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Abstract

Senior-oriented Robotic Devices and Algorithms for Personalised Fall Predic-
tion and Prevention

The phenomenon of falls has become a global public health concern due to their prevalence in a projected

constantly ageing population (≥ 65 years), as well as its effects on mortality, lower Quality of Life (QoL)

(annually: 684.000 deaths; 37,3 millions of accidents with injury) and higher costs. On the other hand, the

lack of real-world fall data makes it difficult to develop and implement different technological solutions on

a daily basis. This research solution aims, in a first phase, to collect data on falls and dynamic gait, both

in institutions and in safe laboratory environments. Several protocols were developed and conducted to

serve the development of algorithms and devices to further contribute to minimise or reduce the incidence

of falls among the elderly. A conventional wood cane was instrumented to detect falls (>99%; lead time

of 373ms) and 4 cane events (>85% per event). A cane-type robot prototype was designed, following a

design and product development approach, to detect falls and act to prevent them. So far, the cane has a

hardware and software architecture capable of recognising the user’s motion intention and gait phases. A

Multifactorial Fall Risk Assessment (FRA) Strategy with 3 modules was initiated during this thesis, starting

with the recognition of 16 daily activities and 4 types of fall (96.53%) using a waistband equipped with an

inertial sensor. Bio-inspired Central Pattern Generator (CPG) controllers are the basis of a fall prevention

strategy for a knee orthosis, where the objective is to detect slips using the knee angle information (80%,

mean detection time of 250 ms). Finally, a realistic virtual environment (VE) that closely resembles the

typical home setting was created to apply fall-related visual disturbances while using a Head-Mounted Dis-

play (HMD), following the concepts of place illusion, plausibility and ecological validity, in order to collect

data on compensatory postural reactions.

Keywords: Fall Prevention, Fall Prediction, Fall Risk Assessment, Artificial Intelligence, Robotic Devices,

Quality of Life.
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Resumo

Dispositivos Robóticos orientados ao Sénior para a Previsão e Prevenção
Personalizada da Queda

O fenómeno das quedas tornou-se uma preocupação de saúde pública global devido à sua prevalência

numa população projetada em constante envelhecimento (≥ 65 anos), bem como os seus efeitos na

mortalidade, menor Qualidade de Vida (QoL) (anualmente: 684.000 mortes; 37,3 milhões de acidentes

com lesão) e maiores custos. Por outro lado, o desenvolvimento e a aplicação diária de várias soluções

tecnológicas são travados pela escassez de dados de quedas do mundo-real. Esta solução de investigação

visa, numa primeira fase, recolher dados sobre quedas e marcha dinâmica, tanto em instituições como

em ambientes laboratoriais seguros. Diversos protocolos foram desenvolvidos e conduzidos para servir o

desenvolvimento de algoritmos e dispositivos para posteriormente contribuírem para minimizar ou reduzir

a incidência de quedas entre os idosos. Uma bengala de madeira convencional foi instrumentada para

detetar quedas (>99%; lead time de 373ms) e 4 eventos da bengala (>85% por evento). Um protótipo de

uma bengala robot foi projetado, seguindo uma abordagem de design e desenvolvimento de produto, para

detetar quedas e atuar para as evitar. Até ao momento, a bengala possui uma arquitetura de hardware

e software capaz de reconhecer a intenção de movimento do utilizador e as fases da marcha. Uma

Estratégia Multifactorial de Avaliação de Risco de Queda (FRA) com 3 módulos foi iniciada nesta tese,

tendo começado pelo reconhecimento de 16 atividades diárias e 4 tipos de queda (96,53%) a partir de

uma waistband equipada com um sensor inercial. Controladores Central Pattern Generator (CPG) bio-

inspirados estão na base de uma estratégia de prevenção de queda para uma ortótese do joelho, onde o

objetivo é detetar escorregões usando a informação do ângulo do joelho (80%, tempo médio de deteção de

250 ms). Finalmente, um ambiente virtual (VE) realista que se assemelha ao ambiente doméstico típico

foi criado para aplicar perturbações visuais relacionadas a quedas ao usar um Head-Mounted Display

(HMD), seguindo conceitos de ilusão de lugar, plausibilidade e validade ecológica, por forma a recolher

dados de reações posturais compensatórias.

Palavras-chave: Prevenção de Queda, Previsão de Queda, Avaliação do Risco de Queda, Inteligência

Artificial, Dispositivos Robóticos, Qualidade de Vida.
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Introduction

The research and development projects conducted over the last four years are detailed in this PhD thesis

as part of the doctoral programme in Leaders for Technical Industries / Engineering Design and Advanced

Manufacturing (LTI/EDAM) - MIT Portugal. Although the doctoral programme is connected to three national

institutions, namely, the School of Engineering - University of Minho, the Faculty of Engineering - University

of Porto and the Técnico - University of Lisbon, the research activities were performed in the Biomedi-

cal Robotic Devices Laboratory (BiRD Lab) included in the Center for MicroElectroMechanical Systems

(CMEMS), a research center of the Department of Industrial Electronics from the University of Minho, and

in LABBELS - Associate Laboratory (Braga/Guimarães).

The developed biomedical research seeks to assist elders, enhancing their Quality of Life (QoL), estim-

ulating healthy and active ageing, and providing senior-oriented robotic assistive devices with fall prediction

and cross prevention capabilities that interacts with caregivers or health professionals to provide timely sup-

port before and after a fall. This PhD thesis tackles the problem of falls from several perspectives through

the development of: i) monitoring systems, i.e., an instrumented conventional cane and a cane-type robot

to monitor human-robot interaction, validate the gait segmentation detection and detect or predict falls; ii)

a strategy to assess the fall risk using activity recognition using a smart waistband; iii) a strategy to detect

slips for a Powered Knee Orthosis (PKO); and iv) a Virtual Environment (VE) full of visual perturbations ca-

pable of inducing imbalance and accelerating the data collection process. These developments represent

the first initiatives towards the project main goal.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Among the most difficult healthy issues elderly persons deal with are falls and unsteady balance control.

They are a significant factor in immobility [1] and early nursing home placement [2], as well as large rates

of death and morbidity. Currently, the World Health Organisation (WHO) states that a fall is ”an event which

results in a person coming to rest inadvertently on the ground or floor or other lower level”[3]. Before a fall

occurs an event that is more frequent and potentially predicts fall risk: the near-fall. According to Maidan

et al. [4] a near-fall is considered ”a stumble event or a Loss of Balance (LOB) that would result in a fall

if sufficient recovery mechanisms were not activated”. The problem of falls in the elderly population is

a combination of a high incidence along with a high susceptibility to injury due to a high frequency of

clinical disorders (e.g. osteoporosis, neurological diseases) [5, 6] and age-related physiological changes

(e.g. slowed protective reflexes) [7] that make even a relatively minor fall particularly dangerous.

Around 28-42% of seniors (>65 years) fall at least once each year [3]. According to the WHO, falls are

the second leading cause of unintentional injury death, after road traffic injuries, accounting an average of

684 000 fatal falls and an estimated 37.3 million non-fatal falls, which require medical attention, each year

[3]. In the United States, almost three-fourths of all fall-related fatalities occur in the 13% of the population

over the age of 65, indicating largely a geriatric syndrome. Approximately 40% of this age group living at

home will fall at least once each year, and approximately 1 in 40 will be hospitalised. Only approximately half

of individuals hospitalised following a fall will be alive a year later [8]. Instability and recurrent non-fatal falls

are frequent warning signs of nursing home admissions [2]. According to the European Mortality Database

[9], in 2019, Germany recorded 16 657 deaths being the European Union member with the higher number

of deaths by accidental falls. In the same database, the last results from Portugal correspond to 2018,

where 815 deaths were registered. Non-fatal falls that result in motor injuries decrease the QoL. Fallers

develop fear of falling with consequent depression and restricted autonomy, social and physical activity

[10]. This further contributes to deconditioning, weakness and abnormal gait and in the long run may

actually increase risk of falls [11]. Additionally, recovery from fall injury is often delayed among the elderly.

The expenses associated with fall-related injuries are significant from a financial standpoint. It is ex-

pected that social and health costs may reach 4% of European health care expenditures, expecting to

double in 2050 to €50 billion in the European Union [12]. Only in the United States of America, $19 billion
were spent on the direct medical costs of fall-related injuries in 2000 [13]. In 2015, this has risen to more

than $31 billion in the Medicare alone [14], and Cates et al. [15] expected a $43.8 billion costs in 2020.

Other studies also demonstrated the average health system cost per fall injury. In the Republic of Finland

and Australia these costs are US$3611 and US$1049, respectively. In Portugal, the value can rise to ap-
proximately €3000 if the injury is serious [16]. Pressure on the national health service has intensified as

the ageing population is growing and, unfortunately, tends to get worse. According to the United Nations,

the elderly population will be triple the existing number by 2085 [17].
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The socioeconomic impact of falls highlight how crucial it is to implement strategies that mitigate

or eliminate the risk of falling. According to evidences from Canada, a 20% reduction in the incidence

of falls might result in a net savings of more than US$ 120 million per year [3]. To alleviate this social

and economic burden, existing systems primarily focus on detecting a fall [18] with little emphasis on

fall prediction [19]. Impact detection is the basis of fall detection systems, which notify the user and

the healthcare provider when a fall has happened to hasten and enhance the medical care given. Since

these systems cannot avoid falls, scientific literature also explores fall prediction systems, which are

designed to alert users before a fall occurs, avoiding the emotional and physical effects of a fall. They

should be able to recognise all potential fall situations and conditions and offer a framework for predicting

them [19]. Fall prediction systems or Fall Risk Assessment (FRA) tools can also be divided into

two different categories [19, 20]: i) future fall prediction - which can estimate the fall risk through

some clinical assessment tests. Questionnaires or functional assessments of posture, gait, cognition, and

other risk variables are frequently used in these exams. These clinical assessments are subjective and

qualitative, with threshold evaluation scores commonly used to classify persons as fallers or non-fallers.

To evaluate balance and lower limb strength, these tests are typically the Timed Up and Go Test (TUG),

Berg Balance Scale (BBS), sit to stand, and one leg stand; and ii) real-time fall prediction system

- it recognises abnormal gait patterns in order to calculate the probability of a real-time fall occurrence,

continuously assessing the risk of fall using data from sensors while the user is doing his/her Activities of

Daily Living (ADL) (e.g. walking, climb stairs, sit, stand, pick objects). When it detects abnormal situations,

the user can be timely warned or an external help, such as a walker or a robot, can be used as a fall

prevention technique. Robotised walking-aid devices provide security and stability by assisting in many

stages of ADL, according to the user’s level of mobility, which results in a higher QoL and autonomy for

the elderly.

Falls do happen occasionally and come in many different forms. On average, nursing home residents

incur 2.6 falls per person per year [8]. Their low frequency combined with the difficulty of instrumenting a

subject and their unexpectedness lead to a lack of data to be used in several algorithms for fall detection

and prediction systems. On the other hand, there are several types of falls that might happen as well

as the number of reasons that lead to a fall. Thus, fall prediction is challenging. Collecting fall data can

be laborious because it may require the person to actually undergo a real fall which may be harmful and

unsafe. Alternatively, data on simulated falls can be gathered in controlled lab environments. However,

that might not adequately depict actual falls [21, 22]. Thus, alternative methods must be used to generate

imbalance and provoke falls while ensuring participant’s safety.

3



CHAPTER 1. INTRODUCTION

1.2 Problem Statement and Scope

Although technology-based fall prevention systems have shown potential to reduce falls-rate and related

injuries, more effective solutions are demanded to face the associated challenges. There is evidence that to

reliably prevent a fall it is necessary to continuously assess multiple fall risks from multimodal (kinematic,

physiologic, environmental data) sensors tracking human and context data, robustly detect falling onset,

and timely activating mitigation strategies against falling [23]. Furthermore, the worldwide trend is toward

assisted living solutions with multiple fall prevention measures adapted to the needs of the users for con-

tinuous usage during ADLs in natural settings [24]. No solution has been found that takes all these factors

into account. Current clinical FRA tools present insufficient predictive validity, subject-dependent Accuracy

(ACC), and do not provide continuous assessment throughout fallers’ ADLs [10, 19, 25]. Additionally,

they fall short of fully addressing the present user’s motor requirements and fall risk in real-world settings

for more effective prevention [10, 19, 24]. Artificial Intelligence (AI)-based assessment tools fed by objec-

tive measures on gait and balance are more accurate [25, 26] but do not estimate immediate fall risk in

real-settings [19]. This PhD thesis pursues a multifactorial AI tool that continuously assesses future and im-

minent fall risk and risk factors in seniors’ ADLs. Innovation is literature-driven by fusing instrument-based

multimodal data with clinical assessments and easy to self-report behavioural and context factors [19].

A major need is to identify risky ADLs and inform seniors about them, raising their confidence and

decreasing fear of falling. Accordingly, this PhD thesis will use ADLs-related risk factors and motor indi-

cators [27, 28] to pursue the design of proactive strategies to aware seniors of fall risk and risky ADLs

through senior-oriented digital solutions, empowering seniors’ functional ability and QoL. These efficient

apps would supplement clinicians on prompt and reliable assessments [19]. A key step is the data gath-

ering from seniors at different institutional settings as an integrated, non-obtrusive part of their ADLs,

recording contextual data by wearable sensors for longer periods [28]. This offers a unique insight to bet-

ter assess fall risk in natural settings and identify risky-ADLs [24]. Further, during this PhD thesis, falls will

be induced among healthy subjects through different types of perturbations during risky-ADLs, to identify

adequate, human-inspired prevention strategies [29]. Sensory perturbation will be explored via Virtual Re-

ality (VR) to induce audio-visual stimuli that alter the subject’s balance [30] to achieve more realistic fall

datasets [31–33].

Early predicting incipient falls is a key requirement of a fall prevention tool. Despite their high ACC,

current AI tools only consider kinematic status under controlled settings or intentionally simulated falls

[34, 35], with limited evidence in real ADLs [19]. This PhD thesis will give a step forward over these tools,

by using current human context during ADLs, to predict, in real-time, the ADL, the fall onset, direction, and

type with smaller detection times(<100ms) [34, 35], delving teamwork [36]. Additional progress ensures a

minimal sensor setup by combining AI, human modelling, and biomechanical analysis [37], and a robust

distinguishment of ADLs from falls [38, 39].
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Few robotics devices have presented customised active prevention strategies able to close the loop from

perception to action, in real life, during risky-ADLs [38]. Knee [37] and hip [40] exoskeletons drive joint

motion for balance recovery, preventing slip-induced falls. Impedance-controlled smart walkers prevent

multi-directional fall by applying supportive forces [41] or adjusting the human-robot distance to remain

within the Base of Support (BoS) [42], as also exploited in cane robots [43]. Sensory augmentation devices

with vibrotactile feedback synchronised to tilt angle have improved the elderly balance [44]. During this

work, key technologies are incorporated to guarantee a more time-effective, senior-oriented fall mitigation

strategy to minimise falls’ risk and injuries. Enhanced or developed robotic devices, able to attend to differ-

ent seniors’ motor impairments, risks and needs, will be empowered with bioinspired control architectures

that close the loop from estimated fall onset, user’s needs, and context to generate suitable biomechanical

countermeasures to manage diverse fall-types and perturbations [40, 45]. Assist-as-needed strategies ex-

tending the teamwork in impedance control [46], adaptive oscillator [47] and reflexes-based control [48],

will be explored to guarantee a safe, compliant and symbiotic assistance by the real-time adjustment of

the robot dynamics to the context, users’ needs and state.

Finally, this PhD thesis will fill a gap by presenting solutions towards the deployment of the fall preven-

tion solution in real-life settings among community-dwelling end-users. It covers high-quality, user-centred

research, including seniors and caregivers, with technology validation in institutional settings in conformity

with users’ privacy. Scientific and societal challenges are joint to boost the development of more useful

and safer products than existing solutions, potentially improving elderly QoL.

1.3 Goals and Research Questions

More effective and non-intrusive fall prevention technologies are needed to minimise fall-related risks in

an ageing society. This PhD thesis proposes senior-oriented robotic assistive devices with reliable, safe fall

prediction and cross prevention capabilities to customise balance recovery of senior fallers (> 65 years)

during their ADLs and according to seniors’ mobility impairment level. It focuses on bringing healthcare

technology capable of preventing and mitigating fall incidence rates to the elderly population, with the

ambition of making them more physically and socially active. It will contribute to long-term development in

the health and social aspects by reducing the incidence of falls, empowering seniors’ functional ability and

QoL. Stimulating the usability and acceptability of cutting-edge technology while safely engaging seniors

in physical activities aims to achieve a sustainable behaviour change according to risk factors, minimising

fall occurrence. This work aims both fall prevention in real-time and assess the risk of falling, while fighting

the scarcity of real-world fall data. To achieve these final goals, the present thesis focuses on pursuing

the following first objectives towards the outlined solution. This work is aligned with the global action for

Healthy Ageing and 3rd Sustainable Development Goal.
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• Objective 1: To identify systems’ specifications and requirements based on a techno-

logical survey, and user-centred design approach, with regulatory/ethical concerns,establishing

an end-users and stakeholders panel. The survey reviews fall-related studies about: i) FRA using

wearable sensors, distinguishing different types of performing this assessment through wearable

technology and how researchers perform their validation; ii) robotic assistive devices, identifying the

current work developed for robotic canes, smart walkers and powered orthoses. As a result, per-

tinent information on hardware architecture, device specifications, and fall prevention or detection

mechanisms is provided; iii) real-world falls, revealing how data were collected and for what purpose

is being used throughout the literature search; iv) mechanisms to provoke artificially slips and trips,

describing them differing studies between overground walking and treadmill walking; and v) VR-

based visual perturbations capable of triggering dynamic or static anticipatory and compensatory

postural behaviours. The first review is helpful for Chapter 6, the second review for Chapters 5 and

7, the fourth review for Chapter 7 and the last for Chapter 8. Key Performance Indicators (KPIs):

i) number of stakeholders (target: 10 elders, 3 caregivers from different institutions, 1 healthcare

professional); ii) requirements, functional and technical specifications.

• Objective 2: Enhance or develop monitoring robotic devices through hardware and soft-

ware optimisations, develop user-friendly digital solutions, and test in the laboratory their inter-

operability, safety, reliability, and intuitive use through benchmarks to specifications on latencies,

autonomy, and usability. Chapter 3 addresses this goal by developing an instrumented conventional

cane. In Chapter 5, a cane-type robot is created from scratch, while in Chapter 6, a team-owned

waistband is enhanced. KPIs: i) synchronous data collection (latency<1ms); ii) targeted specifica-

tions of latencies and autonomy; iii) functional prototypes (Technology Readiness Level (TRL) 4);

and iv) intuitive eHealth app (rated user experience>4).

• Objective 3: Record comprehensive databases of elderly natural falls during ADLs and

healthy induced falls in laboratory, and develop an ecologically realistic VE filled of fall-related visual

perturbations found in the scientific literature to induce realistic falls. Establish partnerships with

nursing homes and residential homes to gather data from older adults. Chapters 4, 6, 7 and 8

address this objective by performing experimental protocols. KPIs: i) more comprehensive public

databases than [31, 33], respecting GPDR-EU; and ii) a VE resembling a home-living scenario with

visual perturbations truly capable of induce imbalance.

• Objective 4: Develop AI-based multifactorial FRA and prediction tools to continuously

assess risky-ADLs, users’ QoL, fatigue, gait, and balance indicators, predict ADLs, gait events, future

and immediate fall risk, and onset, direction, and type of falls. Tools will attend current human

and ambient context, fusing biomechanical, physiological, environmental data. This objective is
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tackled in Chapters 4, 6 and 7. KPI: more reliable tools (ACC>98%, timing<100ms) than [25, 26],

benchmarked to fall history, clinical fall risk and motor scales.

• Objective 5: Develop fall prevention strategies for devices’ bioinspired control archi-

tectures to generate countermeasures personalised to user’s needs and predicted fall onset, con-

sidering the literature biomechanical analysis about detection and actuation timings. Chapter 7

describes the first steps towards this objective, presenting the design of a a slip-related fall preven-

tion strategy. KPIs: i) efficient, non-intrusive actuation for 60% fall risk mitigation [38]; ii) Root Mean

Square Error (RMSE)<3; iii) Actuation time<100ms.

• Objective 6: Categorise automatic and ecologically realistic fall-related visual pertur-

bations with different principles for imbalance induction, covering different types of falls and envi-

sioning a future training rehabilitation tool. Chapter 8 addresses this objective. KPI: sigma < 0.005

to detect significant statistical differences between normal and abnormal situations per dependent

variable, using kinematic and physiological data.

• Objective 7: Exploration of innovation outcomes to maximise the solution impact considering

obtained research outcomes and clinical evidence. KPIs: i) publications; ii) public dataset; and iii)

software modules.

The proposed ideas describe the transdisciplinary research adopted in this PhD thesis that will con-

tribute in the near future to prevent and minimise fall incidence rates among the elderly population. The

following Research Questions (RQs) are proposed and expected to be answered:

• RQ1: What are the main FRA and fall prevention methods implemented in the scientific literature

and how input information is obtained and used? This RQ is related to Objective 1 and is answered

in Chapter 2.

• RQ2: Can an instrumented conventional cane and a cane-type robot detect falls and indirectly gait

events? This RQ is related to Objective 4 and is answered in Chapters 4 and 5.

• RQ3: What is the best machine learning and deep learning-based strategy, as well as the most

suitable features, to implement for real-time ADL and fall events recognition? This RQ is related to

Objective 4 and is answered in Chapter 6.

• RQ4: Are the biological-inspired Central Pattern Generator (CPG) controllers and the threshold-

based algorithms able to effectively track humanmotion variables and timely detect slip perturbation

occurrences, respectively? This RQ is related to Objective 5 and is answered in Chapter 7.

• RQ5: Can a VR headset introduce imbalances through visual perturbations, causing postural reac-

tions typical of a fall? This RQ is related to Objective 6 and is answered in Chapter 8.
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1.4 Contribution to Knowledge

The monitoring robotic devices presented in this PhD thesis were developed and enhanced to mitigate or

reduce the incidence of falls among the community-dwelling older adults. An instrumented conventional

cane detects falls and gait events indirectly. A cane-type robot was created, instrumented and equipped

with a motion control system. A smart waistband was enhanced based on the team’s work [49] to serve

as data source for a new FRA strategy. The initial steps were taken in the direction of activity recognition by

using data available online and collected from volunteers who are in institutions that support the elderly and

are partners of BiRD Lab. These partnerships were established within the scope of this PhD. CPGs were

used to detect slip-like perturbations and VR to induce imbalance. This PhD thesis’s primary contributions

are as follows:

• A set of reviews that contributed to expand and clarify the work performed among the scientific

literature on the following topics: i) most adopted FRA methods using wearable sensors to

screen high fall risk subjects. This work complemented the previous works of Rucco et al. [26]

and Montesinos et al. [25]; ii) assistive robotic devices, namely, cane-type robots, smart walk-

ers and powered orthoses to identify and understand the reasons of implemented hardware

and fall prevention strategies, along with the main results, limitations and challenges; iii) how

real-world fall data has been used and obtained; iv) key experimental aspects adopted to pro-

voke artificial slip and trip perturbation distinguishing the application between overground

walking and treadmill walking; and v) textbffall-related visual perturbations applied while using an

immersive Head-Mounted Display (HMD), along with the limitations found and future direc-

tion suggestions. Considering the author’s expertise, the reviews mentioned are lacking among the

scientific literature (Chapter 2; Objective 1).

• Partnerships established with institutional settings and data acquisition protocols concep-

tion and realisation using the developed software and the enhanced waistband (Chapters 3 and 6;

Objective 3).

• A large dataset with extensive and relevant kinematic and physiological information col-

lected during normal and perturbed treadmill walking, as well as during overground walking with

VR that allows to study the changes to the human motion induced by slip-like perturbations and

visual perturbations through an immersive HMD (Chapters 7 and 8; Objective 3).

• Two kinematic data-based approaches, a Finite State-Machine (FSM) and a AI-based tool,

capable of detecting 4 cane events of an conventional cane (Chapter 4; Objective 4).
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• A hardware architecture capable of responding to different user’s needs and considering

information from the user (e.g. gait phase) and the environment context (e.g. luminosity)

(Chapter 5; Objective 2).

• The implementation of a cost-effective motion control system that gathers sensory fusion in-

formation acquired by the cane-type robot. It detects the user’smotion intention and differentiate

the various gait event phases, i.e., stance and swing (Chapter 5; Objectives 2 and 4).

• The proposal of a FRA tool architecture capable of using several fall risk factors to compute the risk

of falling in real-time (Chapter 6; Objective 4).

• The enhancement of a team-owned instrumented waistband for lower trunk inertial data acquisition

(Chapter 6; Objectives 2 and 4).

• A AI-based tool capable of recognise 16 ADLs and 4 types of falls with only one inertial

sensor at the lower trunk (Chapter 6; Objective 4).

• Evidence highlighting the effectiveness of the CPG controllers to adapt to steady-state human

locomotion variables, and threshold-based algorithms to timely detect the occurrence of slip-

like perturbations provoked during steady-state human locomotion (Chapter 7; Objective 5).

• An ecological realistic VE resembling a home-living scenario with a wide variety of virtual lo-

cations that the participant can be immersed in, as well as a high number of visual perturbations

truly capable of induce imbalance (Chapter 8; Objective 6).

During this PhD thesis, scientific and technical support was provided to master students of different

fields of engineering, contributing to five Master Dissertations on Biomedical Engineering, one Master

Dissertation on Industrial Electronics and Computers and one Master Dissertation on Physical Engineering.

These Master Students contributed to the work herein presented. Additionally, one Master Dissertation

on Biomedical Engineering and one Master Dissertation on Informatics Engineering are currently under

co-guidance. Still under supervision were 7 undergraduate/master’s students who participated in small

internships at BiRD Lab. Furthermore, the work developed in this thesis played an important role in the

scientific research and development of two project submissions and in actively specifying one accepted

request for evaluation of a research project to the Ethics Committee for Research in Life and Health

Sciences (CEICVS) of the University of Minho, as follows.

• SafeWalk (2020) - AI-based user-adaptive robot systems for personalised fall prevention. Project

not approved with Cristina P. Santos as Principal Investigator of the research investigation.

• Move+ (2021) - Senior-oriented robotic devices for personalised fall prediction and prevention.

Project not approved with Cristina P. Santos as Principal Investigator of the research investigation.
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• Ethics Committee Evaluation (2021) of the project Robotic system for the prediction and prevention

of falls in real time. Favourable assessment with the reference number CEICVS 063/2021 under

the supervision of Cristina P. Santos.

1.5 Publications

The work here described allowed the publication of the following journal articles, conference papers, and

book chapters. Contributions as second author or co-author, whether in journal articles, in conference

papers or book chapters, relies on the conceptual design of the proposed solution, innovation or strategy,

performing the experimental validation, and supporting the paper elaboration and review. Scopus profile

recognises a total of 15 publications, with only 4 papers not resulting from this thesis, 29 citations by 25

documents, and an h-index of 3. Google Scholar profile indicates a total of 50 citations and an h-index of

4. The following sources can be visited for further information: i) ResearcherID AAP-9872-2020; ii) ORCID

0000-0003-4177-2587; and iii) SciProfiles: 2035827.

1.5.1 Journal Articles

• Rafael Neto Ferreira, Nuno Ferrete Ribeiro, Joana Figueiredo and Cristina P. Santos, ”Provoking

Artificial Slips and Trips towards Perturbation-based Balance Training: a Narrative Review, ”in Safety

Science, July 2022 (Submitted) [IF(2021) - 6.500; Before the publishing year (2021): Q1 - Public

Health, Environmental and Occupational Health, Q1 - Safety Research, Q1 - Safety, Risk, Reliability

and Quality].

• Luís M. Martins,Nuno Ferrete Ribeiro, Filipa Soares and Cristina P. Santos, ”Inertial Data-Based

AI Approaches for ADL and Fall Recognition,”in Sensors (Switzerland), vol. 22, no. 11, May 2022.

[IF(2020) - 3.576; IF(2021) - 3.847; Before the publishing year (2021): Q1 - Analytical Chemistry,

Q2 - Atomic and Molecular Physics, and Optics, Q2 - Biochemistry, Q2 - Electrical and Electronic

Engineering, Q2 - Information Systems, Q1 - Instrumentation, Q2 - Medicine (miscellaneous)].

• Rafael Neto Ferreira, Nuno Ferrete Ribeiro and Cristina P. Santos, ”Fall Risk Assessment Using

Wearable Sensors: A Narrative Review,”in Sensors (Switzerland), vol. 22, no. 3, pp. 984, Jan. 2022.

[IF(2020) - 3.576; IF(2021) - 3.847; Before the publishing year (2021): Q1 - Analytical Chemistry,

Q2 - Atomic and Molecular Physics, and Optics, Q2 - Biochemistry, Q2 - Electrical and Electronic

Engineering, Q2 - Information Systems, Q1 - Instrumentation, Q2 - Medicine (miscellaneous)].

• Nuno Ferrete Ribeiro and Cristina P. Santos, ”Two Fall-Related and Kinematic Data-Based Ap-

proaches for an Instrumented Conventional Cane,”in IEEE Transactions on Human-Machine Sys-

tems, vol. 51, no. 5, pp. 554-563, Oct. 2021. [IF(2019) = 3.374; IF(2020) = 2.968; IF(2021) =
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4.124; Before the publishing year (2020): Q1 - Artificial Intelligence, Q1 - Computer Networks and

Communications, Q1 - Computer Science Applications, Q1 - Control and Systems Engineering, Q1

- Human-Computer Interaction, Q1 - Human Factors and Ergonomics, Q1 - Signal Processing].

• Nuno Ferrete Ribeiro, Pedro Mouta and Cristina P. Santos, ”Two Kinematic Data-Based Ap-

proaches for Cane Event Detection,”in Journal of Ambient Intelligence and Humanized Computing,

May 2021. [IF(2019) = 4.594; IF(2020) = 7.104; IF(2021) = 3.662; Before the publishing year

(2020): Q1 - Computer Science (miscellaneous)].

• Nuno Ferrete Ribeiro, João André, Lino Costa, and Cristina P. Santos, “Development of a Strat-

egy to Predict and Detect Falls Using Wearable Sensors,” Journal of Medical Systems, vol. 43, no.

5, p. 134, Apr. 2019. [IF(2018) = 3.223; IF(2019) = 4.136; IF(2020) = 5.227; IF(2021) = 4.920;

Before the publishing year (2018): Q2 - Health Informatics, Q2 - Health Information Management,

Q2 - Information Systems, Q2 - Medicine (miscellaneous)].

1.5.2 Conference Papers

• Rúben Durães,Nuno Ferrete Ribeiro, Rafael Neto Ferreira, Eurico Seabra and Cristina P. Santos,

”Product Design and Mechanical Validation of a Cane-Type Robot for Fall Prevention”, 2021 IEEE

International Conference on Autonomous Robot Systems and Competitions (ICARSC), 28-29 Apr.

2021.

• Pedro Mouta, Nuno Ferrete Ribeiro, Rui Moreira and Cristina P. Santos, ”Assistive Smart Cane

(ASCane) for Fall Detection: First Advances”, XV Mediterranean Conference on Medical and Biolog-

ical Engineering and Computing – MEDICON 2019, Coimbra, 26-28 Set. 2019.

• Ana Pereira, Nuno Ferrete Ribeiro and Cristina P. Santos, ”A Survey of Fall Prevention Sys-

tems Implemented on Smart Walkers,” in 2019 IEEE 6th Portuguese Meeting on Bioengineering

(ENBENG), Lisbon, 22-23 Feb. 2019.

• Ana Pereira, Nuno Ferrete Ribeiro and Cristina P. Santos, ”A Preliminary Strategy for Fall Pre-

vention in the ASBGo Smart Walker ,” in 2019 IEEE 6th Portuguese Meeting on Bioengineering

(ENBENG), Lisbon, 22-23 Feb. 2019.

• Pedro Mouta,Nuno Ferrete Ribeiro, Luís Gonçalves, and Cristina P. Santos, ”An Overview of Fall-

Related Systems Developed in Canes,” in 2019 IEEE 6th Portuguese Meeting on Bioengineering

(ENBENG), Lisbon, 22-23 Feb. 2019.
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1.5.3 Book Chapters

• Nuno Ferrete Ribeiro, Ana Pereira, Joana Figueiredo, José A. Afonso and Cristina P. Santos, ”A

Machine Learning Approach for Near-Fall Detection Based on Inertial and Force Data While Using a

Conventional Rollator ,” in Torricelli D., Akay M., Pons J.L. (eds) Converging Clinical and Engineering

Research on Neurorehabilitation IV. ICNR 2020. Biosystems & Biorobotics, vol 28. Springer, Cham.

• João M. Lopes, João André, António Pereira, Manuel Palermo, Nuno Ferrete Ribeiro, João

Cerqueira and Cristina P. Santos, ”ASBGo: A Smart Walker for Ataxic Gait and Posture Assess-

ment, Monitoring, and Rehabilitation,”in Gupta, D., Sharma, M., Chaudhary, V., & Khanna, A. (Eds.).

(2021). Robotic Technologies in Biomedical and Healthcare Engineering (1st ed.). CRC Press.

