N\
_/

/'\

Universidade do Minho
Escola de Engenharia

Carlos Miguel Rebelo Solans

i0S Development:

Increasing Home Banking Reliability
with Integration of Strong Authentication
Mechanism

November, 2021

N\
_/

I'\

Universidade do Minho
Escola de Engenharia

Carlos Miguel Rebelo Solans

i0S Development:

Increasing Home Banking Reliability
with Integration of Strong Authentication
Mechanism

Master Thesis
Master in Informatics Engineering

Work developed under the supervision of:
José Carlos Leite Ramalho

November, 2021

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY
This is academic work that can be used by third parties as long as internationally accepted rules and good
practices regarding copyright and related rights are respected.
Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated
licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

DO

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Acknowledgements

| would like to sincerely and gratefully thank everyone who have directly, or indirectly, contributed on this
journey:

My Family for their never-ending support, understatement and belief in me, without whom this would
have been just another dream;

A special one to my cousin, Patricia Rebelo, for kindly reviewing my Dissertation;

My Teacher, José Carlos Ramalho, for believing and challenging me throughout my journey at the
University of Minho;

My Friends and Colleagues for being there to cheer me up when | mostly needed and for inspiring me
in many ways to do better;

To ItSector for having me so warmly during such harsh times: Emanuel Pacheco and Isabela Fontoura
for their shared knowledge and insightful times during the iOS Academy. A especial one to Helena Brandao
and Carlos Bernardino for their guidance and patience throughout this journey.

| am truly grateful for having you all by my side. A huge and warm Thank You from the bottom of my
heart!

In honor of my grandfather, Pierre Solans. | miss you dearly!

Vi

STATEMENT OF INTEGRITY

| hereby declare having conducted this academic work with integrity. | confirm that | have not used
plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

| further declare that | have fully acknowledged the Code of Ethical Conduct of the Universidade do
Minho.

\/'\J‘gmo\'\cc’«c , L/o\/embe(1 . Qoa4

(Place) (Date)

ﬁ«\vs *HDMD Qeéepa g@a@

* (J|Carlos Miguel Rebelo Sufans)

vii

Resumo

Desenvolvimento i0S: Aumentando a Confiabilidade de Aplica-
coes Bancarias com Integracao de Mecanismo de Autenticacao
Forte

Neste momento, as aplicacdes moveis encontram-se cada vez mais presentes no quotidiano de cada
individuo, permitindo desempenhar diferentes tarefas, tais como gerir contas bancarias e transacao de
fundos monetarios.

Devido a rapida adocao e desenvolvimento de loT, é também importante garantir a protecao da
seguranca dos Utilizadores de ataques cibernauticos, impedindo o acesso destas contas e execucao de
determinadas operacdes nao autorizadas pelos respetivos titulares de contas via aplicacées de Home-
Banking.

Tendo isto em consideracao, esta Dissertacao tem como principal objetivo analisar e integrar uma
camada de seguranca para Autenticacdo e Validacao de transacdes de fundos, designada por TrustFactor,
numa aplicacao existente de Home-Banking.

Visto que a implementacéo sera vocacionada para dispositivos moveis, serdo abordados temas re-
lacionados com os Paradigmas de Desenvolvimento de Aplicacdes e tecnologias usadas no ecossistema
Apple.

Palavras-chave: Home-Banking, Desenvolvimento iOS, Desenvolvimento Movel, Seguranca Mével, Co-

coaTouch

viii

Abstract

i0S Development: Increasing Home Banking Reliability with In-
tegration of Strong Authentication Mechanism

At the moment, mobile applications are increasingly present in the daily lives of each individual,
allowing them to perform different tasks, such as managing bank accounts and transaction of monetary
funds.

Due to the rapid adoption and development of loT, it is also important to guarantee the protection of
the users’ security from cyber attacks, preventing the access of these accounts and execution of certain
operations not authorized by the respective account holders via Home-Banking applications.

With this in mind, this Dissertation’s main objective is to analyze and integrate a security layer for
the Authentication and Validation of fund transactions, called TrustFactor, in an existing Home-Banking
application.

Since the implementation will be aimed at mobile devices, issues related to the Application Develop-

ment Paradigms and technologies used in the Apple ecosystem will be addressed.

Keywords: Home-Banking, iOS Development, Mobile Development, Mobile Security, CocoaTouch.

Contents

List of Figures Xiii
Acronyms XVi
1 Introduction 1
1.1 Objectives e 1
1.2 Documentstructure 2
2 State of the art 4
2.1 Authentication Mechanisms 4
2.1.1 Simple Authentication L 5

2.1.2 Two Factor Authentication 5

2.2 TrustFactor 10
2.2.1 TrustFactor Configuration 11

2.2.2 TrustFactor Agent Operation Flow 12

2.3 SUMMAry 13
3 Mobile Development Paradigms 14
3.1 Progressive Web Application 14
3.2 Cross-Platform Application L 16
3.2.1 ReactNative 17

3.22 Cordova 18

323 Xamarin ... 20

3.24 Flutter 21

3.3 Native Application 22
34 Summary e e, 23
4 Native Technologies and Frameworks 24

CONTENTS

4.1 CoreTechnologies e
4.1.1 ObjectiveC. e
4.1.2 Swift . .
4.2 User Interfacing Technologies
4.2.1 Cocoaand CocoaTouch
422 SwiftUl
4.3 Frameworks and External Packages
431 CocoaPods.
4.3.2 AFNetworking
A4 SUMMArY o o e e,

5 Development Process

5.1 Architecture and Design Patterns
5.1.1 DesignPatterns
5.1.2 Architectural Design
5.2 TrustFactor Integration
52.1 Backoffice
522 RESTAPI
5.3 TrustFactor Subscription
53.1 Termsand Conditions,
5.3.2 Installation
5.3.3 Validation
53.4 Association.
5.4 Transaction Process
5.5 Summary . . .o

6 Conclusions and Future Work
6.1 Overall Conclusions s
6.2 Future Work

Bibliography

Appendices

A Survey Questionnaire

A.1 Usage of Home-Banking Platforms
A2 User'sBehavior.
A.3 You Don't Use Home-Banking Platforms

Xi

24
24
26
29
29
34
34
34
35
36

38
38
38
39
40
40
42
42
44
45
46
47
49
53

54
54
55

56

59
59
59
62

CONTENTS

B Survey Results

B.1 Usage of Home-Banking Platforms
B.2 User'sBehavior
B.3 You Don’t Use Home-Banking Platforms
C REST Interface
C.1 RegisterCode. e
C.2 Create Transaction
C.3 RefreshRegisterCode
C.4 CheckRegister Codeo
C.5 Check Create Transaction
C.6 Pending Authorization Transaction
C.7 Requirement

Xii

63
63
64
71

72
72
73
73
74
74
75
75

O 00 N O O & W N =

15
16
17
18

19
20
21
22
23
24
25

List of Figures

Authentication Schemes Used as OTP in Bank Transactions

Usage of Matrix Card in Home-Bank Transactions

Grid Card Example

Attempt to obtain Grid Card information through Phishing

Hardware Token

Autofill SMS-delivered Security Token

TrustFactor Overall Configura

tion

Example Fund Transaction Approval with Risk Analysis

Fund Transaction Approval Fl

OW . o o o s e e e e e e e

Progressive Web Application Example
React Native Architecture [36]
Cordova’s Core Architecture [13]

Xamarin's Core Architecture [26]

Flutter's Core Architecture [1

iOS Core Architecture [6] .
Adding Ul Elements
CocoaTouch Components [6]

View Lifecycle [5]

Model-View-Controller Archite

B .

cture [4]

Transaction Identifiers Depending on TrustFactor

Risk Limits Definitions . . .
Onboarding Storyboard . .
Subscription already active
TrustFactor Agent Installation
SMS Token Credential Step

Step.

— O 00 00 N N O

13

15
18
19
20
22

30
31
32
33

39
41
42
43
45
45
46

LIST OF FIGURES

26
27
28
29
30

TrustFactor Agent subscriptionflow L

Architecture of Fund Transaction Flow

Ul Fund Transaction Flow . .

Example of Transaction Classifications

TrustFactor Execution Status

Xiv

48
50
51
52
53

O 00 N O O & W N =

e e e e T
~ w N = O

Manifest Configuration Properties .
Person Class Header File
Person Class Implementation File .
Executing Classes Code Blocks . .

List of Listings

Prevent Nil Functions or Variables from being accessed with Optionals

Example of Optional Implementation Approach in Objective-C

Struct Implementation and Copies .

Class Implementation and Original Mutation being Propagated

Example of a Podfile

Simple GET Request with AFNetworking and NSURLSession

Requirement Value Mapping . . .
Load App Store View from an Action
Deeplink URL Structure
Load App Store View from an Action

XV

16
25
26
26
27
27
28
28
35
36
44
46
47
49

2FA

API

CSS

GPS
GUI

HTML
HTTP

IDE
loT

JSON

MvC

oTP

PIN
PWA

REST

Two-Factor Authentication 5

Application Programmable Interface 16, 17, 19, 44, 45, 48, 54

Cascading Style Sheet 14, 19

Global Positioning System 30
Graphical User Interface 29, 30

Hyper Text Markup Language 14, 19
Hypertext Transfer Protocol 35, 36, 44, 46, 48, 50, b1, 52, 55

Integrated Development Environment 30
Internet of Things 1

JavaScript Object Notation 15, 47, 48

Model-View-Controller 30, 39, 49

One Time Password xiii, 5, 6

Personal Identification Number 6, 10
Progressive Web Application 14, 15, 16

Representational State Trasfer 2, 37, 46

XVi

Acronyms

ACRONYMS

SDK
SIM
SMS
SSL

TLS

Ul

UML

URL

UX

WwDC

XiB

Software Development Kit 14, 29, 45
Subscriber Identity Module 10

Short Message System 4, 6, 9, 10, 42, 43, 50
Secure Sockets Layer 15

Transport Layer Security 15

User Interface 2, 18, 20, 22, 31, 34, 40, 49
Unified Modeling Language 13

Uniform Resource Locator 35, 47

User Experience 22, 31

World Wide Developers Conference 27, 29, 34

XML Interface Builder 50

XVii

Introduction

Home-Banking is a term that gained popularity in the 1980s and, by definition, is a system whereby
anyone at home, or in an office, may access Bank information’s via a computer, with modem connection,
and even execute other functions such as fund transactions or service payments and shopping.

This type of service was first introduced by Banks such as Citybank and Chase back in 1981 in New
York city. In 1994, the Stanford Federal Credit Union developed the first Home-Banking solution based
on a public network, also known as the Internet.

With the rapid growth and evolution of loT, and the introduction of Smartphones in the market, Bank
Institutions have become closer to their clients with the help of Home-Banking Applications. In Europe,
after a study conducted by comCore, it is estimated that the adoption of this solutions in mobile devices,
such as Smartphones, has increased around 71% in between the years 2018 and 2020 [38].

However, the increasing popularity of these services has led the criminal world’s interest in exploiting
vulnerabilities on Home-Banking solutions in order to obtain credentials of Bank users accounts. Due to
this, Bank Institutions have been putting constant efforts in security research and development of safer
authentication and fund transaction validation mechanisms in order to increase the protection of their
clients Bank accounts.

With the main purpose of increasing reliability and online security, Strong and Multi-Factor Au-
thentication mechanisms have been implemented to ensure user integrity throughout fund transactions
or during access to certain features.

The integration of Strong Authentication mechanism during fund transaction has been developed in
a real-context scenario, on an existing Home-Banking iOS application. This thesis has been written under
the context of an internship at the ItSector - a company with vast knowledge and portfolio of solutions
targeted to companies from the finance sector, such as Assurance and Bank Institutions.

1.1 Objectives

With this Dissertation we expect to integrate a new Authentication and Transaction Validation using a
Multi-Factor mechanism on a Home-Banking Application.

CHAPTER 1. INTRODUCTION

This security layer has been already implemented on the Bank Institution’s services. However, in order
for it to work as expected, this service needs to be implemented on the client-side with some adjustments
on the Applications.

The Application is available for both iOS and Android devices, although our main goal is to integrate
the new services on iOS side. Thus, we will provide an in-depth study on the currently used technologies
to implement Native Applications.

Even though this Dissertation already has a well defined theme and technologies, we will discuss
Paradigms of Mobile Applications, exploring some aspects of Progressive Web and technologies used by
Cross-Platform Development Paradigm and how they are applied to iOS Applications.

Therefore, and in a summarized form, the objectives for this Dissertation are established in the fol-

lowing list:

Understand the Paradigms of Mobile Development;

iOS Frameworks and Technologies for Native Development;

Architecture and Design Patterns applied to Mobile Applications;
* |Integration of REST Services;

¢ Strong Authentication and Fund Transaction Validation layer;

Adapting Ul Components

1.2 Document structure

This Dissertation has been divided into two major sections, the State of Art and the Dissertation Core.

Throughout the State of Art, we will discuss about Authentication Mechanisms commonly used by
Home-Banking Applications, how they work and their disadvantages. Following that, we will give an over-
all introduction about a Software based Authentication Mechanism designed especially for online fund
transaction based Applications, which is called TrustFactor.

During the Dissertation Core section we will tackle several subjects about iOS and General Application
Development. In early chapters we will cover aspects of Mobile Development Paradigms, starting by Pro-
gressive Web Applications followed by Cross-Platform. A small general introduction to Native Development
has been written, however we will only go in-depth about what it is on the next major section.

The fourth chapter, the Native Technologies and Frameworks section, is where we will discuss
the technologies used for a Native Development Paradigm. We will start by introducing the Core Tech-
nologies Apple provides, backed with a background on Objective-C and Swift. Next up we have dedicated
a sub-chapter entitled as User Interfacing Technologies to introduce both Cocoa/CocoaTouch and

2

1.2. DOCUMENT STRUCTURE

SwiftUl. To close this major chapter, we will also discuss about external libraries during Frameworks
and External Packages

Following the Native Technologies and Frameworks chapter, we will present the Development Pro-
cess, where we will talk about Architecture and Design Patterns used under iOS Development,
followed by the TrustFactor Integration with the technologies we have agreed to use.

