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TERCEIROS
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A B S T R A C T

The wine industry is facing challenging times due, mostly, to climate change and changing

consumer demands. The urge to innovate stimulates R&D of new fermentation processes

using non-conventional yeast species (e.g. non-cerevisiae Saccharomyces species).

While recent research approached the physiology of diverse non-conventional yeast

species, little is known about their metabolism in different environmental conditions.

In this work, a previously developed dynamic genome-scale model was adapted to

study the metabolism of Saccharomyces kudriavzevii in wine fermentation at two temper-

atures, 25◦C and 12◦C. Adjustments included the addition of metabolic pathways and

dynamic constraints. Goodness-of-fit of the model to measurements of the extracellular

compounds was satisfactory, i.e. the median values of R2 are 0.95 and 0.87 for 25◦C and

12◦C, respectively.

The model was then used to explore the differences in the dynamics of metabolism

between temperatures. The most significant differences appeared in the stationary

phase: 1) the strain produces more mevalonate and succinate at 25◦C, probably due

to a late response to stress and the maintenance of redox balance via the GABA shunt,

respectively, 2) erythritol flux is higher at 12◦C, probably due to the conditions of formation

lasting longer and 3) the production of higher alcohols, mostly de novo, is higher at 12◦C,

due to the longer viability of the cells.

The proposed model provided a comprehensive picture of the main steps occurring

inside the cell during wine fermentation. Model predictions are consistent with experi-

mental data and previous findings, but it also brought novel results, such as the role of

the GABA shunt or the production of mevalonate in the metabolism of S. kudriavzevii,

worth being explored further.

Keywords: fermentation, metabolism, modelling, S. kudriavzevii
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R E S U M O

A indústria vinı́cola atravessa tempos desafiantes, sobretudo devido às alterações

climáticas e às mudanças das exigências dos consumidores. A necessidade de inovar

estimula a I&D de novos processos fermentativos usando espécies de leveduras não

convencionais, (e.g. espécies Saccharomyces não-cerevisiae). Apesar de investigações

recentes abordarem a fisiologia de diversas espécies de leveduras não convencionais,

sabe-se pouco sobre o seu metabolismo em diferentes condições ambientais.

Neste trabalho, adaptou-se um modelo dinâmico à escala genômica para estudar o

metabolismo da Saccharomyces kudriavzevii CR85 durante a fermentação de vinho a

25◦C e 12◦C. Os ajustes incluem a adição de vias metabólicas e restrições dinâmicas.

A adequação do modelo às medições dos compostos extracelulares foi satisfatória, i.e.,

os valores medianos de R2 são de 0.95 e 0.87 para 25◦C e 12◦C, respectivamente.

O modelo foi então utilizado para explorar as diferenças nas dinâmicas do metabolismo

entre temperaturas. A maioria das diferenças significativas surgem na fase estacionária:

1) a estirpe produz mais mevalonato e succinato a 25◦C, provavelmente devido a uma

resposta tardia ao stress e à manutenção do balanço redox através da via alternativa

do GABA, respectivamente, 2) fluxo de eritritol é maior a 12◦C, provavelmente devido

às condições da sua formação durarem mais e 3) a produção de álcoois superiores,

sobretudo via de novo, é superior a 12◦C, devido à longa viabilidade das células.

O modelo proposto permitiu um retrato completo dos principais passos ocorridos no

interior da célula durante a fermentação de vinho. As previsões do modelo estão de

acordo com os dados experimentais e descobertas anteriores, no entanto, também

trouxe resultados inovadores, como o papel da via GABA ou a produção de mevalonato

no metabolismo da S. kudriavzevii, que vale a pena ser mais explorado.

Palavras-Chave: fermentação, metabolismo, modelação, S. kudriavzevii
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1

I N T R O D U C T I O N

1.1 CONTEXT AND MOTIVATION

History gives a good perspective of the wine cultural importance, since its ”discovery”

about 6000 years ago, has been commonly used in the human diet and on social and

religious occasions. Moreover, wine is produced practically on all continents [1]. Ever

since, as a common process, the marketing of wine started to happen.

The global wine market has witnessed steady growth over the years. In 2018, the

sum of exports from all countries reached 31.3 bn EUR [2]. The European Union (EU) is

the world-leading producer of wine. Between the campaigns 2009-2010 and 2018-2019,

the average annual production was 159 million hectolitres. In 2018, it accounted for 43.5%

of wine-growing areas, 62.9% of production, more than 60% of global consumption and

70.4% of exports, in global terms. Within the EU, France, Italy and Spain represent about

80% of the total production. Together, these three countries constitute 50.7% of wine

producers of the world market, in volume terms. Other relevant EU producers include

Germany, Portugal, Romania, Greece and Hungary [2–4].

Despite these figures, the EU wine industry is facing several challenges. Apart

from the fierce international competition, with new producers appearing in different

countries, internal EU consumption decreases, and climate change is affecting wine

production globally [5, 6].

1



1.1. Context and Motivation 2

Consumers demand products with lower alcohol and fruiter aromas. At the same

time, climate change has different effects on vine grapes, including lower acidity, phenolic

maturation and altered tannin content, and notably higher sugar levels, which boost the

alcohol content. Early harvest would avoid high sugar content in grape must and thus

reduce the final alcohol content. However, it would prevent the optimal phenolic maturity

and aromatic complexity required to produce the well-structured and full body wines

consumers are demanding. The use of alternative yeast starters emerges as a possibility

to face the challenge [7].

Winemaking is a conversion of grape juice made mainly by yeasts, led by Sac-

charomyces cerevisiae, were a vast number of compounds are metabolically consumed

and produced. Modern wine-production relies on selected yeasts to inoculate grape

must. The use of so-called starters allows to control the fermentation, reduce the risk of

contamination, increase the reproducibility and generate specific wine characteristics.

Most of the commercial starters are S. cerevisiae, therefore being the most frequently

used in wine fermentation, as well as the most studied species. However, other species

of the Saccharomyces genus have shown their potential application to solve the new chal-

lenges of the winemaking industry. Particularly, Saccharomyces non-cerevisiae yeasts,

S. uvarum and S. kudriavzevii, or hybrids, S. cerevisiae x S. uvarum and S. cerevisiae

x S. kudriavzevii, exhibit good fermentative capabilities at low temperatures, producing

wines with lower alcohol and higher glycerol amounts and new aromatic profiles [7].

Still, the design of new wine fermentation processes requires a better understand-

ing of the differences in fermentation behaviour between Saccharomyces non-cerevisiae

yeasts and, how these characteristics can be modulated to enable increased scope and

specificity in tailoring wine composition.

A systems biology-based approach has the potential to elucidate the origin of

such differences through the integrative use of genome-scale metabolic networks, math-

ematical models and molecular omics data [8, 9].
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Dynamic genome-scale metabolic models (GEMs) allow for the study of the

metabolic response and flux simulation in a system of interest (e.g. bacteria, yeasts,

algae, etc) under given environmental conditions. In a GEM, metabolites link to each other

through reactions associated with enzymes encoded by genes. The stoichiometric matrix

represents reactions, and it is used to define balance equations describing the dynamics

of metabolic concentrations as a function of reaction rates (or fluxes). Metabolic fluxes

can be then obtained by, for example, flux balance analysis (FBA) [10], which accounts

for a specific cellular objective (e.g. maximum growth rate) plus specific constraints on

internal and external fluxes. FBA can be solved iteratively to handle dynamic systems

[11].

Agosin and co-workers proposed using dynamic GEMs to predict wine fermenta-

tion by a S. cerevisiae industrial species [12, 13]. Their models, based on the iFF708

reconstruction, which included 1175 metabolic reactions comprising 584 components [14],

were able to reasonably explain the measured dynamics of biomass growth, hexoses

uptake and ethanol and glycerol production [12, 13]. However, their models did not con-

sider nitrogen metabolism in stationary and decay phases, in which the most extracellular

accumulation of fusel alcohols happens, such as 2-phenylethanol, isoamyl alcohol and

isobutanol, responsible for odour and flavour. Therefore, the models could not predict the

production of aromas and other wine relevant metabolites.

Henriques et al. [15, 16] proposed an integrative genome-scale dynamic model of

wine fermentation, which accounts for the dynamics of the consumption of carbon and

nitrogen (organic and inorganic) sources, as well as aroma formation. For the modelling,

the authors integrated a wine specific metabolic reconstruction, based on an extension of

the current consensus genome-scale model of S. cerevisiae (Yeast8 [17]), into a dynamic

kinetic model to account for the time-varying culture environment. Extracellular substrate

concentrations were used to compute time-varying substrate uptake rates through kinetic

expressions. The dynamics of extracellular products were modelled using kinetic models

and used to constrain the problem further. The dynamics of intracellular fluxes were
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computed using a dynamic implementation of a parsimonious flux balance analysis

(pFBA [18]). The model was calibrated using experimental data from batch fermentations

and used to explain the differences in the metabolism of S. cerevisiae and S. uvarum

strains under wine fermentation conditions.

1.2 OBJECTIVES

This work aims to update that previously developed model to explain the metabolism of

yet another Saccharomyces species: S. kudriavzevii CR85, and explore its metabolism

under different fermentation temperatures.

More specifically, the work will address the following objectives:

• Explore the formulation of dynamic constraints: ordinary differential equations

(ODEs) describing the dynamics of experimentally measured external metabolites;

• Explore the formulation and solution of the dynamic genome-scale models as

implemented in AMIGO2 toolbox [19] and its interface with COnstraint-Based

Reconstruction and Analysis (COBRA) toolbox [20];

• Obtain a dynamic genome-scale description of the metabolism of S. kudriavzevii

CR85 for alternative temperature conditions during wine fermentation;

• Perform a comparative analysis between different temperature conditions and

among different strains.

1.3 STRUCTURE OF THE DOCUMENT

Chapter 2 - State of the Art
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Chapter 2 provides an overview of the state of the art regarding the use of dynamic

GEMs in wine fermentation, including the general description of the modelling approach,

plus the numerical and software tools to solve dynamic GEMs. The chapter is divided

into sections to present:

1. A general overview of Systems Biology (SB);

2. A brief introduction to modelling approaches, such as FBA and dynamic flux balance

analysis (dFBA);

3. A brief description of numerical tools (AMIGO2 and COBRA Toolbox);

4. A cursory state-of-the-art of the application of SB concepts to wine fermentation.

Chapter 3 - Methods

After contextualizing the relevant topics and tools for this work, a description of the

methodologies is presented. First, a brief description of the latest consensus GEM of S.

cerevisiae (Yeast8) is presented. Later in this chapter, the numerical methods required

for:

1. the simulations;

2. the fluxes calculation;

3. the filtering and the assessment of the results;

are also presented.

Chapter 4 - Results and Discussion

This chapter begins with the description, and respective discussion, of the model

adjustments made to portray the physiology of S. kudriavzevii. Later, the main results

are presented and discussed. The description of the results is divided into two main

sections:
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1. Extracellular compounds;

2. Intracellular fluxes.

The intracellular fluxes section allows for a more detailed metabolic analysis, thus

giving rise to other relevant sections:

1. Case study: block of gamma-aminobutyrate (GABA) shunt pathway;

2. Peculiar pathways/strategies of S. kudriavzevii CR85;

3. 25◦C versus 12◦C;

4. S. kudriavzevii CR85 versus others Saccharomyces strains.

Chapter 5 - Conclusion

Lastly, the Chapter 5 summarises the conclusions of the work accomplished and

describes some limitations noted in the course of this work, as well as future prospects.



2

S TAT E O F T H E A R T

2.1 SYSTEMS BIOLOGY

The discovery of the structure of the deoxyribonucleic acid (DNA) molecule in the middle

of XX century by Francis Crick and James Watson with the help of previous studies by

Rosalind Franklin and Maurice Wilkins, is one of biology’s most important breakthroughs.

This groundbreaking discovery led to the development of modern molecular biology

[21]. From that moment, various scientific and technological advances contributed to the

genomic revolution. Today, it is possible to sequence the entire genome of organisms

on an easy and inexpensive way. For example, Next Generation Sequencing (NGS)

allows the analysis of the entire human genome in a single sequencing experiment, or

the sequence of thousands to tens of thousands of genomes in one year.

The genomic revolution soon led to additional ”omics”, namely metabolomics,

transcriptomics, proteomics, fluxomics, etc. The large volumes of data motivated a

rapid growth in the field of bioinformatics. And soon, it was recognised that a more

formal and mechanistic framework was needed to analyse multiple high-throughput data

systematically. This need led to the application of a systems-based approach towards

the study of cellular function. This multidisciplinary approximation to the cellular function

study is regarded as SB [8, 22, 23].

Rather than dividing a complex problem into its parts, the systems perspective

appreciates the holistic and composite characteristics of a problem and evaluates the

7



2.1. Systems Biology 8

problem using mathematical models. From this perspective that complex behaviours

emerge out of the interactions of the different biological parts, SB uses a model-based

approach to study biological systems dynamics and offers the means for the control and

design of biological systems [24, 25]. Hence, SB requires integrating high-throughput

data (the omics data), bioinformatics and mathematical modelling, in principle, enabling

the integration of data and hypotheses to predict complex interactions and behaviours. SB

has the potential to be crucial in medicine (e.g. in deriving a mechanistic understanding

of disease(s) or defining novel (personalised) treatments) or in the modern biotechnology

(e.g. in systematic metabolic engineering, synthetic biology or food industry) [26–28].

