Universidade do Minho
Escola de Engenharia
Departamento de Informatica

Bernardo Braga Bastos Mota

Tagus: an loT data
ingestion pipeline for MonetDB

July 2021

Universidade do Minho
Escola de Engenharia
Departamento de Informatica

Bernardo Braga Bastos Mota

Tagus: an loT data
ingestion pipeline for MonetDB

Master dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
Dr. Jose Orlando Roque Nascimento Pereira
Dr. Ying Zhang

July 2021

COPYRIGHT AND TERMS OF USE FOR THIRD PARTY WORK

This dissertation reports on academic work that can be used by third parties as long as the
internationally accepted standards and good practices are respected concerning copyright
and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should
contact the author through the RepositériUM of the University of Minho.

License granted to users of this work

(OMOM

CC BY
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

ACKNOWLEDGEMENTS

I want to express my gratitude to my supervisor, Doctor Ying Zhang, for giving me the
opportunity to work with the MonetDB Solutions team and for making the transition from
an academic to an enterprise environment that much easier. Without your unceasing help
and patience, this thesis would not be possible.

Thank you to everyone the MonetDB Solutions personnel for welcoming me into the team
and for always being ready to lend a hand.

I want to thank everyone in the University of Minho who made me grow in knowledge
and as a person in the last 5 years, with a special thanks to my academic supervisor, Doctor
José Orlando Pereira. I appreciate all the support and knowledge you have given me, and
the opportunity to do an internship abroad.

Most of all, I want to show my gratitude to my family, who has always given me everything
I need to be happy and to grow into what I am today. Thank you for all the patience and
opportunities, I will never forget what you did and continue to do for me.

I also want to show my appreciation to all the friends I've made along the way. You have
given me some of my best times in life, are always present for support and continue to shape
me into someone better. My life wouldn’t be the same without you, so thank you to every
friend I have made in university and before.

Finally, I want to thank Mariana for all the love and support you have given me.

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University

of Minho.

iii

ABSTRACT

In this project, we design and implement an IoT streaming data ingestion pipeline for
MonetDB, using the distributed message queueing platform Apache Kafka. Our objective is
to leverage MonetDB’s analytical power for IoT data, expanding its ingestion capabilities to
improve reliability and performance. The ingestion pipeline is put to the test with the real-
world maritime tracking system AIS. We also evaluate MonetDB’s current IoT processing
engine and compare it to other state-of-the-art engines, to appraise its functionalities and

identify possible future improvements.

Keywords: Databases, Streaming Ingestion, Stream Processing, AIS, Maritime Informatics, Internet

of Things, Continuous Queries, Apache Kafka, Columnar Database

iv

RESUMO

Neste projecto, conceptualizamos e implementamos uma pipeline para ingestdo de dados
streaming para o sistema de base de dados MonetDB, utilizando o Apache Kafka, uma
plataforma para message queueing distribuido. O nosso objectivo é utilizar o poder analitico
do MonetDB para dados IoT, expandindo as suas capacidades e melhorando a confiabil-
idade e desempenho na ingestdo de dados streaming. A pipeline é posta a prova com o
sistema de tracking maritimo AIS, demonstrando a sua aplicabilidade no mundo real. As
funcionalidades de processamento de dados IoT do MonetDB sao avaliadas e comparadas

com outras plataformas de tltima geragdo para identificar desenvolvimentos futuros.

Palavras-Chave: Bases de Dados, Ingestdo Streaming, Processamento de Streams, AIS, Informitica

Maritima, Internet das Coisas, Queries Continuas, Apache Kafka, Bases de Dados Columnar

CONTENTS

1

INTRODUCTION

1.1 Background

1.2 IoT data processing challenges

1.3 Hypothesis: we can adapt a modern RDBMS for IoT data analysis
1.4 Research questions and contributions

Y

NN R

1.4.1 Q1: How to cope with the large volumes and high diversity of stream-

ing data
1.4.2 Q2: How to ingest streaming data into an RDBMS efficiently
1.5 Structure of the document
IOT ANALYTICS PIPELINE
2.1 Background: Streaming data processing in the IoT era
2.2 Example IoT application: the AIS global ship tracking system
2.2.1 AIS use cases
2.2.2 AIS message formats
2.2.3 AlS data in this project
2.3 IoT platform requirements
2.4 The Tagus platform
2.4.1 Replay
2.4.2 Message collector
2.4.3 Transformer
2.4.4 Streaming Processor
DATA INGESTION
3.1 AlS replay
3.2 Message collector
3.3 Transformer
3.3.1 Transforming data
3.3.2 Loading data
3.3.3 Data reliability
3.3.4 Concurrent loading
3.4 MonetDB data loading
DATA PROCESSING
4.1 Continuous Query Engine in MonetDB
4.1.1 MonetDB Implementation Architecture

4.1.2 Continuous Query Engine

O O O O

13
13
14
15
16
18
19
20
20
20
22
22
24
26
27
28
28
29
29
31
31
31
32

vi

contents vii

4.2 Stream processing AIS data 33
4.2.1 Example query: Query 11 35
EVALUATION 37
5.1 Tagus ingestion pipeline evaluation 37
5.2 Tagus platform functional evaluation 40
CONCLUSION 43
6.1 Summary 43
6.2 Future work 44
APPENDIXES 47
A.1 AIS benchmark data schemas 47
A.2 AIS benchmark queries 47
A.2.1 Query 1: Find currently anchored ships 47
A.2.2 Query 2: Get the speed of ships 48
A.2.3 Query 3: Track the movements of a ship S 48
A.2.4 Query 4: Calculate number of distinct ships 48
A.2.5 Query 5: To each voyage message, add the current position of ship 48
A.2.6 Query 6: Find ships anchored at base station 49
A.2.7 Query 7: Find ships within a kilometer radius from a base station 49
A.2.8 Query 8: For every ship, find the closest neighbor ship 50
A.2.9 Query 9: Calculate average speed observed per ship over time 50

A.2.10 Query 10: Calculate number of ships under-way in hour windows 51

A.2.11 Query 11: Calculate average and maximum speed of moving ships in

hour windows 51
A.3 Auxiliary queries 53
A.3.1 Distinct vessels 53

A.3.2 Distance calculation 53

LIST OF FIGURES

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Figure 11

General IoT application stack (Source [11])

The MonetDB based Tagus architecture sketch 4
AIS encoded single-line message example 15
Overview of the Tagus platform 18
The Tagus ingestion and processing pipeline 19
AIS replay component control flow 23
Message collector data flow 25
Transformer component control flow 26
Data representation in row stores and column stores 32

Average ingestion latency across various replaying periods. Latency
is measured in milliseconds. 38
Average ingestion latency for a 12 hour replay period, with different
batch sizes for database insertion. Latency is measured in millisec-

onds. 39

viii

LIST OF TABLES

Table 1
Table 2
Table 3
Table 4

Table 5

Differences between AIS sensors and our replay component 22
AIS benchmark queries and their tested features 34
Test environment hardware specification 37

Functional comparisons between MonetDB CQE and other modern
stream processing systems 41
Data schemas and attributes used in this project, derived from AIS

messages of type 1-5 47

ix

ACRONYMS

A

A1s Automatic Identification System.

C
cQ Continuous Query.

cQE Continuous Query Engine.

D

DBMS Database Management System.

E
ELT Extract, Load and Transform.

ETL Extract, Transform and Load.

I

10T Internet of Things.

J

JjoBC Java Database Connectivity.

M
MAL MonetDB Assembly Language.

MEI Mestrado em Engenharia Informética.

R

RDBMS Relational Database Management System.

8}

UM Universidade do Minho.

INTRODUCTION

1.1 BACKGROUND

Data is flowing everywhere around us nowadays: through phones, social media, credit cards
and an increasing number of previously unconnected devices such as home appliances and
sensor-equipped buildings. Our world is operating more and more in the present moment,
and businesses need to have valuable insights over the data flying around in real-time to
stay competitive [12]. At the consumer side, users want real-time updates about the world
around them. Not only has there been an increase in the number and types of devices
connected to the Internet, but also an increase in demand for systems that provide ever-faster
analysis over the data as it happens.

The Internet of Things (IoT) can be seen as the integration of previously offline objects
and sensors into business infrastructures to provide value-added services. These newly
connected objects provide new data sources from which businesses can take valuable
insights to improve service quality, reduce downtime, and increase sales. IoT infrastructures
also allow new types of services for consumers to be developed: from smart homes to
Internet-connected cars, emerging IoT applications promise to bring more automation and
convenience into consumers’ lives.

Figure 1 shows a general architecture for the modern IoT applications, divided into four
layers [11]. At the bottom, the device layer encompasses the spectrum of data sources
(sensors, RFID, cameras) that capture measurements and produce information to the plat-
form. Above that, the data collection layer acts as a buffering system and aggregates data
from multiple devices. This data is then analysed by the data processing layers where
business logic is applied. Processing results are then stored and made available to IoT client
applications by the application service layer, which acts the platform’s interface.

The services and business insights this paradigm provides are made possible by analysing
flows of data from a potentially large number of heterogeneous connected devices, which
are subsequently filtered, aggregated and have business logic applied to them. This analysis
needs to be continuous, as data is made available over time, and low latency, to meet the

real-time constraints businesses require. The increasingly common need for unbounded

1.2. IoT data processing challenges

Intelligent Traffic Web Display

Application .
Recommender Fraud Detection Management Advertising

service Layer

Smart Analyzer

Programming model for processing large sets with a parallel, distributed algorithms

¢
Data Processing / 5 > Y

Layer

Distributed fault tolerance database for large unstructured data sets like NOSQL

e | 00 00008 8000

B l=xa @

Device Layer

0
4
;

I

Figure 1: General IoT application stack (Source [11])

data processing is pushing the limits of traditional batch processing engines such as the

relational database management systems (RDBMSs).

1.2 IOT DATA PROCESSING CHALLENGES

IoT data sources are characterised by many heterogeneous devices that continuously send
data without a definite end. Sources differ in many aspects: data schemas, data rates and
requirements they impose on applications. There are many different data formats in the IoT
world, which can change over time to fit business needs. Devices often produce massive
volumes of data, but data rates can vary between sources. The regularity of the rate can also
differ, with some devices having highly variable data rates.

A data event does not have much meaning by itself, but we can get useful information by
applying business logic over various events from multiple sources. IoT applications may
require low-latency processing of events, as real-time data can have increased value. Data

reliability can also be a concern, as data loss may be unacceptable in some applications.

2

1.2. IoT data processing challenges

While batch processing systems and DBMSs have historically dealt with growing volumes
of data by horizontal scaling, they struggle to meet the strict temporal constraints, ques-
tioning the storage and batching of data before applying the relevant operations [10]. The
one-time, user-issued query model of RDBMSs is being challenged by IoT applications that
require automatic recomputing of queries and emission of results as new data comes in.
The static and unified data formats of RDBMSs contrast with the varied and ever-changing
schemas found in the IoT domain. Furthermore, query optimisation in RDBMSs is focused
on big batch analytics (e.g. generating annual reports), not on real-time processing.

The IoT ecosystem’s growth increasingly drives data analytics platforms to pursue real-
time analytics over continuous data streams and tackle the challenges this paradigm poses.
Most of today’s database systems are not prepared for the data ingestion/storage and
query processing requirements that streaming data imposes, leading to RDBMSs only being
used as offline storage in IoT architectures. Nevertheless, given the wide adoption and
understanding of RDBMSs, it would be beneficial to provide stream-oriented processing as
a part of an RDBMS [4].

Stream processing systems have emerged as a new type of processing software to tackle
the data processing challenges in IoT applications. Their goal is to provide low-latency,
scalable, highly available and continuous analysis over massive amounts of heterogeneous
data from multiple sources, meeting the processing requirements imposed by IoT and other
real-time applications.

Over the years, various stream processing solutions with different complexity and use
case focus have emerged, bringing new ideas on how to provide fast and reliable processing
in this new data landscape. Some stream processing engines are designed and built from
scratch to deal with the unbounded data scenario (e.g. Apache Flink"). In contrast, others
extend existing batch-oriented systems to the streaming data paradigm (e.g. TimescaleDB?).
Among those stream processing engines, some deal with reliably storing and ingesting data
on their own, while others use distributed message queues to decouple the challenges of
ingesting and processing streaming data.

Architecture-wise, we can divide the emerging streaming processing systems into plat-
forms with a dataflow graph model, on which computation is done as a series of interdepen-
dent function calls, and platforms which consist of a collection of independent processes (i.e.
queries and updates) against a shared backboard. Streaming processing systems that adapt
an RDBMS usually belong to the second type of platforms.

1 Apache Flink: https://flink.apache.org/
2 TimescaleDB (built on top of PostgreSQL): https:/ /timescale.com/

https://flink.apache.org/
https://timescale.com/

1.3. Hypothesis: we can adapt a modern RDBMS for IoT data analysis

1.3 HYPOTHESIS: WE CAN ADAPT A MODERN RDBMS FOR IOT DATA ANALYSIS

IoT applications have a growing need for data analytics to gain insights from the data
streamed by devices. Therefore, even though the RDBMSs do not handle the dynamicity
and variability of streaming data well out-of-the-box, their support for a declarative query
language (SQL) and highly optimised query processing engines form a strong basis for a
streaming data analysis platform.