As a form of closure to this project, throughout the Conclusion chapter we have made an appreciation
of the overall work hereby present, followed by possible Future Work under the scope of this Dissertation.

2

State of the art

This dissertation has the main purpose of integrating a Strong Authentication layer on an existing home-
banking application. As of today, the App features only one authentication mechanism and two transaction
validation mechanisms, triggered under different scenarios, the SMS Tokens and Positions. However, the
latter are no longer considered to be strong enough by the bank institution and therefore it has ordered
the introduction of a Strong Authentication mechanism with transaction risk analysis features.

That being said, with this dissertation, we will include a transaction validation layer, built by Securi-
tySide, called the TrustFactor. This fund transaction security layer will be implemented on the i0OS and
iPadOS version of the Home-Bank App, therefore this master’s thesis will also be focused on the available

technologies to develop applications for this ecosystem.

In order to justify the usability of TrustFactor we will, hereby, discuss some of the most popular
authentication and validation mechanisms used by home-banking solutions.

2.1 Authentication Mechanisms

With the rapid evolution of Technology, the loT has contributed to the growth of a number devices con-
nected to a network, making it equally more susceptible to malicious attacks, like for example the man-
in-the-middle.

As a result of this growth, Cryptography and Security have emerged and evolved with the purpose of
protecting private information shared over a network from non-authorized personnel, therefore establishing
three important pillars of security - Confidentiality, Integrity and Privacy.

There are different mechanisms that aim to asses the User’s integrity, and they fall under two different
Authentication Schemes categories: Simple Authentication and Two Factor Authentication.

Thus, on the sub-chapters that follow, we will discuss about each of these mechanisms, pinpointing
each weaknesses and strengths when it comes to Usability and Security.

4

2.1. AUTHENTICATION MECHANISMS

2.1.1 Simple Authentication

The simplest and more commonly form of authentication and User integrity validation is by using a pair
of Username/E-mail and Password. Both of them can be set upon account creation and customized by
the User or automatically generated by the Service provider.

Even though this method is the most overused by the majority of online Services, this Authentication
Scheme is also more prone to cyber-attacks under public communication channels that are not considered
to be safe, like the Internet.

One of the most recurrent User’s practices on choosing Passwords for Online Services is to create
one short and easy to memorize, but these are more prone to theft or guess, while lengthy and complex
Passwords are the opposite way. However, as length and complexity increases, the probability to forget
them also increases [35].

Moreover, independently of how big and strong the Password is, by combining letters, symbols and
numbers, in order to overcome the problem of forgetting it, Users have a tendency of re-using the same
Password and not changing it very frequently. Another major problem is that upon any account creation,
the User is completely unaware on how it will be stored or where, and the more they use a given Password
the less safer and stronger it is, because if they are stored without any encryption or if any data breach
happens, the more likely an attacker can access other Services like E-mail, Social Networks and even
Home-Banking platforms.

2.1.2 Two Factor Authentication

The exponential growth of networks has resulted on a high number of devices connected to the World Wide
Web and, as a consequence, many Services have risen with protected resources. Due to this phenomenon,
as we previously exposed, a Simple Authentication mechanism on its own is no longer considered to be
secure enough.

To address this issue and to enforce a better security on Simple Authentication mechanisms, many
Service providers have come up with a different set of rules which forces their users to change their
Passwords every once in a while and, in other cases, as we have previously stated, these Passwords must
match certain rules like mixing Symbols, usage of capitalized letters and numbers. However, this has a
huge negative impact on Online platforms Usability [39].

Thus, with the purpose of addressing these issues, a new type of Authentication Scheme has emerged,
to verify the User’s integrity, entitled as Two Factor Authentication - also commonly referred as 2FA.

There are many implementations of a Two Factor Authentication mechanisms, but under the hood,
to authenticate users, they are based upon One Time Passwords, commonly know by the acronym OTP.

Nowadays, OTP Authentication Schemes, can be found on a wide variety of Online Services, whether
on Social Networks, E-mail providers and especially on Bank Accounts in order to validate User’s Integrity

when executing fund transactions.

CHAPTER 2. STATE OF THE ART

As its name indicates, Authentication Schemes based on OTP work with Passwords, or Tokens, can
only be used once and are automatically expired when the Transaction or Authentication has been executed
or time to live has passed its due.

Thus, Authentication and User Validation Schemes based on OTP have three main characteristics
which should be respected: eligibility for just one attempt, only a valid login and only for a short fraction
of time [39].

The majority of Two Factor Authentication schemes implementations are based on three additional
characteristics, like Knowledge - for example, a pre-defined Password or PIN known by the User -,
Possession - something the User has in order to proceed with Authentication, like a Matrix Card or
Authorization Device - and at last something Unique to each User - biometric information like fingertip,
facial or voice recognition [30].

In Home-Banking Applications Two Factor Authentication schemes such Matrix Cards and SMS stand
out compared to other existing solutions. Besides these, after a survey we have conducted about Online
Experience and Behavior, answered by 134 individuals, out of each 115 are Home-Bank Users, we learned
some Bank Institutions even use E-mail Services to Authorize and Execute Home-Bank fund transactions.

Via SMS

Via E-mail
No Token Required

Figure 1: Authentication Schemes Used as OTP in Bank Transactions

2.1.2.1 Grid or Matrix Validation Cards

The oldest and most primitive mechanism to validate User’s integrity under OTP schemes is to provide a
list of previously randomly generated characters or numbers, like Matrix Cards. According to the survey
we have conducted, this mechanism is still used by 67.5% out of 115 Home-Banking Users.

6

2.1. AUTHENTICATION MECHANISMS

Yes

Figure 2: Usage of Matrix Card in Home-Bank Transactions

Matrix Cards can be represented by different type of digits, numbers or letters. As an example, we
have designed a sample Matrix Card, depicted by 3, following a numerical format with three randomly
generated digits.

Figure 3: Grid Card Example

The way these Authentication Schemes work on Home-Banking solutions are quite simple: most of the
times, when the User requests a fund transaction, the Application prompts one or more digits accordingly
to a coordinate in the grid and, in some cases, digit index can also enter the equation. As an example for
the grid card shown in Figure 3, the Application could request a number on second index with a coordinate
Cb5 - this corresponds to the number 5.

Even though this is a straightforward, simple and widely used Authentication Scheme, the Grid Cards
are a physical object susceptible to loss or even theft.

CHAPTER 2. STATE OF THE ART

With the fast climb of internet usage, Matrix Cards are also threatened by Phishing and unfortunately,
in some cases, Online Bank services can't do much about it to prevent these attacks other than make
their users aware of this danger. One good example of this problem can be depicted by Figure 4, where
another platform, that looks pretty much alike the official Home-Bank Website, requesting someone to
enter every single existing number on the Matrix Card.

BESnetwork

BESnetwork

Auenscagho

ALERTA DE

% solictando a ntroducdo de todas as posicdes d:
imadiato a Lis através do nimero 707 200 300

ScS0 St s

Figure 4: Attempt to obtain Grid Card information through Phishing

2.1.2.2 Hardware Tokens

Just like Grid Cards, Hardware Tokens are the oldest existing Authentication Schemes, however they
are not as frequently used by today’s Home-Banking solutions as a result of the ascension from other
Authentication mechanisms.

The Hardware Tokens, depicted by Figure 5, are small devices which looks quite similar to the format
of a USB Pen Drive or a simple Credit Card. These devices also features an internal memory, though
limited, where one or more Tokens are stored for being used later throughout Authentication Services or
Applications supporting them.

oT™ c100

OoN

ONE TIME PASSWORD

Figure 5: Hardware Token

2.1. AUTHENTICATION MECHANISMS

There is a wide variety of Hardware Tokens brands and different models with distinct characteris-
tics: some may feature keypads to input Passwords, biometric readers, wireless antennas, among other
features aiming to maximize their security [3]

Even though these devices provide an increased level of security to Services and Applications, at the
end of day it is a physical device that can get easily lost or stolen, just like Grid Cards. Hardware Token
Devices features also have limitations and problems, like their expensive price tags, expiration dates and
a battery that once drained can’t be recharged forcing Users to acquire a replacement device.

2.1.2.3 SMS Validation

As observed by our survey results, depicted by Figure 1, the most common Authentication mechanism
used by Home-Bank applications are based on SMS, or Short Message System.

In Bank solutions, to take advantage of this mechanism, their Clients must provide a correct and
trusted cellphone number when the Bank Account is created. Whenever there is a Transaction attempt
the Bank Services send a text message with a generated Token to execute the transaction.

Under a User Experience point of view, this is the best and most useful scheme for the Users, consid-
ering it eliminates the need of requesting a Grid Card or Hardware Token Devices. On top of that, in i0S,
Apple offers a possibility to automatically input the Token received by SMS for the User, if the transaction
is being made on the same device with the destination cellphone number, as depicted by Figure 6.

Please check your messages for a six-
digit security code and enter it below.

Figure 6: Auto-fill SMS-delivered Security Token

CHAPTER 2. STATE OF THE ART

However, the integration of this mechanism is prone to Security threats. Accordingto [9], unauthorized
personnel or cyber criminal individuals can steal/extract data and even deceive Users who have subscribed
the Authentication scheme with Phishing, since many cellphone carriers allow their clients to receive
messages coming from different public Websites or Services, which are not considered to be safe, who
are able to pretend being the Bank Institution.

There are many different tactics or methods available to exploit vulnerabilities in text messages sent
via SMS under the context of Home-Bank transactions, among which stands out:

* Phishing: like previously mentioned, a malicious entity tries to claim being the Bank Institution by
sending links referencing Services able to extract data;

e SMS Sniffing: for example, by cloning a SIM card, individuals are able to intercept messages
containing Tokens or PIN since these are not encrypted in transit;

* Malware or Spyware: by installing third-party Hardware or Software able to steal data stored on

device by sending over a Network;

* Wrong Number: sometimes Tokens could be sent for the wrong person, this can happen when
one dials the wrong number or the person has gotten a new one;

All the problems we have hereby exposed can have a huge negative impact to one organization,
compromising their the Client’s trust, public image and financial consequences to both parties.

2.2 TrustFactor

TrustFactor is an Authentication and Transaction protection Service that allows Web Applications to protect
sensitive data and operations from being executed by unauthorized personnel, like for example Service
Authentication, changing Password or other account’s information and Fund Transaction approval on
Home-Banking solutions, by providing a Strong Authentication mechanism that aims to protect Clients
from cyber-security threats like Phishing or others.

This Service is structured in three application layers with distinct purposes that cooperate with each
other for the safety of users, which are:

* TrustFactor Stack: is the whole set of Services which ensures the operation and integration of
the Home-Banking solution with TrustFactor;

* TrustFactor Cloud Services: a responsible layer for communication and validation of the gen-
erated Authentication codes;

e TrustFactor Agent: is a free Application available for both Android and iOS devices to be used
by the Bank’s Clients

10

2.2. TRUSTFACTOR

This provides a mechanism that allows Users to authorize different transactions in the Home-Bank,
having full knowledge of their parameters and a Risk Analysis of their execution that can be classified as
Low, Medium and High. The classification can be based on several parameters such as the frequency of
transaction made to a certain destination, the localization from where it's been requested and how much
money will be sent, as depicted by the Figure 8.

2.2.1 TrustFactor Configuration

The TrustFactor Authentication Service is passive to different configurations, whether Cloud based or on
Bank Institution’s own service. This way, the Bank can opt out by using the Service completely allocated
on SecuritySide's Services or Internally and have full control on the platform.

The diagram depicted Figure 7 displays one possible configuration where TrustFactor has been fully
integrated on the Bank’s Internal Services. By choosing this configuration the Bank Institution is also able

to customize the TrustFactor Agent Application and distribute it as their own.

|

CLOUD EDGE
0 SECURITY
AGENT
o ENDPOINT
(AWS)

P
)
(=
(7]
35
&
=]
X
£
=]
(=)
=

7 APPLICATION NETWORK =\

L ovz_J e U
e
APPLICATION
. TRUSTFACTOR
FRONT-END 0 s
TRUSTFACTOR STACK
MIDDLEWARE

INTERNAL NETWORK %/

TRUSTFACTOR
INTERNAL

Figure 7: TrustFactor Overall Configuration

11

CHAPTER 2. STATE OF THE ART

Besides the Architectural configuration, the Diagram also depicts the overall operation steps of Trust-
Factor, where a Client (1) accesses the Frontend Application and requests a Transaction (2). The Trans-
action request is received on the Backend Services through a Middleware which verifies the Authentication
mechanism set for transaction. If the configured mechanism is set to be TrustFactor then the request
is forwarded to TrustFactor Authentication Services (3) that should fire a Push notification on the device
with associated contract on TrustFactor Agent Application. The User can use the Application to approve

or reject the transaction - we will cover this step on future chapters.

2.2.2 TrustFactor Agent Operation Flow

As we have mentioned earlier when we first introduced the TrustFactor Service's layers, the Agent is an
Application available for both Android and iOS, completely free for the Bank Institution’s Client.
This Application works like a cryptographic Software Token on supported Home-Banking Applications.

The User can authorize one or more Agents for Transaction approval and Authentication.

TRANFERENCIA FUNDOS

TRANSAGAO DE ALTO RISCO

Maria Jodo

Primeiro pagamento para este destinatario Valor de transago fora do padrdo

REFERENCIA AMOUNT

1486 1234 4645 10.000 AKZ

MONTANTE Primeira transagao para este beneficiario

7.500 AKZ REFERENCE

1486 1234 4645
DATAE HORA

04-06-2018, 16:50 Selecione a sua deciséo

Aprovar Rejeitar
Aprovar Rejeitar

Figure 8: Example Fund Transaction Approval with Risk Analysis

Once the Validation mechanism is integrated in the App and after the Home-Bank Client has suc-
cessfully associated their contract with TrustFactor, every time a Transaction that uses this Authentication
mechanism is requested a Push Notification is sent to the associated Mobile Devices

In order to proceed with the Transaction, on iOS the User should open TrustFactor and, as depicted
by Figure 8, the Agent will display every Transaction details for approval, such as Destination Reference,

12

2.3. SUMMARY

amount, date-time and, in some cases, other properties such as location where the Transaction has been
requested. These parameters will be used to asses the level of Risk associated with the execution of
Transaction.

