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A B S T R A C T

Weakness, mobility and balance problems are some of the obstacles that most
certainly will go along with the last period of life, the old age. Also, those difficulties
can strike young lives due to gait abnormalities resulted from degenerative diseases
or even accidents. To patients with high motor deficit, traditional methods, such as
wheelchairs, are usually prescribed, but the use of an assistive device that do not
promotes the patient’s recovery will eventually lead him to a restrict daily life as well
as a notable loss of motor skills.

With previous questions in mind, the Adaptive System Behavior Group (ASBG)
decided to develop a motorized smart walker capable of adapting to the needs of
its users. The Adaptive System Behavior Group Project (ASBGo) counts already with four
versions that have proved its worth in clinical environment and was renowned, for
two consecutive times, as one of the best technological and innovating Portuguese
research projects in the rehabilitation field. However, the electromechanical and
software solutions of each prototype commonly impair the global development of
the project, making each version obsolete, outdated or unusable. Now, it is time to
go further and render these proof-of-concept devices in a mature version, excluding
previous academic solutions and engineering a robust and trustworthy device that will
establish this new rehabilitation concept.

This master thesis, addressed to rehabilitation robotics, describes the design
and implementation of a system architecture for the Adaptive System Behavior
Group Project Star (ASBGo*) . The implementation of a unified modular system
architecture embraces the development of software components, electronic hardware
and electromechanical modifications required to its implementation. This new
prototype is an upgrade of the all ASBGo previous versions, in which the sturdy
and user-friendly solutions implemented provide robust tools for future development
and usability.

Firstly, the contextualization in the project was performed, including a brief study
of robotic software platforms, the familiarity with the several ASBGo prototypes and
the research of the best solutions to design a system architecture.
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Secondly, following a Top-Down strategy, the work plan was established bearing
in mind the considerations to design and implement a global system architecture:
definition of the main functionalities and behaviours of the prototype and,
simultaneously, the strategies to be followed in the hardware, electromechanical and
software development.

Hereinafter, the development stage was conducted following an Hardware-Software
co-design methodology. That strategy ensured that the design and implementation
of electronic and electric circuits were in agreement with all system requirements
guaranteeing trade-offs, robustness and safety.

During all the development process, validations of the system were constantly
performed and, in the end, intensive experimentations of the final device were
executed in the laboratory with the intervention of colleagues of the ASBG group.
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R E S U M O

Debilidade e dificuldades de mobilidade e equilı́brio são alguns dos problemas que
muito certamente irão acompanhar o perı́odo final da vida, a velhice. Para além
disso, esses problemas podem atingir jovens vidas devido a anomalias na marcha
resultantes de doenças degenerativas ou até mesmo acidentes. Aos pacientes que
apresentam um alto défice motor, métodos tradicionais, como cadeiras de rodas, são
normalmente receitados. No entanto, o uso de dispositivos de assistência que não
promovem a recuperação do paciente irão eventualmente levá-lo a uma vida restrita
assim como a uma notável perda de capacidades motoras. Com tal ideias em mente, o
Adaptive System Behavior Group (ASBG) decidiu desenvolver um andarilho inteligente
motorizado capaz de se adaptar às necessidades dos seus utilizadores. O Adaptive
System Behavior Group Project (ASBGo) já conta com quatro versões que provaram o
seu valor em ambiente clı́nico e já foi reconhecido, por duas vezes consecutivas, como
um dos projetos de investigação mais tecnológico e inovador na área de reabilitação.
Contudo, as soluções eletromecânicas e de software de cada protótipo comprometem
o desenvolvimento contı́nuo do projeto, tornando cada versão obsoleta, desatualizada
e inutilizável. Agora, está na hora de ir mais longe e tornar estes dispositivos
de prova de conceito numa versão mais madura, excluindo as soluções académicas
anteriormente implementadas e concebendo um dispositivo robusto e fiável que irá
afirmar este novo conceito de reabilitação.

A presente dissertação de mestrado, no âmbito da robótica de reabilitação, descreve
o design e implementação de uma arquitetura de sistema para o Adaptive System
Behavior Group Project Star (ASBGo*) . A implementação de uma arquitetura de sistema
unificada e modular envolve o desenvolvimento de componentes de software, hardware
eletrónico e modificações eletromecânicas necessárias à sua implementação. Este novo
protótipo consiste numa melhoria avançada de todas as versões anteriores do ASBGo
no qual as soluções vigorosas e acessı́veis implementadas providenciam meios para

desenvolvimento futuro e usabilidade.

Inicialmente, foi realizada a contextualização no projeto que incluiu uma breve
pesquisa de plataformas de software robótico, a familiarização com os diferentes
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protótipos ASBGo e o estudo das melhores soluções para a conceção da arquitetura
do sistema.

Seguindo uma estratégia Top-Down, o plano de trabalhos foi estabelecido tendo em
conta considerações para o design e implementação de uma arquitetura de sistema
unificada: definição das principais funcionalidades e comportamentos do protótipo e,
concomitantemente, as estratégias a ser seguidas no desenvolvimento eletromecânico,
de hardware e de software.

Doravante, a fase de desenvolvimento foi acompanhada por uma metodologia de
Hardware-Software co-design. Esta estratégia assegurou a concordância entre o design e
a implementação de circuitos eletrónicos e elétricos e todos os requisitos do sistema
garantindo desta forma, trade-offs, robustez e segurança.

Durante todo o processo de desenvolvimento, validações do sistema foram
constantemente realizadas, sendo que no final testes intensivos ao produto final foram
executados em laboratório com a intervenção dos colegas do grupo ASBG .
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1

I N T R O D U C T I O N

This dissertation, framed in the Master’s Degree in Industrial Electronics and
Computers Engineering, branches of Robotics and Embedded Systems, presents the
work developed during the past year in Adaptive System Behavior Group (ASBG) of the
Departamento de Eletrónica Industrial (DEI) , in Universidade do Minho (UM) .

In the past years, the Adaptive System Behavior Group Project (ASBGo) was renowned
as one of the best technological and innovating portuguese research projects in the
rehabilitation field (Mediacode, 2017). This research already counts with a first
rudimentary prototype (Prototype I), a second prototype that was pioneer in clinical
environment (Prototype II), a third device that stated the ASBGo ’s value in the assisted
gait training (Adaptive System Behavior Group Project Prototype III (ASBGo III) ), and a
more recent version that remains incomplete despite its improvements and clinical
validations (Adaptive System Behavior Group Project Plus Plus (ASBGo++) ). Although
ASBGo worth has been proved undergo rehabilitation sessions of ataxic patients in
Hospital de Braga, it is now time to go further and render these proof-of-concept
devices in a final improved and mature version that excludes the academic solutions
used for primary implementation and conceptual validation.

This project, addressed to rehabilitation robotics, describes the development of a
new system architecture for the Adaptive System Behavior Group Project Star (ASBGo*) .
This new prototype will be an upgrade of the four previous versions of the ASBGo
smart walkers, coupling several sensors and functionalities of each version. Therefore,
the main goals of this dissertation are the design and implementation of a unified
modular system architecture by developing software components, electronic hardware
and electromechanical modifications required to its implementation, ensuring robust
and user-friendly solutions, in order to engineer a trustworthy device that will
establish a new rehabilitation concept.
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Chapter 1. introduction

1.1 motivations , scope and problem statement

Weakness, mobility and balance problems are some of the obstacles that most
certainly will go along with the last period of life, the old age. Also, those difficulties
can strike young lives due to gait abnormalities resulted from degenerative diseases
or even accidents. To patients with high motor deficit, traditional methods, such as
wheelchairs, are usually prescribed. In this specific case, the use of an assistive device
that do not promotes the patient’s recovery will eventually lead him to a restrict
daily life as well as a notable loss of motor skills. Conventional walkers are also a
typical option that presents some rehabilitation potential in contrast with wheelchairs.
Nonetheless, for a certain number of patients, this kind of devices are set aside due
to handling difficulties, unsuitability and lack of security. This way, introducing a
motorized assistive device in a patient’s rehabilitation can promote gait training with
constant assistance and without much effort. This leads the patient to focus more
in the self correction of his motor function and also to a substantial increase of his
confidence.

With previous questions in mind, the ASBG decided to develop a motorized
smart walker capable of adapting to the needs of its users. From that initial intent,
some prototypes were developed, and the last one, the ASBGo++ smart walker, has
already proved its worth in clinical rehabilitation. This device allows monitoring
user’s gait and posture in real time, promoting self-correction through the biofeedback
strategies implemented, and performs an objective measurement of some physical
parameters which enables a reliable assessment of a patient’s evolution. However,
due to the varied academic solutions that it is made of and due to the incomplete
development, the ASBGo++ prototype works only as prof-of-concept and requires an
electromechanical update in order to became a robust and trustworthy device.

The integration of embedded sensors, even those that are not actually coupled in
ASBGo++ but are important in the gait rehabilitation, the development of a modular
software architecture capable of merge all the different algorithms, which will assure
the device’s autonomy and enhance the user’s monitoring and assessment, and the
implementation of user-friendly and robust solutions capable of working without
failure are next steps to reach.
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1.2 overview of the research

In the last years, the functionalities of the ASBGo smart walkers were validated in
medical environment at Hospital de Braga. The assortment of study cases in which
the ASBGo has been involved proved the large spectrum of applications of this device
and the promising results achieved from this close partnership have keep the both
parts interested in innovating and improving this research.

In order to render the ASBGo++ smart walker into a multi functional rehabilitation
assistive device, it is necessary to re-establish the electronic solutions of the prototype,
taking as main principles the high stability, the security, the easy usage and low
cognitive effort for the patient. As referenced before, the previous prototypes
developed by the group are prof-of-concepts and this master dissertation, focus on
the development of a new architecture, will gather electronic hardware and software
solutions to carry the ASBGo* prototype nearest of a final and marketable version.

The first step to be taken into account in this research is the contextualization in
the project. A brief study of robotic software platforms, the familiarity with the
several ASBGo prototypes and the research of the best solutions to design a system
architecture are included in this task.

Secondly, the work plan should be established bearing in mind the design of a global
system. This step embraces the definition of the main functionalities of the prototype
and, simultaneously, the strategies to be followed in the hardware, electromechanical
and software development.

Hereinafter, the development stage should be conducted. In this phase it
is extremely important to respect a Hardware-Software co-design methodology.
Moreover, the design and implementation of electronic and electric circuits should
be in agreement with all system requirements guaranteeing trade-offs, robustness and
safety.

Finally, the validation of the system is performed alongside with its gradual
development. It is expected the execution of exhaustive tests, in the laboratory, trying
to cover every possible configuration of the device. The experimentations will be
conducted by the developer as well as by other members of the ASBGo group.
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1.2.1 Methodological considerations

Over the past years, the ASBG team integrated miscellaneous specialized students
who contributed to the emergence of the several functionalities of the ASBGo
prototypes. This foremost work was extremely important because resulted in the
definition of features that a smart walker should integrate in order to became an
exclusive assistance device capable of promote individualized gait trainings, raising
the concept of physical rehabilitation. In fact, the features that have been classified
by the group as important to motor function reestablishment, have been developed,
implemented, tested and validated in clinical environment. Simultaneously, those
that received medical approval, were chosen to be integrated in a final version of the
device. On the other hand, the fact that they were developed by a different person
with a proof-of-concept intention, created, in some cases, software incompatibilities.
Thus, the first methodological consideration to be take into account is to follow a
Top-Down strategy where a global and unify system is developed from root that,
besides allowing to join various algorithms previously developed, can be expanded
in the future with new features. This forces the re-implementation of all functional
requirements, specifying the behaviours and/or functions of the system.

The second strategy is linked to the first consideration. If, at first sight, the software
compatibility is the hurdle that disables gather all the features, also the compatibility
between physical hardware and electronics is a challenge. In order to build a highly
technological device that assures safety in its use, it is necessary to reinvent all the
electronics, fostering strategies and solutions that allow it to work without failure.
Thus, it is crucial to discard all the academic solutions that compose the current version
(ASBGo++ prototype) and design a new robust system.

Due to the countless sensors that will be embedded in the system and to its inherent
complexity, it should be followed a Hardware-Software Co-design methodology.
In contrast to ordinary approaches, on whose the specification and design of
hardware/software occurs separately, this methodology defines the system-level
objectives by the analysis of trade-offs between hardware and software simultaneously.

Finally, the involvement of mechanical experts will enable to carry out the
mechanical modifications required to assemble the new prototype and the close
partnership with Hospital de Braga will ensure future validations in clinical
environment.
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1.2.2 Goals and research questions

This dissertation is framed in the development of a soft real-time system architecture
for the ASBGo* smart walker. To accomplish this main objective the following goals
have to be achieved:

Goal 1: Conduct a review of previous versions of the ASBGo smart walkers. An
extensive survey about functionalities, mechanical structures, hardware, software and
electronic solutions will enable the contextualization in this project.

Goal 2: After the understanding of the problem, the expected behaviour of the
system and its functionalities will be settled up. Here, the features and requirements
defined in Goal 1 should be included.

Goal 3: Study the most common robotic software platforms and choose a framework
suitable to the development of the system with the characteristics presented in Goal 2,
defining also the methodological strategy that should be followed in the design and
development process.

Goal 4: Design the new system architecture and planing the development phase.
This task covers the conceptual development of all the system, which includes sensors
data acquisition, communication protocols between processing units, security and
safety methodologies, locomotion of the robot and human-machine interface.

Goal 5: Specification of the appropriated material to build the new architecture
(including hardware selection since basic sensors to processing units, power supplies,
cables and electronic components to create protection circuits), ensuring completely
compatibility between them. Since the majority of the material is not available and it
will be purchased, the compatibility is a crucial demand.

Goal 6: Implementation of real-time sensors data acquisition, locomotion of the
robot and human-machine interfaces. The data acquisition will dispose all the sensors’
data embedded in the system, enabling a low level abstraction easing future algorithm
expansion.
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Goal 7: Perform unit tests to each implemented functionality and global validation
of the system in the lab station. The global validation will also be performed by other
members of the group, in order to improve details in the human-machine interface.

Goal 8: Documentation of all the work developed. It will detail all the research
made and the tools used, the analysis of the problem, the design and implementation
of the final system, the final results mentioning the achievements, failures and
conclusions and a configuration/user manual of the ASBGo* smart walker.

The following research questions (RQ) are expected to be answered:

RQ1: How many ASBGo prototypes exist, what functionalities they have and how
their hardware and software solutions are implemented ?

RQ2: What are the main goals and the requirements that the new prototype should
fulfill, in terms of behaviour and features ?

RQ3: What is the most proper robotic software platform to develop the new system
architecture and what strategy should be followed to engineering it ?

RQ4: In how many conceptual blocks the system will be organized and how can
they be specified ?

RQ5: What material had to be acquired and/or purchased to develop the new
system architecture ?

RQ6: Does the mechanical structure requires physical modifications ?

RQ7: The implemented solution was successfully validated and responds to all the
demands that were initially proposed ?

RQ8: What are the next steps that should be taken and what future work
possibilities are available in order to improve the developed system ?
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1.3 contributions to knowledge

Linked to the development of a new system architecture for the ASBGo* smart
walker, this project covers distinct layers of work. The following statements list the
main contributions of this Thesis:

• Design a suited system architecture for the ASBGo* smart walker, reinventing
the several individual solutions of previous prototypes through the development
of a modular and robust device, discarding the academic approaches that the
previous systems are made off.

• Through the accurate hardware development and the implementation of a
modular software architecture, the failure risk of the device is reduced,
increasing the security of use by patients in clinical environment and its usability
in general terms.

• The new modular architecture, which includes gathering and embedding all
sensors of the previous versions and dispose the data collected in a high level
layer, eases the access to those sensors’ information and so, allows to explore
new algorithms in order to expand and/or optimize the functionalities of the
device.

• The development of a dedicate human-machine interface for the ASBGo* smart
walker, through which all the interaction between the users and the system
is accomplished, forces the inclusion of future application-level features in the
dedicated interface.

1.4 thesis outline

This document is organized in six chapters: Chapter 1 clarifies the main theme of
this thesis revealing also the methods to strike the proposed problem, the fundamental
goals, research questions and contributions to knowledge. Chapter 2 focus on the
presentation of some theory related to robotic software platforms highlighting the
Robot Operating System (ROS) and devices that use that platform. Chapter 3 introduces
the history of the ASBGo by presenting the mission and ideas of the project. Also, all
the previous versions are detailed. In Chapter 4 is described all the development
process that led to the creation of the ASBGo* . The final result is revealed in

7



Chapter 1. introduction

the Chapter 5 as well as different tests performed in the new device. Finally, the
conclusions and potential future work for the new device are covered in Chapter 6.
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2

L I T E R AT U R E R E V I E W

The aim of this dissertation is the software and hardware development thus creating
a new version of the ASBGo . Hence, this chapter explores literature related to robots
development, more specifically, assistive robots and algorithms and tools that ease the
robots’ software development.

First, it will be analyzed current platforms for robotics software development in
order to know its characteristics and in which way they can help developers. Despite
not being extremely necessary the use of such tools, it will be seen that they can offer
a number of considerable advantages, like develop robots in standard patterns, which
contributes to software reusability. Also, it will be seen that each presented framework
has its own main use-case and so, this analysis will enable a sure decision about which
one will fit in this project and why not use the others.

Secondly, exploring real assistive devices based on robotic software platforms,
allows to define some conclusions and consider ideas and solutions based on those
type of systems.

2.1 robotics software platforms

It is noticeable a continuous growth in the number of complex applications that rely
on the processing of huge amount of data perceived from different sensors. Some
applications like domotics, medicals and entertainment applications use multi-modal
sensed data to extract environmental information and act accordingly. From the
software engineering point of view, systems with a high level of complexity arouse
many challenges (Ando and Kuffner, 2012). This way, the use of frameworks allows to
simplify such complex scenarios by increasing the efficiency of creating new software
improving develop productivity, quality, reliability, modularity and robustness of new
software. Despite the differences, robots also share some functionalities at some point
and so, the use of software frameworks for robots development is ”a must”.
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Some tools cannot only be considered frameworks, which offer simulation and
debugging tools, compilers, core libraries and API’s, but they can also act as a
middleware layer focusing on some complex functionalities like a messaging passing
infrastructure between processes. Platforms can be designed for a particular purpose:
either to respond to perceived weaknesses of other frameworks or to emphasize
aspects that are considered essential during the design process of a certain system
(Serrano).

Figure 1: YARP logo (YARP, 2016a).

Mainly used in humanoid robotics,
Yet Another Robot Platform (YARP) is
an open-source framework that wraps
a set of libraries, protocols and tools
to keep modules and devices properly
decoupled. It minimizes the effort devoted
to infrastructure-level software development by facilitating code reuse, modularity
and so, maximize research-level development and collaboration. YARP attempts
to make robot software more stable and long-lasting, without compromising the
ability to constantly change sensors, actuators, processors, and networks. It helps to
organize communication between sensors, processors, and actuators, by encouraging
the promotion of loose coupling, easing the gradual system evolution. YARP is not
an operating system and it has no desire to be in control of the developer’s system,
being then, a reluctant middleware layer (YARP, 2016b; Tsardoulias et al., 2013; Metta
et al., 2006).

Its components are (YARP, 2016b):

• libYARP OS - is the core component of YARP . Interfaces with the operating
system(s) to support easy streaming of data across many threads in different
machines. Being written almost entirely in C++, YARP is also written to be
Operating System (OS) neutral, and it is used on Linux, Microsoft Windows,
Apple macOS and iOS, Solaris, and Android.

• libYARP sig - performs signal processing tasks in an open manner and it is easily
interfaced with other commonly used libraries, like Open Source Computer Vision
(OpenCV) .

• libYARP dev - interfaces with common devices used in robotics such as motors
controllers, boards, cameras and more.
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Concluding, the main features of YARP include support for inter-process
communication, image processing and a class hierarchy to ease code reuse across
different hardware platforms (Metta et al., 2006).

Another appealing project, known as Open RObot COntrol Software (OROCOS)
(see figure 2), aims the development of a modular, general-purpose, open-source
framework for robot’s control. It is supported by different OS ’s such as Linux,
Windows and macOS (OROCOS, 2016b).

Figure 2: OROCOS project and logo (OROCOS, 2016a).

Consists in four C++ libraries (OROCOS, 2016b; Rutgeerts, 2007):

• The Real-Time Toolkit (RTT) provides the infrastructure and the functionalities to
build real-time robotic applications in C++.

• The Orocos Components Library (OCL) provides some ready-to-use control
components built using the RTT .

• The Kinematics and Dynamics Library (KDL) is a C++ library which provides
support for robot (or general systems) kinematics and dynamics.
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• The Bayesian Filtering Library (BFL) is an application independent framework for
inference in recursive information processing and estimation algorithms based
on Bayes’ rule. Includes support for different Kalman variants, particle filters
and it is easily extensible to include other Bayesian methods.

OROCOS applications are composed of software components, which form an
application specific network. When using OROCOS , it is possible to use predefined
components, contributed by the community, or build components. A single
component may be capable of controlling a whole machine, or may be focused on
a small part in the whole network of components, for example a component focused
on signal filtering.

Figure 3: OROCOS RTT overview.

The components are built with the RTT (see figure 3) and can optionally make use of
any other library (like a vision or kinematics toolkit). Most users interface components
through their eXtensible Markup Language (XML) properties or command/method
interface in order to configure their applications. Even so, there are five distinct ways
in which an OROCOS component can be interfaced: through its (1) properties -
run-time modifiable parameters, stored in XML files; (2) events - functions that are
executed when a change in the system occurs; (3) methods - which are callable by
other components to output a result immediately, just like a C language function; (4)
commands - sent by other components to instruct the receiver to ’reach a goal’; (5)
data flow ports - thread-safe data transport mechanism to exchange data between
components. OROCOS allows to write hierarchical state machines using these
primitives. This is the way of defining the application specific logic. State machines
can be loaded/unloaded at runtime in any component (OROCOS, 2016b).

The frameworks presented are some of the major ”competitors” of a third one that
is about to be presented. Known as ROS , this robotic platform stands out in some
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positive aspects like its inter-platform operability, its inference to a modular software
development and more reasons that will be detailed next. Also, by the fact that
ROS is being increasingly adopted by research groups, commercial companies and
governmental organizations, encourages the will to learn and to use such platform.

