Antagonism between *Bacillus cereus* and *Pseudomonas fluorescens* in planktonic systems and in biofilms

Manuel Simõesa,b,*, Lúcia C. Simõesa, Maria O. Pereiraa and Maria J. Vieiraa

aIBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal; bCITAB-Departamento de Fitotecnia e Engenharia Rural, Universidade de Trás-os-Montes e Alto Douro (UTAD), Edifício Ciências Agrárias, Apartado 1013, Vila Real, Portugal

(Received 24 April 2008; final version received 27 May 2008)

In the environment, many microorganisms coexist in communities competing for resources, and they are often associated as biofilms. The investigation of bacterial ecology and interactions may help to improve understanding of the ability of biofilms to persist. In this study, the behaviour of *Bacillus cereus* and *Pseudomonas fluorescens* in the planktonic and sessile states was compared. Planktonic tests were performed with single and dual species cultures in growth medium with and without supplemental FeCl\textsubscript{3}. *B. cereus* and *P. fluorescens* single cultures had equivalent growth behaviours. Also, when in co-culture under Fe-supplemented conditions, the bacteria coexisted and showed similar growth profiles. Under Fe limitation, 8 h after co-culture and over time, the number of viable *B. cereus* cells decreased compared with *P. fluorescens*. Spores were detected during the course of the experiment, but were not correlated with the decrease in the number of viable cells. This growth inhibitory effect was correlated with the release of metabolite molecules by *P. fluorescens* through Fe-dependent mechanisms. Biofilm studies were carried out with single and dual species using a continuous flow bioreactor rotating system with stainless steel (SS) substrata. Steady-state biofilms were exposed to a series of increasing shear stress forces. Analysis of the removal of dual species biofilms revealed that the outer layer was colonised mainly by *B. cereus*. This bacterium was able to grow in the outermost layers of the biofilm due to the inhibitory effect of *P. fluorescens* being decreased by the exposure of the cells to fresh culture medium. *B. cereus* also constituted the surface primary coloniser due to its favourable adhesion to SS. *P. fluorescens* was the main coloniser of the middle layers of the biofilm. Single and dual species biofilm removal data also revealed that *B. cereus* biofilms had the highest physical stability, followed by *P. fluorescens* biofilms. This study highlights the inadequacy of planktonic systems to mimic the behaviour of bacteria in biofilms and shows how the culturing system affects the action of antagonist metabolite molecules because dilution and consequent loss of activity occurred in continuously operating systems. Furthermore, the data demonstrate the biocontrol potential of *P. fluorescens* on the planktonic growth of *B. cereus* and the ability of the two species to coexist in a stratified biofilm structure.

Keywords: antagonist molecules; biofilm formation; biofilm control; dual-species biofilms; microbial interactions

Introduction

Microorganisms are found in a wide range of ecosystems as highly structured multi-species communities, termed biofilms (Stoodley et al. 2002; Palmer et al. 2007). The downside of microbial biofilms is associated with their involvement in major problems associated with industry, medicine and everyday life (Gilbert et al. 2002; Leriche et al. 2003; Hall-Stoodley et al. 2004; Shakeri et al. 2007). Bacterial adhesion to surfaces is a widespread phenomenon and is affected by many factors (Palmer et al. 2007; Simões et al. 2008a). To date, it has been documented that surface conditioning and the type of growth medium, growth temperature and pH, electrostatic and physical interactions between bacterial cell surfaces and substratum, cell–cell communication and signalling, are able to influence bacterial adhesion and the further development of biofilm (Davies et al. 1998; Doyle 2000; Gilbert et al. 2002; Palmer et al. 2007). Moreover, the colonisation of a surface by a bacterium can enhance the attachment of others to the same surface (Møller et al. 1998; Simões et al. 2007a). This gradual process can lead to functional bacterial consortia often possessing greater combined metabolic activity and resilience than that of each component species on its own (Møller et al. 1998). Understanding the mechanisms by which different species survive and interact in a biofilm should help to develop strategies for their elimination at source. Nevertheless, the physiology and metabolism of multispecies biofilm communities are immensely complex. The existence of multiple
interactions or even the simple production of a metabolite can interfere with the development of a biofilm (Rasmussen et al. 2005; Simões et al. 2007a). For example, competition for substrate is considered to be one of the major evolutionary driving forces in bacteria (Banks and Bryers 1991). Numerous experimental data obtained in the laboratory show how different microorganisms may effectively outcompete others as a result of better utilisation of a given energy source (Banks and Bryers 1991; Christensen et al. 2002; Komlos et al. 2005).

