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Abstract: Mapping large wildfires (LW) is essential for environmental applications and enhances 

the understanding of the dynamics of affected areas. Remote sensing techniques supported by ma-

chine learning and time series have been increasingly used in studies addressing this issue and have 

shown potential for this type of analysis. The main aim of this article is to develop a methodology 

for mapping LW in northwestern Portugal using a machine learning algorithm and time series from 

Landsat images. For the burnt area classification, we initially used the Fourier harmonic model to 

define outliers in the time series that represented pixels of possible burnt areas and, then, we applied 

the random forest classifier for the LW classification. The results indicate that the harmonic analysis 

provided estimates with the actual observed values of the NBR index; thus, the pixels classified by 

random forest were only those that were masked, collaborated in the processing, and reduced pos-

sible spectral confusion between targets with similar behaviour. The burnt area maps revealed that 

~23.5% of the territory was burnt at least once from 2001 to 2020. The temporal variability of the 

burnt area indicated that, on average, 6.504 hectares were affected by LW within the 20 years. The 

annual burnt area varied over the years, with the minimum annual area detected in 2014 (679.5 

hectares) and the maximum mapped area detected in 2005 (73,025.1 hectares). We concluded that 

the process of defining the mask with the outliers considerably reduced the universe of pixels to be 

classified within each image, which leaves the training of the classifier focused on separating the set 

of pixels into two groups with very similar spectral characteristics, thus contributing so that the 

separation of groups with similar spectral behaviour was performed automatically and without 

great sampling effort. The method showed satisfactory accuracy results with little omission for 

burnt areas. 
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1. Introduction 

In recent decades, large wildfires (LW) have caused severe short- and long-term dis-

ruptions to ecosystems, biodiversity, human health, and infrastructure throughout the 

world [1–6], and they constitute an important research topic, due to the multiplicity of 

effects they can have on society and on the environment [7,8]. Although fires are an an-

cient phenomenon and play an ecological role in some ecosystems [9–11], fire regimes 
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have been changing in many regions of the world because of the effects of increasing tem-

perature and reduced precipitation, and, in this sense, the impacts of human activities 

cannot be underestimated [3,10,12]. 

Europe has registered a high number of fires and an extensive burnt area in the last 

decades with different spatial and temporal trends [13–16]. The Mediterranean region has 

favourable environmental conditions for fires to occur, which contribute to a high rate of 

wildfires [6,17], and their size has increased significantly [4,6,12,18,19]. Given this reality, 

Portugal is one of the European countries most affected by fires [14,20,21]. Despite its 

smaller land area compared to other Mediterranean countries [22–24], it is found to be one 

of the most fire-prone countries in southern Europe [6]. 

Historically, wildfires are one of Portugal's most significant drivers for land use and 

land cover changes [25,26]. However, over time we have observed a new reality in the 

country regarding large wildfires (LW) [27], which are considered, in this work, as any 

fire that covers an area larger than 100 ha [28], which has been believed to be one of the 

most significant sources of degradation of an important part of its territory. 

For this reason, it is essential to develop studies that seek to comprehend wildfire 

dynamics. This society’s concern has had, as a beneficial consequence, the development 

of more efficient tools that enhance the understanding of this problem. 

Since the late 1970s, satellite-based remote sensing data have been widely used to 

detect active wildfires and map burnt areas [7,29,30]. Landsat archives provide frequent 

Earth surface reflectance data from ~1984 with a spatial resolution (~30m) that is useful 

for characterizing burnt areas [31]. This type of data makes it possible to estimate the ex-

tent of the fire, the affected area, and the burn severity at different scales owing to its 

temporal, spatial, and spectral resolutions [32]. Mapping the burnt area can broaden the 

knowledge of the dynamics of the areas affected by fires worldwide [7,30], mainly because 

of the possibility of data analysis based on time series [33–36]. 

Spectral indices are typically employed to derive vegetation properties from remote 

sensing data [37]. For research on areas affected by wildfires, vegetation indices are com-

monly founded on radiometric measurements taken before and after a fire or simulated 

by an energy transfer model [37]. Nevertheless, one should bear in mind that, in a burnt 

area, there is a wide range of fire severity and, therefore, a large variety of spectral mix-

tures among charcoal, ash, soil, and burnt vegetation. 

Moreover, spectral indices usually combine information from the visible, near-infra-

red, and mid-infrared (SWIR) portions of the electromagnetic spectrum [38–40]. These 

bands are sensitive to variations in soil colour (visible and mid-infrared), soil composition 

(mid-infrared), moisture, and chlorophyll (near-infrared), which are all properties of land 

and vegetation that can be significantly affected by fire [38]. Several authors have shown 

that the SWIR range (1200–2400 nm) provides a clearer separation of burnt areas [41]. 

Lately, machine learning techniques (ML) have been applied for the development of 

studies addressing this issue. ML is an effective empirical approach that can be used in 

remote sensing applications, such as the supervised classification of satellite images [42]. 

Its major focus is to automatically extract information from data by computational and 

statistical methods [43–45]. ML algorithms are highly useful, as they are “universal ap-

proximators” that can learn the behaviour of a system if they are given a broad set of 

examples in a training dataset.  

These examples should cover as much of the parameter space as possible and are 

non-parametric, non-linear, and multivariate learning algorithms [42,43]. Algorithms 

based on random forest (RF) methods are frequently used [46–50] in ML applications, 

given that they are a non-parametric supervised method applied both for classification 

and prediction [12]. Studies in this perspective were developed by [1,3,12,31,33,51]. In this 

context, in this study, we have proposed an approach to improve the existing methodol-

ogies based on ML, which is intended to achieve a more automated process using the RF 

method, which allows for the classification of wildfires with estimated values and reduces 

possible classification errors. The main aim of this article is to develop a methodology for 
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mapping LW in northwestern Portugal using a machine learning algorithm and time se-

ries from Landsat images. 