The aforementioned steps have been translated to a Sequence UML Diagram depicted by Figure 9

for a better understanding.

TrustFactor Agent

Fills Transaction Details
Requests Confirmation j_]

Confirms Transaction Data

Requests Transaction

Sends Push Notifications with Transaction Detailg

"T:] Requests Approval
— " Approvement Status
Customer Approval

Executes Transaction

E,E: Result

Execution Result

Figure 9: Fund Transaction Approval Flow

2.3 Summary

Within the State of Art chapter, we started by exposing the main goal of this Dissertation, which is inte-
grating a TrustFactor authentication layer on the client side Application. With that in mind, we started
by revising the existing types of Authentication Mechanisms, which can be divided into the categories of
Simple and Two Factor Authentication.

Since TrustFactor falls within the Two Factor Authentication and has been conceived to Home Banking,
we have focused ourselves on existing authentication solutions used within these platforms, pinpointing
their differences, advantages and also as their disadvantages or vulnerabilities.

To close this chapter, we have also introduced TrustFactor as an authentication service and an
overview of how it can be applied and used under a Home-Bank platform.

Since this implementation will be done on the iOS Application, our goal for the chapter that follows is
to discuss about Mobile Development Paradigms and document how iOS Applications can be built.

13

3

Mobile Development Paradigms

When the first iPhone was announced, back to January 2007, it was a simple mobile phone with a few
extra features, such as a media player for music, videos and images, the possibility of surfing the web
through Apple’s flagship Software called Safari and the ability to fetch and send E-mails, on 3.5 inches
multi-touch screen.

A year after the launch of this device that revolutionized the industry of mobile computing, Apple
recognizing its potential and in order to extend its features, introduced the App Store and a set of SDK
tools so developers could create Applications and distribute them to potential users via this service.

As time went by, Software Development has been innovating and new technologies emerged, such as
new methods and Application Development Paradigms, making the development process easier and less
time consuming, regardless of its target environment.

On the following chapters, we will discuss these Mobile Application Development Paradigms - such as
Progressive Web Applications, Cross-Platforms Applications and, at last, Native Applications - pinpointing
their advantages and disadvantages when it comes to iOS and iPadOS development.

3.1 Progressive Web Application

Progressive Web Development, which is also known by the abbreviation PWA, is a mobile development
paradigm which distinguishes itself from the others due to the fact of their simplicity and having the
capability of being accessed by any type of devices, regardless of the Operating System, via a Web Browser
or a WebView embedded on a Native Application.

That being said, PWA are considered small applications based on Web Technologies, combining a
markup language, such as HTML, to structure the skeleton and represent information, a Cascading
Stylesheet (also known as CSS) for designing purposes and a programming language like JavaScript -
or as in more modern frameworks such as React, Vue or Angular, its super-set called TypeScript. In
the Figure 10 we display an example on how a News Progressive Web Application looks like through the
Browser, both on the iPhone (on the left) and on Android (on the right).

14

3.1. PROGRESSIVE WEB APPLICATION

@ slack wil = 00:20 3 os%@ms [FENG)

e 2 © 2 _al life) all KYIVSTAR 36 CH 68%

& app.ft.com G @ https:/app.ft.com/index_page/hol

FTWeekend pivanciarL TimMEs

House & Home
5 Edward Luce
Japan’s lost lands : "
Trump's words and actions
f £ 2 s

disconnected
- Morgan Stanley boss «n fastFT

Trump lauds economic record in
State of the Union

i President offers few olive
Ll branches to Democrats in
| speech to Congress

Left and right trade barbs as US shutdown stalemate
drags on

Breakthrough in push to form German) o
government Can big data revolutionise

N s'| & =

o 1 towards forming a new 2 Mining digital information

. i e government when the . W | for accurate, up-to-date
i« country’s Social Democrats e
& 7 N economic snapshots could
anr of formal
| help officials make quicker

and better decisions

m},FT Q (& Updated15Tpm 3¢

i;q Germany took a big step pollcymaklng by governments?
£

[
é.‘
a1
jol
Q

Updated 12:20am *

mh m O

Figure 10: Progressive Web Application Example

In the early days, this type of application proved to be quite limited on mobile devices by lacking simple
features Native Applications had to offer, such as the ability to receive Push notifications, save content for
offline access and, for example, when it comes to iOS users, they were not able to save the Application
on the Home-Screen for a eventual quick access. However, some of these issues have been addressed
with the release of new major Operating Systems [34].

In spite of these Applications being built upon Web technologies, not all Web Sites that have the
features described above can be considered PWA. For this to happen, these Web based Application must
support the following key features:

* Secure Contexts: the Web-based App must be distributed to the end-client over a secure network,
assured by protocols such as TLS or SSL. In some cases, PWA features such as geolocation and a
few Service Workers will only be available by assuring this feature;

* Service Workers: a script that performs network interceptions and Browser cache control. By
using Service Workers one can, for example, store content for a offline access;

¢ Manifest: it's a JSON configuration file which specifies how an App should be presented to the
end-user and allows it to be discoverable over the Web. In the following code excerpt we can see
some of the most common properties of a Manifest configuration file.

15

CHAPTER 3. MOBILE DEVELOPMENT PARADIGMS

{
"name": " HomeBanking ",
"short_name": "HB",
"start_url": "/7source=pwa",
"icons": [{
"src": "/images/logo.png",
"type": "image/png",
"sizes": "192x192"
H,
"theme_color": "#28527a",
"display": "fullscreen", ntr t n tan nents
"orientation": "portrait"
b

Listing 1: Manifest Configuration Properties

As it has been stated, the limitation to certain PWA features have only been addressed in 2018, with
the release of i0S 11.3, allowing features such as geolocation based on iPhone API, access to certain
sensors such as Magnetometer, Accelerometer and Gyroscope, camera and audio output as also access
to their own payment method, the Apple Pay, limiting other features for Native Applications.

The more interesting features that have been limited on iOS by this type of Applications are the ability to
store content for offline access, which is currently limited by a maximum of 50Mb storage, and the ability
to receive Push Notifications. Security-wise, some APl have been strictly limited to Native Applications
such as Touch ID and Face ID [34].

To sum up and despite all the limitations exposed, the fact PWA benefits from Web technologies, it
becomes easier to develop apps compared to Native solutions. With PWA running on the Browser, it's
also easy to develop an app targeting multiple devices rather than iOS all alone, making it cheaper and
easier to maintain. However, if we want to develop an App that relies a lot of Hardware or other Operating
Systems core features - such as Push Notifications - and build great User Experience [37], it might be
wise to reject this development paradigm.

3.2 Cross-Platform Application

Applications developed via Cross-Platform paradigm are easier to develop than Native Applications and
because most of their code can be shared across devices [19] with different Operating Systems.

Another good reason why a company should make the switch to a Cross-Platform Development is
the cost associated with it when it comes to required human resources for developing and maintaining
the Application, since there is no need in developing two standalone Applications targeted to devices with
different Operating Systems. Moreover, the effort in Quality Assurance - also known as Testing - can also
be reduced since there will be a single Application to test [28].

Despite the high potentials of the Cross-Platform Development Paradigm and reduced costs of devel-
opment, there are a few drawbacks associated with this development paradigm.

16

3.2. CROSS-PLATFORM APPLICATION

To name a few, some of available frameworks and technologies have yet limited access to certain
device API and the User Interface might not be compliant across other Operating System components.
Another important aspect that should be taken into account when developing an app is that third-party
frameworks are not free of bugs, there may be hardware compatibility issues as performance glitches that
can definitely impact the Application User Experience [27].

Even though Cross-Platform Development tries to eliminate the need of writing code in different lan-
guages and technologies, in order for these applications to run on different Operating Systems, the frame-
work acts as a layer on top of Native Technologies foundations. For example, User Interfaces are imple-
mented as a Web Page [14], although it is presented to the end-user via a Native Application by relying
on the WebView component.

In order to better introduce these technologies, we have selected some of the most used frameworks,
according to a study conducted by Stackoverflow in 2019 about the "Most Popular Technologies”! among
Professional Developers, and crossed information on their respective documentation and articles. On the
following sub-chapters, we will discuss about React Native, Cordova and Flutter.

3.2.1 React Native

React Native is an open-source framework created and maintained by Facebook, that aims to combine
the best parts of native development with core React features [33] and therefore reduce the costs of
development. Even though the framework is built and more commonly used via JavaScript, it is also
flexible enough to be integrated on existing applications built with Java, Objective-C or Swift.

This is a widely used framework in the industry by Applications such as Facebook, Instagram, Netflix,
The New York Times and many other companies 2. Also among Professional Developers, accordingly to

Stackoverflow, it is used by 10.8% out of the 49861 developers who have answered the survey.

Since React Native is Cross-Platform framework, in order for an Application built upon this framework
to run, still needs some foundation layer of officially supported technologies. Therefore, the Figure 11
depicts the core architecture used in React Native, where two bridges on each side act as a communication

layer between native and JavaScript components [36].

IMost Popular Technologies: https://insights.stackoverflow.com/survey/2019#most-popular-technologies
210 Famous Apps Using ReactJS Nowadays: https://brainhub.eu/blog/ 10-famous-apps-using-reactjs-nowadays,/

17

CHAPTER 3. MOBILE DEVELOPMENT PARADIGMS

m (]
N o] > RCTDeviceEmitter > -g
O - < > P O
o - RCTLog 8 :
4= Q > — L
= 3 = e
3 T Q 3]
(&) >

s S = B3
S o 1 . © @©
© (a'd > =2 >
- ©
-

Exact 1 to * correspondence
betweem each side of the bridge

Javascript thread Native thread

Figure 11: React Native Architecture [36]

Choosing React Native has many advantages, such as speed of development for multiple platforms
with shareable code among them, a simplified Ul and a large developer community. By using this frame-
work team sizes can also be reduced, having no impact whatsoever on low budget projects.

Although one should take into consideration that React Native is a new technology which is still under
development, so compatibility issues are still being found and updates being released frequently to patch
them. It also lacks on basic features such as push notifications [11] requiring developers to implement
them using officially supported Native technologies.

3.2.2 Cordova

This framework was conceived by several engineers from Nitobi, a company dedicated to the Web Devel-
opment, during an event about iPhone development hosted by Adobe in San Francisco [17], shortly after
the introduction of the second version iPhone in 2008.

A Technology called UIWebView which allowed developers to load Web resources onto a native ap-
plication has been explored with the purpose to investigate how an Web Application, or Progressive Web
Application, could run natively without putting extra effort on learning the Native Technologies. This exper-
iment has been successfully accomplished and gave origin to a project called PhoneGap which, later in

18

3.2. CROSS-PLATFORM APPLICATION

2011, was bought by Adobe who has donated its framework to Apache Foundation. The latter has then
decided to rename the project to Cordova.

Right now, this is an open-source framework that follows the original principles, however it is now
supported by a wide-range of devices running different Operating Systems - iPhone, Android and Windows
Phone. This framework also allows modern web development technologies, such as HTML5, CSS3 and
JavaScript, for a Cross-Platform development.

The Architecture of this frameworks remains loyal to its original, where the User Interface components
are implemented by a WebView and a layer of Cordova Plugins which now allows to interact with a set
of APl and Native components - such as battery, camera, geolocation services, file management, among
others. The Figure 12 gives a representation of Cordova’s Core Architecture.

Cordova Application

Web App Cordova Plugins

config.xml Accelerometer Geolocation

SEsEiEEs Camera Media

Device Network

HTML

APls
Cordova
APIs

Contacts Storage

LR epdee uimrn Custom Plugins
Engine(WebView) = -

Figure 12: Cordova's Core Architecture [13]

Accordingly to the official framework documentation, its usage is highly recommended when devel-
opers need to deploy an existing Web resources (as for example a fully operational Progressive Web
Application) to be distributed on a Native Application [14], or when there is the need to create a mixture
between Native Application components with WebView components.

However, and despite the maturity and wide existence of plugins, Cordova also features some limi-
tations due to the technology it is based on, the WebView, which compared to other technologies, and
native components, has a slower performance and it can be further aggravated if the application includes
graphics and some animations. Another major downside important to mention is that just like other non-
native open-source frameworks, documentation might lack in quality and plugins might have bugs which
affect correct behavior across different versions of the Operating Systems [16]

19

CHAPTER 3. MOBILE DEVELOPMENT PARADIGMS

3.2.3 Xamarin

Xamarin is one of the oldest and most used frameworks on Cross-Platform Development. This framework
has started as a project from the self named company back in 2011, and was recently bought by Microsoft
in 2016 who merged it on the services pack shipped with Visual Studio [18].

Applications that are developed using Xamarin, in contrast of the other technologies we have men-
tioned before, do not rely on Web technologies to be implemented. Thus, Xamarin uses Microsoft's own
programming language C# and XAML Markup Language. By using these technologies, Microsoft empha-
sizes on its documentation that developers are able, in most cases, to share 90% of the written business
logic and 80% of Ul Components across other platforms [26] in the market - Android and iOS. The Figure
13, obtained from Xamarin's official documentation, Microsoft represents how the high level architecture
communicates with the respective supported native technologies, Objective-C (i0S) and Java (Android).

l’l Android Native Ul ‘ i0S Native Ul

m Android Runtime

(ART) Mono (Full AQT) Objective-C

Unix-Like Kernal

Linux Kernal

Figure 13: Xamarin’s Core Architecture [26]

Besides the great amount of shareable code, another great advantage for using Xamarin for Cross-
Platform Development, is the fact it supports a wide range of Operating System versions, starting from
i0S 9 [10], when most of Cross-Platform technologies require iOS 11 or later.