Mathematical models tend to focus on those aspects which are relevant to address

a specific biological question. Also, the modelling framework will be defined attending to

the question and the available experimental data. It is out of the scope of this work to

revise modelling formalisms. The interested readers can find extensive reviews elsewhere

[29, 30].

Here, the focus is on the modelling of the metabolism of the cell. The metabolism

includes several catabolic and anabolic pathways of enzyme-catalysed reactions that

import substrates from the environment and transform them into energy and building

blocks required to build the cellular components. Metabolic pathways are interconnected

through intermediate metabolites, forming complex networks.

Cazzaniga et al. [31] presented a description of the computational methods

available for the analysis of metabolic pathways, discussing their main advantages

and drawbacks. The authors present a schematic overview of the main modelling

approaches: from the coarse-grained (interaction-based, constraint based) to the fine-

grained (mechanism-based) approach, and argue that modelling entails an appropriate

compromise of detail. In this regard, genome-wide models, include several thousands of

reactions and metabolites, while kinetic models typically focus on a few reactions.
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2.2 GENOME-SCALE METABOLIC MODELS

Currently, metabolic network reconstruction is a tool that has gained huge importance

for the system biology of metabolism [32, 33]. The fact that full genome sequences and

well-known biochemical reactions are increasingly available in several databases (Table

1) allows the extension and, consequently, generation of these metabolic networks at the

genome-scale [25, 33].

Table 1: General description of databases used for the reconstruction of GEMs.
Database Description Website link

UniProtKB

Free access database that provides to the scientific
community with high-quality data. It consists of two
main sections: UniProtKB/Swiss-Prot (contains
information reviewed, manually annotated);
UniProtKB/TrEMBL (computationally analysed records
waiting for manual annotation, unreviewed)

https://www.uniprot.org/uniprot/

BioModels

Database with mathematical models of biological
and biomedical systems, which provides models
published in scientific literature to the systems
modelling community. It is a free access source.

https://www.ebi.ac.uk/biomodels/

NCBI

Contributes for advances in science and health with
free access to biomedical and genomic information,
providing access to relevant databases to
biotechnology and biomedicine and it is also an
important resource for bioinformatics tools and services.

https://www.ncbi.nlm.nih.gov/

KEGG
Database resource for understanding high-level functions
and utilities of the biological system from molecular-level
information to high-throughput experimental technologies.

https://www.genome.jp/kegg/

BRENDA Main database to the scientific community for enzyme
functional data. It is a free access database. https://www.brenda-enzymes.org/

BioCyc

Free access microbial genome web portal which has
thousands of genomes with extra information inferred
by computer programs, imported from other databases
and reviewed by specialized curators. It has also query tools,
visualization services and analysis software.

https://biocyc.org/

GOLD
Database curated with free access to metadata for
research purposes. It gives information rich resource about
sequencing projects and his metadata.

https://gold.jgi.doe.gov/

SGD
Provides access to biological information, as well search
and analysis tools to explore this information, that it is
related to the budding yeast Saccharomyces cerevisiae.

https://www.yeastgenome.org/

MetaCyc
Briefly, this database contains metabolic pathways
(all domains of life) that were experimentally clarified.
Thus, it is a curated database.

https://metacyc.org/

Edwards & Palsson [34] presented the first GEM in 1999. According to Gu et

al. [35], a GEM describes a full set of stoichiometry-based, mass-balanced metabolic

https://www.uniprot.org/uniprot/
https://www.ebi.ac.uk/biomodels/
https://www.ncbi.nlm.nih.gov/
https://www.genome.jp/kegg/
https://www.brenda-enzymes.org/
https://biocyc.org/
https://gold.jgi.doe.gov/
https://www.yeastgenome.org/
https://metacyc.org/
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reactions in a biological system using gene-protein-reaction (GPR) associations that

are generated from genome annotation and experimental data. A GEM can be used to

predict phenotypic behaviour of the specific organism in different circumstances (genetic

and environmental) or to analyse the robustness of the network [36], through optimisation-

based techniques like FBA [10]. Rocha et al. [36] exemplify the use of GEMs to perform

gene deletion analysis and integrate regulatory information.

The reconstruction of a metabolic network is an iterative and time-consuming

process, and it consists of 96 steps described by Thiele & Palsson [33]. These steps

are distributed in the following four stages: 1) draft reconstruction, 2) refinement of

reconstruction, 3) conversion of reconstruction into a computable format and 4) network

evaluation.

The first stage involves the genome annotation for the creation of the draft re-

construction using information available in bioinformatics databases, such the Universal

Protein Resource (UniProt) [37], Kyoto Encyclopedia of Genes and Genomes (KEGG)

[38] and National Center for Biotechnology Information (NCBI) [39].

The following stage involves the curation and refinement of the metabolic network

by identifying biochemical reactions associated with the organism. This stage includes

several steps, such as: 1) determining the GPR associations, 2) knowing the reaction

directionality, 3) performing the addition of spontaneous reactions, 4) validating the reac-

tions stoichiometry, 5) compartmentalization of identified reactions, and 6) determining

the biomass composition.

The third stage is converting the network into a mathematical format to define

condition-specific models that can be saved in the standard Systems Biology Markup

Language (SBML) format [40].

In the last stage, also known as ”Debugging mode”, the model representation of the

third stage is used to compare the organism’s behaviour prediction with experimental data,

allowing an improvement of the model’s predictive potential capabilities and correctness.
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Once the reconstruction becomes available, modellers can use various tools to develop

genome-scale models (Table 2).

Table 2: Bioinformatic tools generally used to modelling/analysis of GEMs models.
Bioinformatic tool Type of Software Reference

AMIGO2 Toolbox [19]
COBRA v.3.0 Toolbox [20]
RAVEN 2.0 Toolbox [41]

merlin Standalone [42]
CellNetAnalyser Toolbox [43]

Optflux Standalone [44]
GEMSiRV Software [45]

2.3 FLUX BALANCE ANALYSIS

The FBA is a widely used mathematical approach devoted to analysing/studying bio-

chemical networks, especially on genome-scale metabolic models. FBA provides the

flow of metabolites thought the model’s network, allowing the prediction of the growth

rate of a biological system or production rate of a relevant metabolite [10].

The FBA approach has a broad spectrum of use [9]. It has been applied in several

complex biological challenges such as the generation of tissue-specific human metabolic

reconstruction, drug discovery against pathogenic organisms and development of geneti-

cally engineered organisms for the production or not of different substances [9, 46]. The

major limitations of the FBA approach are: 1) the impossibility of predicting metabolite

concentrations, only fluxes can be estimated and 2) the steady-state assumption, which

is only valid in particular conditions. Consequently, FBA ignores time (dynamics) and

species concentrations [10, 46, 47].
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2.4 DYNAMIC FLUX BALANCE ANALYSIS

The dFBA is an extension of FBA, as the name might suggest, that incorporates the rate

of change of flux constraints. Therefore, it enables the prediction of external metabolites

concentrations by including kinetic descriptions [11]. The dFBA approach makes the

connection between steady-state intracellular metabolic flux distribution (typical FBA)

with dynamic changes of environment (”new feature”) [48], allowing dynamic predictions

of substrates, biomass, and product concentrations for growth in batch or fed-batch

cultures [49].

2.5 PARAMETER ESTIMATION

Time-series experimental data describing the dynamics of the external metabolites can

constrain the internal flux dynamics. The dynamics of external metabolites is described

using kinetic models, and the unknown parameters can be then estimated by data-fitting.

The parameter estimation problem is formulated as an optimisation problem. The

objective is to find the unknown model parameters that minimise a measure of the

distance between model predictions, and the experimental data [50].

2.6 AMIGO2 TOOLBOX

The optimisation has a major role in multiple problems related to the modelling and design

of biological systems [19]. Model identification-related problems, such as parameter

estimation or optimal experimental design, may be formulated as optimisation problems,

and optimisation is the underlying hypothesis in some modelling approaches (e.g. dFBA)

[51]. Most of these problems are formulated as nonlinear programming problems (NLPs)
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with dynamic and algebraic constraints. Therefore, their solution involves the use of

advanced numerical simulation and optimisation methods.

AMIGO2 is multiplatform MATrix LABoratory (MATLAB) [52] based toolbox that

automates the solution of such NLPs (Figure 1). The toolbox offers a series of tools

devoted to the iterative identification of dynamic models, such as parameter estimation,

identifiability analysis or optimal experimental design. Its dynamic optimisation module

enables the use of optimality principles to predict biological behaviour or to solve multi-

objective optimal control of biological systems and bioprocesses.

Figure 1: AMIGO2 features and tasks. Green: simulation; Yellow: sensitivity analysis; Blue:
optimization. Adapted from AMIGO2, a toolbox for dynamic modeling, optimization and
control in systems biology by Balsa Canto et al., 2016. Bioinformatics, 32(21), 3358.
https://doi.org/10.1093/bioinformatics/btw411 [19]

Briefly, the features of AMIGO2 will be described, according to Balsa-Canto et al.

[19, 51]:

1. Models: It supports general nonlinear deterministic dynamic models and black-box

simulators, dealing with ordinary, partial or delay differential equations;

2. Experimental scheme and data: Users can choose multi-experiment schemes

with maximum flexibility and several types of Gaussian experimental noise.

https://doi.org/10.1093/bioinformatics/btw411
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3. Parameter estimation with regularisation: It is possible to estimate parameters

and initial conditions using weighted least squares or (log-)likelihood functions.

Ill-conditioned problems can be handled using the Tikhonov regularisation.

4. Identifiability and best fit post-analysis: The tool includes methods to analyse

model identifiability: local and global parametric sensitivities; the Fisher Information

Matrix for an asymptotic analysis; cost contour plots; a robust Monte-Carlo sampling

approach. The χ2 goodness of fit and Pearsons χ2 , the autocorrelation of residuals

and the Akaike and Bayesian information criteria assess the validity of models.

5. Optimal experimental design: AMIGO2 allows for the design of experiments

oriented to improve identifiability by choosing different design objectives and experi-

mental error descriptions.

6. (Multi-objective) Optimal control: Solves optimisation problems with dynamic

constraints and dynamic optimisation problems (e.g. dFBA). For the case of multi-

objective problems, the weighted sum or multi-objective optimisers can be used to

obtain Pareto fronts with best trade-offs.

7. C based enhancements: C code is generated to enhance computational efficiency.

It is possible to perform C based simulation for all available tasks; C based cost

function and stand-alone C code for parameter estimation.

8. Numerical methods: At the simulation level, this tool incorporates the MATLAB-

based initial value problem solvers and CVODES to cover stiff, non-stiff and sparse

dynamic systems. Also, parametric sensitivities and exact Jacobians can be

calculated. It interfaces to a set of last-generation solvers at the optimisation level

to cover constrained convex and non-convex, multi-objective nonlinear optimisation

problems. Users can code external optimisers in AMIGO2.
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9. Documentation: All information needed and detailed with examples are accessible

on HyperText Markup Language (HTML) documentation from the MATLAB Help

menu.

In this work, AMIGO2 is used as the interface for the development of dynamic

genome-scale models.

2.7 COBRA TOOLBOX

The so-called COBRA is a mechanistic integrative analysis framework that represents

the genotype-phenotype relationship for metabolism and other cellular functions [9].

COBRA toolbox v.3.0 (latest version) is a MATLAB software package that enables

quantitative prediction of cellular and multicellular biochemical networks with constraint-

based modelling. Furthermore, it implements a large set of basic and advanced modelling

methods as well reconstruction, model generation and model-driven analysis methods

(e.g. variational kinetic modelling, adding biological constraints to an FBA, etc) [20].

Hence, COBRA toolbox can be useful for relevant research areas such as biologi-

cal, biomedical and biotechnological, because it is widely used to model, analyse, and

predict different kinds of metabolic phenotypes using GEMs.

2.8 SYSTEMS BIOLOGY OF WINE FERMENTATION

This work focuses on the SB of wine fermentation. As mentioned before, modern wine

production uses selected yeasts as starters to control the fermentation and confer the final

product with the desired characteristics. However, the new challenges of the winemaking

industry, namely: 1) the reduction of wine alcohol levels, 2) the production of distinctive
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wines with improved aroma profiles and 3) the reduction of energy use, call for the benefit

of new starters.

There are numerous strains of S. cerevisiae commercially available, but all of them

generate similar ethanol yields, translating to comparable wine ethanol concentrations.

Also, temperature is one of the most influential factors in the performance of fermentation

and energy consumption. However, temperature reductions have widespread effects

on yeast growth, and survival during fermentation [53]. Thus, commercially available S.

cerevisiae strains are not particularly well suited to tackle industry challenges.

Initial efforts to produce low-ethanol yeasts focused primarily on generating new

S. cerevisiae strains by genetic modification. However, considering the negative public

perception and the restrictive regulations of EU toward genetically modified organisms

(GMOs) in food and beverage production [54], alternatives had to be sought: adaptive

evolution and hybridisation. Indeed, recent research results realised the potential of

cold-tolerant species of the Saccharomyces genus such as S. kudriavzevii or S. uvarum

to improve fermentation performance at low temperatures [7, 55–57], while reducing the

final wine ethanol content.