2. Materials and Methods 

2.1. Study Area 

The study was undertaken in 4 territorial units of level III (NUTSIII) located in north-

western Portugal, namely Alto Minho, Cávado, Ave, and Tâmega e Sousa (Figure 1), 

which correspond to a territorial area of approximately 6.748 km2. 

 

Figure 1. Location of the study area in northwestern Portugal. 

With respect to physical characteristics, this territory has very specific features, either 

in terms of relief configurations and associated hydromorphological dynamics or from the 

viewpoint of climatic and vegetation distribution, that build quite a peculiar landscape 

and intersect with a very distinctive anthropic occupation, which distinguish it from the 

rest of the national territory, largely due to the existing physical conditioning [52–54].  

The northwest has frequently suffered from a significant number of wildfires [53]. Its 

natural characteristics, such as the predominant vegetation type as well as the climatic 

conditions, favour the occurrence of fires. The climate has Mediterranean traits, which are 

classified by the Köppen criteria as a Csb, that is, a mesothermal climate with a dry sum-

mer. 

Climate influences acting chiefly on the quantity and type of vegetation in the region, 

as well as on the seasonal dynamics of its moisture content, act directly and indirectly 

upon the occurrence of forest fires and their propagation. The high rainfall regime regis-

tered in the northwest, with averages above 2000 mm, allows for a high biomass produc-

tivity, which makes municipalities where wild spaces have greater territorial expression 

more vulnerable to the occurrence of fire, particularly the most mountainous ones [52].  
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Fire occurrences in mainland Portugal normally happen between July and Septem-

ber, with summer as a critical period. However, it has been increasingly observed that 

large fires have taken place between June and October [55]. The key factors causing the 

conditions of large wildfires to occur are high temperatures above 35/40 °C, dry air with 

humidity below 25%, and the joint flow of Atlantic or European anticyclones [28,56,57].  

In these conditions of favourable atmospheric dynamics, especially in summer 

months, such as under the influence of heat waves and meteorological droughts [57] with 

low pressure cores, higher temperatures connected with lower values of relative humidity 

are observed, which create more critical situations that lead to greater risks of wildfires in 

the country [28]. 

2.2. Burned Area Classification Approach 

Figure 2 depicts our methodological approach for mapping burnt areas in northwest-

ern Portugal. The steps are detailed in the following sub-topics. 

 

Figure 2. Methodological steps to implement the mapping of large wildfires (in northwestern Por-

tugal) and classification protocol on the Google Earth Engine. The study was organized in 4 general 

steps: (i) input (dataset organization) in which we used the Google Earth Engine (GEE); (ii) pre-

classification in which we calculated the spectral indices, harmonic series, and the outlier definition 

using GEE, and Python language; (iii) time series classification in which we used GEE, Google Cola-

boratory, Jupyter, and Python language; (iv) post-classification, which was performed using GEE 

and ArcGis 10.7.1 software. 
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2.2.1. Dataset 

In this study, we used the Landsat surface reflectance (SR) dataset (30 m of the reso-

lution, level 2, collection 2, tier 1) from 2001 to 2020. This dataset contains atmospherically 

corrected surface reflectance. We used the 232 available scenes for path/row 204/031 with 

cloud cover below 70% for Landsat 5, 7, and 8 (sensor thematic mapper (TM) for Landsat 

5, enhanced thematic mapper plus (ETM+) for Landsat 7, and the operational land imager 

(OLI) for Landsat 8, available on the Google Earth Engine (GEE) platform), all with 16 

days of temporal resolution and 30 m of spatial resolution. Figure 3 shows the distribution 

of images by sensor and year. 

 

Figure 3. Distribution of images by sensor and year. Landsat 7 (ETM+) in green, Landsat 5 (TM) in 

orange, and Landsat 8 (OLI) in blue. Images with less than 70% of clouds were selected. We draw 

attention to the year 2009, with only 4 images available. The red dashed line represents the limit of 

the number of images per year (24 images). 

To address the problems related to pixel contamination by clouds and cloud shadow 

present in the image, we used the quality assessment band ‘pixel_qa’ of each image in the 

series (BQA 16 Bits), which was generated from the CFMask algorithm [58–60]. 

This band is constructed from the CFMask algorithm and facilitates the removal of 

pixels with clouds, shadow, and snow, since they are already classified in this band as the 

post-processing of the image. This method is based on the detection of abrupt spectral 

changes along the series, under the assumption that the images in time follow smooth 

variations, and the abrupt changes will be mainly due to the presence of clouds. We used 

a linear and non-linear regression algorithm that simultaneously minimized the predic-

tion and estimated error. Then, the clouds were identified with the difference between the 

image of interest and the estimated image. The non-linear regression uses a kernel method 

that makes it possible to estimate the function of order greater than 1. We applied permis-

sive rules, and only pixels with high confidence levels of “cloud”, “shadow”, and “radio-

metric saturation” were masked [59,60]. We used a statistical approach per year to sum-

marize this amount of data and optimize the classification without discarding the spectral 

information about each pixel. 
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In addition to the satellite imagery, we handled data referring to the burnt areas from 

2001 to 2020, which were provided by the Institute for the Conservation of Nature and 

Forests (ICNF), and the administrative limits of mainland Portugal were provided by the 

Directorate General for Territory (DGT). 

Typology and Definition of Classes 

The definition of elements for classification was organized into two categories: su-

perclasses and subclasses. At the first level of abstraction of classes presented in the im-

ages, we opted to group different features into two superclasses: Burnt areas and Unburnt 

areas. At the second level, we identified subclasses and categorized them to understand 

the study area and collect samples for classification. Table 1 presents both categories of 

classes, their typologies, and their descriptions. 

Table 1. Definition of the typologies of classes present in the images. 

Superclasses Subclasses Tipology Description 

Burnt area (by dif-

ferent intensities) 

Burnt area 

scenario 01 

 

Areas characterized by recent fires with soil expo-

sure in different types of vegetation. 

Burnt area 

scenario 02 

 

Burnt area 

scenario 03 

 

Unburnt area 

Vegetation 

 

Category that includes vegetation types composed 

of forests and non-forest natural formations, in-

cluding forestry areas. 