This technology seems like a great candidate for Cross-Platform development, however Microsoft has
announced it has a few technological limitations imposed by iOS architecture and native programming
language [31]. Besides these limitations, Microsoft has also claimed during an event that Xamarin will
become deprecated and a new development framework will be introduced on .NET as a replacement
called .NET Multi-Platform APP Ul [2], which might eventually require Software Developers to transition
their apps to this new framework.

At last, drawbacks such as Xamarin being charged for Professional and Enterprise usage, limited
access to open-source libraries and the required size for simple applications, there may be enough reasons
for a developer discard this framework on certain projects.

20

3.2. CROSS-PLATFORM APPLICATION

3.2.4 Flutter

Flutter is one of the youngest framework on its market. It's also an open-sourced technology, first launched
in 2018, introduced and maintained by Google.

Just like other Cross-Platform frameworks, Flutter has been designed to allow the maximum re-usage
of code between different Operating Systems and also Browsers. In addition to previous studied tech-
nologies, it also allows to build applications capable of running natively in Desktop environments, such as
Windows, macOS and even Linux.

This framework uses Dart as a programming language which is later compiled and translated to na-
tively supported languages. Despite the need to compile the App to run it, throughout the development
phase these are executed upon a Virtual Machine which allows to apply code changes instantly - a tech-

nology that is also known as Hot Reloading.

Internally, Flutter has been conceived inspired on React, featuring Reactive Interface capabilities. In
other words, every user input that impacts internal state data is automatically reflected on the compo-
nents that depends on them, without having the need for a developer implement himself such control

mechanism.

In its Architecture, represented by the Figure 14, in order to support different environments, Fluter

has been split into three layers with distinct purposes [15]:

* Framework Dart: is the highest layer on its hierarchy, where developers implement the applica-
tion by using Dart. This layer holds Foundation classes that allow developers to specify animations,
gestures and the layout; a Widget Layer that through composition make up the user interface and

at last Material and Cupertino serves as Ul primitives for Android and i0S, respectively;

* Engine: is a lower level architecture, on which the entire framework is based on. This layer
has been conceived with C and C++, having the main purpose of communicating with primitive
functions which allow, for example, network calls, scene rendering, graphics and input and output

file management;

* Embedder: is the lowest level layer on the hierarchy, that acts as a translation layer to native
technologies - Objective-C in iOS and macOS, Java and C++ for Android and C and C++ for Windows
and Linux platforms.

21

CHAPTER 3. MOBILE DEVELOPMENT PARADIGMS

Eramework Material Cupertino
art
Widgets
Rendering
Animation Painting Gestures
Foundation
Engine Service Protocol Composition Platform Channels
C/C++
Dart Isolate Setup System Events
Dart Runtime Mgmt Frame Scheduling Asset Resolution
Frame Pipelining Text Layout
Embedder

Platform-specific

Figure 14: Flutter's Core Architecture [15]

Like any framework, Flutter also has its limitations and drawbacks. The first to be noticed, according
to its documentation, is the fact it does not ship with an official debugging tool to ease the process of
development. To address this, Flutter recommends developers to use non-official existing tools in order
to overcome this limitation.

On Android, Flutter's engine has a minimum variable weight between 4.3Mb on ARM and a minimum
of 4.6Mb on ARM64 platforms. On i0OS, however, a simple application reaches a minimum value of
10.9Mb, accordingly to their documentation Frequently Asked Questions page®, due to an encryption
mechanism on the Apple’s side, making the IPA compression algorithm less efficient. Taking this into

consideration, as the Application grows, there might be a considerable impact on its final size.

3.3 Native Application

Native Applications are tailored to a specific mobile platform, thus developers who choose this type of
Development Paradigm are required to use natively supported technologies.

This Paradigm of Development has many advantages such as great support to Hardware technologies
and full APl access, while other technologies may be limited. According to some reports, Native Devel-
opment is also a great way to developers build Intuitive Ul/UX design that follow specific guidelines from

3Flutter FAQ page: https://flutter.dev/docs/resources/faq

N

2

3.4. SUMMARY

the device manufacturers. Unlike other Development Paradigms, Native Technologies does not depend
on translation layers and therefore developers are able to build apps with better performance.

However, since every Operating Systems supports different technologies, this Development Paradigm
can be a drawback as it requires to build the same Application logic but with different technologies in
order to support, for example Android and iOS, since the first supports Java and the latter Objective-C or
Swift. Therefore, this also has an impact on the required human resources which also demands higher
development costs.

3.4 Summary

In this section, we have briefly introduced the existing paradigms of mobile development and supported
types of Applications on iOS and iPadOS devices.

Starting from the Progressive Web Application, where it's mainly used Web Technologies to enhance
websites to be supported by any type of mobile devices. We also have pointed it's limitations when it
comes to running on i0S and iPadOS devices, discarding this paradigm of development by the lack of
Push Notifications, access to the device's Hardware capabilities and the Application limitation sizes.

Furthermore, it has been introduced the Cross-Platform Application Development Paradigm, where
we have discussed some of the most used frameworks to achieve Cross-Platform Development, the ad-
vantages of this paradigm but, as usual, the disadvantages that comes with it.

For a full section closure, we have also introduced Native Application Development Paradigm, the
advantages and drawbacks and why would one prefer this type of Application Development Paradigm over
the previous ones we have discussed.

23

4

Native Technologies and Frameworks

4.1 Core Technologies

As we have previously stated, the Native Development Paradigm forces developers to use officially sup-
ported technologies.

In order to develop Applications for the Apple ecosystem, developers must either use Objective-C or
Swift. In some cases, both can co-exist on a single Application.

On the following sub-chapters, we will introduce some background about each languages, pinpointing
each other’s differences.

4.1.1 Objective-C

Starting with Objective-C, also commonly known as ObjC, is a Programming Language created in the
1980s by Brad Cox as an extension to C language functionalities [40].

In 1988, this language has been licensed to and introduced initially in the market on NeXT Comput-
ers, which later has been acquired by Apple. As a result of this acquisition, Apple began using NeXT
Computer’s components as a foundation for its own Operating System for Mac Computers called ma-
c0S!, which also includes the Objective-C language. Since Apple’s mobile Operating System is based on
the Mac technologies as its foundation, Objective-C is also the primary language used for Application’s
development.

Apple considers this language as a C superset [22], having extra capabilities such the Object Oriented
characteristics - Encapsulation, Inheritance, Polymorphism and Abstraction.

Since Objective-C is built upon C, it supports the same primitives data types. However, Objective-C
also deals with data types as objects and by doing so provides developers functions to deal with data more

efficiently. The foundations of Objective-C provides the following data-types:

* NSString: used to store text or a set characters;

Formerly known as 0S X

24

4.1. CORE TECHNOLOGIES

¢ NSNumber: allows to store different types of numbers, like Integers and Floats;

* NSArray, NSSet and NSDictionary: stores a set of data types upon creation;

¢ NSMutableArray, NSMutableSet and NSMutableDictionary: stores a set of data types and
allows it to be modifiable after creation;

* NSValue: represents other data structures supported by C language

Since this language derives from C it allows backward compatibility. For this to happen, every imple-
mentation requires a signature header. To represent some of these concepts, we have written a class
which defines a person, depicted by Listing 2 to 3.

On a first sight, the syntax differences are quite notorious compared to the C language.

To define a class where we want to take advantage of Objective-C data types, it is important to import
the Foundation header. Following to that, the class must inherit the NSObject implemented by the
framework.

The property tag allows us to define the variables name and birthYear and automatically defines their
getters and setters. Next, we must declare all the implemented functions to be defined as public - in this
case, we declare a constructor initWithName and displayAge function.

// Header File: Person.h
#import <Foundation/Foundation.h>
@interface Person : NSObject

@property (nonatomic, strong) NSString *name;
@property (nonatomic, strong) NSNumber *birthYear;

// Public Functions
-(instancetype)initWithName: (NSString*)name birthYear: (NSNumber*)year;
-(void)displayAge;

Q@end

Listing 2: Person Class Header File

Just like it happens with C, a header file is not enough by itself, since it does not specify function’s
behaviour, just their definition. This should be implemented on a file followed by a suffix file-type m. On the
example 3, we define a simple class constructor and a method which interacts with C language primitive
data types with Objective-C's.

25

CHAPTER 4. NATIVE TECHNOLOGIES AND FRAMEWORKS

// Implementation File: Person.m
#import "Person.h"
Q@implementation Person

-(instancetype)initWithName: (NSString*)name birthYear: (NSNumber*)year {
self = [super init];
if (self) {
self.name = name;
self.birthYear = year;

}

return self;

3

-(void)displayAge {
int age = 2021 H [self.birthYear integerValuel;
NSLog(@m%@ has %d years oldﬂ, self.name, age);
}

Q@end

Listing 3: Person Class Implementation File

At last, to use classes instance methods in Objective-C, we need to allocate them to the device's
memory. To do such, we call the function’s name alloc followed by our initializer, which therefore allows
us to invoke any given function. In our case, we invoked displayAge which should print out "Adam has 23
years old”on the console.

Person #*person = [[Person alloc] initWithName:@"Adam" birthYear:0@1998];
[person displayAge];

Listing 4: Executing Classes Code Blocks

The Foundation framework does not only have a definition of data structures. In fact, this framework
features a wide variety of essential functionalities that act as a base layer for any given applications,
such as interfaces for services like Handoff?, notification management system - which will be explained
throughout Development Process -, deals with errors and exceptions, file management and also networking
features. We will not go into much detail right now as we will tackle some of these technologies later on
the Development Process chapter.

4.1.2 Swift

The Objective-C has been around since the 1980 with none or very little improvements over the years.
It has a complex syntax and according to some developers it gets hard for projects to scale. To address
these issues, Apple has decided to develop a new programming language with some Objective-C features,

but by eliminating the C language dependency.

2Direct Communication across devices logged to the same Apple ID and Network

26

4.1. CORE TECHNOLOGIES

Swift is a general-purpose programming language announced by Apple during the WWDC back in
2014, built on a modern approach and it's highly characterized by the properties of Safety, Fast and
Expressive.

Since it's a general-purpose programming language, Swift is also open-source and flexible enough to
be used for both Application development, mobile or desktop, and on large-scale cloud services [23] with
the help of frameworks like VAPOR.

Back to its properties, Swift is said to be Safe because it eliminates existing C and Objective-C classes
and code which are not considered to be safe, variables must be declared before usage and memory is
automatically managed which prevents eventual memory leaks.

Other important aspect that guarantees the Safe property is the fact that in Swift objects cannot be
used when their values are null - or nil - and its usage is considered to be a compilation error. However,
in some cases, it is hard to make sure a specific value isn't null. To address this, Swift has a validation
mechanism called optionals which can be used by adding a question-mark at the end of the variable, as
depicted by the code excerpt in Listing 5.

myDelegate?.scrollViewDidScroll? (myScrollView)

Listing 5: Prevent Nil Functions or Variables from being accessed with Optionals

In Objective-C, such mechanism and null values control doesn't exist and can lead to Software mal-
function if not controlled beforehand by the developer. As a contrast between Swift and Objective-C, the
code excerpt in Listing 6 depicts one approach to tackle with this problem.
if (myDelegate != nil) {

if ([myDelegate : @selector(D1) o
[myDelegate : myScrollView]

}

Listing 6: Example of Optional Implementation Approach in Objective-C

Another advantage for using Swift is the fact that because of its syntax simplicity it has a low steep
learning curve for beginners and Apple has a great documentation support to cope with it, along with free
videos from coding events directly shot from the WWDC.

Beyond its syntax simplification, and besides the existence of Classes for the purpose, Swift has also
introduced Structs for Object creation. Although both have the same goal and some common features,
such as define properties, initializers and methods, Classes have access to extended capabilities such
as inheritance, type casting and de-initializers. Another difference between the two one must take into
account, is that copies of Classes are passed by references - meaning that changing the original object
properties will reflect on its copy - while Structs copied by Value meaning that internal changes will not
reflect on existing copies. To serve as a contrast between on Objective-C and Swift Object creation and to

27

CHAPTER 4. NATIVE TECHNOLOGIES AND FRAMEWORKS

exemplify these concepts, the Listing 7 depicts property mutation of original Struct having no impact on
its copy while the Listing 8 depicts property mutation of Classes being propagated.

struct PersonStruct {
var name: String;
var birthYear: Int;

init(name: String, birthYear: Int) {
self.name = name;
self.birthYear = birthYear;

¥

func displayAge() {
let age: Int = 2021 - self.birthYear;
print ("\ (self .name) has \(age)");

}

var personWithStruct = PersonStruct(name: "Adam", birthVear: 1998);
var personWithStructCopy = personWithStruct;
personWithStruct.birthYear = 2000;

// Will print “Adam has 21°
personWithStruct.displayAge ()

// Adam has 23
personWithStructCopy.displayAge ()

Listing 7: Struct Implementation and Copies

class PersonClass {
var name: String;
var birthYear: Int;

init(name: String, birthYear: Int) {
self.name = name;
self.birthYear = birthYear;

}

func displayAge() {
let age: Int = 2021 - self.birthYear;
print ("\ (self .name) has \(age)");

}

var personWithClass = PersonClass(name: "John", birthYear: 1972);
var personWithClassCopy = personWithClass;
personWithClass.birthYear = 2000;

// Will print “John has 21°
personWithClassCopy.displayAge ()

// Will print “John has 21°
personWithClassCopy.displayAge ()

Listing 8: Class Implementation and Original Mutation being Propagated

28

4.2. USER INTERFACING TECHNOLOGIES

Despite the fact this a brand-new language, Apple has designed it to be backward compatible, which
offers developers the smoothly transition from Objective-C. To cite Craig Federighi during WWDC 2014,
"Swift is compatible with Cocoa and CocoaTouch, build with the same compiler, same ARC memory
management model and same run-time, which means that Swift can fit right alongside Objective-C and C
on the same application”.