The selection of new cold-tolerant starters requires a better knowledge of their

metabolism under winemaking conditions. Very different wines can be produced from

identical grapes according to the species or strain of yeast used. Hence, SB research

(omics + bioinformatics + modelling) can lead to selecting new species or strains with

different phenotypes, offering the winemakers with new starters to satisfy consumers’

demands and improve their control over winemaking [58].

A few Saccharomyces non-cerevisiae yeasts have potential application in the

winemaking industry, like S. uvarum, S. kudriavzevii, and Saccharomyces hybrids (S.

cerevisiae x S. uvarum and S. cerevisiae x S. kudriavzevii). Several recent studies

demonstrated potential advantages when fermenting at low temperatures (because of

their cold-tolerant character), such as increased glycerol production, adapted membrane
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composition and enhanced translation efficiency, and the capability to produce valuable

aromatic compounds. Another positive sign is that these species and hybrid strains

can conclude fermentation in musts with 250 g/L sugars with the customer’s desirable

characteristics. In addition, S. cerevisiae and S. kudriavzevii natural hybrids and the

S. kudriavzevii can dominate industrial wine fermentation in cold climates regions and

compete with S. cerevisiae in the earliest part of the fermentation when they are inoc-

ulated 50/50. This dominance only happens when fermentations are conducted at low

temperature [7, 56].

”Wine is not just about the grapes” because there are several features of wine-

making that are dependent on the specific yeast strain choice, such as: 1) fermentation

performance, 2) down-stream wine processing, 3) modulation of alcohol content and 4)

levels of chemical compounds [58]. Therefore, it is crucial to have a holistic approach to

SB of wine fermentation to better design novel wines.

According to Aranda et al. [59], thousands of yeast species are known. Still, only

15 species are considered wine yeasts and some of them are found on the surface of

grapes and in the winery environment due to natural occurrences (e.g. wind, dispersal

insects). These yeasts are part of the microflora of wine production. However, the

microflora is affected by diverse meteorological or chemical factors. During the first

hours of fermentation, yeasts present on the must correspond to those species found

on the surface of grapes. After several hours since the beginning of the fermentation,

the Saccharomyces yeasts dominate the fermentation (e.g. due to their resistance to

alcohol content, the anaerobic conditions and other factors). Inoculation of the must with

selected yeasts is a common practice in the wine fermentation industry, and this will drive

most of the fermentation process, meaning that the yeast strain selection is a crucial step

to satisfy the specifics of the final product and satisfy final costumers [58, 60].

Saccharomyces yeasts cells, the ones that stand during almost all fermentation

process, have a rigid cell wall that allows them to resist the changes in osmotic pressure
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and other internal characteristics that keeps them capable of doing their job. Also, the

must composition is crucial for the features of the final product. The available nitrogen and

carbon sources affect growth dynamics [59], since the winemaking is a batch fermentation

process, generally designed as ”closed system” [61].

In recent years, various research studies focused on gaining a better understand-

ing on how different yeast species perform during wine fermentation at multiple conditions

(e.g. temperature, availability of sugars or assimilable nitrogen, etc).

Some authors explored gene expression during fermentation (e.g. DNA microar-

rays), since the desirable properties that different yeasts produce can be related, in

some way, with the synthesis of specific molecules, proteins and products of enzymatic

reactions [59]. Others are using complementary omics techniques.

More recently, some works address a model-based SB approach to a better

process understanding and design. Modelling yeast metabolism in winemaking conditions

has proved to be particularly challenging because of the grape must complexity and

the dynamic nature of the process [59]. Vargas et al. [12] proposed using a genome-

scale model, which the authors called the idFV715 model, including 1181 metabolic

reactions comprising 590 components. Recently, Henriques et al. [15] proposed various

modifications to the Yeast8 GEM (which consists of 3991 reactions and 2691 metabolites)

to incorporate the lysine pathway and the production of multiple aromas pertinent to wine

production. The model was solved using the dFBA approach and used to decipher the

differences in the redox balance of various Saccharomyces species under winemaking

conditions.

The potential of SB in winemaking is enormous, and further developments are to

come.



3

M E T H O D S

3.1 CONSENSUS GENOME-SCALE MODEL OF S. cerevisiae (YEAST8).

Yeast8, the last consensus genome-scale model of S. cerevisiae, is the result of an

on-going iterative project devoted to building an accurate GEM for the species. Yeast4

incorporated lipid metabolism [62]; Yeast5 increased coverage, especially in sphingolipid

metabolism and compatibility with COBRA toolbox [63]; Yeast6 improved the Yeast5

with additional curation, thus higher predictive accuracy of gene essentiality [64]; Yeast7

suffered a large update with a thorough revision of the representation of fatty acid,

glycerolipid, and glycerophospholipid metabolism [65]. The last consensus, Yeast8, is

unique because it has become a project in which everything is manually curated [17].

Nowadays, Yeast8 can be used to meet many needs of the yeast-related scientific

community, and it is maintained in an open and version-controlled way (follow the project

at GitHub). More importantly, Yeast8 gives the possibility of exploring yeast metabolism

at a multi-scale level, even though it is not a dynamic GEM [17].

In this work, the extension proposed by Henriques et al. of the Yeast8 consensus

was used as a starting point. The update includes 39 metabolites and 50 reactions

needed to explore wine fermentation [15]. A further extension was implemented in this

work to account for the production of erythritol and other traits of S. kudriavzevii CR85 in

wine fermentation.

19

https://github.com/SysBioChalmers/yeast-GEM
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3.2 FLUX BALANCE ANALYSIS

This metabolic modelling approach is constraint-based, and it uses linear optimisation to

determine the steady-state reaction flux distribution in a metabolic network. Hence, it

requires the stoichiometric matrix (S) of the system to perform the steady-state analysis

[47]. S is an m × n matrix, where each row represents one metabolite (m metabolites),

and each column represents one reaction (n reactions). The stoichiometric coefficients,

i.e. the elements of the S matrix, show how reactions and metabolites are related to

the metabolic network. If the stoichiometric coefficient is negative, the metabolite is

consumed, if it is positive, the metabolite is produced, and if the value of this metabolite

is zero, it does not participate in the reaction [10]. The steady-state of the system implies

that: S × v = 0, as it is possible to see in the equation 1. However, the solution of this

system of equations is not unique.

The FBA allows the computation of the flux distribution compatible with some

metabolic goal given a set of flux constraints. The problem is formulated as a linear

programming (LP) problem as follows:

Maximize Z

subject to :

S × v = 0 (1)

αj ≤ νj ≤ β j, j = 1, ... N,

where v is the vector of fluxes, αj and β j are the lower and upper bound of the fluxes,

respectively, who reduce the space of potential solutions for the system (constraints) [36,

47]. The definition of the objective function (Z) is a “critical step” in FBA. Some possibilities

include growth rate or adenosine triphosphate (ATP) production of the organism, among

many others.
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3.3 DYNAMIC FLUX BALANCE ANALYSIS

Mahadevan et al. [11] formulated dFBA in two different ways: the dynamic optimisation-

based approach (DOA) and the static optimisation-based approach (SOA). In the DOA,

optimisation happens during the whole period of interest to obtain time profiles of fluxes

and metabolic levels. The dynamic optimisation problem is transformed into an NLP, using

the so-called control vector parameterisation approach, and solved using an appropriate

NLP solver. On the other hand, in the SOA, the batch time is split into multiple time

intervals, and the FBA problem is solved at each time interval, for a given value of

the external metabolites. In other words, the problem is solved as a succession of LP

problems.

Remark that in most practical cases, the dynamic constraints describing external

metabolites require the estimation of parameters by time-series data-fitting. Therefore,

the DOA or SOA problems will be embedded into a nonlinear parameter estimation

problem. In this scenario, the DOA approach is only doable for a reasonably low number

of metabolites, while SOA (equation 2) scales better. The SOA is generally formulated

as:

Max
v(t)

∑ wivi(t)

subject to : z(t + ∆T) ≥ 0 v(t) ≥ 0

ĉ(z(t))v(t) ≤ 0 ∀t ε [t0, t f ]

|v(t)− v(t− ∆T)| ≤ v̇max∆T ∀t ε [t0, t f ] (2)

z(t + ∆T) = z(t) + Av∆T

X(t + ∆T) = X(t) + µX(t)∆T,

where z is the vector of metabolite concentrations, X is the biomass concentration, v is

the vector of metabolic fluxes per gram (dry weight (DW)) of the biomass, ĉ(z(t))v(t) is a
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vector function representing nonlinear constraints that could happen due to consideration

of kinetic expressions for fluxes, A is the stoichiometric matrix of the metabolic network,

µ is the growth rate, wi are the amounts of the growth precursors required per gram (DW)

of the biomass, t0 and t f are the initial and the final times, respectively, v(t) is the time

profile of the metabolic fluxes and ∆T is the length of the time interval chosen [11].

Details on the implementation of the model considered in this work can be found

in Henriques et al. [15, 16].

3.4 PARAMETER ESTIMATION

The final model consists of 49 ODEs describing the dynamics of external metabolites.

The values assigned to 82 unknown parameters (kinetic constants) will give rise to

different system behaviours. The problem of parameter estimation consists of finding the

unknown model parameters to minimise the distance between the model predictions and

the experimental data.

From the definition it becomes apparent that the following elements are necessary

to formulate the parameter identification problem: the measure of the distance among

model predictions and experimental data, i.e. a cost function, and a suitable global

optimiser to guarantee convergence to the global optimum.

As the cost function, it is selected here the weighted least squares:

Jglsq(θ) =
nd

∑
d=1

qd(yd(θ)− ỹd)
2 (3)

as implemented in the AMIGO2 toolbox [50].
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3.5 QUALITY OF FIT TO THE EXPERIMENTAL DATA: R2

To quantify the quality of fit of the model the R2 value was computed for each of the

external metabolites as follows [66]:

R2 = 1− SSres

SStot
(4)

where 1 represents the best-case scenario, i.e. the values of simulation totally match the

experimental values, which results in SSres is equal to 0 and R2 is equal to 1. SSres is the

sum of squares of residuals and SStot is the total sum of squares. Hence, the R2 value

goes from 0 to 1 and the higher is R2 value, the better, because the model explains more

variability of the dependent variable.

Once R2 values are computed for each of the 49 external metabolites, the overall

quality of the model is measured using the median, ignoring negative values as they

corresponded to states for which signal-to-noise ratio (SNR) is low.

3.6 NUMERICAL METHODS AND TOOLS

Solving the dFBA model requires several numerical methods. First, a method to solve

ODEs (or a initial value problem (IVP) solver). Second, the optimiser to solve the FBA

problem at each time step of the IVP solver, in this case, a linear programming method.

Lastly, the optimiser to solve the parameter estimation problem, a non-linear programming

method.

Numerical methods are selected from MATLAB [52], AMIGO2 [19] and COBRA

[20] toolboxes as already mentioned in the points 6 and 7 of the chapter 2, respectively.

As for the IVP solver, ode113 [67, 68] was used. The ode113 is an IVP solver well

suited for nonstiff ODEs that uses a time discretisation approach to solve the differential
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equations. In particular, it uses a variable-step, variable-order Adams-Bashforth-Moulton

solver of orders 1 to 13. At each time step, the COBRA toolbox is called to compute the

optimal fluxes. Values are computed and reported back so as the dynamics of fluxes can

be recovered from the initial time to final time.

As for the solution of the parameter estimation problem, the Nelder-Mead based

solver fminsearch is used [50, 69]. The parameter estimation problem can be easily

solved in AMIGO2 [19]. The scripts and data are organised and defined using AMIGO2

structures. Figure 2 presents a schematic representation of the numerical methods and

tools used in the present work.

Figure 2: Scheme of combination of data and methods to solve the dFBA problem as used in this
work.

3.6.1 ANALYSIS OF DYNAMIC METABOLIC FLUXES

The most relevant routes are selected using a score, which provides a measure of the

net flux over time during growth and stationary phases for all intracellular fluxes included

in the model. In particular, the integral of each flux is computed and multiplied by the

biomass (mmol · h −1) over time, being its value normalised by the accumulated flux of

consumed hexoses (glucose and fructose):
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Si,g = 100 ·
∫ tg

t0
vi(t)·DW(t)∫ t f

t0
vGlx(t)·DW(t) +

∫ t f
t0

vFr(t)·DW(t)
(5)

Si,s = 100 ·

∫ t f
tg

vi(t)·DW(t)∫ t f
t0

vGlx(t)·DW(t) +
∫ t f

t0
vFr(t)·DW(t)

(6)

where Si,g corresponds to the score of the flux i during growth, Si,s corresponds to the

score during the stationary and decay phases, vi(t) (mmol · h −1 · DW −1) is the flux

under scrutiny, vGlx(t) (mmol · h −1 · DW −1) is the flux of glucose, vFr(t) (mmol · h
−1 · DW −1) is the flux of fructose, and DW is the predicted dry-weight biomass (g).

Results correspond to mmol of produced compound per mmol of consumed hexose x

100 (denoted as mmol/mmolH). Remark that the modelling is divided into two major

phases: growth (from t0 to tg) and stationary (from tg to tF. Fermentation starts at t0 = 0

and ends at tF. Moreover, the multiplication by 100 of the equations 5 and 6 is to facilitate

the data reading, since the original flux values are too low.