By adding the necessary features into a mature high-performance RDBMS, we can leverage
their highly optimised operations for bounded data to deal with the unbounded case. This
extension effort can save time and resources by maximally reusing existing features, leading
to a faster adoption by developers familiar with SQL and RDBMSs. This extension approach
also has the advantage of seamlessly integrating both streaming and historical data, leading
to a more straightforward and less costly platform that can query both types of data.

So, we hypothesise that we can adapt a modern RDBMS for IoT data processing platform
by extending it with several vital components to deal with the characteristics of the new
application area. Figure 2 shows a sketch of one such IoT platform using MonetDB as the
core data processing engine. The platform receives incoming streams from end devices,
processes them according to the application logic and then produces new streams, which
can be visualised by users.

loT devices

Result
visualisation

Query Emission
services services

CQ console

Ingestion
services

monetdb) Con%guery

Engine

Figure 2: The MonetDB based Tagus architecture sketch

1.3. Hypothesis: we can adapt a modern RDBMS for IoT data analysis

MonetDB is an open-source columnar RDBMS designed to provide high performance in
processing complex analytical queries against large databases. It uses a storage model based
on vertical fragmentation (column-store), a modern CPU-tuned query execution architecture
and a modular software architecture [8]. Given the performance focus of existing data
operators and the extensibility made possible by the modular architecture, MonetDB is a
good fit for expansion into the unbounded data processing landscape.

To adapt MonetDB to the IoT data processing scenario, the following additional compo-

nents are necessary:

e an ingestion pipeline for IoT data

— The ingestion of IoT data presents various problems to MonetDB: the insertion of
a large number of small data pieces in an analytical database, less optimised for
constantly updating data; dealing with unstructured data and evolving schemas,
which contrasts with the structured nature of relational data; or maintaining a

significant number of connections to end-devices.

- We will design and implement an ingestion pipeline to tackle these challenges,
abstracting them from the stream processor.

e a continuous query engine,

- To extend MonetDB to the stream processing field, we must worry about get-
ting data into the system and correctly processing it, fulfilling this processing
paradigm’s requirements. There are challenges related to performance, like
real-time processing of big data flows, and analytical challenges, like correctly
handling time when analysing an unordered stream, that the processing engine
must address.

— While the ingestion components were developed for this project, we will reuse
the continuous query engine (CQE) extension to MonetDB, designed and imple-
mented in a previous project [7]. This will allow us to focus on developing the
ingestion domain and evaluating the work previously done on the streaming
engine. For this evaluation, we will assess the correctness and timeliness of the
analytical results from a purpose-built benchmark, which uses a real-world IoT
use case, and judge the functionalities the engine provides, comparing it to other
modern streaming engines. Our evaluation will give us a better picture of how
capable the DBMS is in handling this use case and the limitations of the current
implementation. We will also identify features that need to be improved or added
in future efforts.

e an emission pipeline for query results, and

1.4. Research questions and contributions

- Delivering the results of processing to the user is another aspect where stream
processing differs from traditional databases. Traditional SQL queries operate
synchronously, meaning that the user waits for the query results, and results are
expected to be the final answer to the query. Continuous queries, on the other
hand, operate asynchronously, meaning that the user registers the query but does
not wait for the results. Query results are produced over time and have to be
stored for posterior visualisation because the user is not waiting to capture the
results. The results for continuous queries can be accessed through a dashboard
like Grafana, which can plot results over time and deliver notifications when
certain result conditions are verified.

— There are three different strategies for storing CQ results in our proposed platform.
We will focus on storing results in traditional SQL tables, which stores results
persistently, and stream tables, for results that will be processed further. Storing
CQ results in the message queue component is also possible, but will be left for
future work.

e an administrative system to manage the IoT data producers and subscribers.

— Users can register their IoT streaming devices and publish data to the platform,
making it publicly available. Users can also register their interest in IoT streams,

receiving updates and notifications from their subscribed sources.

1.4 RESEARCH QUESTIONS AND CONTRIBUTIONS

In this project, our primary goal is to design and develop an IoT data ingestion pipeline for
our envisioned Tagus platform. Therefore, we need to research and answer the following

two questions.

1.4.1 Q1: How to cope with the large volumes and high diversity of streaming data

Getting unbounded data into the processing component can be a challenge when faced with
the heterogeneity and other issues of the IoT landscape: platforms must handle both high-
volume streams and a large number of tiny streams, cope with varied and ever-changing
data formats and provide data reliability in environments with different error rates and
regularity of data production.

A large number of producers periodically send their information to the platform, and the
rate at which events are produced fluctuates over time. Because of the pipeline’s real-time
requirements, ingestion must be low-latency and has to scale as the number of devices and

the data rates increase. The possibility to pre-process data before the stream analytics engine

1.4. Research questions and contributions

is also valuable, as it allows us to deal with heterogeneous data formats and errors in the
stream.

MonetDB’s capabilities for data insertion are not suited to IoT streams’ requirements, as
MonetDB is not optimised for small concurrent inserts from a large number of producers.
Following a common strategy in stream processing, we propose using a distributed message
queuing component as the entry point for data in the pipeline. Modern distributed message
queues allow for low-latency concurrent ingestion of high-volumes of events, with the
necessary reliability and scalability of producers and consumers. Using a message queue
as the ingestion layer frees us from having to persist data in the processing layer, where it
is more efficient to do in-memory processing, while not losing data in case of failures. It
also allows us to batch and transform the raw event streams for more efficient insertion into
MonetDB. The concurrency and rate of insertion into the DBMS can both be configured to
scale ingestion horizontally and avoid overwhelming the database in periods of higher data
rates. Finally, using a message queue allows us to effortlessly add more data sources (IoT
or otherwise) and more components to consume the data, decoupling the devices from the
processing engines.

We will study strategies for ingesting reliably and efficiently from IoT devices into the
message queue and from the queue to the DBMS. We wish to evaluate the current ingestion
capabilities, find out if using a message queue is beneficial, and identify what can be
improved in the insertion of data into the DBMS to better suit it to the stream processing

use case.

1.4.2 Q2: How to ingest streaming data into an RDBMS efficiently

Given the importance of real-time results and low-latency processing in streaming data, our
ingestion strategy should not only provide reliability but also minimise the overhead in data
insertion. We consider different strategies for transforming and loading the data into the
processor, focusing on where to place the transform step in the pipeline.

We can follow an ELT approach, i.e. we Extract and Load the raw data into the RDBMS
tirst, and only then Transform the necessary data inside the database. This approach has
gained more interest in recent years. Advances in technology and the shift to cloud-based
platforms has allowed developers to dynamically scale their computational needs and avoid
impacting other processing work.? Using Kafka Connect* as a consumer, we can load raw
data into the RDBMS with little effort. However, this approach is not always applicable. Some

sensor data are produced in binary format, in which a message can be split into multiple

3 Article: Zero to Snowflake: ETL vs ELT: https://interworks.com/blog/chastie/2019/11/12/
zero-to-snowflake-etl-or-elt/
4 Kafka Connect: https://docs.confluent.io/5.5.0/connect /index.html

https://interworks.com/blog/chastie/2019/11/12/zero-to-snowflake-etl-or-elt/
https://interworks.com/blog/chastie/2019/11/12/zero-to-snowflake-etl-or-elt/
https://docs.confluent.io/5.5.0/connect/index.html

1.5. Structure of the document

transmissions. In such cases, no meaningful processing is possible without decoding the
events beforehand. For these types of IoT data, one has to resort to the ETL approach.
Alternatively, one could use the traditional ETL approach, i.e. we Extract and Transform
the data into a desirable format before Loading it into the RDBMS. Transforming raw streams
before the database allows us to filter messages and correct or expand their information
before insertion. With this strategy, we can optimise data loading and save database
resources, which are only used for processing the transformed data. Furthermore, the ETL
approach decouples data processing from its format, making integrating new downstream
components easier. However, this approach requires more implementation effort than the

ELT method, and the implementation is data format specific.

1.5 STRUCTURE OF THE DOCUMENT

Chapter 2 starts by introducing the challenges imposed by emerging IoT applications and
overviews some of the most popular stream processing engines currently used to tackle IoT
stream processing. Afterwards, we present our architecture for the Tagus ingestion pipeline,
designed and implemented according to common requirements for IoT applications. We
also introduce our example application, the AIS maritime tracking system. The ingestion
pipeline’s implementation is detailed in Chapter 3, where each component’s behaviour and
design choices are presented. Chapter 4 summarises the characteristics of the MonetDB
continuous query engine while also presenting the continuous query benchmark we devel-
oped for our example application. Chapter 5 concerns the evaluation of the current state of
the Tagus platform. We assess the performance of our ingestion pipeline implementation
and the current state of the processing engine, while also comparing the functionalities the
engine offers compared to other state-of-the-art streaming engines.

2

IOT ANALYTICS PIPELINE

This chapter starts with an introduction of the IoT and stream processing paradigms, sum-
marising the challenges that emerging IoT applications bring to traditional data processing
and how state-of-the-art stream processing applications tackle these challenges.

We then outline the data ingestion requirements for the Tagus platform, designed to
address the previously mentioned challenges. Afterwards, we present our design for the
Tagus platform and give a brief overview of the flow of data through the pipeline. Finally,

we introduce our example application for this project, the AIS global ship tracking system.

2.1 BACKGROUND: STREAMING DATA PROCESSING IN THE IOT ERA

The topic of streaming data processing has a broad scope and long history. In this section,
we will limit our discussion to recent developments with special attention to the challenges
posed by the emerging IoT applications.

The challenges and techniques involved in all aspects of streaming data ingestion and
processing have been described and resulted in a systematic approach and model for stream
processing architectures [9, 12]. In this context, the key challenges and advances in this area

are the following:

¢ Networking and scaling challenges posed by IoT lead to novel networking infrastruc-
tures [6]

e The characteristics of streaming IoT data fostered the evolution of streaming processors

and the identification of new challenges [10]

e The need to timeliness, reliability, and order in stream processing paved the way for a

new generation of streaming engines [1, 2, 13]

While the idea of devices with embedded sensors that can automatically share sensed
information and change their state based on received data was already conceptualised
in 1999, it has only gained considerable traction in the last decade, benefiting from the
pervasiveness of computers and the reduction of their size [5]. Nowadays, we use the term

2.1. Background: Streaming data processing in the IoT era

Internet of Things to refer to a network of interconnected objects with computing capabilities
that can transfer data between themselves or other systems without human interaction.

The IoT revolution’s primary motivation is the ability to integrate an ever-growing number
of previously unconnected devices into business processes. These devices allow for more
efficient and automated workflows and provide valuable data for more informed decisions.
Beyond improving business processes, the IoT promises to bring new services to make
customers’ lives more convenient and connected, from their home to their transportation
mode.

Despite promising results, the implementation of a comprehensive IoT application presents

many challenges.

e Networking challenges: Due to the hardware limitations most devices and connections
on the edge of the network have, networking can become an issue when reporting data
to the IoT platform’s data collection tier. It would be cost-prohibitive to provision all
devices with enough computing power to support the infrastructure of the IP protocol,
given that these capabilities are not necessary for the device’s prime function [6].

e Data challenges: IoT data fits into the big data model, characterised by its volume,
velocity, variety and variability, while also being defined by its low result latency
requirements. Many sensors and devices produce massive volumes of information
in real-time, leading to high-velocity data streams. There are many different imple-
mentations of IoT devices, which leads to a variety of data formats and schemas. The
speed at which devices produce data varies highly due to variable connectivity issues.
Devices may buffer data while offline and suddenly dump it all when reconnected,
leading to bursty data.

e Processing challenges: The flows of data must also be analysed in real-time to max-
imise the results’ business value, which may diminish over time. Users want a useful
and current picture of their environment, and analysis results must change as soon as

new data becomes available.

¢ Data storage challenges: Due to its volume and indefinite end, storing all information
from an IoT stream is neither practical nor desired. Most IoT applications want to access
updating analysis results and more compact views over the data, like aggregations
over time. However, reliably storing the most recent event data may be necessary for
fault-tolerance concerns. If there is no persistent event storage, we might lose data
after a processing engine crash or if the production rate of events is higher than their
processing rate, which is not unusual during peak times. By using a data collection

layer, we can decouple the production of events from their processing.

10

11

2.1. Background: Streaming data processing in the IoT era

In recent years, a new generation® of streaming data processing systems has emerged
which have the IoT requirement embedded into their initial design. These systems” archi-
tectures vary from simple DBMS extensions that continuously update materialised views
to full-on event-by-event stream processing engines. The choice for a streaming engine is
determined by the use case with its particular requirements. Below we highlight several new
systems that have gained much popularity in the IoT community: two streaming databases
(TimescaleDB and InfluxDB) and two dataflow-graph streaming processors (Apache Flink
and ksqlDB).

TimescaleDB? is a time-series database built on top of PostgreSQL, adding time-oriented
features and improving ingestion and query performance. TimescaleDB adds support for
continuous aggregates, stream windows, time-related analytics operators and retention
policies. Stream events are partitioned according to time and other key attributes and stored
in disjoint SQL tables (chunks), improving ingestion and query performance.”

TimescaleDB follows the batch database model of streaming data processing, maintaining
the underlying RDBMS’ execution model. It provides continuous aggregates by extending
the materialised view abstraction, automatically calculating and materialising updated
results whenever new data is ingested. Real-time aggregates combine the pre-calculated
continuous aggregate with the most recent data to give an up-to-date answer.® Furthermore,
TimescaleDB supports event-time windows, stream-to-table joins and data compression.