2.2 ros - robot operating system

Figure 4: ROS logo (ROS, 2016b).

ROS is an open-source framework for writing
robot software. It is a collection of tools, libraries,
and conventions that aim to simplify the task of
creating complex and robust robot behavior (ROS,
2016a). Provides various features such as message
passing, distributed computing, code reusing, and so on. The project started in 2007

by Morgan Quigley as part of the Stanford Artificial Intelligence Robot (STAIR) project
but the main development happened at Willow Garage (see www.willowgarage.com/)
(Joseph, 2015).

The ROS community is growing very fast, having many users and developers
worldwide (see https://vimeo.com/146183080). Most of high-end robotics
companies are now porting their software to ROS . This way, the increase of ROS
-based applications can generate a lot of job opportunities in industrial robotics field.
Also, the impact of this platform in the field shows that the knowledge in ROS will
be an essential requirement for a robotic engineer (Joseph, 2015).

Contrarily to what the name suggest, ROS is not an operating system. It runs
on Unix-based platforms, primarily tested in Ubuntu, and so, it is considered a
meta-operating system meaning that it provides some of the services of a full operating
system (Joseph, 2015; Thomas, 2016).

Why ROS ? The pros and cons

The ROS platform is preferable because (see figure 5) (Joseph, 2015):

• It comes with ready-to-use functionalities that are totally configurable, have clear
interfaces and can easily be integrated in a robot software. Besides being well
documented, those capabilities are also very well implemented and validated.
Autonomous navigation, which contains motion planning, obstacle avoidance
and many other algorithms, is an example of a high-end capability to be added
to mobile robots.
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• Contains many simulation, debugging and visualization tools.

• It wraps device drivers for many sensors and actuators, easing the task to
interface such components.

• It is composed by a message-passing middleware that allows the communication
between different ROS processes called nodes. This processes can be
programmed in any language supported by ROS like C, C++, Python or Java.

• It respects the development of software in blocks i.e. in different modules. The
software becomes more comprehensible, more logic and most of all, since the
processes (modules) are separated with clear interfaces, if one fails, the system
can still run and not crash. This way, robustness is introduce in the system.

• Incorporates a concurrent resource handling mechanism allowing any number
of ROS processes to consume a certain resource, like a sensor data, when it is
available and perform a particular functionality. Thus, the complexity is reduced
and it gets easier to debug the application.

• It has an active community to support any possible doubt. Through the web
portal (see http://answers.ros.org), ROS users exchange ideas, questions and
answers. Also, the ROS wiki website (see http://wiki.ros.org/) collects a
vast documentation about practically everything that involves ROS and collects
a considerable number of tutorials.

Figure 5: ROS equation (ROS, 2016a).

The ROS platform is sometimes avoided because (Joseph, 2015):

1. It needs a operating system to run.

2. It do not ensure real-time constraints. For hard real-time systems, where it is
imperative to meet strict deadlines, ROS is not advised because all the overhead
and latency that exits in it can compromise the system’s time constraints.
However, ROS tries its best to meet the deadlines of the system.
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ROS file system level

Like in an operating system, the ROS file system is organized in a particular way.
This characteristic confers to it a standard style of software development. The ROS
files and folders are hierarchically organized as follows (Joseph, 2015; Martinez, 2016a):

1. Meta packages - is a term used to refer to a group of packages with a specific
purpose. One example is the navigation meta package which contains a set
of packages that contributes for that purpose. It contains the amcl package (a
probabilistic localization system for the robot), the path planner package (plans a
path for the robot) and so on.

a) Packages - are considered the basic unit of the ROS software. It gathers
the ROS runtime processes, libraries, configuration files, build file and
many more elements. Not all the following components are mandatory
in a package. So, a typical structure of a ROS package is (follow turtlesim
package’s example in figure 6):

i. Includes (include folder) - gathers the header files and libraries necessary
in the package.

ii. Sources (src folder) - stores the source codes written in programming
languages compatible with ROS . The source codes can be future ROS
processes (nodes) or just auxiliary code.

iii. Scripts (scripts folder) - executable scripts that contain relevant
commands to automate certain tasks for the package.

iv. Launch files (launch folder) - keeps the launch files that are used, for
example, to launch one or more ROS processes of the package or to
define important parameters for those processes.

v. Messages (msg folder) - contains the ROS messages files (more detail in
2.2 - ROS implementation concepts).

vi. Services (srv folder) - contains the ROS services files (more detail in 2.2
- ROS implementation concepts).

vii. Package.xml - XML file that defines properties about the package such
as the package name, authors, maintainers, and dependencies on other
packages.

viii. CMakeLists.txt - CMake file that manages the build process for the
package.
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Figure 6: Typical ROS package (Martinez, 2016b).

There are bash commands to create, modify and work with these packages. Also,
ROS provides a package with bash-like commands, called rosbash, used to navigate
and manipulate ROS packages.

ROS implementation concepts

A system built using ROS consists in a network of processes, in one or more
hosts, connected at runtime. That being said, to understand this level of operation
of ROS , the following fundamental concepts must be taken into account (Joseph, 2015;
Martinez, 2016a):

• Nodes - are the processes that perform computation. Since ROS was designed
to be modular, a typical ROS node can be considered a software module that
performs a certain task, for example, acquire the data from a sensor. This
way, the aim of the nodes is to build simple processes, with communication
interfaces to exchange data with each other, rather than a large process with all
the functionality. Also, a system granulated in nodes eases the process of unitary
debug.

• Messages - are typed data structure used by nodes to communicate with each
other. It supports primitive types like integers, booleans, floating points and
many more as well as arrays of those types. Also, messages can contain other
messages and arrays of them.

• Topics - are containers, with a unique name, that transports messages. In
one hand, a node sends messages (data) by publishing it to a topic and in
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the other hand, a node interested in a certain kind of data must subscribe
to the appropriate topic. There may be multiple concomitant publishers and
subscribers for a single topic as well as a single node may publish and/or
subscribe to multiple topics. The production and consumption of information
are decoupled meaning that publishers and subscribers are not aware of each
others’ existence. When created, a topic must have a message type associated
and the nodes that access to it, must respect that type.

• Services - are used for a request/response interaction between nodes. For
some ROS nodes, synchronous transactions are more appropriated and so, the
publish/subscribe model is not enough. This way, there will be a client node
that sends request messages to a server node that provides a certain service and
responds back with a result. While the server performs the service, the client
waits for the response.

• Master - The ROS master is the crucial element of the system. The master
provides a name registration and a lookup mechanism that allows the nodes
to exchange messages or invoke services. So, in a certain robot (or a general
system) using ROS , the master must be running in the computer system.

Working with ROS

An example of a simple application using ROS will be presented. Some concepts
addressed in 2.2 - ROS implementation concepts will be used. So, the simple application
follows the idea presented in figure 7.

Figure 7: Simple application blocks.

The node1 in figure 7 is our publisher node, called camera acquisition node. It
will acquire the data from a camera and it will publish the data in a topic called
camera frames. In the other side, the node2 will subscribe to that topic and so, when

17



Chapter 2. literature review

a message is available in the topic, the processing node (our node2) will consume the
information and for example, process the current camera frame with a computer vision
algorithm. The type of the message of the topic must be of an image type of ROS .

Figure 8: Simple application blocks - extended.

Now, as it can be seen in figure 8, if we want to add a new process (a new ROS node)
to perform another task, it is possible and quite trivial. We added the node3, called
display image, which also subscribes from the camera frames topic and just displays the
camera images on a screen. So, we can have as many processes as we want that
consume the data from a camera and execute independent tasks.

2.3 ros-based assistive devices

Given the assistive nature of the ASBGo and taking in advantage the study of the
ROS platform in 2.2, some examples of assistive robots built with the support of ROS
are detailed next. These assistive systems can sense, process sensory information and

then perform actions that benefit people with disabilities and people of the older age
group. Some are designed to provide a certain kind of diagnostic (measurement and
assessment), others for therapeutic benefit (improvement of a certain body function)
and some uses both purposes.

Studying ROS -based assistive devices allows to acquire some architectural, design
and implementation ideas and/or solutions that could be helpful for the development
journey. The following presentations cover a simple overview of the device, giving a
highlight over the ROS concepts and the architectural aspects of the system.
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SmartWalker: an intelligent robotic walker (Shin et al., 2016)

SmartWalker (figure 9) is a robotic walker, consisting in a high-tech extension of a
regular walker, equipped with sensors and actuators. It as two modes of operation:
the autonomous and assistive mode.

Figure 9: SmartWalker.

In the autonomous mode, the SmartWalker can receive user commands through
its real-time gesture-based user interface and navigate around the environment
accordingly. The underlying algorithm uses a k-Nearest Neighbors (k-NN) classifier
with Dynamic Time Warping (DTW) to classify gestures. As people can unintentionally
make gestures similar to the commands, the interface has also the ability to ignore
unintentional gestures by detecting the users’ attention along with the gesture
recognition.

In the assistive mode, it is not required to push the walker. The device supports
the user by detecting the legs and by controlling the speed according to the walking
speed and the ground inclination. The walking speed is computed by detecting the leg
movements using a laser range scanner and by combining this information with the
ground inclination and the state of brakes in the controller, resulting in the appropriate
speed for the walker.

The SmartWalker is composed of a walker frame enhanced with sensors, actuators,
and appropriate software:

• As to the hardware:

The walker consists of a normal walking frame, two hub engines, a laser range
scanner, an inclinometer, and a rotatable camera. The front wheel has no motor,
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conferring stability and maneuverability to the device. The rear wheels are
powered by electrical bike motors. Each hub engine, located at the rear wheels,
contains a Hall effect sensor for measuring the rotational speed of the each
wheel. The laser range scanner, at the bottom center of the walker, is used
for obstacle avoidance; the inclinometer, on top of the scanner, measures the
pitch of the ground; and the Red, Green and Blue - Depth (RGB-D) camera, which
is attached to a motor for 360°rotation and placed below the handlebar, is for
gesture recognition. The camera has an operation range of 0.8 to 3.5 meters and
works indoors only.

The SmartWalker has two processing units connected via a local network. The first
one, a tablet-PC, provides a touch user graphical application (see figure 10) and
is where most of the computation is running. The second device is a BeagleBone
Black 5 Single Board Computer (SBC) used for message passing between the tablet
and the sensors/actuators.

Figure 10: SmartWalker graphical user interface.

• As to the software:

The software is distributed between the tablet-PC and the SBC . In the tablet
runs the main control application and the gesture recognition module, whereas
the BeagleBone acquires raw data from the sensors and also receives commands
from the tablet to enable the actuators.

As it can be seen in the figure 11, in the tablet-PC runs the main control
application developed in another robotics programming framework, Roboscoop
(Rusakov et al., 2014). In the main processing unit also runs a ROS node,
written in C++, responsible for the gesture recognition functionality that uses
image processing libraries from ROS . The communication between these two
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Figure 11: SmartWalker software distribution.

processes (ROS node and main control application) is made through Inter-Process
Communication (IPC) .

In the SBC , it run ROS nodes that: manage data/commands between the
Tablet-PC and the SBC , acquire the sensors’ data and control the speed of the
motors. The communication between the two processing units is accomplished
through the use of a network communication provided by ROS .

Smart walker with navigation features for blind people

Another smart walker (figure 12), work of Wachaja et al. (2014), provides different
navigation capabilities to assist blind people with or without walking disabilities.

Figure 12: The walker.

The system consists in an off-the-shell walker, adapted with sensors and
data-processing capabilities. The walker was developed in a modular fashion allowing
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the easy integration of the sensing and processing unit in other walker brands. ROS
was used to simplify, by the use of existing and available modules, and also to increase
the software flexibility.

Following figure 13, the walker includes two planar laser range finders, one to
calculate the egomotion by laser scan matching and the other, continuously tilted by
a servo motor, senses the three-dimensional environment. By fusing the egomotion
estimation with the measurements of the second scanner it is possible to obtain a
dense three-dimensional point cloud i.e. a surface of the environment. An approach
that enhanced the terrain classifiers from robotics was developed allowing to detect
hazardous obstacles from the point cloud.

Figure 13: Simple system architecture of the smart walker.

The distances to nearby obstacles are computed by fusing traversability information
from the classifier and the data from the fixed laser. The information is then relayed
to a vibration belt via bluetooth. The belt comprises five vibration motors evenly
distributed and provides an haptic feedback to the user. Obstacle distances are
encoded with Pulse-Frequency Modulation (PFM) meaning that closer objects result
in the respective motor vibrating with a higher repetition rate.

Continuing the software to be based on the ROS framework, another functionality
was developed for this same smart walker (Wachaja et al., 2015). The device uses the
same sensors, the laser range finders, and vibration motors in the walker’s handles for
vibrotactile feedback are added. The processes of terrain classification and obstacle
detection presented in the previous functionality remain, but now, it is used publicly
available ROS modules for path planning based on the Dijkstra algorithm - an
algorithm which detects the shortest path between nodes in a graph. The path planner
considers a map as well as the eventual obstacles. The map is created beforehand with
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Simultaneous Localization and Mapping (SLAM) algorithm also being able to perform
this process and the path planning in parallel.

Figure 14: Test environment (left) and the corresponding map with planned paths (right).

The controller module on the system guides the user through the environment with
for vibration signals generated by the vibration motors on the handles: go straight,
turn left, turn right and goal reached. Each signal is repeated continuously until it is
overwritten by another one. This functionality eases the life of individuals with visual
impairment allowing their safe navigation in an environment.

Essex Wheelchair - a ROS-Based Multi-sensor Navigation of Intelligent Wheelchair

This project presents a ROS -based multi-sensor navigation for an intelligent
wheelchair (see figure 15) that can help the elderly and disabled people (Li et al.,
2013).

Figure 15: Essex wheelchair.

As to the system architecture (see figure 16):

• A commercial powered wheelchair is equipped with embedded computers,
control electronics, wireless networks and multiple sensors such as: optical
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odometry encoders, two laser scanners, 12 sonar sensors, a 9Degrees of Freedom
(DOF) Inertial Measurement Unit (IMU) , a camera, a microphone and a Global
Positioning System (GPS) .

• A low level controller, installed on the embedded computer running Linux,
provides interfaces to sensors and motor actuators. A server process running
at the same embedded computer publishes sensor data and subscribes to
commands for the motors’ actuation. Unified data type, data structure of sensors
information and actuator commands are defined inside. Also, serial boot-loaders
have been installed in the modules with the embedded computer to facilitate
future development.

• On the high level controller, a ROS based system is developed, consisting in
the client. It provides autonomous navigation and an interaction interface. The
Human-Machine Interface (HMI) bridge allows the users to actuate the navigation
by the interface according to their preference.

Figure 16: System architecture of Essex.

As to the wheelchair navigation system:

• As previously referred, the infrastructure of the wheelchair control system is
based on ROS . Also, the navigation system is based on the ROS navigation
stack. So, through a communication node, sensor data is sent from the low level
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controller to the high level controller. The sensor data is represented as a sensor
message of ROS .

• Once the sensor message and transformation message, which represents the
transform between two coordinate frames in free space (Saito, 2016), are
published, another node generates the map for the navigation.

• Having the map, a planner and action node use specific messages to compute a
trajectory, and then, motion control can be applied.

• A motor drive node subscribes to velocity messages, broken into linear and
angular parts. Motors commands are generated, published through the
communication node and consumed in the low level control for the motors’
actuation.
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A S B G P R O J E C T

The ASBGo started in 2011 when the first smart walker of the group born (Martins,
2011). Since then, several prototypes were developed in order to achieve a motorized
assistive device capable of improve the physical condition of real patients (see figure
17) (Martins, 2016; Alves, 2016; Caetano, 2017).

(a) (b) (c) (d)

Figure 17: Evolution of ASBGo prototypes: (a) Prototype I; (b) Prototype II; (c) ASBGo III ; (d)
ASBGo++ .

This chapter introduces the ASBGo , highlighting the main goals of the group
project and the prototypes that resulted from the continuous research. Note that
each prototype has a distinguish nomenclature and so, it is advised to memorize their
names in order to avoid getting lost during the explanation of the project.

3.1 what? to what? and how?

The easiest way to understand a project is responding to three simple questions:
”What? To what? and How?”. The ”What?” is the main goal of a project and can be
defined as its mission. ”To what?” defines the future application context, which means,

27



Chapter 3. asbg project

the vision of the project. The resources used to accomplish the project answer to the
question ”How?” and are defined as its values.

Following the previous logic, it can be affirmed that the ASBGo was born with the
aim of create a four-wheeled motorized smart walker to define a new rehabilitation
concept. Through a multidisciplinary team that involves partnerships between UM ,
Orthos XXI and Hospital de Braga, the group intents to improve the quality of life of
patients with motor and balance disorders.

As previous referred to in section 1.1 - Motivations, scope and problem statement, the
ASBG decided to develop a motorized smart walker capable of adapting to the needs
of its users. The desire to engineer an assisted device that can promote physical
rehabilitation and, on the other hand, retard the loss of motor function, is related to
the increasing number of people with motor disorders caused by age and/or specific
pathologies, such as ataxia. In order to accomplish it, the group kept the focus in the
main characteristics presented in a row, whom distinguish the ASBG smart walkers
from the other walkers commonly used as assistive devices:

1. Present a locomotion with constant linear velocity, which allows the users to
conduct their efforts only in the cyclic gait training and not in the movement of
the walkers (Martins et al., 2015);

2. Reflex the user’s intentions in their behavior since they can be driven through
a handlebar with sensors, promoting multitasking gait training and user’s
independence (Martins et al., 2013b, 2014d);

3. Present high physical support provided by a table which can sustain the major
part of the user’s weight, increasing the secure sensation and reducing the fall
risk (Rodrigues, 2014);

4. Integrate a set of sensors that allow to monitor the users’ gait performance
and assess the surrounding environment, giving biofeedback to the patient and
enabling autonomous behaviour in risk situations (Martins, 2016).

3.2 asbgo prototypes

In order to completely understand the ASBGo and, in specific, each one of its
prototypes, it was revised chronologically (see figure 18) the improvements made in
each version, summarized the relevant characteristics that distinguish them from each
other and research topics that the group has covered in the past years.
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Figure 18: Chronological representation of the ASBGo research work (Rodrigues, 2014;
Martins, 2016; Alves, 2016; Caetano, 2017).
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3.2.1 Prototype I

In 2011, a conventional four-wheeled walker, not motorized, supplied by Orthos XXI
was adapted and transformed in the first prototype of the group. The Prototype I was
developed only as a proof-of-concept with the intention to verify the requirements and
functionalities that a smart walker should embrace. Thus, its heavy and rudimental
structure, made of iron materials, is not detailed in this summary (Martins, 2016).

The main functionalities of this prototype were: the detection of user’s drive
intentions through an angular potentiometer and a joystick settled in the handlebar;
the locomotion of the robot, through the use of two motors and a system of pulleys
and belts for each wheel, according to user’s commands; the measurement of the
user’s proximity through an Infrared Distance Sensor (IR) sensor placed bellow the
handlebar pointed to the user; and the measurement of the user’s support in the
walker obtained by two load cells placed in each one of the forearm-support (Martins,
2016, 2011; Martins et al., 2014c).

It should be noticed that the strategy of driven control used did not satisfied the
group, since the behaviour of the robot presented hysteresis and delay. Moreover, the
information collected from the IR sensor and from the load cells was not electronically
linked to the robot system or between each other. Although it could be acquired, it
required post signal processing, and there was no way to cross-linking data, restriction
that is not relevant in an only proof-of-concept context.

3.2.2 Prototype II

The second prototype was designed mainly to rectify the mechanical, structural and
ergonomic problems of the Prototype I. Some requirements, as height adjustment, the
inclusion of a harness support, more comfortable forearm-supports and an improved
design, allowed the inclusion of the device in clinical environment, where it was tested
by some patients (Martins, 2016).

In clinical environment, the biggest constraint pointed to the device was the lack
sense of confidence and safety by the users. Moreover, the handicap in the individual
size adjustment decrease the usability of the walker. Thus, the improved mechanical
structure of Prototype II was not enough to give the patients the reliance and the
confort required to undergo gait training with a motorized smart walker (Martins,
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2016). However, the potentiality shown by this prototype as an assisted recover device
prompt the continuity research work in the ASBGo .

In terms of electronics, the motorized locomotion system remained the same but it
was directly coupled to the wheels of the walker and so, using a direct connection
it was possible to increase the torque of the wheels and save space. The joystick
was replaced by a linear potentiometer, improving the driven control strategy and
the behaviour of the device (Martins et al., 2014d, 2013a). The insertion of Ultrasonic
Range Finders (URFs) allowed to conduct the first proof-of-concept studies in obstacle
avoidance (Faria et al., 2014). Moreover, the user’s balance assessment was initialized
through the placement of accelerometers in the patient’s body, and a more complete
walker-assisted gait assessment method arisen from the use of IMU s in the patient
undergo rehabilitation (Tereso et al., 2014; Martins et al., 2014a).

3.2.3 ASBGo III

The ASBGo III may be considered the most important prototype of the group since
it gathered the main characteristics to be used in continuous clinical rehabilitation, as
happened over the past years (Martins et al., 2015).

The ASBGo III is recognized by a solid mechanical structure, suitable to majority
of the patient’s size, which includes a wooden table to provide support and safety
to the patient. It presents also a more attractive design and despite its poor and
academic electronic solutions (see figure 19b (Caetano, 2017)), its behaviour follows
the intentions of the user that are captured by a new handlebar. This new handlebar
also uses two potentiometers (an angular and a linear as well as Prototype II) but
it is characterized by an improved design which eases driving of the device. The
locomotion system is also the same of Prototype II but, the use of an Arduino to
interface the potentiometers and the motors’ drivers allowed the development of an
HMI to control the device remotely. However, it should be noticed the simplicity
of this HMI once it consisted in an executable file whose functionalities were only
define the velocities and send the directions for the robot’s locomotion. Also note
that the velocities are not defined in appropriated units (see figure 19a) (Caetano,
2017). Another usability restriction is related to the charge of the device. As it can be
visualized in figure 19c, the charging process makes use of an external setup that can
jeopardize the safety of the individual that is manipulating the system.
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Aside from its use in clinical environment, the ASBGo III enabled the expansion
of research work in feet pose estimation and legs tracking making use of an active
depth camera and a laser range finder, respectively (Page et al., 2015; Martins et al.,
2014b). Although very interesting algorithms have been developed, their employment
is conditioned by the post processing data required, which restricts its use. Moreover,
as previously happened with the sensors integrated in Prototype II, due to the lack of
a software architecture, there is no way to cross-linking data and use the information
of the several sensors together (Caetano, 2017).