1.6 Thesis Plan Outline

This PhD thesis is organised into nine chapters. Chapter 2 comprises five literature reviews. As previously

stated, there are numerous actions that may be taken to reduce or avoid falls. Thus, it is necessary to verify

the current solutions to assess the risk of falling and to prevent the fall in real time through robotic assistive

devices, as well as the mentioned gaps to be filled. The development of algorithms is related to the ac-

cessibility to real-world data, so understanding their availability, as well as the work done for this and with

this, is vital for the course of this research. Finally, since falls are a sporadic episode in people’s lives, it is

important to speed up the data collection. The last 2 reviews complement knowledge in this area. Chapter

3 introduces the main functionalities and conceptual design of the project solution. It describes the solu-

tion’s phases towards the generalised access to safe, equative, and quality healthcare technologies, so the

elderly will remain physically and socially active. Chapter 4 describes an instrumented conventional cane

capable of detecting cane’s falls and events with only an Inertial Measurement Unit (IMU). Two AI-based

models and 2 FSMs are described along with their experimental validation. This chapter provides new cane

events phases never described in the literature before, and a benchmarking analysis with other solution’s

lead-times. Chapter 5 details the procedures inspired by Ulrich and Eppinger [50] work and followed from

the creation of the mission statement to the first operational prototype of a cane-type robot. Furthermore,

the architecture is defined, as is the motion control system, which actuates in accordance with the user’s

intention. Chapter 6 starts idealising the architecture of a multifactorial FRA strategy, providing informa-

tion on its 3 phases (Data acquisition, Classification and regression Modules, and FRA estimation and

Feedback) and 3 modules (Baseline Risk, ADL Classification and Gait Abnormalities). Moreover, it shows

the enhancement of a smart waistband, as well as the first steps towards the ADL Classification Module.

Chapter 7 defines a slip-related fall prevention strategy for a PKO. So far, only the detection block has

undergone advances that are recorded here. Therefore, it scrutinises the experimental protocol, the impor-

tance and application of CPGs and the threshold-based algorithms used for slip-like perturbation detection.
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Outcomes are also compared with results found in the literature. Chapter 8 proposes the conception and

development of a VE that comply with certain characteristics that are outlined (e.g. ecological validity), and

is used as a platform to introduce visual disturbances to the participant through the headset. Visual dis-

turbances created are described, as well as the experimental protocol. Finally, a statistical analysis helps

understanding the effect of the visual perturbations on the participants. Chapter 9 summarises the thesis’

significant results and contributions, as well as future research and technological development potential.
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Research on Fall Prediction and Prevention

2.1 Motivation and Research Scope

FRA has recently been a major topic of fall-related research. Wearable sensors, in addition to simplistic

questionnaires, have been employed to improve the impartiality of this evaluation. However, standard

methods must be defined to reflect the multifactorial causes of fall incidents while addressing the variability

of the existing created systems. As a result, it is vital to determine the various specifications and needs of

each FRA method. On the other hand, assistive robotic devices emerged to prevent falls from happening

in real-time. Scientific literature addresses several solutions according to the end-users’ level of mobility,

showing robotic canes, smart walkers and wearable robotic devices. Thus, it is imperative to understand

these device’s specifications, as well as their limitations and future challenges.

Real-world datasets are extremely valuable and hard to obtain, specially with robotic assistive devices,

for many reasons [31]: i) falls occur much less frequently than other events. On average, an elderly person

falls once or twice a year; ii) ensuring that the volunteer uses the equipment correctly is also quite com-

plicated, e.g. because it is not possible to keep a constant watch; iii) volunteers report fall events, which

can be biased, as the volunteer may forget or consider that it is not necessary to report the event; and iv)

taking into account the previous reasons, identifying fall events based only on the signals from the sensors

can lead to labelling errors. Despite all the difficulties highlighted, it is only with real-world data that the

existing bias on the literature can be eliminated and allow the development of algorithms.

Due to the low amount of data, researchers have been fighting this shortage using alternative meth-

ods. Scientific literature disclosures several alternatives to cause slips and trips with higher frequency in

laboratory conditions that mimic the characteristics of real gait disturbances. Only in this manner can data

from participants at LOB events be collected. VR can also be a way of inducing imbalance. Commonly
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used to manipulate visual feedback to produce conflicts between visual, somatosensory, and vestibular

information, VR therapies have been introduced in the field of neurorehabilitation, especially in patients

who suffered from stroke or Parkinson’s disease and in children with cerebral palsy [51–53]. These studies

follow the paradigm of Perturbation-based Balance Training (PBT), adding the perturbation on the VE to

cause imbalance.

2.2 Review: FRA Using Wearable Sensors

Recent reviews on FRA have presented and examined several approaches towards fall risk analysis. Re-

viewing the FRA approaches using wearable sensors in terms of sensor technologies commonly used, their

number and location, and performed tasks in a protocol [26]; studying the most significant and strong as-

sociations between combinations of feature categories, tasks performed and sensor locations to ascertain

subjects as faller or non-faller [25]; or even studying the relationship between the different fall risk factors

and highlighted current work and challenges on fall prediction systems [19] are examples of the most

recent works performed in this particular area. The analysis within these articles, however, was conducted

without identifying the various FRA methodologies, such as long-term or real-time FRA. Consequently, iden-

tifying trends is less trustworthy than doing separate analyses for each FRA method discussed. FRA from

both long-term and real-time perspectives necessitates various specifications and setups, as well as varied

and individual analyses. For example, a certain type of sensor put on a specific part of the body may be

generally applied for one FRA approach but not for another. Furthermore, none of the prior evaluations

established the validation processes used to evaluate the FRA systems described in the literature. Thus,

the aim of this review is to find evidence on the following topics: i) ”Which are the main types of FRA

methods using wearable sensors in literature studies?”; ii) ”What types, number, and location of wearable

sensors were adopted in the literature studies?”; iii) ”Which tasks or clinical scales were performed during

experimental protocols for data acquisition?”; iv) ”Which algorithms are used in the scientific literature for

the classification of fall risk?”; and v) ”How was the validation of FRA systems performed using wearable

sensors?”. The first, fourth, and fifth questions provide unique analysis regarding the mentioned review

articles [19, 25, 26]. On the other hand, the first question has not been addressed previously, while the

third question offers a technological description of the sensors used in FRA systems. This enables addi-

tional comparison with past review studies to see whether sensor specification trends are maintained or

updated. The fourth question provides an overview of the tasks or clinical scale methods used to collect

data.
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2.2.1 Search Strategy

An electronic systematic search was accomplished in IEEE, Scopus, Web of Science, and PubMed databases

on the topic of FRA of towards the elderly population using wearable sensors. On IEEE the keywords used

were: (aged OR elderly OR geriatric OR old) AND fall risk AND wearable sensor. The terms (aged OR

elderly OR geriatric OR old) AND (wearable sensor OR wearable device) AND fall risk AND (gait OR pos-

ture OR walking) were used in the other 3 databases. In order to provide an overview of the most recent

and emerging trends of FRA using wearable sensors, the search was conducted considering all articles

that were published after 2015. Articles were excluded if: i) the system described in the study presented

any kind of non-wearable device; ii) a FRA method was not applied or described; iii) there was a lack of

information on either the sensor system or its placement on the body; and iv) previous versions of a study.

2.2.2 Search Results

A total of 332 articles were found and 223 remained after removing duplicates. Further, a careful reading of

the title and the abstract of those articles enabled the exclusion of articles that clearly did not perform FRA

or were a review. Following this procedure, 48 articles remained for full text reading. In order to screen

the most important ones, eligibility criteria were applied to the selected papers. A total of 16 articles

were selected for further analysis. Figure 5 depicts the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) flowchart regarding the previously described search strategy. A group of

nine studies [54–62] assessed fall risk from a long-term perspective based on clinical established scales

Figure 1: PRISMA Flowchart of the Review on FRA using Wearable Sensors.
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(56%). In addition, 25% of the selected manuscripts [63–66] considered FRA from a short-term or real-

time approach by developing a system and an algorithm able to identify pre-fall/unbalanced situations

and consequently detect fall risk events. Lastly, three studies [67–69] (19%), which followed different

approaches to assess fall risk, were identified and included in ”Other Methods”.

2.2.3 FRA Based on Clinical Scales

Vieira et al. [61] developed a gamified application for the elderly to independently measure the BBS score

at home by means of a custom-made sensor containing an accelerometer and a gyroscope. Shahzad et al.

[57] estimated the BBS score from data acquired from a single accelerometer. Tang et al. [55] performed a

study to obtain the BBS and Mini-Balance Evaluation Systems Test (BESTest) scores for each subject with

a sensor apparatus composed by a SmartShoe, which comprised a pressure sensitive insole with three

pressure sensors and an accelerometer, as well as an hip accelerometer. Yang et al. [60] conducted four

environment-adapting TUG in order to assess fall risk in a more comprehensive way than standard TUG by

adapting gait in complex environments. During the trials, subjects wore a Smart Insole in each foot, with a

sensing device composed by 16 pressure sensors array along with an IMU Saporito et al. [58] attempted to

predict a remote TUG score based on data recorded from three days of free-living conditions by means of

one accelerometer and one barometric sensor. Buisseret et al. [59] assessed subjects’ fall risk based on

the TUG test score and data acquired from an accelerometer, a gyroscope and a magnetometer during the

6-Minute Walking Test (6MWT). Dzhagaryan et al. [62] developed a wearable system, the Smart Button,

capable of providing an automated mobility assessment of TUG and 30-second Chair Stand (30SCS) tests

from data collected by an IMU with an accelerometer, a gyroscope and magnetometer sensors. In both

studies conducted by Rivolta et al. [54, 56], the Tinetti test score was predicted for each of the test subjects

by means of data collected from a single accelerometer.

2.2.3.1 Sensor System Characteristics

All the studies used at least one accelerometer, which underlines the importance of the use of acceleration

data to characterise the score results from clinical standard scales. The use of gyroscope sensors was

highlighted in four articles [59–62]. This search revealed that accelerometers and gyroscopes were the

most widely used sensors for this FRA method. The magnetometer sensor is also included in the sensing

device of three studies [59, 60, 62] and is used along with both acceleremeter and gyroscope sensors.

Beyond inertial sensors, pressure sensors were used in two studies [55, 60]. Concerning the sensors’

sampling frequency, all the studies acquired data from sensors at 100 Hz or less except Tang et al. [55],

which used 400 Hz, and Vieira et al. [61] that did not mention the frequency adopted. However, in the

data processing stage, Tang et al. [55] downsampled data from 400 Hz to 25 Hz.
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Most of the studies used a small number of three sensors or less. However, Tang et al. [55] and Yang

et al. [60] used 9 and 38 sensors, respectively. In their setup, Yang et al. [60] used 32 pressure sensors

and 2 IMU’s (with accelerometer, gyroscope, and magnetometer). Tang et al. [55] sensing apparatus

consisted on six pressure sensors and three accelerometers. Within these manuscripts, almost all sensors

were placed in the insole of the test subjects, thus the high amount of sensors did not compromise the

wearability of the system. All the single sensor solutions that assessed fall risk through clinical-based scales

used accelerometers [54, 56, 57]. The most widely used two-sensor combination for FRA is accelerometer

and gyroscope, which is line with the search results of Rucco et al. [26]. In addition, four articles used the

accelerometer and gyroscope combination [59–62], with Buisseret et al. [59] and Vieira et al. [61] using

only data from those two sensing modalities.

Furthermore, five studies described the sensor placement on the chest [54, 56, 58, 61, 62], two on

the waist/lower back [57, 59], two on the feet [55, 60] and one on the right hip [55]. Both studies that

considered the feet to place the sensors used pressure sensors [55, 60]. Additionally, eight studies [54–

59, 61, 62] considered at least one upper body part to place the sensors, in which seven of them only

considered upper body parts [54, 56–59, 61, 62]. The chest and the lower back were the most used

upper body locations. Therefore, the upper body contains the preferred locations to place the wearable

sensors in FRA based on clinical scales.

2.2.3.2 Clinical-Based Scales Adopted

The variety of clinical-based scales adopted in the literature towards FRA is shown by the 6 different scales

included in the group of 9 studies. TUG was the most selected scale [58–60, 62] and BBS was the second

most adopted [55, 57, 61]. The Tinetti test was implemented in both studies conducted by Rivolta et al.

[54, 56] and Mini-BESTest, 6MWT, and 30SCS were included in one study each [55, 59, 62]. In addition,

three studies conducted two different clinical scales [55, 59, 62]. While the majority of the studies [54–56,

59–62] collected data from activities performed during the clinical scales experimental protocols to assess

fall risk, some collected data from activities outside the clinical scale protocols. For instance, Shahzad et

al. [57] attempted to predict BBS score of test subjects by means of data collected during a routine which

included a group of simple physical movement activities, namely the TUG test, five times sit-to-stand test,

and alternate step test. Further, in Saporito et al. [58] data collected from subjects during 3 days of free-

living conditions was used to predicted TUG time score.

2.2.3.3 Algorithms for the Classification of Fall Risk

In this FRAmethod, four studies implemented machine Learning models [54, 55, 57, 58], two considered a

deep Learning approach [56, 59], two adopted threshold-based algorithms [59, 61], and two studies did not
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perform this classification [60, 62]. All four studies which applied machine Learning used linear regression-

based models to predict clinical scale scores. Shahzad et al. [57] used linear regression machine learning

models to estimate the scores of the BBS test from the information provided by a single accelerometer

positioned in the lower-back. In the same study, researchers opted to choose machine learning models that

could be applied in small datasets and found that linear least square and Least Absolute Shrinkage and

Selection Operator (LASSO) regularised linear regression outperformed Decision Tree (DT)-based models,

especially the LASSO one. Saporito et al. [58] also adopted a regularised linear model for the estimation

of a TUG score, by means of signals collected from an accelerometer and a barometer in free living

conditions for 3 days. Moreover, Rivolta et al. [54] applied a multiple linear regression model in order to

predict the value of the Tinetti test scores assigned to the subjects by a clinician, using data obtained from

a single sternum-mounted accelerometer. Tang et al. [55] applied a linear kernel support vector regression

to predict clinical scores of BBS and Mini-BESTest from pressure and acceleration sensors data.

Considering the use of Deep Learning, Rivolta et al. [56] attempted to estimate the Tinetti test scores

based on gait and balance features obtained from a single low cost acceleration sensor, considering a

two-fold problem: i) a binary classification problem to dichotomise individuals at score 18 as High and

Low Fall risk; and ii) a regression problem in order to estimate the gold standard Tinetti score assigned

to each subject. Based on the performance results, the Artificial Neural Networks (ANN) provided better

classification outcomes than the linear model. Buisseret et al. [59] implemented a Deep Learning model,

as well as a threshold-based algorithm in order to predict the risk of falls based on the TUG and 6MWT.

Therefore, a 6-month prediction of subjects’ fall risk based on prospective fall occurrence as the start of

the study was performed in three different classification ways: i) a threshold-based approach considering

only the time taken to complete standard TUG; ii) another threshold-based approach (TUG+) considering

the previously described time and kinematic parameters computed from IMU sensor data; and iii) a Deep

Learning Convolutional Neural Network (CNN) network that receives the raw IMU data only. The authors

verified that both TUG+ and the AI algorithm enhanced the performance in several classification metrics

of the faller status of the subjects regarding the standard TUG alone. Vieira et al. [61] also implemented

a threshold-based approach in order to assess the score of BBS through accelerometer and gyroscope

measures. The researchers established reference values concerning each of the movements performed

during the test in order to assign their respective classification. The works developed in [60, 62] assessed

the performance metrics of the features calculated by their systems against ground truth measures of

video and optical Motion Capture (MoCap) system, respectively, rather than classify subject’s fall risk.
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2.2.4 FRA Based on the Detection of Fall Risk Events

Four manuscripts [63–66] addressed FRA from a real-time perspective, focusing on the detection of fall

risk events during the performance of activities. Saadeh et al. [63] used the data collected from an accel-

eration sensor to distinguish between ADL and pre-fall events. Their system achieved a timely prediction

of fall events, activating a fall risk alarm before the fall occurrence. Rescio et al. [65] described an Elec-

tromyography (EMG)-based system capable of detecting and recognising fall risk events. Leone et al. [66]

also presented a FRA system based on EMG capable of recognising pre-fall events. Later, the authors de-

veloped a smart sock system, each one equipped with two EMG sensors, able to detect unbalance events

associated with a potential fall risk [64]. One important aspect analysed by each of the four studies was

the lead-time. This time, which was used to study system’s detection performance of fall risk events, was

considered with two different meanings. Saadeh et al.’s investigation [63], as well as both studies con-

ducted by Leone et al. [64, 66], evaluated detection performance of the system considering the lead-time

as the time between the detection of the unbalance event and the impact of the fall. Saadeh et al. [63]

mentioned that their system could predict a fall event with a lead-time between 300 ms and 700 ms before

the fall impact. Leone et al. [66] claimed a mean lead-time of 775 ms of their system and, in a later study

performed by the same authors [64], a smart sock EMG system was able to detect unbalance conditions

with 750 ms of mean lead-time. However, Rescio et al. [65] interpreted lead-time from a different perspec-

tive, by considering it to be the time delay between the onset of the perturbation and the instant when the

perturbation was detected. The authors claimed that their system was able to detect a perturbation 200

ms, on average, after its onset. EMG-based systems were used in three studies [64–66] to detect pre-fall

scenarios or unstable situations associated with fall risk. On the other hand, Saadeh et al. [63] described

the detection of fall risk events based on accelerometer data.

Considering the experimental protocol, Rescio et al. [65] instructed subjects to simulate a series of

events in a random order: i) being at idle position or walking; ii) perform some common ADL such as

bending, lying down, standing up or sitting down; and iii) unstable situations provoked by a tilting platform

which simulated LOB. Saadeh et al. [63] collected data and combined it with MobiFall dataset [70] resulting

in a total of six different examples of falls and 11 ADL events. ADL included events that have a higher

chance of being classified as false positives/falls such as: i) jumping and jogging, as they are abrupt

events that are alike to a fall event; ii) stepping in a car or sitting on a seat; and iii) performing standing

or walking tasks and ascending or descending stairs. In addition, forward lying falls, back chair falls, front

knees falls, and side falls were considered. Leone et al. [66] also developed a dataset consisting of not

specified ADL and fall events caused by a movable platform to train and test their algorithm. Later, Leone

et al. [64] performed a similar work where they specify the ADL: i) walking; ii) sitting down on a chair; iii)

bending; and iv) lying down on a mat. Additionally, forward, lateral, and backward falls were induced by the

same movable platform described in [66]. Within the four studies that assessed fall risk from a real-time
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perspective based on the detection of fall risk events, three adopted machine learning models [63, 64,

66], whereas the remaining study used a threshold-based model [65].

2.2.5 Other FRA Methods

There were other approaches also identified to assess the risk of fall. Selvaraj et al. [69] highlighted

the importance of analysing the foot clearance during stair negotiation, as reduced values of this metric

have an explicit mechanism linked to falls by increasing the chance of tripping. They used an IMU-based

wearable system on the subjects foot during the protocol. Annese et al. [68] underlined the complexity

of FRA and the need to perform it in a multifactorial approach in an everyday life monitoring scenario in

order to accurately predict future falls. They used EMG and Electroencephalography (EEG) data as input

for their approach. Finally, Parvaneh et al. [67] explored the relationship between fall risk and the number

of Premature Ventricular Contractions (PVC) episodes per hour, by using an Electrocardiography (ECG).

2.2.6 System’s Validation

From the 16 selected studies, only 11 performed the validation of their FRA system [54–60, 63–66]. The

validation carried out on the FRA systems varied across these different studies. The fall risk outcome of the

system was compared against reference measures in order to compute the system’s performance metrics.

Seven studies [54–59, 63] validated their FRA systems using data collected from elderly patients, while

the remaining four manuscripts used data from young subjects [60, 64–66]. In addition, the number of

subjects enrolled in the experimental protocols was usually equal or below 30 subjects [54, 55, 57, 60,

64–66]. Only four studies [56, 58, 59, 63] included data from more than 30 subjects in their validation

process. Saadeh et al. [63] was the only study that performed an external validation, i.e., used data

collected outside the study’s experimental protocol to validate the system. As well as the data collected

from 20 subjects (aged between 65 and 70) within their study, these authors also used data from 57

subjects (aged between 20 and 47) from the MobiFall dataset [70]. The remaining studies performed only

an internal validation, i.e., validate the system using only data collected within the same study. Cross-

Validation (CV) was the most used validation method using both K-fold [57, 65, 66] and Leave-One-Out

(LOO) [54, 55, 58]. The Holdout validation method was used in three studies [56, 59, 64]. Saadeh et al.

[63] did not explicitly mention the validation method used. Lastly, Yang et al. [60] performed validation

without using an algorithm. Their validation process consisted of comparing the features extracted from

their smart insole system during the performance of four environment-adapting TUGs against video ground

truth references. Concerning the references measures for classification, five studies [54–58] used the

clinical scale scores obtained at the baseline assessment as the reference measures for comparing the

algorithm’s classification outcome. The algorithms developed by these 5 studies attempted to estimate

the baseline clinical scale scores based on the wearable sensor data collected from the subjects. A group
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of four studies [63–66] labelled the data based on the activities performed. Thereby, data samples were

labelled as fall risk/pre-fall or normal/ADL events and were used as the reference values to compare

against the algorithm’s outcome. The ACC, Sensitivity (SENS), and Specificity (SPEC) were the most used

performance metrics to validate FRA system’s performance. Nevertheless, the mean error is also used by

some studies that predicted clinical scale scores [55, 57, 58].

2.2.7 Clinical Highlights and Future Directions

Several reasons may contribute to the emergence of wearable-based FRA solutions: i) the advances on

the current used sensing technologies; ii) the used algorithms; or iii) the introduction of innovative wear-

able sensors that record meaningful data for this assessment. Regarding this last topic, the advances of

physiological sensors can play an important role by providing meaningful metrics underlying a subject’s

biomechanical reactions to falls. Future work on the FRA field may focus on a multifactorial approach to

assess the risk of fall, comprising meaningful data provided by wearable kinematic, kinetic, and physio-

logical sensors [19]. Nevertheless, it is essential to perform a trade-off between the number of sensors

used, which should be the lowest number possible, and the system’s algorithm performance, that should

be as high as possible. FRA systems must be user-centred designed so that the user feels compliant with

the designed sensor system, in order to be able to use it for long periods of time without any issues [19].

It is also necessary to plan and perform a suitable and reliable validation of the performance of the FRA

systems [71]. Hence, future work should also focus on the identification of gold standard external valida-

tion sources, i.e., public datasets, in which systems could be benchmarked. This would provide a reliable

comparison between the different literature FRA systems. In this regard, as these systems are intended

to be used by the elderly or subjects with mobility deficits, an effort should be performed to validate the

systems with data collected from these target populations.

2.3 Review: Robotic Devices for Personalised Fall Prevention

High fall risk individuals are constantly threatened by the unpredictability of the occurrence of gait per-

turbations, which can happen in a wide range of scenarios during the everyday living. Although these

subjects are able to produce reactive responses to counteract the LOB, they are generally not agile and

strong enough to avoid falling [40]. According to the overwhelming prevalence and harmful consequences

associated with the occurrence of slips or other types of fall, recent literature has attempted to implement

fall prevention strategies to mitigate fall incidence among the elderly. Thus, different assistive devices have

been robotised personalising the fall prevention techniques according to the user needs and level of mo-

bility. This review aims to present current fall prevention solutions for robotic canes, smart walkers and

wearable assistive devices (except exoskeletons), as well as their limitations and challenges.
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2.3.1 Search Strategy

An exhaustive literature review based on three databases was conducted to have a better knowledge of

robotic canes: Scopus, Web of Science and IEEE. In a primordial phase, an iteration table was created for

each database, with a set of keyword combinations in order to obtain the best search terms for a successful

review. The chosen keyword combinations were “Robot cane” OR “Robot walking aid” OR “Cane type robot”

for Web of Science and IEEE Xplore, and “Robot cane” OR “Robot walking aid” OR “Cane-type robot” OR

“Cane-type robot” AND NOT “sugar cane” for Scopus. A comprehensive survey was also carried out on

Scopus and Web of Science to identify smart walkers who have fall prevention or detection strategies. The

following keywords were used: ”Walking support”AND fall, ”Smart walker”AND fall, ”Smart rollators”, and

”Walking-aid”AND fall. Due to the limited number of wearable robotic devices for fall prevention, specially

to prevent slips, a more cursory investigation was conducted. The points of interest during the analysis

of the systems were the following: i) the sensors used and their location; ii) the strategy and algorithm

implemented to prevent falls or imbalance events; and iv) the algorithm developed.

2.3.2 Search Results

Taking into account the research on robotic canes, a total of 1506 results were found using the mentioned

keyword combinations. The review of these articles was performed based on the PRISMA flowchart, as

illustrated in Fig. 2 [72]. After removing 423 duplicates and 1026 articles based on title and abstract,

resulted in 57 full-text articles assessed for eligibility. Following a complete reading of the eligible articles,

17 were excluded for not meeting the proposed eligibility criteria, which revealed that they were not relevant

to the study in question. This selection concludes with 40 articles included in the final review, however

only 9 articles present fall prevention strategies. To round out the information, 8 more articles on smart

walkers and 3 articles on wearable robotic devices for slip avoidance were included.

2.3.3 Robotic Canes

To protect the user’s safety, the robotic cane must intervene to prevent a fall when an emergency situa-

tion is detected. To accomplish successful fall prevention, efficient approaches must evaluate numerous

characteristics within a small time frame capable of giving the opportunity to the user to regain the bal-

ance, namely: i) an analysis of the direction of the fall; ii) the relative position and orientation of the cane

at the beginning and conclusion of the fall; and iii) the interacting forces applied to the cane. Electronic

sensor-based devices are implemented in these robotic canes to acquire important information of: i) the

user, such as the user’s gait status and gait phase recognition; ii) the robot-user interaction by detecting

the user intention of movement with forces applied on the cane; as well as iii) important information about
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Figure 2: PRISMA flowchart of the Review on Robotic Canes.

the cane itself, such as the cane relative position, velocity and orientation. The following sensors are com-

monly implemented: i) axial force/torque sensor; ii) IMU; iii) Laser Range Finder (LRF); iv) force sensor; v)

tilt sensor; vi) camera; vii) ultrasonic sensor; and viii) infrared sensor.

Four canes implemented fairly similar fall prevention approaches [43, 73–75], since they shift the

robotic cane to a favourable and strategic position based on the user’s attitude and the direction of the

fall. As a result, the users will be able to support their body weight on the robotic cane, allowing them to

maintain their balance and prevent falling (Fig. 3.a). In the case of canes made by [43, 74, 75], which have

a universal joint for the first two and a revolution joint for the last, the angle of the robotic cane rod can be

altered and regulated to give extra help. This strategy can strengthen the stability of the cane during the

fall, preventing it from toppling over owing to a strong shove. According to Di et al. [43, 76], the optimum

method for preventing falls using a cane’s tiltable rod is to place it with the falling direction and the tilted

direction of the cane stick in the same line but in the opposite direction.

Canes from Fujimoto [77] and Van Lam [78] are based on the inverted pendulum model in order to

have a robotic cane in self-balance. Basically, when the user applies forces in the cane, as in a fall event, the

cane will assure a favourable position to aid the user throughout the fall. This procedure is accomplished

by moving the cane in the direction of the applied forces, allowing the cane to retain its balance and remain

upright. Cane from Fujimoto [77] employs the angle of the cane in respect to the plane of displacement

as a key parameter, whereas cane from Van Lam [78] uses the sensing forces applied to the cane’s rod

as its main parameter (Fig. 3.b). These canes, which must self-balance to remain upright, have minimal

strength, instability, and safety, making them unsuitable for older users and those with restricted mobility.

The apparent dynamics of the robotic cane can be altered to prevent the user from falling by changing

the braking torques of the wheels. Braking system of the Suzuki’s cane [79] limits the speed of the movable
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a) b)

Figure 3: Fall prevention methods. (a) Movement of the robotic cane to a favorable and strategic position
[43]. (b) Cane self-balance and its capability to maintain balance and move alongside the user [78].

base, so assisting and preventing the user from falling. This passive system is innately safe since they

cannot move accidentally; nevertheless, due to the absence of active movement when a fall is detected,

it may not be optimal for fall prevention. Because it can only keep the cane from moving, there may be

times when it needs to shift position in order to provide a steady and firm support to the user, ensure the

balance and stability of the system’s Centre of Mass (CoM), and avoid the fall. Although Ito’s cane [80] is a

prototype with certain drawbacks in terms of its not-so-sturdy structure and motion control, which requires

the user to lift the 1.2 kg cane during walking, it proposes a novel way for ensuring cane stability when

walking in unstable and irregular circuits. Overall, this walking assistance technology, which also attempts

to avoid falls, has limited capacity to give security and stability to sustain the body weight in a fall event.

2.3.4 Powered Orthosis

Wearable robotic devices can also stop falls from happening, particularly slips. It does, however, demand

certain requirements for detection and actuation. Wearable robotic devices must have technology capable

of detecting perturbations in milliseconds, as well as a motorised joint with time-effective actuation. In the

literature, there are some examples related to fall prevention. Monaco et al. [40] developed an Active Pelvis

Orthosis (APO) to aid with balance recovery following unanticipated slip disturbances. The scientists based

their approach on the idea that increasing stiffness at the hip joints could aid participants in recovering from

treadmill slip-like disturbances. Their system presented: i) an assistive torque with the ration of 0.2 Nm/kg

and duration of 0.25 s; and ii) LOB detection time between 0.3s and 0.4s. Hopf oscillators were integrated

in the detection system. Perturbations were recognised by comparing the actual APO’s hip angles to the hip

angles predicted by a pool of adaptive Hopf oscillators in real time [13]. The error between both signals was

used as input for an adaptive-threshold algorithm, i.e., the responsible for the detection of perturbations.

With the same purpose, Mioskowska et al. [37] presents a wearable knee assistive device capable

of actively extend the trailing leg’s knee by means of a knee brace once a slip perturbation has been

detected. The idea is to quickly restore foot contact with the ground and thus extend subject’s BoS. The
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(a) (b) (c)

Figure 4: Literature slip-related fall prevention actuation systems. (a) Monaco et al. [40]. (b) Mioskowska
et al. [37]. (c) Trkov et al. [81]

average actuation time for device extension was 0.082 and 0.072 seconds, respectively, from the initial

90 to 0 degrees and 60 to 0 degrees. Furthermore, the technology was demonstrated to stretch a human

knee more than 30 degrees in 0.4 seconds. There was no indication of detection time.

Like Mioskowska, Trkov et al. [81] developed a Robotic Knee Assistive Device. They do, however, provide

assistive knee torque to the leading leg rather than the trailing leg, as Mioskowska did [37]. The magnitude

of the desired torque (up to 40Nm) is established by the linear feedback between the actual and desired

knee angle positions and velocities, i.e., operates with an impedance and torque feedback control. It can

generate the maximum torque magnitude within less than 0.2 s. Despite the absence of detection timings,

the authors reveal that this device employs IMU data as input to the detection algorithm. Figure 4 depicts

a general overview of the actuation system from the 3 previously described studies.

2.3.5 Smart Walkers

Through the search process just a few smart walkers were discovered. Stereo cameras, LRF or force

sensors are the main information collected to be used as input in these algorithms. RT Walker [82–84], a

passive device equipped with rear wheels with powder brakes, was the subject of experimental tests with

different sensors. In [82], two LRF were used to create a 7-link human model, which allows the generation

of a stability region considering the support polygon formed by the walker and the user’s feet. One LRF

was located at the same height as the user’s hip to measure the distance along the V direction between

the walker and the user. The other laser was placed at the base of the walker and measure the distance

between the user’s leg and the walker. Further in [83], two stereo cameras tracked the head, hands,

shoulders, and hip to get the Three-Dimensional (3D) upper body model to classify activities including

falls. The upper body centroid position extracted by a depth camera was then used to categorise falls

regarding their direction [84]. A Hidden Markov Model (HMM) detected 98.75% of the falls.

Other studies used similar sensors to gather data for their algorithms. Mou et al. [85] used a LRF

and force sensors on the handle to classify three kinds of gaits (festinating gait, Freezing of Gait (FOG)
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and normal gait). When a sudden push is detected, the walker stops. Azqueta-Gavaldon et al. [86] used

depth cameras to measure the distance between the user’s leg and the rollator. Healthy subjects simulated

forward falls, namely freezing of limbs, stumble, and LOB. When the distance between the user and the

rollator is higher than a threshold, the rollator stops, preventing a fall (brake activation: 80-90ms) with an

overall ACC of 95%. Xu et al. [42] also used a LRF and force sensors on the handle. However, the Support

Vector Machine (SVM) was the approach used to classify the state of gait and, consequently, detect a

possible fall. If the user is falling the walker stops moving.

Irgenfried et al. [87] developed a walker only with a 6D-force/torque sensors, which information is

used as input to a mathematical model of the human body. Data from simulated falls revealed a peak in

the sensor values that can be used to detect a possible fall. Once again, the authors suggested stopping

or slowing down the walker. Contrarily, Huang et al. [88] used wearable and non-wearable sensors to

detect possible falls. The user is instrumented with IMU in the lower limbs and trunk, while the walker is

equipped with force sensors on the handlebar. This combination of information allows estimation of the

position between the midpoint of the feet and the Centre of Pressure (COP). Different types of falls were

simulated and when the possible fall is detected, the walker brakes and stops.

