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Abstract

In recent years, with the growth of energy consumption by computing devices, energy efficiency is a
crucial concern in the IT area due to its economics and environmental impact. The recent but widespread
use of powerful computing devices, namely smartphones, which rely on "the cloud” to store large amounts
of information (like, for example, photos and videos), is demanding the construction and maintenance of
large data centers. Such data centers run large-scale internet-based systems like cloud services. As a
consequence, the energy consumed by data centers is growing fast, which is a crucial concern in the IT
area due to its economics and environmental impact.

The growing reliance on cloud construction services is one of the main reasons for the rapid rise in
research and development of energy efficient software and hardware for data centers. Nowadays, the most
popular usage of data centers is the Database Management Systems (DBMS) that, normally, are responsi-
ble for the access, management, manipulation, and organization of data. While there have been advances
and studies in energy-awareness in this area, there isn't enough knowledge on the energy efficiency pro-
vided by different database systems.

This master thesis intends to tackle this lack of knowledge by analyzing the energy consumption of
DBMS software. Through benchmarks that simulate real usage environments, this research plays a key role
in improving the knowledge on the energy efficiency of DBMS. We analyze four systems, namely MySQL,
Postgres, MariaDB, and Redis. Moreover, we use the HammerDB benchmark framework for the simulation
of DBMS in a real environment. Thus, to have a precise knowledge of the energy consumption of DBMS,
we analyze the energy consumption in various subsystems of the computer, namely like CPU, DRAM, GPU,
and Disk. Moreover, we present further analysis of the energy consumption per performance ratio in all
subsystems levels.

Our results show that, indeed, there are significant differences in the energy consumption of which
DBMS and that in some scenarios, the one with better run time performance is not what consumes more

energy.

Keywords: Energy Efficiency, DBMS, Green Software, Green Computing, Program Analysis.




Resumo

Nos ultimos anos, com o crescimento do consumo de energia pelos dispositivos computacionais,
a eficiéncia energética € uma preocupacdo crucial na area de Tl devido ao seu impacto economico e
ambiental. Com a recente generalizada utilizacéo de potentes dispositivos informaticos, nomeadamente
smartphones, que dependem da “Cloud” para armazenar grandes quantidades de informacdo (como
por exemplo, fotos e videos), estd a exigir a construcdo e manutencdo de grandes centros de dados.
Esses centros de dados executam aplicacdes baseadas na Internet em grande escala, como servicos em
nuvem. Como consequéncia, a energia consumida pela data centre esta aumentar rapidamente, o que é
uma preocupacao crucial devido ao impacto econémico e ambiental que estes trazem.

0 aumento da dependéncia destes servicos em nuvem € uma das principais razdes para o interesse
em estudos e desenvolvimento de software e hardware com baixo consumo de energia. Hoje em dia, 0 uso
mais popular dos data centre sdo os Sistemas de Gestao de Base de Dados (SGBD) que, normalmente,
sao responsaveis pelo acesso, gestao, manipulacao e organizacao dos dados. Embora tenha havido alguns
avancos e estudos em eficiéncia energética nesta area, ainda existe falta de conhecimento nesta area.

Esta dissertacdo pretende reduzir a falta de conhecimento do consumo de energia do software DBMS.
Ao usar ferramentas de benchmarks que simulam ambientes reais, este estudo desempenha um papel
fundamental no aprimoramento do conhecimento sobre a eficiéncia energética de diferentes tipos SGBD.
Analisamos quatro sistemas, nomeadamente MySQL, Postgres, MariaDB e Redis. Além disso, usamos
o framework de benchmark HammerDB para a simulacdo de SGBD em um ambiente real. Para ter um
conhecimento aprefundado sobre o consumo de energia do SGBD, analisamos o consumo de energia
em varios subsistemas do computador, nomeadamente como CPU, DRAM, GPU e Disco. Além disso,
apresentamos uma analise mais aprofundada do consumo de energia relacionada com o desempenho
em todos os niveis dos subsistemas. Esta tese apresenta resultados aonde pode ser verificado que existem
diferencas significativas no consumo de energia das diferentes SGBD e em alguns cenarios, a Base de

dados com melhor desempenho de performance de execucao nao é o que consome mais energia.

Palavras-chave: Green Software, Green Computing, SGDBS, Eficiéncia Energética.
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Chapter

Introduction

This chapter introduces the theme and objectives of this Master's thesis. First, Section 1.1 provides back-
ground on energy consumption, including why it is an issue in the Information Technology (IT) area and
how it is a stimulus for this study. Afterwards in Section 1.2, the research questions of this thesis are
presented along with an explanation of their reasoning. Finally, in Section 1.3, the remainder document

structure is presented.

1.1 Context and Motivation

There has been an increase in the number of users with internet access over the past decades. In 2018,
more than half of the world’s population is already using the internet daily, and almost 60 percent of the
world’s homes have access to the internet [115]. With the unprecedented increase in users, the IT sector
is eagerly more concerned with energy management in hardware and software development. These envi-
ronmental issues caused by energy consumption are already evident. Whatever it urges the governments
to track the IT capacity of companies around the world [11, 37, 48, 57, 124].

According to Mills, the energy consumption of the worldwide IT sector is approximately 1,500 TWH,
corresponding to roughly 10 percent of the worldwide energy produced. The indicated values are equivalent
to the global energy consumed by Japan and Germany together. Although there are policies to reduce data
center energy consumption, the proportion of electricity cost still increases year by year in today’s large-
scale data center [8].

Due to this increase, data centers are becoming a vital part of IT operations that offer computing facili-
ties to large, medium, and small organizations, such as online social networks, cloud computing providers,
online companies, banks, hospitals, and universities. With the rise of cloud computing, hosting services
in data centers has become a multi-billion-dollar sector that plays a pivotal role in the IT industry [37, 99].

Because of the environmental and economic implications of cloud services, new software and hardware
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energy efficiency challenges for data centers have emerged [37].

Moreover, the energy costs of running a data center are exceeding the price of its hardware, which is
prejudicial to its density, scalability, and associated environmental design [57, 66, 96]. It is essential to
know that the energy consumed by a data center can be of two types: energy use by IT equipment (e.g.,
servers, networks, storage.) and usage by infrastructure facilities (e.g., cooling and power conditioning
systems) [37, 93].

The amount of energy used by these two components changes with the established architecture. Some
articles that analyze the energy consumption of the data centers have found that between 40% and 50%
of the energy used in the data centers comes from cooling systems. While servers and storage devices
consume about 26%, being the second most consumed in a data center [37, 55, 93, 117]. Additionally,
the energy efficiency increase of servers is far below estimates [52, 66].

The energy efficiency of servers appears to have untapped potential. In general, database servers are
the largest consumers of computing resources in data centers, making Database Management System
(DBMS) one of the largest energy consumers. A particular usage of these systems is data systems ware-
housing. Data systems warehousing seeks to store the information of an organization, to facilitate the
decision recovery processes that involve the decision-makers. These systems can integrate information
from different sources, store historical and current data that can be a source of information that, when
properly exploited, can guarantee relevant advantages in the market segments in the market segments
where the companies fit. The accumulation of this historical information makes these systems elements
with a high growth rate [50, 63, 64].

Since there are so many distributed database management systems available, choosing one can be
difficult. While DBMS performance benchmarking is a supportive approach to deciding between different
DBMS, due to the need to reduce the power consumption of database servers, that isn’'t the only factor
nowadays [57, 106]. This urge has drawn attention from some well-known journals and conferences in
the database field [57]. Some examples are the Journal of Network and Computer Applications [57], EDT
[48], SIGMOD [128] , IEEE Data Engineering Bulletin [74], VLDB [85],and SSDBM [114].

With this surge, we face the challenge of not choosing only an energy-efficiency DBMS or performance
DBMS but a performance-energy efficient one.

Choosing an energy-efficient DBMS comes with two main problems common to energy-efficient soft-
ware development: the lack of knowledge on green software of software developers and the lack of tools
to reason about software energy consumption [79, 91].

Consequently, software engineers tend to use existing software benchmark tools and (runtime) profilers
to reason about the energy consumption of the software. The usual intuition is that faster software is also
greener software. However, as several studies have shown, [32], time is not the only factor in the software’s
energy consumption, and slower software may be more energy-efficient than faster software. In the context
of DBMS, software developers face another challenge: the lack of energy consumption knowledge in DBMS.

Thus, this thesis aims at reducing the lack of knowledge on the energy efficiency of the most popular

DBMS, making it easier for developers and enterprises to choose the DBMS when they are concerned
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about energy efficiency and energy proportionality. A significant aspect of our work that distinguishes it
from previous works in this field is that our motivation is to explore the real impact of these systems in the

most realistic environment.

1.2 Research Questions

As previously mentioned, this research aims at understanding: Which DBMS software is the greenest run-
ning in a real-world environment, and what is the difference between them in terms of energy consump-
tion? Moreover, as DBMS relies on intensive disk operations, we also want to reason about disk energy
consumption. Finally, we wish to study the energy impact of having multiple users performing real-world
DBMS actions.

Thus, this thesis wishes to answer the following three research questions:

* RQ1:Which Database Management System is the most energy-efficient? In this research question,
we want to understand which DBMS is the greenest in both Central Processing Unit (CPU) and disk
energy consumption. Moreover, we would like to understand the DBMS energy efficiency at the CPU
level and the disk level. This research question is vital because DBMS heavily relies on accessing
external memory and CPU operations. Understanding this can help choose the greenest DBMS in
different contests: For example, when we need to perform intensive and complex queries, which

demand heavy CPU computations, which DBMS should we choose?

* RQ2:Which Database Management System has the best energy versus runtime tradeoff? With this
research question, we desire to understand which DBMS has the better energy consumption per
performance. For this, we want to know which one spent less energy per performance metric. This
research question is necessary because choosing energy-friendly DBMS does not imply a DBMS
with the worst performance, so by doing this research question. We want to understand the DBMS

most suited for performance and low energy consumption.