Evidence of increased biofilm resistance to conventional antimicrobial treatments has led to several alternative control strategies. These include the use of interspecies interactions as biocontrol strategies (Gram et al. 1999; Mireles et al. 2001; Ammor et al. 2006), bacteriophages (Hughes et al. 1998; Tait et al. 2002; Sillankorva et al. 2004), enzymes (Meyer 2003; Olsen et al. 2007; Leroy et al. 2008), quorum-sensing inhibitors (Rasmussen et al. 2005) and other compounds that interfere with biofilm formation such as iron chelators (Singh et al. 2002; Banin et al. 2005). However, in order to develop strategies for preventing biofilm formation, it is necessary to better understand the mechanisms by which different species survive and interact within a biofilm. Therefore, this study was designed to evaluate the interactions between *Bacillus cereus* and *Pseudomonas fluorescens* in both planktonic and biofilm conditions. These bacteria are commonly found in industrial settings, causing numerous process and end product quality problems (Kolari et al. 2001; Lindsay et al. 2002; Simões et al. 2008b). They can represent a significant proportion of the contaminant biofilm microflora of constitutive dairy plants (Sharma and Anand 2002a; Dogan and Boor 2003; Kreske et al. 2006; Wijman et al. 2007).

The main objectives of this study were to evaluate the interactions between *B. cereus* and *P. fluorescens* as changes in bacterial counts in (1) a planktonic system with and without iron and (2) biofilms in a continuous bioreactor. Biofilm stratification and physical stability were also assessed on single and dual species biofilms after growth for 7 days. Furthermore, planktonic growth inhibition assays with and without iron were performed and the production of iron-chelating molecules was measured and correlated with the presence/absence of iron in the growth medium. Finally, the adhesion ability and the free energy of adhesion between the bacteria and stainless steel (SS) were assessed.

Materials and methods

Microorganism and culture conditions

P. fluorescens ATCC 13525T and a *B. cereus* strain, isolated from a disinfectant solution and identified by 16S rRNA gene sequencing, were used throughout this study (Simões et al. 2007b). Bacterial growth conditions were 27 ± 2°C and pH 7, with glucose as the main carbon source. The bacteria were grown in independent chemostats, consisting of 0.5 l glass reactors (Quickfit, MAF4/41, England), with an air flow rate of 0.425 l min⁻¹ and continuously fed with a sterile concentrated standard growth medium (glucose, 5 g l⁻¹; peptone, 2.5 g l⁻¹; and yeast extract, 1.25 g l⁻¹; prepared in 0.02 M phosphate buffer, pH 7) (Simões et al. 2007c). The continuous feeding, with the aid of a peristaltic pump (Ismatec Reglo, Germany) occurred at a rate of 10 ml h⁻¹ (*P. fluorescens*) or 13 ml h⁻¹ (*B. cereus*) of sterile medium.

Planktonic growth of single and dual species

Three flasks, containing 200 ml of sterile concentrated standard growth medium, were inoculated with *B. cereus* and *P. fluorescens* from 0.5 l chemostats in the exponential phase of growth, to a cell density of 5×10^8 cells ml⁻¹ (2.5 $\times 10^8$ cells ml⁻¹ of each species for co-culture experiments), and left to grow in an orbital shaker (120 rpm, 27°C) (Simões et al. 2007a). Bacterial growth was followed over time (48 h) by aseptically taking 0.5 ml samples from each flask and assessing the number of viable *B. cereus* and *P. fluorescens* cells by epifluorescence microscopy using the Live/Dead BacLight bacterial viability kit (Molecular Probes, L-7012, Leiden, The Netherlands), according to the procedure described by Simões et al. (2005b). Cell suspension samples were diluted such as to have 30–250 cells per microscopic field, and then microfiltered through a Nucleopore™ (Whatman, Middlesex, UK) black polycarbonate membrane (pore size 0.22 μm), stained with 250 μl of SYTO 9™ (component A) and 250 μl of propidium iodide (component B) from the Live/Dead kit, and left in the dark for 15 min. Dye solutions were prepared by dissolving 3 μl of component A in 1 ml of sterile-filtered (pore size 0.22 mm) distilled water and the same procedure was followed for component B. A Zeiss AXIOBON (Zeiss, Göttingen, Germany) microscope, fitted with fluorescence illumination and a 100 x oil immersion objective, was used to visualise the stained cells. The optical filter combination for optimal viewing of stained preparations consisted of a 480–500 nm excitation filter in combination with a 485 nm emission. Cell observations were recorded as micrographs using a microscope camera (AxioCam HRC, Carl Zeiss, Germany) and a programme path (AxioVision, Carl Zeiss Vision) involving image acquisition and processing. A programme path (Scan Pro 5, Sigma), involving object measurement and data output, was used to quantify the number of cells. Additional experiments were conducted as referred to above, but with the presence of 100 μM of FeCl₃ (Riedel-de-Haën,
Germany) in the growth medium. Spore numbers of \textit{B. cereus} were assessed by surface plating (300 \(\mu l \) samples) after heat treatment of cell cultures (80°C, 5 min), according to Kolari et al. (2001). The plates of solid concentrated standard growth medium (13 g \(l^{-1} \) agar) were incubated at 27 ± 2°C for 72 h.