Score values indicate the overall impact of each reaction in the net oxidation or

reduction of electron carriers during the given phase of the fermentation.

3.7 FILTERING OF FLUX SCORES

A total of 13318 fluxes scores are being analysed per condition and phase. All scores

are organised in a matrix 13318× 4. The first column collects the scores obtained at

12◦C growth phase. The second, those obtained at 25◦C growth phase. The third, those

obtained at 12◦C stationary phase and the fourth, those obtained at 25◦C stationary
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phase. Fluxes were filtered attending to their values, to ease the comparison between

conditions and phases.

First, scores corresponding to cofactors (e.g. H+, nucleotides, H2O and others)

were removed from the analysis as they are not relevant for the purpose of this work.

The remaining scores in the list were filtered using MATLAB [52] with the following

specification: at least one element in a row is higher than 0.1. The choice of this threshold

(0.1) was ad hoc, since the objective of this parameter is to reduce the very low values, in

order to facilitate the analysis.

The filtered matrix consists of 221 rows, i.e. 221 reactions. The results are

organised in two excel files: the first collects scores corresponding to the growth phase

and the second corresponding to the stationary phase. The reactions of each file are

organised by descending order of the 25◦C scores, and when the values are repeated,

the order is defined by the same method for 12◦C. This organisation of the scores helps

to perform a better comparative analysis between different temperature conditions.

3.8 COMPARATIVE ANALYSIS OF SCORES: LOG2 FOLD CHANGE

The comparative analysis of flux scores in the above described excel files is done by

computing the relative difference between scores at 25◦C and 12◦C. For that purpose

the log2 fold change was computed.

Basically, the log2 fold change of the ratio between scores at different temperatures

(Si,25 and Si,12) were computed. If log2(Si,25/Si,12) = 1, it would mean that the flux score

at 25◦C is twice the value obtained at 12◦C. Similarly, if log2(Si,25/Si,12) = 2, it would

mean that the flux score at 25◦C is four times the value obtained at 12◦C. Conversely, if

values are negative, it would imply that scores obtained at 12◦C are higher. Lastly, if the
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log2 fold change is near to 0, means that there is no or very little differences between

temperatures.

Reactions are considered different in those cases for which abs(log2) > 1, while

the reactions are assumed to behave the same for those cases for which abs(log2) < 1.

This classification gives an insight into which reactions, and consequent pathways, may

behave differently depending on the temperature and require a detailed analysis.



4

R E S U LT S A N D D I S C U S S I O N

4.1 MODEL ADJUSTMENTS

As the starting point, the model proposed by Henriques et al. [15, 16] is used. The model

consisted of a set of ODEs, describing the dynamics of the external metabolites, those

consumed (sugars, nitrogen sources, O2) and produced (alcohols, esters and carboxylic

acids) plus the algebraic constraints representing the pseudo-steady metabolic state at

each time step.

To adapt the dFBA model to the physiology of S. kudriavzevii in cold and standard

temperatures, several modifications had to be introduced in the definition of the dynamics

of external metabolites and the constraints on the internal fluxes. The necessary changes

were introduced iteratively. For every new feature, the model was tested for qualitative

and quantitative improvement.

The final version of the model proposed in the present study includes: 1) the

erythritol pathway, 2) a reformulation of the model to describe acetate and alanine

dynamics and 3) a redefinition of several flux constraints.

28
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4.1.1 PRODUCTION OF ERYTHRITOL

The erythritol was the only metabolite to appear on experimental data that was not

included in the previous version of the model. In order to explain its production, two

reactions were added to complete the erythritol pathway, since the model already had

the D-erythrose 4-phosphate metabolite [70–74].

The reactions added are:

1. ”ery”: D-erythrose 4-phosphate [cytoplasm]⇒ Erythrose [cytoplasm] + Phosphate

[cytoplasm];

2. ”ery2”: Erythrose [cytoplasm] + Erythrose reductase [cytoplasm] + NADPH [cyto-

plasm] + H+ [cytoplasm]⇒ Erythritol [cytoplasm] + NADP+ [cytoplasm].

Also, the following ODE describing the production of erythritol was formulated and

incorporated in the model:

d[Ery]
dt

= xdeathAndAlive×
(

VEry× 122.12
1000

)
(7)

where xdeathAndAlive represents the active cells population during the fermentation

phase and the VEry is the erythritol variable, which will be multiplied by the molar mass of

erythritol metabolite (122.12) and then divided by 1000 (per litre), in order to calculate the

erythritol quantity per g/L. The simulation of erythritol production has to take into account

the amount of active cells, hence the multiplication of these two factors. Moreover, the ID

of erythritol exchange is ”EX erythritol[c]”.

The description of the new erythritol pathway requires the addition of one pa-

rameter to the model (pEry). This parameter is one of the elements present in the
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characterisation of the VEry , which is itself described in the fermentation phases in

which erythritol is present:

VEry = −(vGlx + vF)× pEry; (8)

where vGlx and vF are the variables of glucose and fructose that enters in the cell,

respectively.

4.1.2 REFORMULATION OF THE MODEL

The dynamics of acetate and alanine had to be adjusted at certain fermentation phases,

so two model reformulations were introduced:

1. The extracellular acetate appears to be uptaken to the cytoplasm on the stationary

phase of fermentation. Therefore, the bounds of acetate were reformulated as

follows:

model.lb(rxn) = −ACE× pAceCons× 1000/59.044; (9)

where model.lb is the lower bound of this reaction (rnx), which the ID is ”r 1634”

and represents the acetate exchange. ACE corresponds to acetate. This constraint

is not required at the stationary phase since there is no production of acetate.

The pAceCons is the new parameter that influences the acetate consumption. In

addition, the upper bound (model.ub) is exactly equal to the equation 9;

2. The data shows a peak in the production of alanine in the stationary and decay

phases of fermentation, thus the model equation is reformulated in these phases

as follows:

vAlanine = −pAlaProd× (vGlx + vF) (10)
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where vAlanine is the variable of alanine and pAlaProd is the new parameter that

helps to portray the peak of alanine to the model. The ID of alanine exchange is

”r 1873”.

4.1.3 REFORMULATION OF FLUX CONSTRAINTS

This subsection will expose some reactions that suffered flux constraints changes, in

order to achieve a more correct interpretation of S. kudriavzevii CR85 metabolism.

C L O S E D R E AC T I O N S . The glyoxylate cycle (”r 0661” and ”r 0662”) is blocked in

stationary and decay stages of fermentation, because it is repressed in the presence of

glucose [75] and other primary carbon sources, i.e. fructose and sucrose. Also, 1) the

leucine precursor: 2-isopropylmalate exchange (”r 1572”) and 2) the isoamylol precursor:

3-methylbutanal exchange (”r 1598”) are closed as these metabolites were going to the

extracellular medium without any known metabolic reason and are required to produce

isoamylol in this phase.

O P E N E D R E AC T I O N S . Recent studies showed that cold-tolerant strains may pro-

duce lipids in late stages of the fermentation [7, 76–78]. In order to guarantee that the

model may indeed achieve such solution (if optimal) the corresponding fluxes (e.g. bu-

tyrate (”r 2187 ”), decanoate (”r 1727 ”), pantothenate (”r 1548”), mevalonate (”r 1547 ”)

and others) were opened.
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4.2 EXTRACELLULAR COMPOUNDS

4.2.1 FIT QUALITY

The model was fit to the available experimental data. Time-series data for all external

metabolites, as obtained by the IATA-CSIC at two different fermentation temperatures

(12◦C and 25◦C), were used.

Results revealed that the model described the system dynamics successfully for

both considered temperatures. The best fit to the data achieved for the biomass, amino

acids and other consumed metabolites is shown in Figure 3, and for some alcohols,

carboxylic acids and esters in Figure 4. The fits to the remaining external metabolites

data are presented in Figures 6 and 7.

The R-squared (R2) was determined for all measured variables and reported

in each temperature figure. The vast majority of the coefficients were positive with

few exceptions, typically associated with low SNR and high data dispersion observed

in measured variables like cysteine, methionine, ethyl caprate, ethyl caprylate, ethyl

caproate or hexyl acetate. The median of R2 values are 0.95 for the data at 25◦C and

0.87 for the data obtained at 12◦C.

B I O M A S S A N D P H Y S I O L O G I C A L I N D I C ATO R S . The simulation of biomass and

physiological indicators is, in general, in good agreement with the data (Figure 3.A)).

Starting with colony-forming unit per Litre (CFU/L), the R2 is 0.99 at 12◦C, which corre-

sponds to a perfect alignment with experimental data. The experimental data of CFU/L

was unavailable at 25◦C. The R2 of DW/biomass is controversial, because it is −0.04 at

25◦C and 0.86 at 12◦C. The result obtained at 25◦C can be explained by the presence of

outliers in the data (see filled circles in the Figure 3.A) Biomass (g/L)). The last physio-

logical indicator can provide a better insight of fit quality at both temperatures since the
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R2 of OD600 is 0.97 at 25◦C and 0.98 at 12◦C. So, both simulations have an excellent R2

value.

A M I N O AC I D S . The amino acids are one of the primary sources of yeast assimilable

nitrogen (YAN) compounds, while the ammonium ions are the other primary source

[79]. So, it is crucial to assess the quality of the model in representing the amino acids

measured. Overall, the amino acids have an excellent fit quality, with a median of R2

above 0.9 for both temperatures (as shown in Figure 3.B)). Note that some low R2 values

are obtained for those amino acids present in very low quantities (e.g. methionine,

cysteine, glycine) or for those with very disperse data.

H I G H E R A L C O H O L S . Firstly, the main higher alcohols of this fermentation can

also be distinguished by the following aliphatic alcohols (isobutanol and isoamylol) and

aromatic alcohol (2-phenylethanol) terminologies. Then, the higher alcohols have a

crucial role in the wine’s aroma composition and are precursors of the flavour-intensive

esters [80]. The R2 values of the meaningful higher alcohols, i.e. 2-phenylethanol,

isobutanol and isoamylol, are all higher than 0.9, which is an excellent indicator of fit

quality (see Figure 7).

OT H E R C O M P O U N D S . Most other external compounds (e.g. carboxylic acids, esters

and others alcohols) are present in very low amounts as can be seen in Figure 4. In

those cases in which the amounts are very low and there is a substantial dispersion of

the data, the model results in low R2 values. In other cases, the R2 values are strongly

affected by the presence of outliers.
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4.2.2 DURATION OF THE FERMENTATION PHASES

Fermentation duration, which differs substantially depending on the temperature, was

split into five phases: lag phase, exponential growth, growth under nitrogen limitation,

stationary phase and decay. The duration of the different phases was estimated during

the optimisation, and the FBA problem was formulated differently in the different phases,

i.e. either the objective or the constraints in the fluxes, or both, were changed from phase

to phase (see Figure 5). Also, Figure 5, presents an overview of the general behaviour of

YAN and biomass during the different fermentation phases.

Exponential 
growth

Lag
phase

Growth under 
N limitation Stationary phase Decay phase

max µ max f(protein, ATP)

B
io

m
as

s

B0

YA
N

0

max ATP

Part I: Growth Part II: Stationary Part III: Decay

t0 tS tD tFtL tE

Figure 5: General representation of the fermentation phases, along with the objective function
associated with each phase. Green: Biomass; Blue: YAN.

At 25◦C, the lag phase lasts around 45 hours (tL); the exponential growth lasts 9

hours (from 45 to 54 hours), the growth under nitrogen limitation phase happens between

54 (tE) and 110 hours (tS), the stationary phase goes until 136 hours (tD) and the decay

phase lasts until the end of fermentation (tF > 260 hours). Nitrogen limitation starts at

tE, approximately, when NH4Cl and the assimilable amino acids (YAN compounds) are

lower than the actual yeast needs.

At 12◦C, the dynamics are slower than that observed at 25◦C. Both the lag

phase and the exponential growth phases are longer: 48 hours (tL) and 111 hours (tE),
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respectively. YAN sources are practically consumed at 267 hours (tS), when the stationary

phase starts. Decay phase starts at 390 hours (tD) and lasts until the end of fermentation

(tF > 500 hours).

4.2.3 DIFFERENCES IN THE DYNAMICS OF EXTRACELLULAR METABOLITES AT 25◦C
AND 12◦C

In this subsection, the model simulations for extracellular metabolites at both tempera-

tures are compared.

S U G A R S . Sugars are consumed faster at 25◦C than at 12◦C. This result is in good

agreement with previous studies showing that transport is affected by temperature and

ethanol [15]. The transport of hexoses will vary with time, i.e. as soon as the cells start

producing ethanol. Also, the strain does not use all fructose available in the medium at

both temperatures.

A M I N O AC I D S . The dynamics of uptake of amino acids seems to be independent of

the temperature, exception made to the cases of lysine, alanine and proline (see Figures

3.B) and 7). The increase of lysine at 25◦C, one of the first amino acids to be uptaken

by yeast [81], observed at late stages of the fermentation, may be the result of cell lysis.

Regarding the increase of alanine in the stationary phase at both temperatures, the

intracellular fluxes simulations are presented in subsequent sections, and a plausible

explanation for this behaviour is proposed.