* RQ3:How does the increasing number of users of the Database Management System impact their
energy consumption? While some DBMS may be energy-efficient at the CPU level and others
at the disk storage level, we want to understand the overall impact the user’s traffic has on the
different DBMS on the overall energy consumption. Here means that we want to comprehend how

the scalability of DBMS affects energy consumption.

1.3 Document Structure

The remaining chapters of this thesis are into five parts. The following is a list of the chapters:

* Chapter 2 - Literature Review: Here, we present the literature review needed for this project.
This chapter includes a description of the brief history of DBMS, its advantages, and different DBMS
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models. Then an introduction to Green Software and related work in the area. This chapter ends

with an explanation of energy consumption and its monitoring tools.

Chapter 3 - System Prototype: This chapter details our study on a design and methodology
level. Additionally, it explains the energy model used and DBMS studied.

Chapter 4 - Results: Here is the chapter that shows and analyses the results obtained in this
study. First, start by showing and explaining the graph visualization made and then analyzing these

graphs.

Chapter 5 - Threats to Validity: This chapter provides validation of this study. Here shows the

degree to which evidence and theory support the interpretations of results.

Chapter 6 - Conclusion and Future Work: The last chapter of this dissertation includes a con-
clusion to the research questions, final considerations, and future work proposals to give continuity

and improvement to this study.



Chapter

Literature Review

This chapter presents the literature review and the state of the art of technologies involved in carrying
out this project. First, Section 2.1 shows in detail DBMS: it starts by describing a brief history of DBMS,
the advantages of using them, and the different DBMS models. Then how to benchmark DBMS and their
benchmark systems. Next, in Section 2.2, we present green software focusing on the work related to this
study. Finally, Section 2.3 explains the concept of energy, how energy can be measured, which are the
most relevant subsystems in energy consumption, and the various solutions for monitoring the energy

consumption of a system.

2.1 Database Management Systems

The Database Management System (DBMS) is the software designed to assist, maintain, and use a large
set of data. It facilitates the definition, construction, manipulation, restriction, and sharing of data [47].

The first general-purpose DBMS was designed and developed by Charles Bachman in the early 1960s [59]
and it was called The Integrated Data Store. It formed the basis for the data model of the network, which
through the 1960s was standardized by the Conference on Conference on Data Systems Languages (CO-
DASYL) and strongly influenced database systems [47, 59]. In the late 1960s, IBM developed the Infor-
mation Management System (IMS) DBMS, used even today in many major installations. IMS formed the
basis for an alternative data representation framework called the hierarchical data model [47].

DBMS soon entered all sectors of organizations allowing the implementation of comprehensive and
indispensable information systems. Historically they have evolved from the hierarchical model, which had
the problem of the relationship between the entities represented, for the Relational Model that solved the
relationship problem between the entities represented, allowing great flexibility navigation and search of
stored data [47].

Database management continues to gain importance as more and more data is brought online and
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made ever more accessible through computer networking. The global DBMS market reached an estimated
value of almost 58.4 billion American dollars in 2019. The global DBMS industry is further expected to
grow at a CAGR of 13.81% between 2020 and 2025 to reach a value of almost 126.9 billion American
dollars by 2025. We can't deny the importance of the DBMS on the world. mention the advantages of why
we should be using an instead of other options.

The DBMS is the software that interacts with the user’s application programs and the database. Typi-

cally, a DBMS provides the following facilities [27]:

* |t allows users to define the database, through a Data Definition Language (DDL). The DDL allows
users to specify the data types and structures and the constraints on the data to be stored in the

database.

* |t allows users to insert, update, delete, and retrieve data from the database, usually through a Data
Manipulation Language (DML). Having a central repository for all data and data descriptions allows

the DML to provide a general inquiry facility to this data, called a query language.

* |t provides controlled access to the database like a security system, which prevents unauthorized

users, an integrity system, which maintains the consistency of stored data, etc.

2.1.1 Advantages of DBMS

In Gehrke book [47], he presents the main advantages of DBMS:

* Data Independence: Ideally, application programs should not be exposed to data representation

and storage information, and the DBMS offers an abstract view of the data that hides those details.

o Efficient Data Access: A DBMS utilizes a range of advanced techniques to efficiently store and
retrieve information.this function is particularly important, If the data is stored on external storage

devices.

* Data Integrity and Security: A DBMS to maintain data integrity implement restrictions on data
access. Also, it can enforce access control that govern what data is visible to different classes of

users.

* Data Administration: If many users share the data, major changes can be made by centralizing
data administration. Experienced professionals who understand the complexities of the data being
handled, and how it is used by various groups of users, may be responsible for arranging data

representation to reduce duplication and fine-tuning data storage to make recovery efficient.

* Concurrent Access and Crash Recovery: A DBMS schedules simultaneous data access in
such a way that users can think of the data as being accessed by just one user at a time. In

addition, the DBMS protects users against the impact of device failures.
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* Reduced Application Development Time: DBMS already support several common functions
between different applications and also with its high level interface. This facilitates rapid application
creation in accordance with the high-level interface to the data. DBMS applications are therefore
likely to be more stable than equivalent stand-alone applications since the DBMS performs several

significant tasks.
Even with these advantages, it can bring some disadvantages:

* Danger of overkill: For small and simple applications the use of database system is often not

advisable and can have a negative impact on the overall performance.

* Complexity: Further complexity and requirements are created by a database system. This can be
quite costly and demanding to supply and operate a database management system with multiple

users and databases.

* Costs: With a use of database system it will create a new costs for the system itself, but also for

additional hardware and the more complex handling of the system.

* Higher impact of a failure: The centralization of resources increases the vulnerability of the
system. Since all users and applications rely on the availability of the DBMS, the failure of certain

components can bring operations to a halt [27].

* Cost of conversion: In some situations, the cost of the DBMS and extra hardware may be in-
significant compared with the cost of converting existing applications to run on the new DBMS and
hardware [27].

Every DBMS as is own way to store data but every one is define by a data model. A data model is a
collection of high-level data description constructs that hide many low-level storage details. A DBMS allows

a user to define the data to be stored in terms of a data model.

2.1.2 Relational Models

The relational data model is based on relational algebra and was proposed by Codd [24]. The Relational
Model made a revolution in the way that users used it as databases, which was just the manipulation
of physical structures. Codd believe that adopting his vision would allow users to use a higher-level lan-
guage and abstraction, not depending to specify the physical representation of data and that improved the
productivity for database users [26].

Relational Databases have specific characteristics like the structural aspect, Support for a language at
least as powerful as relational algebra, and rules to manipulate data [25].

The relational models are more know as Structured Query Language (SQL) databases, which Structured

Query Language (SQL) is the query and maintenance language used in these applications.
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A relational database is in simple terms, a set of tables. Each table contains data on aspects of one
subject, such as a client, an order, a product, a team, or a city. Restrictions on the data in individual tables
and even between tables may be set. It is possible to usefully represent how the tables are interrelated
with a data model. Different attributes of the same table may or may not have the same domain [23].

This model has a lot of cautions and one of these cautions is that we have to normalize our data.
Normalization is a technique for producing a set of relations with desirable properties, given the data
requirements of an enterprise. Normalization is a formal method that can be used to identify relations
based on their keys and the functional dependencies among their attributes [27].

Other rules this model have is in their transaction, In this context, a transaction is an operation, or
a chain of operations, carried out by a single user or application program that accesses or modifies the
database content. A transaction is a logical work unit that brings the database from one state of consistency
to another. Transactions can be successfully terminated [27]. A transaction should follow the four basic
properties Atomicity, Consistency, Isolation, and Durability (ACID) as they know which stand for the first
letter of the proprieties [58]:

* Atomicity: The transaction operations are all done or none are. It is an all or none rule.

* Consistency: A transaction must transform the database from one consistent state to another

consistent state and any of the states the database can be not consistent.
 |solation: Different Transaction are independent one of other.

* Durability: After a transaction, the effect of a transaction have permanently recorded on the

database and must survive a system failure.

Nowadays, relational DBMS are the most popular in the DBMS market following the ranking made and
study by DB-Ranking [38] the five market leaders in Relational DBMS are:

e QOracle
e MySQL

e Microsoft SQL Server

PostgreSQL

IBM Db2

Even though that IBM developed one of the first DBMS, IBM struggle to be the most popular DBMS
because of the competitiveness of this market. However, with the rise in internet traffic in recent years,
the volume of accumulated data is increasingly increasing to a scale of 1,000 Terabyte (TB) and even 100
Petabyte (PB). The scalability of SQL storage is thus being challenged [126].
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To scale the relational DBMS it is required to replace existing hardware with more efficient ones, which
come at a high cost. Besides, if this improvement is not enough to accommodate all data volumes, the
alternative is to spread the device through several servers. Relational databases have a hard time adapting
and scale to distributed environments because it is not easy to put different tables across different servers
since relational databases are built to manage data on the same server rather than partitioning data.
Additionally, it may bring additional complexity to the data model when dealing with a large quantity of data
that does not easily fit into a table, which leads to a decline in the efficiency of reads and writes. Also, the
query language is a problem, as it can only deal with standardized information. Moreover, conventional SQL
solutions don’t work well with agile development, which requires large quantities of complicated code [60,
126].

NOSQL solutions have become a hot subject and alternative to SQL databases to solve these scalability

and performance problems [60, 126].

2.1.3 Non Relational Data Models

The early concept of Not Only SQL (NOSQL) was first used in 1998 by Carlo Strozz [110] that did not
expose the SQL interface, though it was based on a lightweight relational mode [70, 120, 126]. However,
Strozzi used the term simply to distinguish his solution from other relational DBMS [70].

Nowadays, the term NOSQL start to regain popularity with the rise of the era of Big Data [70]. Big
data was defined by Apache Hadoop in 2010 as “datasets which could not be captured, managed, and
processed by general computers within an acceptable scope.” Big data is linked to Internet companies’
services and that is rising rapidly nowadays. For example, Google processes data from hundreds of PB,
Facebook produces log data of more than 10 PB per month, or Baidu, a Chinese business, processes data
from tens of PBs [20]. Even though traditional SQL databases have proven to be highly effective, secure,
and consistent in terms of structured (or relational) data storage and processing, they fall short of Big Data
processing, which is characterized, among other things, by the large volume, variety, velocity, openness,
lack of structure and high visualization demands [17, 70].