Assays of growth inhibition

\textit{B. cereus} and \textit{P. fluorescens} were grown in batch conditions for 2 days in 500 ml flasks (Schott, Germany) containing 200 ml of sterile concentrated standard growth medium. The suspensions were centrifuged (3777g, 5 min) and the supernatant filter-sterilised (0.2 \(\mu m \), Whatman). Exponential phase bacteria (100 \(\mu l \)) from the chemostats referred to above, were spread on solid medium and air-dried for 30 min. The supernatant solutions were pipetted (10 \(\mu l \)) onto the lawns, as described by Kolari et al. (2001). The screening for inhibition halos was performed after 1 day at 27°C. Sterile medium was used for the negative control. Experiments were also conducted with supernatants from bacteria grown on standard medium supplemented with 100 \(\mu M \) of FeCl3.

Production of iron-chelating molecules

The production of iron-chelating molecules was assayed on chrome azurol S (CAS) agar, based on the methodology described by Schwyn and Neilsand (1987). In liquid medium, those molecules were detected by the CAS assay (Schwyn and Neilsand 1987). Equal volumes of sterile-filtered culture supernatant and CAS assay solution were mixed and left for 30 min at room temperature (25 ± 2°C). The absorbance at 630 nm (BIO-TEK, Synergy HT, Vermont, USA) was measured against blanks of sterile medium and CAS assay solution. A negative value indicated the presence of iron-chelating molecules, such as siderophores.

Free energy of adhesion between bacteria and SS

The free energy of adhesion (\(\Delta G_{\text{Adhesion}} \)) between the bacterial cells and SS surfaces was assessed according to the procedure described by Simões et al. (2007d, 2008a). To ascertain the bacterial surface properties, lawns of \textit{B. cereus} and \textit{P. fluorescens} were prepared as described by Busscher et al. (1984). SS surfaces were prepared for characterisation by immersion in a solution of commercial detergent (Sonasol Pril, Henkel Ibérica S. A.) in ultrapure water for 30 min. After rising with ultrapure water, the surfaces were dried at 65 ± 5°C for 3 h.

The contact angles of the bacteria and of the SS were determined by sessile drop contact angle measurements, using an apparatus (model OCA 15 Plus; DATAPHYSICS, Filderstadt, Germany) that allowed image acquisition and data analysis. The surface tension components of bacteria and SS were obtained by measuring the contact angles with three pure liquids. These measurements were carried out at 25 ± 2°C using water, formamide and \(\beta \)-bromo-naphthalene (Sigma) as reference liquids. The surface tension components of the reference liquids were taken from the literature (Janczuk et al. 1993). Contact angle data were obtained from at least 25 determinations for each liquid and for each experiment. Afterwards, the hydrophobicity of bacteria and the SS surfaces was evaluated from contact angle measurements by the method of van Oss et al. (1987, 1988, 1989). With this method, the degree of hydrophobicity of a given material (1) is expressed as the free energy of interaction between two entities of that material immersed in water (\(w \)) – (\(\Delta G_{\text{iw}} \) mJ m\(^{-2} \)). \(\Delta G_{\text{iw}} \) was calculated from the surface tension components of the interacting entities, according to the equation

\[
\Delta G_{\text{iw}} = -2 \left(\sqrt{\gamma_i^{\text{LW}} - \gamma_{i\text{w}}}^2 + 4 \left(\sqrt{\gamma_i^{p} + \gamma_i^{w}} - \sqrt{\gamma_i^{p} + \gamma_i^{w}} \right) \right)
\]

where \(\gamma_i^{\text{LW}} \) accounts for the Lifshitz-van der Waals component of the surface free energy and \(\gamma_i^{+} \) and \(\gamma_i^{-} \) are the electron acceptor and electron donor parameters, respectively, of the Lewis acid-base component (\(\gamma_{AB} \)), with \(\gamma_{AB} = 2\sqrt{\gamma_i^{+}\gamma_i^{-}} \).

The surface tension components were estimated by the simultaneous resolution of three equations of the type

\[
(1 + \cos \theta)\gamma_i^{\text{Tot}} = 2 \left(\sqrt{\gamma_i^{\text{LW}} + \gamma_i^{+} + \gamma_i^{-}} \right)
\]

where \(\theta \) is the contact angle and \(\gamma_i^{\text{Tot}} = \gamma_i^{\text{LW}} + \gamma_{iAB} \).