2.3.6 Clinical Highlights and Future Directions

Studies about robotic canes present some limitations. Clinical gait experiments involving the elderly or

those with conditioned mobility are lacking, demonstrating that the systems developed were not tested in

the real environments. Furthermore, only one cane offers an active fall prevention method with a mecha-

nism that uses cane movement that does not require the user to wear wearable sensors. Another significant

drawback is that the sensor systems of many robotic canes in the literature do not identify the user’s gait

phases, which is an important element for gait monitoring and possibly fall detection. Considering pow-

ered orthoses, the ideal scenario would include the assistive torque supply to all the lower limb joints from

both legs upon a slip. Trkov et al. [81] and Mioskowska et al. [37] assisted only one joint. In fact, such an

approach would increase the computationally and mechanically complexity of the fall prevention strategy

possibly contributing to an ineffective fall prevention. However, scientific literature is poor regarding real-

environment tests, mechanical information about the actuation units, importance quantification of each

joint in the biomechanical response to a slip event. Smart walkers’ prevention strategy consisted in stop

the robotic device when the possible fall was detected. Although it ensures safety for forward falls, it is

required to investigate lateral and backward falls to mitigate fall occurrences. Tests in a real setting are

necessary, just like with robotic canes and powered orthoses. Furthermore, it is feasible to confirm that

there are just a few available options for these robotic devices on the market.
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2.4 Review: Real-World Falls

To face the dataset problems mentioned, at least two projects, both funded by the European Commission,

focused on data collection from daily-life activities from elderly in the hope to obtain data from real-world

falls: the SensAction-AAL [33] and the FARSEEING [31]. The SensAction-AAL project intended to assist older

people by maintaining independent mobility and daily life activities, and reduce the consequences of falls

and injuries. They introduced smart body fixed sensor-based technology allowing medical professionals to

initiate interventions in the home environment. In 2013, the FARSEEING project took place to collect more

real-world falls from a wide community of elderly people. A total of 10 partners distributed in 5 European

countries worked together to collect data from older adults in their own environment by using an inertial-

based wearable system at lower trunk and/or thigh. The main goal was to collect also data from falls for

further investigation on prediction, identification and prevention of falls. Fall signals were recorded with a

Samsung Galaxy S3 smartphone worn in a belt or a uSense sensor device attached with sticky tape. The

smartphone or sensor device was worn at the lumbar position L5, close to the CoM. Both devices have

similar measurement characteristics: all signals contained triaxial accelerometer (both systems: ±2 g),

gyroscope (uSense: ±250º/s , smartphone: ±2,000º/s), and magnetometer data (both systems: ±1,200

𝜇T) sampled at 100 Hz. This review aims to understand what works have been developed with real-world

fall data and scrutinise them to understand crucial topics for future investigation.

2.4.1 Search Strategy

A comprehensive search was accomplished in order to understand for what purpose the data on real-world

falls are used among the scientific literature. Thus, the following topics were covered: i) what systems

were used to collect real-world fall data as well as their technical characteristics (e.g. sampling frequency,

number and types of sensors and systems, system location on human body, battery life); ii) how raw data

is processed and what features are estimated; iii) how and what algorithms or methods are implemented

considering the article’s purpose; iv) how the experimental protocol was designed, i.e., for how long a

subject was accompanied, how the fall was reported or what was the eligibility criteria used to select

volunteers; and v) what researchers did to validate approaches and/or algorithms. On December 9th,

2020, the search was completed in the IEEE Xplore Digital Library, Scopus and Web of Science with the

keywords (”Real-World Fall”OR ”Natural Fall”OR ”FARSEEING”OR ”SensAction-AAL”OR ”Real fall”) AND

(”Fall Detection”OR ”Fall Prediction”OR ”Fall Prevention”OR ”Fall Prevention”OR ”Falling”).

2.4.2 Search Results

A total 460 articles were found. As eligibility criteria, articles were selected if they presented the use or

collection of real-world falls data. A total of 13 articles respected the mentioned criteria and were included in
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Figure 5: PRISMA Flowchart of the Review on Real-World Falls.

this analysis. The following figure depicts the article selection process based on PRISMA for this review. The

included articles reveal four different purposes: i) design, improvement and/or benchmark of fall detection

algorithms [89–98]; ii) quantify the trunk and neck’s involvement in stabilizing the head during falls [99];

iii) analyse the characteristics of the on-ground and recovery phases after a fall [100]; and iv) compare

the accelerometer signals between real-world falls and simulated falls [101]. The next subsections will be

responsible for deepening the analysis of each one of the purposes presented by the selected articles.

2.4.3 Fall Detection Algorithms

The non-use of real-world fall data is commonly considered as a limitation by authors that developed

fall detection systems. This limitation is based on the hypothesis that fall data from healthy subjects

collected in controlled environments are not representative of real-world fall data [31]. The dataset used

for the development of this type of algorithms generally presents a large number of falls than normal, in

addition to the fact that several other daily activities are not considered and that can be confused with falls.

Different purposes can be found on this type of articles: i) performance benchmark of existing algorithms;

ii) development or improvement of algorithms; and iii) comparative analysis to find the most relevant

features and/or machine learning algorithms. Ten of the thirteen selected articles address algorithms for

fall detection, although with different purposes. Three articles benchmark the performance of published

fall detection algorithms when applied to real-world fall data [89, 94, 95].
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2.4.3.1 Performance Benchmark of Algorithms

Four articles benchmark the performance of published fall detection algorithms when applied to real-world

fall data [89, 94–96]. Bagalà et al. [89] benchmark the performance of thirteen fall detection algorithms

with data from twenty-nine real-world falls collected within the scope of the SensAction-AAL European

project. They directly used the data as input to the published threshold-based algorithms, estimated their

performance and compared the results obtained with real-world falls and those obtained by the authors who

developed these algorithms. As a main result, the algorithms performance was much lower than the values

obtained on simulated falls. The SENS and SPEC averages of the thirteen algorithms were 57.0%±27.3%

and 83.0%±30.3%, respectively. Aziz et al. [94] performed a similar approach, but this time focused on a

single machine learning algorithm, i.e., the SVM, since its performance is higher when compared to other

algorithms, e.g. [94] performed a similar approach, but this time focused on a single machine learning

algorithm, i.e., the SVM, since its performance is higher when compared to other algorithms, e.g. DT

or K-Nearest Neighbours (KNN). A total of five young adults (30.8±4.1 years) and nineteen older adults

(87.4±6.1 years) went about their daily-life activities while wearing seven and four tri-axial accelerometers,

respectively. These sensors were mounted on the ankles, thighs, waist, sternum and head for young adults,

and on the ankles, waist and sternum for the other group. Data from falls was exclusively obtained from

older adults that were resident at New Vista Long-Term Care facility in Burnaby, British Columbia. Falls

were confirmed through a surveillance system with 48 cameras. As features, the authors used the means

and variances for each of the Anteroposterior (AP), Mediolateral (ML) and V axes over 2.5 s time window,

and results demonstrate that the implemented system was able to detect 8 out of the 10 falls in older

adults using signals from a single accelerometer (waist or sternum). Moreover, the system showed lower

False Positive Rate (FPR) than the existing fall detection systems. Silva et al. [95] combined the real-world

FARSEEING dataset with a dataset of simulated falls and non-falls from young volunteers to train a set

of supervised classifiers for discriminating between falls and non-falls events. Following the experimental

protocol described by Noury et al. [102], these authors collected simulated falls and non falls using a

smartphone inside the trousers’ pocket from the volunteers. After resampling FARSEEING data to 100Hz

and oversampling real-world samples in the train set, they used the following algorithms: KNN, DT, Random

Forest, Multi-layer Perceptron and AdaBoost. As features, they computed the mean, standard deviation,

median, median deviation, maximum, minimum, energy, Root Mean Square (RMS), inter quartile range,

histogram (10 bins), skewness and kurtosis. As main outcome, they confirm that a model trained with

simulated falls generalise better when tested with real falls, than the opposite. Yu et al. [96] opted for a

HMM to detect falls automatically using a single motion sensor. They used data from FARSEEING database

and from ten college students that simulated falls. The younger group used tri-axial accelerometers (±4g;

12.5Hz) at 5 different locations: i) neck (necklace pendant); ii) waist (keychain); iii) chest (left shirt pocket);

iv) right side of body (right trouser pocket); and v) left side of body (left trouser pocket). Their results
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significantly outperform benchmark systems, which reveals the advantage of sensor orientation calibration.

The algorithm achieves a higher positive predictive value (0.981) when using data from the younger group

when compared to the value obtained (0.786) when using the data from FARSEEING database. With regard

to the limitations of these studies, Bagalà et al. [89] mentioned that the recorded real-falls were from a

rare disease population, which cannot be representative of a comprehensive reality. At the same time,

tested algorithms are based only on waist or trunk accelerations, which do not represent an exhaustive

analysis of the diversified set of published fall detection algorithms. Aziz et al. [94] collected data from

more body locations. However, they do not use the same number of sensors in both groups of volunteers.

Moreover, they only use one machine learning classifier. This decision was based in only one study among

the scientific literature. They also claim that the occurrence of false positives could be related to: i) the

relatively similar number of non-fall trials and fall trials simulated in the laboratory experiments; and ii)

to non-reported fall events from older adults. Silva et al. [95] performed a transfer learning approach to

find the best subset of features and to compare the different machine learning algorithms. They point the

lower number of fall samples collected for this work as a limitation, which they claim they surpassed with

the oversample process. Finally, Yu et al. [96] also believe that an extensive dataset from real-life senior

subjects might improve fall detection results.

2.4.3.2 Development and Improvement of Algorithms

One article [92] used real-world fall data to develop new algorithms for fall detection and other improved

a threshold-based algorithm [90]. Palmerini et al. [92] developed a new wavelet-based approach for fall

detection. These authors used the same dataset as Bagalà et al. [89] to focus on the detection of the

impact phase of a fall. The data were divided into 90% for training and 10% for testing. Subsequently, a

10-fold CV was performed to assess the wavelet-based approach performance that use the acceleration

signals the acceleration sum vector as inputs. As a main outcome, it outperforms an Area Under Curve of

0.918. Finally, Soaz et al. [90] used accelerometry-based fall data collected by the Sylvia Lawry Center for

Multiple Sclerosis Research and data from simulated events to assess the upper limit of their threshold-

based algorithm with multiple features (e.g. gravity acceleration component, acceleration, magnitude of

the acceleration vector, angle formed by the V axis of the upper body and the ground, sum of the windowed

standard deviation). For data collection, they used the Actibelt, which is a custom-built 3D accelerometer

(ADXL 345 BCCZ Analog Devices) that presents high resolution (13-bit), measurement up to ± 6 g, and

a sample frequency of 100 Hz. These studies present similar limitations than those discussed previously.

Palmerini et al. [92] considered the sample size was small and the recorded real-world falls were mainly

from a rare disease population as well as Bagalà et al. [89] mentioned. Soaz et al. [90] also believe the

dataset should contain more various types of real fallings, which restricts the ecologic validity of their result.
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2.4.3.3 Comparative Analysis

A total of four articles performed a comparative analysis to find the best subset of features as well as

the best algorithm. Caya et al. [97] implemented supervised machine-learning algorithms (e.g. DT, Dis-

criminant Analysis (DA), Logistic Regression Analysis, SVM, KNN, and Ensemble classifier) to detect falls

using acceleration data from the waist. They used data from FARSEEING database, and fifteen volunteers

simulated movements described by the FARSEEING database. The data were computed in features such

as mean, standard deviation, variance, kurtosis, skewness, Principal Component Analysis (PCA). The best

result was achieved with the Quadratic SVM with an ACC of 95.4% using all features mentioned. Bourke

et al. [91]extracted temporal and kinematic parameters for fall detection using exclusively data from the

FARSEEING database. Their purpose is to understand what information is important for fall detection and

help future algorithms to improve their performance. They computed several features and performed sev-

eral statistical tests, namely, Kolomogorov-Smirnov test for the distribution of the parameters, and the

T-test or the Wilcoxon rank sum test were used to verify significant differences in the listed parameters

between falls and ADL sequences. As relevant features, they present the upper and lower impact peak

values, posture angle change during the fall and time of occurrence. Bourke et al. [93] also applied a

machine learning approach to understand what combination of machine learning techniques and features

can result in a better performance for fall detection. Once again, they used only data from the FARSEEING

database and computed several features. As main result, a DT presented the best result when employing

ten different features (0.88 and 0.87 of SENS and SPEC, respectively). Palmerini et al. [98] recently tested

several machine learning algorithms (Naïve Bayes, logistic regression, KNN, random forests, and SVM)

using features inspired by a multiphase fall model and a machine learning approach. These authors used

a five-fold CV to assess the different algorithms and realised that the SVM is the best algorithm, present

a SENS higher than 80%. Caya et al. [97] faced a different limitation from those presented so far, i.e.,

possible bias in the fall report. The fall and non-fall activities were mainly described by the fallers and the

witnesses. On the contrary, the use of surveillance cameras eliminates this risk, although it can interfere

in the voluntary’s privacy [94]. Also, Palmerini et al. [98] indicated that fall reports did not always align

perfectly with the patterns observed in the signals, and they admit the possibility of unreported falls among

the ADLs dataset. Bourke et al. [91] only mentioned the non-use of gyroscope sensor data as limitation of

their study.

2.4.4 Head Stabilisation

Kuo et al. [99] quantified the neck’s involvement in stabilising the head during real-world backward falls in

long-term care captured on video. A total of twelve falls from twelve residents in a long-term care (6 female

and 6 male; 84.4±7.2 years; 164.7±9.6cm; weight: 56.6±13.3kg) were used for this study and in all of

them the head impact was avoided. Further, the authors tracked landmarks on the legs, torso, and head
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using an open-source software, namely, the Kinovea. They obtained the position of landmarks, the velocity,

acceleration, the spring-dashpot moments, and torso, neck and pelvis angles. With all features computed,

the authors implemented a model named Simplified Dynamic Fall, which is capable of reconstruct fall

kinematics. As main results, they verified the following values for neck stiffness, damping, and target

posture averaged: 24.00±6.17Nm/rad, 0.38±0.16Nms/rad, and 76.2±14.7° flexion, respectively. The

stiffness and target posture suggest that the participants actively contracted their neck muscles to maintain

the head upright. Thus, the neck strength is extremely important to avoid head impact during a fall. Despite

this conclusion, the authors mentioned that the formulas used may be a limitation for this study.

2.4.5 On-Ground and Recovery Phases

Schwickert et al. [100] used fall data from FARSEEING database to perform a statistical analysis to the

sensor’s characteristics of the on-ground and recovery phases after real-world falls. The authors estimated

the trunk pitch angle and used it with the acceleration signals as features for the statistical analysis. Falls

with successful recovery, where an upright posture was regained, were different from non-recovered falls

in terms of resting. A resting duration longer than 24.5 s (area under the curve = 0.796) after the fall

impact was a predictor for the inability to recover standing. Fall signals with and without successful returns

to standing showed different patterns during the phase on the ground. The authors mentioned the small

sample size and group typology as main limitations. The number of falls should be higher for more strong

conclusions, and the subjects were selected from groups with moderate and high fall risk, which do not

represent a distributed sample of the community-dwelling.

2.4.6 Comparison of Accelerometer Signals

Klenk et al. [101] compared acceleration signals from simulated and real-world falls. This work was the first

article in the scientific community using real-world fall data. These authors collected data from four patients

(68.8±4.5 years) suffering from progressive supranuclear palsy, and eighteen students (24.1±1.91 years)

recruited to simulate falls. Jerk and variance were computed to be used as input for Analysis of Variance

(ANOVA) for statistical analysis. The present findings demonstrate differences between real-world falls and

fall simulations, i.e., significant variation. Once again, the recorded real-world falls were from a rare disease

population that cannot be generalised to the older population at large. The small size of the dataset is also

considered a limitation.

2.4.7 Clinical Highlights and Future Directions

The state of the art reveals a strong tendency for the application of real-world fall data in fall detection

algorithms. Ten in thirteen articles compared the performance of existing algorithms with simulated and
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real-world falls, developed or improved algorithms, or performed a comparative analysis to find the most

relevant subset of features and/or machine learning algorithm [89–98]. A transversal conclusion to several

studies is the decrease in the performance of existing algorithms when using real-world fall data [89, 94–

96]. This proves that simulated fall data collected in controlled environments does not represent real-

life situations. Thus, other authors developed or improved algorithms using real-world fall data [90, 92].

Despite achieving interesting performances, they still have the use of small datasets as limitation. Moreover,

comparative analyses suggest SVM as the preferred machine learning algorithm for detecting falls when

using real-world fall data [91, 93, 97, 98]. On the other hand, three other articles also carried out analyses

on head stabilization during falls [99], on the characteristics of the on-ground and recovery phases [100],

and on the accelerometer signals from simulated and real-world falls [101]. Again, the small sample size

is pointed as a limitation. More real-world falls should be used to have stronger conclusions. Articles

prior to the publication of the FARSEEING database, refer to the importance of the existence of an open

accelerometry database of real world-falls for a continuous and independent refinement and validation of

fall detection and prevention algorithms [89, 90, 101]. These articles were published between 2011 and

2012 and, at the time, the SensAction-AAL European project was the only known project that provided

real-world falls. However, the recorded real-world falls were from a rare disease population that cannot

be generalised to the older population at large [101]. Once available, the FARSEEING database provided

data for seven selected studies [91, 93, 95–98, 100]. However, it is constantly indicated that the sample

provided by the FARSEEING database is small and that better conclusions can be drawn from a larger

population sample. Future directions include: i) differentiating falls with immediate recovery, falls with

recovery after a certain period, and falls with no recovery at all, or even different severity levels after the

fall [98]; ii) more complex models [99]; iii) increase the number of real-world falls and non-fall activities

[96, 97, 100]; iv) use other features [97]; v) the distribution of falls and non-falls in real-life should be

reflected in the data used for training a classification model [94]; and vi) use gyroscope data [91].

2.5 Review: Provoked Falls

Data scarcity leads to a hunt for alternate solutions, which accelerates technological development. Different

sorts of perturbations are employed, and they should be similar to the most important causes preceding

fall occurrences in the real-world setting. Slips and trips are the most prevalent occurrences preceding falls

[103, 104]. Thus, investigations that induce artificial perturbations frequently depend on the administration

of these two types of gait perturbations. Slips occur when the contact between the subject’s foot and the

floor lacks a sufficient Coefficient of Friction (COF) [105], whereas trips occur when the motion of the

swing limb is abruptly disrupted, which can be caused by objects while walking [106].

Previous review studies have addressed different perturbation methods. McCrum et al. [107] investi-

gated the various gait perturbation strategies used in PBT to enhance reactive balance recovery and fall

34



CHAPTER 2. RESEARCH ON FALL PREDICTION AND PREVENTION

rate in healthy older individuals. However, by excluding younger adult participants, additional strategies

than those employed in older adults may be overlooked. Moreover, Karamanidis et al. [106] wrote a review

study that focused on the balance training following slip- and trip-like PBT during treadmill locomotion,

however insufficient information is supplied regarding how these LOBs occur during overground walking.

This review aims to find the different methods used to provoke slip- and trip-like perturbations to healthy

adults during treadmill and overground walking. Hence, the following RQs were addressed: i) ”Which meth-

ods and walking conditions are used to provoke slip- and trip-like perturbations?”; ii) ”Is it preferable to

deliver perturbations during treadmill or overground walking?”; iii) ”Is it preferable to use a single-belt or a

split-belt treadmill to perturb walking?”; iv) ”What procedures are implemented to maintain responses to

perturbations unbiased?”; v) ”Which limb is generally used to apply the perturbations?”; vi) ”Which was

the participants’ walking speed during the trials?”; vii) ”What are the main sensor systems used to collect

data during perturbation-based protocols?”; and viii) ”Are there benefits to apply both slip- and trip-like

perturbations?”.

2.5.1 Search Strategy

A comprehensive search was performed in the scientific literature in Pubmed, Web of Science, CINAHL

(EBSCO), and Scopus databases. This search was carried out using the set of keywords: (gait OR walk-

ing OR walk OR locomotion) AND (perturb* OR trip* OR slip* OR balance loss OR dynamic stability OR

static stability OR waist pull OR provoked falls) AND (training OR exercise OR adaptation OR adaptive OR

repeated OR repetition OR rehabilitation OR task OR responses OR adjustments) AND (age OR ageing

OR aging OR aged OR elderly OR old OR older OR senior). The systematic review of McCrum et al. [107]

served as inspiration to build the set of keywords. For this review, only articles published since 2016 were

considered to find updated trends or evidence regarding gait perturbation paradigms. The eligibility criteria

were applied in order to obtain the set of articles that: i) included only slip and/or trip-like perturbations in

the experimental protocol; ii) delivered the perturbations unexpectedly; iii) only included healthy subjects;

and iv) did not use an assistive robotic device during the experimental trials. Beyond these conditions, the

criteria used for title screening were also applied during the abstract’s reading.

2.5.2 Search Results

A total of 3622 articles were gathered from the aforementioned databases and 2288 remained after

duplicates removal. Afterwards, the papers obtained were screened based on their title. A group of 338

articles resulted from the screening procedure. The article titles in which it was not clear that the conditions

stated above were respected were included in the abstract screening. This following selection was based

on the careful reading of the abstract of each remaining paper. A group of 110 articles was then obtained

through the screening procedure. Since it is not possible to ascertain if the papers fulfilled the eligibility
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Figure 6: PRISMA Flowchart of the Review on Provoked Falls.

criteria previously defined by only reading the title and the abstract, the remaining articles were read and

carefully analysed in order to exclude those who did not respect at least one of the above mentioned

conditions. After this analysis, a final group of 48 articles was obtained. Figure 6 depicts the PRISMA

flowchart concerning the previously described literature search. From the 48 included studies, slip-like

perturbations (40 studies) were more prevalent than trip-like perturbations (15 studies). In addition, 7

studies performed both slip- and trip-like perturbations.

2.5.3 Perturbation Methods

Slip-like perturbations were applied during both treadmill and overground walking with the latter (29 stud-

ies) being more prevalent than the former (18 studies). Slips were provoked during treadmill walking by

abruptly changing the belt’s acceleration to generate an anterior displacement between the BoS and the

CoM. This observation is consistent with the findings of Karamanidis et al. [106]. On the other hand, over-

ground walking slips were delivered by movable platforms, slippery solutions, and novel robotic devices.

McCrum et al. [107] discovered the widespread usage of movable platforms to cause slip perturbations.

The slip-like events were often applied during the Heel-Strike (HS), which is in line with Lockhart [105].

Trip-like perturbations were also elicited during treadmill or overground locomotion. Treadmill walking trips

were caused by changing the belt’s acceleration, using a brake-and-release system or a tripping device, as

Karamanidis et al. [106] verified. On the other hand, overground walking trips were caused by triggering

an obstacle release, manual placing an object along the walkway, or using a novel robotic device. Trips

were mainly applied during the swing phase of gait.
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2.5.4 Treadmill vs Overground Walking

In both slip- and trip-like perturbations, overground walking perturbations outperform treadmill perturba-

tions. Because slips and trips occur while overground walking, the walkway perturbations may be more

realistic than the treadmill-based ones. Recent research, however, has attempted to verify perturbation

delivery during treadmill locomotion against overground walking [108, 109].

Liu et al. [109] observed that individuals that received baseline overground walking perturbation train-

ing had a lower fall incidence and a higher reactive stability against an overground slip applied 6 months

after the perturbation training sessions than the group that underwent the baseline treadmill perturbation

training. Nonetheless, the treadmill perturbation training group showed higher stability measures and a

lower fall incidence than the control group (treadmill training without perturbations), indicating that tread-

mill perturbation training results in long-term relative preservation of fall resistant skills. Treadmills also

allow for the collection of multiple and continuous walking patterns over long periods of time [110], and

allow the modulation of the perturbation intensity [111].

2.5.5 Single-Belt vs Split-Belt

Both single and split-belt treadmills have been used to apply treadmill gait perturbations. Single belt tread-

mills were used in 14 studies [108, 109, 111–119], while split-belt treadmills were adopted in 8 [120–127].

Split-belt treadmills, as opposed to single-belt treadmills, allow researchers to analyse kinetic data from

each foot independently by incorporating force sensors into each of the belts. Furthermore, the use of gait

perturbations is becoming more standardised and consistent across multiple test participants, allowing

to define: i) more accurately the limb that is going to be perturbed; ii) specific velocity profiles for each

belt to conduct the perturbation; and iii) automatic onset of the perturbation based on kinetic data from

the targeted limb [121, 126]. These features turn the split-belt treadmill better suited to delivering realistic

perturbations.

2.5.6 Unbiased Perturbation Response

The authors used several strategies to lessen the predictability of the perturbation events delivered. In

general, all of the studies said that the perturbations were meant to be unexpected, and they advised their

subjects to react appropriately and strive to regain equilibrium whenever a perturbation was administered.

As a result, trials to familiarise participants with the perturbations were not conducted in order to decrease

participants’ learning effects and gait adaptation to the perturbations. Previous research revealed that after

the initial perturbation exposure, participants change their gait characteristics in order to adapt to the per-

turbation circumstances [128, 129]. Some authors, for example, only tripped or slipped their participants

once [35, 115, 123, 128, 130–136].
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2.5.7 Common Perturbed Limb

The perturbations have been used in studies on one or both legs. Some works, however, did not specify

which leg or legs were affected [111, 118, 128, 130, 137, 138]. The perturbation was administered to only

one leg in the majority of the investigations (35 studies). The perturbations were delivered to the right and

left legs in 22 and 8 papers, respectively, whereas the 5 remaining investigations detailed perturbation

delivery to the dominant limb. It is also worth noting that two of the eight studies that only affected the left

leg classified that leg as the participant’s non-dominant limb. There is clear evidence that the perturbations

should be applied to the right limb rather than the left. This might be connected to the fact that the vast

majority of people have right-side dominance [139].

2.5.8 Walking Speeds

Subjects were instructed to walk at a self-selected speed on 23 of the 41 studies that included trials

under only one walking condition, either treadmill or overground locomotion, 10 studies applied a fixed

walking speed across all participants, 2 studies described the application of a normalised walking speed

specific for each subject, and 6 studies did not mention the walking speed adopted. The seven studies that

applied perturbations while on the treadmill and overground walking revealed various velocity paradigms

for each walking condition. For example, Yang et al. [113] and Lee et al. [119] described the use of 1.2 m/s

treadmill speed and a self-selected speed while walking along the walkway. Other studies either reported

self-selected walking speeds on both walking circumstances [108, 109] or did not describe the overground

walking speed [114, 119, 140]. Regardless of the walking condition used, the majority of the authors

advised their participants to walk at their own pace. This is consistent with the findings of McCrum et al.

[107]. In the overground walking studies [128, 131–134, 141–150], subjects chose their own comfortable

speed, whereas in treadmill walking studies, participants were instructed to either ambulate at their own

self-selected speed [116, 118, 125, 130, 137, 151] or to choose a speed from four available options (1.2,

1.0, 0.8, or 0.6 m/s) [111]. Although walking at that comfortable pace simulates more realistic walking

conditions, it is more difficult to provide perturbations that are equally taxing to all individuals.

2.5.9 Monitoring Systems

The Optical MoCap devices were the most used sensor systems (45 out of 48 studies). Data from these

systems were used to compute subject’s stability through the computation the CoM position and velocity

[108, 120, 123, 125, 128, 140, 143, 152–154] and for the analysis of spatial-temporal gait parameters

[121, 124, 146, 150, 154], upper limb segment angles [120, 125, 154], lower limb segment angles

[121, 141], joint angles [35], and joint moments [141, 153]. Force data were acquired in 32 studies by

force plates either installed beneath treadmill’s belts [120, 124] or embedded in some position along
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a walkway [146, 153]. These sensors are commonly used to detect the reliable timing of perturbation

application rather than to collect data for further analysis [120, 126, 154, 155]. Participants in five trials

were instrumented with wearable inertial sensors to collect data from different human body segments

[112, 136] and to feed gait event detection algorithms [149]. Lastly, EMG sensors were considered in all

studies, since it may provide useful information about muscles activated during imminent fall risk situations

[156]. This information helps to understand how to perform a certain motor task [157], and promote an

evidence-based fall prevention treatment [64].

2.5.10 Multiple Perturbation Application

Six of the included studies [125, 126, 149, 152, 158, 159] gave each subject both types of perturbations.

If the study’s focus is on understanding PBT, using both forms of perturbations may be more appropriate

than applying only one type [125, 126, 152, 159]. The use of just slip-like perturbations, according to

Okubo et al. [152], may cause people to acquire recovery techniques including the anticipatory adaptation

of anterior shifting the CoM, which may increase the danger of tripping. Therefore, these COM predicted

modifications must be reduced by the combined use of both slips and trips in order to prepare people

for real-life disturbances. Furthermore, in order to simulate more realistic perturbation circumstances,

research [159] used slips and trips in a mixed sequence. This would guarantee more organic responses

to the imposed gait perturbations, similar to the situation in real life. Nevertheless, a more complicated

experimental approach can result from include both kinds of perturbations.

2.5.11 Clinical Highlights and Future Directions

This review examined the present state-of-the-art in the delivery of artificial slipping and tripping distur-

bances. Slip perturbations were provoked during treadmill walking by changing the belt’s acceleration or

during overground locomotion by using: i) a movable platform; ii) a slippery solution; or iii) novel robotic

devices. Trips were provoked during treadmill locomotion by: i) changing belt acceleration; ii) using a

brake-and-release-system; or iii) using a tripping device. Overground trips were elicited by: i) triggering

an obstacle; ii) manually placing an obstacle along the walking path; or iii) using a novel robotic device.

Despite the fact that most studies induced perturbations during overground walking, treadmill devices’

capacity to produce highly standardised perturbation delivery and gather continuous walking patterns over

long periods of time has highlighted their usage. Split-belt treadmills appear to be more successful in caus-

ing perturbations than single-belt treadmills. Each research tried to generate settings that would reduce

participants’ awareness of the perturbations as well as learning effects to counteract the perturbations.

There was clear evidence for perturbations being sent to the right limb rather than the left.

It is recommended that future research choose the perturbed leg based on side-dominance. In most

research, participants were instructed to walk at a self-selected speed, albeit this technique does not
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ensure that the perturbations provided are equally difficult for all people. In order to offer participants

with comparable dynamic settings, authors are advised to compute subject-specific gait speeds for this

purpose. The majority of the sensor systems employed to gather data throughout the tests were optical

MoCap devices. Future studies are advised to make use of EMG sensors in light of the pertinent data they

offer in order to better comprehend and quickly identify human reactions to gait disturbances. Additionally,

applying both slip- and trip-like perturbations during the same experiment would cause the LOB to respond

in a more realistic and natural manner, resulting in a more effective PBT than if only one kind of perturbation

were used. The distance between falls in the lab and in real life may be shortened by the reliable use of

either slip- or trip-like perturbations to simulate actual LOB occurrences.

2.6 Review: Virtual Reality Role in the Perturbation-Based

Training

Age-related decline only emphasises the importance of creating and implementing effective VR balance

training programmes that target posture and balance control through effective sensory integration. This

integration involves quick recalibration of visual, vestibular, and somatosensory information for fall avoid-

ance [51]. There is extensive evidence that the proprioceptive and exteroceptive feedback associated with

the execution of skilled tasks induces profound cortical changes associated with motor learning and that

humans can transfer motor learning to a real-world environment because it uses visual, sensory, and audi-

tory feedback [160]. Furthermore, it provides a chance to raise the duration, intensity, and mass practise

required to induce neuroplasticity, as well as significantly increasing the participant’s motivation [161].

The present review aims to find studies that use immersive VR through a HMD to introduce sensory

disturbances in subjects, triggering dynamic or static anticipatory and compensatory postural behaviours.

Thus, it will be possible to answer the following questions: i) ”Can a virtual reality headset introduce

imbalances through visual perturbations?; ii) Can they cause postural reactions typical of a fall?”; and iii)

”Which visual perturbation challenged the participants’ balance the most?”.

2.6.1 Search Strategy

A literature search was carried out in the IEEE Xplore, Scopus, Web of Science, and PubMed databases.

Combinations of the following keywords were used for each database: “virtual reality” OR “virtual environ-

ment” OR “immersive” AND ”perturbation”. No filters were applied in each database to restrict searches.

The studies were chosen under the following inclusion criteria: i) the study was conducted using a HMD;

ii) sensory disturbances were delivered to the participants; iii) physiological, neuromuscular, or kinematic

data were reported to study participant’s reaction to perturbations.
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Figure 7: PRISMA Flowchart of the Review on VR-based PBT.

2.6.2 Search Results

The initial search resulted in a total collection of 1101 publications. From this total, 386 publications were

imported from Scopus, 130 from IEEE, 386 from Web of Science, and 199 from PubMed. As duplicates,

144 were identified and removed while 855 publications were excluded by title or abstract for not meting

the inclusion criteria. Of the 102 complete articles or conference papers that remained, 51 were excluded

for using VR that they consider immersive but that does not use HMDs. Thus, 42 publications underwent

a full reading, a process that excluded 6 articles for not evaluating the subjects’ physiological, kinetic or

kinematic parameters after disturbances. In this full reading process, 2 articles were included that fulfilled

the inclusion requirements, by references. Altogether, 40 articles were included in the subsequent analysis.

Figure 7 depicts the PRISMA flowchart.

2.6.3 Studies Goals

All studies aim to investigate compensatory reactions induced by visual perturbations. Some channel this

analysis of postural adjustments to understand differences introduced by advancing age or by diseases.

Others analyse these postural reactions when visual information discordant with proprioceptive information

is introduced, when placing the participant in threatening situations, or to perform an objective balance

assessment, or balance training. The objectives of the studies are mostly divided into two aspects: gait

analysis or standing postural analysis. Both can study anticipatory and compensatory reactions to visual

disturbances introduced by an optical flow in the VE. More specifically, 18 studies attempt to understand

changes in gait patterns, 8 of which during overground walking [30, 162–168] and 10 during treadmill

walking [169–178] while the remaining studies analyse postural reactions in upright stance to visual per-

turbation [179–199], either in bipedal stance or one leg stance. Whether walking or standing upright, the
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analysis is carried out without exception when the participant is exposed to visual or physical disturbances

of different types, namely: i) continuous and multidirectional; ii) transient; iii) discrete; iv) rotations around

the axes (single or multi-axes); and v) dissonant or concordant proprioceptive and visual information.

2.6.4 Visual and Physical perturbations

Given the restriction of the use of VR through an HMD, the most common type of disturbance induced in

the subjects was visual disturbance, also called optical flow [200]. It induces modulations in gait patterns

and in postural control performance [201]. Can be stabilising when appropriate or destabilising when

conflicting. During locomotion, there is a decreased stabilisation pattern due to artificial changes in the

optical flow [202, 203]. These visual disturbances create the illusion that a correction is necessary. This

perception of the need for correction makes the responses to visual disturbances highly idiosyncratic,

while the responses to mechanical disturbances are very consistent. This inter-subject variability makes

the introduction of visual disturbances a good way to assess the risk of falling, since the reaction reveals

the dependence on visual feedback. Visual processing is a critical component of balance and gait stability

[204]. For this reason, all studies use visual disturbances that consist of a change in the HMD display.