With this information, the new definition of NOSQL merges as Not Only SQL. This term means that
any DBMS that doesn't follow all proprieties and principles of the relational models [70, 120, 126].

NOSQL systems generally have six key features [18]:

* the ability to horizontally scale “simple operation” throughput over many servers.

* the ability to partition and replicate data over many servers.

* a simple call level interface or protocol.

* a weaker concurrency model than the ACID transactions of most relational SQL database system.
 efficient use of distributed indexes and Random Acess Memory (RAM) for data storage.

¢ the ability to dynamically add new attributes to data records.
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A key feature of NOSQL systems is replicating and partitioning data over many servers. This allows
them to support a large number of simple read/write operations per second. This simple operation load
is traditionally called Online transactional processing (OLTP), but it is also common in modern web appli-
cations [18].

To guarantee the integrity data in all levels of data management, SQL implement ACID proprieties on
them transitions. However, these proprieties have poor scaling. With the face of these problems, the CAP
theorem arises on NOSQL databases. CAP was designed by Brewer[14] stands for Consistency, Availability

and Partition Tolerance, and this theorem consist in 3 different aspects [49, 83]:
* Strong Consistency: All clients see the same version of the data, even on updates to the dataset.

* Availability: All clients can always find at least one copy of the requested data, even if some of
the machines in a cluster are down.

* Partition-tolerance: The total system keeps its characteristic even when being deployed on dif-

ferent servers, transparent to the client.

Consistency

All clients see the
same view of data,
even right after
update or delete

CA CP

Availability &

Partitioning
All clients can find a AP
replica of data, even
in case of partial
node failures

The system continues
to work as expected,
even in presence of

partial network failure

Figure 2.1: Visualization of CAP theorem.

The CAP Theorem proposes that only two of the three different aspects of scaling out can be achieved
fully at the same time, in Figure 2.1 we can send the 3 states that can be archive. Still systems can be

improved towards the maximum proximity of the three characteristics, this state are [13, 14, 18, 58]:

* CA: databases can only be consistency and availability at the same time if they don’t have data

into multiple server peers.
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* CP: when working with a partitioned database, it is only possible to achieve consistency by giving

up of temporary availability to have time for the partitions recovered to avoid inconsistency.

* AP: when working with partitioned data across multiple servers it is only possible to achieve total

availability when giving up consistency at all times.

Many of the NOSQL databases above all have loosened up the requirements on Consistency to achieve
better Availability and Partitioning. This resulted in systems know as Basically Available, Soft-state, even-
tually consistent (BASE) [18, 94, 116]:

* Basic availability: Each request is guaranteed a response successful or failed execution
* Soft state: The state of the system may change over time, at times without any input.

* Eventual consistency: The database may be momentarily inconsistent but will be consistent

eventually.

There is been a lot of approaches and models on NOSQL. This led to creating a bunch of new categories
for the NOSQL data models. The most popular are Key-value stores, Document stores, Graph databases,
and Wide Column Stores [70, 75, 76].

With more detail, it will explain the above-mentioned NOSQL models:

Key-value stores The Key-value stores is the most simple model as the name suggest, this database
only stores data as pair key and values, where stored values can be retrieved with the respective key. With
this simplicity means that does any complex structured because data is organized as an array of entries
but these simple systems are normally not adequate for complex applications. These models are popular
due to their simplicity, stability and efficiency, as they have, in general, linear access to the database data
and usually, these models are used when you want a good cache management [70, 82, 113, 116, 126].

In Figure 2.2 shows an example of this model. If for the sets a hash map or an associative array is

used as a data structure, information can be retrieved in constant time.

I | G |G

Int String List

Figure 2.2: Example of a data model of a key-value store

It is possible to classify key-value stores into various groups. If they store data in the cache or on disk,
store the keys sorted or are eventually consistent, they can be separate [82].
The drawbacks are that all key-value stores share, they only support basic key/value data structures,

joins are not supported and among the various implementations there is no specific query language [82].

11
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Document stores Data stores, also known as document-oriented DBMS. This model is a type of
database that stores uniform fields with a non-standard amount of information for each record and is
distinguished by its schema-free data organization. There is no need for records or documents to have
a standardized layout, and different records which have different columns. For each record, the types of
individual column values can be different, and columns can have more than one value. This is possible
by encapsulating documents such as JSON, XML, BSON or similar metadata technologies in a particular
document type in order to compose nested semi-structured content [70, 82, 113, 119, 126].

These stores organize the records into collections as a way of understanding what each document
relates to. In terms of their own schema, any documents associated may be included in these collections.
When dealing with data requests from a particular array, this allows to retrieve processes. A few different
open-source document databases are available today but the most prominent among the available options
are MongoDB and CouchDB [70, 113].

In the Figure 2.3 of a structure of a documents on a document store database.

{
{ "EmployeelD”: "MM2”,
"EmployeelD": "SM1", "FirstName”: "Anand”,
"FirstName”: "Anuj”, "Age"”: 34,
"LastName": "Sharma”, "Salary”: 5000000,
"Age”: 45, "Address”: "Linel™: "123, 4th Street”, "City":
"Salary”: 10000000 "Bangalore”, "State”: "Karnataka”,} "Projects”: [
} "nosgl-migration”, "top-secret-007"]
(a) Document of employee a }

(b) Document of employee b

Figure 2.3: Example of a JSON use in a data model of document store

Graph stores Graph stores are also known as graph-oriented or graph-oriented DBMS. Databases are
therefore distinct from specialized data management tools that in their implementation, use graph notions
to represent data as nodes and edges in graph structures that represent relationships between nodes.
They make it easy to process the data in that form and easy to calculate specific graph properties, such as
the number of steps required to get from one node to another node. Graph databases allow us to enforce
specifications for graph processing at the same level of query language as we use for graph data fetching
without the additional abstraction layer for graph nodes and edges. This implies less overhead and more
versatility and performance for graph processing [5, 6, 70].

Figure 2.4 depicts an example of a simple social network in a graph database.

12
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Name: Tiago Monteiro

Name: Miguel Oliveira

Nationality Nationality

Status

Job: Motorcycle Racer

Job: Student Country: Portugal

Figure 2.4 Example of a simple social network in a graph data model.

Wide Column stores The first column stores appeared in 1969 [2]. In 1975 was developed the second
column store and the first one with application in healthcare, for store clinical records [123].

Wide column stores store data in records with the capacity to carry very large numbers of complex
columns, also called extensible record stores. A column-based record solution works well to act as write-
optimized operations for these types of semi-structured data and it is not the case in the conventional
relational DBMS that it is not optimized to write data to a smaller subset of records in order to update the
records, it must read the whole set of tables. [70, 126].

2.1.4 Benchmarking DBMS

One of the harder aspects of data management is the performance analysis and tuning. For complex
systems that perform high workloads on large datasets, it is particularly challenging because many factors
can affect the performance. In terms of DBMS, this is done by the usage of a benchmark that allows one
to evaluate the system’s main performance metrics under stressful conditions [41].

Benchmarks are techniques that seek to collect and compare a wide variety of activities, to achieve the
best result, an objective criterion for determining which practice or software is superior in certain scenarios
that the user who is doing the simulation built. An example of popular questions is "Which domain is the
best system?”. The SPECCpu benchmark [62], for instance, addresses the question, "What is the best
CPU?""and the TPC Benchmark C (TPC-C) [29] responds to the question, "What is the best OLTP database
system?” [21, 46].

For Gray, a domain-specific benchmark must meet four criteria to be an effective benchmark. It must
be:
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* Relevant: In performing typical operations within that problem domain, it must measure the peak

performance and price/performance of systems.

* Portable: It should be easy to implement the benchmark on many different systems and architec-

tures.

* Scaleable: The benchmark should apply to computer systems small and large. As computer per-
formance and architecture evolve, it should be possible to scale the benchmark up to bigger systems

and to parallel computer systems.

e Simple: The benchmark must be understandable, otherwise credibility will be lacking.

2.1.4.1 TPC Benchmark C

TPC Benchmark C (TPC-C) is an OLTP workload [29]. It is a mixture of read-only and update intensive
transactions that simulate the activities found in complex OLTP application environments. It does so by
exercising a breadth of system components associated with such environments, which are characterized
by:

* The simultaneous execution of multiple transaction types that span a breadth of complexity

* On-ine and deferred transaction execution modes

* Multiple on-line terminal sessions

* Moderate system and application execution time

 Significant disk input/output

» Transaction integrity (ACID properties)

* Non-uniform distribution of data access through primary and secondary keys

» Databases consisting of many tables with a wide variety of sizes, attributes, and relationships

* Contention on data access and update

While these specifications express implementation in terms of the relational data model with a tradi-
tional locking framework, any commercially available DBMS, database servers, file systems, or other data
repositories offering a functionally equivalent implementation can be used to implement the database.

TPC-C uses metrics and terminology that are similar to other benchmarks originating from the TPC
or others. In no way does this similarity in terminology imply that the results of TPC-C are comparable to
other benchmarks. Other TPC-C results compliant with the same revision are the only benchmark results

comparable to TPC-C.
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The performance metric reported by TPC-C is a "business throughput”measuring the number of orders
processed per minute. Multiple transactions are used to simulate the business activity of processing an
order, and each transaction is subject to a response time constraint. The performance metric for this
benchmark is expressed in transactions per minute.

TPC-C is accepted in the industry as the most credible transaction processing benchmark with a large
body of results across all major hardware and database platforms. The highly tuned and optimized nature

of the TPC-C configurations makes it the best candidate for study DBMS power consumption [92].