When studying the interaction (free energy of adhesion (\(\Delta G_{\text{Adhesion}} \))) between substances \(i \) and \(I \) that are immersed or dissolved in water, the total interaction energy, \(\Delta G_{\text{iw}}^{\text{Total}} \), can be expressed as

\[
\Delta G_{\text{iw}}^{\text{Total}} = \gamma_i^{\text{LW}} + \gamma_{i\text{w}}^{\text{LW}} - \gamma_i^{\text{LW}} + 2 \left(\sqrt{\gamma_i^{p} + \gamma_i^{w}} - \sqrt{\gamma_i^{p} + \gamma_i^{w}} \right) + \sqrt{\gamma_i^{p} + \gamma_i^{w}} - \sqrt{\gamma_i^{p} + \gamma_i^{w}} ^{-2}
\]
Thermodynamically, if $\Delta G_{\text{sw}}^{\text{Tot}} < 0$ adhesion is favoured, whereas adhesion is not expected to occur if $\Delta G_{\text{sw}}^{\text{Tot}} > 0$ mJ m$^{-2}$.

Adhesion assays

SS coupons (8 mm × 8 mm), prepared as indicated for the $\Delta G_{\text{Adhesion}}$ assessment, were inserted in the bottom of 24-well (15 mm diameter each well) microtiter plates (polystyrene, Orange Scientific, USA). Bacteria collected from the 0.5 l chemostats were centrifuged twice (3777g, 5 min) and resuspended in 0.2 M phosphate buffer to cell densities of 5×10^8 cells ml$^{-1}$ or 2.5×10^8 cells l$^{-1}$ of each bacterium, for dual species experiments. A volume of 2 ml (1 ml of each bacterium for dual species experiments) of each bacterial suspension was added to each well. Adhesion to SS was allowed to occur for 2 h at 25 ± 2°C, in a shaker at 150 rpm, according to the methods of Simões et al. (2007d). Negative controls were obtained from SS in phosphate buffer without bacteria. The experiments were performed in triplicates and repeated three times. At the end of the assay, each well was washed twice with phosphate buffer, to remove weakly adherent cells. Total counts (viable and non-viable cells) of adhered bacteria were assessed by Live/Dead bacterial viability kit following the procedure described above.

Single and dual species biofilm formation

Continuous cultures of each bacterium, grown in the 0.5 l glass chemostats as referred above, were used to inoculate (10 ml h$^{-1}$ for *P. fluorescens* and 13 ml h$^{-1}$ for *B. cereus*) continuously in a 3.5 l polymethyl methacrylate (Perspex) reactor, aerated at 0.243 l min$^{-1}$. This reactor was fed with diluted nutrient medium (glucose, 0.05 g l$^{-1}$; peptone, 0.025 g l$^{-1}$; and yeast extract, 0.0125 g l$^{-1}$; prepared in 0.02 M phosphate buffer, pH 7) (Azeredo and Oliveira 2000; Simões et al. 2005b). The flow rate was maintained at 1.71 h$^{-1}$, so that it would support a cell density of 6×10^7 cells ml$^{-1}$. Single and dual biofilms were grown on ASI 316 SS cylinders, with a surface area of 34.6 cm2 (diameter = 2.2 cm; length = 5 cm), inserted in the 3.5 l reactor and rotating at a constant low shear stress corresponding to a Reynolds number of 2400. Three SS cylinders were used in every experiment. Biofilms were allowed to grow for 7 days before further experimentation in order to obtain steady-state biofilms (Pereira et al. 2002).

In the case of dual species biofilms, two 0.5 l glass chemostats were used to grow *B. cereus* and *P. fluorescens* independently. The 3.5 l reactor was inoculated simultaneously with the two bacteria, and fed with the diluted nutrient medium at a flow rate two times higher (3.4 l h$^{-1}$) than used for single species biofilm formation, in order to obtain a cell density and residence time similar to the single species scenario.

Biofilm stratification and physical stability

Biofilm physical stability was assessed by determining the biomass loss due to exposure to increasing Re_A in a rotating system device, as described elsewhere (Simões et al. 2005b, 2008b). After biofilm formation for 7 days, the cylinders with biofilm were carefully removed from the 3.5 l reactor, accurately weighed and immersed in 170 ml vessels with 0.02 M phosphate buffer. Afterwards, the cylinders were consecutively subjected to serial shear stress forces corresponding to Re_A of 4000, 8100, 12,100, 16,100, for a period of 30 s each. The wet weight of the cylinders with biofilm attached was determined before and after each Re_A application. After exposure to shear stress and for dual biofilms, the proportion of *B. cereus* and *P. fluorescens* cells in the several layers (removed and the remaining) was quantified by direct cell counts. The residual biofilms were removed with an SS scraper according to the methodology of Simões et al. (2008a), and resuspended in 5 ml of phosphate buffer, for cell enumeration.