The TICK stack? is a time-series processing platform with a modular architecture com-
posed of a collection agent (Telegraf), a purpose-built time-series database (InfluxDB), an
interface for visualising results and submitting queries (Chronograf) and a real-time stream
processing engine (Kapacitor).

InfluxDB is a high-performance data store for time-series data, optimised for large
data sets where a single event is not as important as aggregate results. It features data
downsampling and compression capabilities and privileges scalability and performance over
strong consistency and atomicity.'® Data can be inserted through an HTTP POST request
to the API or natively ingested through the Telegraf collection agent. While InfluxDB has
some querying capabilities, Kapacitor'" offers real-time streaming data processing, allowing
for pre-processing data before ingestion and analysing and acting on events present in

InfluxDB. Tasks run user-defined logic over a stream periodically, enabling continuous data

As opposed to the generation of the Data Streaming Management Systems, e.g. CQL ([3]) and STREAM ([4]),
which have mainly focused on developing continuous query languages and engines.
TimescaleDB: https://timescale.com/

Documentation: TimescaleDB vs Postgres: https://docs.timescale.com/latest /introduction/
timescaledb-vs-postgres
Documentation: Continuous Aggregates: https://docs.timescale.com/latest/using-timescaledb/

continuous-aggregates

InfluxDB/TICK stack: https://influxdata.com/time-series-platform

Documentation: InfluxDB design insights and tradeoffs: https://docs.influxdata.com/influxdb/v1.8 /concepts/
insights_tradeoffs/

Kapacitor: https://www.influxdata.com/time-series- platform/kapacitor/

11

https://timescale.com/
https://docs.timescale.com/latest/introduction/timescaledb-vs-postgres
https://docs.timescale.com/latest/introduction/timescaledb-vs-postgres
https://docs.timescale.com/latest/using-timescaledb/continuous-aggregates
https://docs.timescale.com/latest/using-timescaledb/continuous-aggregates
https://influxdata.com/time-series-platform
https://docs.influxdata.com/influxdb/v1.8/concepts/insights_tradeoffs/
https://docs.influxdata.com/influxdb/v1.8/concepts/insights_tradeoffs/
https://www.influxdata.com/time-series-platform/kapacitor/

2.1. Background: Streaming data processing in the IoT era

transformations (i.e. continuous queries) and real-time alerts. When an alert is triggered,
event handlers are used to define actions to respond to the alert. There are two types of
tasks: batch tasks, i.e. periodically run on slices of the stream pulled from InfluxDB, and
stream tasks, i.e. events are read and processed event-by-event as they are ingested into
InfluxDB.™?

Apache Flink 3 takes a different approach to stream processing, using dataflow graphs to
model its streaming data operations. Applications are composed of a graph of user-defined
data operators that transform data from one or more sources into data sinks. Flink offers
scalable stateful computations over bounded and unbounded data, featuring powerful
state management optimised for in-memory processing. Exactly-once state consistency
is guaranteed by asynchronously and incrementally checkpointing the local in-memory
state to a durable state back-end. Users can write programs with the Java streams style
DataStream API for higher expressiveness, or with the Table/SQL API for more conciseness
and ease-of-use.™

Unlike the two previous systems, Flink processes data event-by-event, following the pure
streaming model. It supports event-time processing, uses watermarks to track event-time
progress and allows the user to define an allowed lateness period for tuples that arrive after
the watermark. We can define tumbling, sliding and session windows, which can be either
keyed, i.e. partitioned over an attribute and eligible for parallelisation, or non-keyed, i.e. not
parallelised. The processing of a window can be triggered event-by-event, by event-time
watermarks or by processing-time, i.e. wall clock.’> Data sources and sinks can be easily
integrated through connectors, which handle both the logic of reading/writing data from
the external system and data mapping.

ksqlDB?¢ is a streaming database built on top of Kafka Streams, a robust stream processing
framework which uses the dataflow-graph model. ksqlDB aims to abstract away the complex
programming needed for real-time operations on streams of data. It uses Apache Kafka
for storing events and processed data, leveraging Kafka’s high-performance for low-latency
storage and making data source and sink integration easier through Kafka’s extensive
connector libraries.

ksqlDB uses the concept of Stream/Table duality as a basis for its stream processing
model. The main idea is to represent the result of an operator, captured at a point in time by
the relational notion of a table, as a stream of successive updates. A stream is immutable
and represents the historical sequence of events, while a table models change over time,

representing what is true as of now. This duality between streams and tables allows for better

12 Kapacitor Documentation: https://docs.influxdata.com/kapacitor/v1.5/guides/continuous_queries/

13 Apache Flink: https://flink.apache.org/

14 Documentation: Flink Applications and APIs: https://flink.apache.org/flink-applications.html

15 Documentation: ~ Flink Timely Processing: https://ci.apache.org/projects/flink/flink-docs-release-1.12/
concepts/timely-stream-processing.html

16 ksqlDB: https://ksqldb.io/

https://docs.influxdata.com/kapacitor/v1.5/guides/continuous_queries/
https://flink.apache.org/
https://flink.apache.org/flink-applications.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/concepts/timely-stream-processing.html
https://ci.apache.org/projects/flink/flink-docs-release-1.12/concepts/timely-stream-processing.html
https://ksqldb.io/

2.2. Example IoT application: the AIS global ship tracking system

reasoning over time inconsistencies and a more unified model. A table represents a view
over the data for a point in time that is continuously updated as more streaming updates
arrive, dispensing with notions of operator completeness towards constantly evolving results.
This approach also simplifies fault-tolerance, as the changelog stream for a table can be
replayed to return to the last stable state [13]. Furthermore, ksqlDB provides materialised
views, i.e. tables which evaluate queries on the changes only."”

ksqlDB supports tumbling, sliding and session windows. Windowed aggregations are
updated continuously, emitting freshly computed results as new data arrives, and do not
depend on any notion of completeness (e.g. watermarks). A window retention parameter
can be used to balance the tradeoff between result completeness and storage cost, avoiding
that aggregation result tables grow indefinitely [13]. ksqlDB has two methods for querying
data: pull queries, which retrieve information at a point in time, and push queries, which act
as subscriptions to the query output and deliver results continuously as they are calculated.™®
This analysis of the challenges of IoT applications and the techniques used by state-of-the-art
tools to tackle them will allow us to define the requirements and goals for our platform, to
expand the capabilities of MonetDB to the IoT paradigm.

2.2 EXAMPLE IOT APPLICATION: THE AIS GLOBAL SHIP TRACKING SYSTEM

The automatic identification system (AIS) is an example of an application area for IoT
systems for maritime tracking. In this project, it serves as our example application, using it

both as a dataset and as a use case example.

2.2.1 AIS use cases

AIS has been used as an automatic tracking system in the maritime world since the 1990s,
allowing the exchange of navigational information between AlS-equipped terminals. AIS
base stations can use their AIS receivers to track vessels equipped with AIS transceivers. AIS
was designed to allow ships to view marine traffic in their area, assist the decision-making
in collision avoidance cases, and allow maritime authorities to monitor vessel movements
and identify specific ships, improving security and control over sea traffic. It is also used for
aids to navigation (AtoN), search-and-rescue (SAR) operations, fleet and cargo tracking and
accident investigation.

Over the years, as the reach of AIS went global with satellite transmission and as AIS data
became publicly available on the Internet, applications started to integrate AIS processing
capabilities to provide marine traffic visualisation for their users. Global, real-time positional

17 Documentation: ksqlDB Materialized Views: https://docs.ksqgldb.io/en/latest/concepts/materialized-views/
18 Documentation: ksqlDB Queries Overview: https://docs.ksqldb.io/en/latest/concepts/queries/

https://docs.ksqldb.io/en/latest/concepts/materialized-views/
https://docs.ksqldb.io/en/latest/concepts/queries/

19
20
21
22

23

2.2. Example IoT application: the AIS global ship tracking system

data collected by coastal stations can be viewed on many online devices, allowing commercial
and recreational users to easily visualise marine traffic and track ships.

MarineTraffic Live Map'® features a live map that displays public tracking data from
ships around the world. The data is collected by AIS-receiving stations and sent to Marine
Traffic’s central database, where it is decoded and processed. The information in the database
can then be visualised through a dashboard.

The Marine Exchange of Alaska (MXAK)*® operates the only terrestrial AIS network
in Alaska. It uses its network to transmit weather information as AIS application-specific
messages (ASM).*' The project aims to enhance maritime safety in Alaska by providing
real-time environmental information to vessels over AIS, one of the most reliable means of
communication in coastal waters due to its broad adoption.

AIS transceivers automatically broadcast dynamic and static information, such as the
position and ship name, at regular intervals. Dynamic data is collected through its GPS
(Global Positioning System) receiver, which collects the vessel’s position and movement
details, and a gyrocompass. In the IoT paradigm, these are the sensors through which the IoT
device continually collects its data. Dynamic data is sent every 2 to 10 seconds, depending
on the vessel’s speed, and every 3 minutes while the vessel is anchored.>* Broadcasted
information can then be received by other vessels, base stations or satellites, and with the
use of software, can be processed and visualised.

2.2.2 AIS message formats

There are several types of AIS messages with different purposes. The most common ones are
the position report messages (types 1, 2 and 3), which are sent by ships to report information
related to navigation: coordinate positions (longitude and latitude), speed, heading and the
ship’s navigational status (anchored, underway). Other common message types include
base station reports (type 4), which are sent by coastal bases to indicate their presence, and
voyage messages (type 5), which report static data about the ship, such as ship name, and
data about the current trip, such as the intended destination. Application-specific messages
(ASM) allow for the exchange of environmental data such as weather, waves and water level
information.

AIS messages are encoded with a two-layer protocol, as shown in Figure 3. The outer layer
encoding? contains information about the protocol and message fragmentation, while the

MarineTraffic Live Map: https://www.marinetraffic.com

MXAK: https://www.mxak.org/

See section “AIS message formats” for more information about the ASM.

AIS reporting interval: https://arundaleais.github.io/docs/ais/ais_reporting_rates.html
Outer layer encoding (NMEA 0183): https://en.wikipedia.org/wiki/NMEA_0183

14

https://www.marinetraffic.com
https://www.mxak.org/
https://arundaleais.github.io/docs/ais/ais_reporting_rates.html
https://en.wikipedia.org/wiki/NMEA_0183

24

2.2. Example IoT application: the AIS global ship tracking system

Outer Layer Payload Outer Layer
(! 1/ ! 1 f_H
IAIVDM, 1, 1, , B, 177KQJ5000G 7tO°'K>RA1wUbNOTKH, 0*5C

Fragmentation info Fill bits * Checksum

Figure 3: AIS encoded single-line message example

payload contains the actual AIS message data, encoded as an ASCII 6-bit character string+.

Encoded payloads do not contain any parseable information and need to be decoded before
any data can be extracted from the message.

Messages larger than the 82 character limit need to be split into multiple lines and need
to be put together before decoding. The fragmentation info section of the outer layer
contains: the fragment number (from 1 to fragment count), the total number of fragments
and a multi-message ID, used to identify message fragments from the same message. The
message example shown in Figure 3 is a single-line message, with fragment number and
fragment count of 1 and no multi-message ID. At the end of the message, the outer layer
also includes the number of fill bits required to pad the data payload to a 6-bit boundary
and a data-integrity checksum, calculated as the XOR of all of the bytes in the message.

The AIS data processing use case fits the IoT paradigm: many ships and bases periodically
send collected data to some receiving stations, which can then analyse it to get useful
real-time results. AIS was not initially designed for real-time ordered use, so there is no full
timestamp present in standard AIS messages. To take full advantage of the possibilities of
IoT analytics over AIS data, receiving stations can add a timestamp to each message as it is

received.

2.2.3 AIS data in this project

From the 27 different AIS message types, we chose three types for our case study: The
position report messages, which make up the majority of the data set and are the best choice
for stream processing due to their periodicity Base station report messages, which are more
suited to be aggregated into a relational table The voyage messages Position report and
voyage messages will be considered streaming data, while base station messages will be
considered static data.

Position report messages are the main focus of our study, but the other message types

can be used in conjunction with ship position data to answer more complicated queries.

Inner layer encoding (ASCII encoded bit-vector): https://gpsd.gitlab.io/gpsd/AIVDM.html# _aivdmaivdo_
payload_armoring

15

https://gpsd.gitlab.io/gpsd/AIVDM.html##_aivdmaivdo_payload_armoring
https://gpsd.gitlab.io/gpsd/AIVDM.html##_aivdmaivdo_payload_armoring

2.3. IoT platform requirements

For example, we can query ship position data to find out how many vessels are currently
anchored. However, using base station data, we can also determine at which bases they are
anchored.

Instead of using live AIS data, this project used a data set containing captured AIS
messages. The data set features messages gathered by our AIS transceiver, which tracks
ships around Amsterdam, during January 2019. The receiving station added a UNIX epoch
timestamp to each captured message, representing event time.

There are 36 million lines of AIS encoded messages in the log files, translating to around
34 million decoded messages. This difference is due to some messages being multi-line,
and some errors present in the received encoded messages. Most of the decoded messages
are types 1, 2 and 3 (vessel position report messages), accounting for more than 32 million
messages. There are 200,000 base station report messages and 650,000 voyage messages.
All other types of messages, which we will not consider for this case study, account for less
than 1% of the data set’s messages. The captured data features 17,718 different vessels and
309 different bases.