2.1.4.2 HammerDB

HammerDB is an open source and widely used benchmark framework for the worlds most popular
DBMS [4, 21, 44,71, 72, 104, 130]. HammerDB emulates a TPC-C scenario and through OLTP workloads
it sets up a company'’s sales processing environment. It reduces the testing costs by simplifying the TPC-C
rules, which can be modified and run on a custom environment. The above factors result in a low-cost
solution, rapid deployment, and customized DBMS benchmark system [21, 44, 107]. HammerDB cur-
rently supports Oracle, SQL Server, Db2, TimesTen, MySQL, MariaDB, PostgreSQL, Greenplum, Postgres
Plus Advanced Server, and Redis. Moreover, it can run on a variety of Operating system (0S), making it a

flexible and heterogeneous benchmarking framework [21].

gle v [edt v[options v [nep |

= &8 & m » £ mun
Benchmark | script Editor | virtual User Output ~ ffransact

< PostgresQL
< TPCC

ek Virtual User Iterations Complete | Status
SQL Server G1 [ o e
Db2 L2 (&H o +#

ending output has been discarded

File: PostareSQL TPC-C Timed  Mode: Local ~Row.Col: 35.20

Figure 2.5: HammerDB GUI.

Although HammerDB implements a workload based on the TPC-C specification, it does not implement
a complete TPC-C benchmark specification. As a consequence, the transaction results from HammerDB
can not be compared to the official TPC-C benchmarks. HammerDB workloads generate 2 statistics.
Transactions per Minute (TPM) is the transactional measurement of the specific database typically defined
as the number of user commits plus the number of user rollbacks. TPM values are database-specific and,

thus, they cannot be compared among different DBMS. The New Orders Per Minute (NOPM) value, on the
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other hand, is a performance metric independent of any particular database implementation and it is the
recommended primary metric to use [107].

HammerDB is being actively used by researchers to study the performance of DBMS: Elgrably use
HammerDB to compare open-source DBMS performance like Mysql, MariaDB and Postgres [44]. Another
study that uses Hammerdb is Knoche (2016) work that uses HammerDB to test the impact of database lock
contention in the TPC-C benchmark scenario [71]. In the context of green computing, Kocak (2018) uses
HammerDB with MySQL to define a dataset to use on his software energy consumption prediction [72].

HammerDB is also being widely used by most leading database and technology companies, such as
Oracle, IBM, Intel, Dell/EMC HPE, Huawei, Lenovo, and hundreds more [107]. It has been downloaded

hundreds of thousands of times in more than 180 countries.

2.2 Green Software

Since the exploding of the IT in all areas of our activity, offering great benefits, convenience, opportuni-
ties and irreversibly transforming businesses and society, it has also been contributing to environmental
problems [84].

With an increase of concerns with energy consumption in all areas, it grows the use of Green computing,
also known as Green IT in the computer science area. Green computing is the area that study and practice
environmentally friendly and sustainable computing. The goals of this area are to reduce and understand
the energy consumption of different technologies, Software, or hardware and which choice can we make
to reduce energy consumption. Green Software is a sub-area of green computing that mains goals are
to reduce energy consumption through software analysis and optimization. Therefore, developing green

software can contribute significantly to preserve the environment and reduce energy consumption globally.

2.2.1 Related Work

Even though green software isn't as popular as it should be a wide range of studies have already been made
towards introducing and creating more energy-friendly and energy-aware approaches. At the moment, the
work done on energy consumption is clear proof of the paradigm shift in the creation of software. There
is a lot of examples of this shift on energy awareness on software development, examples of this is the
work made by Pereira et al. (2016), that analyze the energy consumption of the different Java Collection
Framework (JCF), present an energy optimization approach for Java programs: based on calls to JCF
methods in the source code of a program and define a green ranking for Java Collections. In Couto et
al. (2017), authors define a ranking of energy efficiency in the programming language in ten well-known
programming languages by running a set of computing problems in each language and monetize the
energy consumption.In the area of programming languages, there are other examples of studies [15, 77,
86-89]. Other studies can be found in different areas like the mobile area, a study developed by Couto

et al. (2014) aimed at detecting Anomalous Energy Consumption in Android Applications. Rua et al. (2019)
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developed the GreenSource infrastructure: a large body of open-source Android applications tailored for
energy analysis and optimization. There are a lot more examples in the mobile area [30, 33-35, 80, 100,
102].

DBMS doesn’t escape the concerns and care of the green movement, Agrawal et al. (2008) made
an early approach concerning energy consumption on database systems and his report, he said people
should take into consideration designing power-aware DBMS that limit energy costs without sacrificing
scalability. Harizopoulos et al. (2009) focuses on finding software-level optimization characteristics that
might improve the energy efficiency of Data Management Systems. In work provide by Wang et al. (2011),
he presents a survey about energy efficiency in data management operations.

Although most of the study's show previously focus more on the hardware base premises. There is
other more focus on software like, Xu et al. (2010) presented a solution of power-performance tradeoffs on
DBMS where are results show that exists attractive tradeoffs between average-power and time-efficiency.
Xu et al. (2012) also proposes query optimization intending to reduce energy consumption. Additionally, To
reduce the peak of energy usage in database management systems Kunjir et al. (2012) proposed several
alternatives. In Rodriguez-Martinez et al. (2011)’s paper, he presents an empirical methodology to estimate
the power and energy cost of database operations, on a similar context Rodriguez et al. (2013) developed
a work related to the prediction of the energy consumption of join queries. Later, Goncalves et al. (2014)
redesigned the DBMS execution plan to include both the average energy consumption value for the most
common database operators and the total query energy estimation. Afterward, these authors made similar
work on a different domain about measure energy consumption for green star-queries in data warehousing
systems [10]. After this, as a simple guideline for reducing the energy consumption of a given query within
a relational DBMS, [56] devised a collection of heuristics. There are studies for NOSQL, one example of
that are Duarte and Belo (2017) work that focuses on energy consumption on document stores based
systems. Saraiva et al. (2017) developed a work about query energy consumption comparing the energy
efficiency between a relational and a non-relational DBMS. Another study related to the previous one is
Mahajan (2016) work that compares energy consumption between different DBMS like MySQL, MongoDB,
and Cassandra on a query level.

In this work, we extend our experience in energy consumption evaluation on different databases. Where,
unlike the other studies show we want to evaluate and compare the energy efficiency between different

DBMS in a realistic environment.

2.3 Energy Consumption

This Section presents the definition of energy, what are the relevant hardware components on energy
consumption, which methods exist to measure energy consumption, and more detailed insight into the

tools used in this work.
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2.3.1 Types of Energy Consumption

In order to understand how energy consumption can be measured, we must first understand what power
is, what energy is and how different it is.

The scientific definition of Power is the total workload or energy transferred divided by the time interval.
In this context, power is the amount of energy consumed per unit of time. According to The international
system of units [111], the universal unit used for power is Watts or Joules/s. Energy is the total workload
of a system during a period of time and is the unit used for Energy is Joules.

The Power can be calculated in two ways, the first is when we know the total energy and the time

interval,

_E
T At
The other possible way of calculating is through Voltage and current intensity. Voltage is defined to be

P (2.1)

the potential energy of two different points and the Unit is Volt and Current intensity is the magnitude of an
electric current as measured by the quantity of electricity crossing a specified area of equipotential surface
per unit time and unit of measurement is Amperes.

With this we can calculate the power by this formula:

P=VI (2.2)

With this two formulas we can deduce this formula to calculate the energy,

E=VIAt (2.3)
Unit Symbol
Voltage Volt (V) v
Current | Amperes (A) I
Energy Joules (J) E
Power Watts (W) P

Table 2.1: List of electrical properties, units, and symbols

To measure the energy consumption of total and individual components, we have to distinguish differ-

ent types of consumption. These types of energy consumption are:

* Idle Consumption: is the base consumption needed to ensure that the system is ready, and
able to respond to any user need quickly and effectively. This energy is consumed by the system
regardless of the state of operation. This includes energy consumed inactive by the disks, network
interfaces, CPU, caches, memory, motherboard, etc. This category also includes the energy needed

to maintain the basic requirements of the OS and other tasks in progress [93].
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* Dynamic Consumption: This refers to the basic consumption necessary for an operation re-
quested by the user of the system. Dynamic Energy includes the energy consumed by the CPU, the
extraordinary operations on the Dynamic Random Acess Memory (DRAM), the disk when searching,
reading or/and writing data, the network interface when receiving and transmitting data packets,
and other needs to respond to user requests when executing instructions. Dynamic power con-

sumption values mainly depend on the type of workload that runs on the machine. [93].
The methods available to measures these types of consumptions are [7]:

* Instant Power Measurement: The instantaneous current consumed by the unit is measured
and then multiplied by the voltage, and the result is the power done. With power and time, it is
possible to get energy consumption over that period. If the sampling frequency is high, instant
power measurements are reliable, but his drawback is that physical instrumentation is needed.
This method generally works at the level of the system, although measuring the component-level of

hardware is possible.

* Time Measurement: Another way to collect the energy consumption of a device is through mea-
surement of time. Assuming a constant consumption over time, the speed at which energy is

depleted depends on the power consumption of the device.

* Model Estimation: Energy consumption calculations in this method are measured in a way where
a power consumption of a specific computer is connected to internal resource use indicators, such
as CPU states, commands, memory or disk access, and network adapters. This method utilizes

machine calls to estimate the usage of resources.

2.3.2 Relevant Hardware Components

It is important to distinguish which hardware components are relevant to global consumption before de-
ciding on a method for measuring energy consumption because it is easy to understand and compare the
behavior of the general system with the energy consumption of the subsystem. While global consumption
can also be constant and unchanging, that doesn't mean that there is a steady consumption of energy in
all subsystems.

According to several studies carried out during the last 15 years, it shows that the main subsystems
that generate dynamic energy consumption are the CPU, the Memory, and Disk [93]. According to google
research [9] provided some insight into how energy is used in modern IT equipment at the time and got by
breaking down the peak power usage of one generation of WSCs deployed at Google in 2007 categorized
by main component group, they got that using modern data center using late 2012 generation servers the
3 main hardware components besides cooling components on energy total consumption was CPU with
42%, Disks with 14,3% and DRAM with 12,3%. Also, Kansal et al. mentions in an article that the subsystems
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with more impact on the dynamic consumption are CPU, memory, and disk, represent, respectively, 58%,
28%, and 14% .
With this information, we can conclude that our energy measurements must be around this 3 compo-

nents and it also facilitates the study of the causes of energy variations in the DBMS.

