in their gut, which can be
induced either by the particle’s aggregation within the organisms’ digestive tract or by the
gut blockage with particles of similar size to their size-limited capacity of ingestion [68].

In Costa-Couros river, the most urbanized site (C3) stood out by showing a lower
abundance of MPs in the digestive tract of Oligochaeta, while, in the Selho river, the most
upstream site (S1), located in an agricultural and forestry area, was the one that presented
the highest number of MPs inside the gut of Oligochaeta.

The lower number of MPs in Oligochaeta from C3, seems to be associated with the
weight of the organisms (Table 5) since significant differences between sites were found for
the weight of Oligochaeta, with higher weights occurring in C3 compared to the other sites.
This might indicate that organisms from C1, C2, and C4 are suffering from malnutrition
and digestive disorders, as ingestion of MPs reduces the absorption of nutrients [69]. The
retention of MPs inside the gut might also lead to a false feeling of satiety and trigger an
inflammation response with consequences in the organisms’ behavior and physiological
status [68,70,71].

In Selho river, the high number of MPs inside the digestive tract of Oligochaeta does
not seem to be associated with the low weight of the organisms. In this river, the organisms
with higher weights had a higher abundance of MPs in their guts (Table 5), which seems
to be in accordance with a study by Garcia et al. [26], which reported that the abundance
of ingested MPs increased with organisms’ size. This can suggest that, contrary to what
was observed in the Costa-Couros river, the quantity of MPs ingested by Oligochaeta was
insufficient to cause obvious impairment in their development. Furthermore, according
to the study of Rauchschwalbe et al. [72], the biomass and the abundance of meiobenthic
organisms such as Oligochaeta, was not altered when exposed to MPs, whereas the biomass
and abundance of other taxa was affected.

According to previous studies, a high number of low-density MPs can be found at
the bottom of rivers due to the development of biofilms [13,62,73]. The development of
these organic-rich aggregates can lead to a preferential ingestion of these MPs by limnivore
organisms (such as Tubifex spp.; [69]). Rodriguez et al. [74] also reported that Tubifex spp.
worms tend to prefer to ingest particles associated with organic material. The selectivity
of Oligochaeta to ingest these aggregated particles can be the reason for the high levels
of MPs found in the gut of organisms from the Costa-Couros and Selho rivers. However,
further investigation is required to assess this hypothesis.

Some studies have already reported that MPs’ abundance inside sediment-dwelling
organisms (Chironomus spp.) reflects the abundance in the sediment they inhabit [30,31].
However, our results do not seem to support these findings, since sampling sites with a
higher number of MPs in sediments do not necessarily have higher number of MPs inside
organisms’ guts, and the other way around. This is consistent with the findings of Garcia
et al. [26], which observed that the ingestion of MPs was not correlated with environmental
MP pollution.

Concerning the size of the MPs found within the digestive tract of the Oligochaeta
from the Costa-Couros river, heavier organisms were capable of ingesting MPs with bigger
sizes, while smaller particles seemed to be associated with organisms with lower weights
(Table 4). That was evident in organisms from C3 and C4 sites, which presented the largest
and smaller MP mean size, respectively. The reduction in and/or absence of the capacity
of ingestion after MPs retention in the digestive tract depends on the number of particles
needed to be ingested to achieve the maximal volumetric capacity of the digestive tract [68].
Accordingly, the greatest number of MPs found within the gut of the organisms in both
rivers can result from the small size of the MP particles, which enabled an accumulation of
these forms inside of the digestive tract until the maximal volumetric capacity was reached.
In previous recent studies, a number of MPs (>500 items) ranging from 20 to 60 µm
found in the gut of chironomids triggered an anti-inflammatory and immune response
leading to an oxidative stress condition of larvae and an impairment of development and
reproduction [31,68,75]. A similar condition could have happened to the Oligochaeta from
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Costa-Couros, especially the organisms collected at C1, C2 and C4, whose high ingestion of
MPs led to a development shortage. Through the comparison of the mean size of the MPs
extracted from the Oligochaeta’s gut with the dominance of the particles with size < 0.5 mm
in the sediment of the sampling sites, it is evident that Oligochaeta ingested MPs within
the size range responsible for the contamination of all sampling sites in both rivers studied.
Moreover, the findings suggest that the ingestion of these MPs by aquatic organisms could
be mainly unintentional [26].

When comparing the abundance of MPs in both rivers, the Costa-Couros river pre-
sented significantly more MPs inside the gut of Oligochaeta. This can highlight the fact
that organisms from the Costa-Couros river could already be suffering alterations in their
behavior and physiological status (e.g., lack of growth and development, oxidative stress,
digestive orders) caused by the high levels of MPs ingested [31,32,68,75], contrary to organ-
isms from Selho river that do not seem to be affected by these plastic particles [72]. As it
happened in the sediments, in Oligochaeta, the number of MPs was also higher in the most
urbanized river (Costa-Couros river), emphasizing that urbanization is a key driver of MP
contamination in freshwater systems.