Even though Swift has been widely adopted by developers, Objective-C still receives support from Apple
on i0S and macOS frameworks. In fact, Objective-C is still the foundation of Apple’s Operating Systems,
and some Swift functions rely on Objective-C to work, as for example: Timer function scheduledTimer
allows developers to fire certain functions at a given time and these are expressed by a selector, which is,

by extension, an Objective-C mechanism.

4.2 User Interfacing Technologies

The Ul has a really important role on any Software, since it acts as communication bridge between the
end-user and the Application itself. This layer allows the input and output of information as well as the
user's interaction across components.

To implement a Ul layer, Apple ships its SDK with two powerful yet distinct frameworks: Cocoa and
SwiftUl.

Initially all macOS and iOS GUI were implemented by an imperative method, with Cocoa and Cocoa-
Touch, respectively, through the Interface Builder.

Some years later after the introduction of Swift, Apple has unveiled a declarative framework of User

Interfacing called SwiftUl.

4.2.1 Cocoa and CocoaTouch
4.2.1.1 Architecture

Cocoa is an Application environment for both macOS and iOS Operating Systems. This framework has
been initially introduced by NeXT computers in 1989, which was acquired by Apple whom decided to
continue its work by shipping the Framework, until today, on their Mac’s Operating Systems, the 0S
X3. Later on, with the introduction of i0S SDK tools, Apple developed CocoaTouch based on Cocoa’s
foundations.

Under the hood, iOS platform has a five layered architecture with distinct, as depicted by Figure 15.
To summarize how they work and their responsibilities, from the low to the highest level on their hierarchy:

e Core 0S: is the lowest level in the hierarchy and contains the System Kernel, which is based on

Unix;

308 X is now known as macOS

29

CHAPTER 4. NATIVE TECHNOLOGIES AND FRAMEWORKS

¢ Core Services: allows string manipulation, network communication, and provides applications
access to Hardware features such as GPS, compass, accelerometer, gyroscope. This is the layer
where Software Developers interact with Programming Languages like Objective-C or Swift;

e Media: provides multimedia features, such as video and audio playback, and implements appli-
cation’s animations;

e CocoaTouch: is an abstraction to the UIKit which provides objects to allow GUI definition and
general application behavior

Application q
UIKit

: 1 Core Frameworks
Cocoa Touch J
Media |
[Core Services
Core OS

Figure 15: i0S Core Architecture [6]

4.2.1.2 Interface Builder

The User Interface implementation based on Cocoa and CocoaTouch is achieved by distinct methods:
grammatically using code or with Interface Builder tool. However, in some cases, it is possible to build
interfaces with both methods.

Interface Builder is exclusively available on Apple’s own IDE, called Xcode, and allows an easy im-
plementation of User Interfaces, based on Storyboards, by dragging and dropping components to their
respective Views from the List of Objects, as depicted by Figure 16. This tool is highly recommended by
Apple since it also helps to maintain a clean architecture, as for example MVC [25] - we will cover more
information on this Architectural Pattern later during the Development Process b.

30

4.2. USER INTERFACING TECHNOLOGIES

o REN Rl
@ > 1 Miguel Solans' iPhane Succeeded | Yesterday at 18:11 51 \\—}—)e> B
B
B Phone) ™ Storyboards) '+ TrustFactorStoryboardPhone.storyboard) No Selection <a>
> scription Step3 View C.
> n Stepd View C..
> n Step1 View ...
e
> n Step2 View C...
ﬂ
ve Subscription Step...
pt ». LT 4:‘
s P . =
ve Subscription Step.
B @
Jove Subscription Step. o R &
Label
Label Label UlLabel: Presents read-only text
Alabel can contain an arbitrary amount of text, but UlLabel
wton Button may shrink, wrap, or truncate the text, depending on the size
of the bounding rectangle and properties you set. You can
control the font, text color, alignment, highlighting, and
2 Segmented Control shadowing of the text in the label.

Tt Text Field
= - Slider
el

Switch

<, Activity Indicator View

== Progress View

I] View as: iPhone SE (1st generation) (+C "R)) 58% @

0O000000000000008| 08 | 0a —

Figure 16: Adding Ul Elements

In the perspective of Ul and UX Design, a Storyboard has the main purpose of establishing a sequence

between application states and define the overall flow between Views.

An i0S Application can be composed of several Views, also known as UlViews, that holds as many
Ul elements as needed to represent data. In order to allow users interact and navigate between Views,
CocoaTouch also features UlViewControllers for this purpose. On Interface Builder, the flow between Views
can be represented by Segues. The Figure 17, taken from Apple’s official documentation, represents an
hierarchy of elements made available by this framework.

31

CHAPTER 4. NATIVE TECHNOLOGIES AND FRAMEWORKS

H UlAccelerometer

H(UlAccessibilityElement)
UlBarltem

H UlDevice

K UlEvent

UlBarButtonitem

UlTabBarltem

H_UIDocumentinteractionController

HC UlFont) (ULongPressGestureRecognizer) { UlWindow)
H(_ UlGestureRecognizer UlPanGestureRecognizer) H UlLabel)
KC Ulimage) H UiPinchGestureRecognizer) H_ UlPickerView)
H o ollaion) H{UI izer) H(_UlProgressView)
K UlLocaiNotification) H Uiswi izer) HUlActiv View)
K UMenuController) Y UrTapGestureRecognizer) K UlimageView)
(NSObject)—-(UlMenultem) -@

4.2.1.3 Lifecycles

User Interfaces should have some dynamism and to achieve this in iOS Cocoa framework provides a

UlINavigationitem
H UINib
L UlPasteboard

H UlToolbar)
H_ UlINavigationBar \;
UlTableViewCell

-(UlSearchDisplayController)

UlNavigationController)

H UlTextChecker

U ITextInpulStnngTokemzsf

K UrTextPosition)
UlTextRange

S UlTouch

H__ UlPopoverController) {_ UiSimpleTextPrintFormatter) {_ UlActionSheet)
K UlPrintFormatter —{ UIMarkupTextPrintFormatter) ({(UlAlertview)

UlTableView
H UIPrintinfo) Y unviewPrintFormatter) H_ UlScroliView

UlTextView
K UlPrintPageRenderer) [UlApplication) K UwebView)
K UPrintPaper) 1 uview ——(UControl { UlButton)
H UIResponder y—-(UlViewController }—(UISpIitViewCamrouev) -(UlDatePicker)
K UlScreen D) UlTabBarController) K UlPageControl)
K UiscreenMode) UlTableViewController) K UisegmentedControl)

KO UlTextField)
K uislider)

o]} ImagePlckerCon(rollef
" UIVideoEditorController

Figure 17: CocoaTouch Components [6]

mechanism to load and remove views from screen.

This mechanism is built on UlViewController Class and it is known as Lifecycles. The latter allows

v UlISwitch

Software Developers perform additional configurations during different application states.

The Class UlViewController provides a set of methods invoked throughout the Appearing, Appeared,
Disappearing and Disappeared App states. The available methods in each state are depicted by the

Figure 18.

32

4.2. USER INTERFACING TECHNOLOGIES

viewWillAppear: N A viewDidAppear:

viewWillAppear
Jleaddesiq|IMMBIA

viewDidDisappear: viewWillDisappear:

Figure 18: View Lifecycle [5]

In the beginning of a View lifecycle in Cocoa and CocoaTouch, a View is only loaded to the device
memory by the View Controller when it's required [29] by the latter. As soon as the View-Controller
has successfully loaded its view, the viewDidLoad is the first method to be invoked. This is one of
the most important methods on a View-Controller and it is used to perform customizations or additional
configurations [20] such as, for example, initializing variables and change or load Sub-Views. This method
is only invoked once throughout the View-Controller lifecycle.

The viewWi illAppear, as its name states, is invoked right before the View is loaded onto the View's
hierarchy, or before it is presented on the device's screen, and before animations take place. This method
is useful to perform certain operations before the view has been shown on screen, such as changing the
screen orientation, apply different styles to the User Interface elements such as fonts or colors and in
cases when the App relies on network communication it can be used to perform API calls.

At last, but not least important, the viewWillDisappear and viewDidDisappear can be used when
the View is being discarded from screen. The first is executed before the View Controller has been removed
from the View’s hierarchy and it can be useful to store information automatically so it can be restored later
on upon request, whilst the latter is more recommended to purge additionally resources required by the
View-Controller.

33

CHAPTER 4. NATIVE TECHNOLOGIES AND FRAMEWORKS

4.2.2 Swiftul

Back to 2014, when Apple introduced the new Programming Language called Swift, they had to make
sure it could have access to UIKit, also known as CocoaTouch - the only available framework to develop
Applications based on Graphic Ul for the Apple ecosystem. However this has changed five years later when
Apple unveiled, by the end of WWDC 2019 Keynote, a new Interfacing alternative to Ulkit, the SwiftUl.

During this Keynote, according to Apple’s executive, Crai Frederighi, SwiftUl has been developed
entirely using Swift in order to take full advantage of their new Programming Languages features [7], which
has introduced a whole new paradigm of Graphic Ul to their ecosystem called Declarative Interfaces.

Compared to CocoaTouch, accordingly to the WWDC 2019’s Keynote, this new Framework allows
Application Developers to significantly reduce the amount of needed code to implement certain features
and allows them to focus more on the App functionality while the Framework automatically deals with
Animations, Accessibility settings, Dark Mode and Responsiveness - capability of adjusting to different
screen sizes and orientation modes.

Considering SwiftUl is relatively new Framework means it is only supported by devices running i0OS
13, macOS 10.15, WatchOS 6.0, or superior versions [24]. Given this fact, it is not feasible to use this
Framework since the features we have to deliver, by Bank requirements, must support later versions of
Apple’s operating systems, starting from iOS 12 on-wards.

4.3 Frameworks and External Packages

Even though Apple restricts certain features from other Mobile Development Paradigms, under the Devel-
opment of Native Applications it is possible to import third-party frameworks or libraries.

By using third-party libraries, developers are able to re-use generic and often well-matured code from
other projects or developers to implement features more quickly and reduce development costs.

In iOS Application Development, there are two methods to import third-party code: by copying code
or simply use a dependency manager that manages integration in projects and updates frameworks on
demand.

In this chapter we will present CocoaPods, a famous dependency manager for Cocoa based Appli-
cations and AFNetworking library which we have used to implement networking communication to the
Authentication and Transaction Validation services described during Development Process - section num-
ber 5.

4.3.1 CocoaPods

Like we have mentioned earlier in this chapter, CocoaPods is a third-party framework distribution and a
dependency manager for both Swift and Objective-C Cocoa projects [12], meaning that it can be integrated
not only in i0OS but also macOS Applications.

34

4.3. FRAMEWORKS AND EXTERNAL PACKAGES

CocoaPods isn't affiliated with Apple whatsoever, meaning that when we first install Xcode and Devel-
opment Frameworks, if we want to integrate this dependency manager later we must install and configure
it first. Before installing, according to CocoaPods documentation, the dependency manager is built with
Ruby, so it is important to verify whether it is installed in our machine - in most cases it is, but if we use a
Ruby Version Manager, the author recommends using the standard version of Ruby shipped with macOS.

Even after installation, when we generate a project with Xcode, the dependency manager will not be
automatically integrated, meaning that we have to set it up by our own. Once CocoaPods is installed and
created our project, we must Initialize it by running the "pod init"command in Terminal under the same
directory of our project.

This command will generate a Podfile where we can define the libraries and frameworks we want to
fetch from CocoaPods “ to be later integrated in our project as Targets. The Listing 9 depicts an example
of a Podfile where we are importing AFNetworking Pod with version 4.0.

target DCocoaPodsTestD do
use_frameworks!

Pods for CocoaPodsTest
pod BAFNetworkingm, D~> 4.0@

end

Listing 9: Example of a Podfile

Right now we have declared the dependency we want to integrate in our project, but we haven't yet
installed it. To do such, under the same directory as our Podfile, we have to run the "pod install”’com-
mand. The Pod utility will then download all dependencies from their respective repositories and create
an Workspace file. We must always open our project using this file, as it contains targets for both our code
and the integrated frameworks using Pods.

4.3.2 AFNetworking

Based on what we already know from CocoaPods sub-chapter, AFNetworking is a third-party Framework
which can be installed by the dependency manager.

The AFNetworking is a networking library built for iOS, macQS, watchOS and tvOS devices. This library
has been built with Apple’s Foundation URL Loading System [1], which is the mechanism devices used
to communicate with servers, identified by URLs, by using standard Internet protocols like HTTP.

This library works as an abstraction layer by extending Cocoa features and under the hood provides a
modular architecture, as according to its author. The framework also has a wide community of developers,
having reached 33 thousand stars on GitHub and it is maintained by nearly 320 contributors on the same
platform.

*We can find Pods on CocoaPods’ Website: https://cocoapods.org

35

CHAPTER 4. NATIVE TECHNOLOGIES AND FRAMEWORKS

Due to the fact this library is built upon Cocoa technologies and provides an abstraction layer with
modular architecture to communicate with servers, it requires less lines code than URLSession for the
purpose, as depicted by comparison code in Listing 10 of a simple GET HTTP request obtained from
GitHub Gist®.

// AFNetworking
[[AFHTTPSessionManager manager] CET:Q@"http://httpbin.org/ip" parameters:nil
success: (NSURLSessionDataTask #*task, id JSON) {
NSLog(@"IP Address: 70", JSON[@"origin"]);
} failure:” (NSURLSessionDataTask *task, NSError *error) {
NSLog(@"Error: %@", error);
11;

// NSURLSession
NSURL *URL = [NSURL URLWithString:@"http://httpbin.org/ip"];
NSURLRequest *request = [NSURLRequest requestWithURL:URL];
[[NSURLSession sharedSession] dataTaskWithRequest:request
completionHandler:” (NSData *data, NSURLResponse *response, NSError *error) {
if (error) {
NSLog(@"Error: %@", error);
} else if (data && [data length] > 0) {
NSError *JSONError = nil;

id JSON = [NSJSONSerialization JSONObjectWithData:data
options:0 error:&JSONError];

if (JSONError) {
NSLog(@"Error: %@", error);
} else {
NSLog(@"IP Address: %@", JSON[@"origin"]);

}
¥
11
Listing 10: Simple GET Request with AFNetworking and NSURLSession
4.4 Summary

This section has been focused on the technologies Apple provides in order to build Native Applications.
We have introduced basic concepts of their Programming Languages, Objective-C and Swift, also as
the differences between each other.
Secondly, Cocoa has been introduced as framework to develop User Interfaces for both iOS and
macQS, as also SwiftUl - the newest Interfacing framework. We have discarded the latter as it isn't
matured as Cocoa and due to the requirement of our project which must support a wider range or i0S

versions.