H I G H E R A L C O H O L S A N D OT H E R A R O M A S . Higher alcohols are major volatile

by-products of fermentation and can have both positive and negative impacts on wine’s
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aroma and flavour. Excessive concentrations of higher alcohols can result in a strong,

pungent smell and taste, whereas optimal levels impart fruity characters [82].

The concentration of higher alcohols and other aromas differs at both processing

temperatures. In general, the aroma production is higher at 12◦C. Remarkably, final

isobutanol at 12◦C is more than double the amount that at 25◦C (see isobutanol plot in

Figure 7) and acetate at 25◦C is around twice as much as at 12◦C (see acetate plot in

Figure 6). In addition, the nitrogen depletion could trigger the uptake of acetate, which is

visible at 25◦C (see Figure 6).

4.3 INTRACELLULAR FLUXES

As commented in previous sections, the quality of the model in terms of its capacity

of describing the dynamics of external metabolites is reasonably good. Remarkably

the dFBA approach allows computing the dynamics of the internal metabolite fluxes

compatible with the constraints imposed by the external metabolites plus the internal flux

constraints and the cellular objectives. In the sequel, it is analysed the values obtained

for the internal fluxes and, given the analysis results, it is provided a plausible explanation

to the differences observed in the performance of S. kudriavzevii in wine fermentation at

stationary phase at 12◦C and 25◦C.

4.3.1 CENTRAL CARBON METABOLISM

Traditionally, the central carbon metabolism (CCM) includes the glycolysis, the tricar-

boxylic acid cycle (TCA cycle) and the pentose phosphate pathway (PPP). The CCM

transforms carbon through these pathways to ensure energy and building blocks for cell

growth and viability [83].
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The Figure 6 presents the dynamics of relevant external metabolites, carbon

sources and products, directly implicated in the CCM.

In winemaking conditions, the carbon flux comes from fermentable sugars i.e.

glucose, fructose and sucrose (glucose + fructose). The model recovers quite well

the dynamics of sugars: 1) R2 = 0.99 at 25◦C and R2 = 0.77 at 12◦C, for glucose, 2)

R2 = 0.98 at 25◦C and R2 = 0.45 at 12◦C, for fructose and 3) R2 = 0.99 at 25◦C and

R2 = 0.92 at 12◦C, for sucrose. It should be noted, that the values obtained at 12◦C for

both glucose and fructose can be explained taking into account that data presented an

unexpected behaviour (see Figure 6).

The main product, i.e. ethanol, and other by-products, i.e. glycerol, succinate,

lactate, acetate, 2,3-butanediol, erythritol, are the final destination of the majority the

initial carbon skeletons present in the fermentation medium. The corresponding R2

values are reasonably good since the majority are above 0.8. An exception is made to

the succinate value at 12◦C, for which the SNR is low, and data are quite dispersed.

L I P I D S A S T H E M A I N D E S T I N AT I O N O F C O N S U M E D AC E TAT E O F s. kudriavzevii .

Acetate and succinate exhibit opposite directions in the cell and both have higher rates

at 25◦C. Regarding acetate flux (3.95/0.12 mmol/mmolH at 25◦C and 12◦C, respectively),

the catabolism of this metabolite produces cytosolic acetyl-CoA which plays an important

regulatory role in metabolism [84, 85]. Acetyl-CoA can be used as: 1) a substrate for the

TCA cycle (it does not occur, once the carnitine shuttle is not active), 2) a precursor in the

synthesis of fatty acids and steroids (the simulation suggests the mevalonate pathway as

the main destination of the flux at 25◦C: stoichiometry 2 × 1.25 + 1.25) and 3) a precursor

of other anabolic pathways (production of ethyl acetate: 0.16/0.14 mmol/mmolH at 25◦C

and 12◦C, respectively). The simulation of the extracellular acetate showed differences

between temperatures which may be explained by the use of the mevalonate pathway.
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Figure 6: Central carbon metabolism, representing dynamics of sugars uptake and relevant
products at the stationary phase. Plots of Model versus Data for sugars and relevant
products are presented with their R2 values. Orange = S. kudriavzevii 25◦C; Blue = S.
kudriavzevii 12◦C. Lines (—): simulation; Circles (◦): experimental data; Filled circles
(•): outliers.
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This result would confirm the hypothesis of previous works [77, 78, 86], claiming that

cold-tolerant species might divert acetyl-CoA to synthesise lipids.

U N D E R S TA N D I N G S U C C I N AT E P R O D U C T I O N I N T H E C O L D - TO L E R A N T Y E A S T

S P E C I E S s. kudriavzevii . The succinate production (0.86/0.20 mmol/mmolH at

25◦C and 12◦C, respectively) comes almost entirely from the GABA shunt pathway, an

alternative pathway that leads to NADPH production. Without O2, during growth and

stationary phases, the TCA cycle is truncated at the level of 2-oxoglutarate dehydroge-

nase and mitochondrial fumarase enzymes, which catalyse the irreversible reaction of

2-oxoglutarate to succinyl-CoA and catalyses the reversible reaction between malate

and fumarate, respectively. Under such conditions, succinate can not be formed through

the reductive and/or oxidative branch of the TCA cycle. Besides, malate is required to

complete the oxidative branch of TCA cycle, thus malate is diverted from cytosol via the

2-oxoglutarate/malate shuttle (0.92/0.43 mmol/mmolH at 25◦C and 12◦C, respectively),

basically nullifying the activity of the cytosolic fumarase enzyme. It is also important

to mention that most of the malate flux that comes from the cytosol is destined to the

TCA cycle at 25◦C (0.85 mmol/mmolH), while nearly half of malate flux is obtained at

12◦C (0.23 mmol/mmolH). The succinate production route was somehow unexpected

and could be related to one of the strategies of this model to maintain the intracellular

redox balance of S. kudriavzevii CR85.

I M PAC T O F T H E G A B A S H U N T PAT H WAY I N N A D P H H O M E O S TA S I S . Noticeably,

the succinate production results in an NADPH accumulation (via the GABA shunt path-

way), which appears to be compensated at the redox level with the mevalonate pathway

(consumes NADPH) and/or vice-versa. Remarkably, simulations in this model led to a

lipid biosynthesis-related pathway (mevalonate pathway) without forcing the model to

do so and having the cytosolic acetyl-CoA as a precursor, in good agreement with the

recent hypothesis by Minebois et al. [78] on the possible production of lipids. Briefly, the
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model predicted that the TCA cycle does not produce succinate during the stationary

phase, while the fumarase reductase has no expression in the formation of succinate.

Only GABA shunt pathway produced a significant flux of succinate. The model recovers

the extracellular succinate dynamics at both temperatures, and a considerable increase

in succinate production can only be observed at 25◦C (see Figure 6). Although previous

data [76] showed substantial accumulation of intracellular GABA in cold-tolerant yeast

species, the truth is that the role of the GABA shunt in yeasts is not yet well elucidated.

Therefore, it was used the model to test alternative paths to succinate (see subsection

4.4).

T H E T C A C Y C L E D U R I N G T H E S TAT I O N A RY P H A S E . The TCA cycle also shows

significant differences between temperatures (0.85/0.23 mmol/mmolH at 25◦C and 12◦C,

respectively). These differences originate in the fact that both TCA cycle precur-

sors: pyruvate (2.99/2.63 mmol/mmolH at 25◦C and 12◦C, respectively) and acetyl-CoA

(2.10/1.28 mmol/mmolH at 25◦C and 12◦C, respectively), have their fluxes diverted to

other metabolic pathways (e.g. mevalonate and higher alcohols). Note that the TCA

cycle does not operate as a cycle during this phase, since only a part of the oxidative

branch is active.

T H E T C A C Y C L E O F s. kudriavzevii AT L OW T E M P E R AT U R E . The flux through

the TCA cycle is significantly lower at low temperatures (about 1.92 folds lower at 12◦C

than at 25◦C). This result may be explained by the facts that: 1) part of mitochondrial

pyruvate flux goes to the formation of 2-acetyllactic acid (stoichiometry 2 ×: 0.45/0.77

mmol/mmolH at 25◦C and 12◦C, respectively), 2) part of acetyl-CoA flux goes to the

formation of isopropylmalate (0.38/0.56 mmol/mmolH at 25◦C and 12◦C, respectively)

and 3) another part of acetyl-CoA flux goes to the mevalonate pathway (stoichiome-

try 3 ×: 0.29/0.16 mmol/mmolH at 25◦C and 12◦C, respectively). The fluxes through

these alternative pathways are higher at 12◦C than at 25◦C, thus explaining the low
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flux through the TCA cycle at 12◦C. Besides, the flux towards mevalonate originates

mainly via mitochondrial acetyl-CoA at 12◦C and has different yields and precursors

(compartmentalisation level) at different temperatures. These results further confirm the

importance of the regulatory role of acetyl-CoA in metabolism.

2 - OX O G L U TA R AT E / M A L AT E S H U T T L E . Still in the TCA cycle, some of the malate

that was deviated from the cytosol (via 2-oxoglutarate/malate shuttle) is used to syn-

thesise mitochondrial pyruvate (0.07/0.21 mmol/mmolH at 25◦C and 12◦C, respectively)

by the malic enzyme. The regulatory pattern suggests a specific function in anaerobic

metabolism, i.e. the provision of intramitochondrial NADPH and NADH or pyruvate [87].

However, Boles et al. [87] reported that under anaerobic growth conditions this specific

function could be not essential, at least for S. cerevisiae strains in fermentations under

30◦C.

G LY C E R O L 3- P H O S P H AT E S H U T T L E . The glycerol-3-phosphate shuttle (3.34/1.68

mmol/mmolH at 25◦C and 12◦C, respectively) presents significant differences between

temperatures. This result would be in agreement with the observations by Ansell et al.

[88], who showed that in S. cerevisiae strains cultured at 30◦C in a defined minimal

medium, anoxic conditions stimulate the mitochondrial glycerol 3-phosphate dehydroge-

nase. In contrast, the cytoplasmic glycerol 3-phosphate dehydrogenase was induced by

osmotic stress conditions.

E T H A N O L / AC E TA L D E H Y D E S H U T T L E . The ethanol/acetaldehyde shuttle (0.83/0.58

mmol/mmolH at 25◦C and 12◦C, respectively) does not present significant differences

between temperatures. Under anaerobic conditions, this shuttle can play a key role in

the reoxidation of mitochondrial NADH, according to Bakker et al. [89], and it is visible

that the TCA cycle produces a reasonable net value of NADH.
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C I T R AT E / 2 - OX O G L U TA R AT E S H U T T L E . The citrate/2-oxoglutarate shuttle oper-

ates at both temperatures (0.97/1.08 mmol/mmolH at 25◦C and 12◦C, respectively). In

the present study, this shuttle contribute to decrease of NADPH reducing power in the

cytosol. On the contrary, Castegna et al. [90], that identified and characterised the role of

this shuttle in S. cerevisiae at 30◦C in a rich medium, affirms that the physiological role

of the citrate/2-oxoglutarate carrier protein Yhm2p is to increase the NADPH reducing

power in the cytosol. This difference could be caused by the fermentation conditions.

4.3.2 PENTOSE PHOSPHATE PATHWAY DURING THE STATIONARY PHASE.

Figure 7 presents the details of the PPP and the production of higher alcohols.

The Figure 7 reveals that, at stationary phase, the PPP has two operating

branches: 1) the oxidative branch, producing NADPH and 2) the non-oxidative branch,

producing sugars (e.g. fructose 6-phosphate and glyceraldehyde 3-phosphate) that will

be used as intermediates for the synthesis of nucleic acids and aromatic amino acids

[91]. Overall, the PPP does not present any significant differences between temperatures

(see the top left side of Figure 7), but S. kudriavzevii CR85 simulations force all flux to

go through the oxidative branch (2.03/2.57 mmol/mmolH at 12◦C and 25◦C, respectively)

before entering into the non-oxidative branch. Thus, resulting in increased NADPH

production.

T H E P P P A S P R E C U R S O R O F F E R M E N TAT I O N B Y- P R O D U C T S . The production

of erythritol (0.25/0.69 mmol/mmolH at 25◦C and 12◦C, respectively) and 2-phenylethanol

(0.13/0.14 mmol/mmolH at 25◦C and 12◦C, respectively) require flux through the PPP

(Figure 7).