Non-vegetated area 

(bare rock) 

 

Mixed class that includes agricultural areas in 

preparation, exposed soil,  

rocky outcrops, and sandy surfaces. 

Non-vegetated area 

(exposed soil) 

 

Surface Water  

 

Surface water bodies that can be continuous (e.g., 

rivers and lakes) or isolated (e.g., flooded areas and 

dams). 
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Cloud/Cloud 

Shadow/Relief 

Shadow 

 

Features identified in the image as cloud, cloud 

shadow, and relief shadow. 

Urban infrastructure 

 

Class that includes urban and industrial areas. 

2.2.2. Pre-Classification 

2.2.2.1. Spectral Indices 

After literature review, several spectral indices were included and tested based on 

their performance for the study area. We tested 8 spectral indices (Table 2), 5 bands (“red”, 

“blue”, “green”, “nir”, “swir1”), and the temporal differences of the NBR, MIRBI, NDVI, 

and the NIR band (delta versions which calculate the change between pre-fire and post-

fire spectral index values) that are typically employed to assess fire severity. Although 

there is an extensive literature on fire mapping indices, we selected the commonly used 

indices to test our hypothesis [38,41]. These indices were calculated for each of the time 

series images [8,37,38,40,61–64] using a combination of Landsat 5 and 7 TM 

[“B1”,“B2”,“B3”,“B4”,“B5”,“B7”] and 8 OLI [“B2”,“B3”,“B4”,“B5”,“B6”,“B7”] spectral 

bands. 

Table 2. Spectral indices for evaluation of the burnt area. The delta version of each index as the 

difference between pre- and post-fire values was tested in this study. 

Spectral Index Formula 

Normalized Burn Ratio (NBR) [65] 𝑅𝑁𝐼𝑅 − 𝑅𝑆𝑊𝐼𝑅2 𝑅𝑁𝐼𝑅 + 𝑅𝑆𝑊𝐼𝑅2⁄  

Mid Infrared Burn Index (MIRBI) [66] 10𝑅𝑆𝑊𝐼𝑅1 − −9.8𝑅𝑆𝑊𝐼𝑅2 + 2 

Burned Area Index (BAI) [37] 1 (0.06 − 𝑅𝑁𝐼𝑅)2⁄ + (0.06 − 𝑅𝑅𝐸𝐷)2 

Normalized Difference Vegetation Index 

(NDVI) [67] 
(𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷)/(𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷) 

Enhanced Vegetation Index (EVI) [68] 
2.5(𝑅𝑁𝑖𝑅 − 𝑅𝑅𝐸𝐷)

(𝑅𝑁𝐼𝑅
+ 6𝑅𝑅𝐸𝐷 − 7.5𝑅𝐵𝐿𝑈𝐸 + 1) 

Normalized Difference Moisture Index 

(NDMI) [69] 
𝑅𝑁𝐼𝑅 − 𝑅𝑆𝑊𝐼𝑅1) (𝑅𝑁𝐼𝑅 +⁄ 𝑅𝑆𝑊𝐼𝑅1 

Soil Adjusted Vegetation Index (SAVI) [70] (1 + 𝐿))(𝑅𝑁𝐼𝑅 − 𝑅𝑅𝐸𝐷) 𝑅𝑁𝐼𝑅 + 𝑅𝑅𝐸𝐷 + 𝐿)⁄  

Green Normalized Difference Vegetation 

Index (GNDVI) [71] 
(𝑅𝑁𝐼𝑅 − 𝑅𝐺𝑅𝐸𝐸𝑁)/(𝑅𝑁𝐼𝑅 + 𝑅𝐺𝑅𝐸𝐸𝑁) 

Difference (dNDVI; dNBR; dMIRBi; dNIR)  𝐷𝑖𝑓𝑝𝑟𝑒 − 𝐷𝑖𝑓𝑝𝑜𝑠𝑡 

2.2.2.2. Data Analysis and Exploration of Landsat Time Series Data from 2001 to 2020 

In a first phase, sample points were collected for burnt and non-burnt areas, with 

consideration for the different sub-classes described previously. A total of 80 points were 

collected for the burnt class and 107 points for the non-burnt class. For this step, the cor-

responding NBR, MIRBI, BAI, and dNBR spectral indices for these points were analysed. 

From several controlled points in the series, the values of the indices and the breaks in 

trends in the fire dates within the series were inspected. The NBR was the index that best 

represented these series trend breaks, and based on the feature selection approach, it was 

defined as the index for the adjustment of the harmonic model in the time series. 
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2.2.2.3. Outlier Detection in the Time Series 

In burnt area detection results, the first step was to identify pixels with negative dis-

crepant values in relation to the observed reflectance over time in the time series, which 

indicated the possible burnt areas, called outliers, and then to perform the classification. 

For this, we considered the difference in phenology in the study area and the data gath-

ered to detect possible burnt areas. We used the Fourier harmonic model [72,73] to analyse 

the time series in remote sensing data [73–78].  

The harmonic model allows a complex curve to be expressed as the sum of a series 

of cosine waves [72,73]. A time series of remote sensing data (Figure 4A) can be decon-

structed using the Fourier series into a set of simple cosine waves of different frequencies 

(Figure 4B). Several frequency terms add up to form the original complex curve. Each 

cosine is defined by phase, which is equal to the displacement of the wave from the origin 

(Figure 4C); amplitude, which is equal to half the height of the wave (Figure 4C); and 

frequency, which is equal to the number of complete wave cycles in the unit time 

[72,73,78]. 

 

Figure 4. Modified from [73]. Example illustrating the Fourier analysis components in which a com-

plex curve (A) is deconstructed into a set of simple cosine waves of different frequencies (B); each 

cosine wave is defined by its phase and amplitude (C). 