Given our choice to replay a data set instead of using live streaming data, our pipeline’s
device stage has some differences from how the AIS messages were originally generated.
Without decoding the messages, we cannot know which multi-line messages belong to each
other and which messages were from the same sensor.

Messages are read from files and sent to the collector in the encoded format, similarly
to how a real-world AIS device would transmit its data. The compressed encoded format
benefits ingestion performance, as less data is sent from end-devices to the message collector.
However, messages in the encoded format are not ready to be processed, as all the useful
information about events is not accessible. This means that messages need to be decoded
prior to analysis.

For the AIS use case, it would be exceptionally difficult to decode the messages inside the
streaming processor (i.e. the ELT approach). Hence, we chose to follow the ETL method,
i.e. using the Transformer component to decode and prepare the data for analysis. We
selected several attributes for each type of messages to make up the general schema for
that particular type. The schemas for the messages we use in this project, along with a

description of their attributes, can be viewed in Appendix A.1.

2.3 IOT PLATFORM REQUIREMENTS

The main requirement for analysing IoT data is real-time processing, which impacts data
access, result emission, scalability and even the processing model, as the delays inherent in
batching data for traditional processing may be unacceptable. Based on the needs of IoT

stream data processing, we outlined several requirements for the Tagus platform.

16

2.3. IoT platform requirements

The following requirements were taken into consideration when designing the pipeline:

1.

The platform must ingest events from a large number of IoT devices with low latency,
to adhere to the real-time constraints. Furthermore, it must be reliable and highly

available.

We expect a large amount of heterogeneous IoT devices and event formats, hence,
parsing the relevant information into a device-agnostic format is necessary before
loading it into the processor.

. The platform should minimise the latency between data arrival and result emission to

levels required by its upper layer applications.

Data processing should not block the collection of new data. Furthermore, the processor

should be able to analyse data at its own rate without data loss.

. Frequent emission of updated results and continuous analysis of new information is

necessary for giving end applications an evolving view of the data.

If an application requires the platform to process streams in order, events should
include some timestamp information to serve as the ordering attribute. If there is no
information about when an event happened, the system should order according to
when it ingested the events.

The ingestion and processing of events must scale to increasing workloads and new
data sources and sinks. Distributed execution of partitioned streams and concurrent

production and consumption of events may be necessary for scaling event processing.

The platform must provide at-least-once processing guarantees and aims to provide
deduplication methods for exactly-once processing.

In most use cases, storing individual IoT events after being processed is not necessary
or valuable. The platform should have configurable limits for data retention, deleting
old data to save storage.

While all requirements can be achieved with our platform’s design, not all of them are

covered by the current implementation. Requirement 1 is only partially fulfilled because our

current implementation does not allow for testing many event producers. Requirement 2

is also partially fulfilled, as the pipeline integrates schema transformation, but only for a

small subset of IoT event formats. Requirement 7 is conceptually possible but could not be

implemented due to dataset limitations and time constraints. Our prototype pipeline covers

all other requirements.

The platform requirements lead to the decoupling of the platform’s collection and pro-

cessing components, by having a message queue component to deal with the challenges of

17

2.4. The Tagus platform

ingesting data into the system and a processing component to deal with the challenges of
in-flight data analysis. Distributed message queues are a good choice for the data collection
component, providing efficient, durable storage that meets all the requirements listed above.

Using a message queue with pull-based consumption as a buffer between devices and
the processor, we allow the processor to consume collected data at its rate and rewind the
consumption whenever needed [11]. This makes the use of in-memory processing possible,
as data reliability is not an issue for the processor. This approach also allows data to be
transformed before being loaded for analysis.

We can see the architecture for a streaming analytics platform as a pipeline: data flows
from IoT devices into the system, through all defined transformations, before arriving at the
end-users in the form of query results. We can divide this pipeline into four main stages:
the device stage, the ingestion stage, the processing stage and the result emission stage. Our
work mostly focuses on the ingestion and processing stages, with limited attention given to

the emission of results and edge devices.

2.4 THE TAGUS PLATFORM

Figure 4 shows a high-level view of our proposed Tagus platform, featuring the three
main components, i.e. message collector, transformer and streaming processor, alongside
the device and emission stages. The message collector and the transformer make up the
ingestion stage, while the streaming processor represents the processing stage. IoT edge
devices are external to the Tagus platform but typically would run a lightweight producer
process to send data to the platform.

AIOTA platform

(—)

¥ Output results

—> %kﬁfka > = M monetds) [)
— With streaming . .‘

extension Register '
(]

\) \) \) queries
loT devices Message Streaming
Transformer
(external) collector processor
I_I_l | I 1] |_|_|
| |
Device stage Ingestion stage Processing stage Emission stage

Figure 4: Overview of the Tagus platform

18

2.4. The Tagus platform

We chose the distributed message queuing system Apache Kafka*> as the core inges-
tion component, as it supports several features which are essential for our IoT platform.
Compared to other message queueing solutions, e.g. RabbitMQ?® and Apache ActiveMQ?,
Kafka is better suited for the stream processing use case. It provides exactly-once semantics,
maintains strict ordering over streams, has better persistence and scaling capabilities than
other message queues and has pull-based consumption. Kafka’s persistence capabilities and
pull-based model allow for both replaying streams in case of a crash and decoupling the
consumption rates from data production.

Figure 5 shows a detailed view of the ingestion and processing pipeline. In our pipeline
implementation, the Replay component simulates IoT end-devices that produce data to the
platform. The architecture is designed with reliability and scalability in mind, guaranteeing
that no data is lost and that the system can handle growing data volumes. It also privileges
modularity and decoupling of responsibilities, complementing how streaming data flows

through the pipeline and allowing components to scale independently.

r A

Producer 1

Producer 2

L[

Broker 1

Broker 2

Broker 3

Kafka Cluster

Apache Zookeeper

T iy T .

Stream
Tables

..........

Ly S

N - ————

Persistent
Tables

MonetDB Kernel

Execute CQs

Register

Continuous []
auers @ Py

Continuous Query Scheduler

Streaming
processor

\ Event log files) k)

Message
collector

Replay Transformer

Figure 5: The Tagus ingestion and processing pipeline

Data flows through the pipeline as follows:

2.4.1 Replay

The replay component reads previously captured messages from event log files. It sends
them to the platform in the original order in which the messages have been produced,
therefore replaying the captured stream. This component has the role of simulating the
production of events by end-devices and has a configurable production rate for testing and

stressing the pipeline.

25 Apache Kafka: https://kafka.apache.org/
26 RabbitMQ: https://rabbitmq.com/
27 Apache ActiveMQ: http://activemq.apache.org/

19

https://kafka.apache.org/
https://rabbitmq.com/
http://activemq.apache.org/

2.4. The Tagus platform

2.4.2 Message collector

The message collector receives stream events over time, durably storing them and allowing
their consumption downstream. It acts as the source of truth in case of failures, allowing
consumers to replay events for recovery.

A Kafka broker is used as the message collector component in the current implementation,
serving as the buffer for incoming streams and reliability. Data sources can use Kafka’s
producer library to send data to the platform, and the processing components downstream
can use the consumer library to fetch ingested data. Not only the brokers but also consumers
and producers can scale-out and are easily configurable, giving a fair amount of control
to optimise this layer, aiming for low-latency. Furthermore, IoT devices that use low
requirements network protocol MQTT can be easily integrated. Fault-tolerance, failover and
horizontal scaling capabilities are also available if the standalone broker is upgraded to a
Kafka cluster.

2.4.3 Transformer

The transformer consumes raw event streams, pre-processes them and loads the enriched
stream into the streaming processor. This component filters corrupt and unwanted messages
and transforms the various heterogeneous data schemas into a general structure, only
containing useful information. After extracting the useful information, the transformer loads
the data into the processor in the format it expects.

There are two main approaches for loading data into the stream processor: we could either
load the encoded data and transform it inside the streaming database (ELT) or transform
it into a parse-able format before loading it (ETL). As referenced in section 1.4.2, both
approaches have their pros and cons.

Due to the example application chosen for our prototype pipeline, our choice is limited to
ETL. Raw data needs to be decoded before being parseable, and the algorithm for decoding
is non-trivial to implement in a DBMS. Despite this, the transformer currently supports both

approaches.

2.4.4 Streaming Processor

The streaming processor consumes the stream and keeps the tuples in in-memory stream
tables. Users can analyse data flows by registering continuous queries and their triggering
conditions and data sources. The continuous query scheduler continually verifies if any CQ
is ready to be executed, as data is made available over time. When the scheduler triggers

a query, the kernel calculates results using relevant data from stream tables. These can be

20

2.4. The Tagus platform

stored persistently in the message buffer or the streaming engine, or be used for further
processing.

For the processing component, we use the columnar database MonetDB and its stream
processing extension. The streaming extension offers us low-latency storage of event data
in stream tables, a continuous query scheduler (CQE), windowed execution of queries and
an extended SQL catalogue to manage continuous queries and stream tables. Next to these
stream-specific features, the streaming processor leverages MonetDB’s analytical power for

high-performance query execution.

All the components can be run on the same machine or in different nodes, as the scalability
concerns start to arise with higher data rates. Both the Kafka brokers and the MonetDB
servers can scale out to clusters, and the transformer component can be run concurrently to
increase performance.

The replay and transformer components were developed using Java and the appropriate
Kafka library, while the Kafka message collector and MonetDB streaming processor are
open-source software.

While the Tagus pipeline is designed for general use, our implementation also aimed to
fully accommodate the processing of data from an example application. We chose the AIS
ship tracking system as our example application, to test and demonstrate the capabilities of

our pipeline implementation.

21

DATA INGESTION

Getting data from edge devices into the streaming platform with the lowest latency possible
is a crucial step for a real-time streaming pipeline. Devices may produce data at much
higher rates than the processing layer can consume, leading to data loss if there is no
buffering of events before analysis [12]. Using a distributed message queue such as Kafka,
we can persistently store streams as they are produced, allowing consumers to read at
their own rates and recover from failures. Based on this decoupling, we have designed the
data ingestion portion of our data pipeline (see Figure 5). In this chapter, we elaborate the

decisions and observations made during the development of the ingestion components.

3.1 AIS REPLAY

This component acts as the IoT device layer for our case study, simulating the continuous
sending of data over time. This component uses Kafka’s producer Java API to write data to
the message collector. An exact replay of the live AIS messages is out of the scope of this
project. However, in our simulation, we have captured the relevant properties to the best of
our knowledge. Table 1 shows where the replay component implementation diverges from
live AIS sensors.

AIS sensor AIS replay
Real-time data Logged data
Each device sends its own data | Produces data from many devices
Multiple connections One connection
Low-fidelity networks with delays No networking
Unpredictable workloads Configurable workloads
Data is sent over a Data spanning long time
long period of time interval is sent much faster

Table 1: Differences between AIS sensors and our replay component

The dataset contains data sent by various devices, meaning that one replay component

represents multiple IoT sources. This approach does not consider the overhead of many

22

3.1. AIS replay

sources sending their information over the network, which can lead to issues if the collector
cannot scale producer connections well enough. The rate at which events are produced is
configurable, which allows us to simulate different workloads.

We considered dividing the dataset between various replay threads and waiting between
sending messages to simulate a device layer better. This approach would allow us to have
concurrent producers without sending repeated data and to replay messages in the time scale
they were initially sent. However, the data rate was too slow to stress the message collector.
We decided that each replay thread would send the entirety of the data set, allowing us to
further scale the data rate.

©) | &Bkafka
Message

@ @ collector

Producer 2

AIS log files J

Figure 6: AIS replay component control flow

Figure 6 shows the behaviour of the AIS replay component:

1. The component begins by reading all AIS log files to memory to avoid the I/O overhead
while sending data to the message collector. Messages are stored in the order of event
timestamps to keep time consistency while replaying events.

2. A Kafka producer is then configured to send all recorded messages, acting as multiple

vessels.
3. The producer sends messages to the message collector one-by-one in time order.

4. The collector may send an acknowledgement to the producer, synchronously or
asynchronously, depending on the configuration.

All messages are sent to the same Kafka topic, which represents the stream. Records do
not feature a key, as no relevant identifying information is accessible when messages are in
their encoded form. Encoded messages are serialised as a string in the record payload.

23

28

3.2. Message collector

Given our use of the Kafka producer library to send messages to the collector, most
possible optimisations for the replay component are on Kafka’s side. Depending on our
needs for reliability, performance and disk use, we can configure the Kafka producer to fit
our requirements. Most non-essential configurations were not explored in this project, as
our implementation pipeline only used one broker, and our focus was not to fine-tune a
Kafka ecosystem?5.

However, one configuration we do use is the method for sending data to the collector.
Kafka producers can send data synchronously or asynchronously. With synchronous
sending, the producer actively waits for an acknowledgement from the broker before
sending another message. With the asynchronous method, the producer does not wait for an
acknowledgement before resuming. The producer receives the acknowledgement through a
callback function. Although the synchronous method simplifies the control flow and allows
production latency to be measured, the performance impact that it has is significant. Sending
all data in the AIS log files takes less than one minute with asynchronous sending, while the
synchronous method took more than an hour.

Kafka can provide exactly-once and ordering guarantees with the asynchronous method. It
automatically retries to send unacknowledged messages for a number of times, before raising
an exception through the callback function. Messages that were re-sent after a recoverable
error are guaranteed to be in order if the enable.idempotence producer configuration is true.
We decided to use asynchronous sending for this project, given the synchronous method’s

enormous performance overhead.