4.3. Intracellular fluxes 45

Extracellular medium

Cytoplasm

Fructose

F6P

E4P

Shikimate
Chorismate

PAL

Glucose 

Rbl5P

X5P

SH7P

G6P

R5P

PEA

DHA7P

EPSP

IPM
Valine

Valine

Isobutanol

Isobutanal

Acetyl-CoA

IPM

3-isopropylmalate

3-metilbutanal

3-metilbutanal

Isoamyl
 alcohol

Ketoleucine

Mitochondrion

PEP

Pyruvate

Pyruvate

Glycolysis Produces NADPH
Consumes NADPH

Consumes NADH
Produces NADH

Shuttle or carrier
Stoichiometry 2x

2-AcetyllacticA

3-methyl-
2-oxobutanoate

 Sk 25 oC
 Sk 12 oC

 

 0.77 0.45

 0.56 0.39

0.56 0.21

0.00 0.180.00 0.18

 0.56 0.39

 1.28 2.10

 0.21 0.07
Erythrose

Erythritol

Isoamyl
 alcohol

0.00 0.18 0.77 0.45

 0.56 0.38

0.56 0.38

 0.21 0.07

 0.21 0.07
 0.14 0.13

 0.14 0.09

PAL
PEA

0.00 0.04Keto-phenylpyruvate

 0.14 0.12

Alanine

 0.12 0.16

 0.14 0.08

 0.69 0.25

 0.69 0.25

L-phenylalanine

 0.13 0.07

 0.14 0.08

 0.14 0.08

188.6 189.5

 2.57 2.03

 57.1 39.9  42.9 60.1

 40.3 58.0

 0.30 0.43

 0.30 0.43  1.44 1.23
 1.14 0.80

 1.14 0.80
 1.14 0.80

 1.14 0.80

 0.14 0.13

 0.14 0.13

 0.14 0.13

 0.14 0.13

 2.63 2.99

 0.56 0.38

 0.56 0.38

Erythritol (g/L)

Time (h)
Alanine (g/L)

Time (h)

Isobutanol (g/L)

Time (h)

Isoamyl alcohol (g/L)

Time (h)

 0.21 0.08

Time (h)

PEA (g/L)

0 100 200 3000

0.1

0.2

0 100 200 3000

0.2

0.4

0 100 200 3000

0.1

0.2

0 100 200 3000

0.1

0.2

0 100 200 3000

0.05

0.1

Model vs data and predicted fluxes

R2 = 0.64; 0.78

< 0.1 

Flux score (mmol/mmolH)

< 0.3 

Line thickness = flux score
Except for:
Thick blue lines > 50  

R2 = 0.95; 0.93 R2 = 0.96; 0.95

R2 = 0.98; 0.90 R2 = 0.96; 0.95

Figure 7: Production of higher alcohols, representing the dynamics of relevant products at the
stationary phase. Plots of Model versus Data for higher alcohols and relevant products
are presented with their R2 values. Orange = S. kudriavzevii 25◦C; Blue = S. kudriavzevii
12◦C. Lines (—): simulation; Circles (◦): experimental data; Filled circles (•): outliers.



4.3. Intracellular fluxes 46

T H E I M PAC T O F E RY T H R I TO L P R O D U C T I O N I N T H E R E D OX B A L A N C E A N D P H Y S -

I O L O G I C A L R O L E . One unanticipated result was the production of erythritol in a

significant amount at 12◦C. In his review on the biotechnological production of erythritol,

Moon et al. [72] mention the possibility of yeasts to produce erythritol. However, it had not

been often found in wine production. From some possible roles, in this case erythritol may

play only a role in the maintenance of redox balance (its production consumes NADPH),

because the erythritol is detected in the extracellular medium. In this case, there is no

evidences that it acts as osmolyte and/or storage compound. A possible explanation for

the significant differences between temperatures is the fermentation conditions that at a

lower temperature promotes more the production of erythritol.

4.3.3 HIGHER ALCOHOLS

The synthesis of aliphatic and aromatic alcohols is significantly influenced by the yeast

strain, fermentation conditions, grape must composition, and amino acid composition [82,

92]. Their production occurs from the beginning of the growth phase to the end of the

stationary phase, as shown in Figures 4.B) and 7.

E X T R AC E L L U L A R AC C U M U L AT I O N O F A L A N I N E A N D 2- P H E N Y L E T H A N O L . In-

terestingly, keto-phenylpyruvate flux (2-phenylethanol precursor) appears to participate in

the biosynthesis of phenylalanine (0.07/0.13 mmol/mmolH at 25◦C and 12◦C, respectively)

before contributing to the production of 2-phenylethanol. The phenylalanine degradation

again produces keto-phenylpyruvate and alanine (0.08/0.14 mmol/mmolH at 25◦C and

12◦C, respectively). This process alongside with the tyrosine repeatable cycle (tyro-

sine degradation and biosynthesis without redox balance consequences) are the only

sources of alanine (in total: 0.35/0.27 mmol/mmolH at 25◦C and 12◦C, respectively) at

this fermentation phase. Part of that flux will be used to supply nitrogen to the cell, and



4.3. Intracellular fluxes 47

another part is exported to the extracellular medium (0.16/0.12 mmol/mmolH at 25◦C and

12◦C, respectively). Based on previous studies with Escherichia coli, the synthesis of

alanine at stationary phase could be related to amino acid starvation or available pyruvate

concentration [93]. A possible explanation for the accumulation of extracellular alanine is

the fact that alanine will not be consumed until other amino acids are completely depleted

[81] and then, it is sent to the extracellular medium, because its production exceeds

the required amount and only happens at a late stage of the stationary phase, in which

it can begin to echo cellular death (see Alanine plot in Figure 7). Overall, this event

could be related to nitrogen management strategy and do not cause any redox balance

disturbance.

F L U X E S A S S O C I AT E D W I T H T H E P R O D U C T I O N O F I S O A M Y L O L A N D I S O B U TA N O L .

In mitochondria, the simulations indicate that the 2-acetyllactic acid and isopropylmalate

(flux deviations of TCA cycle above-mentioned) are the metabolites that will originate

the production of isoamylol and isobutanol. Firstly, the catabolism of 2-acetyllactic acid

lead the formation of 3-methyl-2-oxobutanoate (0.45/0.77 mmol/mmolH at 25◦C and 12◦C,

respectively) and NADPH. Part of this flux will be used (0.38/0.56 mmol/mmolH at 25◦C

and 12◦C, respectively) together with acetyl-CoA to form isopropylmalate. From here, 3-

methyl-2-oxobutanoate and isopropylmalate will subsequently produce final compounds,

i.e. isobutanol and isoamylol, respectively (see Figure 7). Lastly, the production of

isobutanol (0.07/0.21 mmol/mmolH at 25◦C and 12◦C, respectively) is lower than the

production of isoamylol (0.38/0.56 mmol/mmolH at 25◦C and 12◦C, respectively) and

presents significant differences between temperatures.

H I G H E R A L C O H O L S I M PAC T O N R E D OX B A L A N C E D U R I N G T H E S TAT I O N A RY

P H A S E . The production of higher alcohols consume: 1) cytosolic NADPH at both

temperatures and 2) mitochondrial and cytosolic NADH only at 25◦C. These facts support

the idea that higher alcohols production contribute substantially to the metabolic redox
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balance. From the production of isobutanol and isoamylol, mitochondrial NADPH is

produced (upstream of the pathways), while the production of 2-phenylethanol results in

the production of cytosolic NADPH (2 ×), oxidative branch of PPP. The NADH consump-

tion by these compounds at 25◦C could be a compensation for the alternative pathway

of succinate production, since the cytosolic reductive pathway of succinate production

would consume NADH and the fluxes that produce NADH are greater at 25◦C, overall.

There are other higher alcohols present in the intracellular fluxes simulation of fermen-

tation, but do not present significant impact, i.e. methionol (0.002/0.002 mmol/mmolH at

25◦C and 12◦C, respectively) and tyrosol (0.003/0.003 mmol/mmolH at 25◦C and 12◦C,

respectively), thus not shown in the Figure 7.

P R O D U C T I O N O F H I G H E R A L C O H O L S . Aliphatic and aromatic alcohols could

be produced during the fermentation by two pathways: 1) Ehrlich pathway or the 2)

Genevois pathway. The Ehrlich pathway is a catabolic pathway that synthesises by-

products from exogenous amino acids: branched-chain amino acids (e.g. leucine and

valine), aromatic amino acids (e.g. phenylalanine) and sulfur-containing amino acids (e.g.

methionine). The Genevois pathway is an anabolic pathway, also known as the de novo

biosynthetic pathway. The CCM provides the main carbon source for de novo synthesis

of proteinogenic amino acids [7, 81, 94, 95]. The model predicts, that in the studies

wine fermentations, higher alcohols was synthesised de novo since the flux routes that

lead to these metabolites come from CCM, as follows in the Figures 6 and 7. This result

agrees with previous results from Crépin et al. [96]. In their study, the authors used

stable isotope tracer experiments to monitor the fate of carbon skeleton from exogenous

amino acids, concluding the importance of CCM in producing higher alcohols, especially

when this is the only way to synthesise them during the stationary phase.

OT H E R C O N S I D E R AT I O N S . Overall, the production of higher alcohols is higher at

12◦C (based on intracellular fluxes values and extracellular plots of Figure 7). Also, the
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differences observed in the extracellular ethyl esters and acetate (see the Figures 4.C)

and 6) lead to the conclusion that different temperatures result in different aroma profiles.

Noteworthy, cells follow the same routes to produce these compounds at different

temperatures. Although, cells use some reactions (2-phenylethanol and isoamylol alcohol

shuttles) to achieve redox balance only at 25◦C. Isoamylol is the most produced higher

alcohol and isobutanol is the only one with significant differences between temperatures,

about 1.45 folds higher at 12◦C than at 25◦C.

4.4 CASE STUDY: BLOCK OF GABA SHUNT PATHWAY

The knowledge of S. kudriavzevii CR85 metabolism as an alternative yeast for winemak-

ing is still limited. The model predicted, quite surprisingly, that the GABA shunt pathway

was the major contributor to succinate production. Still, it is known that succinate can

also be originated through other pathways under anaerobic conditions (review Camarasa

et al.’s article [97]).

It was tested the possibility that the GABA shunt is indeed not being used by blocking

the pathway, and it was analysed the modifications observed in the metabolism.

To block GABA shunt pathway, the upper and lower bounds for the flux corre-

sponding to the glutamate decarboxylase gene (GAD1) at stationary phase were set

to zero. Again, the dFBA model was solved, the flux scores computed, and the data

analysed. Results achieved in this scenario were compared to those obtained when the

GABA shunt pathway was indeed active.

I M PAC T O N S U C C I N AT E P R O D U C T I O N . The succinate production (0.86/0.20 mmol/m-

molH at 25◦C and 12◦C, respectively) still occurs in the cytoplasm, having malate and

fumarate as precursors (reductive pathway) and the same flux score, i.e. GAD1 in-
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activation does not affect succinate formation. This pathway remains with significant

differences (about 2.12 folds higher at 25◦C than at 12◦C) and consumes NADH. The

first difference between models is that instead of producing NADPH, NADH is consumed.

I M PAC T O N M E VA L O N AT E P R O D U C T I O N . The mevalonate pathway (2.15/0.16

mmol/mmolH at 25◦C and 12◦C, respectively) increases its flux at 25◦C, while at 12◦C

keeps the same flux. As a consequence, the differences between temperatures increase

with respect to the previous scenario (about 3.71 folds higher at 25◦C than at 12◦C).

Noteworthy, the mevalonate flux from mitochondria is responsible for this increase of flux

at 25◦C, because it increased from 0.29 (with GABA shunt pathway) to 0.90 (GABA shunt

pathway blocked).

I M PAC T O N T H E T C A C Y C L E . In mitochondria, the TCA cycle (0/0.03 mmol/mmolH

at 25◦C and 12◦C, respectively) only works at 12◦C, and the flux score is minimal.

G LY C E R O L 3- P H O S P H AT E S H U T T L E . Less flux is obtained through the glycerol

3-phosphate shuttle (2.34/1.21 mmol/mmolH at 25◦C and 12◦C, respectively), since the

TCA cycle does not have too much activity.

E T H A N O L / AC E TA L D E H Y D E S H U T T L E . The ethanol/acetaldehyde shuttle (1.74/0.46

mmol/mmolH at 25◦C and 12◦C, respectively) presents significant differences (about 1.91

folds higher at 25◦C than at 12◦C). The block of GABA shunt pathway increased the flux

at 25◦C, while decreased the flux at 12◦C, generating significant differences between

temperature.

I M PAC T O N H I G H E R A L C O H O L P R O D U C T I O N . The higher alcohols fluxes scores

did not suffer changes with the block of GABA shunt pathway.
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I M PAC T O N T H E P E N TO S E P H O S P H AT E PAT H WAY. The oxidative branch of the

PPP (3.38/3.16 mmol/mmolH at 25◦C and 12◦C, respectively) has higher flux at both

temperatures, but still with no significant differences. Interestingly, with by blocking the

GABA flux, the flux through the oxidative branch of PPP is higher at 25◦C, since there is

no GABA shunt pathway producing the NADPH required to maintain redox balance.

I M PAC T O N T H E 2- P H E N Y L E T H A N O L A N D E RY T H R I TO L . The production of 2-

phenylethanol and erythritol did not suffer changes with the block of GABA shunt pathway,

despite the changes observed in the oxidative branch of the PPP.

The results obtained by blocking the GABA shunt are in good agreement with

previous studies by Camarasa et al. [97] that would suggest the reductive pathway of

succinate as an alternative to the TCA to guarantee cellular viability. However, this route

is sub-optimal because it is not the shortest or the most efficient solution, which keeps

the GABA shunt pathway as a credible alternative. Besides, Bach et al. [98] reported that

when grape must is rich in carbon sources, nitrogen compounds and other compounds

of interest that affect growth dynamics, the GABA shunt pathway can play an important

role as a source of succinate. Not to mention that this pathway is practically present in all

living beings [99].