However, some studies combine optical flow with a physical disturbance. Depending on the objective, these

disturbances can be concordant or dissonant. In most articles, visual disturbances consist of rotations or

tilts on the Roll, Pitch and Yaw axes, translations on the AP, ML and V axes, or overlapping oscillations in

the visual field, in the AP or ML axis directions. Moving items in a virtual world can also be regarded a

visual disturbance since they change the sensory feedback information. Lubetzky et al. [194, 195] used

animated objects with variable speeds to trigger participant’s postural changes. Virtual vertigo situations

are a threatening condition that alters balance in a static position or during gait, increasing the weight of

proprioceptive and vestibular reflexes [205]. Two studies also used a visual field perturbation to simulate

a fall on stairs: instantaneous translations on the V axis of the VE, which transported the subject from

the top of a staircase to some steps below. Finally, several authors have combined physical and visual

disturbances to examine the interaction between distinct sensory systems, i.e., they have changed the

stiffness of the gait support surface, in accordance with the visual feedback or not.

2.6.5 Virtual environments

Most of the VEs were created with VR game engine softwares, mainly Unity and Unreal Engine. The head-

sets used in the selected articles have inertial sensors that measure the position and rotation of the head.

To avoid cybersickness, they always change the VE in real time in response to head movement, with a

high refresh rate. The researchers’ VEs are mostly realistic enough to make the experience immersive and

provide a sensation of presence. Oldest VEs have monochromatic representations: two simulate a simple

corridor and the other only shows moving patterns. Only two studies did not create a VE. Instead, they
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captured video in real time from a webcam mounted on the HMD and used that as a VE. As a general

rule, researchers did not use the subject’s own representation in the form of an avatar in real-time. How-

ever, this synchronisation is significant. If 3D objects are presented in a dynamic, consistent, and precise

manner, the VE is an ecologically valid platform for presenting dynamic stimuli in a manner that allows

for both the veridical control of laboratory measures and the verisimilitude of naturalistic observation of

real-life situations [206].

2.6.6 Protocol specifications

The diversity in the intervention duration or the exposure time to VR scenarios has already been pointed out

as a limitation in several literature reviews that investigated the use of VR for rehabilitation [161, 207, 208].

The selected studies for this review follow the same trend. However, many of the authors do not disclose the

duration of the intervention. Some reveal the duration of exposure to the VE and whether there are pauses

between trials to minimise the effects of exhaustion or lack of concentration. In the studies included in

this work, the same trend can be seen. In addition, as the objectives are generally to study compensatory

adjustments triggered by visual perturbations, many of the authors do not even disclose the duration of

the intervention. Some reveal the duration of exposure to the VE and whether there are pauses between

trials to minimise the effects of exhaustion or lack of concentration. It is common to find familiarisation

periods to get the participant used to the HMD and the VE.

Regarding the studies populations, 22 of them used only healthy young adults for the experiments,

while 5 studies used healthy older adult participants only. In 4 studies, healthy young people were assigned

to the control group, while older adults participated in tests with VR. Only one paper does not specify the

type of subjects, nor their demographic characteristics. The scarcity of control groups is evident, being

a common practice only in studies with pathological subjects. Four studies with participants diagnosed

with vestibular deficits were discovered in this pathological population. Other pathological individuals with

Alzheimer’s Disease, Parkinson’s Disease, Mènière disease and glaucoma were also tested with VR.

2.6.7 Clinical Highlights and Future Directions

There is an increasing interest in using VR to study balance. Because of the technological properties that

allow the user to sense a high level of presence and immersion, HMDs are an excellent technique of

introducing visual disturbances. Furthermore, it takes very little physical space, minimal knowledge from

researchers, and the price tends to fall, making them highly appealing for this sort of study. As can be

seen, these studies are mostly concerned with the human body’s equilibrium. Postural balance is explored

in both quiet stance and gait. It would be intriguing to mix static and dynamical analysis, bringing research

closer to the real-world settings that a subject faces on a regular basis. A person’s equilibrium might be

jeopardised when walking or standing. The level of complexity and detail of the researchers’ VE falls short
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of the computer resources and technologies now available, which allow the production of ultra-realistic

scenarios. As a result, the sense of presence and immersion was significantly raised, perhaps eliciting

more genuine emotions. Non-tested stimuli in these research include audio stimuli and tactile feedback

which could upgrade the experience’s immersiveness. Other limitations include: i) small sample size of

subjects; ii) lack of control groups and non-random allocation; iii) failure of follow-up measures; iv) instead

of the elderly, the most examined demographic is young and healthy people; v) space restrictions, which

lead some authors to use treadmill instead of overground walking tests; and vi) gather data not available

online.
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3
Project Conceptual Design

This chapter describes the conceptual design and functionalities of senior-oriented assistive devices with

fall prediction and cross prevention capabilities. The state of the art described in the previous chapter

constitutes a fundamental piece for the establishment of this proposal. The numerous gaps and challenges

highlighted in the area of fall prevention and prediction, as well as future directions, drive the present

project to mitigate or reduce the incidence of falls, specially among the elderly population, using cutting-

edge technology. The solution is divided into two forms of action: i) short- and long-term assessment of

the risk of falling, which help elderly, caregivers and clinicians to act on a day-to-day basis and will more

objectively support clinicians decisions and diagnosis, removing subjectivity between assessments; and

ii) prevent the fall from occurring or minimising their effects through robotic assistive devices, interrupting

the chain of negative effects (e.g. injuries, fear of falling, social isolation).

3.1 Introductory Insight

For elders to be physically and socially active, this solution strives to provide them with access to excellent,

affordable, and safe healthcare technology. By preventing age-related motor deficiencies on a variety of

levels, it will support sustained development in the health and social spheres. The risk of serious damage

from a fall is highest in seniors, and it rises with age. Thus, the main goal of the project is to reduce the

number of falls and injuries connected to falls by implementing proactive and senior-focused fall prediction

and prevention strategies. It suggests a set of senior-oriented robotic devices for personalised fall prediction

and prevention on the elderly with varying degrees of motor impairment, hence enhancing their wellbeing.

The capacity of technology to support elderly people while they perform ADLs in natural settings will

be crucial for a continuous diagnosis and evaluation, in an uncontrolled environment, where the user
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is comfortable and where falls really happen. The user is therefore not prepared for the test and the

risk calculation takes into account the environment and activities that are really dangerous. Furthermore,

users will be able to monitor their risk of falling during the day and motivate themselves to modify their

behaviour, and be alerted about risky situations and ADLs, which contributes to minimise fall incidence and

their consequencesWith this ongoing user-centred care, it is anticipated that seniors’ fear of falling would

reduce and their confidence in carrying out their daily tasks will increase. This will encourage increased

physical exercise, which will boost social inclusion and motor autonomy.

Through digital solutions, the project aspires to securely include elders in physical activity to support an

active and healthy life. They will make recommendations for ADLs to complete or avoid, aiming for a long-

lasting behaviour modification in accordance with risk factors, reducing the likelihood of falls. Additionally,

they will share eHealth targets to proactively lessen functional ability impairments in elders. Parallel to this,

apps will be developed with a focus on the technological limitations of the aged, enabling high adoption

rates and enhancing the seniors’ tech abilities in light of the expanding demand for digital solutions in

health and care. Impact on physical exercise will have a positive ripple effect on social and mental wellbe-

ing, enhancing QoL. It is crucial to ensure that the offered technologies, respecting the user privacy, will

enhance physical and cognitive abilities to retain the functional capacity that permits well-being in older

age and full involvement in society, in accordance with the United Nations Decade of Healthy Ageing.

Daily support and improved physical fitness made possible by the technology developed by this research

may avoid fall-related injuries, cardiovascular and neurological disorders, with anticipated advantages on

lower healthcare costs, sustainable lives, and an extended healthy life expectancy. The clinical decision

for a cost-effective, early evidence-based diagnosis and more successful individualised therapies will be

supported by advancements in continuous objective motor and FRAs. Continuous monitoring in natural

settings paves the way for new diagnostic possibilities and may help to foresee fall risk circumstances

and subsequent health consequences, hence promoting long-term health and social care. Overall, it helps

to provide elders with sustainable, individualised care that may support their continued independence,

health, and physical activity. Its socioeconomic influence extends to all ageing societies.

3.2 Project Conceptual Design

In order to address these issues in the field of fall detection and prediction, this PhD thesis seeks to develop

and validate real-time fall prediction and prevention algorithms using diversified human gait monitoring

systems. This innovative technological solution presents two approaches to the identified challenge. Firstly,

the evaluation of the falling risk, whether short or long term, will be handled with a view to its real-time

application. To that purpose, and in order to conduct a successful evaluation, the following steps must

be taken: i) real-time assessment of gait and balance; ii) recognise ADLs; iii) use multifactorial user’s

information; iv) predict long-term fall risk more regularly , i.e., perform future fall prediction at shorter

46



CHAPTER 3. PROJECT CONCEPTUAL DESIGN

Phase 1
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ADL Recognition & Gait Abnormalities Detection

Figure 8: Schematic of the Project Phases. Phase 1: Data collection in real-world settings and controlled
environments. Phase 2: Development of algorithms to assess fall risk and prevent falls. Phase 3: Enhance-
ment and development of devices to prevent falls actively and proactively.

intervals to follow-up older adults gait and balance evolution; and v) correlate the assessment result with

QoL and ADLs. Secondly, based on the user’s continuous monitoring, it is necessary to implement an

active daily assistance that includes: i) proactively correcting gait and balance by warning the user through

vibrotactile biofeedback; ii) alerting for gait and balance abnormalities; iii) preventing falls through robotic

assistive devices; and iv) providing medication, physical exercise, and nutrition recommendations. Both

approaches require the collection of multimodal data through literature-driven experimental protocols to be

used for the validation of several algorithms, allowing the senior-oriented robotic devices enhancement and

development. Thus, the project solution is separated into three crucial phases, as depicted in Fig. 8: i) Data

Collection, ii) Algorithm Development, and iii) Devices Enhancement and Development. The descriptions

of each of these phases may be found below.

3.2.1 Data Collection

Phases 2 and 3 will only be possible with experimental protocols that allow the collection of data from

several sensors. Experimental protocols will necessarily be designed, considering the good practices of the

scientific literature. Preliminary phases will rely on healthy subjects to carry out the experimental protocols

at BiRD Lab - University of Minho, with the aim of accelerating the process of developing algorithms

or tools that can be later implemented in robotic assistive devices , as well as to aid in understanding

the biomechanical response to a risky scenario, making it easier to find fall prevention solutions. These

experimental protocols were submitted and approved by the University of Minho Ethics Committee and

involved human activity in different dynamic environments, from ADLs to the provocation of falls by various

mechanisms, whether physical or virtual. Chapters 4, 7 and 8 contain this type of protocols in order to

have a first working version of the algorithms to be implemented in the developed prototypes.
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It is also expected to collect information from the target population in order to develop, enhance and

validate user-centred systems and algorithms. To this end, during the PhD thesis, contact was established

with several health care institutions in order to establish a formal partnership with the BiRD Lab. This

partnership aims exclusively at contributing to the scientific community, specifically the elderly population,

where the institutions are committed to: i) belonging to a panel of stakeholders, where they can suggest

improvements to the solution; and ii) facilitate access to volunteers of interest. Contacts focused on the

district of Braga and the partner institutions are as follows: i) vFundo Social - Braga; ii) Centro Social

e Paroquial de Sobreposta; iii) Centro Comunitário de Prado - Cruz Vermelha Portuguesa de Braga; iv)

Associação de Reformados ValeD’este - Celeirós; v) Estrutura Residencial para Pessoas Idosas de S. José

- Póvoa de Lanhoso; vi) Casa do Professor - Braga; and vii) Associação Cultural e Recreativa de Cabreiros. It

is intended that the elderly can perform various protocols safely. Until the date of this dissertation, seniors

from the first 5 mentioned institutions participated in a study that aims to collect data from ADLs for its

recognition using AI-based tools (Chapter 6).

3.2.2 Development of Algorithms

The second phase is extremely crucial in the entire project, as it will allow the practical implementation and

validation of the devices considered in the solution. As data is collected, this phase progresses in parallel.

Thus, this phases proposes three major contributions. First, identify which physical activity parameters

predict the risk of falling. The different systems to be used in this project, from those developed by the

laboratory to commercial systems for validation, will be able to provide biomechanical indicators (spatial-

temporal parameters, joint angles) and physiological indicators (from EMG, EEG, heartbeat and Galvanic

Skin Response (GSR) data). Second, provide, adapt and evolve robotic or biofeedback assistance according

to each user’s outpatient response, fall risk level and QoL. This assistance will be oriented to the user’s

mobility needs in order to achieve a global recovery of the balance function. Third, it will allow customising

fitness programs through mobile applications that provide eHealth physical activity targets to guide each

patient’s ADLs. An objective assessment will allow to intuitively and in real-time adjust the fall prevention

measures according to the ambulatory response of the user, as well as support the clinical diagnosis and

the evaluation of the rehabilitation progress [19].

As main objectives, it is intended to develop: i) intelligent and advanced tools to recognise human

activity [39], estimate the risk of imminent and prospective fall from the fusion of quantitative and qualitative

information with baseline and context sensitive information, and predict the beginning of the fall, its type

and direction; ii) portable motion analysis laboratory with diagnostic tools to provide an objective and

real-time assessment of the user’s motor condition, fall risk level and QoL; and iii) a biofeedback and

action system to encourage user participation, ensure bidirectional interaction between the device and the

subject, as well as prevent falls and their consequences. During this PhD thesis, algorithms were developed
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for: i) the detection of falls and cane events with an instrumented conventional cane (Chapter 4); ii) the

detection of gait phases and motion intention for a cane-type robot (Chapter 5); iii) recognition of activities

with a smart waistband equipped with a single IMU (Chapter 6); and detection of slip-like perturbations

(Chapter 7).

3.2.3 Development of Devices

The research solution considers a set of BiRD Lab devices that will be assigned to each subject according

to their level of mobility, ensuring a focus on the user needs. The novelty is that each user receives per-

sonalised assistance according to his/her disability/limitation and need to use the device with the best

benefit ratio. Each robotic device will be equipped with appropriate and identified fall prediction and detec-

tion strategies to enable users to manage various types of unexpected disturbances. Thus, the research

solution innovatively interconnects the following wearable and non-wearable systems with the algorithms

described previously : i) a smart waistband; ii) a smart walker; iii) a PKO; iv) an instrumented conventional

cane; and v) a cane-type robot. Not all devices were used or addressed during this PhD thesis. The smart

waistband was enhanced so that it could be used at the partner institutions to collect data from seniors

(Chapter 6). On the other hand, an instrumented conventional cane and a cane-type robot were developed

from the scratch (Chapters 4 and 5, respectively).

These devices will have proactive and active prevention actions. As a proactive prevention, it was stipu-

lated as fundamental the construction of an alert strategy oriented to the fall and to the user. For instance,

the waistband will collect kinematic information from the trunk that, together with clinical, demographic

and physiological information, will be able to estimate the risk of falling and alert the user and caregivers in

real time if the fall risk is high or a gait abnormality is detected. Thus, this device must be instrumented with

vibrotactile motors as an actuation mechanism. Previous and promising results from the BiRD Lab team

were achieved through the application of vibrotactile biofeedback on a waistaband proper for parkinsonians

with FOG [49].

On the other hand, robotic assistive devices, i.e., the smart walker, the PKO and the cane-type robot

are assist-as-needed fall prevention solutions, which are therefore considered as active prevention actions

since they can avoid falls from happening. The smart walker is intended to support balance by adjusting its

trajectory of movement, as well as to alert about fall risk situations or the occurrence of falls. The cane-type

robot will operate similarly to the smart walker, since it will also provide balance support, and an alert in

case of risky situations or even falls. This device will perform, as illustrated in the literature, a positional

adjustment to ensure support for the user. The system will monitor the user primarily and exclusively

through sensors installed in the cane, making it a wholly non-wearable system. In contrast, the PKO, as

a wearable robotic device, will present a distinct prevention strategy from the other two devices. This will

automatically adjust the joint angle, being a custom adjustment depending on the type of disturbance

49



CHAPTER 3. PROJECT CONCEPTUAL DESIGN

(e.g. slip or trip). Previous team work reflects the physical support validation through the use of the smart

walker [209] and the PKO [46] for other research purposes.

The development of mobile applications will be able to establish a real-time connection between the

elderly, caregivers and clinicians, allowing information to flow in a timely manner, which contributes for

proactive prevention actions. Thus, seniors will be able to have daily information about their activity, get

advice on possible risk activities and set eHealth targets for active life and for training. On the other hand,

caregivers will receive alerts of high risk of falling or the occurrence of falls and will be able to receive,

like seniors, advice on possible risk activities that they may instill in the elderly. Finally, clinicians will have

access to quantitative and objective assessments of gait and balance of daily activity, as well as ongoing

assessment of fall risk.

3.3 Research Hypothesis

The research activities that were developed within the scope of this project are based on the following

technological and clinical hypotheses.

• This investigation is based on the hypothesis that the user’s kinematic parameters make it possible

to timely recognise and predict the occurrence of abnormal situations such as fall events in the

most varied situations, i.e., during and between modes of locomotion [210–212] (Objectives 3-6;

Chapters 4-8).

• Previous team work supports the hypothesis that the information from the moments before the

fall, namely until the last step before the fall, is considered as high risk of falling information. This

knowledge might be used to strengthen AI-based algorithms and provide devices the capacity to

anticipate high-risk fall scenarios [36] (Objectives 4 and 5; Chapters 4, 6 and 7).

• This project considers the hypothesis that biomechanical and physiological parameters objectively

monitored by sensory systems are correlated with qualitative clinical scales commonly applied in

motor diagnosis to assess the risk of falling [25]. As an alternative to the subjective measures

currently being used, it is intended to offer a set of objective and unified metrics for the objective

evaluation of the level of risk of falling (Objective 4; Chapter 6).

• Another hypothesis refers that less concern about falling leads to greater physical activity on the part

of patients/users. Greater confidence can naturally result in a better mood and better performance

of gait and/or ADLs, which lowers the risk of falling [23]. This lower concern may be related to

the use of robotic assistance devices that contribute to a sense of security [213] (Objectives 2-5;

Chapter 4-7).
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• The project considers the existing hypothesis that VR technology has the potential to impair balance

and may facilitate the collecting of fall data [30, 214–216] (Objectives 2 and 6; Chapter 8).

• The project is based on the clinical hypothesis that training reactive recovery responses after sudden

disturbances during gait may be more effective for fall prevention than conventional methods [107].

That is, therapies focused on testing and training individuals through the application of sudden

disturbances may provide more information and benefits for the reduction and prevention of falls.

This process relies on repetition to train the subject’s reflexes. Thus, it is crucial to collect different

types of data related to the subject and his gait when applying disturbances (Objectives 2 and 6;

Chapter 8).

• The senior population’s fear of falling is correlated with activity limitations and more unstable cog-

nitive and physical abilities. Therefore, it is assumed in this study that fear of falling, as a significant

predictor of the risk of falling, is linked to health-related QoL [217, 218] (Objective 4; Chapter 6).

3.4 Outcomes

The health market, namely health institutions, and policy makers (e.g. governments and ministries of

health), that seek to enhance treatment offered, are the major targets of the project’s outcomes. The

aging of the population, and the consequent increase in the prevalence of neurological diseases such as

Parkinson’s disease, Dementia, Cerebrovascular Accidents, has resulted in a high number of people with

mobility impairments and a consequent increase in the risk of falling and a decrease in QoL. In this respect,

there is a general need for the development of wearable and non-wearable robotic assistance devices, such

as those that are planned to be researched and developed in this project, that allow increasing users’ QoL

with the delivery of health care while minimising costs. This research solution was designed to intervene

within the scope of motor assistance and support for hospitals, nursing homes or other clinical units. The

target population is the elderly and neurological patients with a wide spectrum of motor disabilities. Through

robotic devices that can provide early warning in order to reduce falls and encourage active and healthy

ageing, this solution will be able to aid the gait of the elderly. To this purpose, it offers a variety of devices

that are appropriate for every level of functional mobility, making it possible to modify support in accordance

with the patient’s level of impairment at the time in the future. The population’s ageing has the tendency

to increase the number of prospective consumers. In the long-term, this technology is easily adaptable to

provide daily support with ADLs and continuous gait monitoring without requiring a face-to-face examination

with the health services. Without the requirement for the patient to physically travel to the location of

medical help, the data might be seen by a health expert in real time or offline, facilitating the diagnosis

and the user’s QoL. The following outcomes, with possible effect, are expected to be attained over time:

i) recovery of balance in real time; ii) FRA in real-time; iii) new objective metrics; and iv) adaptability and
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personalisation of assistance according to the level of mobility. Thus, it is expected to obtain the following

technological results: e) an assisted-as-needed robotic technology; ii) non-intrusive sensory systems; iii)

advanced parameter estimation tools based on kinematic and physiological information; iv) advanced

clinical decision support tools; v) an open-source database; vi) an intelligent fall prediction tool; vii) sensory

feedback and biofeedback systems; and viii) a personalised and interoperable technology. This PhD thesis

intends to take the first steps towards the presented outcomes of the research solution.

3.5 Conclusions

This PhD thesis aims the development of cutting-edge technology solutions to detect and predict falls, with

the goal of reducing the occurrence of falls, particularly among the senior population. Three major phases

were selected and presented: data collecting, algorithm development, and device development. During

the initial phase, the collection will mostly take place at institutions such as day care centres and nursing

homes. However, because falls occur infrequently, options that speed the gathering of kinematic and

physiological data near to real-world falls are required. As a result, algorithms capable of being deployed

in various devices geared toward seniors based on their level of mobility will be developed. Finally, various

hypotheses were advanced to support the investigation described in the next chapters, as well as the

expect long-term outcomes.
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4
Instrumented Conventional Cane

This chapter starts with an introductory insight into the relevance of stimulating the usability and accept-

ability of canes among the elderly to reduce the incidence of falls. It presents the design, development, and

validation of: i) an AI-based framework that determined the best models and features for four classification

problems: fall event, fall phase, fall category and cane event; and ii) two FSM that combined accelerome-

ter and gyroscope’s data to detect the cane’s fall and four cane events, respectively. Both approaches are

efficient, automatic, user-independent, and perform real-time classification.

4.1 Introductory Insight

Stimulating the usability and acceptability of canes within the geriatric community is crucial for fall pre-

vention. Clinical evidences support the prescription and use of canes to increase the user’s balance and

reduce the fall risk [219], having a direct and beneficial physical and psychological impact on user’s health

[220]. Canes can increase older adult’s confidence and safety, which consequently increases the levels of

activity, balance, stability and independence [213, 220]. For instance, Dogru et al. [221] verified that BBS

scores are higher while using the cane than without it. However, the non-use of a cane is still a problem

within the geriatric community. Forgetfulness, inaccessibility, feeling of oldness, the thought of no need,

inappropriate device prescription, lack of user education, or use of unprescribed devices are pointed as

reasons for abandoning canes [213, 220]. Luz et al. [213] evidenced that most of the falls at home occur

with the absence of the assistive device, and result in more severe injuries for the people who do not have

their cane with them. To fight the non-use of this assistive device, it is suggested to develop and test strate-

gies capable of improving usability and acceptability, involving environmental reminders and using cutting

edge technology to develop new canes [213]. Currently, monitoring systems, e.g. fall detection systems,
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are commonly supported by the advantages of few wearable sensors placed at the user’s trunk [26, 222].

However, placing sensors on various parts of the body may be uncomfortable and difficult to wear, low-

ering usability, especially for the elderly or patients who are undergoing rehabilitation that need as much

freedom of movement as possible [223]. Towards usability and acceptability, technology-based canes have

been developed, robotised, and equipped with: i) fall detection systems, allowing fast interventions after

a cane’s fall and saving human lives [224, 225]; and ii) gait or cane event detectors to indirectly assess

human gait, fostering a more efficient functional motor recovery when applied in the design of personalised

gait therapies that shape the therapeutic assistance accordingly to the user’s needs [226–228].

Fall detection systems in conventional canes present some methodological drawbacks. Firstly, the

majority of the studies use simple threshold-based algorithms to detect cane’s falls [224, 229–231], which

suffer from high FPRs in real-life situations, and do not combine information from different sensors, using

data from only one inertial sensor. The accelerometer data is the most used information to detect cane’s

falls [224, 225, 229, 230], but Almeida et al. [231] proved the gyroscope can be used for the same

purpose. Mouta et al. [225] have shown that the acceleration vector module reaches high values at each

ground contact, which can be understood as a false positive by threshold-based algorithms. Thus, the

use of a single sensor may be insufficient for fall detection and some redundancy is required. Secondly,

the number of participants represents also a concern for the feasibility of the results. Usually, only 3 or

4 subjects perform a small group of fall representative activities [224, 229, 230]. Moreover, Mouta et al.

[225] used only the SVM to detect cane’s falls using the entire information as input. This machine-learning

classifier may not represent the most suitable machine learning model for this problem, and, on the other

hand, using the entire information may affect the use of the model in real-time. Most of the studies about

inertial sensor-based instrumented canes implemented fall-related algorithms that estimated orientation or

even contact-phases [225, 232]. Considering gait segmentation, no previous study correlated the sensory

information of the cane with the movement of the human foot during the gait. This chapter addresses this

question and, in addition, examines a greater number of cane events than just verifying whether the cane

is in contact with the ground or not [232].

4.2 System Overview

The proposed system (Fig. 9.a) collects cane’s acceleration and angular velocity data at 200 Hz. It com-

prises a 9-axis Motion Processing Unit (MPU-9250) near the cane’s handle which was configured as follows:

±8𝑔 for the accelerometer and ±300𝑜/s for the gyroscope [225]. The IMU’s location is based on Chen’s
work [224]. These authors verified that the amplitudes of the acquired data in the upper part of the device

were higher than in other locations, which contributes for a more discriminative characteristics of the sig-

nal. Both physical quantities were measured on three directions: AP, ML and V. These specific kinematic

data were used as inputs for both approaches due to their usability and operability in daily scenarios. A
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Figure 9: System overview: a) Developed system used for data acquisition with: i) an IMU and ii) FSR; b)
Subject with all systems and equipped with the MVN BIOMECH (Xsens, Netherlands).

Force Sensitive Resistor (FSR) was placed at the cane’s tip as a ground truth mechanism to detect cane’s

”Stance”and ”Swing”. Additionally, the subjects were equipped with a MPU-9250 and two FSR on the

opposite side of the cane [233], i.e., the left foot as depicted in Fig. 9, to study similarities between cane

and foot’s data. Both IMU are connected via I2C protocol to a STM32F4 microcontroller and collected data

is stored into a SD Card.

4.3 Ambulation with a Cane

A proper locomotion with a cane improves balance, helps in weight distribution, and requires the use of

the cane on the opposite side of the affected leg and in tandem with it so as to simulate normal gait

[233]. There are two ways of walking with a cane, namely, two and three point gait [234]. Two-point gait

is characterised by the movement of the cane and the affected leg forward in unison. Consequently, cane

and foot events occur approximately at the same time. While in three-point gait both legs and the cane

move forward individually at different times. Thus, since both approaches use only inertial data from the

cane, it was only possible to detect the following cane events, which are related to gait events only if the

user performs a two point gait, as depicted in Fig. 10.a: i) First Ground Contact (FGC) - the event which

equals to the first ground contact of the cane and it is similar to HS; ii) Maximum Support Moment (MSM)

- occurs when the cane fully supports the subject’s body weight and corresponds to the Middle Mid-Stance

(MMSt); iii) Full Cane Off (FCO) - moment in time that the cane base lifts entirely from the ground and

corresponds to the Toe-Off (TO); and iv) Cane Middle MidSwing (CMSW) - phase in which the swinging

cane passes the opposite stance limb. The opposite side foot is in Middle Mid-Swing (MMSw).
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Figure 10: Cane events matched to: a) the respective human gait events during one gait cycle of two point
gait. b) inertial and force data from the cane.

4.4 AI-based Framework - Comparative Analysis

This section describes the methodologies adopted and the equipment used to build the AI-based frame-

work. The AI-based tool is constituted by four accurate classifiers. For each classification problem, a com-

parative analysis, which strategy is illustrated in Fig. 11 and implemented in Matlab (2019a, The Math-

works, MA, USA), was performed to determine the most suitable AI-based classifier and the subset of

features that allow the best performance. It compares different techniques with the same kinematic data

and describes the conducted stages during training and testing. The proposed framework is explained in

the following subsections.

4.4.1 Feature Calculation

The Feature Calculation (Fig. 11) aims to obtain a feature table that includes filtered acceleration and

angular velocity data, and several features extracted from this filtered data (Table 1), resulting in a total

of 165 features. All features are calculated per sample. There are three types of features that use initial

filtered data as input to estimate a new sample: i) features that require only one sample from initial data
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Figure 11: Schematic of the machine learning-based framework for fall-related purposes.

(e.g. the Sum Vector Magnitude (SumVM) and the Dynamic Sum Vector); ii) features that require only the

current and the previous samples from initial data (e.g. the Resultant Angular Acceleration (RAA) and the

Acceleration Exponential Moving Average (EMA)); and iii) features that use a larger time window from initial

data. The current sample and the 4 previous samples were used from initial data, i.e., a time-window of

5 samples, to estimate the new sample of the output feature (e.g. Minimum, Maximum, Mean, Variance,

Standard deviation, Skewness, Kurtosis, Velocity and Peak-to-Peak Values (PPV)). The dependence on past

samples requires feature estimation within each activity. The first 10 samples of each activity were removed

in order to ensure that all features had a value. Previous studies used these features [235–240].

4.4.2 Pre-Processing

The Pre-Processing is responsible for feature normalisation and for identifying discriminative features to

help building the AI-based models. As first step, features were normalised by the subject’s height since the

anthropometric scaling features reduce the variability of the feature table [241]. Further, a 1st order low-

pass filter (exponential smoothing) with 0.5 as the smoothing factor and a cut-off of 10 Hz was applied to

cane’s data [242]. Appendix A.1 provides instances of the collected data. Additionally, the min-max scaling

[0;1] technique was used to normalise each feature, ensuring a low computational cost when building the

models [243]. Furthermore, features were ranked by using the following ten feature selection methods that

rank features in descending order according to their relevance [244]: i) Infinite Latent Feature Selection
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Table 1: Feature Table

Feature Feature description

1-3 Acceleration (AP, V, ML)

4-6 Angular velocity (AP, V, ML)

7, 8 SumVM of acceleration and angular velocity*

9-11, 17-19, 25-27,
33-35, 41-43, 49-51,
57-59

Skewness, Kurtosis, Minimum, Maximum, Mean, Variance, Standard devia-
tion of acceleration (AP, V, ML)

13-15, 21-23, 28-30,
36-38, 44-46, 52-
54, 60-62

Skewness, Kurtosis, Minimum, Maximum, Mean, Variance, Standard devia-
tion of angular velocity (AP, V, ML)

12, 16, 20, 24, 31,
32, 39, 40, 47, 48,
55, 56, 63, 64

Skewness, Kurtosis, Minimum, Maximum, Mean, Variance, Standard devia-
tion of 7 and 8

65-70 Correlation between axes - accelerometer and gyroscope (V-ML, V-AP, ML-AP)

71-73 Acceleration after high-pass filter (AP, V, ML)**

74-80 SumVM of acceleration raw data*, Dynamic Sum Vector*, V Acceleration*,
Total Angular Change, RAA**, Activity Signal Magnitude Area (ASMA)**, Signal
Magnitude Area (SMA)

81-83, 89-91, 97-99,
105-107

PPV, RMS, Ratio Index (RI), RI of PPV of acceleration (V, ML, AP)

84-86, 93-95, 101-
103, 108-110

PPV, RMS, RI, RI of PPV of angular velocity (V, ML, AP)

87, 88, 94, 96, 100,
104, 111, 112

PPV, RMS, RI, RI of PPV of 7 and 8

113-120 Quaternions**, Roll**, Pitch**, Yaw** and Absolute V acceleration*

121, 125, 126, 130,
134

SumVM of resultant angle change*, Maximum RAA, Sum of Flutuation Fre-
quency, Resultant of Average Acceleration*, Resultant of Standard Deviation*

122-124, 127-129,
131-133, 135-137

Resultant angle change**, Flutuation Frequency, Resultant of Average Accel-
eration**, Resultant of Standard Deviation** (AP, ML, V)

138-146, 156 Slope**, Fast Change Vector, SumVM of horizontal plane*, EMA**, Rotational
Angle using Acceleration**, Z-score*, Magnitude of Angular Displacement*,
Acceleration and Angular Velocity Resultant of Delta Changes**, Cumulative
horizontal displacement

147-155, 157-165 Gravity Component*, Velocity, Displacement, Cumulative horizontal sway
length, Mean sway velocity, Displacement Range (V, ML, AP)

* - First type of features; ** - Second type of features; Excepting features 1-6, the remaining features
require the mentioned time-window of 5 samples.
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(ILFS); ii) Infinite Feature Selection (INFS); iii) Correlation-based Feature Selection (CFS); iv) Extended CFS

(ECFS); v) Minimum-Redundancy Maximum-Relevancy (mRMR); vi) Relief-F; vii) Mutual Information Feature

Selection (MutInfFS); viii) Multi-Cluster Feature Selection (MCFS); ix) LASSO; and x) ANOVA base method

with mRMR. This last method uses mRMR to provide a first rank. Then, ANOVA starts on the highest-

ranked feature and evaluates which classes are distinguishable for the feature using the feature’s mean

and variance per class until there are a set of features that distinguish between all classes. Consequently,

it were compared the effects of the rankings on the models’ performance.