(a)

(b) (c)

Figure 19: Details of ASBGo III : (a) HMI ; (b) Electronics; (c) Power supply charging.

3.2.4 ASBGo++

The ASBGo++ is the last version of the group and, although not finished, worked
as the basis for this master thesis. In its most recent research, the ASBGo worked in
the main goals presented in a row (Caetano, 2017; Alves, 2016):
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1. Review of all the functionalities of Prototype I, Prototype II and ASBGo III ,
summarising the sensors or devices required by each feature, respectively;

2. Placement in clinical environment and follow up several cases studies in
rehabilitation with ASBGo III , promoting the communication between ASBG
members, clinical team and patients;

3. Identification of electromechanical and software constraints of the ASBGo III
, settling the main requirements to produce a new improved prototype: the
ASBGo++ ;

4. Design of the mechanical structure of ASBGo++ and manufacture in enterprise
environment;

5. Development of high level applications that can be used by the medical team in
order to potentiate the use of the ASBGo++ in gait rehabilitation;

6. Validation, in clinical environment, of the new ASBGo++ handlebar and of
some applications developed, such as: lower limbs monitoring and biofeedback;
database of spatiotemporal gait parameters; and multitasking and reaction time
measurement.

The above list shows that the ASBGo++ is defined by an improved mechanical
structure and additional high level software features (Alves, 2016; Caetano, 2017).
However, the ASBGo++ is an unfinished prototype due to the absence of electronics as
well as lack of a defined system architecture (note that the development of electronics
was not enumerated above and neither any of the previous prototypes have a system
architecture).

The electrical and software requirements of ASBGo++ included the development of
a system architecture, embedding all the sensors used in previous prototypes and the
development of a modular software architecture in order to engineer a unified device
that correlate three main fields: hardware, low-level and hight-level software (Caetano,
2017). Thus, this master thesis arises to continue the work of this unfinished version,
fulfilling the electronic and electrical requirements previously identified and making
use of the mechanical structure of ASBGo++ (figure 20) to assemble a new prototype,
which will be called ASBGo* .
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(a)

(b) (c)

Figure 20: ASBGo++ : (a) new handlebar mounted in ASBGo III in order to validate its use
undergo gait training; (b) Posterior view; (c) Lateral view; (number description
available in Table 1) (Caetano, 2017).

Table 1: Mechanical supports and positions of the ASBGo++ ’s hardware components.

N° Description N° Description
1 Angular potentiometer 10 Laser
2 Linear potentiometer 11 DC Motor
3 Display 12 Safety brake
4 Camera support number 1 13 Height adjustment system
5 Handlebar (support and driving) 14 Camera support number 3

6 Handle grip (only for rear support) 15 External PC support
7 Infrared sensor 16 Enclosure (electronics)
8 Load cells 17 Ultrasonic range finders
9 Camera support number 2 18 Caster Wheels
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A S B G 0 * S M A RT WA L K E R : T H E N E W P R O T O T Y P E

To tackle unreliability, proof-of-concept implementations and architecturally poor
systems of all the previous prototypes, the ASBGo* arises. This new assistive device
takes the ASBGo to a new level in a way that future development follows now a
bright path. The good architectural design of the system and the solid software base
developed eases, to future developers, the task of implement, add, test and include
new features to enrich the new device.

Besides its robustness, the new prototype was developed to be used in clinical
environment and so, the easy usage and the accessibility were always a priority. That
being said, the ASBGo* is ready to be integrated in medical environment to help
patients to improve from their motor impairment and so, helping patients to recover
the joy and the confidence in their locomotion. The value of the device is also on the
fact that it supports the medical team during the rehabilitation process.

To achieve this new prototype, all the previous versions were studied and the
considerations addressed in the last version (the ASBGo++ ) were also taken into
account. From here, the new architecture started to be outlined. Gathering the
functional requirements for the new device, a conceptual model in blocks was
delineated to, in the end, obtain an idea and an overview of the global system. Being,
at first sight, the behavior and the functionalities analyzed and defined, the necessary
material was explored, specified and purchased. This is considered a crucial phase
where the most simple cable until the powerful processing unit must be reviewed
in detail in order to ensure compatibilities and performance so that, in the long run,
everything fits perfectly. Following a co-design method, hardware and software for the
ASBGo* was developed. Respecting the requirements defined, the proper electronic
and electric circuits were created and various software components, from a more
low-level to a more high-level layer, were also implemented. The software architecture
is built using ROS , a robotic software platform that given its generic nature, its
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tools, its inference on modular development, its documentation, its message-passing
infrastructure and its positive evolution, revealed to be an asset for the new system.
Also, during the development of the system’s architecture, mechanical modifications,
that were not predicted, were performed (presented in Chapter 5, subsection 5.1.1).

4.1 functional requirements of the system

From the study of the first three prototypes and given the considerations defined in
the last version, the ASBGo++ , it resulted the following functional requirements. So,
the system must:

1 Acquire data from a set of sensors in real-time. Updated information of the
sensors must be disposed, in specific units, in a high-level layer and must
be easily accessed in order to be developed/explored algorithms and software
features;

2. Monitor the battery’s voltage;

3. Freeze in case of critical battery;

4. Stop in case of emergency;

5. Move multi-directionally, more specifically, in eight directions;

6. Allow its locomotion through the use of the handlebar or the remote controller;

7. Control the velocity of its locomotion using a control algorithm;

8. Detect some possible errors (e.g. processing unit failure, motors errors);

9. Provide a local graphical user interface allowing the configuration and the use
of the device (e.g. perform rehabilitation sessions);

10. Present an embedded database containing the personal information of patients
as well as information about their sessions;

11. Store the information of the database in a personal cloud, enabling the access of
patients’ data through the personal desktops of the medical team;

12. Present an interactive game that allows multitasking gait training and detects the
reaction time of the patients undergo rehabilitation;
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13. Assess patient’s gait and posture, providing biofeedback;

14. Detect the distance between the device and the patient;

15. Monitor the support of the patients’ forearms in the smart walker’s support
table;

16. Compute and show the patient’s balance;

17. Present a safety mode for the locomotion.

18. Record videos of the patients’ gait and posture during a session;

19. Record several spatiotemporal parameters of a patient during a session;

20. Calculate its traveled distance;

21. Navigate autonomously to a point localized in a beforehand created map
avoiding possible obstacles;

22. Present a shared control navigation, where the drive intentions of the users and
the autonomous intentions of the system are taken into account to compute a
final locomotion command.

Besides the definition of several functionalities for the system, this thesis have kept
its focus in the complete implementation of the first nine requirements (colored),
which can be defined as the main ones, granting to the ASBGo* the ability to be used
in rehabilitation sessions and to be further improved. However, it should be noticed
that the sensors’ data acquisition component, from point 1, includes all the sensors,
even those that are not currently in use (IR sensor, URFs , load cells). All the sensors’
information is disposed, in its specific units, in a high level layer and so, ready to be
used in high level algorithms. For example, the distance between the walker and the
user is acquired by an IR sensor and its value, converted in centimeters, is dispose,
at a certain frequency, in the sensors values and infrared values topics of ROS . This
information can be used to detect the presence of a patient and then be included in
a safety control strategy. Likewise, the distance measured by each Ultrasonic Range
Finder (URF) is converted in centimeters and it is published in the sensors values
and urf values ROS topics created, which simplifies the implementation of a future
autonomous navigation algorithm. So, due to the methodology used, which covers
the complete development of electronics for all the sensors’ data acquisition, the good
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architectural design of the system and the solid software base, created the necessary
resources to implement all the other requirements listed above and even to expand the
list.

4.2 system overview

Being the functional requirements specified, a conceptual model of the new system
was created. Figure 21 shows the resulted system’s architecture overview, revealing
the different components of the ASBGo* (ElekTRICKS, 2016; Alves, 2016; SuportLaser,
2017; M, 2017; Beetronics, 2017; RobotShop, 2017; BestApplePrice, 2017; Millsaps,
2015).

Figure 21: ASBGo* system overview.

The system is composed by two processing units. The first one, Processing Unit 1
in figure 21, is considered the Main Controller of the system. Empowered with a great
processing capacity, this unit will perform heavy computation and in it, is where the
high-level software is developed and runs. That software is built using ROS and so,
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the OS installed in the Main Controller is the Ubuntu 14.04 distribution of the Linux
OS . The choice of a powerful on-board computer also allows to develop software, run
simulations and use computationally intensive programs and tools easing the work
to future developers. Since that there is the idea of creating a personal cloud for the
ASBGo* , the Main Controller must be able to connect to the network through WiFi.

The second processing unit, Processing Unit 2, is considered the Low-Level Controller.
It consist in a development board and is where the more low-level software is
developed. This software enables the access to the sensors, motors and other
components.

The two RGB-D cameras are required for the functionalities that will perform
computer vision algorithms and the laser range finder, which scans the environment,
will be required for the autonomous navigation.

Both the touch monitor and the remote controller are points of interface between
the users and the system. With a touch monitor, the interaction is more practical and
interactive and by presenting embedded speakers, it allows to develop features that
can make use of sound. Also, being the monitor coupled to the walker, it is possible
for the developer to edit, run and test new applications directly on the device. The
idea for the remote controller, besides presenting buttons, is to contain a small joystick
allowing to drive the ASBGo* .

Bearing in mind the functional requirements proposed to be fully implemented in
this thesis, it results two main blocks: Real-time sensors data acquisition and locomotion
and Human-Machine interface (HMI ).

4.2.1 Real-time sensors data acquisition and locomotion

The smart walker collects and processes information from a series of embedded
sensors allowing it to understand the surrounding environment, present an
autonomous behavior and act accordingly. As it can be seen in figure 22, the
development board (Low-Level Controller) is used for the low-level control, i.e., sensors
data acquisition, data’s management and motors actuation. Besides that, it handles the
emergency events and monitors the battery’s voltage also checking if it is in critical
state (discharged). It can be advanced the use of a Real-time operating system (RTOS)
, the FreeRTOS, that leads to a modular and more manageable low-level application
running in multitasking, with synchronism and protection against data corruption.
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Through a serial communication, the Main Controller and the Low-Level Controller
exchange data that can consists in, for example, sensors’ data, commands and so on. A
principle defined for this block is that the data acquired from the sensors is sent to the
Main Controller in order to be handled in the high-level. With this modular approach,
the Low-Level Controller gets abstracted and is only known, for future developers, as a
component with certain inputs and outputs. As to the smart walker’s locomotion, a
control strategy to get the desire velocity for the walker must be included.

Apart from the software, all the electronic circuits for the acquisitions are a must in
this conceptual block.

Figure 22: Real-time sensors data acquisition and locomotion block (LXbattery, 2017;
ColdFireElectronica, 2017; Electronics, 2017; Technologies, 2017; Robotics, 2017;
Elektronik, 2017; Solarbotics, 2017; FindIC, 2017a; Inc, 2016).

4.2.2 Human machine interface

In order to be easily used in the medical environment by medical specialists, the
interaction with the system must exist and must abstract all the technical concepts
(software and electronic concepts). Besides that, it is intended the creation of intuitive
and user-friendly interfaces to avoid confusions and disruptions but rather offer a
pleasant, simple and attractive way of use the smart walker (see figure 23).
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The local Graphical User Interface (GUI) must provide means to configure parameters
related to the locomotion, perform rehabilitation sessions, check the state of the device
and configure and run application-level features like the biofeedback or the interactive
game.

As to the remote controller, if the patient is not able to drive the device using the
handlebar, the medical specialist can drive it remotely. Also, the buttons may be
convenient to start or stop the system.

Figure 23: Human machine interface block.

4.3 hardware and electromechanical development

In this section it is detailed all the process of physical development i.e in terms of
material specification and electric and electronic circuits development.

4.3.1 Material specification

In order to build the new system, many material has to be used and so, some had to
be re-used and some purchased. This way, it will now be presented, in categories, the
material gathered and some details about it, its purpose in the system and relevant
commentaries will be mentioned. The categories are: sensors, processing units, actuators,
HMI , power supply and safety systems and cables. Note that not all the material will be
presented in here making sense to present, for example, the electronic components in
the electronic circuits development and some structural components in the mechanical
modifications.
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4.3.1.1 Sensors

Figure 24: Linear potentiometer.

linear potentiometer

A simple 100kW slide potentiometer was acquired.
It presents a sliding movement and it is coupled in the
handlebar of the smart walker allowing to change the
direction of the walker’s locomotion. The output, in
voltage, is proportional to the position of the slider’s
handle.

Figure 25: Angular potentiometer.

angular potentiometer

The angular potentiometer acquired presents
an ohmic value of 470kW. In this case, the output
value is proportional to the angle between the
wiper and its original position. It is coupled in
the handlebar and allows to detect if it is to drive
forward or not.

Figure 26: IR sensor.

infrared sensor

To detect the distance between the patient and the
smart walker, a Sharp GP2Y0A21 was collected. IR

sensors detect possible objects by the emission of
IR radiation and by receiving that light which is
reflected by the object. The output depends on the
angle measured. The detection range of the Sharp
GP2Y0A21 is approximately 10 to 80 centimeters and the output of the sensor consists
in a simple analog voltage that depends on the distance measured. It is advised by
the manufacturer to put a 10 µF capacitor (or larger) across power and ground close
to the sensor to stabilize the power supply.

Figure 27: Load cell.

load cells

Two micro load cells, measuring forces from
0 up to 50 kilograms, were gathered. The
load cell converts the load on it into very small
electrical signals. It contains a Wheatstone bridge
configuration constituted by strain gauges where,
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by applying a force in the load cell, the strain gauge is deformed, its electrical
resistance changes proportionally and the output voltage changes. This single-point
load cells only get stressed if a force is applied to one of the ends. The two outputs
allows to get the voltage between the strain gauge terminals but, due to its small value
(dozens of mV), it must be amplified. The loads cells acquired are the CZL635 from
Phidgets.

Figure 28: IMU .

inertial measurement unit

The new ASBGo* counts with one GY-521
MPU6050 from InvenSense. This IMU contains
both a 3-axis gyroscope and a 3-axis accelerometer
allowing measurements of both independently. It
uses the Inter-Integrated Circuit (I2C) protocol for
communication and it is powered with a voltage
ranging from 3.3V to 5V. Its purpose on the new device is to acquire inertial data
from the patients to assess their balance or their fall risk.

Figure 29: Encoder.

encoders

Two encoders are now coupled in the device,
one in each rear wheel. The sensors are the
HEDS-5500 from Avago and consist in a three
channel optical incremental encoders. The sensor
utilizes a film codewheel allowing resolutions of
500 counts per revolution. However, due to the

two relevant outputs, which are two square waves in quadrature, the resolution
quadruples because it is possible to detect a rising edge transition and a falling edge
transition for each wave. The encoders are used to calculate the traveled distance and
the velocity of the wheels.

Figure 30: URF .

ultrasonic range finders

The LV-MaxSonar-EZ URFs acquired, use high
frequency sound to detect objects in a range of 0

to approximately 6 meters. The URF provides
different ways of output like: analog output, by serial
communication, or by a pulse width. It also reserves
a strategy that allows to start an acquisition whenever
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it is wanted using a pulse and, it outputs a pulse when an acquisition is over. This
methodology is an asset because the nine URF present in the new ASBGo* are
disposed in such a way that if the acquisition of each started at the same time there
would be many interferences. So, using the start pulses, it is possible to acquire the
information of the URFs in a looping chain, i.e., one acquires and when it finishes, it
commands others to start and so on.

Figure 31: RGB-D camera.

rgb-d camera

The new Intel RealSense F200 Camera wraps
several components like: color camera, depth
camera with IR light source and a microphone
array. It allows to perform face analysis, detection
and tracking, hand and finger tracking, gesture
recognition and speech recognition. With this

kind of technology, numerous features for the ASBGo* can be explored and be easily
integrated in the system. One example is the use of one camera for the assessment
of the patients’ gait and another for the posture’s assessment by the use of computer
vision algorithms.

Figure 32: Laser range finder.

laser range finder

For future implementations of autonomous
navigation features, the Hokuyo URG-04LX-UG01
Scanning Laser Rangefinder is included. Consists in a
small and accurate laser scanner with a detectable
range of 200 millimeters to 5.6 meters. Also, it scans
in a 240°area with a 0.36°angular resolution and a
scanning time of 100ms/scan.

4.3.1.2 Processing units

main controller

The on-board computer, also known as Main Controller, presented on the ASBGo*
can be considered the most valuable acquisition for the new assistive device. All

the development, simulations and research can be made in this computer and, in
it, is where this developed applications run. Parameters such as the size, the
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consumption, the performance and the peripherals, were all taken into account and
resulted in the selection of the powerful Intel NUC6i7KYK also known as Skull Canyon.

Figure 33: Main Controller.

The mini-PC, with a 6th generation
Intel Quad-Core i7-6770HQ 2.6 to 3.5 GHz
processor and a Intel Iris Pro Graphics,
unleashes maximized performance
for intense computation and intensive
workloads. It can be experienced
cutting-edge performance from the start
with fast boot, and multitasking that is
effortless whether moving between application, files, or web sites. It supports up to
32GB of RAM and contains two M.2 slots with support for a 42 or 80 millimeters SATA
or PCIe SSD. It includes four USB 3.0 ports, SD card slot, one headphone/microphone
jack, one mini DisplayPort and an HDMI 2.0 display port. Also, NUC6i7KYK comes
with Intel 802.11ac wireless, the fastest wireless of Intel available today along with
built-in Bluetooth 4.2. As to the eletrical carateristics, this computer is powered with a
voltage of 19V and presents a consumption of 120W.

Since the mini-PC comes with no RAM and no storage unit, a Crucial 8GB DDR4
2133 MT/s RAM and a 250GB Samsung 960 EVO Series M.2 SSD were selected. Also,
to expand the USB ports of the Intel NUC6i7KYK the Manhattan 7-Port USB 2.0 HUB
was acquired and, to ease the work of the developer, the Logitech MK270, a wireless
keyboard and mouse, was purchased.

Figure 34: Low-Level Controller.

low level controller

The Low Level Controller of the ASBGo*
system is developed in the STM32F4-Discovery
development board, a low-cost and low-power
development board based on a high-performace
microcontroller, the STM32F407VGT. The board
was elected due to the significant performance
capabilities and due to the multiple channels that

peripherals offer. It includes a ST-LINK/V2 embedded debug tool, one ST-MEMS
digital accelerometer, a digital microphone, one audio digital-to-analog converter with
integrated speaker driver, LEDs, two push-buttons, one for reset and one for the user,
and a USB On-The-Go micro-AB connector.
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The powerful STM32F407VGT microcontroller features a 32-bit ARM Cortex-M4
RISC (Reduced Instruction Set Computer) core operating at a frequency of up to
168 MHz. It features a floating point unit (FPU) single precision, a full set of DSP
(Digital Signal Processor) instructions, memory protection unit (MPU) which enhances
application security and incorporates high-speed embedded memories. Among
that, the device also offers a three 12-bit analog-to-digital with multiple channels,
two digital-to-analog converters, twelve general-purpose 16-bit timers including two
Pulse-Width Modulation (PWM) timers for motor control and two general-purpose
32-bit timers. It includes up to fifteen communication interfaces like I2C , Universal
Asynchronous Receiver-Transmitter (UART) , Serial Peripheral Interface (SPI) and so on.

Figure 35: USB-to-UART
serial converter
(WAVESHARE, 2017).

usb-to uart serial converter

The communication between the two controllers
consists in a serial communication. This way, the
FT232 USB UART Board (Type A) was acquired. It
is an accessory board that features a USB-to-UART
serial converter FT232 and a USB Type A connector.
It is possible to select the output voltage level as 5V or
3.3V.

4.3.1.3 Actuators

Figure 36: DC brushed motors.

motors

The actuators in the ASBGo* are two 24V, 100W
brushed motors with angular velocities of 4600

Revolutions Per Minute (RPM) for each rear wheel.
However, each motor contains a gearbox with a
ratio of 19:1 and so, the actual angular velocity is
approximately 242 RPM . Also, the motors come with
an electromechanical brake system. Besides its 1.8A
of nominal current, each motor, depending on the load and the velocity, can drive
currents of about 10A.
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Figure 37: Motors driver.

motors drivers

To drive each motor, two Cytron 30A 5-30V
Single Brushed DC Motor Driver were purchased.
It allows bi-directional control, has a maximum
peak current of 80A (1 second) and supports 30A
continuously. As to the input voltage, it ranges

from 5V to 30V. The drivers also have an input for the PWM with a logic level input
of 3.3V and 5V.

4.3.1.4 Human machine interface

Figure 38: Touchscreen monitor.

touchscreen monitor

To allow the interface between the user and the
smart walker, a 12 inches touchscreen monitor from
Beetronics was purchased. It presents a strong casing,
a LED panel with an aspect ratio of 4:3 and presents
HDMI, VGA and RGA connections and USB for
the touch functionality. Besides that, it ensures
compatibility with Linux and the drivers are easy to
get. The monitor presents a configurable menu with many options and, in terms of
electric specification, it is powered with 12V, it has a consumption of less than 15W
and so, a maximum current of approximately 2A.

Figure 39: Remote controller.

remote controller

To control the ASBGo* remotely, a remote
gamepad from Elegiant was acquired. It is small
and lightweight, convenient to carry and the
buttons and the joystick are responsive and not
sticky. It is compatible with Linux and works with
Bluetooth wireless technology. Being a low power
device, the battery lasts many hours and it takes

about 30 minutes to charge by using a Micro USB cable. The Bluetooth connection
seems stable up until a distance of 10 meters.
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4.3.1.5 Power supply and safety systems

Figure 40: 12V battery.

batteries

The power supply source for the new device was
a target of many study. Since the higher voltage
required for the system is 24V for the motors, two
12V rechargeable AGM DEEP-CYCLE sealed silicon
batteries from Zenith were gathered and are connected
in series. Due to the consumptions of the system
(the 6A from the on-board computer, the 2A of the
touchscreen monitor and the possible 10A of each motor) the batteries acquired
present a capacity of 36Ah meaning that they ensure, approximately, 36A during an
hour. This way, the battery of ASBGo* can last, in the medical environment, about 1

or 2 days before the need to be charged.