The experiments were repeated on three different occasions for every scenario tested with low variability for the results ($P > 0.05$). The wet mass of the biofilm removed from the surface of each cylinder, after each Re_A exposure, was expressed in terms of percentage biofilm removal, defined as the amount of biofilm adhered after exposure to the complete series of Re_A. The data are expressed as percentage of biofilm remaining, according to the following equations:

\[
\text{Biofilm remaining} (\%) = \frac{(X_t - X_c)}{(X_{\text{biofilm}} - X_c)} \times 100
\]

\[
\text{Biofilm removal} (\%) = \frac{(X_{\text{biofilm}} - X_t)}{(X_{\text{biofilm}} - X_c)} \times 100
\]

where X_{biofilm} is the wet mass of the cylinder plus biofilm mass before exposure to the series of Re_A; X_t is the wet mass of the clean cylinder, ie without adhered biofilm; X_c is the wet mass of the cylinder plus biofilm mass after exposure to the entire series of Re_A; and Re_A is 4000, 8100, 12,100 or 16,100; X_t is the wet mass of the cylinder plus biofilm mass after exposure to Re_A of 4000, 8100, 12,100 or 16,100.
Biofilm cell counts

Biofilm cells were obtained after extraction of extracellular polymeric substances, according to Frølund et al. (1996) in order to eliminate components (biofilm matrix) that would interfere with the staining technique (Simões et al. 2005b, 2007c). Afterwards, bacteria were stained with the Live/Dead BacLight bacterial viability kit as described for planktonic cell counts. Total cell counts were assessed by the amount of viable and non-viable bacteria. *B. cereus* and *P. fluorescens* were distinguished according to differences in cell size (Simões et al. 2007b, 2007c). *B. cereus* had cell sizes of 1.58 ± 0.09 μm (sessile) and 2.03 ± 0.13 μm (planktonic), whereas *P. fluorescens* had cell sizes of 0.583 ± 0.07 μm (sessile) and 1.16 ± 0.11 μm (planktonic).

The mean number of cells was determined from counts of a minimum of 20 microscopic fields, for each sample membrane.

Statistical analysis

The data were analysed using the statistical programme Statistical Package for the Social Sciences, version 14.0. The mean and standard deviations within samples were calculated for all cases. All data were analysed by the application of the non-parametric Wilcoxon test (confidence level ≥ 95%).

Results

Single and dual species planktonic tests

B. cereus and *P. fluorescens* single cultures in standard (Figure 1a) and Fe-supplemented medium (Figure 1b) had similar growth profiles and rates (*P > 0.05*). For these conditions, *B. cereus* spores were detected at residual numbers compared to vegetative cells, and at similar amounts in both standard and Fe-supplemented medium (Figure 2). In the dual species system grown in standard medium (Figure 1c), *B. cereus* and *P. fluorescens* co-existed for approximately 8 h, but after this period, there was a sharp decrease in the number of vegetative cells of *B. cereus*, as their growth was repressed by *P. fluorescens*. The proportions of the two species were therefore significantly affected, with the density of viable cells of *B. cereus* after 48 h being ca. 90% lower than that of *P. fluorescens*. The reduction in the number of *B. cereus* cells induced spore formation to some extent, although this was not correlated with a decrease in viable cells (Figure 2). Spores were detected at 10 h with their numbers increasing over time at smaller levels than the decrease in viable cells (*P < 0.05*). Moreover, the number of spores was significantly higher than in single cultures (*P < 0.05*).
The antimicrobial activity of *P. fluorescens* on *B. cereus* was quenched when the medium was supplemented with 100 μM of FeCl₃ (Figure 1d). In this condition, both species grew with similar growth profiles and cell numbers (*P* > 0.05). Spore formation was also detected (Figure 2) in similar amounts to those detected for co-culture in Fe-limited conditions (*P* > 0.05), indicating that spore formation is dependent on the presence or absence of *P. fluorescens*, but not of iron.

To explore the nature of the antagonism observed, extracts from broth cultures of *B. cereus* and *P. fluorescens* in standard growth medium with or without iron, were analysed for antimicrobial effects. Only cell-free supernatants of *P. fluorescens* grown in standard growth medium caused inhibition of the growth of *B. cereus*, whereas the inverse was not found. This showed that growth inhibition of *B. cereus* by *P. fluorescens* was due to metabolites secreted under iron starvation. In fact, no zones of inhibition were observed when the medium was supplemented with iron.