The PCA, a feature extraction method, was adapted in this study to provide a ranking to the features

from Table 1 as presented in Fig. 12. The Principal Components (PC) that correspond to a cumulative

percent explained of 70% were selected [245]. Further, a resultant and proportional PC is obtained and

used to rank features. PCA was also used to reduce the computational cost of the machine learning

framework. Instead of using all 165 features, it was only used the features which have a PC value greater

than 1
165 and multiplied that number by 2. This means that a higher number of features was selected

to realise the study than those with great contributions to the variability of the data. The success of this

procedure will be determined by achieving the best performance with a lower number of features than

the number stipulated here. Both feature selection methods and PCA (both purposes) were performed for

each classification problem.
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4.4.3 Data Labeling

The processed feature table (Fig. 11) was labeled using the cane’s acceleration data, the biomechanical

human model from the MVN BIOMECH (Xsens, Netherlands) (Fig. 9.b) and the cane’s FSR to determine

the beginning of the fall in the activities where the subject fell with the cane, as well as the cane events

mentioned previously. The labeled feature table resulted from this process. According to the work of Chen

et al. [224], using only acceleration data, it is possible to divide the fall of a cane in three major and distinct

phases: i) Collapse; ii) Impact; and iii) Shock. During the collapse phase, the cane starts to fall towards

the ground. This phase is characterised by an approximation of the three acceleration axes to zero until

impact. Then, an abrupt polarity inversion of its vector in the direction of the trajectory is verified. Since

the cane is a lightweight object, after impact, it usually suffers rebounds which characterises the shock

phase. Inactivity comes next along with frequently unpleasant consequences for older adults. Cane’s FSR

detected FGC, MSM and FCO events, while MVN BIOMECH was used to determine the CMSW. When the

FSR signal is 70% higher than its minimum, a FGC event is detected if the derivative of the FSR signal

is positive, and a FCO event is detected if the same derivative is negative. MSM is detected when FSR

signal reaches the maximum value. Finally, the CMSW is detected through video of the biomechanical

model when the MVN BIOMECH extra unit passes the opposite stance limb. These events correspond

to a specific sample in time data. Therefore, once an event is detected, the following samples had the

same label until next event. Figure 10.b depicts the match between cane events detected by ground truth

systems and the cane’s inertial data.

Further, the labeled feature table was organised into 4 databases (A, B, C and D) depicted in Fig. 13,

one for each classification problem (Fig. 11). Database A contains 2 classes: fall and non-fall. This first

model will determine if the cane is falling or not. The databases B and C contain only data from falls,

however, database C only contains data from activities where the subject fell forward and to the sideways.

Database B contains three classes: the collapse, impact and shock phases. On the other hand, Database

C was examined with different combination of classes (forward, right and left) and fall phases. Finally,

database D contains the four cane events mentioned: FGC, MSM, FCO and CMSW.

Forward

Right

Left

Collapse

Impact

Shock

Fall

Non-Fall

Labeled Feature Table

Fall Phase

Classification Model
(Database B)

Fall

Classification Model
(Database A)

Fall Category

Classification Model
(Database C)

FGC, MSM

FCO

CMSW

Cane Event

Classification Model
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Figure 13: Identification of databases per classification model and respective classes. Database A receives
data from all activities, databases B and C only from cane’s falls, and database D from walking activities.
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4.4.4 Model Building and Evaluation

The process explained here is responsible for building the four classification models for the AI-based

tool (Fig. 11), and involves the optimisation of the models’ hyperparameters. A total of 8 classifiers were

compared, namely DA with linear and quadratic approaches; KNN with linear, inverse and squared inverse

distances; Ensemble Learning; DT; SVM with linear, polynomial and gaussian kernels; and a Long Short-

Term Memory (LSTM), a CNN and a Convolutional Long Short-Term Memory (CLSTM) neural networks.

The first 5 classifiers were compared to obtain the best set of features. Then, it was compared the model’s

performance with the neural networks’ performance for the same set of features. This comparison aims to

identify the better-suited classifier for fall event, fall phase, fall category and cane event, aiming a low-cost

computation. Figure 14 depicts the entire process for obtaining the classifier with best performance for

each classification problem. Initially, it was performed the Hold-Out (HO) method to split 23 of data for

training and 1
3 for testing. With training data, for each classification problem, it was performed an initial

5-fold CV with 1 repetition to find the machine-learning classifier with best performance between DA, KNN,

DT, Ensemble Learning and SVM, with a specific subset of features. Further, the process was repeated

for the selected classifier using 10 repetitions and performed the hyperparameter optimisation. Test data

was further used to evaluate the classifier. The neural networks were also trained using only the subset

of features determined previously. Then, test data was used to evaluate the neural networks, allowing a

Testing both models

+

Comparative Analysis
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10-5-fold CV +

Hyperparameter
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Set of Features
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Figure 14: Schematic of the procedures performed to build and evaluate the classifiers.
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comparison between classifiers. The model with best performance was further evaluated with the LOO

CV method (only databases A to C). One subject was left out and trained the model with the other 10.

The process process was repeated 11 times to leave all subjects out once. This method evaluates the

generalisation capability of the final classification models [241]. Thus, it is possible to obtain the machine

learning classifier with best performance and a specific subset of features. All models were built to be used

in real time. The Mathew’s Correlation Coefficient (MCC) was used as evaluation performance metric, since

it presents good representative properties of unbalanced classes, which happens in this study. The ACC

was also computed for benchmarking the literature’s findings, as well as the SENS, the SPEC, the False

Negative Rate (FNR), the FPR and the F1-Score. These evaluation performance metrics were used for both

comparison and reporting of models’ performances [246].

4.5 Fall-Related Finite-State Machine

The FSM combines the accelerometer and gyroscope information to detect cane’s falls differently from the

existing threshold-based algorithms from literature. Mouta et al. [225] verified that an acceleration-based

lower-threshold is capable of detecting cane’s falls before the impact. However, a possible recovery of

the subject’s balance between the detection moment and the impact could result in a false positive. Thus,

gyroscope data is here used to confirm the impact on the ground. This FSM, represented in Fig. 15, shares

some procedures already described, such as data normalisation, filtering and data split for training and

test. The test data from the HO method and the LOO CV were also used to asses the FSM. Training data

was used to obtain the upper and lower thresholds. Once the SumVM of acceleration crosses the lower

threshold, a cane’s fall is validated when the SumVM of angular velocity surpasses the upper threshold in

less than 1 second later.

4.6 Cane Event Finite-State Machine

Correlation methods (Spearman and Pearson’s Correlation Coefficients) were used to compare inertial data

from aligned cane and foot strides and understand which sensors’ signals are correlated. This analysis

shows that the cane pattern indirectly reflects the human gait and thus events can be detected and used

as indicators of the associated human walking gait events. It also helps choosing which signals to use in

the FSM to establish the rules for cane events. Thus, it was created a FSM for cane event detection based

on the team’s work [247]. The number of conditions were reduced from 6 to 4 to match with the previously

described cane events (Fig. 10.b) and implemented a real-time high pass filter (derivative filter with 𝛼 =

0.995) to remove the baseline of the inertial data and simplify the decision-making rules. Moreover, foot

and cane strides were aligned offline since not all subjects performed a two-point gait with the cane. Table

2 contains details about the FSM decision rules which are based on curve tracing techniques, namely,
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Figure 15: Schematic of the FSM for fall detection.

adaptive thresholds crossing, local extrema detection (i.e., maximum and minimum), and the evaluation

of signal derivatives. These rules were implemented based on inertial data from male and female healthy-

bodied young subjects. Despite presenting changes in spatiotemporal gait parameters, elderly, according

to the literature, are expected to have a similar gait pattern [248].

Instead of just using information from gyroscope, accelerometer data were also included to help FGC,

MSM and FCO detection. Generically, it was defined: i) FGC as the instant in which the acceleration

suffers a polarity inversion due to the impact on the ground and the angular velocity is within a range

empirically determined (𝐹𝐺𝐶_𝐺𝑌𝑅𝑡ℎ𝑟 ± 𝐹𝐺𝐶_𝐺𝑌𝑅𝑠𝑡𝑑 = −35.75 ± 22.93𝑜/s) after the maximum

value has occurred. The acceleration is also within a range empirically determined (𝐹𝐺𝐶_𝐴𝐶𝐶𝐸𝐿𝑡ℎ𝑟 ±
𝐹𝐺𝐶_𝐴𝐶𝐶𝐸𝐿𝑠𝑡𝑑 = −0.09 ± 0.23𝑔); ii) MSM was defined as when the angular velocity is within a range

empirically determined (𝑀𝑆𝑀_𝐺𝑌𝑅𝑡ℎ𝑟 ± 𝑀𝑆𝑀_𝐺𝑌𝑅𝑠𝑡𝑑 = −17.06 ± 10.58𝑜/s), the derivative of the
gyroscope signal is negative, the accelerometer signal is negative for ten samples, after 43% of the size

of the previous stride; iii) FCO was determined as the maximum detected above an adaptive threshold

(𝑀𝐴𝑋_𝐴𝐶𝐶𝑡ℎ𝑟 ), i.e., a local maxima, after 55% of the size of the previous stride; and iv) CMSW was

determined similarly to the FCO, however using the angular velocity data to detect a maximum above an

adaptive threshold (𝑀𝐴𝑋_𝐺𝑌𝑅𝑡ℎ𝑟 ). The rules are also accompanied by conditions dependent on stride

time, i.e., adaptive intervals where the events shall occur. This implies robustness to the algorithm for

changes in gait speed. The FSM approach shares some procedures already described for the AI-based

framework, such as data normalisation, filtering and division for training and test. Training data was used

to establish threshold values for decision rules, while test data was used to evaluate the FSM.
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Table 2: Decision Rules with Adaptive Thresholds in Generic Form

State Decision Rule

1 - FGC (𝐹𝐺𝐶_𝐺𝑌𝑅𝑡ℎ𝑟 - 𝐹𝐺𝐶_𝐺𝑌𝑅𝑠𝑡𝑑 <𝑔𝑦𝑟𝑜𝑛 <𝐹𝐺𝐶_𝐺𝑌𝑅𝑡ℎ𝑟 + 𝐹𝐺𝐶_𝐺𝑌𝑅𝑠𝑡𝑑 ) AND
(𝐹𝐺𝐶_𝐴𝐶𝐶𝑡ℎ𝑟 - 𝐹𝐺𝐶_𝐴𝐶𝐶𝑠𝑡𝑑 <𝑎𝑐𝑐𝑛 <𝐹𝐺𝐶_𝐴𝐶𝐶𝑡ℎ𝑟 + 𝐹𝐺𝐶_𝐴𝐶𝐶𝑠𝑡𝑑 ) AND (𝑎𝑐𝑐𝑛
>0) AND (𝑎𝑐𝑐_𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑛 >0) AND (𝑎𝑐𝑐_𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑛−1 <0) AND (𝑎𝑐𝑐_𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑛−2 <0)

2 - MSM (𝑀𝑆𝑀_𝐺𝑌𝑅𝑡ℎ𝑟 - 𝑀𝑆𝑀_𝐺𝑌𝑅𝑠𝑡𝑑 <𝑔𝑦𝑟𝑜𝑛 <𝑀𝑆𝑀_𝐺𝑌𝑅𝑡ℎ𝑟 + 𝑀𝑆𝑀_𝐺𝑌𝑅𝑠𝑡𝑑 ) AND
(𝑎𝑐𝑐𝑛−9:𝑛 <0) AND (𝑔𝑦𝑟𝑜_𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑛−2:𝑛 <0) AND (𝐼𝑛𝑑𝑒𝑥 - 𝐹𝐺𝐶𝑖𝑛𝑑𝑒𝑥 >0.43 ×
𝑆𝑇𝑅𝐼𝐷𝐸_𝑇 𝐼𝑀𝐸𝑃𝑟𝑒𝑣 )

3 - FCO (𝑎𝑐𝑐𝑛 >𝑀𝐴𝑋_𝐴𝐶𝐶𝑡ℎ𝑟 ) AND (𝑎𝑐𝑐_𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑛 <0) AND (𝑎𝑐𝑐_𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑛−1 >0) AND
(𝐼𝑛𝑑𝑒𝑥 - 𝐹𝐺𝐶𝑖𝑛𝑑𝑒𝑥 >0.55 × 𝑆𝑇𝑅𝐼𝐷𝐸_𝑇 𝐼𝑀𝐸𝑃𝑟𝑒𝑣 )

4 - CMSW (𝑔𝑦𝑟𝑜𝑛 >𝑀𝐴𝑋_𝐺𝑌𝑅𝑡ℎ𝑟 ) AND (𝑔𝑦𝑟𝑜_𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑛 <0) AND (𝑔𝑦𝑟𝑜_𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑛−1 >0) AND
(𝐼𝑛𝑑𝑒𝑥 - 𝐹𝐺𝐶𝑖𝑛𝑑𝑒𝑥 ∈ [0.7 × 𝑆𝑇𝑅𝐼𝐷𝐸_𝑇 𝐼𝑀𝐸𝑃𝑟𝑒𝑣 : 1.3 × 𝑆𝑇𝑅𝐼𝐷𝐸_𝑇 𝐼𝑀𝐸𝑃𝑟𝑒𝑣 ] )

4.7 Validation Approaches

The proposed system was calibrated before data collection while the participant and the cane were in the

upright standing position for 3 s to remove the data offsets. All subjects used the cane in their preferred

hand and they were allowed to rest as much as they wished and when they wished. All participants provided

written and informed consent, respecting the ethical conduct defined by the University of Minho Ethics

Committee that follows the standards set by the declaration of Helsinki and the Oviedo Convention. The

AI-based framework and both FSM were validated through three protocols. The first protocol validated the

fall-related classification problems (Fig. 16). Further, cane event detectors were validated using repeated

measures of healthy gait patterns recorded in (Fig. 17): i) controlled; and ii) real-life situations.

4.7.1 Fall-related Protocol

This protocol included 11 able-bodied subjects with a mean age of 24.20±2.60 years old (22-29 years),

a mean height of 1.73±0.09 m (1.51-1.83m) and a mean weight of 70.80±8.23 kg (52-80kg). Further,

the subjects performed randomly a total of 7 activities three times each. The selection of activities was

based on the work of Noury et al. [102] where it is suggested a list of scenarios that must be addressed

for the evaluation of fall systems. The experimental protocol was divided in activities with and without

falls. Activities without falls consisted in walking at a comfortable pace with the cane. These activities

included three walking circuits: i) walk approximately 10 m forward, rotate 180𝑜 , and turn back to the

original position (Fig. 16.a); ii) walk approximately 10 m forward, turn right and walk 4 m (Fig. 16.b); and

iii) similar to the second circuit, however the subject turned left (Fig. 16.b). Activities with falls included

falls only from the cane and falls with the cane and subject simultaneously. Activities where subjects did

not fall were the: i) cane’s free-falling (Fig. 16.c); and ii) thrown out the cane (Fig. 16.d). These activities are

representative of falls in transitions between locomotion modes such as sit-to-stand and stand-to-sit, and
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a) b)

c) d) e) f)

Figure 16: Activities performed during experimental activities: a) Walk forward and turn back; b) Walk
forward and turn right or left; c) Cane free falling; d) Thrown out the cane; e) Falling forward; f) Falling
sideways.

even fainting. Two other activities involved subjects and cane’s falls: i) falling forward (Fig. 16.e); and ii)

falling sideways (Fig. 16.f). A total of 132 falls were recorded with 66 only performed by the cane (Fig. 16.c

and 16.d), and 66 combining the subject and cane (Fig. 16.e and 16.f): 33 were forward, 21 to the left and

11 to the right. The backward falls are missing in our experimental protocol because it was hypothesise

that cane’s users generally walk with their torso slightly flexed forward and, consequently, this type of fall

occurs less frequently.

4.7.2 Controlled Situations Protocol

A total of 7 able-bodied subjects (5 males and 2 females) with a mean age of 23.29 ± 1.16 years old

(22-29 years), a mean height of 1.70 ± 0.09m (1.51-1.81 m) and a mean weight of 69.57 ± 9.06 kg

(52-81 kg) participated in this study to validate cane event detection in controlled walking situations by

testing the effect of variations in the ground surface and gait speed (Fig. 17). The participants carried

walking experiments on an instrumented split-belt treadmill at different speeds (1.0 and 1.5 km/h) and

slopes (0%, and 10%). Three gait trials were randomly conducted for the following scenarios: 30 seconds

walking without inclination and speed of 1.0 km/h; and 30 seconds walking with an inclination of 10𝑜 at the
same speed (1.0 km/h). Besides, the participants were told to carry walking trials at changeable speeds

to approximate a real-life environment. In this case, the subjects walked for 60 seconds and changed gait

speed every 20 seconds according to the provided instructions (increasing from 1.0 km/h to 1.5 km/h

and decreasing again to 1.0 km/h).
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Walking in Inclined Surface
Level-ground walking:

flat surface
Walking in Staircase

Controlled Walking Situations: Treadmill with & without Inclination
Level-ground walking:

rough surface

Figure 17: Validation of the cane event detection approaches under controlled and real-life walking condi-
tions (flat and rough level-ground, inclined surfaces and staircases).

4.7.3 Real-Life Situations Protocol

These trials were also considered to assess human locomotion in various conditions, including 7 able-

bodied subjects (5 males and 2 females). They presented a mean age of 24.14±0.83 years (23-25 years),
a mean body mass of 70.85±5.25 kg (61-75 kg), and a mean height of 1.75±0.04m (1.70-1.81 m). Since

human gait is very dynamic in the real-world frequently including different gait speeds, surfaces and surface

inclinations, the proposed approaches were verified in uncontrolled indoor and outdoor conditions. Three

gait trials were randomly conducted for the following scenarios, which are illustrated in Fig. 17: forward

level-ground walking on a 20m flat surface; forward level-ground walking on a rough surface (urban ground)

along 30 m; descending and ascending an inclined ground (approximately 10𝑜 ) and a 10 m rough surface;

and climbing a staircase of 8 steps with standard dimensions (a height of 17 cm, depth of 31 cm, and

step width of 110 cm). For each condition, the participants were asked to walk at a comfortable speed to

achieve proper ambulation with a cane.
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4.8 Pre-impact fall detection time

Both the Fall Event Classification Model and the fall-related FSM are designed to detect a cane’s fall during

the collapse phase. Thus, since the collapse phase occurs before the impact, it is important to understand

how long in advance both tools can predict the impact. Pre-impact fall detection times from the fall event

classification model and the FSM were assessed using test data split by the HO and LOO CV methods.

Inertial-based wearable systems have been widely explored for pre-impact fall detection. These systems

allow protection during falls since they detect in advance the occurrence of a fall impact with a short lead

time, usually presented in milliseconds [210]. The majority of studies present lead-times shorter than 400

ms and use simple threshold-based algorithms with high values near or equal to 100% of ACC, SENS

and SPEC. Bourke et al. [249] presented a mean of 323 ms only by using accelerometer and gyroscope

data from the chest. Liu and Lockhart [250] also used inertial information, however the mean lead time

was lower (255ms). Regarding machine learning-based strategies, Shan and Yuan [251] trained a SVM

classifier using data from a tri-axial accelerometer at the subjects’ posterior waist and achieved a mean

lead time of 203 ms. Martelli et al. [252] used a neural network instead and presented a higher mean lead

time (351 ms). Nyan et al. [253] developed a strategy based on the characteristics of angular movements

of the thigh and torso segments. Their system presented also high ACC and a mean lead-time of 727 ms

before impact. To the best knowledge of the authors, no study on the pre-impact fall detection time was

ever performed for conventional canes only instrumented with inertial sensors. Pre-impact fall detection

systems implemented in canes can be combined with existing wearable systems capable of actuating with

e.g. wearable airbags for a more reliable detection.

4.9 Fall Detection: Results and Discussion

4.9.1 PCA Outcomes

For a cumulative percent explained superior to 70%, it was verified a similar number of PC and minimum

individual percent explained between different databases. Only training data split from HO method was

used. Moreover, the number of features with a PC value greater than 1
165 is equal between databases A

and B (31) and lower for database C (26). Once performed the PCA, the number of features for the AI-

based framework has been reduced. Instead of using the 165, the 62 first ranked features by any feature

selection method were used for the 2 first classification problems and the 52 first features for the third

classification problem. Table 3 resumes the information of the PCA-based procedure.
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Table 3: PCA outcomes for computational cost reduction

Database (Model) Cumulative % Explained PC (Min. % Explained) Features

A (Fall Event) 70.87% 13 (>2.50%) 31
B (Fall Phase) 70.90% 14 (>1.82%) 31

C (Fall Category) 70.45% 13 (>2.01%) 26

4.9.2 Fall Event Classification

The 5-fold CV with one repetition revealed that KNN presented the best performance among the used

classifiers (MCC = 99.88%; ACC = 99.98%) while using the first 32 features ranked by the Relief-F

method. Ensemble learning presented closer but lower results (MCC = 99.69%; ACC = 99.96%) with

the first 28 ranked features by the Relief-F method. Even with the first 55 features ranked by the same

feature selection method, DT presented lower results (MCC = 99.20%; ACC = 99.90%); as well as the

Gaussian SVM (MCC = 96.52%; ACC = 99.57%) with the same 32 features that KNN used; and the

Linear DA with the first 46 features ranked by the MutInfFS method (MCC = 92.28%; ACC = 99.06%).

The KNN and the respective set of features went through a 5-fold CV with 10 repetitions to assess what

influence more repetitions could have on the model’s performance. For this particular case, increasing

the number of repetitions did not worsen the CV results. Instead, when using HO Test Data, the model

presented lower results (MCC = 93.76%; ACC = 99.24%). Hyperparameter optimisation did not improve

the model’s performance. Using the first 32 features ranked by the Relief-F method, the LSTM presented

slightly better results while using HO Test Data (MCC = 93.81%; ACC = 99.26%) when compared to

the KNN’s performance. Although it identified all the 41 falls included in the test dataset, these errors

frequently happen at the beginning of the fall’s collapse phase where the model has some short-time

misclassifications due to indecisions or simply a delay. The remaining neural networks presented lower

results when compared to KNN. Although CNN presented an almost 5% difference in MCC value (MCC =

88.92%; ACC = 97.64%), the CLSTM only presented a 1% difference (MCC = 92.72%; ACC = 99.13%).

Thus, LSTM is the model with better performance for fall detection among all tested classifiers. The LSTM

was further subjected to a LOO CV, presenting results in accordance to what was mentioned before (MCC

= 93.97% ± 2.12%; ACC = 99.24% ± 0.28%). Table 4 depicts the subset of features found for each

classification problem where the respective model presented the best performance. Features are presented

in descending order according to the ranking. Table 6 contains the main results.

4.9.3 Fall Phase Classification

KNN presented the best performance among the used classifiers during the 5-fold CV with one repetition

(MCC = 98.25%; ACC = 99.60%). This result was obtained while using the first 17 ranked features by the

mRMR method. Ensemble learning with the first 21 features ranked by the same feature selection method,
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was the classifier with the closer results to the KNN (MCC = 97.59%; ACC = 99.45%). More repetitions

in the 5-fold CV are considered irrelevant for the model’s performance (MCC = 98.13%; ACC = 99.58%).

The use of HO Test Data revealed a considerable decrease in the model’s performance (MCC = 83.30%;

ACC = 94.73%). These results already account the hyperparameter optimisation, which slightly improved

the performance. Misclassification occur mostly in the Impact phase since it presents a low proportion

of data when compared to other phases. The precision of the Collapse, Impact and Shock phases were:

96.84%, 73.31% and 94.57%, respectively. It was chosen the LSTM for fall phase classification because

it presented better performance results than KNN for the same features while using HO Test Data (MCC

= 86.93%; ACC = 95.91%). Each phase presented higher precision values: Collapse - 97.94%; Impact

- 83.01%; and Shock - 95.80%. CLSTM also presented close results to LSTM and slightly better than

KNN (MCC = 85.96%; ACC = 95.79%). Once again CNN presented lower results than KNN and the other

neural networks (MCC = 79.42%; ACC = 93.92%). When subjected to a LOO CV, LSTM presented results

in accordance to what was mentioned before (MCC = 87.82% ± 2.53%; ACC = 96.50% ± 1.39%). Table

7 presents the main results.

4.9.4 Fall Category Classification

For Fall Category Classification, the classification of the following classes presented the best possible

results: i) Forward+Right; and ii) Left. This can be connected to the fact that all subjects involved in the study

used the cane with their right hand, which affected the falls to the right side since they avoided fall over the

cane. This produced falls closer to forward falls, while falling to the left was more discriminative. Besides,

the number of falls to the left are twice the number of falls to the right. Additionally, this classification

problem only accounts for the collapse and impact phases. During shock phase, the cane suffers more

rotations due to the consecutive impacts on the floor. KNN presented the best performance during the

5-fold CV with one repetition (MCC = 100%; ACC = 100%). With the first 40 features ranked by the

Relief-F method. The second model with better results was the Ensemble Learning (MCC = 99.94%;

ACC = 99.97%), requiring the first 45 features ranked by the same feature selection method. Increasing

the number of repetitions did not alter the outcome, however, when using HO Test Data, the model’s

performance decreased drastically (MCC = 43.70%; ACC = 74.54%), which may indicate overfitting during

the 1-5-fold and 10-5-fold CV. These results already account the hyperparameter optimisation. Regarding

the neural network classifiers, CLSTM presented the highest results (MCC = 42.58%; ACC = 74.11%),

however, they are lower than those presented by KNN. Both LSTM and KNN presented MCC values lower

than 40% (39.57% and 35.75%). LOO CV only reinforced the negative results (MCC = 26.29%±18.12%;

ACC = 73.08% ±15.10%). Fall Category Classification results are expressed in Table 8. All confusion

matrices are available on Appendix A.2.
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Table 4: Features ranked in descending order per classification problem

Classification
Problem

FSM No. of
features

Ranked features

Fall Event Relief-F 32 95, 134, 137, 135, 89, 94, 28, 44, 4, 136, 36, 40, 38,
118, 96, 46, 48, 77, 30, 116, 117, 26 , 8, 32, 133, 130,
42, 143, 93, 124, 114, 6

Fall Phase mRMR 17 147, 27, 134, 39, 137, 113, 114, 136, 35, 34, 135, 144,
25, 26, 141, 132, 46

Fall Category Relief-F 40 132, 131, 137, 136, 115, 144, 134, 135, 113, 133, 130,
95, 116, 119, 118, 117, 114, 36, 44, 4, 28, 94, 70, 38,
106, 46, 103, 30, 127, 111, 158, 5, 97, 40, 29, 8, 93, 110,
164, 37

Cane Event Relief-F 32 118, 38, 116, 132, 91, 46, 131, 137, 136, 6, 135, 115, 30,
25, 134, 141, 41, 122, 130, 71, 133, 95, 119, 144, 33, 1,
28, 36, 44, 4, 85, 94

4.9.5 Fall Detection Finite-State Machine

Similarly to the AI-based framework, the FSM detected correctly all falls (41 for HO Test Data and 127 falls

for LOO). Considering the HO Test Data, the FSM (MCC = 92.88%; ACC = 99.15%) presented results

closer to the LSTM (MCC = 93.81%; ACC = 99.26%). The LSTM presents better results for the LOO CV

than for the HO Test Data (MCC = 93.97% ± 2.12%; ACC = 99.24% ± 0.28%). On the other hand,

the FSM performance for the LOO CV slightly decreases (MCC = 92.21% ± 2.39%; ACC = 99.03%
± 0.38%). Results of the FSM performance are in accordance to the literature (Table 9). ACC and SPEC

values are near-perfect results. However, the SENS is lower because the tool detects the fall collapse phase

with some delay. Upper and Lower Thresholds (Fig. 15) obtained when using HO Training Data and during

LOO CV are represented in Table 5. The threshold values are similar in both situations.

Table 5: Normalised Upper and Lower Threshold values obtained for the FSM

Threshold HO Test LOO

Upper Threshold 0.1766 0.1840
Lower Threshold 0.0381 0.0378

Table 6: Fall Event Classification Model’s performance

Model Method ACC (%) SENS (%) SPEC (%) FPR (%) FNR (%) F1 Score (%) MCC (%) Build (s) Classify (s)

KNN 10-5-fold 99.98± 0.002 99.89± 0.02 99.99± 0.001 0.01± 0.001 0.11± 0.02 99.89± 0.01 99.88± 0.01 0.993 0.0593
KNN HO Test 99.24 92.15 99.74 0.26 7.85 94.14 93.76 4.965 0.0573
LSTM HO Test 99.26 90.19 99.9 0.10 9.81 94.11 93.81 4187 0.1444
LSTM LOO 99.24± 0.28 91.36± 4.65 99.83± 0.25 0.17± 0.25 8.64± 4.65 94.25± 2.07 93.97± 2.12 4291 0.1439
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Table 7: Fall Phase Classification Model’s performance

Model Method ACC (%) SENS (%) SPEC (%) FPR (%) FNR (%) F1 Score (%) MCC (%) Build (s) Classify (s)

KNN 10-5-fold 99.58± 0.04 98.05± 0.18 99.69± 0.03 0.31± 0.03 1.95± 0.19 98.41± 0.14 98.13± 0.17 0.291 0.0063
KNN HO Test 94.73 84.80 95.95 4.05 15.20 86.74 83.30 1.455 0.0060
LSTM HO Test 95.91 87.30 96.75 3.25 12.7 89.54 86.93 1043 0.1246
LSTM LOO 96.50± 1.39 89.32± 3.37 97.60± 1.33 2.40± 1.33 10.68± 3.37 89.93± 1.68 87.82± 2.53 1246 0.1241

Table 8: Fall Category Classification Model’s performance

Model Method ACC (%) SENS (%) SPEC (%) FPR (%) FNR (%) F1 Score (%) MCC (%) Build (s) Classify (s)

KNN 10-5-fold 100 100 100 0 0 100 100 0.247 0.0039
KNN HO Test 74.54 91.59 46.14 53.86 8.41 81.81 43.70 1.455 0.0042
CLSTM HO Test 74.11 91.78 44.55 55.45 8.22 81.61 42.58 475 0.0041
KNN LOO 73.08± 15.10 80.98± 14.01 45.25± 31.09 36.57± 28.16 19.02± 14.01 78.94± 12.24 26.29± 18.12 1.723 0.0044

Table 9: FSM performance for different methods and data

Method ACC (%) SENS (%) SPEC (%) FPR (%) FNR (%) F1 Score (%) MCC (%) Build (s) Classify (s)

HO Test 99.15 87.77 99.95 0.05 12.23 93.13 92.88 0.147 0.0017
LOO 99.03± 0.38 87.36± 4.36 99.89± 0.19 0.11± 0.19 12.64± 4.36 92.48± 2.38 92.21± 2.39 0.165 0.0012

4.9.6 Pre-Impact Fall Detection Time

Generally, the LSTM presents higher lead-times than the FSM (Fig. 18). This can be justified by a higher

value of FNR presented by the FSM. This means it detects the fall closer to the impact than the LSTM. With

lead times of 446±210 ms (HO Test Data) and 373±158 ms (LOO CV), the LSTM detects earlier a fall

event than the majority of the existing studies on wearable systems and with a higher number of different

activities during the experimental protocol. On the other hand, the FSM only surpasses some studies [250,

251], presenting lead times of 285±206 ms (HO Test Data) and 266±93 ms (LOO CV).
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Figure 18: Comparision of pre-impact fall detection times and ranges between both approaches and liter-
ature results.
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4.10 Cane Event Detection: Results and Discussion

4.10.1 Correlation between Cane and Foot Signals

Filtered inertial data from cane and foot strides were compared and the acceleration V (Pearson = 0.56±
0.23; Spearman = 0.67±0.18) and angular velocity ML (Pearson = 0.60±0.27; Spearman = 0.47±0.23)
were the signals with higher correlation coefficients. Both signals present a large correlation according

to the Pearson’s correlation coefficient, and a strong (acceleration V) and moderate (angular velocity ML)

correlation according to the Spearman’s correlation coefficient. The rest of the signals present a small

or very weak correlation with values closer to 0. Acceleration AP and angular velocity V present positive

values, while Acceleration ML and angular velocity AP present negative values. It was opted to employ the

acceleration V and the angular velocity ML for decision rules as a result of these findings (Table 2). The

angular velocity ML is commonly used among state-of-the-art FSM [247].

4.10.2 PCA Outcomes

For a cumulative percent explained superior to 70%, it was verified that 14 PC are required. Moreover, the

resultant PC evidenced that there are 35 features with a PC value greater than 1
165 . Once performed the

PCA, to reduce the computational cost of the comparative analysis (Fig. 11), the number of features has

been reduced, i.e., instead of using all the 165 features, only the first 70 features ranked by any feature

selection method were used. Only training data from the HO approach was used in this study.

4.10.3 Cane Events Classification and Detection

The 1-5-fold CV results revealed that KNN presented the best performance among the used classifiers

(MCC = 98.35%; ACC = 98.95%) while using the first 32 features ranked by the Relief-F method.