Figure 41: Step-down (Amazon, 2017).

step-down modules

Since the battery’s voltage is about 24V,
step-down modules were purchased in order
to get a lower and stable voltage to power
other components of the system. Five
modules of DROK were acquired to get
voltages of 19V, 12V, 5V, 3.3V and a stable 24V

value.

Figure 42: Thermal relay (FindIC,
2017b).

relays

Two types of relays were collected: a thermal
relay and normally open relays with electromagnetic
operation.

For the first type, it was acquired one
W54-XB1A4A10-30. Its purpose is to protect the
entire system and so, it breaks the circuit when there
is current superior to 30A in the main net of the
electric system. This value was chosen accordingly to the consumption of the entire
system. Also, this relay presents a button for visual indication.

For the second type of relays, it was acquired one RLAC/4-24 from Nagares, to power
ON or shut down the entire system when a switch is pressed, and two RLP/5-24, also
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from Nagares, used to open the power circuit of the motors when the emergency button
is pressed. The RLAC/4-24 handles 40A and the RLP/5-24 handles 22A.

(a) (b)

Figure 43: Relays (Nagares, 2017a,b).

Figure 44: Emergency button.

emergency button

A simple normally closed emergency button was
selected. When pressed, it opens the circuit.

4.3.1.6 Cables

blue and brown wire

For the connections of the electric system, it was set the use of blue wire where there
is positive voltage and brown wire for the ground. The wire section was taken into
account due to the possible values of current.

three-wire and four-wire cables

Cable with three and four wires were collected to allow connections to the different
components (e.g. sensors) that have three and four pins, respectively. This avoids the
existence of many loose wires that can lead to a messy and confuse electric system.
Also, with all the specific wires of a sensor gathered in a cable, the accessibility to
specific wires gets easier.

four-wire coiled cable

A specific coiled cable was acquired to be used with the IMU . Since this sensor
will be on the patient’s body, the connection between the sensor and the system must
be stretchable in order to keep the patient comfortable. The cable has four wires
corresponding to the number of used pins in the IMU .
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ethernet cables

For the connection of each one of the nine URFs , it was used ethernet cables to take
advantage of the number of wires in them. Six pins of each URF are utilized and
so, using ethernet cables avoids take to much space in the URFs ’ acquisition board
also easing the connections to the board. Note that the cables are only used to take
advantage of the number of wires and so, ethernet protocols are not being used.

hdmi

For the transmission of audio and video to the touchscreen monitor, an HDMI cable
was purchased.

4.3.2 Electric system

Figure 45 represents the global eletric system of the ASBGo* . Some relevant blocks
are highlighted and will be detailed.

Figure 45: ASBGo* electric system.

Block (a) intends to show that the 24V power source of the new device can be
connected (manual connection using a plug) to a 24V battery charger or to the ASBGo*
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system. It was set this approach because this way, only one of the options can be
chosen (connect or the charger or the system to the battery) and so, it is impossible to
make the mistake of charge and use the battery to power the system simultaneously.

Block (b) wraps the thermal relay (K1) that protects the entire system in case of
currents superior to 30A. Block (c) presents the power switch (SW1) that in case of
switched ON, it excites the coil of the relay K2, the contact gets closed, and the system
gets ON. If switched OFF, electrical current stops to flow to the coil, the K2 contact
opens and the system gets OFF.

Block (d) consist in a visual feedback for the user, using a red LED, indicating that
the system is ON.

Despite the battery’s voltage being indicated with a 24V value, in reality, this value
is a little bit higher (approximately 26V). So, to get a stable 24V is used a step-down
module. The output voltage, besides power the electromechanical brake system of
each motor, feeds the block (e) where it is represented the emergency button SW2.
When the button is not pressed, the coil of relay K3, for the left motor, and the coil of
relay K4, for the right motor, are excited and so, the contacts are closed and electrical
current can flow to the motors. When SW2 is pressed, it opens the circuit that powers
the coils, the contacts that allow to power the motors get open and the motors stop.

The purpose of block (f) is to highlighted the combination of diodes existing to each
motor. When SW2 is pressed, the contacts of relays K2 and K3 open instantly and so,
due to the inductive properties of the motors and being the supply current interrupted,
voltage spikes can occur. This way, it is used a combination of freewheeling diodes
(to each motor and for both clockwise and counter-clockwise rotational direction),
allowing the motors to draw current until the energy gets dissipated. Without this
method, voltage spikes are generated and other circuits of the system get affected.

4.3.3 Electronic system: PCBs

It will be now presented particular parts of the electric system, more specifically, the
Printed Circuit Boards (PCBs) developed. The electronic circuits are divided in three
categories: sensors acquisition boards, shield board and protection boards. It was used
the Printed Circuit Board (PCB) design and schematic software called EAGLE.
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4.3.3.1 Sensors acquisitions

For the creation of the sensors acquisitions PCBs , a modular approach was followed.
So, for the sensors acquisition boards it was developed a PCB to each sensor or for a
special group of sensors. These unit PCBs are then connected to the ”motherboard” of
the system, which is the Shield board, that will be discussed further. With this modular
method, it gets easier to debug and test the boards and also, if one of them is affecting
the rest of the circuits it is only necessary to remove it from the shield. To each board,
four holes were made in their corners: two to screw the board to the Shield when
coupled and other two to screw to the structure of the walker so that the board gets
stable. Next, it is presented the circuits and the respective PCB to each unit board.

potentiometers and infrared sensor

Due to the simplicity of the circuits and since all the sensors from this board are
coupled in the superior part of the walker (next to the handlebar), they were gathered
in the same PCB .

Figure 46b presents the circuit for the acquisition of the angular potentiometer’s
data. It is powered by a voltage of 3.3V and, being its ohmic value of 470 kW, a
trimmer potentiometer (MIN VOLTAGE ADJUST in figure 46b) of 500 kW is used
to allow the possibility to define a minimum output voltage. In the output of the
potentiometer (OUT), there is, as good practice, a resistor to limit the current that
flows to the STM32F4 pin and also, using a capacitor to ground, the output of the
potentiometer is smoothed.

(a) (b)

Figure 46: Angular Potentiometer: (a) Pin assignment; (b) Circuit.
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As to the circuit for the acquisition of the linear potentiometer’s data (see figure 47)
and the IR sensor’s data (see figure 48), they follow the same principle of the angular
potentiometer’s circuit. However, there is not the possibility to define a minimum
output value.

(a) (b)

Figure 47: Linear Potentiometer: (a) Pin assignment; (b) Circuit.

(a) (b)

Figure 48: Infrared sensor: (a) Pin assignment; (b) Circuit.

As it can be seen in figure 49, the outputs of the sensors are forwarded to pin headers
which allow the interface with the Shield board. Also, the power voltages and ground
are also connected to the pin headers to receive 3.3V, 5V and ground from the Shield.

Figure 49: Pin headers, from the potentiometers and infrared sensor’s board, to interface with
the Shield board.

It resulted the PCB presented in 50, where in (a) it is represented the circuit for
the IR sensor, in (b) the circuit for the linear potentiometer, in (c) the circuit for the
angular potentiometer and in (d) the interface to the Shield board.
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Figure 50: Potentiometers and infrared sensor’s board.

load cells

For each load cell (left and right), it is used an instrumentation amplifier, an
INA126P, to amplify the difference between the outputs of the load cell (V1+ and
V1- in figure 51). With a 1 kW trimmer (GAIN POT1), it is possible to adjust the
amplification gain. Also, an 1 kW resistor between the output of the INA126P and
ground is included to pull-down the output to zero when there is no force applied to
the load cell. It is used, in parallel with the resistor, a 10 nF capacitor to smooth the
output and a 3.3V zener diode to limit the output voltage. Figure 51b shows the circuit
for just one load cell. However, the circuits are equal for each sensor.

(a) (b)

Figure 51: Load cell 1: (a) Pin assignment; (b) Circuit.

As it can be seen in figure 52, the outputs of the load cells are forwarded to pin
headers, which allow to redirect the same outputs to the STM32F4 pins in the Shield
board. Also, 5V and ground are connected to the pin headers to allow receive those
potentials from the motherboard.
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Figure 52: Pin headers, from the load cells’ board, to interface with the Shield board.

Figure 53 reveals the resulted PCB . It is represented in (a) the interface to the Shield,
in (b) the circuit for the left load cell and in (c) the circuit for the right load cell.

Figure 53: Load cells’ board.

encoders

The circuits for each encoder are equal. It just consists in pull-up resistors between
the power voltage, 3.3V, and each output channel of the encoder (CHA and CHB).
Figure 54b represents a circuit for one of the encoders.

(a) (b)

Figure 54: Encoder 1: (a) Pin assignment; (b) Circuit.
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As to the interface to the Shield (see figure 55), the outputs of the two output channels
of each encoder (ENCODER1 CHA and ENCODER CHB in figure 54b) are forwarded
to pin headers. Also, 3.3V and ground are connected to the pin headers.

Figure 55: Pin headers, from the encoders’ board, to interface with the Shield board.

As it can be seen in figure 56, which represents the final encoders’ PCB , the block
(a) consists in the pin headers to interface with the Shield, the block (b) the circuit for
the left encoder and the block (c) the circuit for the right encoder.

Figure 56: Encoders’ board.

inertial measurement unit

Figure 57: IMU ’s circuit.

The PCB for the MPU6050’s
data acquisition, is the only board
that is not screwed up to the Shield
board. Since the purpose of the
IMU is to provide inertial data
from the patient, the board must
be on the patient’s body. So, it
is used female USB connectors to
connect the IMU ’s board to the
motherboard (see figure 57).

From the female USB connector
comes the 5V, to power the IMU , and ground. The IMU HEADER in figure 57 is
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where it is connected the sensor. The communication pins, IMU SCL and IMU SDA,
are forwarded to the USB connector. Also, due to the long length of the cable that
connects the two boards, it was added pull-up resistors to the communication pins.

Figure 58 presents the final result. It is represented in (a) the female USB connector,
to interface with the Shield, and in (b) the circuit for the sensor’s acquisition.

Figure 58: IMU ’s board.

ultrasonic range finders

As it was referred in 4.3.1.1 - Sensors, ethernet cables are used for the connection
between each URF sensor and the acquisition board. So, it was necessary to solder
some wires of the ethernet cables to each sensor. Since the color sequence of the
ethernet wires can be different, it was established a sequential order taking into
account the position of the wire in the ethernet connector but not its color.

Figure 59: URF ’s pins assignment.

Figure 59 presents the pins used for the
acquisition (note that the red ’X’ represents
a pin or a wire that is not used/connect).

Following figure 60, the connections
between the URF sensor and the ethernet
cable should be made following the
alignment sequence, taking into account
the position of the pins in the male ethernet
connector. Then, through this match it is possible to know the color of the wire that
has to be soldered to the respective pin of the sensor.

Figure 61a shows the direction to where the URFs are pointing: Six of them are
pointing forward (F); two are pointing up (U); and one is pointing down (D). As
discussed in 4.3.1.1 - Ultrasonic Range Finders in Sensors, if the detecting areas of the
several URFs intersect, it can occur interferences in the readings of the sensors. So,
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Figure 60: Process to identify the correspondent URF pin to the respective ethernet wire.

since the detecting areas of the lateral URFs do not cross, they receive the initial pulse
from the STM32F4 and start the acquisition at the same time. When the acquisitions
finish, a pulse is sent to other sensor and so on. Figure 61b reveals the sequence of
acquisitions, which is performed in loop. When the last URF finishes the acquisition,
it sends a pulse to the initial URFs and so, the acquisition in loop starts over again.

(a) (b)

Figure 61: URFs : (a) Pointing direction; (b) Sequence of acquisitions.
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Figure 62: Circuit to reset the URFs .

Whenever it is necessary to stop the
loop of acquisitions, the URFs must be
reset (power OFF and the power ON). So,
as it can be seen in figure 62, it is used a
normally open relay that allows to open
the circuit that powers the URFs for a
fraction of time and then close, reseting
the sensors. When a pulse is sent to the
base of the 2N2222 transistor, the coil of
the relay gets excited and the contacts of
the relay close. Otherwise, if no pulse
is sent to the base of the transistor, the
contacts of the relay open.

In figure 63 is presented the pin headers that contain all the outputs of each URF
(SONARx), the power voltages and ground, the pulse to reset the URFs (ON OFF)
and the pulse that starts the loop of acquisitions. Since the URFs that acquire
simultaneously can receive a pulse from the STM32F4 pin and from the last sensor
of the sequence, it is used a diode to prevent that the pulse from the last sensor of the
sequence goes to the STM32F4 pin when the acquisitions are in loop.

Figure 63: Pin headers, from the ultrasonic range finders’ board, to interface with the Shield
board.

Figure 64 reveals the PCB for the acquisition of the URFs ’ data. Block (a) consists
in the circuit to reset the URFs , block (b) presents the pin headers to interface with
the Shield board and block (c) gathers the nine female ethernet connectors.

4.3.3.2 Shield

The Shield is considered the motherboard of the PCBs . In it, all the information of
the other boards is gathered, it presents the circuit to detect an emergency and circuits
to monitor the battery voltage and is where it reigns the Low-Level Controller.
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Figure 64: URFs ’ board.

Figure 65: Critical battery detection circuit.

As to the circuits in the board,
figure 65 shows the circuit that
detects if the battery reached a
critical voltage. Using a voltage
divider it is possible to drop the
voltage from the critical value
to 0.7V in Vbe (base-emitter
voltage). So, in one hand, if the
voltage of the battery is above
the critical voltage, Vbe is greater
than 0.7V and so, the trasistor
saturates and the CRITICAL BATTERY PIN gets the value of zero. In the other hand,
if the battery voltage gets below the critical voltage, Vbe will be lower than 0.7V, the
transistor gets in cut-off mode and so, a pulse is sent to the STM32F4 meaning that
the battery reached the critical value. To set the critical voltage, i.e, voltage which
will trigger an interruption, it is used a trimmer potentiometer in the voltage divider
circuit.

Figure 66: Battery’s voltage monitoring circuit.

To monitor the battery’s
voltage, it is used a voltage
divider (see figure 66) that
scales the range voltage of
[0 - 30V] to [0 - 3V]. This
way, it is possible to get the
voltage of the battery in a
scale of [0 - 3V].
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As to the emergency button’s circuit of figure 67, if the button is not pressed, the
input for the circuit is 24V and, through a voltage divider, the EMERGENCY PIN
gets the value of approximately 3V. Otherwise, if the emergency button gets pressed,
the circuit opens and the EMERGENCY PIN gets the value of 0V. Depending on this
transitions, the Low-Level Controller knows if the button is pressed or not. The capacitor
used helps to prevent the bouncing from the contacts of the emergency button.

Figure 67: Circuit for emergency detection.

Figure 68 reveals the Shield board. The several blocks in the figure represent
important characteristics of the PCB that will be explained next.

Figure 68: Shield board.

61



Chapter 4. asbg0* smart walker: the new prototype

As to the blocks:

(a) Where it is coupled the URFs ’ board;

(b) Where it is coupled the potentiometers an IR sensor’s board.

(c) Circuit for the emergency detection;

(d) Female USB connector to allow the connection with the IMU ’s board;

(e) Where it is coupled the encoders’ board.

(f) Where it is coupled the load cells’ board.

(g) Where it is coupled the USB-to-UART serial converter;

(h) Connections for the right motor’s driver (the connections, from left to right, are:
direction; PWM ; ground);

(i) Connections for the left motor’s driver (the connections, from left to right, are:
direction; PWM ; ground);

(j) Connector for the 5V;

(k) (1) Connector for the battery’s voltage; (2) circuit that monitors the battery’s
voltage;

(l) (1) Connector for the 3.3V; (2) circuit that detects if the battery’s voltage is critical;

(m) Where it is coupled the Low-Level Controller unit.

Figure 69 highlights the Low-Level Controller’s pins assigned to the outputs of the
different circuits that have been explained. The outputs of the figure are grouped by
colors according to their purpose.
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Figure 69: Low-Level Controller pin assignment.

4.3.3.3 Protection

3 .3v and 5v protection

The present PCB protects the components connected to 3.3V and 5V from
over-voltage and short circuits.

As it can be seen in figure 70, the circuit is the same for both voltages. The only
difference is the value of the zener diode which is rated with the voltage that is
necessary to limit (i.e. to limit 3.3V it is used a zener with a breakdown voltage of
3.3V and to limit 5V it is used a zener with a breakdown voltage of 5.1V).
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(a) (b)

Figure 70: Protection board 1: (a) 3.3V protection; (b) 5V protection.

If a short circuit occurs, the fuse will brake open. As to the protection against
over-voltage, the zener tries to limit the voltage to the load if that voltage exceeds the
zener’s threshold voltage. Also, if the voltage is exceeded and the zener breaks down
and conducts current, the fuse will break open protecting the zener and the rest of the
circuit from over-voltage.

The resulted PCB is shown in figure 71 where in (a) is highlighted the circuit for
the 3.3V protection and in (b) the 5V protection.

Figure 71: 3.3V and 5V protection board.

monitor , usb hub and on-board computer protection

To protect the touchscreen monitor, the USB HUB and the on-board computer (Main
Controller) against possible short circuits, it was implemented a protection board for
them. Remember, the power voltage for the computer is 19V, for the monitor is 12V
and for the USB HUB is 5V.

Figure 72 shows the circuit for the protection of the Main Controller. Since the rated
current of the on-board computer is approximately 6A, the fuse must brake open at
this current value. It is also used a voltage divider to get a voltage of 3.3V from 19V
(in this case), to power a LED that allows to know if the fuse opened. To protect the
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other two elements, the circuit is quite the same. The differences are the value of the
fuse and the combination of resistors of the voltage divider that powers the LED.

Figure 72: Main Controller’s protection circuit.

Figure 73 reveals the final PCB . As it can be seen, the block (a) represents the
circuit to protect the touch screen monitor, the block (b) the circuit to protect the Main
Controller and the block (c) the circuit to protect the USB HUB.

Figure 73: Monitor, USB HUB and on-board computer protection board.

4.4 software development

This section addresses the development of the ASBGo* ’s software from a more
low-level layer to a more high-level layer.
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4.4.1 Overview

To accomplish the blocks specified in 4.2 - System Overview and to confer behaviors
to the new device, software was designed and implemented. Figure 74 recalls the two
controllers of the system: the Low-Level Controller and the Main Controller.

Figure 74: Controllers of the system.

The role of the Low-Level Controller is to interface with hardware such as sensors,
motors, emergency button and battery. Also, this controller manages all the input and
output data, acts according to commands sent by the Main Controller and also reacts
to certain events and warns the Main Controller.

The more high-level software, developed in the Main Controller, is built using ROS
allowing to defined a solid architecture easing the process of future development. In
this main processing unit, the sensors’ data coming from the Low-Level Controller are
disposed and updated at a certain frequency and different algorithms based on these
data and interfaces for the user are implemented.

4.4.2 Communication system

For the communication between the Low-Level Controller and the Main Controller, a
protocol for communication was designed. Based on a serial communication protocol,
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the specific protocol of communication for the new system establishes a particular
framing for the messages and a set of commands and acknowledgments.

4.4.2.1 Message framing

Figure 75 shows the different frames defined for the communication between the
two controllers. Each one respects the presented framing during the creation of the
messages.

Figure 75: Message’s frames.

As to the frames:

1. Represents the start sequence of the message and is constituted by three bytes.
Whenever one of the parties of the communication receives the start sequence it
means that a new message will be exchanged. In case of the communication gets
lost in the exchange of messages, the start sequence of new messages will allow
the communication to get back in track;

2. One byte reserved for the message size;

3. Represents the type of message to be exchanged. It can be of the type information,
e.g. a start command, or it can be of the type data. Two bytes are reserved for
this frame;

4. The payload frame has undefined size (x) because it depends on the message
that is going to be send.

5. The checksum is used to detect if errors occurred during the transmission of the
message. It has one byte reserved;
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4.4.2.2 Messages

It will be know presented messages that are exchanged between the two controllers
in each direction. So, the Main Controller can send to the Low-Level Controller:

• Wake up command;

• Greeting command;

• Life signal command;

• Start commands;

• Stop command;

• Restart command;

• Freeze command;

• Motors’ data;

• Frequency for receiving the sensors’ data.

In the other hand, the Low-Level Controller sends to the Main Controller:

• Acknowledgments according to the commands of the Main Controller;

• Low battery warning;

• ON/OFF emergency warning;

• Serial communication error warning;

• IMU disconnected warning;

• Sensors’ data;

• Battery’s voltage data;
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4.4.3 Low-level controller

The Low-Level Controller takes care of the low-level part of the ASBGo* . The
application is developed in C language using the Keil µVision IDE. Also, the low-level
application is built upon an RTOS which consists in a program that schedules
execution in a timely manner, manages system resources, and provides a solid
base for developing application code in a multitasking environment. The RTOS
used is the FreeRTOS. It has a very small memory footprint, low overhead, and
very fast execution providing the core real time scheduling functionality, inter-task
communication, timing and synchronization primitives only. It will be now presented
the structure of the application as well as the different modules and their relations.

4.4.3.1 Structure

Figure 76 shows the different modules of the low-level application hierarchically
divided. There are a relation of direct association from the top of the hierarchy to
the bottom. This means that modules from a level above use modules from the level
bellow. With this approach it is gets easier to design and understand the conceptuality
of the application.

Figure 76: Low-Level Controller modules.

In the top of the hierarchy is the low level controller module. This main module
includes all the others present in the second level of the hierarchy: the UART for the
serial communication, the module that takes care of the acquisition of the sensors’ data,
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the module that manages the motors, the emergency button that detects and handles an
emergency event and finally, the module that monitors the battery’s voltage. In turn,
the sensors’ acquisition module gathers all the specific modules of each sensor managing
all their data and their operation.

4.4.3.2 Modules

It will be know detailed each module of the low-level application. Figure 77 reveals
the legend for the diagrams that come next.