2.3.3 Energy Measurement Frameworks
2.3.3.1 RAPL

Intel's RAPL is a tool to measure the energy on CPU and primary storage (DRAM). Here we will explain
how it works, and the limitations it has.

RAPL is a well-known and accepted interface for measuring the power consumption of a computer sys-
tem. Various studies used this interface as a measuring tool, and others review Intel RAPL measurements
in terms of accuracy, performance, granularity, usability [39, 69].

Intel introduced RAPL on their compilers in the architecture of the Intel Sandy Bridge, and since the first
appearance, it has been evolving in the newer architectures. RAPL has Model Specific Registers (MSR) that
are not part of the architecture of the processor but address power values required for energy consumption
management [65, 69, 93].

The main functionalities of RAPL are to measuring the energy consumption on the CPU and primary
storage and also to limit the energy consumption on the components mentions. In the context of this
research, we won't use the last functionality, as it does not fit in the context of this study [39, 65, 69].

The RAPL does not measure energy based on an analog energy meter because energy consumption is
estimated through the analysis of various hardware performance counters, temperature sensors, leakage
energy, and 10 models. Registers reserved for energy readings are updated approximately every millisecond
(1kHz) [93, 122].

Package 0

. package power plane

“ pp0/core power plane (all cores on the package)
. ppl/graphics power plane (client only)

O DRAM power plane (server only)

Figure 2.6: Intel’'s RAPL Power Domain.
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We can check the different power domains supported by RAPL in Figure 2.6. Each power domain has

a different MSR and reports the domain’s energy consumption, allowing us to limit that domain’s power

usage over a specified time. Each domain represents distinct physical component sets, currently, these

are:

* Package: the package domain refers to the package’s energy consumption of the entire socket,

including the core and uncore components energy [65].

* PPO/Core Power Plane 0: This domain measurement the energy consumption of all processors

socket [65, 93].

* PP1/Graphics Power Plane 1: This domain measures the energy consumed by all processors

in a Graphics Processing Unit (GPU).

e DRAM: This Domain refers to the energy consumption of RAM [65, 93].

* Psys: Intel Skylake has introduced a new RAPL Domain named PSys. It monitors and controls the

thermal and power specifications of the entire SoC and it is particularly useful when the source of

power consumption is neither the CPU nor the GPU [69].

For multi-socket server systems, each socket reports its own RAPL values [69].
There are some distinctions between the list of available domains, depending on the type of platform.
The available domains on platforms intended for the client are Package, Power Plane (PP) 0, and PP1. On

the other hand, the Package, PPO, and DRAM domains are available on the Platform intended for Servers

[39]. In the Table 2.2 presents an overview of RAPL domains supported by different processor model.

Model Power domain supported
PKG | PPO | PP1 | DRAM | PSYs
Sandy Bridge YES | YES | YES NO NO
Sandy Bridge-EP | YES | YES | NO | YES NO
Haswell YES | YES | YES | YES NO
Haswell-EP YES | NO | NO YES NO
Skylake YES | YES | YES | YES | YES*

*Not All Skylake versions support PSys

Table 2.2: RAPL power domains supported by different models

The MSR interfaces available in each of the domains mentioned are the following;

* Power Limit: interface serves to specify the time interval and the limit of energy to be con-

sumed [39, 93].

* Energy Status: This interface provides the energy consumed. The register reports the actual

power used by the domain. This interface is read-only.
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* Perf Status: This interface is optional and provides the effects of restrictions used [65, 93].

* Power Info: This interface is optional and presents the information for a given domain (Power,

Energy, etc.) [93].

* Policy: This Interface is optional and it allows defining control policies for energy to distribute costs,

that is, to balance the power consumed between domains subdomains [39].

With all this information we can conclude that the largest domain we can get on RAPL is with this

equation:
Eppo + Epp1 <= Epgckgage (2.4)

To gather results, we develop software in C, that is running in parallel with the task we want to measure.

On the listing 2.1 , is a example of the code we made.

Listing 2.1: Exemple of reading RAPL energy in C

void rapl_after(FILE = fp , int core){
int fd;
long long result;

fd=open_msr(core);

result=read_msr(fd, MSR_PKG_ENERGY_STATUS);
package_after=(double)result*energy_units;
fprintf(fp,”%.6f , ", package_after—package_before); // PACKAGE

result=read_msr(fd, MSR_PPO_ENERGY_STATUS);
ppO_after=(double)result*energy_units;
fprintf(fp,”%.6f , ”,pp0_after—pp0_before); //CORE

if ((cpu_model==CPU_SANDYBRIDGE) | | (cpu_model==CPU_IVYBRIDGE) | |
(cpu_model==CPU_HASWELL)) {
result=read_msr(fd, MSR_PP1_ENERGY_STATUS);
ppl_after=(double)result*energy_units;
fprintf(fp,”%.6f , ”,pp1_after—-pp1_before); // GPU

}
else fprintf(fp,” , ");

if ((cpu_model==CPU_SANDYBRIDGE_EP) | | (cpu_model==CPU_IVYBRIDGE_EP) | |
(cpu_model==CPU_HASWELL)) {
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result=read_msr(fd, MSR_DRAM_ENERGY_STATUS);
dram_after=(double)resultxenergy_units;
fprintf(fp,”%.6f , ”,dram_after-dram_before); // DRAM

}
else fprintf(fp,” , "); }

The MSR driver must be enabled for direct MSR access with /dev/cpu/*/msr command, and read
access permission must be set for the driver. Reading RAPL domain values directly from MSR requires the
CPU model to be detected and the RAPL energy units read before reading the consumption values of the
RAPL domains [69, 122]. Once the CPU model is detected, the RAPL domains can be read per package
of the CPU by reading the corresponding “MSR status” register [65, 69].

2.3.3.2 Arduino

Here it will show why Arduino was chosen to measure energy consumption on disk storage, which method
he uses, and how he works.

In this case, for measured disk consumption we opt for an instant power measurement approach made
by Portela instead of a Model Estimation. An Instant power measurement approach is a reliable choice
because it is one of the simple solutions to achieve the objectives intended, and it is low-cost. Here we
want to ensure that our results are precise and reliable, and since our measurements are on a small scale,
it doesn’t have an impact on the overall system. This solution provides what is needed without significant
drawbacks [93].

Since it is necessary for data storage and handling of energy consumption, a mere ammeter won't do
the work here. Thus to gather the measurements it was chosen an Arduino Uno with a current sensory.
Figure 2.7 presents the scheme of an Arduino UNO with a current sensory connected to a SATA cable. The
SATA cable is responsible for distributing energy to the disk and data exchange between the secondary
storage and the computer. So to get the energy consumption on the disk, the current sensor must be

connected to the SATA cable that is responsible for distributing energy [93].
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Figure 2.7: Scheme of connections between SATA cable, current sensor and Arduino used to measurement
secondary storage.

The current sensor used was the Low Current Sensor Breakout. This current sensor is made by Spark-
Fun and can measure the current regardless of whether the signal is continuous or alternating. This sensor
has an operational amplifier phase to control the gain, which can measure lower currents more precisely
[93].

Furthermore, Arduino UNO must be able to read the analog voltage presented by the sensor and
communicate these values to the computer connected to it through the serial port. For this, a program
was made that would get take constant readings at the analog voltage and send them every 0.1 seconds.
An example of this code is on the Listing 2.2 where the reading is made every millisecond and then is
made the average of the last one hundred milliseconds, which send this information to the computer

system connected to the Arduino.

Listing 2.2: Arduino source code for reading the analog signal from the current sensor

void loop() {

—_

/* Initialization */

float average_a0 = 0; // Raw reading from pin
float voltage = 0; // Voltage in V

float current = 0; // Current in A

float wattage = 0; // Wattage in W

float power = 0; // Power in J

/* Average loop */

O© 00 N O o B W N

for(inti=0;i<n_reads ; i++) {

average_a0 += analogRead(sensorPin_0);

—
o

delay(loop_delay): }

—
—

/* Formula based computations */

—
N
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average_a0 /= n_reads;

voltage = (average_a0 / 1024.0) = 5;
current = current_eq(voltage);
wattage = voltage * current;

power = wattage * interval;
Serial.printin(power, 3);
Serial.flush();}
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Chapter

Benchmark Architecture and Design

This Chapter presents the necessary steps of our methodology to measure and compare different DBMS.
Section 3.1 defines the energy model that supports our methods. Afterward, in Section 3.2, we present the
DBMS we consider in our study. Then, Section 3.3 describes the design of the benchmarks we defined.

Finally, in Section 3.4, we show their execution process.

3.1 Energy Measure Method

Before deciding the energy model we consider in our benchmark of the DBMS, it is essential to understand
that the overall energy consumption of software systems divides into two groups: consumption when idle
and dynamic consumption (that is, consumption when running).

As mention in Section 2.3.1, , idle consumption represents the energy needed for the system to run
on minimal usage without any interference of user activity. Dynamic consumption is the energy consumed
by a task or activity triggered by the user, where this energy is the difference between total consumption

and idle consumption. Thus, the total energy consumed by the following equation:
ETotal = E1dle * EDynamic (3.1)

Where Et,; 41 represents the total energy consumed by the software system consumption, Ey4;, the

idle consumption, and Epypamic the dynamic consumption.

Idle Consumption: Idle consumption is the base consumption needed to ensure that the system is
ready. It is obtained by measuring the energy consumption of the system during an interval of time. During

which the system remains running with the lowest possible activity and without any user interference.
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Using the frameworks mentioned in Section 2.3.3. It is possible to divide the Ej;,, subgroups that we

define as relevant in Section 2.3.2. The following equation presents these subgroups:
Erdie = Erdle_others *+ (Erdle_cpu * E1dle_DRAM * Eldle_DISK) (3.2)

Where EIdle_CPU represents the energy consumed by the CPU when the software is in an idle model,
EIdle_DRAM the idle consumption of the main memory, EIdle_DISK the idle consumption of the disk,
and Ergre Others fepresent the remaining energy consumed.