Ensemble learning presented closer but lower results (MCC = 98.01%; ACC = 98.73%) with the first 24

ranked features by the Relief-F method. DT presented lower results with the first 19 features ranked by

the same method (MCC = 95.45%; ACC = 97.06%); as well as the Gaussian SVM (MCC = 89.04%; ACC

= 92.54%) with the same 32 features that KNN used; and the Quadratic DA with the first 18 features

ranked by the mRMR method (MCC = 72.51%; ACC = 81.37%). The KNN went through a 5-fold CV

with 10 repetitions and it was discovered that increasing the number of repetitions had no effect on the

outcome CV results (MCC = 98.34±0,02%; ACC = 98.95±0.01%). However, when using Test Data, the

model presented lower results (MCC = 77.97%; ACC = 85.29%). KNN hyperparameters are: i) distance

- Minkowski; ii) distance weight - Inverse; iii) Exponent - 0.5; and iv) Number of neighbours - 1. Using the

first 32 features ranked by the Relief-F method, the LSTM stood out among the neural networks in

the 10-5-fold CV, however it presented lower results when compared to KNN (MCC = 90.94±0.23%; ACC

= 93.86±0.18%). While using Test Data, the CLSTM presented the best performance (MCC = 84.44%;
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Table 10: Algorithms Performance in Controlled Situations Considering the Maximum Timing Error

Cane Events
CLSTM FSM

ACC (%)
Delay Advance

ACC (%)
Delay Advance

% ms % ms % ms % ms

FGC 99.27 37.28 31.79 ± 35.32 43.46 51.31 ± 55.19 92.37 10.92 27.03 ± 19.27 85.84 77.59 ± 51.35
MSM 96.53 43.96 84.04 ± 62.26 49.10 94.01 ± 54.54 84.15 21.43 98.56 ± 50.88 77.92 91.00 ± 53.17
FCO 99.78 14.39 18.62 ± 10.99 38.21 32.92 ± 38.69 97.26 86.48 16.97 ± 22.33 13.52 40.10 ± 41.79
CMSW 99.87 38.23 28.71 ± 23.17 29.87 29.75 ± 20.28 99.49 19.54 6.51 ± 4.24 64.78 36.51 ± 38.32

Table 11: Algorithms Performance in Real-Life Situations Considering the Maximum Timing Error: Level-
Ground Surfaces

Cane Events
CLSTM FSM

ACC (%)
Delay Advance

ACC (%)
Delay Advance

% ms % ms % ms % ms

FGC 99.87 38.40 21.56 ± 8.70 36.00 28.67 ± 18.04 98.21 1.82 40.00 ± 3.71 98.18 102.04 ± 46.00
MSM 98.40 52.85 94.62 ± 49.88 40.65 95.90 ± 50.32 84.91 44.44 88.75 ± 64.60 53.33 74.38 ± 55.94
FCO 100 16.94 21.43 ± 23.03 33.06 16.83 ± 4.97 100 100 13.11 ± 10.66 0 -
CMSW 100 60.18 35.29 ± 25.76 14.16 23.44 ± 12.21 100 8.06 8.00 ± 4.47 77.42 26.46 ± 25.47

Table 12: Algorithms Performance in Real-Life Situations Considering the Maximum Timing Error: Inclined
Surfaces

Cane Events
CLSTM FSM

ACC (%)
Delay Advance

ACC (%)
Delay Advance

% ms % ms % ms % ms

FGC 99.82 46.00 23.48 ± 20.14 46.00 83.48 ± 55.93 90.63 10.34 33.33 ± 5.77 89.66 106.15 ± 51.11
MSM 99.27 52.00 139.92 ± 9.42 42.00 135.00 ± 8.97 81.25 50.00 113.46 ± 60.43 42.31 46.36 ± 44.11
FCO 100 18.75 25.00 ± 16.77 25.00 15.00 ± 3.68 100 96.88 12.26 ± 6.43 0 -
CMSW 100 40.00 26.67 ± 25.50 33.33 58.00 ± 41.61 100 27.03 10.00 ± 8.50 54.05 32.25 ± 29.93

Table 13: Algorithms Performance in Real-Life Situations Considering the Maximum Timing Error: Stairs

Cane Events
CLSTM FSM

ACC (%)
Delay Advance

ACC (%)
Delay Advance

% ms % ms % ms % ms

FGC 100 19.74 21.00 ± 7.61 65.79 90.00 ± 55.47 100 17.65 40.00 ± 21.79 82.35 84.29 ± 60.28
MSM 85.53 32.31 117.14 ± 28.46 64.61 126.07 ± 16.13 43.75 50.00 125.00 ± 17.66 50.00 66.67 ± 36.86
FCO 99.82 21.62 16.88 ± 5.12 40.54 17.50 ± 5.69 93.75 93.33 73.21 ± 75.84 0 -
CMSW 100 36.76 48.60 ± 49.23 38.24 40.96 ± 28.95 100 25.00 41.00 ± 77.73 35.00 25.00 ± 19.79

ACC = 89.41%). LSTM presented similar results to the CLSTM neural network (MCC = 84.44%; ACC =

89.09%). On the contrary, CNN presented results lower than the other classifiers (MCC = 68.69%; ACC

= 79.32%). Thus, CLSTM is the classifier with better performance for cane event classification among

all tested classifiers. Through all test results, the FNR (>11.84%) and FPR (>4.11%) present significant

values mainly due to delays and advances in detecting events. Table 14 contains the main results for this

classification problem.

The ACC, the percentage of occurrence and duration of delays and advances in the controlled (Table

10) and real-life situations (Tables 11, 12 and 13) were further studied to assess the versatility and time-

effectiveness of the model. The time-effectiveness was only inspected for correct detections. Timing errors

greater than 150 ms (10% of the mean stride duration empirically determined) were considered as a
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Table 14: Cane Event Segmentation Performance

Model Method ACC (%) SENS (%) SPEC (%) FPR (%) FNR (%) F1 Score (%) MCC (%) Build (s) Classify (s)

KNN 1-5-fold 98.95 98.73 99.63 0.37 1.27 98.72 98.35 0.564 0.0574
KNN 10-5-fold 98.95 ± 0.01 98.72 ± 0.01 99.63 ± 0.003 0.37 ± 0.003 1.28 ± 0.01 98.72 ± 0.01 98.34 ± 0.02 1.003 0.0587
KNN HO Test 85.29 83.31 94.46 5.54 16.69 83.47 77.97 5.237 0.0577
LSTM 10-5-fold 93.86 ± 0.18 93.15 ± 0.24 97.70 ± 0.07 2.30 ± 0.07 6.85 ± 0.31 93.23 ± 0.20 90.94 ± 0.23 4751 0.1222

CNN-LSTM HO Test 89.41 88.20 95.89 4.11 11.84 88.46 84.44 4687 0.1083
FSM HO Test 87.49 84.67 94.85 5.15 15.33 86.04 81.32 0.157 0.0023

misdetection. It was confirmed that the CLSTM can detect event transitions with an ACC higher than 99%

for FGC, FCO and CMSW in both situations. The lower ACC of MSM event (85.53%) is exhibited on stairs.

However, the remaining ACC values are greater than 96.53%. Advances (<135.00±8.97 ms) and delays

(<139.92±9.42 ms) are generally higher than those obtained by [247].

4.10.4 Cane Event Finite-State Machine

The FSM presented an ACC of 87.49% when using Test Data (segmented outcomes), which is very close to

the result presented by the CLSTM (89.41%) and suggests feasibility to this proposed method that only uses

two features (Table 14). Considering the versatility and time-effectiveness of the FSM, and the maximum

timing error of 150 ms previously defined, it was verified that CMSW is the event with higher ACC values

for controlled (ACC of 99.49%) and real-life (ACC of 100%) situations. This event is followed by the FGC

(ACC >90.63%) and FCO (ACC >93.75%) events. The FGC is better detected in stairs and level-ground

surfaces, while the FCO is detected accurately (100%) in inclined and level-ground surfaces. As well as the

CLSTM, the FSM has more difficulties in detecting the MSM event, especially on stairs where the ACC was

43.75%. On the other situations the ACC is within 81.25% and 84.91%. Advances (<106.15±51.11 ms) and
delays (<125.00±17.66 ms) are also generally higher than those obtained by [247]. However, the CMSW

is the only event detected by the FSM with shorter mean advances and delays values for all situations

when compared to the CLSTM results. The remaining values of advances and delays are similar. The FCO

is never detected in advance for level-ground and inclined surfaces.

4.11 Conclusions

The AI-based tool correctly classified fall events and phases commonly encountered in daily life exclusively

from data coming from an instrumented conventional cane. On the other hand, fall category classification

presented weak results possibly due to a low amount of data, presenting over-fitting during training. The

most effective AI-based model for the following classification problems are (Table 4): i) fall event: LSTM

using the first 32 features ranked by Relief-F method; ii) fall phase: LSTM using the first 17 features

ranked by mRMR method; and iii) fall category: KNN using the first 40 features ranked by Relief-F method.

Moreover, the tool correctly classified cane events and proved to be an accurate, time-effective, low-cost,
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low computation strategy for real-time gait analysis. Therefore, it can be used either in gait assessment

or rehabilitation tasks. The most effective AI-based classifier was the CLSTM using the first 32 features

ranked by Relief-F method. The first and third classification problems share 22 features, more than half of

the features, as they use the same feature selection method. In contrast, since the fall phase classification

uses a different method, it only shares 7 features with the fall event classification and 9 features with

the fall category classification. All three classification problems share 6 features with great variability in

amplitude and frequency between normal walking and fall events: 46, 114, and 134-137. These 6 features

are thus able to detect normal walking and fall events. The resultant of standard deviation and its value

for each axis (features 134-137) use acceleration data to estimate the standard deviation till time and can

detect specific variations during fall events. The mean of the angular velocity in the ML axis (feature 46)

and the second quaternion (feature 114) may be selected because of the relevance of movements around

the ML axis. The fall-related FSM presented close results for fall detection when compared to the Fall Event

Classification Model. Both tools can detect the occurrence of a fall with short lead times before the impact.

However, the LSTM is more prone for this function since it presented higher lead times: 446±210 ms with
test data from HO method and 373±158 ms when applying the LOO CV method. Based on the obtained

results, the LSTM has better performance than the FSM. However, this requires a further study to assess

the computational load in an appropriate processing unit for real-time classification and understand how

it influences the lead-times for both approaches.

A correlation analysis between inertial data from the cane and the foot shown a large correlation for

the acceleration V and the angular velocity ML. The angular velocity ML is commonly used in FSM for

wearable systems. It was decided to use both signals and the Cane Event FSM performance was closer

to the CLSTM performance. Only the MSM event presented significantly lower results, especially while

on stairs. Based on the results, the CLSTM is preferable than the FSM for this purpose. Due to its low

computational cost, the FSM can be implemented in a microcontroller like the one used in this study.

However, further studies can improve the FSM performance, especially the detection of the MSM event,

by testing new rules and using features from the first 32 ranked by the Relief-F method (Table 4). Both

FSM are recommended for a stand-alone version where the data remains in the embedded system of the

cane. The PCA-based procedure used to reduce the computation cost of the AI-based framework can be

thus considered as successful since the best performance of the models was achieved with less features

than those stipulated by this procedure.

This study contributes to the state-of-the-art with two versatile fall-related tools capable of detecting

the fall of a cane and two cane event detection tools capable of discriminate four events. The AI-based

tool was also designed to detect the fall phases and their category. Relevant features were found and they

can now be studied for further improvements regarding the fall and cane event detection in conventional

canes. There is also evidence that kinematic data from a cane are appropriate for predicting falls before

their occurrence and segment data between events.
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5
Cane-Type Robot

Still within the scope of stimulating the usability and acceptability of assistive devices, this chapter aims

to prove an innovative and cutting-edge technology-based concept by obtaining a functional prototype of a

cane-type robot. These type of robots have been researched extensively in the scientific community. How-

ever, mechanical validation and optimisation of the prototype design are lacking, which could prevent these

devices from reaching the market. Because this device is more sophisticated than a conventional cane, it

requires a series of chores to achieve an optimal result, which are detailed in this chapter: i) gather relevant

information about consumers’ needs and target specifications from scientific literature and international

standards; ii) present the cane-type robot prototype developed based on the information collected; iii) me-

chanically validate the prototype by performing mechanical simulation tests in the SolidWorks software;

iv) implement a low-level hardware and software architecture to manage the sensory and the actuation

units; v) implement a high-level hardware and software to manage the low-level information and actions;

vi) implement motion control strategies; and vii) validate the implemented functionalities.

5.1 Introductory Insight

To conceive, design, and commercialise a product, a series of phases from a specific and detailed devel-

opment process must be followed (Fig. 19) [50]. As a result, the creation of a cane-type robot followed

the ideas of this generic development process in order to produce a valuable and unique device capable

of overcoming the mentioned drawbacks in subsection 2.3 of the state of the art. Quality assurance

and coordination are the two main reasons why a well-defined development process is beneficial when

creating a new product. For the quality assurance, the development process outlines the steps it will
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Figure 19: The generic product development process while detailing the concept development process.

take and the checkpoints it will encounter. Following the development process is a way to ensure the qual-

ity of the final product when these phases and checkpoints are appropriately chosen. Second, the clearly

described development process serves as a master plan that outlines the tasks of each person on the

development team, including when and with whom they will need to exchange information and materials.

As shown in Fig. 19, the generic product development process is divided into six stages. The process

starts with a planning phase, which serves as a bridge between advanced research and technology

development activities. The mission statement is the result of the planning phase, and it is the input

required to begin the concept development phase, as well as a guide for the development team. The

product launch marks the end of the product development process, when the product becomes available

for purchase in the marketplace. The needs of the target market are recognised during the concept

development phase (Fig. 19), and alternative product concepts are produced and reviewed before one

or more concepts are chosen for further development and testing. A concept is a description of a product’s

shape, function, and characteristics that is usually supported by a set of specifications, a competitive

product analysis, and a business case for the project. Finally, system-level design, detail design and

testing and refinement phases complete the generic product development process explained by Ulrich

and Eppinger [50] before product launch. They are responsible for, respectively: i) the definition of the

product architecture, decomposition of the product into subsystems and components, and preliminary

design of key components; ii) the complete specification of the geometry, materials, and tolerances of all

of the unique parts in the product and the identification of all of the standard parts to be purchased from

suppliers; and iii) the construction and evaluation of multiple pre-production versions of the product.

The cane-type robot evolved through the many phases outlined previously until it reached a functional

prototype with an innovative, cost-effective, and intuitive motion control system that recognises user move-

ment intentions and identifies the user’s gait phases. Current literature cane-type robots present some

drawbacks: i) only were tested with forward falls [74]; ii) were designed and limited to move in a pre-

planned walking path [254], specially when the user is walking forward [255]; iii) requires previous data

from the patient gait to detect falls [73, 79]; and iv) requires wearable sensors information (e.g. force

sensors) to counteract fall occurrence or imbalance [43]. Large dimensions them awkward or impossible

to use in small places, and high weight makes transport and storage difficult [77, 78, 256, 257].
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5.2 Mission Statement

The mission statement helps to better grasp the cane-type robot’s significance and it is composed by

different steps [50], including: i) defining a description of the product; ii) indicating the target market for

the product; and iii) determining some premises for the robotic cane, so that the final concept works

according to the user. The core market for this product is those with restricted mobility, which can be

caused by stroke, Parkinson’s disease, or other types of restricting health issues, and includes people of

all ages. The cane-type robot must be able to overcome the accompanying gait issues while also assisting

in the prevention of falls. The benefit proposition is linked to a real-time fall prevention strategy, i.e., the

ability to avoid a fall and the negative effects that come with it. In this case, the key market for this gadget

is people who have trouble with their balance. Because various risk factors contribute to falls, it is possible

to include every customer who may require balancing assistance. The secondary market caters to the

seniors in institutions and people undergoing rehabilitation. Although falls are not specific to the elderly,

age has been identified as a significant risk factor, with a definite correlation established between ageing

and higher rates of falls. The goal of choosing a market in institutions and rehabilitation centres is to

set a starting point for the cane-type robot as a market product, allowing for a study of the product’s

performance before developing further functionalities for real-world applications. The cane-type robot is a

handheld gadget featuring smooth and intuitive motion control, as well as integrated real-time fall detection

and prevention strategies. The cane’s character as an assistance device, which is a product held in one

hand, determines the handheld assumption. Furthermore, according to Afzal et al. [258], the user-cane

contact is critical because the application of haptic light touch enhances balanced posture by assisting

the human brain in producing better upright balance and giving lateral stability while walking. Finally, it

is hoped that the final design adapts to the user’s stride, physical attributes, health issues, and needs.

The cane-type robot’s mission statement is stated in Table 15. This device presents the following main

functionalities: i) gait analysis through the estimation of gait parameters; ii) fall detection using an optical

system; iii) fall prediction by implementing a FRA tool and acting mechanically to avoid a fall; and iv) context

awareness by collection information from the environment.

Table 15: Mission Statement

Product Description Cane with built-in real-time fall prevention strategy.

Benefit Proposition Prevent falls and avoid injuries related to fall events altogether.

Primary Market Consumers with balance impairments.

Secondary Markets Institutionalised elders.
Rehabilitation patients.

Assumptions Handheld.
Built-in fall detection and prediction systems with a fall prevention strategy.
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5.3 Consumer Needs

Consumer needs are a key resource for judging the prototype’s actual utility during product development

phases such as defining the product’s target criteria, concept generation, and selection. [259]. A need

is considered as an attribute of a potential product that is desired by the consumer, i.e., the potential

end-user of the cane-type robot prototype [50]. Although the process of recognising customer needs is not

a perfect science, the information acquired is always valuable, even if it does not allow for the identification

of every demand. To reduce the inherent risk of building a new prototype, a modified strategy for gathering

consumer demands was used at this stage [50]. Instead of conducting interviews, focus groups, or other

methods, it was performed a literature search for typical uses, likes, dislikes, and suggested improvements

and needs associated with canes in general, which is presented below. By combining the results of nu-

merous studies, it was possible to avoid issues such as the financial expense of focus groups, the time

spent on interviews, and the project’s innovative component, while gaining a broader perspective on the

subject as a consequence of the greater number of perspectives considered.

Affordability refers to how much money the user has to spend on the cane’s purchase, upkeep, and/or

repair [260, 261]. According to a recent survey, the most prevalent cause for unmet mobility equipment

needs, such as canes, is cost [262]. If the cane is easy to set up and use that means the user can

assemble the product quickly, or it already comes assembled within an adequate package, learns how to

correctly use the device faster, or with less training required [263]. The gadget may be carried and utilised

in several locations at the same time. It responds to the user’s input and is compatible with a variety

of different devices [260, 261]. The cane should be the right height, with an ergonomic handle, and be

light to maximise physical comfort and effectiveness during sporadic moments where it is necessary to

transport the device anywhere else (e.g. change floor level) [77]. On the other hand, the device must have

the enough weight to be stable enough when support is required [43].

The user will not experience any physical discomfort as a result of using the device. The height of

the cane and how it is adjusted are critical for avoiding bad postures and a higher risk of falling [264].

Using varying shapes, sizes, and textures, the handle should be customised to accommodate different

hands with different ailments, such as arthritis [265]. A light triggering mechanism must be implemented

to provide better visibility to the cane’s user and improve its safety. Inadequate lighting results in poor

visibility which leads to a direct association with the risk of falling [266, 267]. Also to increase user’s

safety, vibrating motors should be integrated into the cane, with the purpose of notifying and adjusting

irregular gait through vibratory signals [268]. Typically, assistive devices incorporate haptic feedback in

the form of mechanical vibrations to assist blind users or even parkinsonians [269]. In addition, the device

should be lightweight to make it easier to use during the user’s daily routine and to prevent injuries [263].

The cane must be both safe to use and supportive to the user [270]. Given the device’s intended use, the

consumer must have an easy access to the product in the market [271]. However, there are still certain
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Table 16: Primary and Secondary Needs for Canes and Their Relative Importance

No. Primary
Needs

Secondary Needs Imp.

1 Affordable Cheap; maintenance-free; covered by financing programs; has no
hidden costs and a cost-free warranty.

3

2 Easy to set up
and use

User-friendly interface and easy to learn; automatically turns on; in-
dependent operation; already assembled; easily transported; equally
easy to use in both hands.

2

3 Correct height Height is adjustable; already with the correct height. 5
4 Ergonomic The handle is adjustable to the hand; has the correct size and shape

accordingly to the user; pleasing texture.
5

5 Safe The cane provokes no physical reactions; can be used everywhere;
illuminates dark places; alerts the user for irregular gait.

5

6 Lightweight The cane weight does not provoke fatigue. 5
7 Stylish Design compatible with the consumer’s ideals; customizable. 1
8 Offers support Supports a body weight percentage; helps the user to walk. 4
9 Easily obtained Simplified procurement process. 1
10 Effective Accurate fall prevention, motion intention and gait phase detection.

Control units sufficiently capable of executing the required algo-
rithms. The cane meets the consumer’s needs.

5

11 Durable Cane lasts at least or longer than the expected life. Battery enough
for a gait therapy session.

3

12 Reliable The cane is breakdown free; no special condition needed; remains
dependable under repeated use; no damage if not properly operated.

5

personal aspects that could influence how the cane is used. Reduce social stigma can start in the design

process by developing more trendy and fashionable devices that are compatible with the user’s personality

and lifestyle [272], resulting in increased psychological comfort whether using the device in public or in

private [260]. The cane needs also to be effective, durable, and reliable. The cane’s use will improve the

consumer’s living situation by increasing functional capacities and/or independence, preventing falls and

injuries, detecting user’s motion intention and gait phases, and addressing the user’s needs for such a

device [260]. Moreover, the cane-type robot should be able to move effectively in any direction without

changing orientation, being also capable of changing to any desired orientation while in motion. High- and

low-level control units must be powerful enough to meet these needs for real-time usage. The gadget must

be able to function for an extended period of time, with repeatable use resulting in predictable results [271].

This initial prototype’s battery life ought to be sufficient for gait therapy sessions. In future prototypes, the

battery should ideally last enough time for continuous and daily usage and assistance.

Table 16 divides consumer needs into two categories: primary needs, which are the most general, and

secondary needs, which describe demands in greater depth. It was feasible to assign a level of importance

to each primary need in collaboration with ORTHOS XXI dedicated personnel. This firm is engaged in
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the production of orthopaedic and hospital equipment. This ranking is based on a numerical scale of

1 to 5, with 5 being the most important and 1 being the least important. Along with the design, this

allows for proper trade-offs and resource usage. Because this is the initial prototype, functional needs took

precedence over other needs, and they are the ones that will be examined in the following section.

5.4 Target Specifications

Target Specifications are a set of individual specifications that describe what the product has to do or

accomplish. A specification is made up of a metric and a value, which can take many different forms,

such as a number, a range, or an inequality, and is always accompanied by the appropriate unit [50]. This

gives instructions on how to build and engineer a cane-type robot. They do not explain how the customer’s

needs will be met, but they do indicate what will be done to meet the needs identified in the previous

section. They are preliminary specifications that convey hopes, aspirations, and goals for a marketable

product. Appendix B lists all target specifications defined for the cane-type robot.

5.4.1 Affordability & Set-up and Use

Because there is now no commercial cane-type robot on the market, assessing or determining a price is

rather difficult. However, there are other fall-related market solutions. The prices of the Dring and iStand

canes are 129€ and 136€, respectively [273, 274]. They are, however, traditional cane concepts with

sensors for post-fall detection. Hip protectors are only capable of minimising fall impacts since they are

based on pre-impact fall detection algorithms. Helite Hip’Safe, for example, is a 649€ wearable airbag

[275]. Although complicated literature solutions for the cane-type robot can increase the final price, new

prototypes must be designed to lower manufacturing costs so that the product can compete with the

presented solutions, relying on instrumentation and usage simplicity with technological assistance, e.g.

detection of user’s motion intention, gait phases and fall prevention strategies.

5.4.2 Support, Height & Ergonomics

During the gait cycle, canes only support a portion of the user’s weight, and the weight transferred to the

cane changes as the user walks. When the cane is entirely upright, the maximum force is imparted to it

[276]. The weight of the cane is determined by the user’s weight, but even more so by their condition; for

example, users in bad health require more help [276]. According to Youdas et al. [277], the body weight

percentage value is 25%. However, the International Organisation for Standardisation (ISO) 11334-4:1999

[278] specifies a static loading test with a specified loading force of 1000 N ± 2 % with a minimum value

of 350 N ± 2 % to determine with greater certainty whether the cane can withstand large loads. The cane

is inspected to ensure that it is not damaged to the point where it is unsafe to use, and that no portion of

81



CHAPTER 5. CANE-TYPE ROBOT

the device is cracked or broken [278]. The weight of the final prototype, on the other hand, was set at a

maximum of 6 kg (skeleton, wheels, DC motors, battery and other hardware) , since the cane will be used

primarily on the ground. Otherwise, for conventional canes, literature proposes a weight lower than 1.2

kg because it can cause injuries in the user’s arm and shoulder [80]. Towards human-robot interaction

during gait to assess the influence of the weight on the device, mechanical simulation tests are required to

understand how the cane deforms during this interaction. This allows for a better understanding of where

and how force sensors can be used and, consequently, obtain input information for low- and high-level

algorithms. Firstly, considering that the transfer of body weight supported on a single tip cane is 29 kg

[276], deformation tests were specified with V forces of 300N (≈30.6 Kg) applied on the handle to simulate

this event. Another smaller value of force (100N) was applied separately in the AP and ML directions.

When compared to previous robotic devices, this gadget should be easier to transport in circumstances

where climbing or descending stairs is required. The weight is also crucial for DC motor dimensioning,

which involves determining the torque and angular speed of the shaft. Walking speeds greater than 1.3

m/s, according to Quach et al. [279], increase the chance of falling. As a result, the maximum lateral speed

was set to 1.3 m/s. The parameters for lateral acceleration, rotational speed, and rotational acceleration

were set to 1 m/s2, 1.3 rad/s, and 1 rad/s2, respectively, with the help of Orthos XXI, so that the device

can operate effectively to prevent a fall.

Another reality is that wrong cane length can cause a significant alteration in the user’s gait biome-

chanics [264]. A lengthy cane causes more postural sway, necessitating postural modifications to maintain

balance [280]. It alters the angle at which horizontal forces are applied, increasing the risk of slipping,

sliding, or tipping over [264]. When using a short cane, the user leans toward the cane and bends forward

when the device is placed forward, putting more strain on the lumbosacral region [281]. When the user

stands upright, the top of the cane should match the distal wrist crease [264]. Studies demonstrated that

this procedure allows 15º to 30º degree angle of elbow flexion which is biomechanically ideal [282]. The

ISO 11334-4:1999 specifies a minimum height of 350 mm and a maximum height of 1100 mm for canes,

which is normally adjustable for the user [278].

The handle of the cane is also very significant because the user grips it frequently while using it. The

length of the handle, i.e. the dimension of the handle measured lengthwise, is defined as 100-150 mm

to suit the user’s palm [283]. According to ISO 11334-4:1999, however, this value is determined by the

user and cane height, with a range of 65–110 mm [278]. A range of 25–45 mm should be considered

for the handle width, i.e. the size of the handgrip measured horizontally at the thickest point, to allow the

thumb to just cover the end of the index and middle fingers [283]. A similar range can be found in the

ISO standard (25-50 mm). The range of handle slope is 0º to 15º [151]. The surface on the handgrip

should not have sharp edges or high spots, which can decrease the comfort, strength, security of grip,

and potentially cause injuries [284].
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5.4.3 Safety, Durability & Effectiveness

Under normal circumstances, the cane must not cause harm to the user. All portions of the cane must

be free of burrs, sharp edges, or projections that could harm clothing or cause discomfort to the user,

according to ISO 11334-4:1999 [278]. In this context, international standards specify the need for three

tests, using ISO11334 and ISO24415 as examples [278, 285]. The stability test is performed to evaluate

the tipping angle and it is divided into two components: inwards and outwards. Both tests are carried out by

applying a static force of 250 N ± 2% to the handgrip’s midpoint and tilting the plane while simultaneously

recording the highest angle obtained by the plane when the walking stick is tilted. In the inwards test,

the angle must be at least 2 degrees, while in the outwards test, the angle must be at least 5 degrees

for a tripod walking stick and 7.5 degrees for a quad-cane [278]. The separation test is only applicable

to walking sticks which are joined together by two or more parts only when the joint is not part of the

height-adjustment mechanism. It involves pulling on the lower and top sections of the walking stick with

a 500 N ± 2 % force. That force should be increased progressively over 5 seconds, up to the maximum

force, and held there for 10 seconds. A positive result indicates that the canes’ top and lower halves cannot

be separated [278]. Because cane-type robots lack tips, the friction test cannot be used [285]. Light

triggering mechanism must illuminate the user’s path with low luminosity up to 5 meters in order to safely

and early find obstacles and environment hazards [286]. Additionally, users must perceive vibrations for

alerting tips. ISO 11334-4:1999 specifies a fatigue test when it comes to durability. A cyclic force of

450 N ± 2 % is given to the handle, with a minimum of 157.5 N ± 2 %, at a frequency of 1 Hz for 200

000 cycles. The cane must not be damaged to the point that it becomes unsafe to use, and no part must

break or crack [278]. The cane-type robot’s battery life must be at least 1 hour to ensure a gait therapy

session [287]. The cane-type robot’s effectiveness relies on several factors. First, the device must run the

algorithms in real-time without deficient delays. It also must present high performances for fall prevention

(≥ 84% ) [224], motion intention (>95%) and gait phase detection (>95%). The last two functionalities must

be as accurate as possible to also guarantee the user’s safety while using the device. Finally and generally,

effectiveness also assesses if the cane meets the consumer’s needs.

5.5 Concept to Prototype

ORTHOS XXI assisted in the concept development process that might potentially address the same de-

mands and specifications after identifying a set of consumer needs and creating target product specifica-

tions [50]. Using Solidworks, a 3D design of the robotic cane was created based on numerous ideas. For

this first prototype, it was decided not to employ the ball joint as Yan et al. [288] suggested because it

would add to the prototype’s costs and could result in even more unexpected alterations, particularly for

users who are not accustomed to using a cane. The created prototype, shown in Fig. 20, is separated into
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two parts: i) the upper part, which is made up of the cane’s handle and trunk; and ii) the lower part, which

is made up of the holonomic base, DC motors, and omnidirectional wheels. Robots can be categorised as

”holonomic”or ”non-holonomic”drive robots depending on how they move. This is decided by how much

of the robot’s total Degrees of Freedom (DoF) are controlled, and when both are equal, the robot is said to

be ”holonomic”[289]. These robots can move in any direction without altering their orientation, and they

can also do it while still moving [290, 291]. This is crucial for the cane-type robot since it makes it easier to

manoeuvre in confined spaces, which has a significant impact on the product’s functionality. The cane’s

upper part was moved to holonomic base CoM to allow the user to get a better grip on the instrument, as

well as a higher stability when the user needs support. This concept intends to allow the user to walk in

a more natural manner, providing greater comfort to the upper limb. Furthermore, the height of the cane

can be easily adjusted, with a range of 846–998 mm, which meets the desired criteria (350–1100 mm).

The handle of the cane adheres to the criteria discovered.

Considering the lower part, we reduced the distance between the furthest wheel from the user and

the prototype’s CoM as depicted in Fig. 20. Thus, the cane-type robot will be able to perform rotations

more quickly since this wheel will need to travel shorter distances. This detail can be important for the

fall prevention strategy. Moreover, the holonomic base is made of plain carbon steel and it has 3 mm of

thickness. The distance between the furthest wheel from the user and the prototype’s CoM was lowered in

the lower part, as shown in Fig. 20. Because this wheel must travel fewer distances, the cane-type robot

will be able to perform rotations faster. This information might be crucial for the fall prevention approach.

Furthermore, the holonomic foundation is 3 mm thick and made of alluminium. All the dimensions are

depicted in Figure 20. At this stage, the prototype costs are less than 15€ without DC motors, wheels, or

hardware.

a) b)

c)

1
2

1
 m

m

CoM

322 mm

65 mm

Figure 20: Final render of the cane-type robot prototype on the left: a) front view; b) trimetric view; c) top
view. Prototype’s holonomic base, its dimensions and CoM position on the right side.
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5.6 Mechanical Validation

Simulation modelling must be used to improve some features before generating a physical prototype. This

analysis is carried out against the previously stated target specifications, where stress distribution and

other computer-aided engineering techniques can help discover and eliminate model flaws, potentially

avoiding the need for one or more physical prototypes, saving time and money [50]. Because of their

importance, it was conducted the following tests: static load, separation, and fatigue tests. The SolidWorks

model was also simplified by deleting the upper part and simplifying the omnidirectional wheels. If the

prototype achieves the previously established good results, it is considered validated. Moreover, simulation

mechanical tests were performed to measure deformations in the cane’s upper part in order to identify

higher deformation locations to install force sensors for further advances in the human-robot interaction.

The results are summarised below.

5.6.1 Static Load Test

The chosen fail criterion was the von Mises’s theory which states that a ductile solid will yield when the

energy density reaches a critical value for that material, considering an uniaxial point of view (𝜎𝑉𝑀=𝜎𝑌 ,

where 𝜎𝑉𝑀 represents the von Mises’s maximum stress and 𝜎𝑌 the material yield strength). This yield

strength is the point at which elastic behaviour ends and plastic behaviour begins. Plastic deformation

occurs when the maximum stress exceeds the yield strength, resulting in some type of permanent de-

formation. The optimum outcome would be for the maximal von Mises stress to be less than the yield

strength [292]. Applying a total force of 1000 N distributed between the three legs, the maximum 𝜎𝑉𝑀

is equal to 6.43x107 N/m2 (Fig. 21), which is lower than the plain carbon steel yield strength (𝜎𝑌 =

2.21x108 N/m2). Therefore, the 𝜎𝑉𝑀 < 𝜎𝑌 condition is verified and the holonomic base should not fail

due to plastic deformation. Moreover, the minimum Factor of Safety (FOS) is equal to 3.4, the maximum

strain is 2.01x10−4, and the maximum displacement is 2.78x10−1 mm, which should be negligible since
the material always operates in the elastic domain.

5.6.2 Separation Test

The separation test applied a force of 500 N to the lower and upper parts of the prototype. The maximum

𝜎𝑉𝑀 , equal to 2.84x107 N/m2, is registered in the connection points between the DC motor and the

holonomic base. The chosen material for the DC motor was the AISI 1045 steel, a common material used

in gears, shafts, and bolts. This metal has a 𝜎𝑌 equal to 5.30x108 N/m2 and higher than the 𝜎𝑌 of the

plain carbon steel. Therefore, the 𝜎𝑉𝑀 < 𝜎𝑌 condition is verified again and there should not happen any

failure due to plastic deformation, and no separation between parts of the cane-type robot. The minimum
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Figure 21: Stress plots obtained in the static load test simulation (left) and in the separation test simulation
(right). Regions where the greatest stress occurs are zoomed.

FOS is 7.4, the maximum strain is 1.23x10−4, and the maximum displacement equal to 8.40x10−2 mm.

Figure 21 plots the stress obtained in the holonomic base.

5.6.3 Fatigue Test

According to ISO 11334-4:1998, a cyclic force of 450 N is delivered to the cane for 200 000 cycles [278].

However, no failures occur with this setup, suggesting that the amplitude of the stress level is less than the

endurance limit, within the infinite life area. The fatigue simulation shows that increasing the load scale

by a factor of 6 for 200 000 cycles results in the highest damage percentage of 77.32%, which occurs in

the region of higher stress reported during the static load simulation. It also shows that the model has a

life cycle of roughly 258 700 cycles at 6000 N before fatigue failure. These figures are much in excess of

the desired range, and no fatigue failure is foreseen.