Figure 77: Legend of the modules’ diagrams.

potentiometers , infrared and load cells

Figure 78: Diagram of the potentiometers,
infrared and load cells’ modules

The acquisition of the linear and
angular potentiometers, the IR sensor
and the load cells is quite the same. It
is done using the ADC1 of the Low-Level
Controller with a resolution of 10 bits. So,
in this modules are defined functions to:
configure the ADC; configure the DMA
(Direct memory access); perform an
acquisition; and a function that handles
possible errors that can occur during
the configurations. Also, there is a
initialization function that wraps the configuration functions. It is used the DMA
so that when an acquisition is performed the data acquired is directly stored in a
pre-defined position of the memory and, at each acquisition, the data is overrode and
so, updated. Figure 78 illustrates the relations of the module.
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encoders

Figure 79: Diagram of the encoders module.

The outputs of the encoders
consist in phase-shifted pulses
(from channel A and B). When
channel A leads channel B,
it means that the motor is
rotating in one direction. Else,
if channel B leads channel A,
then the motor is rotating in
the opposite direction. To
detect this pulses (ticks), it
is used a configuration of
external interruptions meaning
that when a transition is detected, positive or negative, an Interrupt Service Routine (ISR)
is called. This way, the present modules has functions to: configure the General-purpose
input output (GPIO) pins for interruptions at positive and negative transitions; enable
and disable the external interrupts; and a function that handles possible errors that
can occur during the configurations. Figure 79 illustrates the relations of the module.

Figure 80: Flowchart of the ISR for the channel
A of the left encoder.

The flowchart from figure 80 shows
one of the four ISR s. The four ISR s
correspond to the two channels of each
encoder. In this case, it is presented the
ISR for the channel A of the left encoder.
When a transition in channel A occurs, it
is evaluated if it was a rising or falling
transition. If it was a rising one, it is
then evaluated the state of the channel
B in which, depending on its state, a
variable that stores left encoder ticks is
incremented or decremented. In the
other hand, if it was a falling transition,
the channel B is equally evaluated to

determine in which direction the motor is rotating in order to the left encoder ticks’
variable be incremented or decremented. The other ISR s follow the same principle.
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ultrasonic range finders

The acquisitions of the URFs ’ data are done using nine channels of the ADC2 of the
STM32F4 with a resolution of 10 bits. Figure 81 shows the relations of the module.

Figure 81: Diagram of the ultrasonic range finders module.

This module contains functions to:

• Configure the ADC2. It is configured to perform nine conversions in nine specific
channels. When a conversion is requested for the ADC2, nine conversions are
performed sequentially;

• Configure the DMA. When the acquisitions are done, the data acquired is directly
stored in pre-defined positions of the memory without being necessary the
intervention of the processor;

• Configure two GPIO pins. Both pins are configured as digital outputs where
one is to send a pulse to reset the URFs and the other is to send an initial pulse
in order to start the acquisitions;

• Start the URFs . In this function, the starting pulse is sent and the URFs acquire
distance values in a looping chain;

• Reset the URFs by sending a pulse which powers OFF and then powers ON the
URFs ;

• Start an ADC conversion. When this function is called, the analog outputs values
of the URFs are read and converted by the ADC;

• Handle possible errors that can occur during the configurations.
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inertial measurement unit

To acquire data from the MPU6050’s accelerometer and gyroscope, it is used the
I2C communication protocol. Figure 82 pictures the relations of the module. In
this module several macros are defined storing special bytes used for the I2C
communication with the MPU6050.

Figure 82: Diagram of the inertial measurement unit module.

So, it presents functions to:

• Configure the I2C1 of the Low-Level Controller for the communication with the
IMU ;

• Initialize the FreeRTOS objects of this module such as tasks and semaphores;

• Check if the IMU is ”alive”. To make such verification, it is necessary to send
a special byte and if the IMU is ”alive”, it responds with its address. This way
it is possible to know, during the execution of the application, if the sensor is
connected to the system or if it was disconnected;

• Configure the IMU such as configure the data sample rate, the accelerometer,
the gyroscope and their resolutions. Before executing this configurations, it is
tested if the IMU is ”alive”;

• Start an acquisition of the IMU ’s data;

• Request accelerometer’s data;

• Returns the data read from the accelerometer;
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• Request gyroscope’s data;

• Returns the data read from the gyroscope;

• Handle possible errors that can occur during the configurations.

As to the FreeRTOS objects there is:

• A semaphore (IMUAcquisition Signal) which is released when it is called the
function to start an acquisition;

• A task (IMUAcquisitionTask) that blocks until it is signaled by the
IMUAcquisition Signal. When this semaphore is released, this tasks checks if
the IMU is ”alive”, requests and gets accelerometer’s data, requests and gets
gyroscope’s data and stores this information in specific positions of the memory
which are overrode at each acquisition;

• A semaphore (MPU6050 OFF Signal) that is released when it is detected that the
IMU is not ”alive”;

• A task (MPU6050OffTask) that blocks until it is signaled by the
MPU6050 OFF Signal. When this semaphore is released, this task warns
the low level controller module so that a warning is sent to the Main Controller.

sensors’ acquisitions

This module can be considered like an interface between the low level controller
module and the sensors’ modules. This means that the present module is
”commanded” by the main module to start or stop acquisitions, it handles every sensor,
based on the functions provided by each module of the sensors, and it outputs the data
of all the sensors.

In this module is defined a struct, called Sensors, that gathers all the variables
corresponding to the sensors’ data (see listing 4.1). Also, a global object of the Sensors
struct type is instantiated. With this struct, it is possible to encapsulate all the sensors’
data in one unified data structure in an organized way easing the accessibility and
manipulation of the data.

s t r u c t Potent iometers {
u i n t 1 6 t angular ;
u i n t 1 6 t l i n e a r ;

} ;
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s t r u c t LoadCells{
u i n t 1 6 t l e f t ;
u i n t 1 6 t r i g h t ;

} ;

s t r u c t UltrasonicRangeFinders{
u i n t 1 6 t one ;
u i n t 1 6 t two ;
u i n t 1 6 t three ;
u i n t 1 6 t four ;
u i n t 1 6 t f i v e ;
u i n t 1 6 t s i x ;
u i n t 1 6 t seven ;
u i n t 1 6 t e i g h t ;
u i n t 1 6 t nine ;

} ;

s t r u c t Encoders{
long l e f t T i c k s ;
long r i g h t T i c k s ;

} ;

s t r u c t IMU{
i n t 1 6 t acce lerometer X ;
i n t 1 6 t acce lerometer Y ;
i n t 1 6 t acce lerometer Z ;
i n t 1 6 t gyroscope X ;
i n t 1 6 t gyroscope Y ;
i n t 1 6 t gyroscope Z ;

} ;

s t r u c t Sensors
{

s t r u c t Potent iometers potent iometer ;
u i n t 1 6 t i n f r a r e d ;
s t r u c t LoadCells l o a d c e l l s ;
s t r u c t UltrasonicRangeFinders u l t r a s o n i c r a n g e f i n d e r ;
s t r u c t Encoders encoder ;
s t r u c t IMU imu ;

} ;

Listing 4.1: Sensors struct
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Figure 83 shows the relations of the module.

Figure 83: Diagram of the sensors’ acquisitions module.

The sensors’ acquisitions module contain functions to:

• Configure the acquisition timers. An ISR is called every time the timers reach the
configured time (expire). Inside the ISR it is requested to the sensors’ modules
to perform acquisitions. So, there are two timers:

– TIMER3: configured with a frequency of 1kHz. At each 1 millisecond, the
ISR of TIMER3 is executed and it is requested the acquisition of the data of
the potentiometers, IR , load cells and IMU ;

– TIMER4: configured with a frequency of 100Hz. At each 10 milliseconds,
the ISR of TIMER4 is executed and it is requested the acquisition of the
URFs ’ data. There is a specific timer for this sensors due to the latency
that is introduced by the acquisitions in a loop chain. So, it is pointless to
acquire at a higher frequency rate because the outputs of the nine URFs
take a few milliseconds to get updated.

• Clean the Sensors struct;

• Initialize the timers and the sensors by calling the initialization functions of each
sensor’s module;

• Start the acquisition timers and enable the interruptions for the encoders’ ticks
detection;
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• Stop the acquisition timers, reset the URFs and disable the interruptions for the
encoders’ ticks detection;

• Handle possible errors that can occur during the configurations.

uart

The UART module takes care of the serial communication between the Main
Controller and the Low-Level Controller.

In this module is defined a struct, called Data, that wraps a pointer to bytes, which
is used to store the message, and a byte, which is used to store the size of the message
(see listing 4.2). This way, it is introduced in the application a specific data structure
to handle with the messages to receive or to send.

s t r u c t Data
{

u i n t 8 t * message ;
u i n t 8 t s i z e ;

} ;

Listing 4.2: Data struct

Figure 84 gives the relations of the module.

Figure 84: Diagram of the UART module.

The UART module presents functions to:

• Configure the USART1 of the Low-Level Controller using a baudrate of 115200;
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• Initialize the FreeRTOS objects for this module such as semaphores, message
queues and tasks;

• Prepare a message to be sent. This function performs the framing process
discussed in 4.4.2.1 - Message Frame, producing a valid message that is compatible
with the communication protocol existing between the two controllers. This way,
auxiliary functions, such as functions to perform the checksum, to get the size
of the messages and to add the type of the message to the final message, are
defined, complementing the process of creating a new message that is about to
be sent. After, it is declared a pointer to an object of the Data struct type, memory
is allocated to it and to its fields, the information of the new created message is
stored in the fields of the object and the pointer is queued in a specific message
queue called SendBuffer Queue;

• Handle the received bytes from the Main Controller. This functions analyzes each
received byte in order to know in which frame of the message, which is being
received, it is on. For example, if nothing has been received and a new message
arrives, this function will start to analyze the sequence of the first three bytes to
check if it corresponds to the start sequence. Then it receives the message size
and so on. In the end, a checksum of the received message is performed and if
it equals to the received checksum, the message is valid and it was successfully
received;

• Queue the valid message received. When a message is successfully received,
this function declares a pointer to an object of the Data struct type, allocates
memory to it and to its fields, according to the received message, and stores
the message information in the new object. Then, the object that contains the
message and its size is queued in a specific message queue (ReceiveBuffer Queue)
which is accessed by the low level controller module in order to be decoded;

• Handle possible errors that can occur during the configurations.

As to the FreeRTOS objects there is:

• A message queue (ReceiveChar Queue) that queues single bytes received from the
message coming from the Main Controller. So, when a byte is received, an ISR
from UART is triggered, the byte is read and queued in this specific queue;
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• A task (ReceiveTask) that blocks until there is data in ReceiveChar Queue. When
bytes are available, this task consumes the byte in the queue and the function
that analyzes bytes is called in order to analyze the byte received;

• A message queue (ReceiveBuffer Queue) that stores successfully received
messages to be consumed and decoded by the low level controller module. The
type of data of this queue consists in pointers to objects of the Data struct
type. When the information is consumed and used, the memory of the allocated
pointer is deleted as well as the fields of the object.

• A message queue (SendBuffer Queue) that, after the framing process, stores new
created messages to be sent to the Main Controller. The type of data of this queue
consists in pointers to objects of the Data struct type;

• A task (WriteTask) that blocks until there is data in SendBuffer Queue. When
data is available, its fields (message and message size) are accessed and a new
message is sent to the Main Controller. After used, the pointer to the object of a
Data struct type that was consumed is deleted as well as its fields;

• A semaphore (UARTErrors Signal) that is released when the communication is
lost. When, at some point, the communication fails and can not get back in track,
this signal is released;

• A task (UartErrorTask) that blocks until it is signaled by the UARTErrors Signal.
When this semaphore is released, this task, declared in this module but defined
in the low level controller module, sends a warning to the Main Controller.

motors

The motors module is responsible to generate the PWM signals in order to actuate
the motors. In this module a struct, called Motors, is defined and its fields correspond
to the duty cycles for the right and left motors’ PWM s. An object of this struct is
instantiated (motors) and in it is where the duty cycle values to each motor will be
stored. Figure 85 pictures the relations of the module. The motors module collects
functions to:

• Configure the TIMER1 of the Low-Level Controller. It is configured in PWM mode
with two output channels, one to each motor;

• Configure two GPIO pins as digital outputs. Each pin is used to set the rotation
direction of each motor;
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• Initialize the FreeRTOS objects for this module such as message queues, tasks
and software timers;

• Starts the timers for each PWM output. When this function is called, the duty
cycles are set to 0;

• Update the fields of the motors object and so, new duty cycles for the PWM s of
each motor are set. Also, depending on the signal (positive or negative) of the
new duty cycle, it is set the rotational direction of each motor;

• Stop the timer for each output channel. Also, the duty cycle values of the motors
object are set to zero;

• Smoothly stop the motors when the Low-Level Controller receives a stop command.
With this approach, the Main Controller does not have to worry about control
the stop process because the Low-Level Controller takes care of imperatively stop
the motors. When this function is called, a software timer of the FreeRTOS
(StopMotorsSmoothly Timer) is activated;

• Handle possible errors that can occur during the configurations.

Figure 85: Diagram of the motors module.

As to the FreeRTOS objects there is:

• A message queue (MotorsDC Queue) that stores two bytes corresponding each
byte to the value of the duty cycle to each motor. The low level controller
module receives those values from the Main Controller and queues it in the
MotorsDC Queue;
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• A task (DriveMotorsTask) that blocks until there is data on the MotorsDC Queue.
When the low level controller queues new duty cycle values, this task wakes,
consumes the data on the queue and calls a function that updates the duty cycle
values and the PWM s for the motors;

• A software timer that is activated when it is necessary to smoothly
stop the motors. At each 0.3 seconds, the software timer’s callback
(StopMotorsSmoothly Timer) is executed and it gradually reduces the duty cycle
of the PWM of each motor until it reaches the value 0. When the motors stop,
the software timer is disabled;

emergency button

The emergency button module handles an emergency event. Using an external
interrupt, it is possible to know if the button is or was pressed or release. Note that
when the button is pressed it is necessary to release it manually, otherwise, it stays
pressed. So, when a transition is detected, an ISR is executed and it is evaluated and
defined a new state of the button. Figure 86 shows the relations of the module.

Figure 86: Diagram of the emergency button module.

So, the module presents functions to:

• Configure a GPIO pin in external interrupt mode detecting rising and falling
transitions;

• Initialize the FreeRTOS objects for this module such as semaphores and tasks;
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• Enable the external interrupt;

• Disable the external interrupt;

• Read the digital value that is on the pin;

• An initialization function that wraps all the configuration functions and
performs an initial checks of the button’s state;

• Handle possible errors that can occur during the configurations.

As to the FreeRTOS object there is:

• A semaphore (EmergencyDetection Signal) that is released when the ISR is
executed (a detection occurred);

• A task (EmergencyDetectedTask) that blocks until it is signaled by the
EmergencyDetection Signal. When this signal is released, it is verified which
transition occurred and, depending on that, the EmergencyHandler Signal is
released;

• A semaphore (EmergencyHandler Signal) is released when the button gets in a
new state;

• A task (EmergencyHandlerTask) that blocks until it is signaled by the
EmergencyHandler Signal. When this signal occurs, the current state of the button
is sent to the Main Controller by the low level controller module (this task is
declared in the emergency button module but it is defined in the low level controller
module).

low battery

The low battery module monitors the battery’s voltage and detects when the voltage
reaches a critical state. For the first case it is used the ADC3 of the Low-Level Controller
with a resolution of 12 bits, to get a digital value of the battery’s voltage (which is
scaled in a range of [0 - 3V]). For the second case it is used a pin in external interrupt
mode. Note that when the critical voltage is detected, an ISR is executed. Figure 87

illustrates the relations of the module. It contains functions to:

• Configure the ADC3;
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• Configure the DMA. When a conversion of the ADC is performed, the data
acquired is diretcly stored (without the intervention of the processor) in a specific
position of the memory. At each acquisition, the value is overrode and so,
updated;

• Configure a GPIO pin in external interrupt mode to detect falling transitions;

• Initialize the FreeRTOS objects for this module such as semaphores, tasks and
software timers;

• Enable the external interrupt, to detect the battery’s critical voltage, as well as
enable the battery’s voltage monitoring;

• Disable the external interrupt and the battery’s voltage monitoring;

• Perform an initial verification to see if the battery’s voltage is already in its critical
state;

• Handle possible errors that can occur during the configurations.

Figure 87: Diagram of the low battery module.

As to the FreeRTOS objects there is:

• A semaphore (CriticalBattery Signal) that is released when an external interrupt
occurred (battery’s voltage in its critical state);
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• A task (CriticalBatteryTask) that blocks until it is signaled by the
CriticalBattery Signal. When this signal is released, this task, declared in the low
battery module but defined in the low level controller module, sends a warning to
the Main Controller and ”freezes” all the Low-Level Controller.

• A software timer which is activated when the battery’s voltage monitoring
is enabled. Its callback (MonitoringBatteryVoltageCallback) is executed at each
5 second. During the execution, an ADC3 conversion is performed and the
acquired value is queued into the SendBatteryValue Queue;

• A message queue (SendBatteryValue Queue) that stores integers corresponding to
the value resulted from the ADC3 conversion of the battery’s voltage;

• A task (SendBatteryValuesTask) that blocks until there is data in the
SendBatteryValue Queue. When a value of the battery’s voltage is available, this
task, which is declared in the low battery module but defined in the low level
controller, consumes the information and sends this data to the Main Controller

Figure 88: Flowchart of the low level controller module.

low level controller

The low level controller module
is the main block of the
low-level application. It is
the one that make the decisions
and acts accordingly to the
information of all the other
modules. This module is the
only one that decides which
message needs to be sent to the
Main Controller and also is the
one that decodes the received
messages and commands the
low-level application. Note
that by the explanation of the
others modules, it is possible to
understand the job of the low
level controller module and how
it interacts with the others. So,

84



4.4. Software development

to clarify this module, it will be
only explained exclusive details and the main flow of the program. Figure 88 shows a
flowchart of the low level controller module’s startup.

As to the flowchart:

• At the beginning, relevant initializations are performed such as the initialization
of the UART module and the initialization of the FreeRTOS objects for the low
level controller module;

• Then, this module blocks in a task (MessageDecoderTask) waiting the existence
of messages (coming from the Main Controller) in the ReceiveBuffer Queue of the
UART module in order to decode them;

• At the beginning of the program, this main module only waits for a greeting
message. It will do nothing until it receives a greeting message from the Main
Controller;

• Receiving a greeting message, it means that the Main Controller is ready and so,
the low level controller module performs second initializations like initialize the
emergency button module and the low battery module. During the initialization
of this modules two things happen: it is verified the state of the emergency
button and it is verified if the battery’s voltage is in critical state. If it is, the
Main Controller is warned to be turned off and the low level controller freezes itself
i.e. it does absolutely nothing more. Contrarily, if the battery’s voltage is still
acceptable, it is enabled its monitoring and the low level controller module goes
again to an idle state waiting for messages (commands) from the Main Controller;

• Since it was already received a greeting message, the incoming messages from
the Main Controller are commands to perform some kind of action.

While blocked in the MessageDecoderTask, the low level controller module can receive
messages such as:

• A ’life signal’ message. In order to verify if the Low-Level Controller is still ”alive”,
the Main Controller sends a periodic message in which the low level controller
module has to acknowledge and answer;

• A ’start’ message. The low level controller module can receive starting messages
to start the sensors’ acquisitions, start the motors or both:
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– When it is to start the acquisitions of the sensors’ data, the sensors’
acquisitions module is initialized and started. From there, the specific field of
the Sensors struct will start to be filled by the specific sensor’s module. Also,
it is initialized the TIMER2 of the Low-Level Controller with a frequency of
10Hz. This timer is used to send all the sensors’ data to the Main Controller.
So, at each 100 milliseconds, an ISR of the TIMER2 is executed and a
semaphore (SendSensorsData Signal) is released. The SendSensorsDataTask
task waits the signal of SendSensorsData Signal and when it is signaled, it
reads the values of the Sensors struct (from the sensors’ acquisitions module)
and sends the data to the Main Controller;

– When the motors are enabled, the motors module waits duty cycle values.

• A ’stop’ message. When the low level controller module receives a ’stop’ command,
it stops the sensors’ acquisition module, stops the timer used to send the sensors’
data to the Main Controller and stops and disables the motors (if enabled);

• A ’restart’ message. When a restart message is received, the Low-Level Controller
performs a software restart and starts from the beginning of the application;

• A ’freeze’ message. The Main Controller has also the ability to detect if the
battery’s voltage is critical based on the battery’s value that it receives (see the low
battery module). This way, the Main Controller can also send a ’freeze’ command
in order to the Low-Level Controller ”freezes” itself;

Besides receiving message, it can be received data such as:

• Motors’ data. The low level controller module receives, from the Main
Controller, duty cycle values for the motors. Those values are queued in the
MotorsDC Queue which are then consumed and used in the motors module;

• New send frequency. By default, the frequency to send the sensors’ data is 10Hz.
However, the Main Controller has the power to define a new frequency. The range
is [1 - 800] Hz;

4.4.4 Main controller

The Main Controller gathers the more high-level software. Built using ROS , the
software developed covers the requirements that the blocks defined in 4.2 - System
Overview demand.
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Since the use of the Indigo distribution of ROS , the operating system that is installed
in the Main Controller is the Ubuntu 14.04. For the code implementation, it was installed
the QtCreator IDE with a ROS plug-in to ease the process of built software with ROS
. The current developed software is written in C++ and QML. However, for future
expansion, new code can be written in the same language or in another language
compatible with ROS . For the communication subsystem, that will be discussed next,
it was used the POSIX threads (pthreads) libraries which consist in a standard based
thread Application Programming Interface (API) for C/C++ and allows to introduce
concurrence in the execution of a program. For the rest of the software, it was used
the roscpp API of ROS .

It will be now detailed the communication subsystem developed as well as all the
ROS processes.

4.4.4.1 Communication subsystem

Figure 89: Communication subsystem class
diagram.

To accomplish the communication
between the two controllers, it
was created a class for the serial
communication called Serial. More
specifically, the Serial class consists
in a concrete class that derives
from a class that defines an
interface for communications, called
ICommunication. This abstract class
gathers methods and attributes
common of a communication
process and so, envisioning a
possible software expansion,
future communication protocols
developed should derive from the
interface ICommunication. Figure 89

presents the class diagram of the
communication subsystem from the
Main Controller.