The method consisted of three steps. First, we generated image stacks of the NBR 

spectral index of the 16-day Landsat 5, 7, and 8 time series for the 20 years. Second, we 

adjusted the time series harmonic model using the observations of the NBR spectral index 

within the stable period as the dependent variable. The following model was fitted for 

each pixel (Equations (1) and (2)), where 𝑦𝑡 is a dependent variable (NBR), t is an inde-

pendent variable (time as Julian date), 𝑒𝑡 is the residual error (random), A is the ampli-

tude, 𝜔 is the frequency, and ∅ is the phase. 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝐴 cos(2𝜋𝜔𝑡 −  ∅) + 𝑒𝑡 (1) 

We can decompose: Equation 1 to obtain Equation 2, that is, our function into sepa-

rate cosine and sine elements: 

𝑦𝑡 =  𝛽0 + 𝛽1𝑡 + 𝛽2 cos(2𝜋𝜔𝑡) + 𝛽3 sin(2𝜋𝜔𝑡) + 𝑒𝑡 (2) 

where: 

𝛽2 = 𝐴 cos(∅); 𝛽3 = 𝐴 sin(∅); 𝐴 =  (𝛽2
2 + 𝛽3

2)
1

2⁄ ; and ∅ = atan (𝛽3 𝛽2⁄ )).  

In the third step, we used a threshold to identify the possible burnt pixels, which 

were selected as outlier points between the harmonic series and the NBR data series. We 

calculated the values to compose the mask (M) by comparing the values observed in the 

actual and predicted data (Equation (3)). After identifying them, the mask of possible 

burnt areas was exported as an ImageCollection. 



Fire 2023, 6, 43 9 of 25 
 

 

𝑀 =  𝑦𝑡 − 𝑦̂𝑡 (3) 

where 𝑦𝑡 and 𝑦̂𝑡 are the actual and expected observations, respectively.  

2.2.3. Mask Classification Using Random Forests 

2.2.3.1. Sample Collection 

The areas to be classified were selected from the mask with the possible burnt areas. 

Each image in the series was classified within the mask, which reduced the analysis area 

of the classifier and possible spectral confusion between targets with similar signals (e.g.,: 

burnt area, relief shade and clouds, exposed soil, water, urban area).  

Sample collections for classification were performed on 7 Landsat images: 2 Landsat 

5, 2 Landsat 7, and 3 Landsat 8 (Table 3). The collections only considered the outlier values; 

therefore, these pixels labelled burnt and unburnt served for the model training. 

Table 3. Description of the images used to collect the classification samples. 

Sensor  Years Rois 

Landsat TM 7 2001, 2002 e 2012 
[‘LE07_204031_20010915_normal_rois’, 

‘LE07_204031_20021004_normal_rois’], 

Landsat TM 5 
2004, 2005, 2006, 2007, 2008, 

2009, 2010 e 2011 

[‘LT05_204031_20051004_normal_rois’, 

‘LT05_204031_20101018_normal_rois’] 

Landsat OLI 8 
2013, 2014, 2015, 2016, 2017, 

2018, 2019 e 2020 

[‘LC08_204031_20131010_normal_rois’, 

‘LC08_204031_20160916_normal_rois’, 

‘LC08_204031_20170903_normal_rois’] 

2.2.3.2. Classification 

Image classification was performed using the random forest classifier on GEE and 

was originally developed by Breiman et al. [46]. Random forest is a supervised classifica-

tion algorithm that uses the ensemble methodology for classification. Ensemble methods 

group a finite set of classifiers, and the final decision of the class is made by either the 

majority vote of these classifiers or the maximum probability among them. These methods 

present better results in the literature. In the case of random forest, all classifiers are deci-

sion trees that are built by selecting both sets with fixed sizes of input variables at random 

and sample sets to build the trees. 

For this work, the selection of the random forest classifier was made by two criteria: 

one was robustness, and the other was to be implemented in the work environment [46]. 

This classifier reduces the overfitting problem by randomly selecting both samples and 

variables to build each tree. It increases the accuracy by taking the various outputs of the 

different decision trees to the maximum vote criterion.  

One of the most recent techniques used in machine learning is “Model Tuning”, 

which is nothing more than adjusting the hyperparameters of the model to improve the 

accuracy of the results and decrease the computational costs. To do it, we used the feature 

importance method to select the set of variables that best behaved in relation to the set of 

samples, wherein we used the library within the Google colab “scikit-learn y” of python 

as a database and as the training sample set. 

The chosen method was the importance permutation of the variables or features that 

each tree within random forest assigned in the score method, which caused each tree in 

the model to assign a score to each variable during the training set, so after training the 

“feature_importances_” function of the model, a score was developed with values be-

tween 0 and 1, which allowed a list order, so the selection of variables was done based on 

a threshold to select the most important ones from an M number of the most important 

ones. We selected 14 variables out of 23 (Table 4). 
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Table 4. Variables used to train the model, based on the order of importance for each sensor. 

Sensor Training Variable 

L5 
‘nir’, ’green’, ‘mirbi’, ‘swir1’, ‘blue’, ‘dnirr’, ‘nbr’, ‘dndvi’, ‘dmirbi’, ‘evi’, 

‘dnbr’, ‘gndvi’, ‘ndmi’, ‘savi’ 

L7 
‘nir’, ‘mirbi’, ‘red’, ‘evi’, ‘green’, ‘nbr’, ‘swir1’, ‘dnirr’, ‘dndvi’, ‘dnbr’, 

‘ndmi’, ‘dmirbi’, ‘gndvi’, ‘blue’, ‘savi’ 

L8 
‘nir’, ‘mirbi’, ‘dmirbi’, ‘evi’, ‘nbr’, ‘dnbr’, ‘green’, ‘dnirr’, ‘red’, ‘swir1’, 

‘ndmi’, ‘gndvi’, ‘blue’, ‘savi’ 

In the model tuning step, several sets of model input parameters were tested, and 

those with best results for the random forest classifier were: RandomForestClassifier 

(n_estimators = 160, max_features = 6, min_samples_split = 10, oob_score = True, bootstrap 

= True). 