5.6.4 Human-Robot Interaction Test

Based on the performed simulations, it was obtained a maximum value of equivalent deformation (𝜖) of

9.909e-4 m and 3.748e-3 m when 100N are applied to the cane’s handle in the AP and ML directions,

respectively, simulating forward and lateral movement. On the other hand, 300N applied vertically in the

cane’s handle, simulating a support gait phase, resulted in a 𝜖 maximum value of 1.590e-03 m. The

obtained results are represented in Fig. 22. Considering these findings, it is possible to claim that the

material deformation of the of the cane’s upper part is too small to be detected by common strain gauges.

A common strain gauge has a SENS of about ≈2.0mV/V to 1000µm/m (𝜖 = 1𝑥10−3) deformation in a

full-Wheatstone-bridge configuration [293–295]. Considering the highest value obtained in the simulations

when AP andML forces were applied, this would result in a value of ≈7.50mV/V for the respective equivalent
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a) b) c)

d) e) f)

Figure 22: Applied force on the cane handle of (a) 100N in the AP direction; (b) 100N in the ML direction;
(c) 300N in the z-axis direction. Equivalent deformation values obtained for applied force in d), e) and f),
respectively.

strain. This SENS would result in a signal too small to be feasibly detected by common control unit’s

analogue ports. It is further suggested the implementation FSR sensors as the sensory device of the

motion control system, as they are durable, thin, flexible, widely available and cost-effective sensors with

a wide range of force SENS, and capable of detecting the user interaction forces applied in the cane’s

handle [296].

5.7 Cane-Type Robot Architecture

The cane-type robot is equipped with physical units (hardware) and software tools. The physical units are

divided into five categories: i) sensory unit; ii) actuation unit; iii) control unit; iv) storage unit; and v) power

unit. An integration unit is also included in the cane-type robot, allowing synchronisation with other tech-

nological systems. The control unit will transmit commands to the actuator unit after the information and
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Figure 23: Cane-type Robot architecture with the respective units, components operating frequencies,
communication protocols and data control of the electronic system.

data received by the sensory unit has been examined and processed. These orders are intended to trigger

action mechanisms in order to ensure the proper operation of the entire cane system, hence ensuring

security conditions and corresponding to the user’s intentions and commands. The control, storage, and

power units are all housed in the cane’s holonomic base. The actuation units are incorporated in the

holonomic base (DC Motors and a LED) and the cane handle (vibrotactile units), as this is the only point

of contact with the user for vibratory sensory inputs. A set of powerful computational tools is referred to

as software tools. Both at the prototype level and in the realm of intuitive graphic programmes for cell-

phones and desktops, progress is still being made. Figure 23 depicts the fully instrumented cane-type

robot architecture that is being implemented.

5.7.1 Central Control and Storage Units

The Control Unit is in charge of processing all of the data collected by the sensors and providing com-

mands to the actuation units. The low-level and high-level control units are divided into two components. It

is critical that they have a high processing power, as well as numerous communication channels that allow

connecting to all components of the cane-type robot, for all processing to be carried out without errors and

swiftly enough to calculate, receive, and transmit all data. The information is transferred between the two

control devices using USB connectivity. The low-level control unit (STM32F446RE microcontroller) stands

out for its versatility of connections with different components, being also responsible for cane motion con-

trol, security mechanisms, and external device synchronisation. It was designed for simpler calculations

of acquired data from the sensory unit, and transmission to the actuation unit as well as the high-level

control unit. The STM32F446RE microcontroller (Fig. 24.a) demonstrates a high processing power with a

maximum clock speed of 180 MHz, as well as a wide range of Pulse Width Modulation (PWM) outputs and

88



CHAPTER 5. CANE-TYPE ROBOT

a) b)

Figure 24: Cane-type Robot’s control unit: a) STM32F446RE board; and b) NVIDIA Jetson Nano.

3x 12-bit Analog-to-Digital Converter (ADC) (up to 16 channels) with a selectable resolution of 12/10/8/6

bits. It also supports UART, I2C and SPI communication, which allows to perform the necessary commu-

nications with several components and units simultaneously. The NVIDIA® Jetson Nano™ 2GB Developer

Kit, a compact and powerful computer with great processing power, is used for high-level activities and

specially created for real-time usage of AI, being one of the best market solutions for this purpose (Fig.

24.b). It will be in charge of storing data, communicating with the low-level control unit, communicating

with the outside via Bluetooth or Wi-Fi, and all analysis tools, such as FRA, processing and calculations

for fall detection and prevention, and distinguishing between normal and abnormal walking states. The

high-level control unit supplies USB power to the low-level control unit.

5.7.2 Sensory Unit

A set of specifications were developed for the sensory unit’s execution, which culminated in its integrated

features and high performance. The sensory unit was required to use current, efficient, compact, and

low-cost technologies. An inertial system, a context-awareness system, and a force system are all

part of the sensory unit. Force sensors, light sensors, and inertial sensors are among the components that

make up the sensory unit. The function and context of the sensory unit, which is already or will be included

in the cane-type robot, are summarised in Table 17. One of the information that could be received in the

sensory unit is context-aware footage from a RGB or depth camera or even lasers, which could be used

for gait analysis, FRA, and fall detection. This sensor, however, will not be described in this PhD thesis

because it is not included in the current version of the cane-type robot. The inertial system is composed

by the Adafruit LSM6DSOX + LIS3MD IMU, and it is positioned at the base of the cane (Fig. 25.a). The

LSM6DSOX component, which is a 3-axis accelerometer and gyroscope, measures i) the rate of change of

velocity along three axes, and ii) detects rotational changes in relation to orientation and calculates angular
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Table 17: Contextualisation of the cane-type robot’s sensory unit

Purpose Information Acquired Parameters Currently
Available

Gait analysis Acceleration Gait phases 3*
Angular velocity Stride and support phase duration
Cane orientation Stride length
Force Support weight
Context-aware footage User movement intention

Velocity

Fall risk Context-aware footage Displacement, velocity and orientation 7

assessment FRA and correlation with the QoL

Fall detection Context-aware footage Image processing 7

Context Light intensity Environment luminosity 3

awareness

*- except context-aware footage

velocity along three axes. The LIS3MDL component, which is a 3-axis magnetometer, monitors the relative

change of a magnetic field, as well as its direction and intensity. With all these sensors, important inertial

information about the cane-type robot will be attained. By combining data from 3 sensors with triple-axis

(9 DoF), it is also possible to obtain the movement orientation and direction of the cane, as well as its

inclination in relation to a predefined reference plane. The system works at 104 Hz and uses a data rate

of ±2G for the accelerometer, ±250 DPS for the gyroscope, and ±4 Gauss for the magnetometer. Given

that many falls occur due to low visibility conditions, it was also discovered that none of the robotic canes

tested in the state of the art had mechanisms of sensing and action related to brightness. As a means

of overcoming this barrier, which increases the risk of cane users falling, it was decided to implement

a context-awareness system based on a light sensor that aims to detect environmental conditions,

specifically the luminosity in the vicinity of the user’s circulation. Then, the information is sent to a light

triggering mechanism considering the readings obtained, in order to provide better visibility to the cane’s

user. A photoresistor, also known as a Light Dependent Resistor (LDR), is employed as a light sensor at

the base of the cane (Fig. 25.a).

The haptic sensing system and the axial force system make up the force system. Firstly, V force

detection (i.e., on the axis perpendicular to the cane’s displacement plane) is critical for tracking the

user’s gait. Such parameters enable for the detection of when the cane is being used, as well as the

amount of support weight put by the user on the cane, in order to determine which phase of gait the user

is in. For the sensing of V forces imparted to the cane, piezoresistive sensors, also known as FSR, are

used. Because of its tiny size, the Interlink FSR® Model 402 Short Tail sensor (Fig. 25.b) was chosen as

the optimum solution for sensing human-robot interaction forces to be applied in relatively small systems.
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a) b) c)

Figure 25: Sensory unit elements already implemented. a) inertial system (top) and photoresistor (bottom).
b) Interlink FSR® Model 402 Short Tail sensor (top) and location in the handle (bottom). c) Interlink FSR
Model 400 Short Tail force sensor (top) and combinations of four sensors to detect the engagement
between the user and the cane-type robot.

Thus, the haptic sensing system creates a map of the forces applied by the user’s hand while using the

cane and supporting its weight during different gait phases.

An axial force sensor is required to detect the forces of engagement between the user and the device.

Through the forces applied to the cane, this sensor can assess the user’s intention of movement and so

acquire admittance control to move the cane to the desired position and accompany the user while walking.

A combination of four force sensors, placed around the cane rod and perpendicular to the horizontal plane,

is offered as a solution for the cane-type robot axial force system. The Interlink FSR Model 400 Short Tail

force sensors to be used for axial force detection are depicted in Fig. 25.c and have the same characteristics

and response as the handle force sensors previously stated for the haptic sensing system. It was used

to take advantage of the fact that the cane’s rod is separated into two sub-rods, the handle rod (upper

part) and the base rod (lower part), which are interconnected to allow the cane handle to be adjusted in

height. As a result, by slightly lowering the diameter of the base rod, the four FSR sensors may be placed

between the upper and lower rods of the cane, 90º apart in regard to the tube’s centre point, as shown in

Fig. 26. There is a small space between the two rods in this design, which allows the user to measure the

interaction forces applied in the handle of the cane at the position where the four force sensors are situated.

The amplitude and direction of the force applied in the cane’s displacement plane can be determined using

this sensor arrangement, showing the user’s intention when manipulating the handle.
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Y

X

Figure 26: Force sensor configuration to obtain an axial force system. The sensors are placed between the
base rod (lower part) and the handle rod (upper part) of the cane.

5.7.3 Actuation Unit

The actuation unit is made up of multiple of systems that manage the interaction between the cane and

the user, as well as the interaction between the user and the surrounding environment, and lastly the

movement of the cane-type robot. The actuation unit is composed of three main parts: vibrotactile motors,

a luminosity device, and DC motors that operate the wheels. The purpose and context of the actuation unit

are summarised in Table 18. The cane-type robot is made up of applications that need mobility and physical

manipulation and requires close human-robot interaction. A vibratory actuation mechanism was used in

the context of robot-to-human communication, allowing direct interaction between the robot and the user.

Assistive devices with haptic feedback in the form of mechanical vibrations are typically designed to assist

blind people in being steered in a specified direction. Furthermore, vibrational actuations are used as a

resource in patients with Parkinson’s disease to deal with gait problems and FOG symptoms [297]. These

symptoms have a significant impact on patients’ QoL since they might cause unpredictably lost movement

control and lead to falls. When walking on a treadmill, Wegen et al. [268] found that vibrations supplied to

the wrist at a frequency 10% below the optimum stride frequency resulted in lower stride frequencies and

longer stride lengths. Vibrotactile motors were integrated into the cane-type robot with the goal of informing

and regulating irregular gait through vibratory impulses, allowing for a regulated gait and, consequently,

potentially reducing user falls. Vibrotactile feedback is really quite significant given its discretion, lack of

habituation, and ability to notify the user without raising stress levels [298]. These motors are housed

inside the cane’s handle, as shown in (Fig. 27.a), with no physical interference with the user’s grip. This

allows vibration to be transmitted to the user’s hands , i.e., the only point of contact between the user
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Table 18: Contextualisation of the cane-type robot’s actuation unit

Purpose Actuator Parameters Currently
Available

Gait Wheels DC motors Velocity 3

correction Vibrotactile motors User alert

Fall Wheels DC motors Displacement, velocity and orientation 7

prevention

Context Light Environment luminosity 3

awareness

and the device, facilitating robot and human contact. Myles et al. [299] also claim that the hands have

the highest vibrational SENS when compared to other parts of the body, which explains the location and

mechanism of the haptic feedback system used on the cane-type robot. Because the motors are flat and

the tube inside the handle has a round surface, a 3D printed structure has been designed to allow the

motors to make full surface contact with the handle tube, allowing full vibration transfer (Fig. 27.a). The

vibrating units are 10 mm eccentric rotating mass vibrating motors from Precision Microdrivers (Fig. 27.b),

which have an off-center load and vibrate when rotated by the centripetal force [300]. Because of their

compact size and closed vibration mechanism, they are ideal for being inserted inside the cane handle

while retaining all of their functions. The Texas Instruments Haptic Motor Driver DRV2605L is required to

operate the motors (Fig. 27.b), which involves I2C connection and allows the motors to be controlled by

PWM signals, allowing the vibration intensity and rotation direction to be adjusted [301, 302].

When the user is operating the cane in poor vision conditions, the luminosity device is responsible for

illuminating the outer environment. This actuation mechanism is linked to the photoresistor component

of the light sensor. When the control unit senses low light, it activates the appropriate lighting equipment

to ensure that the surrounding area is well lit. A high-brightness LED with a huge field-of-view capable of

illuminating up to 5 m is employed on the cane’s base pointing in the movement direction (Fig. 27.c).

The cane-type robot’s omnidirectional mobility is enabled by DC motors, which control its direction,

speed, acceleration, and rotation. They are linked to admittance control, which accepts sensory information

from the user’s intention and regulates the motors to match the movement. A kinematic and dynamic

model of the holonomic base was developed in order to calculate torque and angular velocity values for DC

motors [303]. The DC motors should have a minimum torque of 1.47 Nm and a minimum angular velocity

of 295 rpm, based on a maximum payload of 29 kg [276] and the specifications of mass, velocities, and

accelerations criteria defined previousley. Three Rhino Motion Control Solutions NEMA23 (RMCS-2255)

motors [304] are integrated into the holonomic base of the cane for this purpose, as shown in Fig. 27.d.

These motors feature a high torque (2.94 Nm) and an angular velocity of 300 rpm, which respects the

values obtained with the dynamic and kinematic models. They employ an optical encoder, which offers
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a) b) c) d)

Figure 27: Actuation unit elements already implemented. a) vibrotactile motors position at the cane’s
handle. b) vibrotactile motor from Precision Microdrivers (bottom) and a DRV2605L driver (top). c) LED. d)
NEMA23 (RMCS-2255) motor (bottom) and the same motor installed in the cane with the omnidirectional
wheel (top).

better precision and resolution (0.2º per step, 1800 steps per rotation) than a magnetic encoder and can

be used in applications with a high magnetic field. Although the motors’ technical specifications state that

the no-load current is 0.8A and the maximum load current is 7.5A, experimental tests revealed that the

values obtained for no-load current at maximum motor speed are on the order of 0.4A. In addition to these

figures, it was discovered that the average current consumption of the three motors when walking with the

cane-type robot is 3.6A. Their operate voltage is 12V and present a direct replacement for 50W stepper

motor and drive. Each DC motor with these specifications costs around 80€.

5.7.4 Power Unit

All the architecture units in this chapter require energy to function. This need a power source that can

power the full robotic system. However, not all components use the same amount of energy, necessitat-

ing the installation of devices capable of restricting and quantifying the amount of energy given to each

component. Furthermore, because improper current and voltage administration can cause malfunction or

even permanent irreparable damage to electrical components, an electrical safety scheme is essential to

prevent such harm. As shown in Fig. 28, the power unit circuit consists of a battery, DC voltage regula-

tors (+5V and +12V), electric fuses, and a power button positioned at the holonomic base. The Gens Ace

lithium-polymer battery [305] has a capacity of 8Ah, meeting the previously identified battery capacity, and

a voltage of 14.8 V, accounting for any possible voltage drops during operation. As for the battery type,

lithium-polymer was the chosen one because of its higher safety, lightweight (0.74 kg), and low profile

(157 x 53 x 43 mm), ideal for the cane-type robot. However, based on the average consumption of the

previously indicated DC motors, which are the components that consume the most energy (approximately

7.8A), this battery allows a continuous operation time of 60 minutes on a single charge, approximately,
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a) b)

Figure 28: Power unit. a) schematic. b) location of the elements at the cane-type robot.

which meets the target specification identified previously. This finding shows that the cane-type robot can

be used, for example, in gait therapy sessions. The DC Voltage Regulator, also known as a step-down,

is designed to regulate the voltage from the battery and deliver the proper power to the general circuit,

ensuring that the functionality remains steady. A step-down capable of restricting the input signal to 5V at

the output [306] is meant to deliver energy to the high-level Control Unit through USB-C, with the low-level

Control Unit receiving energy via USB mini-B afterwards. The DC servo motors are powered by another

step-down with the option to limit the input signal from the battery to 12V at the output [307]. Thus, this

unit powers the architecture elements separately. A current overload, or a sudden increase in the intensity

of electrical current flowing through an electrical circuit, can cause overheating, compromising the con-

ductors’ integrity and potentially resulting in fire, skin burns, or the destruction of other circuit elements.

Electric fuses [308] are employed as safety and protection methods for the cane-type robot circuit to avert

such an occurrence.

5.8 Cane-Type Robot Assembly

This subsection aims to synthesise the various units responsible for the cane’s overall operation by demon-

strating an overview of the connections that encompass the electronic components, in order to gain a better

understanding of how the components communicate with one another and which connections are required

for information exchange. A Printed Circuit Board (PCB) was developed to serve as a common reference

point for all of the cane’s electronic components. It houses the low-level control unit, as well as the majority

of the system’s connections. The power unit is entirely connected to this PCB, as well as the actuation and

sensory units. The PCB schematic and board layout were made using the EAGLE software, designing a

single-sided PCB, where the conductors are placed on only one surface of the dielectric base, obtaining the

dimensions of 125 x 152 mm. The PCB layout and the final print result with the implemented electronic
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a)

b)

Figure 29: Cane-type Robot. a) PCB virtual board, physical board and final result (from left to right). b)
Schematic of cane’s hardware.

a) b) c) d)

Figure 30: Cane-type Robot. a) Lateral View. b) Front View. c) Lower part instrumentation. d) Upper part
instrumentation. (Red – power unit; Green – actuation unit; Blue – sensory unit; Yellow – control unit)

96



CHAPTER 5. CANE-TYPE ROBOT

components is illustrated in are shown in Fig. 30.a. Figure 30.a shows a diagram of the components’ con-

nections for a better understanding and visualisation. On the other hand, Figure 30.b depicts the current

cane-type robot with all components installed and labels all of the robotic cane’s electric components. The

cane-type robot is reported as having a total of 71 instrumented components, a total weight of 5.5Kg, an

average current draw of 7.8A, and a total price of 688.97€. Appendix B presents the main information of

each cane-type robot component.

5.9 Cane-Type Robot Motion Control

The motion control is responsible for allowing the cane-type robot to move and manage the device through

user input. This must take into account a number of factors in order to provide the end-user with a simple,

straightforward, intuitive, and comfortable experience. It must have a controlled gait that always follows

the user and has no mobility restrictions, ensuring user safety as a top priority in all conditions. According

to state of the art, admittance control [309–311], self-balance control [77, 255], passive control [79],

and accompanying control mode [75, 311] were all employed as motion controls. The admittance control

method is identified as the most used method among cane-type robots within the scope of motion control.

Therefore, this method was incorporated in this work, leading to the instrumentation of specific sensory

components into the cane.

5.9.1 Admittance Control Strategy

The proposal of an algorithm that permits operating the cane-type robot by considering the user’s gait phase

and the forces applied by the user is the initial phase of motion control implementation. The Admittance

Control method considers the user’s intention while defining the cane’s behaviour. There is a whole process

that starts with the acquisition of sensory data and continues with the synthesis of signals through signal

processing techniques, allowing an analysis and evaluation of how the cane should operate based on all the

information obtained, and thus control the motors to originate the movement of the robotic cane through

direct kinematics. In order to determine how the robotic cane will operate, the user and cane’s movement

while walking was idealised, as shown in Fig. 31. According to Nakagawa et al. [310], it is possible to

successfully lessen the load applied to the affected leg when a person walks with a cane-type robot by

programming it to function similarly to a conventional cane.

The user’s feet are aligned with the robotic cane at the start of the gait event, which represents the

standing phase. The cane swing phase follows, in which the cane must comprehend the user’s

intention to move it forward with a constant speed (25% of 1.3 m/s, i.e., 1.2 km/h approximately) in

order to support leg movement during the next gait phases. The healthy leg support phase begins

with the robotic cane already in a posterior position in relation to the user’s feet, where the cane must
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Figure 31: Power unit. a) schematic. b) location of the elements at the cane-type robot.

remain stationary to prevent the user from falling during this gait event to advance with the affected leg

while supporting the majority of his weight on the healthy leg. Finally, the affected leg support phase

occurs, which is the most crucial gait event, during which the healthy leg advances. During this phase, the

user leans on the cane to allow the healthy leg to advance, rather than maintaining the body weight on the

stationary leg (i.e., the affected leg). The cane remains in a static posture during this process to ensure a

steady support for the user. The cane-type robot must comprehend the user’s intention of movement in

order to carry out all of these sets of procedures correctly. In order to stop the cane from moving, it is also

necessary to detect when there was a stronger application of V pressures on the cane, indicating when the

user is supporting his body weight on the cane, particularly in the third and fourth gait phases (Fig. 31).

5.9.2 User Motion Intention

The ultimate solution for the cane-type robot axial force system is based on a combination of four force sen-

sors mounted on the cane rod perpendicular to the cane displacement plane in the AP and ML directions.

A 3D printing structure, nominated axial ring (Fig. 32), made out of a polymer known as Polylactic Acid

(PLA), is placed on top of the sensors sensitive area to obtain a better distribution of the applied forces,

and also to provide stability by preventing them from moving around [312]. This axial ring, in conjunction

with another 3D printing structure known as the stabiliser ring (Fig. 32), placed in a higher position

of the base rod, has the secondary function of stabilising the upper rod of the cane, reducing and miti-

gating unwanted and accentuated oscillations resulting from the user’s interaction with the cane handle,

while allowing the detection of forces applied in the direction of the cane’s displacement plane. The user’s

movement intention can be then classified in a primary phase as ”front”, ”back”, ”left”and ”right”, from

the relation of the force components obtained by the FSR sensors. If no force is applied, the intention is

considered to be ”stop”. The stabiliser ring allows the user’s forces to be transferred to the FSR in the axial

ring, acting as the basis of a first class lever system in which the fulcrum is the connector that binds the

upper and lower parts of the cane. Figure 33 shows a picture of the interaction of forces in the cane and
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Axial Ring Stabiliser Ring

Figure 32: Axial Force System. Left: Configuration of the axial ring fixed to the upper rod of the cane with
the FSR sensors. Right: Configuration of the stabiliser ring fixed to the lower rod of the cane. Both rings
are in grey.

an illustration of the system’s comparison to a lever, as well as an example of motion intention detection

when the user wants to go forward and backward.

An experimental test was carried out to assess the motion control system implemented. A total of 6

healthy subjects aged between 22 and 27, with body weight between 48 kg and 95 kg, and with body

height between 1.51 m and 1.82 m, performed only the intended action of propelling the cane-type robot

forward. Therefore, with the cane immobilised, a brief explanation of the axial force system of the cane was

given, and the participant was then requested to pretend to be intending to go forward. The force sensor

data were first collected in order to alter the threshold values to match the person’s strength and preferred

sensitivity. Then, after recording the sensor readings and confirming that they matched the individual’s

desire to move, this process was repeated 10 times for each participant. A total of 58 correct results were

obtained in a total of 60 tests performed, achieving an ACC of 97% for the axial force system (Table 19),

which is in accordance with the target specification established previously.

5.9.3 Gait Phase Detection

The proposed solution for generating the haptic sensing system was determined by combining three FSR

sensors that are equidistant from each other and situated on the cane’s handle. This setup can identify

when the user supports his body weight on the cane and identifies the user gait phase by acquiring the

interaction forces between the user and the cane-type robot, more specifically the forces applied vertically.

Considering the maximum body support weight discussed earlier ( 25% of the body weight or reach the

30Kg), the haptic sensing system was designed to detect data in the range of 0-300N. A 3D printed PLA

structure must be placed over the sensors, covering the handle, with the same function as the axial force
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a)

b)

Figure 33: Cross-sectional view of the cane main body structure with the axial ring (yellow) and the stabiliser
ring (red) implemented, and the interaction of the forces applied in the handle by the user, with the resultant
force in the force sensors. At the right an analogy of the force detection system applied to the cane handle
to a first-class lever model. b) Data acquisition by the axial force sensors with force applied in the AP
direction, when a participant was asked to move in the forward and backward directions.

sensors discussed previously, in order to increase the distribution of the applied forces, as illustrated in

Fig. 34.a. Furthermore, PLA is biocompatible, which means it is not toxic or harmful to human skin. The

3D printed structure also has the same geometric structure as the handle, preserving ergonomics, and

the width and height of the cane handle remain within the range of values shown in Table 55 (Appendix

B) of the cane technical specifications. Figure 34 depicts a visual representation of the force sensors, as

well as the structure that covers the sensors’ contact area to improve the distribution of applied force at

the cane handle, both virtually (Fig. 34.b) and physically Fig. 34.c. The V forces were also classified into

three categories: i) ”no touch- no forces are being applied to the cane; ii) ”light touch- the user’s hand is

resting on the cane; and iii) ”support phase- the user is supporting their body weight on the cane. Figure

35 depicts a demonstration of the mentioned categories detected by the haptic sensing system.

The same group of subjects also performed a second test to validate the detection of V forces applied

in the handle. Once more, the device was immobilised while a brief explanation was given about the

different types of force that the cane’s handle could detect. Each participant was further asked to simulate
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Figure 34: Haptic Sensing System. a) Demonstration of the force distribution on the FSR sensors and cane
handle, without (1) and with (2) the PLA structure (Blue - force applied by the user; Green - force applied
on the handle; Yellow - FSR sensors; Black and red – PLA structure). b) 3D model representation of the
FSR sensors with the PLA structure placed on top of the handle for improved force distribution (1 to 3 -
evolution from only FSR sensors to the final cane handle; 4 - cross-section view of 3). c) 3D structure with
the three FSR sensors (top) and final result (bottom).

Figure 35: Haptic Sensing System. Force applied in the z-axis direction, when a participant was asked to:
stand still, place his hand on the handle, and to lean its weight on the cane.

each of the three categories of detectable forces so that sensory data could be gathered to define the

threshold values for each strength category based on the user’s weight and structural make-up. Finally,

the participant was randomly assigned to apply one of three types of force settings, where the results

acquired by the sensors were later checked to see if they matched the action performed. Up until there

were a total of 20 outcomes per participant, this process was repeated. A total of 81 correct results were

obtained out of 90 tests performed, achieving an ACC of 90% for the haptic detection system (Table 19).
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Table 19: Experimental results obtained from the axial force system and haptic detection system

No. of Participant
Axial Force System Haptic Sensing System

Forward Intention
(n/10)

No Touch
(n/5)

Light Touch
(n/5)

Support Phase
(n/5)

1 9 5 5 5

2 10 4 4 5

3 10 3 4 5

4 9 3 5 5

5 10 5 5 5

6 10 4 4 5

Success/Total 58/60 81/90

ACC 97% 90%

5.9.4 Holonomic Base Movement Control

The cane-type robot is capable of moving in any direction without changing orientation, and also capable of

changing to any desired orientation while in motion. This can make it easier to move in narrow, constrained

locations while retaining a high level of mobility and stability. Since the axial force system obtains the user’s

motion intention by detecting the AP and ML forces, it is now necessary to implement a way to transform

these interaction forces into the movement of the cane. A kinematic and dynamic model [303] was used

previously to dimension the DC motors, calculating the minimum torque and angular velocity. Now, the

same model is used to move the cane accordingly to the user’s desired direction, while considering the

motor’s disposition and the direction of the applied force. It is required to have a well-defined reference

Figure 36: Cane’s base with the Cartesian frame of reference located at the cane’s CoM.
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axis to determine the locations of each motor in respect to each other through a common point as a first

step in obtaining the cane kinematic equations. The origin of the axis of the Cartesian coordinate system

was defined at the CoM of the cane for ease of calculation, with the y-axis pointing in the AP direction (i.e.,

forward motion) and the x-axis pointing in the ML direction (i.e., in the direction of motion to the right). This

Cartesian reference, as well as the arrangement of the cane’s base and the configuration of the wheels

and motors, is depicted in Fig. 36 with the appropriate numbers to aid in the kinematic calculations. Then,

through the kinematic equation obtained, it is determined the contribution that each motor must have to

achieve the desired movement.

5.10 Conclusions

This work contributes to the state of the art with the first advances in the development of a cane-type robot

for fall prevention. The construction of the prototype was based on an iterative process that initially took

into account the identification of the consumer needs from the literature, namely affordability, ease of use,

ergonomics, cane height, safety, mass, style, obtaining the product, effectiveness, durability and reliability.

Based on the most important needs for the construction of a first prototype, a survey of metrics was

carried out based on scientific literature and international standards, which can translate the consumer’s

subjective needs into measurable target specifications. Then, the prototype was conceived and generated

with the objective of reducing the production costs associated with this type of devices, while maintaining

high durability and reliability. Only then can the target audience be more widely reached. The mechanical

simulation tests reveal that the holonomic base obtained a positive assessment, having largely exceeded

the established specifications. It should be noted that these tests described in international standards are

generally applied to different types of walking sticks and that they do not include cane-type robots.

The hardware architecture was then defined, as well as the features and the main functionalities

to be implemented that differentiate the cane-type robot from a conventional cane. Subsequently, the

control units in responsible of processing all of the data in the cane electronic system were identified.

The STM32F446RE is the low-level processing control unit, and the NVIDIA JetsonNano is the high-level

processing device, which is dedicated to future fall detection and prevention strategies. Based on the

review analysis performed in Chapter 2, the components for the sensory, actuation, and energy units

were also identified and implemented. The overall purchase price was €688.97, which included all of the

components required for the cane-type robot. Although this price is slightly more than the €650 stated in

the target specifications, it is crucial to remember that this version of the cane-type robot is a prototype

for a future commercially available product and not the final product. As a result, all parts were obtained

in single quantities, and all hardware components are considered experimental, with the potential to be

over-engineered later in the design to improve performance while also changing the overall pricing of the

prototype. This architecture strives to maximise the efficiency of the control units’ processing time by
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prioritising the most relevant data, ensuring the user’s safety as well as the cane’s proper operation.

The goal of the motion control approach to be adopted at the cane-type robot was first specified as

obtaining a simple and intuitive system that was also cost-effective. This proposal takes into account the

fact that most robotic canes rely on expensive sensors or require significant cane modifications, mak-

ing them more inaccessible and reducing the number of possible users. Following the development of a

workable admittance control approach for the cane based on the gait of a healthy person and a person

with an afflicted limb, admittance control was identified as the movement control method to be used. The

methodologies indicated in the state of the art, the cane’s design, and the previously established mission

statements were used to conduct this evaluation. The motion control was then split into three categories:

i) motion intention recognition; ii) gait phase recognition; and iii) holonomic base motion control. Consid-

ering the performed mechanical simulations, it was determined to use FSR sensors as the motion control

system’s sensory device for categories i) and ii), since they are durable, thin, flexible, widely available, and

cost-effective sensors with a wide range of force SENS. A strategy for improving the gathering of sensory

data from the FSR was also presented, which involved a better distribution of applied forces. The sensors

were then mounted on the cane rod and positioned on the handle, resulting in an innovative, cost-effective

motion control system that did not necessitate major structural alterations to the cane. The movement

of the holonomic base was based on the admittance control approach, which permits the transformation

of the user’s intention forces into cane movement using forward kinematics and matrix equations while

taking into account the configuration of the wheels and motors in the holonomic base.
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6
Fall Risk Awareness Strategy

This chapter provides the groundwork for a tool that can assess a subject’s fall risk in real time, taking

into account a variety of existing fall risk factors and focusing on the real-time detection of falls and daily

activities conducted by the elderly. The idealised FRA strategy included a three-part modular architecture

that enables for real-time FRA using simply a waistband with an inertial sensor, a smartband to monitor

the heart rate, and a smartphone. Each module must look at risk factors such demographic information,

environmental changes, and even geriatric behaviour issues like ADL. The Activity Recognition Module

was the sole module studied during this thesis. ADL recognition has been a widely discussed topic, with

applications in many areas. Data from wearable sensors, particularly positioned at the lower trunk, can be

used to recognise ADL, which appears to be a viable solution in uncontrolled environments, and AI-based

algorithms are recommended due to their promising results. Thus, this chapter also presents an AI-based

framework that performs comparative analyses to find the best classification model and the most relevant

features. This framework is fed with data from six public datasets, three team-owned datasets from prior

projects, and a new dataset created in collaboration with nursing homes in the Braga district.

6.1 Introductory Insight

Currently, as seen in the state of the art (Chapter 2), only a few studies focus their efforts on a multifactorial

FRA tool, analysing only one type of fall risk factor. In addition to this issue, real-time FRA is still a proce-

dure that can be improved, despite the fact that certain research have already demonstrated promising

results in this field. The usability of today’s methods and hardware is another issue that has to be ad-

dressed. These should evolve to be more easily and autonomously used by the elderly, i.e. in a free-living

environment rather than under controlled settings, and to reduce the number and size of sensors required,
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Figure 37: Calculation of fall risk using the fall risk probability engine proposed by Danielsen et al. [24].

making the experience as pleasant as possible for the users. Finally, several of the algorithms studied in

Chapter 2 did not have a clear validation strategy or it was poorly distinguished, especially in the imme-

diate FRA. As a result, a mechanism must be implemented that can suppress the previously mentioned

FRA drawbacks, allowing the elderly to use FRA instruments on a daily basis. The architecture for a future

FRA tool that eliminates the aforementioned disadvantages will be described in this chapter. Danielsen

et al. [24] presented a FRA engine in Fig. 37, which inspired the development of the FRA tool discussed

in this chapter. These researchers determined what types of data are most important for a multifactorial

FRA using wearable and other types of sensors in a daily living setting, and then created an optimal FRA

procedure based on their findings.