3.2 MESSAGE COLLECTOR

The message collector is the broker layer of the ingestion pipeline. Producers and consumers
connect to this layer to write or read data to or from topics, in which streams are temporarily
stored. Figure 7 shows the Kafka ecosystem in our pipeline, with the message collector
broker in the middle.

Using Kafka as our primary message storage instead of a database has several advantages.
Kafka’s connection overhead is much smaller than an RDBMS, which would struggle to
maintain a large number of open connections for IoT data sources. Kafka has better scalability
than a database, providing more parallelisation and load balancing features than traditional
RDBMS. Kafka supports easy integration of many data sources and sinks, i.e. MQTT data
source and JDBC data sink, giving more flexibility for future expansion.

The message collector consists of a Kafka broker (or cluster of brokers) and an Apache
Zookeeper instance used to store metadata and coordinate broker clusters. Both brokers

Producer configurations that could be explored for future optimizations include: number of broker acknowledg-
ments (durability vs latency trade-off), batch size (latency vs throughput trade-off) and compression.

24

29

3.2. Message collector

J

1)

r

-

Apache Zookeeper

. .

Data sources Message collector Downstream components
(Kafka Producer) (Kafka Cluster) (Kafka Consumer)

Broker 1

Consumer 1
Broker 2

N oam mm omm em o owm w=

4

\.

Figure 7: Message collector data flow

and topics are configurable, allowing us to adapt the server’s behaviour to our needs. Our
pipeline implementation only features one broker, as the objective was only to get a working
prototype for an IoT pipeline. A cluster of brokers should be used in future implementations,
guaranteeing high availability and better load balancing.

When creating a stream’s Kafka topic, we define the number of partitions and the replica-
tion factor. Partitions allow for more concurrency when reading from the message collector,
as various consumers in a consumer group can fetch data from different partitions within a
topic simultaneously. They also provide more scalability on the broker side, as a cluster of
brokers can divide partitions from a topic between them. The replication factor defines each
partition’s redundancy in Kafka clusters. Although these configurations were not used in
our prototype pipeline, which only features one broker, they are important considerations
for future scaling of the pipeline.

Given that this layer is the source of truth in our pipeline, data durability configurations
are essential.* However, due to the unbounded size of streaming data, it would not be
possible to store all stream events forever. Kafka allows us to set a time or a size limit
for the event log, after which the oldest segments are deleted (or compacted). We can
use the retention period configuration to limit how far behind a consumer may be before

unprocessed data is lost in a future implementation.

Broker configurations that could be explored for future optimizations include: log flush policy and the minimum
number of replicas that must acknowledge a write (durability vs latency trade-off).

25

3.3. Transformer
3.3 TRANSFORMER

The transformer component has the role of transferring data made available by the message
collector into the streaming processor. While the current implementation supports both ETL
and ELT approaches to loading data, our prototype pipeline is limited to ETL.

Raw streams fetched from the message collector are filtered and transformed before being
inserted into the streaming processor. Binary AIS messages are decoded into their full-text
format, giving us access to their attributes for filtering and insertion purposes. As the
transformer pre-processes events in the stream, it delivers them to the processing stage.

This component uses Kafka’s consumer Java API to fetch data from the broker, the AisLib
library to decode binary AIS messages into their full-length format and MonetDB’s Java
library to load data into the streaming processor. MonetDB’s library includes both the JDBC
interface and the MAPI library, a lower-level API for communication with the database. The
MAPI library powers the JDBC library and allows access to non-JDBC specific functionalities,
such as the COPY INTO statement for efficient bulk data loading into MonetDB.

mone;;’D

Streaming
processor

% Iea I: k(] Kafka Consumer

Message

collector @ @

\ 4

Decode and filter

®
\J

Transform and load

®

Figure 8: Transformer component control flow

Figure 8 shows the behaviour of the transformer component, after having connected to

both the message broker and the streaming processor:

1. The transformer fetches a batch of AIS messages from the message collection layer,

using Kafka’s consumer library.

2. Fetched AIS messages are decoded into full-text, and corrupt or unwanted events are

filtered out of the stream.

26

3.3. Transformer

3. Decoded events are converted into a general data schema known by the processor,

only containing the relevant information.
4. The pre-processed stream slice is loaded into MonetDB.

5. The streaming processor replies with the success of the data insertion operation. If the

load was successful, the consumer commits the consumption offset to Kafka.

Given the unbounded nature of streams, the transformer tries to fetch new batches
indefinitely. Each batch of data is fully pre-processed and loaded before the transformer

requests more data from the broker.

3.3.1 Transforming data

The first step in pre-processing raw AIS streams is decoding the binary format they are sent
in. Developing an AIS decoder is out of this thesis’s scope, so we decided to use one of the
various decoding libraries available. Two Java decoding libraries, AisLib3° and aismessages3',
were compared using our use case data, to identify the fastest one. AisLib consistently
decoded messages in less time, as the input rate was scaled. We chose it as our decoding
library, given that it also satisfies our requirements for a multi-line message decoder.

For each batch, the transformer decodes binary AIS lines in the order of their timestamps.
Decoding is done one message at a time, except when a multi-line message is detected. In
that case, the transformer stores all binary lines corresponding to a fragmented message,
to decode when the complete message is available. Corrupted or incorrect messages are
discarded from the stream, with the possibility of logging these occurrences to file.

The next step is filtering, whereby the transformer discards messages we are not interested
in processing. By removing these events before insertion into the database, we avoid their
impact on the streaming processor. Given that our case study focuses on AIS messages
of type 1 through 5, all other message types are not inserted into the database. Other
filtering work that the transformer could do include discarding position reports with invalid
coordinates or speed, or only inserting messages from a given geographical region.

Before loading the filtered stream into the processor, the transformer converts the raw
event format into a general format. This projection removes the data transfer overhead
caused by sending data not used for processing. Converting into a general format before the
processing layer also future-proofs our solution, by defining how to transform each different
data schema into a format that our processing component knows. The transformer also
changes corrupted or missing attributes in messages to default values and escapes strings to

avoid data integrity constraints and parsing issues in the database.

30 AisLib GitHub page: https://github.com/dma-ais/AisLib
31 aismessages GitHub page: https://github.com/tbsalling/aismessages

https://github.com/dma-ais/AisLib
https://github.com/tbsalling/aismessages

3.3. Transformer

3.3.2 Loading data

There are two methods for loading data into the database: issuing an SQL INSERT INTO
command through a JDBC connection or sending data after a COPY INTO command using
MonetDB’s underlying communication library MAPIL The INSERT INTO command contains
decoded messages in full-text form, while the COPY INTO command uses a buffered writer
interface to send rows of data. For large amounts of data, the COPY INTO method is faster
than INSERT INTO, due to its better memory allocation. COPY INTO was chosen as our
primary method for loading data in the current implementation and used for testing the
pipeline in Chapter 5.

The most crucial configuration to consider when loading data is the number of pre-
processed records to batch before inserting into the processor. MonetDB is optimised for
OLAP workloads, meaning that a small number of larger update transactions perform better
than a larger number of small updates. However, batching more data before loading it
increases the pipeline’s ingestion latency. By trying out different batch sizes, we can reach

an optimal configuration for our case and improve our pipeline performance.

3.3.3 Data reliability

One of the most critical roles of the transformer component is to ensure that stream data is
correctly inserted into the streaming database. Data insertion follows a synchronous model,
where the transformer waits for an acknowledgement from the database before fetching
more tuples. If the transformer could not insert a batch of decoded data, it will retry for a
specified number of tries. After several unsuccessful retries, the transformer alerts the user
and does not commit the offsets from the latest batch fetched from Kafka. This strategy
ensures that data is only marked as read when the component successfully moves it to the
database.

Given that the streaming database only provides in-memory storage for streams and the
delay between a tuple being inserted and used for processing, we need further reliability
mechanisms to deal with database crashes. Whenever the transformer detects a database
crash, we must ensure that all data not used for processing is re-sent.

After losing connection to the processor, the transformer will retry connecting for a
specified number of tries. If a successful connection is made, the stream consumption offset
is rewound. If we only need at-least-once processing guarantees, the stream consumption
offset is reset to o, restarting the fetching process at the beginning of the stream. If we
need exactly-once guarantees, i.e. processed events cannot be re-sent, the transformer must
know the offset of the last tuple that was processed. For this reason, the streaming database
registers the last offset of each processed window after execution. The transformer can then

28

3.4. MonetDB data loading

read the latest processed offset and reset the consumption offset to the first tuple that was
not processed.

3.3.4 Concurrent loading

The transformer can be run as a single consumer or a multithreaded consumer group.
Consumers in a group share the work of fetching data from a topic, allowing for concurrent
reads from the message broker. Each consumer runs on its thread and gets assigned some
topic partitions to read from exclusively. Using consumer groups increases read throughput
and allows for horizontal scaling. Running the transformer in multiple threads can also
improve the throughput of the pre-processing work, as multiple threads are decoding and
transforming simultaneously. We could also scale data ingestion into the streaming database
in a multithreaded scenario if the database has reliable concurrent insertion capabilities.
However, due to our case study’s limitations, concurrent consumption was not possible
in our pipeline implementation. Concurrent reads require the stream to be partitioned,
which makes sense in some application scenarios, but it is hard to achieve with our use case.
AIS data is represented in a binary-encoded format throughout the pipeline before being
decoded for database loading. This format provides no information about the event that we
could use as a partitioning key. Because we cannot partition the stream in a meaningful way,

the transformer component is limited to run as a single consumer.

3.4 MONETDB DATA LOADING

The streaming processor is the last step in the ingestion pipeline, where data arrives to be
processed. Delivered events require immediate processing and do not need to be persisted.
The message collector component already persists raw streams and provides mechanisms for
replaying lost data in case of crashes. Redoing this work in the streaming database would
be unnecessary and a performance drain.

For that reason, the streaming extension of MonetDB provides stream tables, a lightweight
variation of a regular relational table to store event data temporarily. Stream tables are kept
in-memory and are not subject to the standard transaction management of MonetDB. They
are designed to be the end-points to deliver IoT events and do not offer reliability guarantees.
Streaming tables can be created with the following SQL syntax:

CREATE STREAM TABLE table' name (table’columns)
[SET WINDOW positive number [STRIDE positive number];

The WINDOW parameter defines a tuple count window, denoting the minimum number

of tuples present for a continuous query to be triggered on the stream table. If this parameter

29

3.4. MonetDB data loading

is not set, any continuous query using this table will be triggered by a time-based window
instead, which can be defined when registering the query. If a tuple count window is used,
the STRIDE parameter determines how many tuples should be removed from the stream
table at the end of a continuous query invocation. If STRIDE is set to a positive number, the
oldest N tuples are removed. If STRIDE is set to o, all tuples are kept. The default action is
to delete all tuples used for a CQ invocation.

Each stream corresponds to a stream table, characterised by its schema and windowing
properties. As the transformer layer pre-processes a given stream, it inserts decoded events
in its stream table through an INSERT INTO or a COPY INTO command. To simplify the
flow of data and guarantee at-least-once processing, the transformer blocks after loading a
batch until the database acknowledges the insertion.

Concurrent loading of events into the database could improve the throughput and scaling
potential of loading the data into MonetDB, but this requires that we partition the stream.
As previously explained, this is not possible in the current implementation due to limitations
of the AIS dataset. The only safe mechanism to load data concurrently into MonetDB is
to insert data into multiple stream tables, with each transformer instance having exclusive
access to a table. The full stream table is the union of all individual stream tables, each
representing a partition.

30

DATA PROCESSING

This section will discuss the data processing stage of our pipeline, the MonetDB streaming
processor. We begin with an overview of the MonetDB database and its Continuous Query
Engine (CQE) extension. Then, we present our AIS stream processing benchmark, while also

discussing our implementations of event-time windows and failure recovery in the current

CQE.

4.1 CONTINUOUS QUERY ENGINE IN MONETDB
4.1.1 MonetDB Implementation Architecture

MonetDB is an open-source columnar RDBMS that originated from the national research
institute for mathematics and computer science in the Netherlands (CWI) in 1993. It is
designed for applications in data warehousing, business intelligence and business analytics.
MonetDB focuses on read-intensive workloads with updates in large chunks. Since going
open-source in 2004, MonetDB has evolved to include support for various programming lan-
guages, a kernel-level columnar approach, and a lightweight embedded version, presenting
an SQLite alternative.

One of the most significant differences between MonetDB and traditional DBMSs is how
data is stored and accessed. In traditional DBMSs, all tuple attributes are stored in one
record (i.e. row-store), meaning the data is fragmented horizontally (Figure 9). MonetDB
fragments its data vertically (i.e. column-store), meaning that each attribute column is stored
separately. Each column is stored in a C array, where the OID maps to an index of the array,
calculated with a base offset. Columns of the same relation are aligned, simplifying tuple
reconstruction (i.e. translation into row format).

MonetDB manipulates data through MonetDB Assembly Language (MAL), which consists
of low-level two-column relational algebra operations on BATs. MAL plans are executed
in an operator-at-a-time manner, meaning that each operator is evaluated over the entire
data before moving on to the next operation. This bulk processing model has performance

advantages over the traditional tuple-at-a-time paradigm, such as creating high instruction

31

4.1. Continuous Query Engine in MonetDB 32

OID Start Value: Nr. of Elements:

476 2
OID | Name | Contact | City . OID | Name | [Contact City
476 | John | 913874 |Prague| | 476 | John | |913874| |Prague
477 Mary | 912004 | Ontario i 477 | Mary 912004 Ontario

Figure g9: Data representation in row stores and column stores

locality and being more receptive to compiler optimisation. All intermediate results are
stored in a columnar format to take full advantage of optimised vector operations. Row-wise
tuples are only constructed before sending the final result to the client.