5AFNetworking VS NSURLSession in Objective-C: https://gist.github.com/AlamofireSoftwareFounda-
tion/bb16a491b2709a8476e2

36

4.4, SUMMARY

Despite the fact that this chapter has been more focused on official technologies, we have also in-
troduced CocoaPods manager which provides access to third-party Frameworks. We have also hereby
introduced AFNetworking library, which we have used to perform networking requests - download and
upload data to a REST Server.

37

D

Development Process

The Development Process chapter documents the studied concepts about iOS Native Development whilst
discussing the TrustFactor Authentication mechanism integration in the Home-Bank application.

In this chapter we will also cover topics related to good programming practices such as Design Patterns
and Architectural Patterns and the differences between each other and how they fit into the Home-Bank
application.

5.1 Architecture and Design Patterns

Software Development grew over the years and devices have become more powerful to keep up with the
market demands and to perform highly complex computational steps. Due to this fact, Software has
gained a certain level of complexity over time and therefore the development phase has become more
difficult and time consuming.

To address these issues, Design Patterns and Architectural Patterns have emerged, providing common
solutions to recurring problems. In this section, we will cover the most important Design Patterns and

Architectural Design Patterns used during the Development Process of this project.

5.1.1 Design Patterns

A Design Pattern provides a scheme for refining sub-systems or relationships between them and the ability
to address general design problem under a given context [32]. By other words, Design Patterns articulates
how various components or classes collaborates with each other in order to fulfill a desired functionality.
For example, Cocoa and CocoaTouch makes effective usage of Design Patterns at its core, by providing a
variety of abstract classes and functions used to solve recurring problems in a particular context [21].
There are many Design Patterns that can be applied to iOS Software Development, either Objective-C
or Swift, and the most commonly used patterns in our work will be the Adapter, Observers and Singletons.
Cocoa and CocoaTouch, as we have previously stated, provides a set of functions whose behaviors can
be overridden, however some classes interfaces might not be compatible with one another. To cope with

38

5.1. ARCHITECTURE AND DESIGN PATTERNS

this issue, the Adapter Design Pattern allows classes with incompatible interfaces to work together. A com-
mon implementation of this Pattern can be found in CocoaTouch Protocols, such as UlSearchBarDelegate
which provides a set of methods to cope with user input.

Observer Patterns define a one-to-many relationship dependency between objects, so that when one
specific object state changes the others are notified [21]. The Observer Design Pattern is also known
as Publish-Subscriber, where Subscribers listens for changes on the Publisher. This Design Pattern is
implemented by a commonly used Mechanism, NSNotificationCenter, which can be used, for example, to
execute certain methods when the Application enters or leaves foreground.

Singleton Design Pattern is the easiest one to gasp. This Design Pattern ensures that one class has
a single instance of a certain object. One application example of this Design Pattern in AppKit framework
is NSApplication wrapper which has the main purpose of managing the main event loop and resources
used by the application objects: application window’s and menus, dispatching application state events
[8], among other tasks.

5.1.2 Architectural Design

In contrast to Design Patterns, Architectural Designs express a fundamental structural system organization.
That being said, Architectural Designs provide a set of predefined sub-systems, delegate their responsi-
bilities and define rules or guidelines for organizing relationships between components [32]. Because
of the fact the system is split into different components, Architectural Designs also promote components
re-usage under different scopes, without having the need to repeat code over and over again.

We have previously stated that when building iOS Applications upon CocoaTouch UlKit technology, Ap-
ple encourages the usage of MVC Architectural Design, however we have not yet given a clear explanation
on how it works and its entities.

The MVC Architecture is composed by three components with different purposes, and its acronym
stands for Model-View-Controller. The Figure 19, taken from Apple's official documentation, depicts an

overview on how these components interact with each other.

User action Update

Update Notify

Figure 19: Model-View-Controller Architecture [4]

39

CHAPTER 5. DEVELOPMENT PROCESS

The Model component encapsulates data and usually defines business logic on how it should be
manipulated and processed. In other practical words, in our application, the Model represents a definition
of JSON data we are expecting to retrieve from an AP, serializes it to a class for later access or on-screen
representation. However, as we can observe from Figure 19, the View layer should not access the Model
layer directly, the communication between these components should be mainly done via a Controller

entity, which requests the data access or change and therefore notifies the View.

Like its name suggests and as we have previously stated during the Cocoa and CocoaTouch chapter,
a View layer represents Ul components such as images, switches, labels, inputs and other available
components. The View can also represent data fetched from an external networking API and receives

user inputs to be later sent over to their respective Controller layer.

As we have seen, the Controller acts as a intermediary layer between Views and Models. All our
logic is implemented on a Controller, that should respond to User Inputs sent from the View, which based
on those inputs should fetch or change the Model representation. Controllers can also perform additional

setups and manage the overall Application.

5.2 TrustFactor Integration

As we previously discussed on the State of Art, TrustFactor is a stack of services who cooperate between
one another, by acting as a middleware layer on the home-banking services, to provide a Strong Authen-

tication and Validation mechanism for fund transactions.

These services are mainly implemented on the Backend-side however, to provide access to this mech-

anism, an integration on user’s apps is needed so the business logic can function as expected.

Throughout this section, we will discuss the On-boarding Process and the logic behind the Transaction

processing.

5.2.1 Backoffice

The TrustFactor stack provides a Backoffice simple to use and to manage user subscriptions to the Strong
Authentication mechanism. This Backoffice also allows Bank Institutions to manage parameters to be
used during the Risk Analysis of the transaction execution.

As soon as the TrustFactor is integrated as a middleware Authentication layer, it is possible to use
the Web Application to define which Transactions should rely on TrustFactor authentication service. In
our case scenario, by Bank Institution requirement, this Strong Authentication mechanism should only be
applied to Same Bank Transfers, also known as National Transfers. For this to happen, via Backoffice, we
must set an active action for the Transaction ID "TransferenciasNacionais”, as depicted by Figure 20.

40

5.2. TRUSTFACTOR INTEGRATION

ece M < 0 & backoffice trustfactor.app LX¢ b+ 0
= Trustfactor & miguelsolans v
-

OPERATIONS DRAFTS

| Operations

Rule Templates

Action Type Status

TransferenciasNacionais Actionable @&

Figure 20: Transaction Identifiers Depending on TrustFactor

Following to that, the Backoffice displays a set of parameters that can be activated for Risk analysis.
In order to validate the integration with Home-Bank with TrustFactor services, we will use the parameter

based on the transaction amount.

As depicted by Figure 21, filters based on the transaction amount are set by adding limits to the labels
Low, Medium and High Risk of execution. For testing and future examples throughout the Development
Process we have defined that values ranging from 0 to 49 should be classified as Low Risk, 50 to 99 as
Medium Risk and transactions superior to 100 should be considered as a High Risk transaction.

41

CHAPTER 5. DEVELOPMENT PROCESS

ece M < >)} & backof flice trust factor.app B ¢ © b+ D
4_1
= Trustfactor & miguelsolans v
T
OPERATIONS DRAFTS
| Operations
Mandatory © @D
Rule Templates
Key © DataType ©
Amount money
Description © Languages ©
r——
Enable parameter risk rules ©
a
Risk Weight Languag
Low o P prve—
Medium 50 5 0Languages empty Add languages
High 100 : OLanguages empty ‘Addlanguages

Figure 21: Risk Limits Definitions

5.2.2 RESTAPI

For integrating the TrustFactor mechanism, this service provides an REST APl composed by seven end-
points described by the Tables which have been added to the attachments section B.

Each endpoint has a different responsibility within the service, and each can be understood by the
following list:

* Requirement: returns a mapping of values to asses the user subscription to TrustFactor authen-
tication;

* Register Code: requests a TrustFactor registration codes or QRCode to be used later on;

* Refresh Register Code: fetches for a new registration codes when the previous request has
been expired;

* Check Register Code: returns a validation mapping code for token validation - whether it has
expired, used of invalid.

5.3 TrustFactor Subscription

Unlike other existing authentication mechanisms (SMS and Positions), by the bank’s request, the end-
user must be the one to decide whether the Homebanking platform should use TrustFactor as a Strong
Authentication mechanism or not.

42

5.3. TRUSTFACTOR SUBSCRIPTION

However, migrating existing solutions to more recent ones can be a complex process that should be
taken into maximum consideration, otherwise it can lead to short or long-term Software malfunction. To
tackle this problem, we have implemented an Onboarding process within the client’s application.

In Software, an Onboarding process is defined as a flow of screens when a user first accesses a newly
installed Software or it can also be used to help users to configure certain features for the very first time.

In our case, to develop the TrustFactor onboarding process, we had to take into account the following
requirements:

* Terms and Conditions: prior to subscription, the user should be aware and accept the terms
and conditions of TrustFactor service;

* Installation: in order to successfully subscribe the TrustFactor authentication service, the user
should install the TrustFactor agent on his/her device;

» Validation: the subscription service should only be done after performing a successful validation
with one of the existing authentication mechanisms - SMS or Positions;

* Association: the Homebanking app and the TrustFactor agent are standalone applications, there-
fore the App must feature mechanism to associate one with the other.

To tackle the requirements we have mentioned above, we have designed five different Views within
the app, where the last allows us to inform the user on the success of the service subscription, resulting
on a flow of wire-frames, starting from the left to the right, as depicted by the Figure 22.

-I—i] ()
L@> -@> LT

UDDDDUDHH 08 0o

Figure 22: Onboarding Storyboard

43

CHAPTER 5. DEVELOPMENT PROCESS

5.3.1 Terms and Conditions

During the subscription flow, the first View has the main purpose of presenting the "Terms and Condi-

tions”of the Strong Authentication Service to the users and receive their acceptance.

Since the TrustFactor is associated on-device, after it takes place, the onboarding process should not
available anymore, and preceding with it will result on a service error. To address this, inside the View-
Controller, we check whether there is an active subscription or not, by making an HTTP request to the

API's endpoint Requirement.

As we can observe from the indexed table in Appendice’s Section C, the Requirement endpoint re-
sponds with a Number, expressed as an Integer, which indicates the subscription status of the account.
The requirement can assume different values, which are calculated on the Backend-side using a binary
sum of the values mapped to an Enumerator as depicted by the Listing 11.

typedef enum Requirement {
NotRequired = 1,
RequiresSubscription = 2,
Subscribed = 4,
NotRequiredForTransaction = 8,
RequiredForTransaction = 16,
UnknownRequirement = NSUIntegerMax

}YRequirement;

Listing 11: Requirement Value Mapping

Considering we want to verify whether the use has subscribed the service or not and the Requirement
field represents a binary sum of numbers ranging from 1 to 16 (in some cases it can assume the value
20, if the account has Subscribed to the service and the transaction does not require TrustFactor), we
perform an And Bit-Wise operation between the Subscribed mapped value and the result from the data
API. If this condition is said to be true, we redirect the user to the screen depicted by Figure 23.

44

5.3. TRUSTFACTOR SUBSCRIPTION

Figure 23: Subscription already active

5.3.2 Installation

In case the account does not have an active subscription, after accepting the "Terms and Condition” of
the Strong Authentication service, to associate the user's contract to the device, the installation of the
TrustFactor Agent Application is mandatory. As such, we added another step requesting the user to install
the App with an App Store image acting as a button for a quick access to the TrustFactor Agent installation
page for installation, as depicted by the Figure 24.

Figure 24: TrustFactor Agent Installation Step

To support this a direct interaction between the Home-Bank App and the App Store, we have used a
core API provided by Apple on the UIKit SDK called StoreKit.

45

CHAPTER 5. DEVELOPMENT PROCESS

In order to use StoreKit in our View-Controller, the latter must inherit from the Delegate SKStorePro-
ductViewControllerDelegate. With this delegate, one can load an App Store View through a Push Modal,
by referring the Application ID we want to display. For example, to load TrustFactor, by its own identifier
1525877833, we have used the following code excerpt depicted by Listing 12

SKStoreProductViewController* spvc = [[SKStoreProductViewController alloc] init];
[spvc loadProductWithParameters: @{

SKStoreProductParameterITunesItemIdentifier : @1525877833
} completionBlock:nil];

Listing 12: Load App Store View from an Action

5.3.3 Validation

The Subscription and Association process to the TrustFactor Agent application can only be done after
validating the user integrity. We can try to assure this by using an existing security mechanism.

In order to validate the user’s integrity we send an SMS to the number associated with the Bank

account with a Token on its body every time the user’s jump right onto this step. Upon receiving the
Token via text-message, the user is prompted to type it into the text-field, as depicted by Figure 25.

CANCEL

Figure 25: SMS Token Credential Step

After inserting the Token into the text-field and pushing the "Continue”button, the Token is sent over
over for further validation via an HTTP POST request to the Bank’'s REST service. If the credential is
said to be valid, or in accordance with the generated Token by the Backend-side, we request for a valid
TrustFactor registration code, to be used on the next step, sent by segue mechanism.

46

5.3. TRUSTFACTOR SUBSCRIPTION

5.3.4 Association

The Association step is considered to be the last on Strong Authentication service subscription. It's in this

particular step the Home-Bank user contract is associated with TrustFactor Agent.

The iOS architecture has been built upon a very strict security model where Apps are isolated to their
own sandbox, which means they can only access their own data and not personal data nor other apps’.
This comes with a little of a drawback to the TrustFactor implementation because the Home-Bank app
can't access the Agent directly.