This work provided two plausible explanations for the production of succinate by

this strain under these conditions. Both possibilities are compatible with the dynamics of

the external metabolites. At this point, additional experimental data would be required to

fully determine which is indeed the option cells use.
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4.5 PECULIAR PATHWAYS/STRATEGIES OF S. kudriavzevii CR85

The role of this section, and respective subsections, is to summarize, consolidate and

elucidate ideas of relevant pathways and strategies that occur in this model as traits in

metabolism of S. kudriavzevii CR85 for these two temperatures.

4.5.1 MEVALONATE PATHWAY.

The mevalonate pathway generates isopentenyl pyrophosphate and dimethylallyl py-

rophosphate that could be used to assemble isoprenoids. Remarkably, isoprenoids are

crucial for yeast survival, since their products (e.g. sterols, dolichols, ubiquinones) influ-

ence several cellular processes essential for maintaining membrane integrity and viability

of eukaryotic cells [100–103]. The mevalonate pathway relates to lipid biosynthesis, and

the mevalonate production consumes NADPH (2×), thus having a relevant impact on

redox balance.

In this model, the mevalonate pathway ends with the formation of mevalonate and

its export to the extracellular medium (the overall production of mevalonate comes from:

1) cytoplasm production, stoichiometry 3 ×: 1.25/0.002 mmol/mmolH at 25◦C and 12◦C,

respectively and 2) mitochondria production, stoichiometry 3 ×: 0.29/0.16 mmol/mmolH

at 25◦C and 12◦C, respectively).

Note that, mevalonate could be directed to the synthesis of lipids [86, 100].

However, it is not possible to attain such a solution without imposing specific constraints

(or a cellular objective). Measurements on the production of lipids would be necessary to

redirect the model solution towards the formation of lipids.
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4.5.2 GABA SHUNT PATHWAY.

Basically, all living beings have the GABA shunt pathway. In yeast, this cytosolic located

pathway synthesises succinate via 2-oxoglutarate, bypassing two reactions of the TCA

cycle. The knowledge of its biological function appears to be limited, but Coleman et al.

suggest that GABA shunt pathway is necessary for normal oxidative stress tolerance

in S. cerevisiae because the GABA shunt leads to NADPH production that is critical for

maintaining normal redox balance [104].

In the simulations, the GABA shunt pathway (0.86/0.20 mmol/mmolH at 25◦C and

12◦C, respectively) appearance could be related with the fact that this cold-tolerant strain

is in an environmental stress situation where it is necessary to produce the NADPH

required for the production of metabolites, i.e. erythritol and mevalonate, to protect

the integrity of the cell. So, it makes sense that the succinate production happens this

way. This pathway shows significant differences between temperatures (about 2.12 folds

higher at 25◦C than at 12◦C).

4.5.3 ERYTHRITOL PATHWAY.

Erythritol, four-carbon sugar alcohol (polyol), is a naturally occurring substance widely

distributed in nature. Overall, erythritol could be acting for the strain metabolism as: 1)

osmolyte, 2) maintenance of redox balance and 3) storage compound, and it frequently

occurs in various fruits and fermented foods (e.g. watermelon, grape, wine and beer)

[70–72, 74]. Liu et al. [71] reports that erythritol production in yeast species can be

triggered by excess carbon source and nitrogen starvation, and these two conditions are

present in the stationary phase of the S. kudriavzevii CR85 at both temperatures. In this

case, the erythritol formation has a role in maintaining redox balance (consumption of

NADPH).
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In the S. kudriavzevii CR85 strain, the erythritol pathway (0.25/0.69 mmol/mmolH at

25◦C and 12◦C, respectively) presents significant differences (about 1.47 folds higher at

12◦C than at 25◦C) and it was already detected in experimental data and mentioned in the

section devoted to extracellular metabolites. The model shows that erythritol contributes

to the redox balance, consuming NADPH. The conditions to produce erythritol start late

in the fermentation at 12◦C (see erythritol plot in Figure 7), and the fermentation lasts

longer than at 25◦C, as well as the conditions to its formation. This could explain why the

production of erythritol is higher at 12◦C than at 25◦C.

4.5.4 REDOX BALANCE.

Through the analysis of the redox couples NADH/NAD+ and NADPH/NADP+ it is possible

to have a perception of the redox balance strategies of the S. kudriavzevii CR85 strain

metabolism. The NADH production is more related to catabolic processes, while NADPH

is generated more frequently in anabolic pathways. However, the excess of these

cofactors needs to be neutralised to achieve redox balance again and avoid reductive

stress. Hence, the S. kudriavzevii CR85 needs to yield by-products that will consume

these cofactors, but without causing oxidative stress (excessive consuming of NADH

and NADPH) to the organism [105–107], because alcoholic fermentation is redox neutral

under anaerobic conditions [78].

Briefly, the redox balance during the stationary phase of S. kudriavzevii CR85

is achieved with multiple pathways/strategies. Moreover, these pathways/strategies

are basically the same at both temperatures of this study, despite some of them show

significant differences between them, which will be explored in the next section. Therefore,

by analysing S. kudriavzevii CR85 metabolism through the figures, it is possible to

understand the redox balance strategies.
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The NADH production is observed during: 1) glycolysis, 2) TCA cycle and 3)

isoamyl alcohol pathway, while the NADH consumption occurs: 1) ethanol formation

(main product of fermentation), 2) by-products production, i.e. glycerol and 2,3-butanediol,

3) mitochondrial shuttles, i.e. glycerol-3-phosphate shuttle and acetaldehyde/ethanol

shuttle, 4) cytosolic malate synthesis and 5) formation of higher alcohols.

Evaluating the couple NADH/NAD+, glycerol has relevant importance as redox

valve, because its formation leads to the second major reoxidation of NADH with more

impact on this fermentation phase (via glycerol biosynthesis and mitochondrial glycerol-

3-phosphate shuttle). Moreover, other less common fermentative by-products, i.e. 2,3-

butanediol [77, 97], and higher alcohols production has a little contribution to redox

balance, although aliphatic and aromatic alcohols production do not consume NADH at

12◦C.

Regarding the NADPH, its production is provided by: 1) the oxidative branch of

PPP (2 ×) and 2) the GABA shunt pathway, while the NADPH is required to: 1) the

mevalonate pathway (2 ×), 2) the erythritol pathway, 3) the shikimate pathway and 4) the

production of higher alcohols.

Analysing the couple NADPH/NADP+, the oxidative branch of PPP is the main

supplier of NADPH required by the pathways mentioned above. The production of

aliphatic and aromatic alcohols consumes NADPH at both temperatures, reiterating that

it only consumes NADPH at 12◦C.

It should be noted that Minebois et al. [77, 78] hypothesised that the consumption

of acetate in S. kudriavzevii CR85 could lead to the synthesis of lipids. The model

would agree with this, since the mevalonate pathway may indeed lead to the subsequent

synthesis of lipids.

Remember, some authors assume that cold-tolerant strains require lipids biosyn-

thesis to maintain the cell integrity due to the environmental stress of the medium (an

increase of ethanol during fermentation) [7, 76–78]. Presumably, the GABA shunt
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pathway is a redox compensation pathway that produces NADPH to maintain redox

balance, since the mevalonate pathway appears as a possibility for lipid biosynthesis and

consumes 2 × NADPH.

4.6 25◦C versus 12◦C

Once the metabolism of S. kudriavzevii CR85 has been described for alternative tem-

perature conditions during wine fermentation, it is important to understand if there are

intraspecific metabolic differences between temperatures, i.e. which metabolic pathways

differ significantly between temperatures and possible explanations. For this purpose, a

comparative analysis between the different temperature conditions will be carried out,

based on what has been analysed. The analysis focused on the metabolites entering

and leaving the cytoplasm.

U P TA K E O F AC E TAT E A N D M E VA L O N AT E PAT H WAY. The acetate flux uptake to

the cytoplasm is significantly higher at 25◦C and goes almost all to the mevalonate

pathway at this temperature. The remaining flux of mevalonate is completed with flux

from mitochondria without significant differences. Hence, the mevalonate flux presented

a significantly higher flux score at 25◦C. Following the transcriptomic and metabolic

analyses of Beltran et al. on trying to understand the global responses of winemaking

fermentations with similar temperatures, i.e. 25◦C and 13◦C, the stress responses are

induced early during fermentation at low temperatures, while these adjustments are

more pronounced with stationary phase at 25◦C [108]. Still, this strain ability could be a

survival key factor, since it could prepare the organisms to better resist environmental

stresses during later fermentation phases. Similarly to the Beltran et al.’s work [108],

the OD600 and Biomass curves (see Figure 3.A)) remain high and stable during the

stationary phase at 12◦C than at 25◦C, where a gradual decrease is observed.
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T H E G A B A S H U N T PAT H WAY. The GABA shunt pathway produces succinate with a

higher flux at 25◦C. A reasonable reason for such difference is the demand of NADPH by

the mevalonate pathway (consumes 2 × NADPH) and has a higher flux at 25◦C.

T H E E RY T H R I TO L P R O D U C T I O N . The erythritol production could be a characteris-

tic trait of this strain during wine fermentation, i.e. it appears not to be directly dependent

of any other pathway and results of the fermentation conditions above-mentioned: 1) ex-

cess carbon source and 2) nitrogen starvation [71]. The possible explanation of erythritol

has a higher flux at 12◦C is the fermentation duration, because the stationary phase at

12◦C lasts almost three times more than at 25◦C. Hence, the conditions for the erythritol

production extend further at 12◦C. Incidentally, the flux score is almost three times higher

at 12◦C than at 25◦C.

T H E F L U X E S I N S I D E T H E M I TO C H O N D R I O N . In the mitochondrion, there are

significant differences between temperatures in TCA cycle, i.e. the flux is considerably

higher at 25◦C. This difference results from the cell diverting the flux to other pathways

(e.g. mevalonate and higher alcohols). Concerning the shuttles, the glycerol-3-phosphate

shuttle has higher flux at 25◦C, probably because NADH production is also higher in

TCA cycle, as already verified. Another plausible reason is that S. kudriavzevii CR85 at

25◦C has difficulties in reoxidizing cytoplasm NADH, and it uses the shuttle since the

stress responses are lately expressed [108]. The 2-oxoglutarate/malate shuttle significant

differences are triggered by the necessity already covered of GABA shunt pathway so

that the flux score will be higher at 25oC. This same explanation is applied to cytosolic

malate. Since it is at this point where more reoxidation of NADH is avoided, and malate

is diverted to mitochondria. The mitochondrial malate will produce more mitochondrial

pyruvate with significant differences between temperatures, thus maintaining the TCA

cycle.
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T H E H I G H E R A L C O H O L S P R O D U C T I O N . Overall, the higher alcohols production

has a better performance at 12◦C, but only isobutanol presents significant differences

between temperatures. This strain trait may have several reasons, it could be related to

redox balance or the strain might have the natural ability to produce greater amounts of

aliphatic and aromatic alcohols under low temperatures, which could be the case with the

S. kudriavzevii CR85 and other cold-tolerant strains [92, 109]. This natural ability could

be also a consequence of higher viability of the cells during lower temperatures [108],

therefore increasing the production of higher alcohols during the stationary phase. Lastly,

the higher alcohols production consumes cytosol and mitochondrial NADH only at 25◦C.

Briefly, the S. kudriavzevii CR85 metabolism has different behaviours at different

temperatures since there are a set of reactions where significant differences between

temperatures are identifiable. Basically, the pathways are the same at both temperatures.

Hence, the Table 3 provides a widespread approach of the pathways where the strain

makes the adjustments at this fermentation phase.

Table 3: The reaction(s) and respective pathways responsible for the main differences between
temperatures with the Log2 Fold Change and temperature with the highest flux score
are displayed at stationary phase. The reactions cofactors are ommited for a better
visualization. Legend: [e] = extracellular medium; [c] = cytoplasm; [m] = mitochon-
dria; ⇒ = reaction direction; [...] = pathway shorcut. Abbreviations: HMG-CoA =
3-hydroxy-3-methylglutaryl-CoA; E4P = Erythrose 4-phosphate; DHAP = Dihydroxyace-
tone phosphate; GP3 = Glycerol 3-phosphate.

Reaction(s) Pathway(s) Log2 Fold Change Higher at:
Acetate [c]⇒ Acetyl-CoA [c] Acetate utilization 4.72 25◦C

HMG-CoA [c]⇒ Mevalonate [c]⇒ [e] Mevalonate pathway 3.23 25◦C
GABA [c]⇒ Glutamate [c]⇒ Succinate [c]⇒ [e] GABA shunt pathway 2.12 25◦C

E4P [c]⇒ Erythrose [c]⇒ Erythritol [c]⇒ [e] Erythritol pathway 1.47 12◦C
Isobutanal [c]⇒ Isobutanol [c]⇒ [e] Valine degradation 1.66 12◦C
Acetyl-CoA [m]⇒ Citrate [m]⇒ [...] TCA cycle 1.92 25◦C

DHAP [m]⇒ G3P [m]⇒ G3P [c] Glycerol 3-phosphate shuttle 1.68 25◦C
Oxaloacetate [c]⇒ Malate [c]⇒ Malate [m] 2-oxoglutarate/Malate shuttle 1.08 25◦C

Malate [m]⇒ Pyruvate [m] TCA cycle 1.61 12◦C
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4.7 S. kudriavzevii CR85 versus OTHER Saccharomyces STRAINS

The comparison of the metabolism of S. kudriavzevii CR85 with that of other Saccha-

romyces strains can give a better insight of the fermentative potential of this yeast under

alternative temperatures. Here, the comparison is performed using recent results (un-

published) obtained by Henriques et al. for three yeasts strains (S. cerevisiae T73 (T73),

S. uvarum BMV58 (SuB) and S. uvarum CECT12600 (SuC)) at 25◦C.

Noteworthy, this brief comparative analysis will be approached in two main topics:

1) metabolic pathways differences and 2) analysis of metabolite fluxes, and limited to the

stationary phase, since it is the main focus of the work.