MonetDB’s query processing architecture is composed of three main layers. The front-end
layer translates high-level SQL queries into MAL plans and features strategic optimisers to
exploit SQL and relational algebra semantics. The back-end further optimises the MAL plan,
using a pipeline of optimiser modules that target specific performance improvements. The
kernel layer provides the implementation for the columnar data structure and the binary

relational algebra operators.

4.1.2 Continuous Query Engine

In 2016, a basic streaming engine was added to MonetDB.3* To implement stream processing
functionalities on top of the columnar DBMS, a new set of MAL operators was created,
along with a continuous query execution scheduler and several optimisation policies. The
engine uses the batch processing programming model, leveraging MonetDB'’s vectorised
operations and being closer to the traditional RDBMS batch model. It uses SQL as the
programming language, extending it to include the stream table, window and continuous
query abstractions [7]. A description of stream tables can be found in the Section 3.4.

Continuous queries (CQs) are a special type of SQL user-defined procedures/functions
that use stream tables as input and execute when their window triggering condition is
tulfilled. When users register CQs to the continuous query scheduler, they also define when
the query should be executed, i.e. tuple or time window boundaries. The scheduler initiates
a continuous query when all of its trigger conditions are satisfied, similarly to the Petri-net
model.33 Continuous queries can be registered with the following SQL syntax:

32 IoT and Streaming in MonetDB: https://monetdb.org/blog/IoT-and-streaming-in-MonetDB
33 Petri-net model overview: https://en.wikipedia.org/wiki/Petri_net

https://monetdb.org/blog/IoT-and-streaming-in-MonetDB
https://en.wikipedia.org/wiki/Petri_net

4.2. Stream processing AIS data

START CONTINUOUS - PROCEDURE — FUNCTION ~
function name (arguments)
[WITH HEARTBEAT positive number] [CLOCK timestamp]
[CYCLES positive number|] [AS tagname];

The HEARTBEAT parameter defines a time-based window, indicating the number of
milliseconds between continuous query executions. If it is not set, the scheduler will use
tuple count windows. If no tuple count windows are defined, the CQ will be triggered at
every execution round. The CYCLES parameter limits the number of times a continuous
query will run before being removed by the scheduler. If it is not set, the continuous query
will run forever. The CLOCK parameter specifies a wall-clock time for the continuous query
to start. If it is not set, the CQ will start immediately upon registration. The tagname
parameter is used to identify a continuous query, allowing a procedure with different
arguments to be registered as different continuous queries.

After registering a continuous query;, it is possible to pause and resume execution or stop
it completely. The status of registered CQs, including errors and the last execution time, can
be obtained with a cquery.status() call. All continuous queries are stopped once the MonetDB

server shuts down and must be manually restarted.

4.2 STREAM PROCESSING AIS DATA

To get useful business insights out of stream processing, we need to process the data with the
appropriate queries and data operations. We developed a benchmark containing analytical
queries which are useful for AIS applications. Our objective was to demonstrate the engine’s
capabilities in processing AIS data into valuable results and test and stress the underlying
stream processor. We are interested in appraising what operations and functionalities the
engine provides, as well as its performance and correctness.

We aim to test all available streaming operators, along with some additional features. The
streaming operators include projections, selections, aggregations, stream-relational joins
and stream-stream joins. Due to event-time windows not being available in the continuous
query engine and tuple-count windows not fitting our use case, processing-time tumbling
windows present the most appropriate window type. We also implemented queries that
simulate event-time windowing in their results, despite using processing-time tumbling
windows for scheduling.

We also want to test the output of processing results, which can be a stream table, if the
data is to be processed further, or a relational table for persistent storage. Moreover, a query
can store results in relational tables by appending the last window’s values or continuously

updating the previous results.

33

4.2. Stream processing AIS data

The queries that we developed for the benchmark are described in Table 2, alongside the

stream processing features we test in each query.

Query description Tested features

1 | Find currently anchored ships | Selection

2 | Get the speed of ships Projection, output to stream

3 | Track the movements of a ship | Projection, output to stream
Calculate the number of A i

4| distinct ships geresation

5 To each voyage message, . | Stream-stream join
add the current position of ship

6 Find ships anchored at a Stream-relational join,
base station using a processed stream
Find ships within a kilometre Stream-relational join,

7 radius from a base station distance calculation, selection

3 For every ship, find the closest | Stream-stream self join,
neighbour ship distance calculation
Calculate average speed Continuous update of results

9 | observed per ship over time on a relational table
Calculate the number of ships . . .

10 . . Event-time windowing
under-way in hour windows
Calculate the average and the

11 | maximum speed of moving Event-time windowing
ships in hour windows

Table 2: AIS benchmark queries and their tested features

After conceptualising queries that tested all the desired features, we implemented them in
MonetDB as continuous procedures. Full query implementations can be found in appendix
A.2. For each continuous procedure, we created an output table to store results. The type of
table (relational or stream) used for storing results depends on the query.

We also implemented an auxiliary function to calculate the distance between two ships
and an auxiliary view that returns each ship’s latest information. The distance function uses
an approximation of the Haversine formula to calculate the distance in kilometres between
two points in the geographic coordinate system, defined by their latitude and longitude
(Appendix A.3.2). The view that presents the latest message for each ship uses the event
timestamp for ordering and is useful for queries only interested in each vessel’s most recent
information.

Providing exactly-once processing guarantees not only requires the transformer to re-send

events after a MonetDB crash but also that previously processed events are not loaded again.

This requires the streaming processor to keep track of the broker offset for the last event that
was processed. For this purpose, we created a table for registering the offset of the last event
seen by each continuous query. At the end of each CQ invocation, the maximum offset in

34

10

11

12

4.2. Stream processing AIS data

the window is appended to the offset table, along with the query name. After a crash, the
transformer reads from the offset table to rewind the stream to the first unprocessed event.

Event-time processing, i.e. processing events according to when they happened and
not when they were ingested, is a crucial feature for any IoT application with correctness
requirements. The MonetDB CQE assumes ordered streams and, therefore, only implements
processing-time windows. However, it is possible and useful to program queries which
approximate the results of event-time windowing.

The event-time queries are triggered over a processing-time window, but aggregate events
by their event timestamp. The result for each event-time window is then updated, ensuring
that out-of-order tuples are taken into account, with no distinction between calculating

late-arriving and on-time events.

4.2.1 Example query: Query 11

Query 11 is an example of an event-time query, where the average and maximum speed
of ships are calculated in one-hour windows. Because event-time and processing-time
can diverge and continuous queries can only be triggered on processing-time, partial
aggregates for a given event-time period may have to be calculated over multiple calls to
a continuous query. This means that we have to consider every message that has arrived
between continuous query calls, and not only the ones with a timestamp within the current
processing-time window.

To ensure that out-of-order messages are included in the final aggregations, this query
features two steps: first, a continuous query computes partial averages and maximums
grouped in one hour periods of event time, for all the vessel messages not yet processed;
then, a view is used to aggregate all the calculated averages and maximums for an event-time

period.

— Save partial results to table
INSERT INTO ri11
SELECT
— These operands remove the minutes and seconds value from the timestamp,
resulting in the lower boundary of the one one hour window
str_to_timestamp (
timestamp_to_str (timestamp , '%Y—%n%d %H’) || ':00:00’,
"YoY—Ya%d YH:YM: %S’
) as window_start,
— Similar to the above operation, but adding one hour to the timestamp, the
higher boundary of the window
str_to_timestamp (
timestamp_to_str (timestamp , ‘%Y—%m%d %H") || ':00:00’,
"YoY—Yar%d YH: %M %S

35

13

14

15

16

17

18

19

20

21

22

23

25

10

11

12

13

14

15
16

4.2. Stream processing AIS data

) + INTERVAL "1’ HOUR as window_end,
— Partial aggregates for the event—time window and the number of tuples for
the window computed in this call
avg(sog) as partial_average,
max(sog) as partial.maximum,
count (x) as partial_.window_count
FROM
vessels
— Messages are grouped by the lower boundary of the one hour window, e.g. a
message with timestamp 13:40:56 would belong to the 13:00:00—-14:00:00 window
GROUP BY
str_to_timestamp (
timestamp_to_str (timestamp , "%Y—%m%d Y%H’) || ':00:00",
"PY—Yan%d YdH: %M %S
)

While the continuous query above calculates partial aggregates for both in time and
late-arriving messages across multiple calls, the view below can be used to join the partial
results into the final aggregations.

CREATE VIEW q11_totals AS
SELECT
— Window boundaries
window _start,
window _start + INTERVAL "1’ HOUR as window_end,
— Complete averages for a given event time period
avg(average) as final_average,
max (maximum) as final_ maximum,
— Total number of tuples in the window
sum(count) as window_count
— Uses output table from the partial results CQ
FROM
rit
— Final results are aggregated according to the start of the window, which can
have multiple partial results to join
GROUP BY
window _start;

36

EVALUATION

This chapter will assess the current implementation of the Tagus platform, evaluating both
the ingestion pipeline and the processing stage. We start by assessing the performance of
the ingestion pipeline and impact of the message collector layer by measuring the latency
between the production of an event and the ingestion of that event into the stream processor.

Then, we judge the current state of the stream processing engine through a functional
evaluation. This evaluation will inform us about the shortcomings and successes of the

current implementation, and the features and designs that the next engine should have.

5.1 TAGUS INGESTION PIPELINE EVALUATION

Our main objective in building the Tagus ingestion pipeline is to provide low-latency and
reliable streaming data ingestion. After implementing the pipeline, we did several tests to
assess if the pipeline fits our latency requirements. Data streamed from the replay component
should arrive at the streaming processor with low latency to make real-time streaming data
processing a possibility.

Our test environment includes all the ingestion components, with no processing of events.
The replay component was configured to send messages one-at-a-time to simulate a real-
world environment. The transformer component was configured to batch 100 messages
before inserting them into the streaming database.

This evaluation was conducted on a machine with the following characteristics:

CPU Manufacturer | Intel

CPU Model Core i7-8559U

Cores 8

CPU Frequency 2.7 GHz

RAM Memory 32GB

Disk 1024 GB SSD

Operating System | Fedora 32 x86_64 (Linux Kernel 5.10.8)

Table 3: Test environment hardware specification

37

5.1. Tagus ingestion pipeline evaluation

Time measurements are taken at each step of the pipeline, allowing us to determine the

biggest latency bottlenecks. Timestamp information is recorded for each individual message.

The pipeline latency is calculated as the difference between when an encoded event is sent
to the platform by the replay component and when the corresponding decoded event is
present in the streaming processor.

The replay component produces events from our AIS dataset over a given period, allowing
us to speed up the replaying of a month’s worth of AIS messages. The lower the replaying
time is, the higher the data rate the platform will have to handle. Given that the original
data rate is much lower than what the system should be able to handle, our tests start with
a replay over a 96 hour period, which means that the data rate is around seven times higher
than the original rate. We performed tests up to a data rate sixty times higher than the

original, which corresponds to a 12 hour replay period.

W Average pipeline latency Average databaseinsertion latency W Average non-database latency

600

500

400

300 >3 |

Average latency (ms)

15.30

200

246.05
100

12 Hours (x60) 24 Hours (x30) 36 Hours (x20) 48 Hours (x15) 96 Hours (x7.5)
Replay period

Figure 10: Average ingestion latency across various replaying periods. Latency is measured in
milliseconds.

From the results presented in figure 10, we can conclude that the step between data
reaching the transformer and being loaded into the streaming database is the biggest
bottleneck in the current implementation of the pipeline. In this step, data is batched before
being loaded, which introduces additional latency.

38

5.1. Tagus ingestion pipeline evaluation

Tests with more extended replay periods present higher average pipeline latency due to
the increased time the transformer spends in batching the data before loading it into the
database. Longer replay periods mean that the replay component sends data less frequently,
which increases the time necessary for a batch to be complete and subsequently loaded,
given that all executions used the same batch size (100 tuples).

This means that the number of messages that should be batched before insertion should
be adapted to the given scenario’s data rate, striking a balance between too many small
insertions and waiting too long before loading the data. To calculate the optimal batch size
for a 12 hour replay period, we repeated the ingestion benchmark with different batch sizes

and recorded each size’s latency impact.

1000
900

800

Average latency (ms)
@
S
3

1000 500 150

Batch size (number of records,

100
683.3 369.4 181.6 148.9 107.7 436,258.2
200 100 75 50
)

Figure 11: Average ingestion latency for a 12 hour replay period, with different batch sizes for
database insertion. Latency is measured in milliseconds.

Figure 11 shows the average latency for batch sizes between 50 and 1000. As expected, the
latency decreases with smaller batch sizes, given that the transformer waits less time before
inserting data. However, we can also identify a sharp rise in latency when the batch size is
50 records. While smaller batch sizes result in less latency, they also mean more overhead
for database insertion, as MonetDB is not optimized for small inserts. If the batch size is too
small, the database cannot keep up with records being produced, and latency continually
increases throughout the execution as the database lags more and more behind. For a 12
hour replay period, the optimal batch size is around 75 records. Larger batch sizes lead to
higher latency, but lower batch sizes are too small for the database to keep up.