The ICommunication class contains
pure virtual methods that must be
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implemented by the derived classes. There are methods to: open and close the
communication; run and stop the communication; and methods to read and write
data. As to the attributes, it contains a string attribute which will serve to store the
type of the communication. Also, the communication subsystem contains a struct
called Message that can be use as a generic data structure for the communication. The
Message struct wraps a pointer to bytes, which will store a message, and an integer,
which will store the message’s size.

The serial communication is the type of communication used between the two
controllers and so, the Serial class, derived from the ICommunication, was implemented.
So, the Serial class contains:

• Two constructors that have a parameter which consists in the baudrate of the
serial communication. The difference between them is that one accepts a string
that will serve to search and find the device that responds to the that string in
order to get the device’s file path for pairing. The other constructor accepts a
string with the device’s path;

• A method to open the communication. If, in the constructor, it was passed as
argument a string with a call message, this ’Open’ method will search for all
the serial devices, open the communication and send the call message. If the
device does not responds, the communication is closed and it is attempted to
communicate with another device. Otherwise, if a device responds the same
call message, the communication was successfully opened and remains opened.
When the communication succeeds, it is stored the file descriptor of the device
because it is needed to perform the communication operations;

• A Close() method which closes the communication with the device;

• A Run() method that configures and starts the messages queues and the threads:

– The Read Thread is in an infinite loop calling the pure virtual method Read()
that was implemented. This method blocks the threat until it receives a
message. When it is received, it is analyzed the sequence of the first three
bytes to verify if it equals the start sequence. If it does not, the rest of the
message is discarded. If it does, the rest of the message is received and if the
calculated checksum equals the received checksum, the message is queued
into the rx queue;

– The rx queue is a message queue that stores pointers to objects of the Message
struct type. When it is necessary to queue a message, it is declared a pointer
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to a Message struct and memory is allocated to it and to the field that will
store the message. Then, the information is copied to the object and the
pointer is queued. After used, the allocated memory must be freed.

– The Write Thread is in an infinite loop calling the pure virtual method Write()
that was implemented. This method blocks the thread until there is data in
the tx queue. When data is available, the thread wakes and since the data
consists in a pointer to an object of the Message struct type, the message’s
size is taken into account and the message itself is fetched in order to be
sent to the serial device;

– The tx queue is a message queue that stores pointers to objects of the Message
struct type and it is used to signal the Write Thread to send the queued
message to the serial device.

• A Stop() method that cancels the threads and closes the message queues;

• A public method that is used to send messages. As parameters it receives an
array of bytes, consisting in the message, and an integer that consist in the
message size. This method performs the framing process discussed in 4.4.2.1
- Message Frame, in order to obtain a valid and compatible message. Then, a
pointer to a Message struct is declared and memory is allocated to it and to the
field that will store the message. The information is copied to the object and its
pointer is queued on the tx queue;

• Two more methods that complement this serial API . Both methods are used to
block and wait until there is data in the rx queue (wait until a message is received).
The methods return a pointer to a Message struct which allows the access to the
information of the received message and use it. The difference between this two
methods is that one blocks infinitely until there is a message and the other waits
a message during a specific time;

4.4.4.2 ROS nodes

Different software components were designed and implemented respecting the
two main blocks targeted: Real-time sensors data acquisition and locomotion and
Human-Machine interface (HMI ). In this part, it will be presented different ROS nodes
that confer functionalities to the ASBGo* and also allowed to define a software base
for future development. So, the nodes are divided as follows (note that the nodes are
in italic):
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• Real-time sensors data acquisition and locomotion:

– LowLevelController node (1)

– Low Level Controller’s sensors data algorithms:

* CriticalBatteryDetector node (2)

* Locomotion:

· DriveHandlebar node (3)

· SetpointsInterface node (4)

· VelocityCalculator node (5)

· PIDLocomotionEnabler node (6)

· /left motor/pid controller (7)

· /right motor/pid controller (7)

· MotorsPWM node (8)

· MotorsDetections node (9)

• Human-machine interface:

– LocalGUI node (10)

– RemoteController node (11)

It will be now discussed the purpose of each node and some considerations will be
given. Also, it will be revealed, to each node, the topics to which it subscribes and
the topics to which it publishes. This way, it is possible to understand the inputs and
the outputs of the software processes allowing the comprehension of how the system
works.

(1) lowlevelcontroller node

The LowLevelController node is considered, from the Main Controller point of view,
the bridge between the Main Controller and the Low-Level Controller and so, it is the
entity that sends and receives information to and from the Low-Level Controller. Due
to the complexity of the node, it was developed a class, called LowLevelController, that
is instantiated in the node and dictates its execution flow . This way, the software of
this node gets encapsulated and more organized. Figure 90 gives a representation of
the LowLevelController node and the related topics.
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Figure 90: LowLevelController node ROS graph.

As to the LowLevelController class:

• It subscribes to the LowLevelController/start stop topic that is created in the
beginning of the node. The message’s type of the topic is bool and so, when
a true message is received the node starts its main execution. Otherwise, if a
false message is received the Low-Level Controller unit is restarted and the node
shutdowns itself;

• When the node starts its main execution, a serial communication is created (an
object of the Serial class is instantiated) and is passed as argument a specific call
message to be sent to the Low-Level Controller. When it responds, it is detected
the specific device file in order to validate the communication (see 4.4.4.1 -
Communication subsystem). If the communication was successfully opened, the
communication threads start and also it starts a thread (WaitingMessages Thread)
from the LowLevelController class;

• The WaitingMessages Thread pthread is in an infinite loop calling a method from
the Serial class that blocks until a message is received from the serial device (in
this case, the Low-Level Controller). When a message is received it is decoded and
actions are performed accordingly.

• It is relevant to say that at this point, to every command that is sent to the
Low-Level Controller a acknowledgment is expected and so, if it is not received

91



Chapter 4. asbg0* smart walker: the new prototype

it is assumed that something is wrong and a message is reported to the
LowLevelController/logger topic (it will be discussed later);

• Being everything configured and ready, a greeting message is sent to the
Low-Level Controller. If the Low-Level Controller greets back, everything is ok and
the execution continues;

• Battery’s values are periodically received from the Low-Level Controller, converted
into a voltage value and published in the LowLevelController/battery voltage topic.
Also, a life signal message is periodically sent to the Low-Level Controller in order
to know if it is still ”alive” and nothing went wrong. Again, if it not responds, a
message is published to the LowLevelController/logger topic;

• The LowLevelController node publishes to the LowLevelController/logger topic
relevant log messages. It can be messages to warn that something was wrong or
to warn that some event was triggered like the low battery event, the emergency
button pressed/released event and so on;

• From this point, the node is kind of in an idle state. It is just
waiting for commands from other nodes that are received through the
LowLevelController/commands llc topic in which the LowLevelController node
subscribes to. The commands received are interpreted and specific messages
are sent to the Low-Level Controller unit. It can be commands to enable/disable
specific sensors (choose the ones that will acquire data), to enable/disable the
motors, to start/stop the action in the Low-Level Controller and to ”freeze” or
restart the Low-Level Controller;

• If a ’start’ command is received (from the LowLevelController/commands llc topic)
and if all the sensors were enabled, the LowLevelController node will receive from
the Low-Level Controller unit the sensors’ data. This data is stored in a struct of
sensors’ data equal to the one represented in 4.1. The sensors’ data is received as
raw information (a set of bytes) and then it is casted to the sensors’ struct type
so that the information gets on the specific fields automatically. The data of each
field of the sensors’ struct is converted to specific units, e.g. the data of the IR is
converted to centimeters, the data from the load cells is converted to kilograms
and so on, and then this data is published to specific topics. The potentiometers’
values are published to the LowLevelController/potentiometers values topic, the
IR ’s value to the LowLevelController/infrared values topic, the load cells’
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values to the LowLevelController/load cells values topic, the URFs ’ values to
the LowLevelController/urf values topic and the values of the IMU to the
LowLevelController/imu values topic. Also, all the sensors’ values converted
are published in the LowLevelController/sensors values topic that gathers the
information of all the sensors. It is relevant to say that this topics do not
accumulate the values published but instead, it updates them;

• If the motors are enabled and a ’start’ command is received, the
LowLevelController node publishes to the Locomotion/pid start stop topic and
subscribes to information from the Locomotion/motors pwm topic which consist
in duty cycles values to be sent to the Low-Level Controller;

• There is a method in the LowLevelController class that allows to send to the
Low-Level Controller unit a new frequency value corresponding to the frequency
in which the sensors’ data will be received.

(2) criticalbatterydetector node

The CriticalBatteryDetector node is responsible to detect if the battery’s voltage has
reached a critical state. Figure 91 reveals the inputs and outputs of this software
component.

Figure 91: CriticalBatteryDetector node ROS graph.

As to the node:

• When launched, it takes two parameters. The first one, battery critical voltage,
corresponds to the voltage that is considered a critical voltage for the battery
and so, for the system. The second parameter, the n detections, corresponds to
the number of times that is detected the critical voltage until a warning message
is sent;

• It subscribes to the LowLevelController/battery voltage topic in which, when a
battery value is available, the node consumes it and checks if the received

93



Chapter 4. asbg0* smart walker: the new prototype

voltage is greater than the battery critical voltage. If it is not a counter variable is
incremented, otherwise, the counter variable is decrement (if greater than zero).
When the counter variable reaches the n detections, a warning is reported;

• It publishes to the LowLevelController/commands llc topic a message (command)
to warn the LowLevelController node that the battery’s voltage reached a critical
value.

(3) drivehandlebar node

The DriveHandlebar node is responsible to monitor the positions of the handlebar of
the ASBGo* in order to generate a locomotion command. Figure 92 shows the inputs
and outputs of the DriveHandlebar node.

Figure 92: DriveHandlebar node ROS graph.

So, as to the node:

• When launched, it takes five parameters consisting in five threshold values: one
is to detect if it is to go forward, other two to detect if it is to go in front-left or
front-right direction, and the other two to detect if it is to turn completely to the
left or to the right;

• It subscribes to the LowLevelController/potentiometers values topic in which, when
potentiometers’ values are available, they are compared with the threshold
values in order to be generated a drive command;

• When there is a drive command, it is published to the Locomotion/drive commands
a string corresponding to the drive command. Such commands can be to: move
front, move to the front left, move to the front right, turn completely to the left,
turn completely to the right and stop.

(4) setpointsinterface node

The SetpointsInterface node consists in a interface between the processes that generate
drive commands and the processes that control the motors. According to the
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drive commands, it is outputted relevant information for the nodes responsible
for the motors’ control. Figure 93 illustrates the inputs and outputs of the
SetpointsInterface node.

Figure 93: SetpointsInterface node ROS graph.

So, as to the node:

• It always stores the state of the locomotion, e.g. if the locomotion is disabled
the state is in NONE STATE, if the ASBGo* is moving forward the state is in
FRONT STATE and so on;

• When the node is launched, it is in a NONE STATE and also, when a false value
comes from the Locomotion/pid start stop, a topic in which the node subscribes to,
it means that the locomotion was disabled and so, the state variable of this node
gets the value of NONE STATE;

• When the locomotion is enabled, drive commands will be received through
the Locomotion/drive commands topic. When received, those commands are
decode and setpoint velocities to each motor are defined and published to the
Locomotion/left motor/setpoint velocity and Locomotion/right motor/setpoint velocity
topics;

• It will be in another node that when there is a ’stop’ drive command and the
velocity of the walker reaches zero, the controller of the motors is disabled
temporarily. Eventually, if it is received a different command (in this node) the
motors’ controller must be enabled again. For this, the SetpointsInterface node
publishes a true value to the Locomotion/set reset pid topic;

• Since the SetpointsInterface node gives a final locomotion command (setpoint
velocities), it also publishes, to the Locomotion/chosen drive command topic, the
drive command received to be used by others nodes for important algorithms;
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• Since this node outputs setpoint velocities, it must know which velocities to
publish. The definition of the velocity consists in two parameters: the velocity
between [0.1 - 1]m/s2 and the curvature percentage ([1 - 100]%) which sets the
angular velocity for the curves. When the node is launched, there are a default
velocity and curvature. However, the SetpointsInterface node subscribes to the
GUIs/speed parameters topic which allows to define new values for the parameters
that define the locomotion of the walker (velocity and curvature);

• For example, when a ’front right’ command is received and the velocity was
defined with a value of 1m/s2 and the curvature 50%, the setpoint velocity for
the left motor will be 1m/s2 and for the right motor will be (defined velocity -
((defined curvature / 100) x defined velocity)) which translates in (1 - ((50 / 100) x
1)) that equals to a velocity of 0.5m/s2 and so the walker curves to the right.

(5) velocitycalculator node

The VelocityCalculator node is responsible to calculate the current velocity of each
motor of the ASBGo* . Figure 94 reveals the inputs and outputs of the node.

Figure 94: VelocityCalculator node ROS graph.

So, as to the VelocityCalculator node:

• When launched, it takes three parameters: the ticks per revolution of the left and
right encoder and the radius of the walker’s wheels;

• It subscribe to the Locomotion/pid start stop topic so that when the locomotion
is disabled the node stops calculating the velocity of each motor and when the
locomotion is enabled, it starts to calculate the velocities;

• It subscribes to the LowLevelController/encoders values topic to receive the ticks of
each encoder. When received, the ticks are summed to a respective variable that
accumulates the ticks of each encoder;
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• There is a ROS timer that at each 200 milliseconds calls a callback that
calculates the distance traveled and the current velocity of each motor (in
this 200 milliseconds period) based on the ticks accumulated, the ticks per
revolution of the encoder and the wheels’ circumference. After the calculation,
the accumulation variables are clean;

• The velocities calculated are respectively published to the
Locomotion/left motor/current velocity and Locomotion/right motor/current velocity
topics. Also, both velocities are published together to the
Locomotion/motors current velocity.

(6) pidlocomotionenabler node

The PIDLocomotionEnabler node manages the start/stop of the motors’ controller
process and also can request the reset of the duty cycle values of the motors. Figure
95 illustrates the inputs and outputs of the node.

Figure 95: PIDLocomotionEnabler node ROS graph.

So, as to the PIDLocomotionEnabler node:

• It subscribes to the Locomotion/pid start stop topic meaning that when a false value
is received, the locomotion will be disabled and when a true value is received the
locomotion is enabled;

• It subscribes to the Locomotion/set reset pid topic meaning that when a false value
is received, the locomotion will not be disabled but instead will be ”asleep” and
when a true value is received the locomotion is ”waked”;

• It publishes boolean values to the Locomotion/left motor/enable pid and
Locomotion/right motor/enable pid topics to enable/disable the motors’ controller
processes and also publishes boolean values to the Locomotion/reset pwm in order
to reset (or not) the duty cycles of each motor.
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(7) pid controllers

There are two pid controller nodes: the /right motor/pid controller for the right motor
and the /left motor/pid controller for the left motor. The Proportional, Integral and
Derivative (PID) controller consists in a control loop feedback strategy in which is
calculated the error through the difference between a desired value for a certain
variable and the measured value of that certain variable. Then, it is applied a
proportional, integral and derivative correction to the error calculated and an output
is generated.

So, to apply the PID strategy in the system, a package from ROS , called pid,
was download and installed which allowed to avoid ”re-eventing the wheel” in the
implementation of a PID controller. This already implemented package is well
validated and also well documented in the wiki of ROS . This way, two pid nodes
are launched, one for the right motor and one for the left motor. The inputs and
outputs of the nodes have the same meaning but are duplicated (respective to each
motor) as it can be seen in figure 96.

Figure 96: ROS graph of the pid controller nodes.

So, as to the pid type nodes:

• They subscribe to .../setpoint velocity topics that will contain the setpoint variables
(in this case velocities) for the PID controller algorithms;

• They subscribe to .../current velocity topics that will contain the measured
variables (in this case measured velocities) for the PID controller algorithms.
The pid controller only acts when a measured value is received. This means
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that the frequency of operation of the PID controller algorithm depends on
the frequency in which measured values are published to the .../current velocity
topics;

• They subscribe to .../enable pid topics that enable or disable the PID controller
algorithm;

• They publish to .../motor inc dutycycle topics the output of the PID controller.

For the ASBGo* system, it was defined that the output of the PID controllers consist
in values that are summed or subtracted to the current duty cycle values of each motor.
Instead of applying a direct duty cycle value, it is used increments or decrements of
the duty cycle. This allows to get a gradual and slow response for the velocity, which
consists in a requirement of the ASBGo* due to its purpose (physical rehabilitation of
patients with gait disorders).

When the nodes are launched, several parameters can and must be set. The
important ones are the gains of the PID controller. For this system it is only used
a proportional control. By testing different approaches with all the types of control
(proportional, derivative and integral), it was verified that none presented satisfied
results like the approach that uses only the proportional and the incremental and
decremental values for the duty cycle.

(a) (b)

Figure 97: ROS pid features: (a) Dynamically reconfigurations of gains; (b) Plotting PID
variables.

ROS provides a way of configure the gains dynamically in order to test different
configurations, in real-time, to in the end check the best combination and so, set static
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values for the gains. Also, it provides a way of monitoring, in a real-time plot, the
different variables of the PID controller (see figure 97).

(8) motorspwm node

The MotorsPWM node is responsible to manage the output of the PID controllers
in order to be outputted duty cycles for the motors’ actuation. Figure 98 shows the
inputs and outputs of the node.

Figure 98: MotorsPWM node ROS graph.

So, as to the MotorsPWM node:

• It subscribes to the Locomotion/left motor/motor inc dutycycle and
Locomotion/right motor/motor inc dutycycle topics which will contain the outputs
(increment or decrement fragments for the duty cycle) of the respective
pid controllers nodes. When the node is launched, the variables that continuously
store the actual value of the duty cycle to each motor, left dc and right dc, present
a zero value;

• When values are received from the Locomotion/left motor/motor inc dutycycle and
Locomotion/right motor/motor inc dutycycle topics, they are respectively summed
(or subtracted) to the left dc and right dc variables. There are also conditions that
limit the duty cycles to a maximum value of 100 and a minimum value of -100;

• When new duty cycles values are generated, they are published to
the Locomotion/motors pwm topic in order to be consumed by the
LowLevelController node and so, sent to the Low-Level Controller unit;

• It subscribes to the Locomotion/reset pwm in which when a true value is received,
the duty cycle variables are reset and published to the Locomotion/motors pwm
topic.
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(9) motorsdetections node

The MotorsDetections node is responsible to, given a ’stop’ drive command,
detect when the motors stop in order to put the locomotion in a sleep state
(disable pid controllers nodes and reset duty cycles). Since the motors present an
electromechanical brake system, it is possible to rotate a handle, in each motor, which
decouples the motor from the motor’s shaft. This way it is possible to push the walker.
Also, if PWM s are applied to the motors, they will rotate but the shaft will not. This
constitutes a problem in a way that if drive commands are generated, the motors will
rotate and since the motors’ shaft will not and the encoders are coupled to the shafts,
the system will detect null velocities and will try to compensate more and more until
maximum duty cycles are reached. To avoid this, it is taking into account the current
drive command and the motors’ velocities. When it is given a drive command to move
the walker, it is started a ROS timer. After three seconds, it is executed a callback and
it is checked if the velocities are still zero. If they are, it means that the handles of
the electromechanical brake system of the motors were rotated and so, a command to
reset the duty cycles is given. Figure 99 reveals the inputs an outputs of the node.

Figure 99: MotorsDetections node ROS graph.

So, as to the MotorsDetections node:

• It subscribes to the Locomotion/chosen drive command topic to be aware of the
current drive command;

• It subscribes to the Locomotion/motors current velocity topic to be aware of the
current velocities of the motors;

• It publishes boolean values to the Locomotion/set reset pid topic in order to put
the locomotion in sleep or wake mode.

(10) localgui node

The LocalGUI node consists in the local GUI of the ASBGo* . It was used QML, a
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JSON-like declarative language for the design of the interface, and it was written a C++
class, the LocalGUI, that serves as an intermediary between the front-end (interface)
and the back-end (the rest of the ROS nodes). The main execution of the node is
in the class. So, it receives information from others nodes, processes the information
and acts on the front-end. Also, when the users navigate through the interface, the
front-end calls specific methods from the class in order to be sent information to the
other nodes. Figure 100 shows the inputs and outputs of the node.

Figure 100: LocalGUI node ROS graph.

So, as to the LocalGUI node:

• It subscribes to the LowLevelController/logger topic in order to receive logs from
the LowLevelController node and act in the front-end according to the log received;

• It subscribes to the LowLevelController/battery values topic in order to get the
battery’s voltage, calculate an estimation of the percentage of the battery and
print that value in the front-end;

• It subscribes to the LowLevelController/sensors values topic in order to get the
sensors’ data to be displayed in the interface;

• It publishes to the GUIs/speed parameters topic the parameters that define the
locomotion of the walker (velocity and curvature). Those values are chosen by
the user in the graphical interface and published inside the class.

• It publishes to the GUIs/enable remote controller topic boolean values to
enable/disable the remote controller. Note that the remote controller is only
used to drive the walker and so, it is only enabled in specific pages of the local
GUI ;
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• It publishes to the LowLevelController/start stop topic boolean values to start/stop
the main execution of the LowLevelController node. A true value is published to
this topic in the startup of the GUI and a false value before shutdown the system;

• It publishes to the LowLevelController/commands llc topic commands for the
LowLevelController node like commands to: choose the sensors that will operate,
enable/disable the motors and ’start’/’stop’ the action in the Low-Level Controller
unit. This commands are sent, inside the class, according to the configurations
of the user in the local GUI (front-end).

(11) remotecontroller node

The RemoteController node is responsible to handle the information from the remote
controller. Note that the remote controller is only used to drive the walker. Figure 101

illustrates the inputs and outputs of the nodes.

Figure 101: RemoteController node ROS graph.

So, as to the RemoteController node:

• It subscribes to the GUIs/joy topic that contains the current state of each one of the
remote controller’s buttons and axes. To have this type of topic, it was download
and installed a ROS package called joy. This packages consists in ROS driver for
generic Linux joysticks. The package contains the joy node, a node that interfaces
with the controller and publishes the information to the GUIs/joy topic. It is
necessary to give the path to the device file of the remote controller;

• It subscribes to the GUIs/enable remote controller topic which is used to
enable/disable handle the states received from the GUIs/joy topic. Since the
remote controller is only used to drive the walker, it is only enabled in specific
pages of the local GUI ;
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• It subscribes to the LowLevelController/logger topic to take into account some logs
of the LowLevelController node;

• It publishes to the LowLevelController/commands llc topic commands such as the
’start’ and ’stop’ commands in order to start/stop the action in the Low-Level
Controller unit (sensors’ acquisitions and enable motors);

• It publishes to the Locomotion/drive commands topic drive commands according to
the coordinates of the remote controller’s joystick. Note that it is impossible to
drive the walker backwards with the handlebar but it is possible with the remote
controller.