To cope with this problem, the Register-Code endpoint provides us an URL that acts as a deep-linking
between apps. A deep-link is a common URL pointing towards a specific content or, in our case, an App
installed on the device. Like browser's URL’s, deep-links also supports query strings, which has helped
us to pass data from the Home-Bank app to the TrustFactor Agent, as a payload query parameter. The
Listing 13 depicts the deep-linking URL structure to the TrustFactor Application Agent.

open.trustfactor.app/register? payload= AssociationToken
Listing 13: Deeplink URL Structure

In order to finally pair the Bank contract with the TrustFactor Agent the user should push "Pair”button.
This button has a deep-link URL associated with itself, that once triggered tries to open it by with help of
NSURL class. Once the URL has been successfully open, the Application TrustFactor should open and
prompt.

However, to ensure security, TrustFactor registration code has a time-to-live timer, meaning that after
a certain time of its creation the token is rejected by the Backend services. This timer is expressed in
seconds and is sent over the response JSON body of Register-Code endpoint.

Given the fact these Tokens can expire before the User has successfully paired their contract with
TrustFactor Agent, the Backend services provides an endpoint that given the expired Operation ID, returns
a new Token for a successful association. We then discard the expired code and use the newest for

association.

47

CHAPTER 5. DEVELOPMENT PROCESS

Figure 26: TrustFactor Agent subscription flow

The Figure 26 depicts the association flow, where the outer left and right screens represents the
Home-Bank Application, whilst the middle one the TrustFactor Agent.

Although the TrustFactor Agent presents a successful screen, something wrong can happen through-
out the subscription. To make sure the User is aware of the status, we have implemented one last screen
on the on-boarding flow. This screen is shown to the user based on the result of an HTTP POST request
to the Check Register Code endpoint, where the Unique ID parameter refers to the Operation ID we ob-
tained from Register Code. The API based on this ID then responds with a Status number and a possible
message error.

The Check Register Code status can assume values ranging from 1 to 4, which represents the following

cases:

1. The Backend services required client to once again validate the subscription by re-sending the

Operation ID;
2. The subscription was successfully completed;

3. and 4 indicates an error expressed in ErrorMessage property from the JSON response body

Given the fact subscription process only takes place when the user is redirected from the Home-
Bank App to the TrustFactor, the first leaves foreground until the User returns back and, if he does, the
App performs the Network call and the validation we have mentioned above. This is done by registering
an Observer on the UlApplicationDidBecomeActiveNotification, by recurring to the NSNotificationCenter
mechanism, depicted by the Listing 14, where the becomeActive: is a selector for a function block with

the validation logic.

48

5.4. TRANSACTION PROCESS

[[NSNotificationCenter defaultCenter] :self
:@selector()
:UIApplicationDidBecomeActiveNotification :nill;

Listing 14: Load App Store View from an Action

If the TrustFactor subscription is then said to be successful, the Observer for UlApplicationDidBe-
comeActive notification is then removed and the App presents the last screen depicted by Figure 26 to
the user.

5.4 Transaction Process

As we have previously stated, the Home-Bank Application has been built on a MVC Architecture, which
means business model, Ul implementation and logic are separated entities. Besides this, the MVC Archi-
tecture allows us to implement and re-use components under different environments without the need of
re-writing behaviors multiple times.

With this in mind, the Home-Bank Application inherits from four step Generic Controllers to cope with
the transaction process, regardless of its type. The Generic Transaction Architecture is depicted by Figure
27 and bellow we introduce each step responsibility:

» Step 1: Input Fields for the transaction details, such as currency, amount and destination. After
editing these fields, a validation of the input information is performed before continue;

e Step 2: Transaction Overview displays a summary based on the input information from previous
step and requests the authentication method for transaction;

¢ Step 3: Transaction Validation prompts user for transaction approval with multi-factor authen-
tication;

e Step 4: Presents a Status Screen to the user, whether the transaction has been successfully
executed or not.

49

CHAPTER 5. DEVELOPMENT PROCESS

Operation Storyboard

View View View View
Step1 Step2 Step3 Step4d
Transaction
Input Transaction Overview Authentication Success / Insuccess
Ul Components Ul Components Ul Components Ul Components

Operation View-Controllers

ViewController ViewController Vlew(S:toent;oller ViewController
Step1 Step2 P Step4
: : Transaction
Input Forms Transaction Overview validation Success [Insuccess
Models Service Layer

Converts Data To

Request Body / Response Body

Figure 27: Architecture of Fund Transaction Flow

Given this, the integration of the Authentication mechanism via TrustFactor was mainly performed at
the Step 2 and the execution process on the Step 3.

As we have previously discussed, the subscription to this new mechanism it's not mandatory and the
mechanism should only be triggered if the transaction requires it and the user has an active TrustFactor
subscription.

In contrast to other existing authentication mechanisms, SMS Token and Positions, the authorization
via TrustFactor does not require a direct input from the user in the App. As such, we have implemented a
stand-alone XIB that presents to the user three different informative images under different circumstances,
which we will discuss later.

From the left to the right, the Figure 28 depicts the transaction flow in accordance to the architecture
described by Figure 27, where in the first step the user must type the details for the fund transaction
- BIN, amount, description and so on. The next screen presents an overview of the transaction details.
Since this second step is used across other type of transactions, we dispatch an HTTP request to the
Requirement endpoint and perform, once again, the And Bit-Wise operation to check the subscription

50

5.4. TRANSACTION PROCESS

status and TrustFactor Requirement for the transaction. If both conditions are said to be true, we then

load the TrustFactor transaction screen.

Once the transaction authorization screen is loaded, the third step, the App dispatches an HTTP
POST request to the TrustFactor Create Transaction endpoint, with the transaction data and the type of
transaction and operation ID’s. The endpoint will then respond with a String ID in the data body property,
to be used later on to verify the transaction state, and a Push Notification will be sent to the device which
has been previously associated with the contract, informing that a transaction request has been made, as
depicted by Figure 28.

Figure 28: Ul Fund Transaction Flow

As soon as the device receives a Push Notification, if the user clicks on it, he or she can have an
overview on the associated risk of the transaction execution, based on the defined parameters. User
will also be prompted to reject or accept the transaction execution. To exemplify, the Figure 29 depicts
transaction requests with the amount of 25, 150 and 500 AKZ, being labeled as Low, Medium and High
Risk Transactions, respectively.

51

CHAPTER 5. DEVELOPMENT PROCESS

Figure 29: Example of Transaction Classifications

Because of the fact that i0S restricts each App to its own sand-box, as we have previously stated, the
TrustFactor Agent is not able to interact directly with the Home-Bank App. Given this fact, after the Push
Notification has been sent, the only possible method to verify whether the transaction has been accepted
is by performing a long-polling HTTP request to the Check Create Transaction endpoint by passing the ID
given by Create Transaction over the request body. The Check Create Transaction will then validate the
execution status on the Backend and return values ranging from 1 to 5. We display different TrustFactor
images, as depicted by Figure 30, based on these values which represent the following states:

1. Pending: The transaction has not been confirmed yet;

2. Accepted: The transaction has been accepted by the TrustFactor Agent;

3. Expired: The transaction has exceeded maximum time and therefore has been cancelled;

4. Error: The transaction has been cancelled due to an error;

5. Declined: The transaction has been declined by the TrustFactor Agent

52

5.5. SUMMARY

Figure 30: TrustFactor Execution Status

5.5 Summary

The Development Process has been focused on the problems and their solutions, whilst displaying exam-
ples of the end-result.

It started by exploring common Design Patterns used under the scope of iOS Development, such as
Adapter, Observer and Singletons, followed by the Architectural Pattern called Model-View-Controller.

After introducing these development practices, we began discussing the integration of Strong Authen-
tication mechanism via TrustFactor in the Home-Bank Application.

53

§

Conclusions and Future Work

As an outcome to this Dissertation, the Chapter Conclusions and Future work will initially summarize the

research and discuss the project milestones, as well as a general appreciation of the executed work.

To have closure, and considering this project has been accepted by the client to enter Production
phase, we will establish future work to be made in order to improve the App’s security, maintainability and
enhanced User Experience.

6.1 Overall Conclusions

As we have previously stated, this Dissertation had the main purpose of integrating a Authentication layer
on a existing Home Banking Application, by recurring to TrustFactor service stack, and investigate the
development paradigms of iOS Applications.

Even though it was a requirement to work with Native Technologies, we started by researching other
existing frameworks that can be used to build iOS Applications. On Mobile Development Paradigms,
we have found three different approaches: Progressive Web Applications Development where we can
use Web based technologies to create dynamic Applications that run on Web Browsers; Cross-Platform
Application Development where the same code-base can be shareable across multiple Operating System
environments, having a nearly Native Application experience and reduced costs of development. We ended
up with Native Application Development due to the fact the App was already made and also because of
limitations imposed by the other paradigms - like absence of Push Naotifications, reduced User Experience
metrics, Application sizes, slow access to new features and worse integration with the overall Operating
System functions.

With the purpose of understanding the project Architecture and how it works internally, we have intro-
duced Apple’s Objective-C and Swift programming languages focusing on their syntax differences, followed
by the CocoaTouch framework which allows one to implement Application’s Graphical User Interfaces - or
also known as GUI. Besides this framework, even though we have not used it due to its API requirements
(target limited to 13 for iOS on-wards), we have also introduced SwiftUl as an Apple’s official alternative.

54

6.2. FUTURE WORK

Programming Languages and other Technologies are often an abstraction layer we can customize in
order to shape our business logic into one Application. Therefore, sometimes these require more code to
execute simple tasks, hence developers may add external dependencies to speed up development. For
this matter, we have introduced one commonly used Package Manager, the CocoaPods, and a HTTP client
named AFNetworking which reduces complexity compared to the built in foundation’s NSURLSession.

After having done an extensive research work on technologies and important concepts used by Home-
Bank App, we were able to have a better insight into iOS Native Development and successfully integrate
TrustFactor stack on the Client side.

6.2 Future Work

As we previously mentioned, the Home-Bank Application is an existing product and the TrustFactor security
layer we hereby presented has been accepted by the Client to enter App Store distribution. Thus, it is
important to present hereby certain aspects that should be improved as time goes on.

First off and considering the wide adoption of Swift in comparison to Objective-C, we would like to
start migrating our code base, starting from generic functions, in order to stay up-to-date with new market
standards. This would not only improve App performance as would also ease of maintainability since Swift
syntax is easier to understand for both experience and new developers.

When it comes to functionalities, TrustFactor’'s subscription services allow developers to present a QR
code to be read in order to pair with other devices, rather on-device. This could be easily done by parsing a
64 base format string to an UllmageView output. By implementing this feature, Users could opt to choose
a different device to associate their contract with, and have two devices for different use cases - one to
request transactions and another to authorize them.

Right now, every transaction made with TrustFactor has a timer associated with it. If an User takes
more time than what he his supposed to, he will be presented an Expiration Error screen and would be
required to fill-in the transaction form once again. This can cause an impact on User Experience metrics
that could be easily addressed by allowing users to request for a new TrustFactor token with the same
data at least once - which would make a great new feature in the future.

55

Bibliography

[1] AFNetworking. AFNetworking. url: https://github. com/AFNetworking/AFNetworking
(cit. on p. 35).

[2] Altexsoft. The Good and The Bad of Xamarin Mobile Development. 2020. url: https: //www .
altexsoft.com/blog/mobile/pros-and-cons-of -xamarin-vs-native/ (cit. on
p. 20).

[3] J. Andress. The Basics of Information Security - Understanding the Fundamentals of InfoSec in

Theory and Practice. Ed. by Elsevier. Elsevier, 2011. isbn: 978-1-569749-653-7 (cit. on p. 9).

[4] Apple Inc. Model-View-Controller. url: https://developer.apple.com/library/archive/
documentation/General /Conceptual /DevPedia-CocoaCore/MVC . html (cit. on
p. 39).

[5] Apple Inc. UlViewController | Apple Developer Documentation. url: https : / / developer .

apple.com/documentation/uikit/uiviewcontroller (cit. on p. 33).

[6] Apple Inc. What Is Cocoa? url: https://developer . apple.com/library/archive/
documentation/Cocoa/Conceptual/CocoaFundamentals/WhatIsCocoa/WhatIsCocoa.
html (cit. on pp. 30, 32).

[71 Apple Inc. WWDC 2019 Keynote. 2019. url: https://developer . apple.com/videos/
play/wwdc2019/101/ (cit. on p. 34).

[8] Apple Inc. NSApplication. url: https : / / developer . apple . com / documentation /
appkit/nsapplication (cit. on p. 39).

[9] S. Bosworth, M. Kabay, and E. Whyne. Computer Security Handbook. Sixth Edit. John Wiley Sons,
Inc, 2014. isbn: 978-1-118-13410-8 (cit. on p. 10).

[10] D. Britch. Xamarin.Forms Supported Platfroms. 2020. url: https://docs.microsoft.com/
en-us/xamarin/get-started/supported-platforms (cit. on p. 20).

[11] N. Chrzanowska. React Native Pros and Cons - Facebook’s Framework in 2021 (Updated). 2019.

url: https://www.netguru.com/blog/react-native-pros-and-cons (cit. on p. 18).

56

BIBLIOGRAPHY

[12] CocoaPods. CocoaPods - Getting Started. url: https://guides. cocoapods.org/using/
getting-started.html (cit. on p. 34).

[13] Cordova. Architectural overview of Cordova Platform. url: https://cordova.apache.org/

docs/en/10.x/guide/overview/ (cit. on p. 19).

[14] Cordova. Architecture Overview. 2020. url: https: //cordova . apache . org/docs/en/
latest/guide/overview/index.html (cit. on pp. 17, 19).

[15] Flutter. Flutter architectural overview. 2020. url: https://flutter.dev/docs/resources/

architectural-overview (cit. on pp. 21, 22).

[16] R. Gravelle. Pros and Cons-Platform Mobile Development Frameworks. 2015. url: https : //
www . htmlgoodies . com/mobile/pros-and-cons-of-cross-platform-mobile-

development-frameworks/ (cit. on p. 19).