4.3. Potential Linkage between Ecological Status and Microplastic Abundance

Both C3 in Costa-Couros river and S3 in Selho river stood out from the other sites by
showing a lower abundance of MPs in Oligochaeta, as well as lower IPtIN value (C3 IPtIN:
0.27; S3 IPtIN: 0.36; C3 and S3 presented “poor” ecological status). High levels of nutrients
and a macroinvertebrate community dominated by organic pollution-tolerant taxa such as
Oligochaeta were also observed at these sites. Oligochaeta live buried in the substrate and
swallow the sediments taking advantage of organic matter, and they may unintentionally
ingest microplastics associated with it. Thus, the high abundance of Oligochaeta may help
explain the lower abundance of MPs in the organisms collected at C3 and S3 (high number
of Oligochaeta, less food available for each individual).

However, in Selho river, the sampling site with the highest abundance of MPs inside
the gut of Oligochaeta (S1) also achieved a “good” ecological status based on the benthic
macroinvertebrate community. Unlike C3 and S3, the S1 site showed a more diverse
macroinvertebrate community with fewer organic pollution-tolerant organisms, including
Oligochaeta. This may suggest a greater availability of food for Oligochaeta and, likewise,
a higher availability of MPs, resulting in a higher ingestion of MPs per individual.

Overall, our results show that sites with at least a “good” ecological status do not
necessarily have lower abundance of MPs in the sediments and organisms. In fact, MP
contamination is pervasive across the sediments and Oligochaeta’s gut in both rivers,
including at sites with “good” or “high” ecological status based on the biological quality
elements benthic macroinvertebrates.

5. Conclusions

The ecological status assessment based on the benthic macroinvertebrate community
showed that, in both rivers, the sampling sites that did not reach a “good” ecological status
were those under higher urban pressure (S2, C2, and C3) or simultaneously under urban
and agricultural pressure (S3 and C4). These pressures resulted in increased hydromorpho-
logical modifications affecting the benthic macroinvertebrate community. In general, the
urban influence, especially if combined with the agricultural activity, was a key driver in
the decrease in the ecological status of the rivers under study.

However, the ecological status of a water body is determined by the ecological quality
element with the worst quality. Thus, due to the high concentration of nutrients (especially
phosphorus) at all sites (and seasons) in both rivers (except C2), neither site achieved
an overall “good” ecological status. In Costa-Couros river, the sites under higher urban
pressure and simultaneously urban and agricultural pressure, stood out for presenting
higher phosphorus concentrations (C3 and C4). In Selho river, the most downstream site
(S4), despite being under agricultural influence, stood out from the others for showing lower
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phosphorus concentrations, which seems to be related to the existence of more naturalized
banks. Therefore, rehabilitation of riparian strips and the creation of conditions to retain
nutrients from agricultural and urban activities occurring in the areas surrounding the
sampling sites, together with reduction of diffuse pollution along the rivers, are necessary
to improve the ecological status of the Selho and Costa-Couros rivers.

The results also showed that MP contamination is widespread in the sediments and
Oligochaeta from both rivers, and urbanization seems to be the main driver for MP con-
tamination. In river Selho, the highest number of MPs in sediments was found in the site
integrated in an urban area (S2), while, in Costa-Couros, which is an urban river crossing
the city of Guimarães, the abundance of MPs in the sediments was similar in all sampling
sites. A high number of MPs were also found inside the digestive tract of Oligochaeta. In
Costa-Couros river, the high number of MPs seems to be associated with the low weight
of the organisms, suggesting the existence of malnutrition and digestive disorders. On
the contrary, the heaviest Oligochaeta in Selho river were those with the highest number
of MPs.

This study also makes a first approach to a potential link between ecological status
and the abundance of MPs in freshwater ecosystems. It showed that sites with higher
ecological status do not necessarily have lower abundances of MPs. Therefore, since MPs
have the potential to cause harm to ecosystems, organisms, and human health, it is essential
to monitor not only the ecological status but also emerging micropollutants such as MPs in
freshwater ecosystems to successfully implement mitigation and remediation strategies.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijerph192315956/s1: Figure S1. Spatial and seasonal variation of
the physicochemical parameters determined in Selho river; Figure S2. Spatial and seasonal variation
of the physicochemical parameters determined in Costa-Couros river; Table S1. Two-way ANOVA
applied to the physicochemical parameters of Selho and Costa-Couros rivers.
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