4.4.4.3 System startup

When the Main Controller is turned ON, and after booting the Ubuntu 14.04 OS
and perform the login, a startup shell script is executed. That script sets up

environment variables needed by ROS and then, a ROS launch file created, called
MainController.launch, is launched.

Figure 102: MainController.launch

As it can be seen in figure 102, the MainController.launch executes another four ROS
launch files that are responsible to launch the different nodes discussed in 4.4.4.2 -

ROS nodes. As also showed in 4.4.4.2 - ROS nodes, some nodes take some parameters
when launched which allows to change the value of some important variables of the
nodes without the need of re-compilation of the source code.

Future nodes can be launched inside the already existing launch files (if it
makes sense conceptually) or a new launch file can be created and included in the
MainController.launch.

Figure 103 shows the first launch file executed in the MainController.launch, the
GUIs.launch. It is launched: (1) the joy node, the one that interfaces with the remote
controller. It takes a parameter consisting in the Linux device file path of the remote
controller; (2) the RemoteController node, responsible to handle the states of the remote
controller; and (3) the LocalGUI node where it runs the local GUI of the device. It takes
two parameters consisting in the maximum and minimum voltages of the battery.
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Figure 103: GUIs.launch

Figure 104: CriticalBatteryDetector.launch

The second launch file executed in the MainController.launch is
the CriticalBatteryDetector.launch (see figure 104). It launches the
CriticalBatteryDetector node with one parameter that consists in the minimum
battery’s voltage and another that consists in the number of detections that are
counted before a warning is triggered.

Figure 105 shows the third launch file executed, the Locomotion.launch. In this
file is launched: (1) the PIDLocomotionEnabler node, responsible to manage the PID
controllers (enable/disable the control algorithms and reset the motors’ duty cycles);
(2) the MotorsPWM node, which manages the duty cycles of each motors, (3) the
pid controller nodes for each motor with the gains of the controller as parameters; (4)
the MotorsDetections node, responsible to detect a peculiar situation of the motors and
also if they are stopped; (5) the SetpointsInterface node, which decodes drive commands
and generates velocity setpoint values; (6) the DriveHandlebar node that manages the
state of the walker’s handlebar in order to output a drive command. It takes five
parameters that correspond to threshold values used in the evaluation of the state of
the handlebar; and (7) the VelocityCalculator node, responsible to calculate the velocity
of each wheel of the walker. It takes as parameters the ticks per revolution of each
encoder and the radius of the wheels.
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Figure 105: Locomotion.launch

Figure 106: LowLevelController.launch

The last executed launch file in the MainController.launch is the
LowLevelController.launch (see figure 106). In this file is only launched the
LowLevelController node.
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F I N A L R E S U LT A N D S Y S T E M VA L I D AT I O N

It will be now presented the device resulted from all the effort and commitment
dedicated to the project. Just to remember, figure 107 shows the starting point of this
thesis, consisting in just the walker’s mechanical frame. The frame was outlined in the
ASBGo++ version and it was based on many relevant considerations that were also
planned in that version. (From now on, it is advised to open this document with the Adobe
Acrobat Reader to allow the visualization of videos.)

Figure 107: Walker’s mechanical frame: (1)(2)(3) Walker’s frame in different perspectives; (4)
Interior section of the frame; (5) Walker’s compartment that will contain all the
electric system.
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5.1 final result

5.1.1 Mechanical modifications

This subsection will present the mechanical modifications that arise as a requirement
to integrate the electric system in the new device. All the modifications presented
were performed by the author of this thesis with the support of a close familiar with
knowledge and practice in mechanics.

Figure 108 shows the application of a new stopper on the handlebar in order to
avoid the destruction of the plastic angular potentiometer.

(a) (b)

(c) (d)

Figure 108: Application of a stopper on the handlebar: (a) Walker’s handlebar; (b) Angular
potentiometer; (c) Drilling the sliding pipe; (d) Stopper integrated.

Before the modification, when the handlebar was completely moved to the left, the
sliding pipe was hitting the angular potentiometer degrading it (see figure 108b).
So, by putting a stopper in the right side of the sliding pipe, the movement of the
handlebar to the left is limited, not compromising the locomotion and preventing the
destruction of the sensor (see figure 108d).

Figure 109 shows a mechanical modification related to the URFs in which it resulted
a strategy that eases the application and the attachment of the sensors to the physical
structure. In order to stably fix the sensors in the walker, two mechanical pieces were
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developed. This way, it is possible to put the sensors in the holes (which were also
filled with rubber to add some friction) and by pressing the mechanical pieces to the
sensors and by screwing them, the URFs get firmly attached (see figure 109b). Also,
since two URFs are pointing up and one is pointing down (figure 109a), one of the
mechanical pieces were cut in such a way that it forces this three sensors to point to
their respective direction (figure 109b and 109c).

(a) (b)

(c) (d)

Figure 109: Strategy for the attachment of the URFs : (a) Pointing directions; (b) Structures
developed that stably fix the sensors; (c) Sensors pointing to their respective
direction; (d) All sensors coupled and pointing to the correct direction.

Since the space of the walker’s compartment is very limited for all the electric system
developed, the space had to be very well exploited in order to gather everything. Being
the batteries the material with greater volume, they had to be mandatorily putted in
the larger part of the compartment. On the other hand, being the PCBs and the
motors’ drivers thinner, it was decided that they would be attached to the sides of the
compartment (see figure 110a). It was also planned to divide the larger part of the
compartment in floors and so a mechanical piece, with the form of the compartment,
was designed (see figure 110b). This allowed to allocate all the components in an
organized way.

As referred, the PCBs and the motors’ drivers were coupled to the sides of the
walker’s compartment. Being these parts very narrow, windows had to be made in
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order to increase the accessibility to the boards and so, to the sides of the compartment.
Figure 111 presents the modification process.

(a) (b)

Figure 110: (a) Walker’s compartment with the PCBs on the left side and the motors’ drivers on
the right side; (b) Mechanical piece that allows to divide the walker’s compartment
in floors.

(a) (b)

(c) (d)

(e) (f)

Figure 111: Making the access windows: (a) Planning the cuts; (b)(c) Cutting the frame; (d)
Windows accomplished; (e) Right window closed; (f) Right window being opened.
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To couple the PCBs and the motors’ drivers to the compartment, many holes had to
be drilled. Also, holes were made to allow passing the wires inside the compartment
from one side to another (see figure 112b).

(a)

(b)

(c)

Figure 112: (a) Cables between the upper part of the walker and its compartment; (b) Holes
drilled in the frame; (c) Holes and cuts in the wood lids.

Many wires must pass to the upper part of the walker and so, they were gathered
in a plastic coiled cable clamp (figure 112a) and holes had to be made in the wood
lids of the walker’s compartment. Also, it were performed cuts in the same wood lids,
consisting in a kind of paths where the wires can pass through, easing the extraction
of the lids (figure 112c).

For the local HMI , a touchscreen monitor had to be added to new the device. It
had to be coupled in a place visually accessible to the patient and also accessible to
the medical specialist. Therefore, it was decided that the monitor had to be coupled
behind the handlebar. However, in that position, it was planned (in the ASBGo++
version) that it would be a place that would support an RGB-D camera (figure 113a).
That makes no difference because the camera can be coupled above the monitor. This
way, it was taken in advantage the form of the mechanical piece that would support the
camera (figure 113a) to design a new similar one, with bigger dimensions, to support
the monitor (figure 113b). It resulted the piece that is supporting the monitor in figure
113d. Also, a considerable cut had to be made (figure 113c) in the upper part of the
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walker’s frame to allow coupling the monitor. In the end, the monitor was successfully
attached as it can be seen in figure 113d, 113e and 113f.

(a) (b)

(c) (d)

(e) (f)

Figure 113: Mechanical modifications to couple the touchscreen monitor: (a) Location chosen
and mechanical piece used to create a new similar one; (b) Old mechanical piece
and a draw of the new one; (c) Cutting a portion of the upper part of the walker’s
frame; (d)(e)(f) Final result in different perspectives.

Figure 114a shows the holes that were made to couple the switch that allows to
power the system ON and OFF and to couple the LED that indicates the state of the
system i.e. if it is ON or OFF. It is also represented the holder that holds the male
power plug connector of the system (see figure 114b). Figure 114c shows the female
plug connector that is directly connected to the battery of the system. When the male
power plug connector of the system is connected to the female plug connector, the
system can be turned ON using the switch (figure 114d). Otherwise, if the male power

112



5.1. Final result

plug connector of the battery charger (that will be explained later) is connected to the
female plug connector, the battery of the system is charged.

(a) (b)

(c) (d)

Figure 114: (a) Holder for the male power plug connector and the holes for the switch that
allows to power the system and for the LED that indicates the state of the system
(ON/OFF); (b) Switch and LED coupled and the male power plug connector held;
(c) Female plug connector that is connected to the battery of the system; (d) Male
power plug connector connected to the female plug connector (battery) and system
switched ON.
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5.1.2 Sensors and emergency button

In this subsection it will be revealed the different locations of the sensors and the
emergency button as well as the way that they are coupled.

Figure 115a shows the angular potentiometer and figure 115b the linear
potentiometer that is bellow the mechanical piece pointed by the red arrow. Figure
116 reveals the position of the IR sensor in which the mechanical piece where it is
coupled was also designed and created as well as holes had to be drilled.

(a) (b)

Figure 115: (a) Angular potentiometer coupled in the device; (b) Linear potentiometer bellow
the mechanical piece pointed by the red arrow.

(a)

(b)

(c)

Figure 116: Position of the IR sensor (convergence to the sensor from (a) to (c)).
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The load cells, as well as the rest of the sensors, can be easily detached. So, figure
117a presents one of the two load cells decoupled from the system. The sensor is then
coupled to a kind of mechanical balance (figure 117d and 117e) which is then placed
inside a foam padding. In turn, all the set is then placed on the wood platform as
shown in figure 117f. From here, it is only necessary to connect the sensor to the
system as demonstrated in figure 117c. The strategy to couple the load cells was done
in collaboration with another member of the ASBGo as well as the table (figure 117b)
was provided by the supporting company, the Orthos XXI.

(a) (b)

(c) (d)

(e) (f)

Figure 117: Load cells’ application in the device: (a) Load cell; (b) Wood platform; (c) System’s
connector to the sensor; (d)(e) Mechanical balance containing the load cell; (f) Foam
padding wrapping the mechanical balance and so, the sensor.

Figure 118 pictures the location of the left motor’s encoder. The red arrow points
to the encoder which is inside a mechanical piece. A customized shaft was designed
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and developed to link the sensor to the motor. For the right motor’s encoder, the same
principles are applied.

Figure 118: Encoder coupled to the left motor.

Figure 119b shows the IMU coupled to its acquisition board. The board is connected
to the system through a coiled cable and it can be stored in a protection bag (figure
119a). It is presented in figure 119c the expected position of the sensor in the patient’s
body. The sensor is inside a small box that will be developed by a member of the
ASBGo team.

(a)

(b) (c)

Figure 119: (a) IMU stored inside a protection bag; (b) IMU and its acquisition board; (c)
Simulation of the IMU in a person’s body.
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As to the URFs , figure 120 shows all those sensors well coupled and pointing to
their respective direction.

Figure 120: All the URFs coupled in the device.

Figure 121 reveals the emergency button coupled to the new device.

(a) (b)

Figure 121: Emergency button coupled in the device.

5.1.3 Material disposition

As referred, it was noticed, during all the development, that the space of the walker’s
compartment was very limited. This way, all the space had to be very well exploited
in order to all the components fit in an organized way.

Some of the thinner components were coupled to the sides of the compartment and
its larger part was divided in floors.

Figure 122 and 123 illustrates the division in levels. It is relevant to say that in the
third floor there is the material that have more permission to be accessed by future
developers. Material such as the on-board computer, the USB HUB, the thermal relay
(that indicates if a lot of current is flowing to the system) and the PCB that powers
and protects the on-board computer, the USB HUB and the touchscreen monitor. In
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the other floors are present the more electrical components that consists now in an
abstraction for future developers: in the second floor, the step-downs and the 3.3V
and 5V protection PCB ; and in the first floor, the batteries.

Figure 122: Larger part of the walker’s compartment divided in levels.

(a) (b)

(c)

Figure 123: The three floors of the larger part of the walker’s compartment: (a) First floor; (b)
Second floor; (c) Third floor.

As to the sides of the ASBGo* ’s compartment (figure 124 and 125): in the left
side there is the motors’ drivers and the electromagnetic relays that enable/disable
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the motors in case of emergency and the relay that allows to power all the system
ON/OFF; in the right side there are the acquisition PCBs as well as the Shield board.

Figure 124: Sides of the walker’s compartment.

(a) (b)

(c) (d)

Figure 125: The sides of the walker’s compartment: (a)(b) Left side with the motors’ drivers
and relays; (c)(d) Right side with the acquisition PCBs coupled to the Shield board.
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5.1.4 Battery charging strategy

A new and safe strategy to the charge the batteries of the ASBGo* was outlined and
developed.

Figure 126a and 126b shows the ASBGo III prototype. To charge the batteries in
this version it would be necessary to remove the batteries from the walker, connect
the positive and negative pole to the positive and negative pole of the battery charger,
respectively, and respect some other protocols. It consisted in a danger approach in
which in case of non-compliance with the protocol, serious consequences could result.

(a) (b)

(c) (d)

(e) (f)

Figure 126: Battery charging strategy: (a) ASBGo III ’s batteries; (b) ASBGo III ’s batteries
charging strategy; (c) ASBGo* ’s battery charger; (d) Disconnecting the male
power plug connector of the system from the female plug connector of the system
(battery); (e) Male plug connector of the battery charger connected to the female
plug connector of the system; (e) ASBGo* ’s battery charging.
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For the ASBGo* , a battery charger was adapted with a compatible male plug
connector (figure 126c). This way, to charge the batteries it is necessary to power
OFF the system and remove the male power plug connector of the system from the
female plug connector (figure 126d). From here, it is only necessary to connect the
male plug connector of the battery charger to the female plug connector (figure 126e),
which is connected to the battery of the system, and turn ON the charger (figure 126f).

5.1.5 Others

The separation between the first and the second floor is accomplished with the use
of foam (figure 127a). It is also used foam to accommodate and protect the PCBs .

(a) (b)

(c)

Figure 127: (a) Foam laid on the batteries consisting in the division between the first and the
second floor; (b) Messy aspect; (c) Wires gathered and involved in a plastic coiled
cable clamp.
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As it can be seen in figure 127b, there is a great number of wires in the new device
that transmit a visually messy aspect. To avoid that, the cables were involved in a
plastic coiled cable clamp that firmly fix the cables, easing the maneuver of the these
cables when e.g. the height of the walker is adjusted (figure 127c).

5.1.6 HMI devices

Figure 128a reveals the remote controller, which allows to drive the walker remotely,
and the touchscreen monitor that allows the local interaction with the ASBGo* .

(a) (b)

Figure 128: HMI devices: (a) Remote controller and touchscreen monitor; (b) Wireless mouse
and keyboard for development.

Figure 128b shows another way of interaction with the system which is through the
wireless mouse and keyboard of the walker. This way of interaction, which allows
online development, simulation and test, is only used by ASBGo ’s developers.
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5.1.7 Human-Machine interface: how to use

It will be now demonstrated and explained the local GUI of the ASBGo* in order
to highlight the user’s perspective. As already referred, when the Main Controller is
turned ON, all the nodes of the system, including the LocalGUI node, are launched. It
is in this specific node that runs the local GUI of the system. Since the new device
will help patients in the Hospital de Braga in Portugal, the language used in the GUI
is Portuguese. The ASBGo* ’s GUI is exclusive and completely developed from root.

5.1.7.1 Initial page

(a) (b)

(c) (d)

Figure 129: Local GUI initial page: (a) Waiting the indication of the user to start the system
(0:04); (b) Connecting to the Low-Level Controller (0:06); (c) Connection failed (0:07);
(d) Connection established successfully (0:14).

When the local GUI starts, an initial page appears (see video 129a) showing an
animation with the name of the device and waiting infinitely for a user’s touch in any
part of the screen. Also, there is a shutdown button that turns the Main Controller
OFF. Being the screen pressed, the Main Controller tries to connect with the Low-Level
Controller, as it can be seen in video 129b, and two things can happen: if the connection
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fails for any reason, a warning appears as shown in video 129c and the system suggests
to be turned OFF; if the connection was successfully established, the animation in
video 129d is triggered and the main page is revealed.

5.1.7.2 Main page

Figure 130: Local GUI main page.

As to the main page (figure 130):

(1) The main title of the application consisting in the name of the device;

(2) The main menu bar consisting in a scrollable menu that allows to select the
different pages of the interface. Only one of the items can be selected and when it is,
its name ”gets ON” (white). By default (and at the beginning), the first item of the
menu is selected;

(3) The little menu contains only three items that allows to go to the programmer
mode, stop the system and shutdown the Main Controller and check some insight about
the ASBGo* ;

(4) Represents the layout where the pages corresponding to the items of the main
menu bar are loaded;

(5) The title of the current page of the main menu displayed;

(6) A simple digital clock displaying the hours and minutes;

(7) The percentage of battery. When the battery percentage gets to 0%, a red ’X’
is displayed inside the little battery image (right superior corner).
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5.1.7.3 Little menu

Figure 131: Local GUI little menu.

As referred, the little menu consists in a small
menu with three buttons (three options) as it can
be seen in figure 131.

The first option, the ’MP’, allows to go
to the programmer mode. This means that
when selected, the system stops running all the
applications, low-level and high-level applications, and the Main Controller goes to the
Ubuntu 14.04 OS . From here, the on-board computer can be used as a general-purpose
computer. The second option, the ’sair’, turns OFF the Main Controller. Like in the
previous option, all the applications of the system stop and the main processing unit
shutdowns itself. The third option, the ’info’, reveals some information and description
of the new device, the ASBGo* .

Figure 132 reveals what happens when each of the options are selected. For the ’MP’
(figure 132a) and ’sair’ (figure 132b) options, a confirmation is made. If the answer
’Não’ is selected, the little menu page vanishes and the previous state of the local GUI
is re-established. As to the third option, the ’info’ (figure 132c), to close its little menu
page it is necessary to touch any part of the screen.

(a)

(b) (c)

Figure 132: Local GUI little menu pages: (a) ’MP’; (b) ’sair’; (c) ’info’.
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5.1.7.4 Main menu

Based on the requirements of Chapter 4, section 4.1, a set of options was defined for
the main menu. It is relevant to say that when one of the items is select, a respective
page is loaded into the main menu pages layout (see (4) in figure 130). This way, in the
future, if new requirements are outlined and if they have some influence in the local
GUI , new options can be easily added to the main menu bar and also a respective
page must be developed.

Although being established seven options, only four present a page. The others are
currently unavailable and are for future development. The disabled options can be
pressed but, since that they have no page, nothing happens. On the other side, if the
available options are pressed, the respective page is loaded. Everytime that a new
option is selected, a clean command is sent to the LowLevelController node in order to
the current configurations in it be reset. Then, depending on its purpose, the loaded
page takes care of send configuration commands to the LowLevelController node.

Figure 133 illustrates all the main menu options (unavailable options are in gray).

(a)

(b) (c) (d)

(e) (f) (g)

Figure 133: Local GUI main menu options: (a) ’Inı́cio’; (b) ’Sessão’; (c) ’Condução’; (d) ’Equilı́brio’
(unavailable); (e) ’Jogo’ (unavailable); (f) ’Pacientes’ (unavailable); (g) ’Sensores’.
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It is important to refer that the four options developed are due to the nine
requirements that were defined to be covered in the dissertation.

pages

’Inı́cio’ page
The ’Inı́cio’ page is considered the home page i.e. the first that appears (from the main menu

options). Figure 134 reveals the ’Inı́cio’ page.

Figure 134: Local GUI ’Inı́cio’ page.

As to the ’Inı́cio’ page:

Figure 135: Local GUI battery percentage (0:19).

(1) A more complex representation
of the battery percentage. It has three
states (see video 135): (a) when the
battery percentage is above 40%, the
color inside the battery’s image gets
blue; (b) when the battery percentage
is bellow 40% and above 20%, the color
inside the battery’s image gets orange.
This means that the walker can perform
one session, more or none (depends on
the time of the session); and (c) if the
battery percentage is bellow 20%, the
color inside the battery’s image gets red
(session is not advised and the battery
must be charged);

127



Chapter 5. final result and system validation

(2) A digital clock showing the hours, minutes and seconds as well as a presentation of
the date in dd - mm - yyyy;

(3) A greeting message for the users and an image of the ASBGo* .

’Sessão’ page

The ’Sessão’ page is where sessions are configured and performed. Figure 136 pictures the
’Sessão’ page.

Figure 136: Local GUI ’Sessão’ page configurations.

As to the ’Sessão’ page:

(1) Identification of the patient (name and ID number) that is going to perform a
rehabilitation session. This configuration has no purpose yet, but it is going to be important
once created an embedded database;

(2) Configure the patient’s assessment. In the future, it will allow to record video and
store spatio-temporal parameters of the gait and posture of the patient. Also, it will be possible
to store the data from the patient’s balance, acquired by the IMU , and the data from the
patient’s support in the wood platform of the walker acquired by the load cells. Currently,
when the ’Equilı́brio’ and ’Suporte’ options are selected, a configuration command is sent to the
LowLevelController node in order to be enabled the IMU and the load cells, respectively.

(3) The interaction configuration. This configuration has no purpose yet but will allow to
choose one of two future functionalities. One is to select the gait and/or posture biofeedback
and the other, the visual and/or auditive multitasking game.

(4) Choose a time mode for the session. If nothing is selected, the session will occur in
’chronometer’ mode. In the other side, if the ’Temporizador’ button is selected, it can be chosen
a number of minutes (maximum 60 minutes) and the session will occur in ’timer’ mode;
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(5) In this layout it is possible to configure the drive mode, local or remote mode (the
autonomous navigation mode is for future development) and choose the desired velocity and
curvature percentage for the walker’s locomotion;

(6) When the user finishes the configuration of the system, it presses the ’OK’ button to
go to the session page.