A set of differences is observed when comparing the metabolic pathways of S.

kudriavzevii CR85 simulations vs other Saccharomyces yeasts. The Table 4 presents

some relevant reactions, related to the CCM and the production of higher alcohols, which

being present in the fermentations performed with one strain were not present in the

others.

Table 4: Metabolic pathways differences of five different fermentative profiles at stationary phase.
The pathways are related with CCM and higher alcohols production. X: non active; X:
active. Abbreviations: Sk = S. kudriavzevii.

Pathway(s) Reactions’s ID T73 SuB SuC Sk 25◦C Sk 12◦C
Mevalonate pathway r 0559 X X X X X

Carnitine shuttle r 0254 X X X X X
Succinate (GABA shunt pathway) r 0469 X X X X X

Succinate (cytosolic reductive pathway) r 1000 X X X X X
Erythritol pathway ery X X X X X

Alanine transport (to extracellular medium) r 1183 X X X X X

PPP (all flux through oxidative branch) r 1050/
r 1040 X X X X X

2-phenylethanol (shuttle) r 0170 X X X X X
Isoamylol alcohol (shuttle) r 0180 X X X X X



4.7. S. kudriavzevii CR85 versus other Saccharomyces strains 60

T H E P R O D U C T I O N O F L I P I D S . Both the cold-tolerant species S. uvarum and S.

kudriavzevii produced mevalonate (lipid related pathway), while S. cerevisiae T73 does

not divert any flux towards mevalonate at stationary phase.

T H E S U C C I N AT E PAT H WAY S . As mentioned before, there are two different pathways

to succinate formation: 1) via GABA shunt pathway and 2) via cytosolic reductive pathway.

The results indicate that all yeasts produce succinate via GABA shunt pathway, while

only S. uvarum strains use both pathways to produce succinate.

s. kudriavzevii C R 85 T R A I T S . The S. kudriavzevii CR85 presents a clearly

differential behaviour for some particular pathways, comparing with the other strains. The

production of erythritol is not a surprise, since it was necessary to include the reactions

to this model for this yeast. The alanine increase of extracellular medium also required

a reformulation to the model. Lastly, the PPP of S. kudriavzevii CR85 forces all flux

through the oxidative branch before entering into the non-oxidative branch, since the

two reactions (regulated by transketolases enzymes) have reverse directions. The other

yeasts have, at least, one of the reactions with the normal direction to non-oxidative

branch, by-passing the oxidative branch.

T H E S H U T T L E S D I F F E R E N C E S . From these five different fermentative profiles, S.

uvarum strains are the only yeasts having flux through the carnitine shuttle and the S.

kudriavzevii CR85 at 12◦C is the only fermentative profile that does not have flux through

the shuttle of 2-phenylethanol and isoamylol alcohol.

In the sequel, the fermentation profiles are further analysed to explore quantitative

differences. The Table 5 show the fluxes corresponding to relevant reactions which are

related to CCM and the production of higher alcohols.
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Table 5: Comparative analysis of five different fermentative profiles at stationary phase. The reac-
tions are related with CCM and higher alcohols production. Legend: [e] = extracellular
medium; [c] = cytoplasm; [m] = mitochondria;⇒ = reaction direction. Abbreviations:
Sk = S. kudriavzevii.

Reactions T73 SuB SuC Sk 25◦C Sk 12◦C
Ethanol [c]⇒ [e] 187.33 179.14 184.24 183.2 183
Glycerol [c]⇒ [e] 7.09 7.84 7.81 8.87 8.88

Succinate [c]⇒ [e] 0.43 6.08 1.66 0.86 0.2
2,3-butanediol [c]⇒ [e] 0.17 0.54 0.85 1 1.04
Ethyl acetate [c]⇒ [e] 0.15 0.17 0.19 0.16 0.14

Acetate [e]⇒ [c] 0 0.47 0.71 3.95 0.12
Mevalonate [c]⇒ [e] 0 0.07 0.04 1.54 0.16
Pyruvate [c]⇒ [m] 3.22 3.64 2.34 2.99 2.63

Acetyl-CoA [m]⇒ TCA cycle 0.49 2.07 1.40 0.85 0.23
Acetyl-CoA [m]⇒ Isopropylmalate [m] 0.87 0.5 0.41 0.38 0.56
Pyruvate [m]⇒ 2-acetyllactic acid [m] 0.97 0.59 0.5 0.45 0.77

Isoamylol alcohol [c]⇒ [e] 0.74 0.48 0.39 0.38 0.56
Isobutanol [c]⇒ [e] 0.1 0.08 0.08 0.07 0.21

2-phenylethanol [c]⇒ [e] 0.16 0.66 0.38 0.13 0.14

P R O D U C T I O N O F M A I N P R O D U C T S . Overall, the T73 produces more ethanol and

less others main by-products than the others yeasts. Other remarkable points: 1) the S.

kudriavzevii CR85 produces more glycerol and 2,3-butanediol at both temperatures, 2)

succinate is highly produced by SuB (6.08 mmol/mmolH) and SuC (1.66 mmol/mmolH),

correlated to the existence of two vias of succinate production, while the S. kudriavzevii

CR85 produces a little amount at 12◦C (0.2 mmol/mmolH), comparing to the other strains.

U P TA K E O F AC E TAT E . The acetate uptake does not occurs in the T73, but occurs

on the other yeasts with special attention for S. kudriavzevii at 25◦C (3.95 mmol/mmolH),

where the amount of uptake is large relatively to the others profiles. This event are related

with the mevalonate formation.

T H E M E VA L O N AT E PAT H WAY. This lipid related pathway appears only in simulation

of the alternative yeasts to wine fermentation (S. uvarum and S. kudriavzevii). High-
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light, the highly amount of flux of S. kudriavzevii at 25◦C (1.54 mmol/mmolH), taking in

consideration the other profiles and the respective acetate uptakes.

T H E F L U X E S O F M I TO C H O N D R I A . Despite of the flux that enters in the mito-

chondria does not be present notable differences, it is possible affirm that the S.

uvarum species have more activity on the TCA cycle (2.07 mmol/mmolH for SuB and 1.4

mmol/mmolH for SuC) than the other profiles, while the T73 has more flux towards the

branched-chain amino acids (BCAAs) and higher alcohols production (isopropylmalate:

0.87 mmol/mmolH and 2-acetyllactic acid: 0.97 mmol/mmolH).

F O R M AT I O N O F H I G H E R A L C O H O L S . The fact that T73 has more flux to BCAAs

and higher alcohols production results in the higher production of isoamylol alcohol of all

strains. The isobutanol has a minimal production, exception made for the S. kudriavzevii

at 12◦C (0.21 mmol/mmolH) and the SuB (does not produce). The 2-phenylethanol

production is significantly higher in the S. uvarum strains.

Firstly, these differences (see Table 4) could be related with different redox home-

ostasis strategies of the strains, as discussed in the S. kudriavzevii under alternative tem-

peratures. Hence, others reasons for these differences are the environmental stresses

and/or peculiar traits of strains.

In these results, the S. kudriavzevii fermentation profile could have some desirable

advantages as alternative fermentative yeasts. Results shown in Table 5 confirm that

fermentations started with S. kudriavzevii are suited to achieve consumers demands:

1) lower production of ethanol than T73 and SuC, 2) higher production of glycerol than

all others strains, providing a wine with more sweetness [110], 3) higher production of

2,3-butanediol than all others strains, which is associated with a desirable flavour [82,

111], 4) a reasonable production of succinate (lower to that produced by S. uvarum

strains), which is positive, since succinate has an ”unusual salty, bitter taste” [82] and 5)
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a unique performance of higher alcohols that together with acetate and the production of

ethyl esters could originate a different aroma profile.

Conversely, there are some disadvantages: 1) the time required to reach the end

of fermentation is larger than for other species and 2) the production of 2-phenylethanol

- which contributes to the fruity and floral aromas of the wine [92]- is lower than the

production by S. cerevisiae.



5

C O N C L U S I O N

5.1 FINAL CONSIDERATIONS

The successful formulation of dynamic constraints, i.e. new erythritol’s ODE, model

reformulations, flux constraints reformulations, led to an updated model capable of simu-

lating the dynamics of the metabolism of S. kudriavzevii CR85 under wine fermentation

conditions, throughout the AMIGO2 toolbox [19] and its interface with COBRA toolbox

[20].

This model is highly capable of explaining the metabolism of S. kudriavzevii CR85

under different fermentation temperatures, as confirmed by the median R2 values of 0.95

and 0.87 at 25◦C and 12◦C, respectively. Moreover, biomass measures, carbon sources

and the main by-products also have good R2 values.

Through the metabolic description focused on the stationary phase for alternative

temperature conditions during the wine fermentation, some points are highlighted:

1. Lipids are the main destination of uptaken acetate at 25◦C. This cold-tolerant

species requires acetyl-CoA (cytoplasmic + mitochondrial) to produce lipids, as

already hypothesised in other studies [77, 78, 86];

2. Succinate production comes via GABA shunt pathway, also known as an alternative

pathway for succinate formation. This pathway appears to supply the NADPH

needs of strain, since the mevalonate production consumes NADPH;

64
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3. The production of erythritol could be associated with cold-tolerant strains, because

of its possible role in the maintenance of redox balance [72] and the duration of

fermentation (characteristic of low temperatures fermentations [112]);

4. Overall, the performance of aliphatic and aromatic alcohols is higher at 12◦C, which

could be caused by the viability of the strain to extend over time at low temperatures

[108], increasing their production during the late fermentation phases.

After that, some metabolic differences between temperatures were observed:

1. The mevalonate pathway has a significant higher production at 25◦C than at 12◦C.

According to Beltran et al. [108], during wine fermentation at 25◦C this general

stress response appears to be more related with the stationary phase, while at

lower temperatures this stress response is induced early [108];

2. The production of succinate also differs between different temperatures (25◦C

> 12◦C). This difference may be a consequence of the lipids production (redox

balance maintenance);

3. Erythritol has a production significantly higher at 12◦C than at 25◦C, since the

conditions for its production: 1) excess carbon source and 2) nitrogen starvation

[71] extend longer at 12◦C;

4. The only higher alcohol with significant differences is isobutanol (12◦C > 25◦C);

5. The aromatic profiles from both temperatures have some differences, since the

production of higher alcohols is higher at 12◦C. The extracellular acetate is higher

at 25◦C (see acetate plot of Figure 6), and most esters accumulate higher amounts

at 25◦C (see esters plots of Figure 4.C)).

Overall, the analysis of S. kudriavzevii CR85 metabolism allows to affirm the

capacity of winemaking at alternative temperatures without compromising any of the

fermentation phases, i.e. the fermentation occurs without disruptive events. In addition,
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the Table 5 allows to perspective some potential advantages of S. kudriavzevii CR85

relatively to other Saccharomyces strains.

5.2 DIFFICULTIES AND LIMITATIONS

In this section, a number of difficulties and limitations faced during the development of

this project are summarised:

1. The amount of data is significantly larger to the data available in previous modelling

exercises, counting on time-series data for dozens of extracellular components.

However, it would be desirable to count on more data specifically on lipids, which it

would help to explore further the role of mevalonate;

2. Computational effort for parameter estimation is quite substantial. In this regard,

the use of a personal computer limited the possibility of using advanced global

optimisers and uncertainty analyses;

3. The COVID-19 pandemic and the lock-down situation in Spain and the measures

adopted at the host institution (IIM-CSIC) forced that all discussions and exchange

of ideas had to be on-line. This was not ideal, but it worked reasonably well.

5.3 FUTURE WORKS

As mentioned before, modelling yeast metabolism under enological conditions is an

iterative and demanding process, because of the grape must complexity and the dy-

namic nature of the process [59]. With the possibility of multi-omics data and novel

computational methods, there is always space to improve this model.

Among other possible improvements, some further explorations are suggested:
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1. The mevalonate pathway ends in the mevalonate, which is a middle step of the

pathway that will produce precursors that could be used to assemble isoprenoids

[100]. So, new data will provide the means to specify new constraints to decipher

the role of lipids as reducing equivalents;

2. Further transcriptomic and metabolic experiments are recommended, in order to

understand more accurately how succinate is produced in S. kudriavzevii CR85

under alternative temperature conditions during the wine fermentation;

3. A global metabolic approach, i.e. the analysis of further fermentation phases, would

provide a better metabolic knowledge of the strain during winemaking;

4. Perform a more thorough comparative analysis between different strains of the

Saccharomyces genus, accounting for both extracellular and intracellular fluxes, in

order to better assess the potential of cold-tolerant strains as alternative starters

for the winemaking industry.
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