This evaluation concludes that most of the latency comes from the transformer-to-database
pipeline stage, both from batching the data for loading and the load itself. The latency
overhead from using Kafka in the pipeline is much smaller than the database loading latency,

39

5.2. Tagus platform functional evaluation

meaning that our use of the message queue to provide reliability does not come with a very
high cost. We can also conclude that we can reduce the database loading stage’s latency
by configuring an appropriate load batch size for a particular data rate. The insertion into
the database is the biggest bottleneck in the pipeline, and its impact on latency should be
addressed, but this work is out of this thesis’s scope.

5.2 TAGUS PLATFORM FUNCTIONAL EVALUATION

We continue the Tagus platform’s evaluation with a functional evaluation of MonetDB'’s
continuous query engine’s current implementation. While changing the CQE implementation
is out of this project’s scope, assessing its features and comparing it to other state-of-the-art
systems will highlight possible future improvements.

Table 4 summarises the functional comparison between MonetDB CQE and other stream
processing systems in the market. TimescaleDB and InfluxDB extend RDBMS functionalities
to provide stream processing, therefore being closer to the CQE, while Flink and ksqlDB
follow the dataflow-graph approach for more complex functionalities.

MonetDB’s CQE follows an architectural and processing model similar to other streaming
engines adapted from RDBMS. Various processes (updates and queries) work against a
shared data environment in batches. While batching data might introduce some latency to
when the query results will be available compared to systems with a pure stream processing
model (e.g. Apache Flink), the current approach is generally regarded as more suited for
extending an existing RDBMS.

While it is possible to construct both processing and event time tumbling windows, the
assignment of tuples to their window must be implemented by the user with regular SQL.
This contrasts with systems, such as TimescaleDB, which feature a special operator for
defining event-time windows with a given time interval. Adding a window construct should
be a priority for the future work on the CQE, as window assignment is a common operation
that the user should not have to implement manually. The continuous query scheduler
allows the user to define trigger conditions for CQs according to tuple count and processing
time. Support for more complex triggers requires significant changes to the database model,
such as pure stream processing and watermarks, and is usually not present in systems which
extend an existing RDBMS.

There is no automatic mechanism for recalculating the result of a given window or
delaying query execution if a late tuple arrives. Adding the capability of automatically
updating the results of older windows, similarly to TimescaleDB’s continuous aggregates,

would be worthwhile. Currently, the user must explicitly implement the updates in the

query.

40

MonetDB CQE TimescaleDB InfluxDB Flink ksqlDB
Architectural model Database model Database model Database model Dataflow model Dataflow model
Processing model Batch Batch Batch Stream Stream
Windowing No time window Tumbling event time | Tumbling event time Tumbhng, sliding . Turnbhng, sliding .
construct and session event time | and session event time
Event-by-event,
. . Tuple count or N N ;
Query triggering . . Processing time Processing time processing and event Event-by-event
processing time .
time
In-memory state, In-memory state In-memory state
State persistent log with Disk Disk . Y ’ . Y ’
. . AT persistent log persistent log
ingestion pipeline
Joins Sa-Tand 5275 S-2-T S-2-T S-2-Sand S-2-T S-2-S and S-2-T
(only on current batch)
. . Possible, results are No, but .p0551b1e to
Event time processing | No delay window Yes Yes

always recalculated

execution

Processing semantics

None by default,
at-least-once with
ingestion pipeline

Exactly-once

Exactly-once

Table 4: Functional comparisons between MonetDB CQE and other modern stream processing systems

5.2. Tagus platform functional evaluation

Transient state (e.g. input streams) is stored in-memory to avoid disk I/O overhead, while
persistent results can be stored in regular SQL tables, persisted to disk. Data reliability
is not ensured by the CQE, as all in-memory state is deleted when the database server
crashes. If the CQE is used with the Tagus ingestion pipeline, transient data is persisted by
the message collector component. In the case of a crash, the transformer component can
rewind the consumption of the stream from the message collector and redeliver lost data.
Stream processing systems with a focus on low-latency results also adopt this approach,
while systems like InfluxDB persist all data to disk, increasing latency but also simplifying
the data ingestion step. The current implementation of the CQE features a simple data
retention mechanism, whereby tuples used in processing are deleted from the input stream
table. However, this mechanism is not supported if a processing-time trigger is being used.
Further implementation is needed to expand the data retention functionality.

By default, the CQE provides no processing guarantees, due to stream data being lost upon
shutdown. If the CQE is used with the Tagus ingestion pipeline, at-least-once processing
can be achieved by re-sending lost stream data stored in the message collector. Exactly-once
processing requires that the stream processor keeps track of its position in the stream.
The transformer component can then determine where it should rewind in the stream to
guarantee that no event is loaded twice. This can currently be achieved in a limited way, but
the user’s queries must manually manage the stream position.

Joins between streams are only supported on the current batch, meaning that merging data
with the CQE is very limited. Join capabilities could be extended by adding a user-defined
join window for stream-to-stream joins, which could differ from the continuous query
windows.

While MonetDB natively supports timestamp data types and operations, no event or
processing timestamps are automatically added, leaving it to the user to add time information
to the stream schema explicitly. Although it is possible to register more than once a
continuous query per stream, a stream can be consumed by maximally one continuous

query during a round.

42

CONCLUSION

6.1 SUMMARY

This project proposed an approach to adapting MonetDB, a modern columnar RDBMS,
for IoT data analysis, focusing on the ingestion/storage layer of the IoT application stack.
Our goals were to learn how to handle large volumes of heterogeneous streaming data and
efficiently and reliably ingest this data into the database. Furthermore, we assessed the
capabilities of the MonetDB continuous query engine, developed for a previous project, to
delineate future development work.

We designed an ingestion and processing pipeline that aimed to fulfil standard IoT
application requirements. This pipeline uses Apache Kafka as the core ingestion component,
which provides data durability and reliability, and MonetDB as the processing component,
which offers continuous queries over in-memory tuples. The pipeline also features a replay
component, which simulates IoT end-devices producing real-time data, and a transformer
component, which consumes data from Kafka, transforms the data and loads it into the
MonetDB.

This project used the AIS maritime tracking system as its example application: we used
logs of collected AIS streams as the dataset, implemented our pipeline design to ingest
and process this data, and modelled our stream processing benchmark according to useful
real-world maritime queries. Our choice of AIS as the example application raised some
limitations on what could be implemented in our pipeline. Due to AIS messages being
transmitted in an encoded format with no identifying information, we could not pursue the
ELT strategy when ingesting data or partition the stream according to a stream key.

After implementing our proposed pipeline to handle AIS data, we assessed its perfor-
mance and reliability by replaying an AIS stream into our platform. Our pipeline was
able to comfortably ingest events replayed at a much higher data rate than the original
dataset, leading us to conclude that the current implementation can handle the AIS use case.

Moreover, we evaluated MonetDB’s CQE by comparing its functionalities to other modern

43

6.2. Future work

stream processing systems. This assessment provided us with a blueprint for improvements
in the processing layer, paving future work on the component.

6.2 FUTURE WORK

This project mostly focused on the ingestion layer of the Tagus platform, meaning that
the processing, emission and administrative layers still leave much to be improved in the
future. Even within the ingestion layer, not all the work that could be done falls under this
project’s scope due to time constraints. Below we first elaborate several main topics we plan
to address shortly before identifying more relevant topics for future work.

Integration with Apache Avro - Integrating a data serialisation system such as Apache
Avro3* may be necessary when dealing with other use cases given the data format hetero-
geneity in the IoT field. Avro provides fast serialisation to a compact binary format that
directly maps to JSON while having much less overhead. Using Avro to help exchange data
between the pipeline components brings robustness and clarity by ensuring data producers
send correctly formatted data and allowing consumers to clearly understand what the data
is. Its rich schema-definition language and schema evolution features simplify schema
management and reduce the overhead of changing data formats, common in IoT.3> Kafka
has extensive support for Avro and MonetDB has JSON support, so this integration would
be possible.

Integration with MQTT - Another requirement when upgrading our platform to real-
world use is integrating IoT devices as data sources, i.e. real devices sending information to
the message collector through a communication protocol. MQTT3® is a popular choice for
IoT protocol, offering lightweight, low requirements and scalable message passing between
devices and applications. End devices publish their data to an MQTT broker, which passes it
to subscribing applications. We can connect the MQTT broker to our message collector layer
(Apache Kafka) through Kafka Connect, which offers bidirectional communication between
the two brokers, or directly integrate MQTT clients into the Kafka broker using Confluent
MQTT proxy37 or Waterstream.3®

Kafka clustering and stream partitioning - Our current pipeline implementation does
not leverage Kafka’s fault-tolerance, failover and horizontal scaling features, because our
message collector layer only features one Kafka broker. Using a cluster of Kafka brokers
means that data is replicated across various machines, which guarantees data reliability and

availability in case of node failures. Furthermore, the work of reading and writing from

34 Apache Avro: https://avro.apache.org/

35 Article: Why Avro for Kafka Data? https://www.confluent.io/blog/avro-kafka-data/

36 MQTT: https://mqtt.org/

37 Article: Apache Kafka Native @ MQTT at Scale: https://www.confluent.io/blog/
iot-streaming-use-cases- with-kafka-mqtt-confluent-and-waterstream/

38 Waterstream (MQTT-Kafka platform): https://waterstream.io/

44

https://avro.apache.org/
https://www.confluent.io/blog/avro-kafka-data/
https://mqtt.org/
https://www.confluent.io/blog/iot-streaming-use-cases-with-kafka-mqtt-confluent-and-waterstream/
https://www.confluent.io/blog/iot-streaming-use-cases-with-kafka-mqtt-confluent-and-waterstream/
https://waterstream.io/

6.2. Future work

the message collector can be balanced across cluster nodes, allowing our ingestion pipeline
to scale to higher data rates. Parallelising reading and writing to brokers requires that the
stream topic is partitioned, meaning that a stream is divided into distinct, independent
sub-streams. Messages can be balanced across partitions according to their key (if the
messages have one) or in a round-robin way. Order is only guaranteed within a partition,
meaning that applications which require ordering of events according to some attribute, e.g.
ordered events within a geographical zone, must use it as the stream partitioning key. Our
AIS dataset does not allow for keyed partitioning and order is a requirement, meaning that
we could not pursue this in the current project.

Automatic window assignment and update of continuous aggregates - An essential
feature to add to our stream processor would be support for an event-time windowing
operator, similar to TimescaleDB'’s time_bucket, which could abstract the logic of window
assignment from the user. This operator would calculate the window to which an event
belongs, given an event timestamp and a window size. Currently, if the user wants to
do a continuous windowed aggregation on a stream, he must manually implement the
mechanism to update results from older windows (e.g. when a tuple is late). To simplify
this typical operation, we could implement a continuously updating materialised view for
windowed aggregate queries, which would automatically recalculate its results as new data
comes in.

At a longer term, there are many more features to explore and add. Just to name a few:

e Expand the pipeline benchmarks - Test our pipeline with higher data rates, more
varied data and more producers. Furthermore, testing the effect of networking on the

pipeline when components are in different machines.

¢ Exploring more Kafka configurations - Number of broker acknowledgements (dura-
bility vs latency), producer batch size (latency vs throughput), broker retention period

(durability vs storage) and broker log flush policy.

e Improve CQE data retention - Add new retention strategy decoupled from processing
to bring more flexibility and control. Data older than a user-defined interval could be
automatically removed or compacted by a dedicated thread.

e Allow for multiple continuous queries to process data from one stream table - Cur-
rently, MonetDB’s stream tables can only be safely consumed by one continuous query,

requiring users to duplicate the stream for concurrent use [7].

e Automatic logging of last processed event - During failure recovery, the transformer
component needs to access the last event used in processing to rewind the stream

loading with no duplicates. Currently, this must be done manually by the user.

45

6.2. Future work

Explore alternatives to store processed data for client applications to access - Results
from query processing could be stored in permanent tables in MonetDB or produced
into Kafka.

Add an administrative component - An interface for users to register IoT data sources

(producers) and continuous queries (consumers).