As mention in Section 2.3.3.1 , the Erg, cpy and Ergr, pram can be estimated by RAPL. For
measuring the Epg;. prsg, We will use the Arduino method mentioned in Section 2.3.3.2.

By using the RAPL Package estimation metric, which includes CPU, and GPU, the following equation

can be an alternative definition for the total consumption in idle mode:

Ergre = EIdle_Others + (EIdle_Package + EIdle_DRAM + EIdle_DISK) (3.3)

Dynamic Consumption: The dynamic energy consumption can only be determined after we have mea-
sured the idle consumption. Only then can we distinguish between idle and the energy impacts caused by
the user. In this phase, any slight increase in the overall energy counts towards the dynamic consumption.
Very much like in idle mode, this consumption must divide into the same groups. The following equation

represents this separation :
EDynamic = EDynamic_CPU + EDynamic_DRAM + EDynamic_DISK (3.4)

As for the idle consumption, the Epynamic_cpu and Epynamic_DRAM can be measure with RAPL,
andthe Epynamic_pr1sk by the Arduino. To obtain these values, we need to remove the idle consumption

of the total consumption in those components. Thus, for each subsystem, the equations are as follows:

Epynamic_cPU = Etotal_cpu ~ Eidle_cPU (3.5)
Epynamic_DRAM = ETotal_DRAM ~ Eidle_DRAM (3.6)
Epynamic_DISK = ETotal_DISK ~ Eidle_DISK (3.7)
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As in Equation 3.3, CPU and GPU can be estimated together by the Package metric. The dynamic

consumption also translates into the following equation:

EDynamic_Package = ETotal_Package - Eidle_Package (3.8)

EDynamic = EDynamic_Others + (EDynamic_Package + EDynamic_DISK + EDynamic_DRAM)
(3.9)

Through these analyzes, it is to conclude that idle consumption is not relevant to compare different
DBMS on the same system since it is a static value. Therefore, we decided only to show and compare the
dynamic energy consumption of all measurements in Chapter 4 for a better and easier understanding of

the results obtained.

3.2 Databases Under Test

In our digital information age, where more and more information (only) exists in digital form (see, for
example: how photography evolved in the last two decades), databases are a vital part of all types and
organization sizes (from small to large) [41]. Moreover, data centers are also becoming an increasingly
critical part of the infrastructure in our digitalized society. As a consequence of the concern with energy
expenditure, a company/software engineer needs to understand their scenario and select the fitting DBMS
that combines runtime performance with energy efficiency.

Although there is extensive (research) work on analyzing and benchmarking the runtime performance
of DBMS [19, 105, 106, 109], there is still a lack of knowledge on the energy efficiency of the different
DBMS that supports the data centers. In this thesis, we decide to compare four well-known and widely
used DBMS: MySQL, MariaDB, Postgres, and Redis. Our decision on the DBMS was also based on whether
the HammerDB supported it.

3.2.1 MysQL

The first DBMS chosen was MySQL. MySQL is the most popular open-source relational DBMS in the
market and is known for providing high-performance, robust SQL, multi-threaded, multi-user access to
several databases. Allan Larsson and Michael Widenius created MySQL in 1995, and now it is owned by
Oracle Corporation. Some of its customers include GitHub, Uber, NASA, Tesla, Netflix .

MySQL's other features are: high compatibility, high portability, usage of fast B-tree disk tables with
index compression, provides transactional and nontransactional storage engines, thread-based memory
allocation system, optimized nested-loop join, in-memory hash tables used for temporary tables, and other
things [43].
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3.2.2 MariaDB

Another DBMS chosen was MariaDB. MariaDB is a popular open-source relational DBMS. The original
developers of MySQL in 2009 made MariaDB ensure a free and open-source DBMS. Originally designed
as an enhanced, drop-in replacement for MySQL, MariaDB is a fast, scalable, and many other tools that
make it very versatile for a wide variety of use cases [68].

Since MariaDB is built on top of the latest version of MySQL, it has most of the features of MySQL and
high compatibility between them. MariaDB provides some improvements from MySQL like more Storage

Engines, some Speed Improvements like parallel replication, better testing, and other things [68].

3.2.3 Postgres

The last relational DBMS chosen was Postgres. Postgres is an open-source object-relational DBMS that
uses and extends the SQL combined with many features that safely store and scale the most complicated
data workload [108]. PostgreSQL started its development in 1986 at the University of California and has
more than 30 years of active development on the core platform.

PostgreSQL's main attraction is its architecture, consistency, data integrity, robust feature set, extensi-
bility, and the open-source community’s commitment to delivering efficiency and creative solutions consis-
tently. PostgreSQL is currently used in several research applications and comes with several add-ons, such
as the popular PostGIS geospatial database extender. PostGIS is widely used for geographic data, and in
many universities, they use as an educational tool due to its open-source code. It has some object-oriented

features, such as inheritance and custom types, in addition to the characteristics of a relational DBMS.

3.2.4 Redis

The last DBMS chosen was Redis. Redis is an open-source non-relational DBMS of the type key-value that
supports in-memory data structure store, used as a database, cache, and message broker [36]. Redis is
a well-established open-source project, and many companies use Redis like Twitter, Tumblr, Instagram,
Flick, and The New York Times. Redis is one of the most popular non-relational DBMS in the market[36].
Redis is known for its fast key-value database that stores a mapping of keys to five types of values: strings,
lists, sets, hashes, sorted sets [1, 16]. It supports in-memory persistent storage at the disk, replication to
scale read performance, and client-side sharding to scale write performance. Depending on the use case,
the persisted data are either periodically dumped to disk or appending each command to a disk-based log.
Redis also provides asynchronous replication[1, 16].

Additionally, Redis has configurable key expiration, transaction, and publish/subscribe features. It also
provides Lua scripting to create new commands. With these tools, it makes a very versatile database[1,
36].
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3.3 Design

We decided to use HammerDB as a benchmark tool that can replicate the behavior of the most cloud-based
applications as a service, verify comprehensive performance and multiple metrics in a simple real-world
environment on a virtual environment with Virtual users (VU) [107]. Another reason was the automated
software testing [107] so we can configure how many times the HammerDB will run and how many VU it
will use, and for how long it will run, providing at the end of every execution the TPM and the NOPM. With
these numbers and the energy spent, we can have ample information to answer the RQ2, and with an
adjustable number of users, it can assist in the RQ3.

The initial step to obtaining comparable results about the energy consumed in each DBMS is to define
a configuration for HammerDB for each scenario.

With the Research Question mentioned in Section 1.2, we can deduce various scenarios. The number of
users we run in the system differentiates these scenarios. So, we decide to go with four different scenarios
of server participation. The first case is a server running with the lowest users possible, so we execute the
benchmark with only 1 VU. A second scenario is a small group of users practicing on the server, so we run
with 8 VU. The third scenario is a simulation of the server doing intensive work with a big group of users,
and for that, we use 64 VU. The final one is the server saturated with users, and for that, we decide with
128 VU. While the first scenario is enough to answer RQ1 and RQ2, the RQ3 needs the others.

For each of them, we created a script for each DBMS. These scripts must simulate the behavior of
daily usage of a DBMS. So using a custom script inside the HammerDB was out of the question, and we
decided to use the TPC-C benchmark. We decide to do one warehouse in every scenario to simplify this
study, with the intention in future work to expand to more warehouses.

To simplify this study, we decide to do one warehouse in every scenario with the intention of future
work to expand this study to more warehouses.

Then we must decide on the time that the benchmark builds up the transaction rate by caching data
in the buffer cache database before the benchmark is executed. This is known as the rampup time. In our
study, we decide to set the ramup to 1/5 of the execution time [107].

For greater precision and adequate replication of various usage scenarios, each case was performed
with 5, 10, and 30 minutes.

Finally, in addition to the previous scripts, we also created a script that would remove idle consumption
from the measured energy consumption using a previous measured idle consumption.

It is presented and discussed in Chapter 4 only the 5 minutes tests. Even with most of the 10 and 30
minutes results measured, they weren't discussed here due to their conclusions being very similar to the

conclusions of 5 minutes. These results are available in the annex of this document.
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3.4 Execution

Figure 3.1 shows the execution of the benchmark and measurements of energy consumption of DBMS,

where it displays the architecture of our energy benchmarking system and the flow of actions.
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Figure 3.1: Benchmark Architecture and flow of events

As seen in Figure 3.1, the first action of our execution is the Benchmark initialization and execution of
HammerDB. To obtain proper and reliable energy readings, we needed to diminish the effects of cold starts,
warm-ups, cache effects, and other effects that may influence energy consumption. So, each scenario is
executed ten times with a sleep time of 2 minutes between each execution.

Immediately after the start of the Benchmark execution, The measurements of the energy consumption
start. The framework tools used were the ones mentioned in Section 2.3.3. In the case of the RAPL, the
sample used was 100 measurements per second, and for the Arduino was ten measures per second.

These two measurement tools are in sync throughout the entire execution. We accomplished this by
using a C program that starts two independent sync threads: one that accesses the RAPL to measure the
CPU is power consumption, and the other accesses the Arduino to measure the disk’s power consumption.
They are active during the execution of HammerDB and accumulate energy readings in static arrays to

limit their computing overhead.
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The third and final phase of our execution begins after the HammerDB execution is completed. This
step saves each measurement mad in its respective CSV file for further analysis.

Also, for each database, we decide to use dockers containers because it is a solution that simplifies
the setup by providing a pre-built image that is portable, simple to maintain, and providing a facility to auto-
mate the applications when they are deployed into containers [12, 95]. Although several studies recognize
that dockers provide an overhead in running these containers [22, 40, 45, 118], dockerized benchmarks
can be acceptable when comparing different database systems if the idle consumption values are disre-
garded [53].