This step allowed for the implementation of the classifier within the GEE platform; 

the hyperparameters that were already adjusted were used to classify each of the images 

from the historical series. The test set was built from the selection of several random im-

ages from the series using two conditions: each Landsat sensor must have at least two 

sample images, and the selected image must have several burnt area spots. Then, poly-

gons were drawn in several parts of the image in a distributed way, for both burnt and 

unburnt areas, with the presence of covers that could lead to confusion in the classification 

mentioned above. Within these polygons, points were drawn, and the true points were 

drawn within the area of intersection with the ICNF government polygons. After that, 

these points were used to build the confusion matrix and calculate the appropriate met-

rics. 

2.2.4. Post-Classification 

A series of spatial and temporal filters were applied to the resulting classification. 

The spatial filter was used to remove burnt areas smaller than 100 ha. To obtain the infor-

mation of the month in which the fire scar was mapped for the first time, a post-classifi-

cation processing was performed to retrieve the date information of the pixel that was 

burnt, starting from the date present in the metadata of each classified image within the 

time series. Subsequently, the classification was vectorized and exported. The annual 

burnt area maps were the composition of all the burnt areas of each image in the respective 

year. 

2.2.4.1. Reference Data 

The reference data used in this research correspond to the Burnt Area product (in 

hectares) of the ICNF, which was elaborated following several stages, of which we high-

lighted the action of the National Republican Guard (GNR) and the involvement of mu-

nicipal councils in: (i) the collection, survey, and production of geographic information, 

with the consequent creation of the polygon; (ii) the association of the survey to an occur-

rence with the attribution of the correct name to the generated file (KML); (iii) the loading 

of the polygons and associated information in the Forest Fire Information Management 

System application; (iv) the elaboration of the national cartography of burnt areas by com-

piling all KML files loaded in SGIF at the occurrence level and the correction of infor-

mation faults with burnt area polygons from the semi-automatic classification processes 

using LANDSAT, SENTINEL, or other satellite images [79]. 

2.2.4.2. Assessment of Results 

The measures that estimate how much accuracy a map has or the results of an output 

of machine learning algorithms are based on the error matrix (Table 5) that calculates the 

pixels that were classified well, the pixels that erroneously went to the reference class and 
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should have been in the class of the classification, and the pixels that were in the classifi-

cation and should have been in the reference class [80]. The metrics of overall accuracy 

(Ac), the producer’s accuracy, and the user’s accuracy follow the equation Formulas (4)–

(6) [80]: 

𝐴𝑐 = 𝑃11 + 𝑃22 (4) 

𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑃11/𝑃.1  (5) 

𝑢𝑠𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑃11/𝑃1. (6) 

Table 5. Matrix of error or contingency adapted from [81]. 

  Reference  

 𝑃11 𝑃12 𝑃1.=𝑃11+𝑃12 

Classification 𝑃21 𝑃22 𝑃2. 

 𝑃.1 = 𝑃11+𝑃21 𝑃.2  

Recently used metrics include the quantity and allocation disagreement, which char-

acterize disagreements between classes as an index [80,81]. The equation for quantity dis-

agreement is calculated as follows: 

𝑄 = (|𝑃.1 − 𝑃1.| + |𝑃2. − 𝑃2.|)/2 (7) 

The quantity disagreement describes the number of pixels that are wrongly classified 

into the burnt area or unburnt area class. 

The allocation disagreement or interchange difference is calculated as follows: 

𝐴 = 2 ∗ 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (𝑃21, 𝑃12)  (8) 

The allocation disagreement or interchange quantifies the number of pixels that are 

correctly positioned on the map, but whose class value is modified. Therefore, this type 

of error normally has the same amount in the burnt class as in the unburnt class [81]. We 

also calculated the index values of precision, recall, F1-score, and IoU for the performance 

evaluation of the results [82]. 

The time series evaluation analysis of the burnt area was carried out based on 

~158.000 randomly selected independent samples for the years 2001, 2002, 2005, 2010, 

2013, and 2016 [83], which were chosen to ensure a representation of a greater and lesser 

extent of burnt area, and 2 years were selected by Landsat sensor. The images selected 

within these years had two criteria: low percentage of clouds and a high number of fires. 

To select the areas to place the reference points of non-burnt areas, the images were 

visualized without any auxiliary mask, and scattered small polygons were created around 

the image while taking care not to include the burnt areas. These polygons were used to 

collect points randomly, with the polygon value used as a reference for the unburnt area 

and the RF classification value after the result. 

Concerning the collection of the burnt area points, all images classified by year were 

combined, and points were raffled in polygons larger than 10 hectares from the ICNF 

mapping while taking the polygon value as a reference and the annual classification value 

as a class. All accuracy metrics, as well as commission and omission errors, were calcu-

lated on this basis of collected points as well. 

3. Results 

3.1. Mask with Outliers of Possible Burnt Areas 

Figures 5 and 6 illustrate how the outliers in the time series were identified from the 

application of the Fourier harmonic model to analyse the time series using the observa-

tions of the NBR spectral index [72–78]. The fire events resulted in a sudden and persistent 

decrease in the NBR, that is, a drop in its values observed in the series. 
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Fourier harmonic analysis provided estimates with the actual observed values of the 

NBR, which made it possible to compare and identify the threshold to select the pixels 

considered as outliers, or possible burnt areas, between the harmonic series and the real 

data series of the NBR [40,74]. Thus, values between +1.0 and -0.2 were eliminated from 

the time series, and those between -0.2 and -1.0 were considered outliers to generate the 

mask of possible burnt areas. Figure 6 shows an example of how the values were selected 

from the definition of the threshold. 

 

Figure 5. Demonstration of the harmonic fit of four time series in pixels. The blue line represents the 

real NBR values, and the red line represents the adjusted harmonic model based on the NBR values 

for the analysis period 2001-2020. The four chosen points refer to different pixels that illustrate types 

of vegetation: (A) bushes; (B) oaks; (C) pines; and (D) eucalyptus. The Landsat 8 image was created 

with RGB composite (5/4/3). 