46

APPENDIXES

A.1 AIS BENCHMARK DATA SCHEMAS

Base

id Base ID

latitude Position
longitude Position
timestamp Event timestamp

Vessels

id Ship ID

latitude Position

longitude Position
navigation_status | Current ship activity
speed Speed in knots

turn Turn angle in degrees
timestamp Event timestamp

insertion_time

Internal timestamp

insertion_time

Ingestion timestamp

Voyage

id Ship ID

name Ship name

ship_type Code for type of vessel
draught Draught in meters
destination Trip destination
timestamp Event timestamp
insertion_time | Internal timestamp

Table 5: Data schemas and attributes used in this project, derived from AIS messages of type 1-5

A.2 AIS BENCHMARK QUERIES

A.2.1

Query 1: Find currently anchored ships

CREATE PROCEDURE q1 ()

BEGIN

INSERT INTO r1
SELECT current_timestamp AS calc_time, * FROM distinct_vessels

47

A.2. AIS benchmark queries

WHERE nav_status = 1;
END;

A.2.2 Query 2: Get the speed of ships

CREATE PROCEDURE qz2 ()

BEGIN
INSERT INTO r2
SELECT current_timestamp AS calc_time , id, sog, timestamp, k_offset FROM
vessels;

END;

A.2.3 Query 3: Track the movements of a ship S

CREATE PROCEDURE q3(ship integer)

BEGIN
INSERT INTO r3
SELECT current_timestamp AS calc_time , lat, log, nav_status FROM vessels
WHERE id = ship;

END;

A.2.4 Query 4: Calculate number of distinct ships

CREATE PROCEDURE q4 ()
BEGIN

INSERT INTO r4

WITH vessel_count AS (

SELECT count(*) AS distinct_count FROM distinct_vessels

)

SELECT current_timestamp AS calc_time, distinct_.count FROM vessel_count;
END;

A.2.5 Query 5: To each voyage message, add the current position of ship

CREATE PROCEDURE g5 ()
BEGIN
INSERT INTO r5

48

10

11

12

13

14

15
16

A.2. AIS benchmark queries 49

SELECT current_timestamp AS calc_time , voyage.id, vessels.lat, vessels.log,
vessels.sog, voyage.name, voyage.ship_type, voyage.draught, voyage.dest,
voyage.timestamp as voyage_timestamp, vessels.timestamp as vessels_timestamp
FROM voyage

JOIN distinct_-vessels AS vessels

ON vessels.id = voyage.id

AND vessels .timestamp <= voyage.timestamp;

A.2.6 Query 6: Find ships anchored at base station

CREATE PROCEDURE g6 ()
BEGIN
INSERT INTO r6
SELECT current_timestamp as calc_time, r1.id as ship, base.id as station
FROM r1
JOIN base_downsampled AS base ON base.log = r1.log AND base.lat = r1.lat;
END;

A.2.7 Query 7: Find ships within a kilometer radius from a base station

CREATE PROCEDURE q7(distance integer)
BEGIN
INSERT INTO ry
WITH base_not_null AS (
SELECT x*
FROM base_downsampled
WHERE lat <> o AND log <> o
)
vessels_not_null AS (
SELECT x*
FROM vessels
WHERE lat <> o AND log <> o
)
SELECT current_timestamp as calc_time, vessels.id as ship, base.id as station
, vessels.timestamp as vessel_timestamp , base.timestamp as base_timestamp,
distance_in_km (base.lat, base.log, vessels.lat, vessels.log) as distance
FROM vessels_not_null as vessels
JOIN base_not_null as base ON distance_in_km (base.lat, base.log, vessels.lat,
vessels.log) <= distance
AND distance_in_km (base.lat, base.log, vessels.lat, vessels.log) > o;

10

11

12

13

10

11

12

13

14

15

16

17

18

19

20

A.2. AIS benchmark queries

A.2.8 Query 8: For every ship, find the closest neighbor ship

CREATE PROCEDURE q8 ()
BEGIN
INSERT INTO r8
WITH distance AS (
SELECT vi1.id AS ship, vz2.id AS neighbour_ship, distance_in_km(v1.lat,6v1.
log ,v2.lat ,v2.log) AS distance_in_km
FROM distinct_vessels AS vi
JOIN distinct_vessels AS v2 ON vi.id <> v2.id
AND vi.lat <> o AND vi.log <> o
AND v2.lat <> o AND v2.log <> o
)
SELECT current_timestamp AS calc_time , ship, neighbour_ship, distance_in_km
FROM distance
WHERE (ship, distance_in_km) IN (SELECT ship, min(distance_in_.km) FROM
distance GROUP BY ship);
END;

A.2.9 Query 9: Calculate average speed observed per ship over time

CREATE PROCEDURE qp9 ()
BEGIN
UPDATE rg9 SET
calc_time = current_timestamp,
speed_sum = speed_sum + update_vessels.sum,
speed_count = speed_count + update_vessels.count
FROM
(SELECT vessels.id, COUNI(sog) AS count, SUM(sog) AS sum FROM vessels
JOIN rg ON vessels.id = r9.id
GROUP BY vessels.id) AS update_vessels
WHERE

rg.id = update_vessels.id;

INSERT INTO rg
WITH new_inserts AS
(SELECT id, SUM(sog) AS sum_speed, COUNT(*) AS count_speed
FROM vessels
WHERE id NOT IN (SELECT id FROM rg9)
GROUP BY id)
SELECT current_timestamp AS calc_time , id, sum_speed, count_speed

50

22

10

11

12

13

14

15
16

17
18
19
20
21

22

23

25
26

27

28

29

3

A.2. AIS benchmark queries

FROM new _inserts;
END;

A.2.10 Query 10: Calculate number of ships under-way in hour windows

CREATE PROCEDURE q1o0 ()
BEGIN
INSERT INTO r1o0
SELECT
current_timestamp AS calc_time,
str_to_timestamp (timestamp_to_str (timestamp, '%Y-—%a%d YH’) || ’:00:00’,
"YY—Y%a-%d YH: %M %S) as window_start,
str_to_timestamp (timestamp_to_str (timestamp, "%Y-%m%d 9H’) || ’:00:00’,
"YY—Y%a%d YH: %M %S ") + INTERVAL ‘1’ HOUR as window_end,
min(timestamp) as actual_-window_start,
max(timestamp) as actual_-window_end,
count(x) as count
FROM
vessels
WHERE
vessels.nav_status = o
GROUP BY
str_to_timestamp (timestamp_to_str (timestamp , ‘"%Y-—%m%d %H’) || ’:00:00’,
"YoY— Y- %d YEH:YM:%S ") ;
END;

CREATE VIEW qi1o_totals AS

SELECT
window _start,
window _start + INTERVAL "1’ HOUR as window_end,
min(actual_window_start) as actual_window_start,
max(actual_window_end) as actual_-window_end,
sum(count) as count

FROM
rio

GROUP BY
window _start;

A.2.11 Query 11: Calculate average and maximum speed of moving ships in hour windows

CREATE PROCEDURE q11 ()
BEGIN
INSERT INTO ri1

51

10

11

12

13

14

15

16

17

18

19

25

26

27

28

29

30

31

32

34

END;

A.2. AIS benchmark queries

SELECT

current_timestamp as calc_time,

str_to_timestamp (timestamp_to_str (timestamp, '%Y—%an%d %H’) || ’:00:00’,
"YY—Y%a-%d YH: %M %S) as window_start,

str_to_timestamp (timestamp_to_str (timestamp , "%Y-%m%d YH’) || ’:0o0:00’,

"YY—Yar-%d YH:%M: %S ") + INTERVAL "1’ HOUR as window_end,
min(timestamp) as actual_-window_start,
max(timestamp) as actual_-window_end,
avg(sog),
max(sog) ,
count (*)

FROM
vessels

WHERE
sog <> o AND
sog <> 1023

GROUP BY
str_to_timestamp (timestamp_to_str (timestamp, ‘"%Y—%m%d %H’) || ’:oo0:00”,

"PoY—Yan-%d YH: %M %S ") ;

CREATE VIEW q11_totals AS

SELECT
window _start,
window_start + INTERVAL ’“1’ HOUR as window_end,
min(actual_window_start) as actual_-window_start,
max(actual_window_end) as actual_-window_end,
avg(average) as average,
max (maximum) as maximum,
sum(count) as count

FROM
ri1

GROUP BY
window _start;

52

10

11

A.3. Auxiliary queries

A.3 AUXILIARY QUERIES

A.3.1 Distinct vessels

CREATE VIEW distinct_vessels AS
SELECT id, lat, log, nav_status, sog, rot, timestamp, insertion_time,
k_offset from vessels
WHERE (timestamp, id) IN (SELECT max(timestamp), id FROM vessels GROUP BY id)

7

A.3.2 Distance calculation
Approximation of the Haversine formula SQL implementation (distance in km):

CREATE FUNCTION distance_in_.km (p1.-lat REAL, pi1_.log REAL, pz2_lat REAL, pz2_log
REAL)
RETURNS REAL
BEGIN
RETURN 111.319 *
SQRT(
(p2-lat—p1_lat) =
(p2-lat—p1_lat) +
((p2-log—p1_log) * cos((pz2-lat+p1_lat)*0.00872664626)) *
((p2-log—p1-log) * cos((p2-lat+p1_lat)*0.00872664626))
)
END;

Full Haversine formula SQL implementation (distance in km):

CREATE FUNCTION distance_in_km_full (p1_lat REAL, pi_log REAL, pz2_lat REAL,
p2-log REAL)
RETURNS REAL
BEGIN
RETURN 111.111 % DEGREES(ACOS(LEAST (1.0, COS(RADIANS(p1_lat))
* COS(RADIANS(p2_lat))
* COS(RADIANS(p1-log — pz2_log))
+ SIN(RADIANS(p1-lat))
* SIN(RADIANS(pz2-lat)))));

53

BIBLIOGRAPHY

[1] Akidau, T., Balikov, A., Bekiroglu, K., Chernyak, S., Haberman, J., Lax, R., McVeety,
S., Mills, D., Nordstrom, ., and Whittle, S. (2013). Millwheel: Fault-tolerant stream

processing at internet scale. 6(11):1033-1044.

[2] Akidau, T., Bradshaw, R., Chambers, C., Chernyak, S., Ferndndez-Moctezuma, R. J., Lax,
R., McVeety, S., Mills, D., Perry, E, Schmidt, E., and Whittle, S. (2015). The dataflow
model: A practical approach to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. Proc. VLDB Endow., 8(12):1792-1803.

[3] Arasu, A., Babu, S., and Widom, J. (2003). Cql: A language for continuous queries over

streams and relations. pages 1-19.

[4] Babu, S. and Widom, J. (2001). Continuous queries over data streams. SIGMOD Record,

30:109—120.

[5] Chin, J., Callaghan, V., and Allouch, S. B. (2019). The internet-of-things: Reflections on
the past, present and future from a user-centered and smart environment perspective.

Journal of Ambient Intelligence and Smart Environments, vol. 11, no. 1, pp. 45-69, 2019.
[6] daCosta, F. (2013). Rethinking the Internet of Things. Apress.
[7] Ferreira, P. E. S. (2016). Aiota: an iot platform on monetdb.

[8] Idreos, S., Groffen, E, Nes, N., Manegold, S., Mullender, S., and Kersten, M. (2012).
Monetdb: Two decades of research in column-oriented database architectures. IEEE Data

Eng. Bull., 35.
[9] Kleppmann, M. (2016). Making Sense of Stream Processing. O'Reilly Media.

[10] Liu, X., Dastjerdi, A., and Buyya, R. (2016). Stream processing in loT: Foundations,
state-of-the-art, and future directions, pages 145-161.

[11] Nasiri, H., Nasehi, S., and Goudarzi, M. (2019). Evaluation of distributed stream

processing frameworks for iot applications in smart cities. Journal of Big Data, 6(1):52.
[12] Psaltis, A. G. (2017). Streaming Data. Manning.

[13] Sax, M.]J., Wang, G., Weidlich, M., and Freytag, J.-C. (2018). Streams and tables: Two
sides of the same coin. In Proceedings of the International Workshop on Real-Time Business

54

bibliography 55

Intelligence and Analytics, BIRTE "18, New York, NY, USA. Association for Computing
Machinery.

	1 Introduction
	1.1 Background
	1.2 IoT data processing challenges
	1.3 Hypothesis: we can adapt a modern RDBMS for IoT data analysis
	1.4 Research questions and contributions
	1.4.1 Q1: How to cope with the large volumes and high diversity of streaming data
	1.4.2 Q2: How to ingest streaming data into an RDBMS efficiently

	1.5 Structure of the document

	2 IoT Analytics Pipeline
	2.1 Background: Streaming data processing in the IoT era
	2.2 Example IoT application: the AIS global ship tracking system
	2.2.1 AIS use cases
	2.2.2 AIS message formats
	2.2.3 AIS data in this project

	2.3 IoT platform requirements
	2.4 The Tagus platform
	2.4.1 Replay
	2.4.2 Message collector
	2.4.3 Transformer
	2.4.4 Streaming Processor

	3 Data ingestion
	3.1 AIS replay
	3.2 Message collector
	3.3 Transformer
	3.3.1 Transforming data
	3.3.2 Loading data
	3.3.3 Data reliability
	3.3.4 Concurrent loading

	3.4 MonetDB data loading

	4 Data processing
	4.1 Continuous Query Engine in MonetDB
	4.1.1 MonetDB Implementation Architecture
	4.1.2 Continuous Query Engine

	4.2 Stream processing AIS data
	4.2.1 Example query: Query 11

	5 Evaluation
	5.1 Tagus ingestion pipeline evaluation
	5.2 Tagus platform functional evaluation

	6 Conclusion
	6.1 Summary
	6.2 Future work

	A Appendixes
	A.1 AIS benchmark data schemas
	A.2 AIS benchmark queries
	A.2.1 Query 1: Find currently anchored ships
	A.2.2 Query 2: Get the speed of ships
	A.2.3 Query 3: Track the movements of a ship S
	A.2.4 Query 4: Calculate number of distinct ships
	A.2.5 Query 5: To each voyage message, add the current position of ship
	A.2.6 Query 6: Find ships anchored at base station
	A.2.7 Query 7: Find ships within a kilometer radius from a base station
	A.2.8 Query 8: For every ship, find the closest neighbor ship
	A.2.9 Query 9: Calculate average speed observed per ship over time
	A.2.10 Query 10: Calculate number of ships under-way in hour windows
	A.2.11 Query 11: Calculate average and maximum speed of moving ships in hour windows

	A.3 Auxiliary queries
	A.3.1 Distinct vessels
	A.3.2 Distance calculation