Tests with CAS agar revealed the production of Fe-chelating molecules only by *P. fluorescens*. Moreover, Figure 3 shows that the quantity of Fe-chelating substances produced by *P. fluorescens* increased over time (the most negative values indicate higher concentrations of Fe-chelating molecules), when the bacteria were in the standard medium. This effect was also observed in co-culture suspensions grown in standard medium (results not shown). Under Fe-supplemented conditions, the concentration of Fe-chelating molecules was negligible and did not vary (*P* > 0.05). This suggests that the antagonistic activity of *P. fluorescens* against *B. cereus* is related to the presence of Fe-chelating molecules.

Adhesion and free energy of adhesion between bacteria and SS

The free energy of adhesion between bacteria and SS was ascertained by thermodynamic interaction between cell-adhesion and the surface. *B. cereus*, which had ΔG_{Adhesion} = −2.23 ± 0.11 mJ m⁻², showed favourable adhesion to SS compared with *P. fluorescens* (ΔG_{Adhesion} = 11.8 ± 1.3 mJ m⁻²).

Adhesion assays demonstrated that in single species experiments, 8.8 × 10⁵ ± 3.1 × 10⁴ cells cm⁻² of *B. cereus* and 1.1 × 10⁵ ± 1.8 × 10⁴ cells cm⁻² of *P. fluorescens* adhered to SS. In the dual species system, the adhered cell numbers were 7.8 × 10⁵ ± 4.3 × 10⁴ cells cm⁻² of *B. cereus* and 2.5 × 10⁵ ± 5.1 × 10⁴ cells cm⁻² of *P. fluorescens*. This result, combined with the ΔG_{Adhesion} data provides strong evidence that *B. cereus* is the primary surface coloniser.

Biofilm removal due to mechanical stress – dual species biofilm stratification

B. cereus and *P. fluorescens*, individually and in co-culture, colonised the SS surfaces to a significant extent, a phenomenon easily seen by visual inspection (Figure 4). Dual biofilms were composed of log values of 13.9 (±0.1) and 13.6 (±0.09) cells cm⁻² of *B. cereus* and *P. fluorescens* (*P* < 0.05), respectively, whereas single species biofilms had cell densities of 13.0 (±0.21) of *B. cereus* and 14.0 (±0.11) cells cm⁻² of *P. fluorescens*.

The detachment of bacterial cells from biofilms is a critical factor in their control processes. In this study, the physical stability of biofilms was assessed by exposure to different shear stresses, corresponding to increasing Reₐ. Biofilms subjected to mechanical...
treatments were hardly removed by a Re\(_A\) of 4000. This Re\(_A\) only removed 13\%, 14\% and 24\% of \(B.\) cereus, \(P.\) fluorescens and dual biofilms, respectively (Figure 5a). However, when the Re\(_A\) was raised from 4000 to 8100, additional biofilm detachment was observed. The highest increase in single and dual species biofilm removal occurred following exposure to a Re\(_A\) of 8100. For the other Re\(_A\), single species biofilm removal was similar \((P > 0.05)\), whereas the removal of dual biofilms was dependent on the shear stress applied \((P < 0.05)\).

The method used allowed the removal of biofilm layers (Azeredo and Oliveira 2000), which was dependent on the mechanical stability of the biofilm and the shear stress force applied. However, it is expected that if biofilms were only exposed to the highest Re\(_A\), removal would be similar to the total removal achieved by the increasing series of Re\(_A\). When the effects of the series of Re\(_A\) shear stresses on biofilm removal were tested, the results were similar to those for biofilms exposed to a Re\(_A\) of 16,100 \((P > 0.05)\). Similar removal results were also found for single species biofilms of \(B.\) cereus and \(P.\) fluorescens exposed to a Re\(_A\) of 4000 and for \(P.\) fluorescens single biofilms and dual biofilms exposed to Re\(_A\) of 8100 and 12,100 \((P > 0.05)\). Figure 5a also shows that the series of Re\(_A\) did not give rise to total removal. Residual biofilm was still observed after exposure to the series of Re\(_A\), with 47\% of \(B.\) cereus, 24\% of \(P.\) fluorescens and 17\% of the mass of the dual biofilm remaining adhered to the SS surface. This result demonstrates that biofilms of \(B.\) cereus had a higher physical stability than those of \(P.\) fluorescens or the dual biofilms.

The composition of the several layers of dual species biofilms was evaluated in terms of the number of \(B.\) cereus and \(P.\) fluorescens cells, as shown in Figure 5b. There was a higher proportion of \(B.\) cereus cells in the outer biofilm layers, corresponding to biofilm removal by a Re\(_A\) of 4000 and 8100 (70–80\% of the removed population), whereas \(P.\) fluorescens colonised to a greater extent, the layers removed by the application of a Re\(_A\) of 12,100 and 16,100 (70–80\%). The inner layer, ie the biofilm remaining on the surface after the series of Re\(_A\), was predominantly colonised by \(B.\) cereus (85\%).