System Configuration We ran this study on a server with the following specifications presented in
Table 3.1, this consists of an Intel(R) Core i5-4460 3.28 GHz CPU, 16 GB of RAM, 250 GB Hard Drive
Disk (HDD), and operating system Ubuntu 16.10 . A detailed overview of the CPU is in Table 3.2 and for
Second Storage is in Table 3.3.

Hardware Model
CPU Intel(R) Core i5-4460 3.28 GHz
Operation System Ubuntu 16.10
Ram Size 16G
Secondary Storage Hitachi Travelstar 250 GB

Table 3.1: Physical server specifications

Brand CPU el Second Storage
Vodel = A460 Brand Hitachi GST
: . Model HTE543225A7A384
Microarchitecture Haswell -
Series Travelstar ZbK320
Number of cores 4 Toe HDD
Clock Speed 3.20 GHz yp -
Capacity 250 GB
Max Turbo Frequency | 3.40 GHz
RPM 5400
Cache 6 MB
Interface Sata 3
Interface Sata 3 BUffer Size VB
Buffer Size 8MB

Table 3.2: Specifications of CPU used Table 3.3: Specifications of Disk used

This system has no additional software installed or running other than required to run this research.

Additionally, we had the caution to use the most recent and compatible version of all external software

used here at the time of the measurements. So listed in Table 3.4 are all the versions used.
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Software Version

Redis 5.0.5
Postgres 11.5
MySQL 8.0

MariaDB 10.0
HammerDB 3.2
Docker 19.03.11

Table 3.4: Software Configuration on physical server

All software artifacts shown in Figure 3.1 and mention in this chapter, are available as a public repos-

itory at https://github.com/greensoftwarelab/GreenSGDBS.
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Energy Efficiency of DBMS

This chapter presents the results obtained when running the benchmark on the four DBMS considered
in this master thesis. Here, we show and analyze the results obtained by the HammerDB and the energy

consumption obtained by the RAPL and Arduino.

4.1 Benchmark Results

In this Section, we will present and analyze in great detail the performance of MySQL, MariaDB, Postgres,
and Redis. We consider the energy consumed for each DBMS when executed by HammerDB both in a
single user mode and when multiple VU are performing DBMS actions. Moreover, we distinguish the energy
consumed by the Package, estimated by RAPL, and the energy consumed by the hard disk, as measure
by the Arduino system. Concerning the RAPL estimations, we will consider the estimation provided by the
RAPL package metric: it includes the consumption of the Package cores, DRAM, and other components
of the chip.

As described in Chapter 2.1.4.2, HammerDB computes two DBMS-specific performance metrics: the
Transactions per Minute (TPM) and the New Orders Per Minute (NOPM). Different DBMS may show differ-
ent per minute performances, which can have an impact on energy consumption. Thus, we will analyze

the impact of such HammerDB metrics on both package and disk energy consumption.

4.1.1 DBMS in Single User: Energy Consumption

First will discuss energy consumption on every level for every DBMS with only one VU . Figure 4.1 shows
the median values, and Figure 4.2 shows the distribution of these values in a box plot. Here we can see
the median, the approximate quartiles, the lowest and highest data points to convey the level, spread, and

symmetry of a distribution of data values [112].
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Figure 4.1: Median of energy consumption on Package, Disk and Total.

Looking at the package measurements, Redis shows the highest consumption energy median value,
followed by Postgres, MariaDB, and MySQL. We can see that all relational DBMS have a lower energy
consumption compared to Redis.

The inverse of the Package level happens at the disk level, where the relational DBMS spends in median
the most energy and the non-relational spends the least. In this situation, MySQL was the one that spent
the most afterward was MariaDB and then Postgres and lastly Redis.

It is important to notice even though Redis spent in median more than the others on the Package
level, the energy he saves on the disk pays off in terms of total energy consumption, making it the least
expensive one, followed by MariaDB, Postgres, and MySQL. The reason for this is that secondary storage
has a higher effect than the Package on the overall energy consumed.

The measured values can be explained by Redis being a non-relational DBMS of type Key-Value where
the data is stored in-memory explains why the consumption on disk is low comparing with the Relational
DBMS. This naturally implies a higher consumption on the Package level since use of cache affect energy

consumption on the Package [16].
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Figure 4.2: Distribution of energy consumed

When talking about the distribution of the values between the different executions, we can see in
Figure 4.2a that the distribution on the Package level is smaller on the relational databases, and Redis has
a large magnitude distribution on values of energy consumption. Also, it is worth mentioning a specific
case in relational DBMS. Although, on average, Postgres is the most expensive of relational DBMS, the
maximum energy consumption made by MySQL and MariaDB surpass the minimum energy consumption
of Postgres.

In secondary storage, seen in Figure 4.2b, there is almost no variation of Redis results, and the same
case occurs in Postgres, but the distribution in MySQL and MariaDB is wide. The median between MySQL
and MariaDB was very close. But when observing both distributions on this level, we can see the magnitude
of the values of MySQL is a lot bigger comparing with MariaDB. Here also worth mention that the maximum
of Postgres surpasses the minimum of both MySQL and MariaDB.

As it happens with the median of energy consumption, the distribution of total energy consumed follows
almost the same pattern of distribution of energy consumed of the disk because of the impact it has on
total energy consumed where the distribution of MySQL remains the most significant. These values are
presented in Figure 4.2c.

Runtime Performance Now discussing the HammerDB metrics, similar graphs are presented in Fig-
ures 4.3 for the median of these metrics and Figure 4.4 for the distribution.

As seen in Figure 4.3, Redis has a much better performance, in terms of TPM, than any relational
DBMS. We can also see a relationship between TPM with less consumption in the disk. When talking
about NOPM, Postgres is the one with better performance. MariaDB and Redis have the same number of

NOPM, and the lowest is MySQL. Here the results are very close, and there’s not much margin between
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them, and here can’t be draw any conclusion between energy consumption and performance.
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Figure 4.3: Median of HammerDB results.

When look at the HammerDB results, TPM distribution between different tests doesn't have much
variation except on Redis where the variation is noted in Figure 4.4a. When looking at the distribution of
NOPM in Figure 4.4b, we can see that it doesn't have much variation between different DBMS the only
thing worth mention is that even knowing that MariaDB and Redis have the same median, Redis has a

larger distribution meaning that in some executions Redis can have worst performance than MariaDB.
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Figure 4.4: Distribution of HammerDB results
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Energy Consumption per Runtime Performance The last discussion of single user is the Energy
Consumption per HammerDB metrics. For Energy Consumption per TPM, Figure 4.5 for the median of
Energy Consumption Per TPM and Figure 4.6 for the distribution of Energy Consumption Per TPM. For
the Energy Consumption per NOPM, Figures 4.7 for the median of Energy Consumption Per NOPM and
Figure 4.8 for the distribution of Energy Consumption Per NOPM.

In terms of Joules per TPM on the package, disk, and total, as seen in Figure 4.5, it follows the same
trend of the most expensive in terms of energy consumption where the MySQL is the most expensive
followed by MariaDB, Postgres, and Redis. The distribution of these values in Figure 4.6 show that MySQL

is always the most expensive followed by MariaDB, Postgres, and Redis.
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Figure 4.5: Median of energy consumption per TPM

In terms of Joules per NOPM, we can see the median in Figure 4.7 that in the package the one with
the most NOPM per Joules is Redis then MySQL, MariaDB, and Postgres. On the disk the one with the
most Joules per NOPM is MySQL then MariaDB, Redis, and finally Postgres. When talking of the system
as a whole the MySQL is the one with the Joules per NOPM, follow by MariaDB, Redis, and Postgres.
This result doesn’t follow any trend of the rational database being the most expensive or non relational

database being the less expensive in any of the cases.
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Figure 4.7: Median of energy consumption per NOPM

4.1.2 DBMS in Multi User: Energy Consumption

Now for the Multi users, we will first be discussing the energy consumption on Package as shown in Figure
4.9a. Redis is the only one with slightly different behavior with an increase of VU, where the other three
DBMS had a rise of energy consumption, also Redis has decreased with 8 VU followed by a rise with 32
VU follow by another drastic decrease. Also noted that of the relational DBMS, MariaDB is the one with

more increase, and MySQL is the one with the lowest increase.
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Figure 4.8: Distribution of energy consumption per NOPM

In Figure 4.9¢ can be seen the energy consumption on disk with an increase of VU. MariaDB has an
noticeable increase, Postgres also has an increase, MySQL and Redis has a improvement in energy con-
sumption. And with these variations of VU, the MariaDB become the most expensive followed by Postgres,
MySQL, and Redis.

On a general view, Redis has the same pattern as in the disk being the lowest in terms of energy
consumption except on 32 VU, where the increase in Package has a large impact on the overall energy
and putting him in the second-lowest behind MySQL. MySQL starts as the highest and with the increase
becomes the second-lowest energy consumption DBMS expect on 32 VU where he is the lowest. Postgres
is second highest. Finally, MariaDB with the increase of VU become the most expensive DBMS.

The only conclusion that can maybe be drawn here is that Redis has an increase in energy efficiency

that can be possible due to its nature as a non-relational database with data in memory.

Runtime Performance with Multi Users When observing the performance of HammerDB bench-
mark with an increase of VU, first can be seen that all DBMS had an increase of TPM and NOPM with
the variation of VU. The only instance that had a decrease was from 32 to 128 VU on Redis. With the
increase of VU, Redis still maintain the DBMS with better TPM and NOPM and MySQL stays the worse,
while Postgres with an increase of VU start to get worse results comparing with MariaDB. This results are
in Figure 4.10a and Figure 4.10b.

Energy Consumption per Runtime Performance with Different Users When discussing energy

consumption per TPM as seen in Figure 4.11, we can see with the increase of VU that Redis have a better

ratio in terms of energy per TPM, and in general, all the databases except Postgres improved very well even
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though that MariaDB is the relational database with better results. These improvements happen because
all DBMS except Postgres had a reduction of energy consumption on the disk per TPM that provides a
decrease in total energy consumption per TPM.