Figure 137 shows an example of a session’s configuration.

Figure 137: Local GUI ’Sessão’ page configurations example.

Figure 138 and 139 illustrate session pages in different states. The session page presents
a clock that can be in ’chronometer’ or ’timer’ mode, the information of the session, the
’Configurar’ button that allows to return to the configuration page and a start button called
’Iniciar’. Below the clock, there is an empty space reserved for the interaction functionalities
that are currently not implemented in the new prototype.

(a) (b)

Figure 138: Local GUI session page with remote drive mode and ’chronometer’ mode: (a) Idle
state; (b) Running state.
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Figure 138 presents a session whose time is in ’chronometer’ mode. In this example it
is chosen the remote drive mode and so, the session can only be started using the remote
controller. Contrarily, when it is used the local drive mode, the session must be started from
the local GUI . Once the session is initiated (in this case, using the remote controller) no more
configurations can be done and so, the ’Configurar’ button disappears (see figure 138b). Also,
being the session in running mode, all the menus get in an inactive state and the chronometer
starts counting.

Figure 139 presents a session whose time is in ’timer’ mode. When the session is running,
it can be paused (figure 139b and 139c). Being in a paused state, the session can continue by
being pressed the ’Iniciar’ button (if in local drive mode) or it can be stopped by being pressed
the ’Parar’ button. When a session is stopped the session configuration page re-appears. On
the other side, when the timer expires, the session finishes, a warning message appears (see
figure 139d) and it is returned to the session configuration page.

(a) (b)

(c) (d)

Figure 139: Local GUI session page with remote drive mode and ’timer’ mode: (a) Idle state;
(b) Running state; (c) Paused state; (d) Finished.

’Condução’ page
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The ’Condução’ page allows the user to only drive the walker. It can be relevant e.g. to
test and choose the most comfortable velocity for the patient. Figure 140 shows the ’Condução’
page.

Figure 140: Local GUI ’Condução’ page.

(a) (b)

(c)

Figure 141: Local GUI ’Condução’ page: (a) Remote drive mode; (b) Local drive mode; (c)
Running in local drive mode.
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As to the ’Condução’ page:
(1) It can be chosen a drive mode, local or remote mode (the autonomous navigation is

currently not developed);
(2) It can be defined the desired velocity and curvature percentage for the walker’s

locomotion. Also there are the possibility to choose a safety locomotion mode, represented
as ’Modo Safety’ in figure 140, that is currently not available remaining for future development;

(3) The locomotion can be initiated by pressing the ’Iniciar’ button.
As it can be seen in figure 141a, when it is selected the remote drive mode, the

locomotion must be initiated using the remote controller. Also, being the ’Condução’ page
in running mode, all the menus get disabled as well as the selection of the drive modes. In
the other hand, the desired velocity and curvature percentage can be changed (see figure 141c).

’Equilı́brio’, ’Jogo’, ’Pacientes’ pages
The three present pages are currently not implemented. As to the ’Equilı́brio’ page, it will

be possible to verify, in real-time, the balance of the patient by the acquisition of the IMU ’s
data and by using an algorithm that outputs the behaviour of the patient’s center of mass
over time. As to the ’Jogo’ page, it will present the visual/auditive multitasking game that, as
referred before, is also used in rehabilitation sessions. Finally, the ’Pacientes’ page will wrap
the embedded database that will allow to add or delete a patient from the database and it will
also allow to edit and visualize all the patients’ information.

’Sensores’ page
With the ’Sensores’ page, it is possible to visualize the embedded sensors’ data in real-time.

It has no purpose for the rehabilitation sessions, but serves to prove and check the acquisitions
of the sensors.

As it can be seen in figure 142, the page presents a start button, ’Iniciar’ button, that, when
pressed, enables a local locomotion with a static velocity and curvature percentage enabling
also all the embedded sensors. When the page is in a running state, all the menus get disabled.

(a) (b)

Figure 142: Local GUI ’Sensores’ page: (a) Idle state; (b) Running state.
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5.1.7.5 Warnings

Figure 143 shows a possible warning related to the IMU . Since the acquisition board for this
sensor is removable, in pages where the IMU is enabled, it is taken into account if the board
is connected to the system or if it was disconnected (if the system is in running mode). When
the warning is displayed, it disappears after a few seconds.

(a) (b)

Figure 143: Local GUI IMU ’s warning: (a) Warning triggered pausing the session; (b) Warning
disappears and session remains paused.

Another warning that appears in the local GUI is the emergency warning. When the
emergency button is pressed, the GUI is notified and the warning is displayed until the
emergency button is released. From here, it is possible to navigate through the menu’s options,
being the pages loaded, but being in a disabled state (see figure 144).

(a) (b)

Figure 144: Local GUI emergency’s warning. It is possible to navigate through the menu’s
options but the pages are disabled until the emergency button is released.

As it can be seen in figure 145, when the communication with the Low-Level Controller gets
lost or when the battery’s voltage gets into a critical state, the Main Controller stops, the local
GUI is notified and a warning is displayed for the user, requesting to shutdown the system.
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(a) (b)

Figure 145: Local GUI shutdown warnings: (a) Communication with the Low-Level Controller
lost; (b) Battery’s voltage in critical state.

5.1.7.6 Demonstration

Figure 146: Local GUI demonstration (3:29).

5.1.8 Final Product

Starting from the mechanical frame presented in figure 107 at the beginning of this chapter
(5) and passing through all the design and development process, it resulted the ASBGo* smart
walker, the more reliable, robust and extensible version of the ASBGo (see figure 147).

134



5.1. Final result

Figure 147: The ASBGo* in different perspectives.

Figure 148 illustrates how simple is to start the ASBGo* . First, as it can be seen in figure
148a, the male power plug connector of the system must be connected to the battery i.e., the
female plug connector of the system, and the system must be powered ON using the switch
labeled with a ’1’ (note that without being the male power plug connector connected to the
battery, the switch has no effect). Then, it is necessary to turn ON the Main Controller by
pressing its power button located where there is a ’2’. Being the Ubuntu 14.04 OS booted, a
login is required and after that, the local GUI is immediately initiated.

(a) (b)

Figure 148: Starting the ASBGo* : (a) Connect the male power plug connector of the system to
the battery, turn the system ON using the switch (represented as ’1’) and turn the
on-board computer on using its power button (represented as ’2’); (b) Login.
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5.2 system validation

It will be now exhibited several videos that show some features of the new ASBGo* . In
order to be fully understood, relevant information is displayed during the videos. (Again, it is
advised to open this document with the Adobe Acrobat Reader to allow the visualization of videos.)

Figure 149: (1) Validation of the walker’s locomotion in local drive mode (using the handlebar);
(2) System in a preliminary stage running with ROS (using the command line).
(0:37)
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Figure 150: (1) Linear velocity achieved (PID ) regardless of user’s weight; (2) Two turning
modes: defined curvature percentage and complete turns. (0:34)

137



Chapter 5. final result and system validation

Figure 151: First remote control validation. (0:43)
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Figure 152: (1) Easy driving with smooth start and stop; (2) Deactivation of the motors’
electromechanical break system allowing to manually push the walker; (3) Linear
and angular velocities configurable ensuring suitability for different patients. (1:41)

Figure 153: (1) Remote drive mode using the remote controller; (2) Instantaneous and precise
response to commands; (3) Easy to maneuver in tight spaces even with higher
velocities; (4) User-friendly interface to configure and use the ASBGo* smart
walker; (5) The programmer mode stops all the applications of the system and
gives access to the Ubuntu 14.04. (2:49)
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Figure 154: (1) A member of the ASBGo team, which will be responsible for the insertion of
the ASBGo* in clinical environment, in its first interaction with the new device;
(2) Emergency triggered and emergency button released; (3) New linear velocity
defined in real time; (4) Member of the ASBGo team using the device with body
supported. (1:26)
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C O N C L U S I O N

The work developed allows to answer the research questions (RQ) outlined in the
sub-chapter 1.2.2 - Goals and research questions.

RQ1: ”How many ASBGo prototypes exist, what functionalities they have and how their
hardware and software solutions are implemented ?”.

As presented in Chapter 3, there are four versions of the ASBGo that precede the new
ASBGo* . For all the versions, both the hardware and the software allowed to prove the
concept however, the lack of reliability, extendability, usability and the existence of poor
and academic electronic solutions, never facilitated the continuous use and development.
Also, although the contributions for the old versions were valuable, it is difficult to gather
every functionality when there are ad hoc implementations and so, it gets difficult to create
a global unified system in order to be expanded. The Prototype I presented a rudimentary
structure and a certain delay and hysteresis in its locomotion. Its main functionalities were:
(1) measure the user’s proximity using an IR sensor; (2) detect the user’s drive intentions
using a potentiometer; and (3) detect the user’s support using load cells. The Prototype II was
easier to transport and store and it was tested with real patients. However, although better
than Prototype I, it turned out to be a little uncomfortable and revealed some mechanical
limitations in terms of adjustment. Its main functionalities were: (1) a first proof-of-concept
obstacle avoidance feature; (2) user’s balance assessment by the use of accelerometers; and
(3) a walker-assisted gait assessment method arisen from the use of IMU s in the patient.
The ASBGo III was the first version used in continuous and regular rehabilitation and it
was more stable and ergonomic. Its new features were: (1) feet pose estimation by the use
of an active depth camera; and (2) a legs tracking feature using a laser range finder. In
the ASBGo++ version, an improved mechanical structure was outlined and created, new
high-level software features were developed and a deep study of all the versions of the ASBGo
was accomplished. However, the ASBGo++ was an incomplete version due to the absence of

electronics. As to its new features it had: (1) a body tracking feature using an active depth
camera; (2) a biofeedback feature and a multitasking game; and (3) a database that gathers all
the information of the patients and of the gait analysis.
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RQ2: ”What are the main goals and the requirements that the new prototype should
fulfill, in terms of behaviour and features ?”.

As presented in Chapter 4, section 4.1, the new ASBGo* must be capable to be used in
rehabilitation sessions and must present such an architecture that allows and eases future
development. This way, electric and electronic circuits were designed and implemented and
the following behaviours were introduced: (1) acquire data from a set of sensors in real-time.
Updated information of the sensors must be disposed, in specific units, in an high-level layer
and must be easily accessed in order to be developed/explored algorithms and software
features; (2) monitor the battery’s voltage; (3) freeze in case of critical battery; (4) Stop in
case of emergency; (5) move multi-directionally, more specifically, in eight directions; (6)
allow its locomotion through the use of the handlebar or the remote controller; (7) control
the velocity of its locomotion using a control algorithm; (8) detect some possible errors (e.g.
processing unit failure, motors errors); (9) provide a local graphical user interface allowing
the configuration and the use of the device (e.g. perform rehabilitation sessions);

RQ3: ”What is the most proper robotic software platform to develop the new system
architecture and what strategy should be followed to engineering it ?”.

The more high-level software developed was built using ROS (detailed in Chapter 2, section
2.2). This robotic software platform is a precious asset in the new system in a way that future
development is now a much more easier task. Its inference on modular code development
allows to divide the software in logical components (processes) that communicate with each
other. That communication is easily achieved by the use of a message-passing infrastructure
of ROS . It is very well documented and presents several tutorials that improve the learning
curve of developers. However, if questions emerge, ROS has an active online community that
support any possible doubt and also allows to install ready-to-use functionalities, implemented
and tested by other developers, that are totally configurable, present clear interfaces and can
easily be integrated in a robot software.

To engineer the new system architecture all the previous versions had to be studied
(Chapter 4). Gathering the functional requirements for the new device, a conceptual model
in blocks was delineated to obtain an overview of the global system. The necessary material
was explored, specified and purchased and by following a co-design method, hardware and
software for the ASBGo* was developed respecting the requirements defined.

RQ4: ”In how many conceptual blocks the system will be organized and how can they
be specified ?”.

In Chapter 4, section 4.2 it is revealed an overview of the global system and also the two
current conceptual blocks of the ASBGo* : Real-time sensors data acquisition and locomotion and
Human-Machine interface (HMI ). The first one consist in the collection and the processing of
information from a series of embedded sensors and components that allows to the system to
understand the surrounding environment, present an intelligent behavior and act accordingly.
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The second block is responsible for the interaction between the users and the device. In order
to be easily used in the medical environment by medical specialists, the interaction with the
system must exist and must abstract all the technical concepts. So, by the use of user-friendly
interfaces it is possible to offer a pleasant, simple and attractive way to use the smart walker.

RQ5: ”What material had to be acquired and/or purchased to develop the new system
architecture ?”.

Detailed in Chapter 4, subsection 4.3.1, a list of material, to develop the new architecture,
was gathered. This way, it was collected a series of (1) sensors such as: a linear potentiometer,
an angular potentiometer, an infrared sensor, load cells, an inertial measurement unit,
encoders, ultrasonic range finders, RGB-D cameras (currently not in use), a laser range finder
(currently not in use); (2) powerful processing units: a development board and an on-board
computer; (3) USB-to UART serial converter module; (4) actuators and motors drivers; (5) HMI
devices: touchscreen monitor, bluetooth remote controller; (6) 12V batteries; (7) step-downs

modules; (8) safety components; and (9) cables.

RQ6: ”Does the mechanical structure requires physical modifications ?”.

At the beginning of this work, there was already a physical structure of the walker
(developed in the ASBGo++ version) in where all the development of this thesis evolved to
in the end originate the ASBGo* . However, some mechanical details were not predicted and
they were only detected and performed when a proper system architecture was developed.
This way, (1) many holes had to be made: to couple the power switch and the indicator LED,
to allow passing the wires, to couple the PCBs in order to get stable and to couple some
components to the walker’s frame ; (2) a mechanical strategy to easily couple and stabilize the
URFs was achieved; (3) two windows, at each side of the walker’s compartment, were cut in
order to improve accessibility to the components inside the walker; (4) holes and little paths
were made in the wood lids of the ASBGo* ’s compartment in order to the wires pass to the
upper part of the walker and be easily handled; (5) new shafts for the motors were designed
to ensure compatibility with the encoders; (6) a stopper was applied in the handlebar to avoid
the destruction of the angular potentiometer; (7) a mechanical piece was coupled in front
of the walker (above the URFs ) and it will be where the laser range finder will be placed;
(8) a big cut was performed in the upper part of the ASBGo* and a mechanical piece was
developed in order to couple the touchscreen monitor; (9) mechanical pieces, for the new
battery charging system, were created, acquired and applied in the new device.

RQ7: ”The implemented solution was successfully validated and responds to all the
demands that were initially proposed ?”.

The new ASBGo* present the requirements proposed in the Chapter 4, section 4.1. It does
not gather all the desired functionalities that were planned by the ASBGo team (during the
last years) by the fact that it is impossible to implement all of them in the scope of a thesis.
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However, it already wraps many features that confers it the ability to be used in rehabilitation
sessions and so, help patients to get confident in their gait and pleasantly assist the medical
technicians. Also, although not completely enriched with functionalities, the current state of
the new device and the way that it was developed, allows to future developers to not concern
about certain and enormous details that, in the past, the lack of them led to the collapse of
older versions. Since a proper system architecture was developed, the future contributions
will not branch and diverge from the development line created in this thesis but rather, will
go along with it.

RQ8: ”What are the next steps that should be taken and what future work possibilities
are available in order to improve the developed system ?”.

Besides the validation of the new prototype in clinical environment, the next steps for the
new smart walker are just the addition of new algorithms. Since the more low-level software
is concluded and abstracted and since it is used ROS to build high-level software, it is only
necessary to use the resources of the new system to design, implement, test, simulate and add
new software components to the existing software system. More specifically, the next steps for
the ASBGo* is the development of the rest of the requirements listed in Chapter 4, section 4.1
and validate them in a real medical context.

6.1 conclusions

The work carried out during this thesis allowed to create a new sophisticated, more
professional, reliable and expandable version of the ASBGo , the ASBGo* . Starting only
with a new physical frame, outlined in the ASBGo++ version, all the development process
involved in this thesis addressed many layers, starting from the hardware, passing through
low-level software and finishing in high-level features.

To raise this new device, it took place a phase of integration in the context of the project.
By the study of all the previous versions, considerations for the new prototype started to get
shape. Also, the considerations and requirements resulted from the deep study performed by
ASBGo members in the last version, the ASBGo++ , contributed as a remarkable help for the
outline of guidelines for the new development.

The old versions of the ASBGo presented several ad hoc functionalities, which contributed
to prove the concept of the different algorithms as well as their purpose and need in the
medical context. However, the functionalities could be use, but always with the intervention
of an ASBGo technician or many protocols and limitations had to be followed due to the
academic nature of the prototypes. Additionally, none presented a well-constituted system
architecture and so, they were never classified as a unified and global system. With this type
of ”systems”, the further the development goes, more the system starts to get confused and
messy for new developers and it gets extremely difficult (or impossible) to add new features
along with previous ones implemented and so, the version collapses.
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To tackle the problem of the previous prototypes, a new system was developed from
root, following a Top-Down strategy, thus creating a logic and unified architecture. This
way, by collecting the functional requirements of the new device, an overview of the system
architecture was defined and two blocks were highlighted and proposed to be develop.

A profound research for new material was made. Many had to be purchased, some were
acquired and more important, compatibilities had to be taken into account. The material
gathered passes by powerful processing units, such as a development board, the STM32F4
Discovery, and an on-board computer, the NUC6i7KYK, several sensors, power supplies, motors,
hardware modules, safety components and even cables. In this new system, the STM32F4
Discovery is known as the Low-Level Controller and the on-board computer, the Main Controller.

To interface with sensors, motors and other components, a real-time low-level application
was developed in the Low-Level Controller. Built upon FreeRTOS, this application acquires and
manages the data from a group of embedded sensors and sends the information to the Main
Controller. Besides that, it handles emergency events, monitors the battery’s voltage of the
system and even detects if the battery reached a critical discharge state. It receives duty cycle
values from the Main Controller and generates PWM signals for the motors’ actuation.

At the hardware level, the new ASBGo* counts with a robust and complex electric
system that also involves a complete set of electronic circuits that were designed, tested and
implemented resulted in PCBs for the sensors’ acquisitions, protections boards, and a main
PCB , the Shield. This main PCB couples to the Low-Level Controller and is where are present
the circuits to detect an emergency and to monitor the battery’s voltage and is where the
boards for the sensors’ acquisitions are connected.

As referred, the Low-Level Controller and the Main Controller exchange data through a safe
serial communication protocol. The Low-Level Controller acknowledges the commands from
the Main Controller and acts accordingly. In the other hand, the Main Controller receives data
and warnings in order to process the information and execute/command actions.

The high-level software was developed in the on-board computer and it was built upon
ROS . This robotic software platform induces the development of granular software i.e. the
development of different software components that communicate with each other through
clear interfaces. The communication system is assured by a middleware provided by ROS
and so, an inter-process communication is ensured. This way, the system gets unified and it
gets easier to add new functionalities that can perform an independent task or can consume
resources outputted from already existing processes in order to perform its task.

The Main Controller receives the sensors’ data acquired from the low-level, at a configurable
frequency, and disposes that resources that are constantly updated. With this, it is only
necessary to develop new processes that consume that data, performs an algorithm and
outputs information. This feature is one of the keys of the new ASBGo* that none of the
previous versions had. Thereby, some high-level processes (ROS nodes) are implemented and
are very organized in the ROS file-system in order to ease the life of future developers. It
was implemented nodes that handle drive intentions of the users, either locally through the
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use of the walker’s handlebar either remotely through the use of a wireless remote controller,
calculate the current velocity of the motors, evaluate the battery’s voltage, examine the motors
and nodes responsible for the locomotion of the walker through the use of a PID control
strategy. Also, a user-friendly, attractive and high-tech GUI was designed to allow the easy
interaction between the device and the medical specialists.

At the mechanical level, several modifications were performed in order to suit the
mechanical frame to the new system architecture developed. Such modifications allowed to
couple and dispose the new material, improve the accessibility to certain parts of the walker
and allowed the protection of certain components of the device.

In summary, the ASBGo has now a more advanced prototype that is prepared to get easily
enriched with more functionalities providing also the means to accomplished that. More
important, it provides the facilities to be used in rehabilitation sessions in order to help patients
to recover from their gait difficulties.

6.2 prospect for future work

Since the new ASBGo* provides the means for a continuous development, the future
perspective is to implement and include the rest of the proof-of-concept functionalities of
the older versions in the new system. Besides implemented, they have to be studied to get
conceptually well divided and logical, in order to be developed the necessary ROS nodes
grating, this way, the continuous modularity of the new system.

One of the functionalities is the patient’s gait and posture assessment. By the use of two
RGB-D cameras, one for the gait and another for the posture, and by developing trustworthy
computer vision algorithms it is possible to obtain spatio-temporal parameters that allows to
help the patient to correct his posture and gait through the biofeedback that is provided. Also,
that data can be stored in a future embedded database that will allow to check the evolution
of the patients as well as store the patients’ information. In addition, all this information can
be shared, accessed an analyzed through the workstations of the medical team through an
exclusive cloud of the walker.

Another interesting feature for the new device is a sophisticated autonomous navigation
functionality. ROS offers several tools to develop and explore a great autonomous navigation
algorithm. Using the laser range finder, it is possible to scan the environment in order to obtain
a grid map. Then, it could possible to select a point in the map and by the use of the encoders’
data, for the odometry, the laser, for obstacle avoidance, and a path planner algorithm, the
walker would go by itself to the desired position. Additionally, a shared control, which takes
in count the drive intentions of the user and the autonomous intentions of the walker to output
a locomotion command, would enhance the autonomous navigation functionality.

Many more algorithms can now be explored. The sensors’ data are disposed and updated
at a certain frequency and can be easily accessed and so, the sky is the limit. It is relevant to
say that since it is already developed a local GUI , future algorithms must be configurable
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through the interface and also, if their outputs offer important information for the users, that
information must be represented in the GUI .

At the hardware level, there are a protection board that protects the on-board computer,
the touchscreen monitor and the USB HUB from short-circuits. However it would be relevant
to develop a circuit that protects this components against over-voltage by the combination of
voltage dividers, zener diodes, operational amplifiers and relays. Besides being very unlikely
to occur over-voltages, the circuits would confer a little more robustness to the electric system.
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