Similar results in terms of single and dual species biofilm formation, composition and behaviour were detected when biofilms were developed with diluted nutrient medium with and without a supplement of 100 \(\mu\)M FeCl\(_3\) (results not shown).

Discussion

Interactions between microorganisms are well recognised phenomena, and are believed to be important for the selection of a specific microflora in a given ecological niche (Gram et al. 1999; Komlos et al. 2005; Hansen et al. 2007). Microbial diversity leads to
a variety of complex relationships, involving both inter- and intra-species interactions (Simões et al. 2007a). This study highlights factors regulating interactions between \textit{B. cereus} and \textit{P. fluorescens} in both planktonic and biofilm modes and demonstrates the biocontrol potential of \textit{P. fluorescens} on the planktonic growth of \textit{B. cereus}. In batch conditions, it is expected that a microorganism will out-compete all others if it holds a higher substrate utilisation efficiency, leading to an inauspicious environment for the less adapted. In this study, both bacteria showed similar growth behaviour when grown in single cultures or in cocultures in Fe-supplemented medium. Under standard growth (iron limited) conditions, \textit{P. fluorescens} released metabolites with antimicrobial activity on the vegetative cells of \textit{B. cereus}. The decrease in the number of viable vegetative cells was not correlated with sporulation. The antimicrobial effect detected was apparently related to iron metabolism and the production of Fe-chelating molecules. No effects on the planktonic growth of \textit{B. cereus} were detected when the medium was Fe-supplemented. Moreover, the appearance of inhibitory activity in spent supernatants from \textit{P. fluorescens} standard growth medium coincided with a strong CAS reaction, indicating the presence of Fe-chelating molecules such as siderophores. However, the data do not allow the specific implication of siderophores in the active mechanism or a conclusion on the exact nature of the inhibitory molecules. In a previous study, Gram et al. (1999) also reported the inhibitory effects of uncharacterised molecules of a strain of \textit{P. fluorescens} against the fish pathogenic bacterium \textit{Vibrio anguillarum} released under Fe-limited conditions. Some strains of \textit{P. fluorescens} are known to have biocontrol activity on many microorganisms due to antibiotics and/or siderophores (Dufy and Défago 1999; Cornelis and Matthys 2002). To the authors’ knowledge, this is the first study indicating the biocontrol effect of \textit{P. fluorescens} on planktonic growth of \textit{B. cereus}.

Dual biofilms were colonised to a greater extent by \textit{B. cereus} (13.9 vs. 13.6 log cells cm$^{-2}$ of \textit{P. fluorescens}). Although cell density differences were statistically significant, it seems unlikely that they are biologically and ecologically relevant. Biofilm cells were present in a higher number than those found in industrial environments (Elvers et al. 1998; Sharma and Anand 2002b), but at similar levels to those formed by \textit{P. fluorescens} under turbulent flow using flow cell reactors (Simões et al. 2007c). The high biofilm cell counts reported were apparently related to the characteristics of the experimental system used. This bioreactor system and the operating conditions were optimised to improve the potential of bacteria to form biofilms (Azeredo and Oliveira 2000; Simões et al. 2005a, 2008a). Single and dual biofilms were characterised in terms of physical stability in response to external mechanical stress conditions (Simões et al. 2005a). According to Stoodley et al. (1999), the biofilm matrix develops an inherent internal tension, which is in equilibrium with the shear stress under which the biofilm is formed. Thus, the removal of a well-established biofilm requires the forces that maintain its integrity to be overcome (Körstgens et al. 2001). Detachment of biofilms formed on the bioreactor rotating system occurred in layers, where the increase in the shear stress may progressively thin the biofilm, with mechanical failure and total detachment being the ultimate effects expected (Azeredo and Oliveira 2000). This detachment mechanism differs from that described for flowing systems, such as flow cells, where detachment of single cells and clusters are the main events (Stoodley et al. 2001). Experiments on biofilm removal showed that biofilms were hardly removed with a Re$_A$ of 4000. When the Re$_A$ was raised from 4000 to 8100, significant additional detachment was observed for the biofilms studied. Nevertheless, a significant biofilm layer still remained on the surface, even when the highest Re$_A$ was applied. A previous report (Melo and Vieira, 1999) on the removal of \textit{P. fluorescens} biofilm by increasing liquid flow velocity also demonstrated a very low removal efficiency when the flow was increased about 2.86 (40% biofilm removal) or 1.54 (0% biofilm removal) times compared with the flow conditions under which the biofilms were developed. Garret et al. (2008) found that about 93% of the population of 12 h-adhered \textit{P. fluorescens} cells were removed when exposed to shear stress by a water flow for 960 s. The authors, furthermore, demonstrated that the older the biofilm, the more resistant the biomass was to removal. This study, in addition to other aspects (Chen et al. 2005), shows the effects of species type and association on the mechanical stability of biofilms.