 

Figure 6. Example of the identification of disturbed areas in a historical series for a single pixel (lat 

41.86/lon -8.76). (A) Time series harmonic adjustment of a pixel. The blue line represents the actual 

NBR values, and the red line represents the adjusted harmonic model based on the NBR values for 
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the analysis period 2001-2020; (B) the blue bars represent the pixels (images) of the time series used 

to construct the mask of possible burnt areas. 

3.2. Classification  

Mapping wildfires using satellite data is a challenge, especially when performed in a 

study area with different types of land use and landscape characteristics [84]. Initially, the 

image collection consisted of 232 Landsat images. After the harmonic adjustment, the 

identification of outliers, and the definition of the mask, it totalled 172 images. Sixty of 

them that did not have pixels with values considered outliers were eliminated. The pixels 

classified by random forest were only those that were covered by the masked area, which 

contributed to the image processing, since not all pixels were considered for the classifi-

cation process. Thus, the classifier was trained only with those that were possible burnt 

areas extracted from the first time series analysis. Hence, the set of pixels to be separated 

between the burnt area and not by the classifier was reduced spectrally to a smaller uni-

verse. 

Figure 7 shows an example of a burnt area classification sequence for September 2005, 

in which we can observe the Landsat image with an example of the mask (Figure 7(1b)), 

and the final classification (Figure 7(1d)). This shows that burnt areas were generally well-

delineated, especially in large fires. 

 

Figure 7. Illustration of burnt area classification. (1a) Landsat RGB 542 image, path/row: 204/031, 

date 18 September 2005; (1b) Landsat image with mask of possible burnt areas built from the super-

imposed harmonic model adjustment. (1c) Landsat image with mask of possible burnt areas and 

burnt area classification overlaid (the mask in purple, the fires in red); (1d) Landsat image with 

burnt area classification overlaid (the whole burnt area in red, the fires larger than 100 ha in dark 

red). 

3.3. Annual Burnt Area 

A burnt area dataset, based on the Landsat time series resulting from the classifica-

tion, was created for northwestern Portugal. The burnt area maps revealed that ~23.5% of 

the territory was burnt at least once from 2001 to 2020 (Figure 8). The temporal variability 

of the burnt area indicated that, on average, 6.504 hectares were affected by large fires 

within the 20 years. The annual burnt area varied over the years, with the minimum an-

nual area detected in 2014 (679.5 hectares) and the maximum mapped area detected in 

2005 (73,025.1 hectares).  

The other years in which the occurrence of large fires peaked (above 10,000 hectares) 

were 2002, 2009, 2010, 2013, 2016, and 2017, while those with the smallest burnt area (less 

than 2000 ha) included the years 2003, 2007, 2012, 2014, and 2018. Most of these years 
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suffered from climate anomalies, which promoted extreme droughts, which were influ-

enced by El Niño or an increase in precipitation (La Niña) [28,84].  

We can see that in the 20 years analysed, there was a reduction in the burnt area from 

2006 to 2015 compared to the period from 2001 to 2005, followed by an increase when 

compared with 2016 to 2020 (Table 6). 
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Figure 8. Annual distribution of the burnt area in northwestern Portugal from 2001 to 2021. The 

territory referring to the northwestern Portugal region is in grey, and the burnt areas per year are 

in red. 

Table 6. Number and burnt area of LW (≥ 100ha) in Portugal mainland. 

Years N° of Polygons Burnt Area (ha) 

2001–2005 271 99.03844 

2006–2010 184 54.77502 

2011–2015 47 48.01547 

2016–2020 185 75.72701 

When dealing with studies on large fires, it is important to understand the different 

dimensions of occurrences. By analysing the size of the fires identified in the classification, 

we could note that the large wildfires (>100–500 ha) represented 43% of the burnt area, 

and they reached 100% of occurrences in the years 2003, 2004, 2007, 2008, and 2018 (Fig-

ures 9 and 10). A total of 25.3% of the total burnt area concerned occurrences between 500 

and 1000 ha, and in 2014, 100% of the area was included in this category. A total of 26% of 

the burnt area was between 1000 and 10,000 hectares in size; we observed that the years 

2016 and 2017 were the only ones that presented an area greater than 45% for this category. 

Only 6% of the area corresponded to fires greater than 10,000 hectares, which occurred in 

Viana do Castelo in 2015 (Figure 11). 

 

Figure 9. Total burnt area per year and per class. The blue line represents the annual total for the 

100–500 ha class; in orange is the 500–1000 ha class; in green is the 1000–10,000 ha class; the greater 

than 10,000 ha class is in red. 
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Figure 10. Total percent burnt area per year and per class. The blue line represents the annual total 

for the 100-500 ha class; in orange is the 500-1000 ha class; in green is the 1000-10,000 ha class; the 

greater than 10,000 ha class is in red. 

 

Figure 11. (A) Landsat RGB 542 image, path/row: 204/031, date 18 September 2005; (B) in red: burnt 

area classification; (C) in pink: the ICNF burnt area classification. 

The reality of large fires in Portugal has gone through different stages in terms of its 

extent. In the 1970s, the LW became quite common, but it was only after the 1980s that 

they reached areas greater than 10,000 ha [85]. During the 1990s, there was an increase in 

records, and, from the 2000s onwards, records of an area of more than 20,000 ha were 

verified, which showed that there was an increase in the individual area of the largest LW 

in terms of the space and the incidence [27,86]. 

3.4. Results Evaluation  

With the base of points for validation, we calculated all the metrics below. This set 

had three pieces of information per point: class, reference, and year. Thus, it was possible 

to evaluate both by year and by series using all the points. The burnt area of the Landsat 

time series achieved an overall accuracy of 92.1% (Figure 12).  

 

Figure 12. Plot of accuracy metrics of series fire maps. 
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The validation results for our time series burnt area classification approach are 

shown in Table 7. They demonstrate satisfactory results for the burnt area classification, 

with a producer’s accuracy of 97.3% for the burnt area class in all years (with a minimum 

of 94.5% for 2010 and a maximum of 99.92% for 2001). The user’s accuracy reached a value 

of 85.7% for the burnt area class for all years (minimum of 76.94% for 2010 and 91.81% for 

2002). These accuracy values for the producer and user indicate that the method has few 

commission and omission errors. For the unburnt class, the producer's accuracy was 

79.87% for all years, and the user's accuracy was 95.98%. In the last ones, it was estimated 

that the algorithm contained more commission errors than omission errors and was good 

for the burnt area detection process. 