Finally, in Figure 4.12 we can check the energy consumption per NOPM, we can see that all DBMS
improve very well and we can see that Redis became the most efficient on energy consumption per NOPM
with the increase of VU, follow by MariaDB, Postgres, and MySQL. These improvements are very similar
to the improvement in energy consumption per TPM where the decrease of energy consumption on disk
per NOPM has a great impact on total energy consumption per NOPM.

On an overall note, it can be concluded that that the non relational DBMS Redis start to get better results

on NOPM and TPM without a large increase in energy consumption making Redis the most scalable one.
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When talking about relational DBMS, MariaDB had the most increase in HammerDB performance and

energy consumption per TPM and NOPM with the increase of VU and Postgres maintain or get worse

results comparing with only one VU.
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Chapter

Threats to Validity

Here we speak about risks that could threaten the accuracy of the presented results and conclusions. Also,

we divide every threat to validity found into four categories as defined in Cook et al. (1979):

Conclusion Validity In this category are the threats which may influence the capacity to draw correct
conclusions [125].

Another threat of this category is the reliability of measures. In this thesis, we made various com-
parisons between the different consumptions and performance in every DBMS. In addition, comparisons
between subsystems, such as Package, DRAM, or secondary storage. Also, all DBMS execution and bench-
mark were in an equal manner, and every test was executed ten times, and calculated the median, mean,
standard deviation, min, and max values of these tests. So our measures are reliable.

Fishing for particular results can be an issue since the analyses are no longer independent [125].
Here, it doesn't apply because this study isn't trying to promote any DBMS, and it isn't looking for any
specific outcom

Reliability of treatment implementation is another issue on conclusions validity. The software used was
made by external developers. So, all the software made is independent of this study, and we reused it here
to satisfy our needs.

Random heterogeneity of subjects is the last threat concerning our study. While we only compare four
DBMS, this set includes some of the most popular ones, and even if we wanted more variety, we have the
restriction of the HammerDB compatibility.

Regarding the Hammerdb results conclusions, we only compared TPM and NOPM between each
DBMS. Comparing these two metrics may not be the most appropriate thing to do. While NOPM is used to
compare different DBMS and is the optimal way to analyze DBMS, the same can't be said of TPM since it
is not a recommended metric to compare DBMS [107]. The unreliability of these metrics happens because

every database reports different transaction rate metrics in their online tools
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Construct Validity Here are threats that involve the generalization of the results to the concept or
theory behind the experiment [125].

The first threat here is the inadequate pre-operational explication of constructs. This threat means that
the constructs are not sufficiently defined before they are measured [125]. Here, we measure energy and
HammerDB. So the measurements were clearly defined, making this issue minor or nonexistent here

Another danger is the interaction of different treatments, which could be a problem if the subject enrolls
in several studies that could overlap [125]. That does not happen here because we guarantee that only the
minimum processes required to run each test are running. Additionally, a two-minute idle time rest was
essential to the system cool down to decrease overheating between each execution, allowing the system
to treat garbage collecting and not affect the results with these actions. In addition, when analyzing every
database, they are in the same environment where we execute each script, which was similar in terms of
workload configuration on HammerDB making all DBMS tested by the same rules

Mono-method bias is another issue, and it is about the usage of a single type of measure that involves
a risk that the experiment could be misleading [125]. Even though here we only use the same meth-
ods to measure energy. However, both are known to be very precise and reliable for measuring energy
consumption. So this doesn't affect the quality of the results.

The last threat in this category is the mono-operation bios, which is the experiment that includes only
a single case, and it may under-represent the construct and thus does not give the whole picture of the
theory [125]. Therefore, it does not apply here because even though we only use one context, the context

is very reliable. After all, it represents an overall usage of a DBMS, making these results credible

Internal Validity Threats to internal validity are influences that can affect the results of the study.
Therefore, they endanger the conclusion of a possible association between treatment and outcome [125].

One of these threats is instrumentation. This threat is the effect of the artifacts used for the execution
of the experiment [125]. In this case, it was used scripts to collect the energy and execute HammerDB.
Despite this, the scripts used on HammerDB are simple scripts to orchestrate the flow of SQL statements
to the database to generate the required load. The other script used is to call software that executes
energy measurement frameworks, where this software ensures that RAPL and Arduino are in sync, and
saves in a struck in C and write the energy measurements inside it. This can be seen as an overhead
during measurements. But because this happens in every execution, this impact can be considered non-

important.

External Validity This category is concerned with the generalization of the results to industrial practice
[125].

Interaction of selection and treatment is the selection made not representative of the population wanted
to generalize [125]. It doesn't apply here because the databases selected are among the most popular on
the market. As a result, this only applies to an industrial setting where such databases are used or may
be used.

44



CHAPTER 5. THREATS TO VALIDITY

Another threat in this category is the interaction of setting and treatment. It is the effect of not having
the experimental settings or materials representative of industrial practice [125]. In this study case, the
benchmark tool HammerDB reproduces the industrial market because it is a well-known open-source
tool used by different companies like Oracle, IBM, Intel, Dell/EMC HPE, Huawei, Lenovo, and hundreds
more. Besides, the compilers, software versions, and computers used are recent and in line with industry
standards. It is possible to adapt the Arduino to any industrial system, but it needs calibration. In the

Portela study, there is a calibration for Arduino used in this work.
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Chapter

Conclusion and Future Work

This thesis fits in the green software area, which is a crucial topic in today’s world which over the years,
energy-efficient of large-scale computing has become more relevant with the high growth in the volume
of data processed through cloud services. Since DBMS can work as a cloud service, it is essential to
understand and study their consumption.

This dissertation ends with this chapter, which focuses on the main conclusions taken from the results
benchmark of DBMS. All things said we divided this chapter into two sections. First, Section 1 starts with a
summary of the study carried out during this thesis and a brief answer to the research questions formulated
in Chapter 3. Finally, Section 2 makes some ideas about research for the future on this topic and some

limitations in this work.

6.1 Final Considerations

In summary, the main aim of this master’s thesis was to compare various DBMS applications in the most
practical environment scenario possible.

The impulse that drove this project was the concern about energy awareness in developing software
and the lack of knowledge in DBMS energy consumption. One of the motives to choosing DBMS and not
other software was the current studies and practices on databases emphasizing performance more than
energy efficiency. Also, this area presents solutions for improving energy consumption in a data center
when dealing with DBMS.

Table 6.1 is a summary view of the results obtained in this thesis. There we present the results into a

classification table of each SDGB in each scenario.
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Scenarios | MySQL | Postgres | MariaDB | Redis
Static Virtual User (1 VU)
Energy Consumption 4 2 3 1
Performance TPM 4 2 3 1
Performance NOPM 4 1 3 2
Energy per TPM 4 2 3 1
Energy per NOPM 4 1 3 2
Multi Virtual Users

Energy Consumption 2 3 4 1
Performance TPM 4 3 2 1
Performance NOPM 4 3 2 1
Energy per TPM 4 3 2 1
Energy per NOPM 4 3 2 1

Table 6.1: Classification of each DBMS in each Scenario

After analyzing these results, it is possible to answer the three research questions presented in Section
1.2

* RQ1:Which Database Management System is the most energy-efficient? Here the conclusion is
that with only one virtual user, Redis is the most energy-efficient on a general note by far. If we only
compare Relational DBMS, the best is Postgres, follow by MariaDB then MySQL. On a more specific
level like Package/CPU, due to its non-relational nature, Redis is less energy-efficient, while it is,

due to the same reason, the most efficient on the Disk level.

* RQ2:Which Database Management System has the best energy versus runtime tradeoff? Here is
a bit different since this question is about which database has the best performance per energy
consumption. Here it has two observations, the first one of TPM and the more reliable NOPM.
On energy consumption per TPM, Redis is the most efficient in all subcomponents followed by
Postgres, MariaDB, and the worst MySQL. Here at all levels, Postgres is the one with the lowest

energy consumption, followed by Redis, MariaDB, and MySQL.

* RQ3:How does the increasing number of users of the Database Management System impact their
energy consumption? In this final Research Question, there are two topics to be covered: The first
is what DBMS has better scalability in terms of energy consumption, where MariaDB is by far the
worst energy-efficient DBMS with an increase of users, Postgres maintains similar energy consump-
tion, MySQL and Redis improve their energy efficiency. The other topic is energy consumption per
performance scalability in both energy consumption per TPM and energy consumption per NOPM,
which has similar results, which Redis is who improves most, followed by MariaDB, Postgres, and
MySQL.
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6.2 Future Work

The presented study in this master thesis, as initially proposed, reduces some of the lack of knowledge
about energy efficiency in DBMS. Even though this study furthered the advancement of Energyware Engi-
neering in DBMS, there is still work left to do.

In terms of work that could boost this study would be doing the same benchmark with longer times.
Even though we did tests for 5, 10, and 30 minutes, the objective would be doing it for an even longer time,
for example, 24 hours. Additionally, extend this study to all DBMS available on HammerDB but different
types of DBMS not available in HammerDB.

Another path to this study would be to do this study with different hardware and compare the results.
Examples of this would be to use a different size of RAM, SSD, or a CPU.

Since the benchmark applied here is a standard benchmark, it would be interesting to explore the
DBMS energy consumption administered to different benchmark software and workloads. With this, it
would bring a vision of DBMS energy consumption applied to distinct environments. The last suggestion
would be doing a benchmark but applying energy-aware query optimization in this benchmark as a custom

script and with this understand the effect of this optimization on an energy-efficiency and performance.
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Appendix

10 minutes Benchmark Results
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Appendix

Other Relevant Graphs
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Figure B.1: MySQL energy behavior during a 5 minutes benchmark
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Figure B.2: MariaDB energy behavior during a 5 minutes benchmark
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Figure B.4: Postgres energy behavior during a 5 minutes benchmark
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Figure B.6: Redis energy behavior during a 30 minutes benchmark
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