The amount of biofilm remaining adhered to the SS surfaces indicated that dual biofilms had the lowest physical stability and biofilms of \textit{B. cereus} were more stable. The apparent thinner and more compact biofilm structure of \textit{B. cereus}, in comparison with \textit{P. fluorescens}, could account for the differences in physical stability found between the single biofilms (Simões et al. 2007b). Moreover, other phenotypic characteristics of \textit{B. cereus} and \textit{P. fluorescens} biofilms are important in maintaining the physical stability of the biofilm (Simões et al. 2007b, 2007c). The presence of a high number of \textit{P. fluorescens} cells in the inner layers of the dual biofilms could account for the lower physical stability compared with single species biofilms.

Comparisons between planktonic and biofilm data show that the behaviour of planktonic dual species did
not predict which microorganism would prevail in the biofilm system. Antagonist molecules were a probable factor in differential biofilm removal by a ReA of 12,100 and 16,100. P. fluorescens dominated the biofilm layers that were removed (70–80%), which suggests that B. cereus antagonist molecules operate only in closed systems, such as batch conditions and biofilm inner layers. Conversely, in a continuously operating biofilm open system, all substances would be diluted at residual concentrations, thus reaching sub-effective concentrations. Also, the antagonism of such substances seems to indicate that efficacy is restricted to bacteria in close proximity, analogous to what has been suggested for oral biofilms, where most metabolic signals communicate only microdistances (Egland et al. 2004). Moreover, low levels of spore formation were detected in single biofilms of B. cereus and in dual species biofilms (results not shown). Ryu and Beuchat (2005) also found that spores were only present in residual number in biofilms compared with vegetative cells.

An agreement between biofilm spatial distribution, adhesion assays and free energy of adhesion data was found. The strength of interaction between the bacterial cells and SS was assessed through the determination of the free energy of adhesion and confirmed by adhesion assays. This result is in accordance with previous studies, proposing that Bacillus species are one of the microorganisms primarily responsible for formation of slimy deposits (Blanco et al. 1996; Kolari et al. 2001). Moreover, for the system used here, the favourable interaction between B. cereus and SS surfaces seems to play a more significant role on the inner layer species composition of the biofilm than the potential antagonist molecules produced by P. fluorescens. The results indicate that, in dual P. fluorescens and B. cereus biofilms, the latter species is the primary coloniser of SS. However, thermodynamically based calculations and adhesion tests only provide a partial explanation for the events occurring in the biofilm formation process. For example, P. fluorescens develops biofilms on SS surfaces with a higher cellular density and mass than those formed by B. cereus (Simões et al. 2007b), although the former bacterium has a lower ability to adhere to SS than B. cereus.

In conclusion, this study shows significant differences in the behaviour and composition of planktonic and sessile dual species communities of B. cereus and P. fluorescens. Planktonic mixed growth of P. fluorescens and B. cereus was regulated by iron availability. Under Fe-deficiency, P. fluorescens inhibited the vegetative growth of B. cereus. This inhibition was apparently related to the production of Fe-chelating molecules. Dual biofilms were colonised to a higher extent by B. cereus, the primary surface coloniser, which attached to SS more effectively than P. fluorescens. These biofilms had a stratified structure with a middle layer composed mostly of P. fluorescens, surrounded by two layers where B. cereus was the predominant species. The prevalence of B. cereus in the outermost layer of dual biofilms seems to be due to the constant supply of fresh medium, which is needed for the bioreactor system. Such a constant flow minimises the concentration of inhibitory factors produced by P. fluorescens within the bioreactor. Furthermore, the two species biofilms had decreased physical stability relative to that of the single species biofilms. Further studies are being carried out to characterise the exact chemical nature of the B. cereus antagonist molecule produced by P. fluorescens.

Acknowledgement

The authors acknowledge the financial support provided by the Portuguese Foundation for Science and Technology (Project Biomode-PTDC/BIO/73550/2006, SFRH/BD/31661/2006-L. C. Simões; Ciência 2007-M. Simões).

References

Simões M, Simões LC, Pereira MO, Vieira MJ. 2008b. Sodium dodecyl sulfate allows the persistence and recovery of biofilms of *Pseudomonas fluorescens* formed under different hydrodynamic conditions. Biofouling. 24:35–44.