Table 7. Validation results for all years. 

 
Unburnt  

(Reference) 

Burnt  

(Reference) 
User’s Total 

User’s  

Accuracy 

Unburnt 56,358 2359 58,717 95.98% 

Burnt 14,208 85,159 99,367 85.7% 

Producer’s total 70,566 87,518 158,084  

Producer’s accuracy 79.87% 97.3%   

Another very interesting analysis is to understand the behaviour of errors in the clas-

sification analysis. We calculated the metrics of quantity disagreement and allocation dis-

agreement [81,87]. Figure 13 inverts the values of the metrics to make it easier to under-

stand that there were signalling errors. 

 

Figure 13. Plot of error metrics of series fire maps. 

In this analysis, we had a high percentage of allocation disagreement or interchange 

in the year 2010, which indicated that 12.14% of the pixels used for the analysis in that 

year were in the correct position but had changed classes. In that same year, the quantity 

disagreement indicated 6.2% of the pixels, which made us understand that this percentage 

of pixels, in addition to being erroneously classified as fire, were also misallocated.  

Figure 14 presents the result validation metrics of recall, precision, F1-score, and IoU. 

In general, all years presented precisions above 0.9. Recall values closer to 1 mean that 

there is a higher probability of success, and all years presented recall values of more than 
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0.8, except for 2010, when it was around 0.7. For F1-score and IoU indices, the year 2010 

also presented the least satisfactory results. 

 

Figure 14. Result validation metrics: recall, precision, F1-score and IoU. 

4. Discussion 

In this work, we developed a methodology to map large wildfires in northwestern 

Portugal using a ML algorithm and time series of Landsat images, which can be expanded 

to other areas. For the classification of burnt areas, the authors initially used the Fourier 

harmonic model to define outliers in the time series representing pixels of possible burnt 

areas and then applied the random forest classifier for LW classification.  

Approaches based on remote sensing play a key role in vegetation monitoring, as 

they provide a better opportunity to map changes and identify fire [76]. Satellite data have 

significant potential for monitoring vegetation dynamics from regional to global scales, 

due to synoptic coverage and regular temporal sampling [75]. The NBR was chosen be-

cause it is an appropriate index to detect changes in the landscape induced by fires, and it 

evaluates them in the spectral response caused by burnt areas [88]. 

In satellite remote sensing observation, vegetation greenness patterns follow a trend, 

with peak greenness at the height of the growing season in late spring, decreased green-

ness when vegetation senesces during the summer, and, frequently, a secondary muted 

peak or plateau in greenness, especially in some cool seasons. Thus, the calculation of 

vegetation indices lowers the value (NBR) immediately after fire [78]. 

The construction of a harmonic model is used in remote sensing applications, due to 

its flexibility in accounting for cyclicity in simple and reproducible ways. If there is a sea-

sonal trend in the data, the ordered nature of a cosine curve can probably approximate it 

[89]. 

In regions such as northwestern Portugal, which registers high values of precipita-

tion and cloud cover during the year, the low availability of observations (images) in cer-

tain years makes the pixel time series irregular and can pose a challenge for that type of 

analysis; however, our method was still able to capture changes in vegetation. A similar 

fact occurred in a study developed by DeVries et al. [76], who captured a sign of change 

in the forest (deforestation) by applying methodology using Fourier analysis and the time 

series. 
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The mask served to avoid confusion between burnt areas and other land cover dy-

namics, which were verified in the previous stage of data analysis (for instance, urban 

area, exposed soil). The application of harmonic analysis produced computationally effi-

cient quantitative time estimates of post-fire vegetation patterns that were considered 

within the time series, as was seen in a study undertaken in a pasture area to estimate the 

variability of time between fires and vegetation regrowth [78]. 

The use of the mask showed great potential in the development of this study, as it 

reduced the number of pixels to be classified by keeping only pixels with spectral behav-

iour with characteristics of an area that has suffered from the action of fire. In this way, 

the universe of pixels to be classified only included a reduced set of pixels in the image, 

where the difference to be found to separate this set into two classes was more specific to 

the group than to the set of pixels in the whole image. 

The combination of the Landsat time series and harmonic model adjustment proved 

to be an effective method for the annual detection of burnt areas in the study area, mainly 

in forest and wild spaces. It has also been demonstrated by other studies that temporal 

information and the harmonic model can be successfully applied to detect land cover 

changes based on the Landsat time series [40,74,90].  

Concerning the classification, the ephemeral characteristics of the fire scars left on 

satellite images are a complicating factor for the detection of burnt areas. Depending on 

the frequency of observation and the fire intensity, it is possible to lose the spectral signa-

ture of the fire in the landscape [84,91]. Moreover, seasonality plays a central role in the 

temporal change of the spectral information of a fire scar by creating artificial signals that 

confuse the dry signals of the SWIR 1 and SWIR 2 channels in the arid areas during the 

dry season with the spectral responses of the ash, which also show lower reflectance sig-

nals in water-sensitive channels [84,92]. 

We can highlight examples of classifier confusion in areas with bush vegetation and 

in agricultural land. In the area with bush type vegetation, mainly in the mountainous 

regions to the northeast of the study area, the spectral signature of the burnt area disap-

pears in a few weeks, which can be influenced by the amount of available vegetation and 

the influence of the reflectance of the exposed rock in that region. On the other hand, ag-

ricultural land that during some months of the year are without vegetation, that is, bare 

soils, present a spectral signal very similar to the spectral information of a fire scar. 