[17] C. Griffith. What is Apache Cordova? url: https://ionic.io/resources/articles/what-

is—-apache-cordova (cit. on p. 18).

[18] S. Gutherie. Microsoft to acquire Xamarin and empower more developers to build apps on any
device. 2016. url: https://blogs.microsoft.com/blog/2016/02/24/microsoft-
to-acquire-xamarin-and-empower-more—-developers-to-build-apps-on-any-
device (cit. on p. 20).

[19] Y. Horbenko. Mobile Development: Choosing Between Native, Web, and Cross-Platform Applica-
tions. url: https : / / steelkiwi . com/ blog/how - choose - correct - platform-
mobile-app-development (cit. on p. 16).

[20] A. Inc. “Work with View Controllers”. In: (2018). url: https : //developer . apple . com/
library/archive/referencelibrary/GettingStarted/DevelopiOSAppsSwift/
WorkWithViewControllers.html (cit. on p. 33).

[21] A.Inc. Cocoa Design Patterns. url: https://developer.apple.com/library/archive/
documentation/Cocoa/Conceptual/CocoaFundamentals/CocoaDesignPatterns/

CocoaDesignPatterns.html (cit. on pp. 38, 39).

[22] A.Inc. Programming with Objective-C. 2014. url: https://developer.apple.com/library/
archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/

Introduction.html (cit. on p. 24).
[23] A.Inc. Swift. url: https://swift.org (cit. on p. 27).

[24] A. Inc. SwiftUl - Declare the User Interface and Behavior for your app on every platform. 2020. url:
https://developer.apple.com/documentation/swiftui (cit. on p. 34).

[25] A. Inc. Xcode - Interface Builder Built-In. url: https : //developer . apple . com/xcode/
interface-builder/ (cit. on p. 30).

57

BIBLIOGRAPHY

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

J. Johnson, D. Britch, and C. Dunn. What is Xamarin? 2020. url: https://docs.microsoft.

com/en-us/xamarin/get-started/what-is-xamarin (cit. on p. 20).

A. Manchanda. Where Do Cross-Platform App Frameworks Stand in 20217 2020. url: https:
//www.netsolutions.com/insights/cross-platform-app-frameworks-in-201
9/ (cit. on p. 17).

S. Martin. How Much Does It Cost To Build a Cross-Platform Application in 2021. 2021. url: https:
//medium. com/flutter-community/how-much-does-it-cost-to-build-a-

cross-platform-application-in-2020-6£07c941d666 (cit. on p. 16).

M. Neuburg. Programming iOS 12 - Dive Deep Into Views, View Controllers, And Frameworks. Ed. by
R. Roumeliotis. 9th ed. October. O'Reilly Media, Inc., 2018. isbn: 9781492044635 (cit. on p. 33).

Oneloin. What is Multi-Factor Authentication (MFA)? 2021. url: https://www.onelogin. com/
learn/what-is-mfa (cit. on p. 6).
D. Ortinau, D. Britch, and C. Dunn. Limitations of Xamarin.iOS. 2020. url: https : //docs .

microsoft.com/en-us/xamarin/ios/internals/limitations (cit. on p. 20).

P. Raj, A. Raman, and H. Subramanian. Architectural Patterns. Ed. by Packt Publishing. Packt
Publishing, 2017 (cit. on pp. 38, 39).

React. React Native. url: https://reactnative.dev (cit. on p. 17).

P. Saccomani. Native Apps, Web Apps or Hybrid Apps? What's the Difference? 2018. url: https:
//www.mobiloud.com/blog/native-web-or-hybrid-apps (cit. on pp. 15, 16).

S. K. Sood, A. K. Sarje, and K. Singh. “Cryptanalysis of password authentication schemes: Current
status and key issues”. In: (2009) (cit. on p. 5).

R. Soral. React Native vs Iconic: Which Framework is best and why? 2020. url: https://www.

simform.com/react-native-vs-ionic/ (cit. on pp. 17, 18).

S. Todavhich. “Advantages and disadvantages of Progressive Web Apps”. In: (2019). url: https:
//moqod-software.medium.com/advantages-and-disadvantages-of-progressive-
web-apps-6£019223cb17 (cit. on p. 16).

TrustcomFinancial. Online banking at your fingertips: mobile apps and the evolution of banking
services. 2020. url: https://trustcomfinancial.com/online-banking-evolution-

mobile-apps/ (cit. on p. 1).

[. Tzemos, A. P. Fournaris, and N. Sklavos. “Security and efficiency analysis of one time password
techniques”. In: (2016) (cit. on pp. 5, 6).

F. Zhou. Learn Objective-C: A Brief History. url: https://www.binpress.com/objective-
c-history/ (cit. on p. 24).

58

A

Survey Questionnaire

A lot of questions remain without answers about online security and new technologies emerge in order to
protect users from several attacks. When it comes to handling sensitive data, companies tend to invest a
lot on security in such way to make sure users’ data remain private and can only be accessed and handled
by authorized personnel, however, this investment, also depends on user’s online behavior.

With this questionnaire, we intend to study user’s online behavior, more specifically when it comes to
Home Banking platforms.

Home Banking is a term that become popular since the 1980’s and defines as a system whereby
a person, at any given place and time, for as long as he/she has a device with internet connection,
can access information about his/her bank account, make deposits, funds transactions and service or
shopping payments.

A.1 Usage of Home-Banking Platforms

1. Do you use Home-Banking platforms?

a) Yes

b) No (skip to section A.3)

A.2 User’s Behavior

You have answered “Yes” to the previous question about the usage of Home Banking platforms. In this
question, we intend to collect information based on your online behavior on the devices you use to access
these platforms.

Once you have answered this section, you may ignore section A.2.

1. Which device(s) do you use for online banking? You can select more than one option, if applied.

a) Personal Computer (e.g., Laptop, Desktop)

59

APPENDIX A. SURVEY QUESTIONNAIRE

b) Tablet or Smartphone
c) Public Computer (e.g., Library, Work)
2. Have you ever been victim of phishing or any kind of digital theft threats?
Hint: Fraudulent attempt to obtain sensitive and confidential information such as usernames,

passwords and credit or debit card details, through the disguise of a trusted entity in an electronic
communication

a) Yes

b) No

3. In which of the following way(s) do you store your passwords? You can select more than one option,
if applied

a) | memorize them in my mind

b) My Browser/Device stores them automatically

c) In applications such as 1Password or Keychain

d) On Physical paper, such as Post-its, papers or notebooks

e) In the Notes App
4. Do you usually use different passwords for different platforms?

a) Yes

b) No
5. Do you use a unique password for your Home Banking platform?

a) Yes

b) No
6. Do you regularly change your password?

a) Yes

b) No
7. If you answered yes to the previous question, how often do you change your password?

a) Regularly, at least every 30 days
b) With some frequency, up to every 60 days

c) Sometimes, up to every 90 days

60

A.2. USER'S BEHAVIOR

d) Rarely, | only do such when | need to recover my password or the platform | want to access

requires me to change my password

8. Which of the following procedures do you usually take after accessing your Home Banking service?
You can select more than one option, if applied.

a) Sign-out;

b) Clear Cache;

c) Clear History,

d) Close the app without signing-out

9. Have you every accessed your Home Banking service outside your house?

a) Yes

b) No

10. If you answered yes to the previous question, how do you connect to the internet? You can select

more than one option, if applied

a) Cellular Data

b) | search for a public network, such from a store or a friends’ network
11. Do you keep your Operating System up-to-date with security patches?

a) Yes
b) No

c) Don't Know

12. Do you have an anti-virus or anti-malware software installed on the devices you usually use to

access your Home Banking service?

a) Yes
b) No

c) Don't Know

13. Does your Bank sends you authorization tokens to proceed with online transactions? In case none
of these options are applied, you can specify your Bank procedure

a) Yes, via E-mail
b) Yes, via SMS,
c) No

61

APPENDIX A. SURVEY QUESTIONNAIRE

d) Other. Please specify:
14. Does your Bank require a Matrix-Card every time you want to proceed with a online transaction?

a) Yes

b) No

A.3 You Don’t Use Home-Banking Platforms

In case have answered NO to Section A first answer, whether you use Home-Banking applications or
not, we would like to know which of the following(s) is the reason(s) why you do not use it.
In case that reason does not appear as an option, you can mention it on the last question.

1. What are your reason(s) for not using Home-Banking services?
You can select more than one option

a) | do not find them useful;
b) | am afraid of phishing or different nature attacks
c) My Bank does not offer Home-Banking solutions

d) Other(s) reason(s)

2. If you have answered "(d) Other(s) Reason(s)"to the previous question, please specify:

62

B

Survey Results

This section refers to the results obtained from the conducted survey under section A, where we have
collected answers from 134 different individuals. 115 have said to use Home-Bank Applications,
where only 19 have said not to use them.

B.1 Usage of Home-Banking Platforms

1. Do you use Home-Banking platforms?

Yes

85.8%

14.2%

No

63

APPENDIX B. SURVEY RESULTS

B.2 User’s Behavior

1. Which device(s) do you use for online banking? You can select more than one option, if applied.
I I I I I

Public Computer] 3.5 -

Tablet or Smartphone | 96|

Personal Computer | | 72.2 -
| | | |

|
0 20 40 60 80 100
Percentage %

2. Have you ever been victim of phishing or any kind of digital theft threats?
Hint: Fraudulent attempt to obtain sensitive and confidential information such as usernames,
passwords and credit or debit card details, through the disguise of a trusted entity in an electronic
communication

Yes

64

B.2. USER'S BEHAVIOR

3. Inwhich of the following way(s) do you store your passwords? You can select more than one option,
if applied

T T
In the Notes App _ 27

On Physical paper, such as Post-its, papers or notebooks |] 13
In application such as 1Password or Keychain |_] 6.1

My Browser/Device stores them automatically {—] 14.8

| memorize them in my mind
| | | |

85

O

0 20 40 60 80
Percentage %

4. Do you usually use different passwords for different platforms?

Yes

/

No

65

APPENDIX B. SURVEY RESULTS

5. Do you use a unique password for your Home Banking platform?

Yes

7

No

6. Do you regularly change your password?

No

N

Yes

66

B.2. USER'S BEHAVIOR

7. If you answered yes to the previous question, how often do you change your password?

Up to 90 days

Rarely

Up to 60 Days

Up to 30 Days

8. Which of the following procedures do you usually take after accessing your Home Banking service?
You can select more than one option, if applied.

T
Close the App without signing-out 20.7 -

Clear History 16.2 B

Clear Cache 1__]9 B

Sign-out | | 79.3
| | | |

0 20 40 60 80
Percentage %

67

APPENDIX B. SURVEY RESULTS

9. Have you every accessed your Home Banking service outside your house?

Yes

/

/

No

10. If you answered yes to the previous question, how do you connect to the internet? You can select
more than one option, if applied

Cellular Data

Public Wi-Fi Networks

68

B.2. USER'S BEHAVIOR

11. Do you keep your Operating System up-to-date with security patches?

Yes

4

No

Don’t Know

12. Do you have an antivirus or anti-malware software installed on the devices you usually use to
access your Home Banking service?

Yes

Don’t Know

69

APPENDIX B. SURVEY RESULTS

13. Does your Bank sends you authorization tokens to proceed with online transactions? In case none
of these options are applied, you can specify your Bank procedure.

Via SMS

Via E-mail
No Token Required

14. Does your Bank require a Matrix-Card every time you want to proceed with a online transaction?

Yes

70

B.3. YOU DON'T USE HOME-BANKING PLATFORMS

B.3 You Don’t Use Home-Banking Platforms

1. What are your reason(s) for not using Home-Banking services?
You can select more than one option

T
Other reason | 10.5 =

Solution not Available by the Bank |] 5.4 B

Afraid Cyber Attacks | | 68/4

Don't Find them Useful | 15.8 -
|

0 20 40 60
Percentage %

2. If you have answered "(d) Other(s) Reason(s)"to the previous question, please specify: These were
the answers we have collected from the inquired individuals
a) Reliability
b) | do not need them
c) I'm afraid to use them wrongly and ending up at loss

d) | have already been victim of Cyber attack

71

C.1 Register Code

C

REST Interface

GET

private/trustfactor/register-code

Output

{
"QRCodeSize": "Number",
"OperationId": "String",
"CodeDuration": "Number",
"QRCode": "String",
"QRCodeURL": "qrCodeUrl",
"DeeplinkURL": "deepLinkUrl"

}

72

C.2. CREATE TRANSACTION

C.2 Create Transaction

POST | private/trustfactor/create-transaction
Input
{
"OperationID": "String",
"TransactionId": "Number",
"TransactionData": "Object"
}
Output
{
"TransactionID": "String",
"Duration": "Number" ,
"Requirement": "Number"
}

C.3 Refresh Register Code

POST | private/trustfactor/refresh-register-code
Input
{
"OperationId": "String",
"AppUniqueId": "String",
"AppUsername": "String",
"CodeOutputData": "Number"
}
Output
{
"QRCodeSize": "String",
"CodeDuration": "Number",
"QRCode": "String",
"QRCodeURL": "String",
"DeeplinkURL": "deepLinkUrl"
}

73

APPENDIX C. REST INTERFACE

C.4 Check Register Code

POST | private/trustfactor/check-register-code
Input
{
"UniqueId": "String"
}
Output
{
"Status": "Number",
"ErrorMessage": "String"
}

C.5 Check Create Transaction

POST | private/trustfactor/check-create-transaction
Input
{
"TransactionId": "String",
"OperationId": "String",
"Data": "String"
}
Output
{
"Status": "Number",
"ErrorMessage": "String"
}

74

C.6. PENDING AUTHORIZATION TRANSACTION

C.6 Pending Authorization Transaction

POST | private/trustfactor/pending-authorization-transaction
Input
{
"TransactionId": "String",
"OperationId": "String",
"Data": "String"
}
Output
{
"Success": "Boolean"
}

C.7 Requirement

GET | private/trustfactor/requirement

Output

"Requirement": "Number"

75