In the case of the Mediterranean forest, fire patches can be easily confused with agri-

cultural burns or even with bare soils, which often reach saturation temperature in the 

summer during late afternoon [93]. The spatial and temporal variability of the spectral 

signatures of burnt areas shows diverse and complex patterns, and, despite the large num-

ber of different classifiers used to detect and map them, it remains somewhat problematic 

to discriminate scar signals from those of other land cover types. The types of surfaces 

most reported to generate spectral confusion with burnt areas are water surfaces, urban 

areas, and shadows [93], which were observed in the results of this study. 

Thus, we can relate that the years with the greatest availability of images without 

cloud cover, between March to December, which are the main months that registered the 

major fires in the study area, have a greater potential for mapping them with the proposed 

methodology. In this context, Portugal is the European country with the highest percent-

age of the territory affected by wildfires impacting its forest cover, which mainly consists 

of plantations of shrubland, including Pinus pinaster and Eucalyptus globulus, that burn 

more easily than the native Quercus faginea and Quercus suber [94]. In the country, fires are 

evenly distributed throughout the territory, and the northwest has the highest incidence 

of wildfires [95].  

Hence, the occurrence of major fires in Portugal is not unknown [55,56]. Authors, 

such as Ferreira-Leite et al. [86], argue that large fires are not a recent phenomenon in the 

country, as they have been a common reality since at least the 19th century. What has 

changed is the frequency and size of affected areas [27,86]. 
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The occurrence of extreme weather events (e.g., heat waves) and climate variability 

(e.g., drought), which also tend to be more frequent and intense during the summer, are 

the main contributors to this pronounced seasonal character of wildfire incidence in Por-

tugal [14,24,96,97]. 

The northern region is characterized not only by a much higher density of fire num-

bers and burnt area compared to the rest of the country [20,24,98], but also by more irreg-

ular topography, a denser river network, a higher concentration of forest, and population 

density, as well as a colder and rainier climate [20,99,100]. Therefore, it is important to 

consider that the spatial distribution of ignitions and the burnt area are also highly de-

pendent on other human and biophysical aspects, such as demographic, socioeconomic, 

topographic, land use, and land cover factors [24,101]. 

In terms of accuracy, the error is in the commission. This is an algorithm that omits 

little fire, but still confuses some unburnt areas with the burnt area. Some factors possibly 

influenced the results, such as (i) data gaps in the time series due to the high fraction of 

cloud coverage and cloud shadow [29]; (ii) similar spectral behaviour between areas af-

fected by fires with the spectral behaviour of bare soil, rocks, water, and relief shadows; 

and (iii) the reference data having been produced using different data and with field in-

formation. Related studies conducted in Africa found a similar accuracy of 79.2% [74]. The 

year with the highest accuracy was 2002, despite not being the one with the highest num-

ber of burnt areas, nor the one with the largest patches. 

This allocation disagreement indicates that the same number of pixels that were 

counted as commission, because they were classified as fire and not in the reference, were 

also counted in omission, because they were points that were extracted from the reference 

polygons. The quantity disagreement was the more critical type of error than the previous 

one, because if all pixels with allocation errors changed classes, they would be corrected, 

and the class of the year 2005, for example, would have better accuracy than 2016, so 2010 

was the year with the worst performance within the series. 

There are other ways to validate the results, such as using calculated recall, precision, 

F1-score, and IoU. Precision is more focused on the estimated class and, in this case, the 

burnt area class. Therefore, it measures the probability of the correct detection of fire val-

ues against all fire reference pixels. In this way, the index returns a probability of how 

much our classification was right, and the closer to 1 it is, the less omitted it is. As the 

graph reports in all years, the accuracy was good. 

Recall is also an index focused on the estimated class, and it is the ratio of all correctly 

classified fire class pixels among all the classified pixels as fire. So, the closer to 1 it is, the 

higher the probability of correctness. In the graph (Figure 14), the recall values in all years 

were lower than the precision index, which means that the classifier found more false 

negatives, that is, the commission. 

The F1-score and the IoU indices are also focused on the estimated class, and they 

encompass the correctly classified pixels with the misclassified ones. As the graph shows 

(Figure 14), the F1-score is higher than the IoU because in the calculation, it assigned a 

greater value to the correctly classified pixels; thus, in the literature, the F1-score is more 

frequently used than the IoU. 

5. Conclusions 

We explored the potential of using the Landsat time series to develop a methodology 

that would allow for the annual mapping of large wildfires. This methodology used a 

machine learning algorithm based on a harmonic model and the identification of outliers. 

The algorithm used 172 Landsat images between January 2001 and December 2020, and 

the results were compared with the burnt area data produced by the Portuguese govern-

ment. 

We concluded that the process of defining the mask with the outliers considerably 

reduced the universe of pixels to be classified within each image, which left the training 

of the classifier focused on separating the set of pixels into two groups with very similar 
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spectral characteristics, which contributed so that the separation of groups with similar 

spectral behaviour was performed automatically and without great sampling effort. 

The use of spectral indices and some specific bands broadened the spectral space 

characterization, which allowed a better selection in the feature selection analysis steps. 

The analysis of the feature selection using an indicator that made it possible to choose the 

best bands for the classifier to provide a more compact feature space with better perfor-

mance, thereby expecting a better result in the classification step. The analysis of the clas-

sification parameters made the classification step use those parameters, which led to a 

better performance of the algorithm with this data and in this problem. 

Although we only used the Landsat series data, we achieved satisfactory results 

when considering that the reference data (ICNF) are generated from multiple sensors. The 

method showed satisfactory accuracy results with little omission for burnt areas. With the 

results of the classification, we were able to identify unburnt areas within the LW perim-

eters, which represents an important factor for research on this issue when considering 

that the identification of these unburnt areas can contribute to the understanding of the 

dynamics related to different intensities and severities reached by LW, which can make 

advances in studies in this field. One of the ways to improve the classification results 

would be the application of deep learning methods, which can be a means of having an 

algorithm with less commission. This methodology can be used for any remote sensing 

problem that leads to the detection of some disturbance along the time series. We recom-

mend that this analysis has at least five years of data to obtain meaningful results. There-

fore, we can indicate the use of this method for studies in other similar areas, such as 

deforestation and drought events, for example.  
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