Considering the scientific literature, a list of requirements that must be met was gathered. Data ac-

quisition equipment and FRA tools will be used by the elderly, who are the major target audience for this

technology. Health care providers and nursing home staff should also have access to the tool so that

they may provide immediate assistance if needed [313]. FRA is now based mostly on tests and medical

evaluations, which only provide an estimate of the risk of falling in relation to the time and conditions of

the referred test. Machine Learning is typically used in FRA techniques that include other sorts of analysis,

and only one type of data — inertial – is used to generate a binary classification (Faller vs Non-Faller). As a

result, ensuring that this instrument is multifactorial is one of the most crucial needs to meet. This implies

it must estimate risk based on a range of elements, such as wearable sensor data, clinical test results,
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physical or psychological information from users, and information about the surrounding environment. In

order to be dependable and easy to use by any subject, the approach must also deliver a genuine fall

risk result, in a scale or code that all users can understand, and in real-time (i.e., be user-friendly and

subject-independent). It must also be a tool that works with a wide range of data-gathering devices, includ-

ing instrumented waistbands, smartwatches, canes, and walkers. This necessitates the use of tools such

as eHealth platforms, which allow the target audience to see the risk level in an easily understandable

manner, as well as the construction of connectivity between the aforementioned data collection and risk

analysis devices and other caregiver gadgets. Finally, this strategy must take into account the target audi-

ence as well as the time of use. As a result, it must be built in such a way that it can compute a fall risk

value with the fewest number of sensors possible, avoiding the use of inconvenient measuring devices and

making the use of associated devices more comfortable, avoiding discomfort that could lead to an increase

in the risk of falling. As a result, the goals of the strategy presented in this dissertation are as follows: i)

the gathering of multifactorial data from a variety of sources, including inertial data, clinical tests, and

demographic data on the elderly, as well as data related to the environmental context in which they live; ii)

Compute a single fall risk value from the above data on a continuous basis, taking into consideration both

immediate and prospective FRA perspectives, as well as the usage of AI-based methods; and iii) in the

event of a fall or near-fall situation, such as slipping or other LOB, provide prompt feedback. The following

sections will go through all of the steps that were defined to establish an eHealth platform-based strategy

capable of computing fall risk in real-time and in a multifactorial manner. The tool’s primary requirements

will be discussed first, followed by a dataflow overview of the suggested architecture, and the various clas-

sification and feedback stages of the idealised tool. Then, the Activity Recognition Module is scrutinised in

terms of data used and performance.

6.2 FRA Strategy Architecture Overview

With the electronic growth of wearable sensors, as well as the rise of AI technologies capable of evaluating

and understanding the meaning of data from sensors, strategies for automatic FRA tools are becoming

widely explored [24–26]. They present an architecture that is organised into three distinct operational

phases: i) the signal acquisition and processing phase; ii) the signal analysis phase; and iii) the final

decision and communication phase [314]. This division is also used in a number of other publications

with a similar goal, as indicated in Chapter 2, of calculating fall risk from different data sources [24, 68,

315]. Figure 38 depicts the strategy provided in this chapter, which is based on the type of architecture

mentioned previously. The proposed FRA tool’s first block (Data Acquisition & Processing) defines the

different data acquisition and processing methodologies that have been proposed, i.e. signal filtering and

feature estimation. The second block (Classification & Regression Modules) is created in a modular

fashion, with three classification and/or regression modules operating in parallel. The fall risk will be
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Figure 38: Proposed FRA tool architecture overview. The 3 main phases (Data acquisition & Processing,
Classification & Regression, and FRA Estimation & Feedback) should be noted in the different areas, as
well as the 3 parallel modules in the Classification & Regression Modules phase. Smartwatch eHealth app
example for continuous FRA on the left.

estimated, in the third and final phase (FRA Estimation & Feedback), based on the results obtained

in these three modules, and appropriate feedback should be delivered to the subject, family members,

or health professionals in a timely way. The many parts of the proposed strategy would be controlled and

connected by an eHealth platform. This platform would also indicate the users’ fall risk level in real time,

and it would be put on devices like smartwatches (Figure 38), smartphones, or tablets that are utilised by

both the elderly and caregivers. The goals, data workflow, and expected outcomes of each block will be

discussed in the following subsections, citing the sort of data to be used, as well as the type of processing

and mathematical/decision processes that will result in a fall risk value.
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6.2.1 Data Acquisition & Processing

One of the tool’s prerequisites is to conduct a FRA using a variety of fall risk sources in order to gain a better

understanding of all the risk factors that can influence and cause a fall occurrence. Wearable sensors, such

as inertial sensors, are the most prevalent for data collecting in FRA, as confirmed by the literature review,

and are usually mounted on the subjects’ waist [24, 25, 316]. Inertial data of acceleration and angular

velocity will be acquired from a waistband placed on the subjects’ lower trunk to examine the kinematics

of their movement. As a result, information about the subjects’ activity and behaviour throughout the

day will be available. This information will aid in the real-time monitoring of geriatric movements and the

identification of potential danger scenarios associated with elderly behaviour, such as conducting high-risk

activities (e.g., climbing stairs) or being out of balance, in the immediate future. In order to have access to

information about each user’s clinical situation, data should be collected through questionnaires, clinical

tests, and medical consultations, and then assessed as needed to perform a FRA that is more focused on

the long-term future (prospective), knowing a subject’s current physical and psychic skills and what this

means for their long-term fall risk. The use of temperature, humidity, and light intensity sensors to collect

data about the environment that surrounds the subjects is also suggested in this tool, covering some of

the risk factors associated with external characteristics that are not tied to the individual. These three

acquisition strategies should yield a diverse set of data from various sources, allowing for multifactorial fall

risk analysis. This acquisition must be made by coupling the aforementioned sensors to devices already

used in everyday life by the elderly (waistbands, canes, walkers), as well as other small devices used by

both the elderly and health professionals (smartphones, tablets, smartwatches), which allow for storage,

embedded data processing, and risk calculation, making this FRA tool easy to use and comfortable for all

users, whether they are elderly subjects or caregivers. These devices would be linked by the aforementioned

eHealth platform, which will be in charge of coordinating communication between the devices used by

the elderly to perform the FRA and the devices used by caregivers, in order to provide prompt feedback

as soon as the elderly devices detect a high risk of falling. It would also store data from the elderly and

make it available to caregivers on a constant basis, as well as the various outcomes acquired from the

FRA algorithms.

6.2.2 Baseline Risk Module

The Baseline Risk Module’s main purpose is to provide a baseline fall risk value based on a patient’s clinical

data (physical and psychological), test results from medical fall risk scales, or even external factors like

location and weather. Table 20 lists some of the factors that will be used in this module. The acquisition

and storage of data is the first phase of this block, where much of the data about the subjects can be

obtained using simple clinical tests, heart rate measures and questionnaires. Temperature, humidity, and

GPS sensors can be used to collect data about the environment and people’s locations, and these sensors
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Table 20: List of several Baseline risk factors which can be used in the Baseline module of the FRA tool

Risk Factor Group Factor Value

Demographic Age Numeric
Weight Numeric
Height Numeric

Clinical TUG Numeric/Binary
POMA Numeric/Binary
FES-I Numeric/Binary
Fall History Numeric/Binary
Heart Rate Numeric
Other conditions Binary

Psychological Fear of Falling Numeric/Binary

Ambiental Location Binary
Temperature Numeric
Humidity Numeric

can be linked to assistance equipment used by the elderly on a regular basis, such as smartwatches,

waistbands, canes, and walkers. This information can be saved in databases or on electronic devices such

as smartphones for eventual use in the FRA tool’s second phase. As can be observed in the second column

of Table 20, the numerous elements included have a wide range of scales and orders of magnitude, with

subjective factors such as clinical tests and the respondents’ fear of falling also appearing. As a result, a

second stage of this module is required to convert and normalise data from various forms into numeric or

binary values so that mathematical models can interpret it. The third and last stage of this module should

be the computation of the fall risk value from the converted and normalised data, taking into consideration

the aforementioned distinct types and magnitudes of data and their conversion. This value should be

determined using regression methods, such as Logistic Regression, according to the line of thought found

in the literature [315, 317, 318]. Until any of the parameters change (e.g. subject’s weight, new clinical

tests results or even changes on the location or temperature during the day), the result obtained should

remain constant, creating a baseline fall risk value appropriate to each individual’s characteristics and the

environmental variables to which each is exposed at any given time. The data flow and the aforementioned

processes for this module’s proper operation are summarised in Fig. 39.

Subject’s Information

Demographic Clinical

Psychological Ambiental

Data

Conversion

Logistic

Regression

Baseline

Fall Risk

Numeric

Data

Figure 39: Baseline Fall Risk module Data flow overview.
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6.2.3 ADL Recognition Module

An increase in the likelihood of a fall has been linked to particular behaviours, along with other factors. Lord

et al. [319] indicate that the effective number of falls reported varies by location and activity, indicating that

the issue of daily activity recognition may be a significant area of research for improving FRA instruments.

With that in perspective, an ADL classification module will be in constant operation, allowing decoding of

the participants’ daily activities. This module is included in the proposed FRA tool’s second phase, and it

will be the chapter’s main focus because it is the least researched aspect of the literature when it comes

to the integration of daily activity recognition with the risk of falling.

Wearable sensors have been the most widely used type of sensing in recent years for the automatic

assessment of the danger of falling in the elderly, as well as for the detection of everyday activities, as

indicated in Chapter 2. Additionally, inertial data, acceleration and angular velocity, are the most often

used data types for activity recognition. Thus, in the first phase of this block, it is planned that a waistband

outfitted with these inertial sensors collects data continuously from the subjects’ lower trunks as they freely

carry out their daily activities.

The second phase should process the inertial data collected from wearable sensors by computing

several features that will be used with AI-based models to identify several postural ADL. Moreover, fall

events must be identified, as well as their orientation/category (forward, backward, or sideways). After

determining which activity is being performed at a given moment, this information will be used in the

following step, where, in addition to some of the demographic data from the Baseline module, a fall risk

level will be allocated to each activity based on the findings of [319], which show the probability of falling

based on the activity and location of the fall, gender and age. Figure 40 depicts a summary of the data

flow of these modules.

Despite the module’s potential since no other work used ADL recognition in fall risk analysis, it is

necessary to validate the data collection methods and determine which features and classification models

to employ so that ADL can be recognised with the shortest possible delay between the start of the activity

and the classification, as well as with low classification error rates. Furthermore, while studies have shown

that the probability of falling varies with activity [319], it also depends on a combination of other factors,

necessitating more research on this topic, including extensive prospective work and large datasets of elderly

subjects, their falls, and their causes, in order to make a statistical association between a daily activity

and the respective risk of falling.
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Figure 40: ADL Recognition Module data flow.
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6.2.4 Gait Abnormalities Module

The second phase of this FRA tool introduces a final classification module, dubbed the Gait Abnormalities

Module, with the goal of quickly detecting gait abnormalities. The quality of human gait has been one

of the most studied themes in the analysis of the risk of falling [320–322], therefore a complete and

real-time analysis of the user’s gait is critical for determining an individual’s fall risk. Figure 41 depicts a

fast overview of its operation. The operation of the Gait Abnormalities Module will be based on the results

obtained from the ADL Classification Module. As a result, when this module detects a walking activity,

the Gait Abnormalities Module will be activated, remaining in standby when other activities differemt from

walking are detected. The approach provided in the ADL Classification Module will be quite similar in the

general functioning module for the detection of gait abnormalities.

The waistband with inertial sensors will be used to collect data to be used as input for AI-based

methods as previously mentioned, but this time they will be used to analyse the users’ gait, with the

expectation that these models will be able to produce a binary classification of gait quality. It should be

characterised as normal if the subject walks within a specified range of normality, or abnormal if the

user walks in a pattern that is related to a disability or a temporary LOB, such as a slip or trip [49, 320,

322]. This module is not activated if the subject’s gait is judged normal, and it continues to collect and

classify the gait until the subject’s activity changes. The risk level computation is provided in this situation

by the modules Baseline and ADL. If the subject’s gait is identified as abnormal, on the other hand,

this block will override the aforementioned risk level computation, boosting it to a maximum value and
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Figure 41: Gait Abnormalities Module data flow.
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initiating feedback mechanisms, whether for the subject, family members, or health care providers. The

communication between the categorisation algorithms (and their outcomes) and the caregivers’ devices

would be handled by the eHealth platform. Finally, the given method selection was based on the use of

the fewest amount of sensors and devices possible for FRA, allowing risk analysis with only a waistband

and a smartband/smartwatch. However, in the future, this block should be upgraded to not only perform

a binary classification but also a more detailed study of the location of the CoM and COP, for example,

perhaps with the addition of instrumented shoes [321, 323, 324], and wearable sensors or other devices.

6.2.5 Fall Risk Assessment & Feedback

The last phase’s main function is to combine the results from the previous phase’s three modules and

generate a fall risk value on a fall risk percentage scale. Obeying that, and considering the risk value

acquired, appropriate feedback must be sent to users as well as health professionals in the event that the

fall risk is judged high or a fall event occurs (Fig. 38). The methodologies provided in [68] and [315] for

determining a fall risk level served as a guide for the presented tool, with weights assigned to each of the

existing blocks for fall risk analysis. As a result, the Baseline Risk Module was given a 60% weight (W1),

while the ADL Recognition Module was given a 40% weight (W2). The Gait Abnormalities Module is not

included in the fall risk calculations, but it is configured as a priority module, so that when an abnormal

gait is detected, it takes precedence over the others, raising the fall risk level to its maximum. Thus, the

fall risk value will be generated in real-time as a result of the following Equation 1, taking into consideration

the results of the two previous modules that are used to assess the risk of falling:

Fall Risk (%) = (Baseline Fall Risk × W1) + (ADL Fall Risk × W2) (1)

A set of feedback processes, which are exemplified in Fig. 42, must be triggered if: i) a fall is detected

by the ADL Recognition Module; or ii) any gait abnormality is detected by the Gait Abnormalities Module; or

even iii) if the risk level calculated by Equation 1 exceeds a given threshold. Smartphones, smartwatches,

and other instrumented support devices can communicate with other devices automatically. These devices

must be engaged in the case of a fall or a high fall risk circumstance to offer timely feedback in order to

avoid falls or mitigate their consequences. Feedback must always keep the subject informed about his

current fall risk and provide warning signals in the event of a high-risk condition (e.g. walking in an area

with low light, LOB), such as through graphic or numerical scales, colour codes, or other sensory indicators

(e.g. vibrations or warning sounds). The referenced devices must be able to communicate with family

members and health professionals as quickly as possible in order to provide the required support and

avoid or mitigate the potential effects of falls [24]. This feedback should consist of automatic messages,

calls, emails, or even notifications via apps for smartphone or other electronic devices.
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Figure 42: Warning signals and feedback processes implemented in case of a fall event or a high fall risk
situation.

6.3 Activity Recognition: Methods & Materials

The Activity Recognition Module makes use of a large number of multiple datasets, publicly available or

private ones, to validate activity recognition models based on inertial data collected from the participants’

waist. Subsequently, after using these data, established partnerships with nursing homes and day centers

in the district of Braga were crucial to collect more data based on new protocols considering what is

implemented in the scientific literature. Thus, a vast dataset was built from the fusion and normalisation

of several ADL datasets. This process has not been carried out before in any other works of the kind,

despite its importance being highlighted multiple times [71, 325].

6.3.1 Public & Team-Owned Datasets

Datasets that met certain requirements were searched: i) be publicly available online for download; ii)

contain inertial data collected from the lower trunk (back) of at least accelerometers and gyroscopes; and

iii) contain postural daily activities and/or fall events. The research carried out resulted in the gathering of

the public datasets and the three other team-own datasets, which are described in Table 21. The gathered

public datasets were as follows:
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1. Sisfall [32]: Data acquired with 23 healthy young adults (19–30 years, 149–183 cm, 42–81 kg)

and 15 healthy elderly participants (60–75 years, 150–171 cm, 50–102 kg) with a device com-

posed of two types of accelerometer and one gyroscope fixed to the waist of the participants, who

performed 19 ADLs and 15 fall types.

2. FallAllD [326]: Data acquired from 15 healthy subjects (21–53 years, 158–187 cm, 48–85 kg)

who used 3 devices equipped with an accelerometer, a gyroscope, a magnetometer and a barom-

eter. A total of 44 classes of ADLs and 35 classes of falls were performed.

3. FARSEEING [31]: Large-scale collaborative database to collect and share sensor signals from real-

world falls. Real fall data are acquired from either 2 locations: waist or thigh, and the acquisition

devices are equipped with up to 3 sensors, namely accelerometer, gyroscope and magnetometer.

4. UCI HAR [327]: Dataset recorded from 30 healthy subjects (19–48 years) by using a waist-mounted

smartphone with an embedded 3-axis accelerometer, gyroscope, and magnetometer. This dataset

contains six classes of ADLs: walking, ascending stairs, descending stairs, sitting, standing, and lay-

ing.

5. Cotechini et al. [328]: Dataset acquired from 8 healthy subjects (22–29 years old, 173–187 cm,

60–94 kg) using a wearable device containing a 3-axis accelerometer and gyroscope, tied to the

subject’s waist, that recorded subject’s acceleration and orientation. Subjects simulated 13 typolo-

gies of falls and 5 types of ADLs.

6. UMAFall [329]: A dataset acquired from a total of 17 healthy subjects (18–55 years, 50–93 kg,

155–195 cm). Accelerometer, gyroscope and magnetometer data were collected from five wearable

sensing devices, located on the subject’s chest, waist, wrist, ankle and pocket. The participants

performed 8 different ADLs and 3 different typologies of falls (except by those older than 50 years,

who did not perform falls).

The used team-owned datasets were as follows.

1. +Sense [49]: Dataset with data acquired from 10 healthy subjects (44.02 ± 16.42 years, 67.5 ±

16.06 kg, 172 ± 7.93 cm) and 40 subjects with Parkinson’s disease (64.00 ± 10.60 years, 69.93

± 11.41 kg, 165.93 ± 8.65 cm). A waist-mounted waistband, equipped with an accelerometer,

a gyroscope and a magnetometer recorded subject’s data in walking activity protocols.

2. SafeWalk [36]: Dataset acquired with 12 healthy subjects (25.33 ± 6.33 years old, 66.92 ± 10.07 kg,

1.74 ± 0.11 m). Five IMU were attached to the lower back, both back thighs, and to both feet of the

subjects, who performed walking trials and front fall events.
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3. InertialLab [330]: Dataset which includes data from 11 able-bodied subjects (24.53 ± 2.09 years

old, 171 ± 10 cm, 65.29 ± 9.02 kg). Gyroscopes and accelerometers were attached to six lower

limbs and trunk segments. Walking in varying speed and terrain (flat, ramp, and stairs) and including

turns were the activities carried out by the subjects.

The merging of these heterogeneous datasets, which included data from both adult and elderly sub-

jects, as well as healthy and unhealthy individuals, served two aims. Gather a large and diverse dataset

appropriate for training AI-based models, and then use them to recognise ADL regardless of the subject’s

age and health condition. A global dataset containing 6702 files covering a total of 20 ADLs and falls

conducted by 180 subjects (age = 33.60 ± 16.84 years, weight = 69.98 ± 10.99 kg, height = 168.99 ±

9.42 cm) was generated. This vast amount of data is crucial for validation purposes since it is far larger

than any other dataset used in the AI-based ADL recognition research carried out. Furthermore, the global

dataset presents a balanced distribution regarding the subject’s gender (Male = 54%, Female = 46%), also

containing data from both young adults and elderly people. However, despite the presence of elderly data,

the average and standard deviation values show that the global dataset is still made up mostly of young

adults, with the percentage of people over 65 years old being just over 20% of the total dataset (37/180

subjects). Due to the great variability found between datasets, it was necessary to pre-process them as

Signal Selection Reorientation Resampling (50 Hz) Data Normalisation

(a)

(b)

Figure 43: a) Pre-processing steps implemented before using the datasets for ADL recognition. b) Desired
sensors orientation (x, y and z indicate the positive direction of the AP, ML and V axes, respectively).
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Table 21: Datasets description regarding sensing methods and location, sample frequency, participants
and activities recorded, where: A = Accelerometer, G = Gyroscope, M = Magnetometer, and B = Barometer

DataSet Availability Sensors Location
Sample

Frequency
Participants

ADL
Falls

SisFall [32] 1 Public A, G Waist 200 Hz
23 subjects <30 year
15 subjects >60 years

19 ADLs
15 Falls

FALLALLD [326] 1 Public
A, G,
M, B

Chest, Waist,
Wrist

238 Hz
15 subjects
21–53 years

44 ADLs
35 Falls

FARSEEING [31] 1 Public A, G, M Waist, Thigh
20 Hz
100 Hz

20 subjects 2 Real falls

UCI HAR [327] Public A, G Waist 50 Hz
30 subjects
19–48 years

12 ADLs

Cotechini [328] 1 Public A, G Waist 33,33 Hz 8 subjects
5 ADLs
13 Falls

UMAFall [329] Public A, G, M
Waist, Chest,
Wrists, Ankle,
Front pocket

20 Hz
17 subjects
18–55 years

8 ADLs
3 Falls

+Sense [49] Private A, G, M Waist 100 Hz
10 Healthy
40 Pathological

1 ADL

SafeWalk [36] Private A, G, M
Waist, Thighs,
Feet

30 Hz
12 subjects
25.33 ± 6.33 years

1 ADL
Falls

InertialLab [330] Private A, G, M
Waist, Thighs,
Shank, Feet

200 Hz
7 subjects
23–26 years

5 ADLs

1 Several activities in these datasets were grouped into one single class of basic activities.
2 Only data from 3 subjects were suitable to use.

depicted in Fig. 43.a. First, only data corresponding to the acceleration and angular velocity of the sensors

located in the subjects’ waist were considered. Then, the sensor reorientation method was applied so that

the axis orientation corresponded to the one depicted in Fig. 43.b. Finally, all datasets underwent a re-

sampling process, so that the sampling frequency was normalised to 50 Hz, and a normalisation process

per dataset. The datasets, whether public or private, contain the great majority of ADLs used for activity

recognition in the literature. Therefore, a total of 20 labels, including periodic activities, static postures,

transitions between postures and falls, were used in order to cover all ADLs listed in every dataset. It should

be noted that some activities whose labels in public datasets were considered different were recognised as

the same activity in this work, since their basic body movement is similar, e.g.,the cases of Sisfall’s activity

of sitting in high chairs or low chairs were included in the ”Stand to Sit”class; or even cases of standing in

different places, such as in the room and in the elevator, were all included in the ”Standing”class. Table 22

lists the ADLs that were adressed in this work. A study carried out on how the ADL were distributed showed

that the global dataset is unbalanced, with a greater tendency toward cyclical activities, such as walking

or lying (29.73% and 18.52%, respectively), with only a small percentage of transitions between activities

and fall events, such as syncope, which is the activity with the least amount of data in the constructed

dataset (0.27%). Figure 44 shows the percentage amounts of each activity.
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Table 22: Static postures and locomotion daily activities, postural transitions and fall events selected to be
recognised by the AI-based models

Periodic Activities
& Static Postures

Transitions Fall Events

Walking Lying to Stand Forwards
Standing Stand to Sit Backwards
Sitting Sit to Stand Lateral
Lying Stand to Pick to Stand Syncope

Upstairs Stand to Lying
Downstairs Change Position (Lying)
Jumping Turning
Jogging Bending

Walking
29,74%

Standing
13,35%

Sitting
7,90%

Laying
18,52%

Upstairs
4,53%

Downstairs
4,44%

Jumping
7,80%

Others (13 ADL)
13,72%

Figure 44: Percentage of each activity present in the global dataset. The activities are named according to
Table 22.

6.3.2 Data Acquisition in Nursing Homes

At this stage, an initial version of the FRA strategy was implemented offline with the use of public and team-

owned datasets. However, it is critical to develop or improve a system capable of collecting data in order

to create a new and robust dataset. A waistband with an inertial sensor was improved, and smartphone

apps were developed for use in data collection sessions with older people in nursing facilities. This proof

of concept is also an essential first step for the development of the remaining blocks of the FRA tool, since

this block is shared by all FRA modules. Thus, this section will address the process of enhancement of a

previous team-own instrumented waistband and smartphone applications for data acquisition, as well as a

data acquisition protocol, which was carried out with the following three nursing homes, namely: i) Fundo

Social - Braga; ii) Centro Social e Paroquial de Sobreposta; and iii) Associação de Reformados ValeD’este

- Celeirós. The materials used to the construction of the waistband will be identified, as well as the data

collection protocol.
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6.3.2.1 Waistband Enhacement

The waistband used in nursing homes to collect data was based on a version designed by BirdLabmembers

and was equipped with electrical components to collect gait data from parkinsonic participants [49]. For

waist-located inertial data acquisition from ADLs performed by the elderly in nursing homes, the previous

sensing system (MPU-6050) was changed for an inertial sensor (LSM6DSOX), miniaturised (15x20x2

mm) and light (10 g), integrating a 3-axis accelerometer (±16 g) and gyroscope (±2000 º/s). An ultra-low

power high-performance three-axis magnetic sensor (LIS3MDL) was also added. As can be seen from

Fig. 45, the sensing system is located in a central region of the outer part of the waistband, connected by

a cable to the control unit.

Control Unit Sensing Unit

Figure 45: The instrumented waistband developed for data collection in nursing homes. 3D Solidworks
assembly of the control unit box on top.

A control unit, which includes the STM32F4 Discovery as a processor, allows the communication

between all the components, sending the necessary commands for the sensory unit to start and stop the

data collection, and saving the collected data in a file once the acquisition is finished. The inertial acquisition

takes place at a sampling frequency of 100 Hz, sufficient for the acquisition of human movement, without

loss of information [331]. The files containing the inertial data acquired by the sensory unit are stored on a

USB pen drive with a capacity of 32Gb. To power the system, the power-bank Turbo 3000 (5 V; 2 A; 3000

mAh; 75 g) is used. The system has an eight-hour autonomy, allowing for daily monitoring sessions over

long periods of time. Furthermore, a new Bluetooth module (HC06 Bluetooth module) was also included

to allow a better connection between the waistband and external devices, such as smartphones. The last

improvement implemented in this waistband was related to its fabric, which was modified in order to be

more easily adjustable to the subjects’ abdominal perimeter, since the previous version of the waistband,

despite being elastic, was one-size-fits-all and could cause discomfort. All the referred components are

depicted in the diagram presented in Fig. 46.
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Verbantim USB OTG 
Flash Drive Pen

Power Supply

Android Apk

LSM6DSOX+LIS3MDL

HC06 Bluetooth 
Module

STM32F4 
Discovery

Figure 46: The waistband component’s system overview, illustrating the central systems with the respective
components and interfaces between them.

Two graphic applications for smartphones, capable of communicating with the control unit via Blue-

tooth, were created in Android Studio to facilitate: i) the data acquisition; and ii) the labelling process. The

first smartphone application (Fig. 47.a) was previously developed by BirdLab members for the last version

of the waistband. However, it was altered to send the initial timestamp for further synchronisation with

other devices, as well as to allow an intuitive beginning and ending of the data acquisition and saving the

file containing the inertial data from ADLs. The second application (Fig. 47.b) helps labelling data, through

simple clicks, during the acquisition by saving the start time of several ADLs into a text file. The text file’s

name can be changed by the user. It also includes an embedded timer so that the person in charge of

data collection may keep track of how long each activity takes.

6.3.2.2 Data Acquisition Protocol

The data acquisition experimental protocol was elaborated in collaboration with Doctor Gorjão–Clara, spe-

cialised in the field of geriatrics, in order to define several inclusion and exclusion criteria, the ADL to be

realised by the selected subjects, and the conditions under which data acquisition must be done. Based

on the exclusion criteria outlined, seniors with the following conditions were excluded: i) dementia (Mini

Mental State Examination (MMSE)≤15); ii) severe depression (Geriatric Depression Scale (GDS) ≥ 11); iii)

physical disabilities (unable to walk without walking aid, Functional Ambulation Categories (FAC) < 4); iv)

orthopedic, cardiac, or respiratory diseases that affect locomotion; v) Morbid obesity (Body Mass Index

(BMI) ≥ 30); and vi) Fear of falling moderate-high (Short Falls Efficacy Scale – International (FES-I) ≥

14). Clinicians, nurses and caregivers of nursing homes performed the various tests and clinical scales

mentioned above in order to identify possible participants for data collection. After getting the clinical FRA

from the several above mentioned clinical scales and the demographic data (age, height, body mass and

gender), a total of 25 subjects were selected to perform the experimental protocol whose age ranged from

55 to 95 years old (77.64 ± 10.20 years), with a body mass between 42.7 and 97.5 kg (66.45 ± 14.19

Kg) and a height of 49 to 172 cm (159.52 ± 7.08 cm). This group of participants was further divided
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(a) (b)

Figure 47: a) Data acquisition App. b) Data labelling App.

into fallers and non-fallers considering their fall history. The activities available on Table 23 were carried

out in two different protocols (circuit of activities and repetition of isolated activities) and the inertial data

was gathered under controlled conditions to ensure the individuals’ safety at all levels. The placing of the

waistband on the individuals was the initial stage for collecting inertial data. The inertial sensor must be

aligned with the spine in the central region of the subjects’ waist (Fig. 48.a). Then, each subject completed

the set of activities shown in Table 23 in the form of a circuit (Fig. 48.b). Each participant performed the

circuit once at a comfortable pace. Each activity had a duration of at least 2 minutes, with the exception

of the Sit-to-Stand, Stand-to-Sit and Lay down transitions. The circuit was the following: Sit – Sit to stand

(not with a specific time) – Stand – Walk – Pick objects from the ground – Walk – Climb stairs (not with
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Table 23: Set of ADL that elderly subjects performed under controlled trials

Code Activity

ADL001 Walking
ADL002 Sitting
ADL003 Standing
ADL004 Walking Upstairs
ADL005 Walking Downstairs
ADL006 Sit in a regular height chair, wait a moment, and up
ADL007 Sitting a moment, lying, wait a moment, and sit again
ADL008 Standing, pick something from the ground, and getting up
ADL009 Gently jump without falling (trying to reach a high object)
ADL010 Being on one’s back change to lateral position, wait a mo-

ment, and change to one’s back (Lying)

a specific time) - Descend stairs (not with a specific time) – Walk – Reach high objects –Walk (dual task:

answering the telephone/talk with a person) - Stand – Lay down. The responsible for the test delivered

voice orders to the participants to change their activities while they were performing the circuit, noting the

start time of each activity in the mobile app to capture the timestamps. In addition, if any of the volunteers

showed signs of exhaustion, the test was interrupted to give them time to recover. Finally, after the circuit

of activities, each volunteer repeated 3 times each activity from the Table 23 separately. These activities

were chosen with the target audience (elderly) and their physical constraints in mind. During the realisation

of these activities, each subject was accompanied by caregivers and the person responsible for the data

collecting. All participants provided their written consent.

Sit-to-Stand

Walking

Pick something
from the ground

Walking
Climb &

Descend stairs

Trying to reach a 
high object

Walking (Answer the telefone)
Dual Task

Sit & Lay Down

Rotate

Walking

Sit-to-Stand

a) b)

Figure 48: a) Placement of the waistband. b) Circuit for inertial data collection of ADL.
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6.3.3 AI-based Comparative Analysis

Two stages make up this AI-based comparative analysis. Data from the datasets in Table 21 were used

in the first phase to determine which models and features were optimal that attain the best performance

for activity recognition. This initial phase uses a method that is quite similar to the one used in section

4.4. The following processes were performed as mentioned previously but some of them present some

exceptions: i) PCA, ii) feature extraction/estimation; iii) feature selection; iv) feature normalisation; and v)

model building and evaluation.

This initial approach consisted of training several machine-learning classifiers to identify ADLs and fall

events with different feature subsets. The subsets of features with the best performance were then used

with several Neural Networks architectures, and their performances were compared with the machine-

learning classifiers. Finally, for the best machine-learning classifier and neural network, a study to assess

the influence of the window size used for feature extraction on the classification model’s performance was

carried out. It should be noted that all operations were performed on the global dataset without the use

of any noise filters or other sorts of processing, i.e., the raw inertial data were directly implemented in

the referred procedures. All the processes used for the development, validation and evaluation of these

ADL recognition algorithms were implemented offline using the Matlab 2021b version on a Lenovo Legion

Y540: processor—intel core i5, 9th Gen; graphics card—NVIDIA® GeForce® GTX 1650; memory—8 GB

DDR4 at 2666 MHz and SSD PCIe of 512 GB.

Feature extraction was achieved through the sliding window method, where a signal is segmented

into several windows of equal size, on which different features can be calculated. The most used sliding

windows’ size corresponded to approximately 1 second for this type of activity classification, and the overlap

between consecutive windows can vary from 50% to 87% [332–334]. Within the scope of the activity

recognition, firstly, a one-second window was selected for the comparative analysis, which corresponds to

a 50-sample window, with an overlap of 80%. In addition to the initial window size, 4 other different sizes

were explored in the window size study: 0.5 s; 1 s; 1.5 s; and 2 s. The overlap was kept at 80% for all tests,

despite the literature suggesting that it can also have a high impact on the classification performance and

computational cost for real-time applications [334, 335]. The segmentation in windows with a size of 1s

and an overlap of 80% resulted in a total set of 666,660 windows for the models’ training and evaluation.

Similarly, for a window size of 0.5 s, 1.5 s, and 2 s, a total of 1.366.289, 435.111, and 318.516 windows

were obtained, respectively. Thus, for each window, several features, such as the averages, maximums,

minimums, and standard deviations of each of the acceleration and angular velocity signals, among other

metrics, were extracted, making a total of 199 features calculated - a higher number than used previously

in Section 4.4. A summary of the extracted features can be seen in Table 58 (Appendix C). The window

labelling was carried out according to the Mode Labelling Method, where the label of a given window would

be the mode of the labels present in that window’s samples [335].
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Table 24: Specifications for the use of the Deep Learning models

Specification Value
Epoch Number 100
Hidden Layers 150
Batch Size 64
Optimizer Adam [336]

Learning Rate 0.001 (Constant)
Loss Function Cross-Entropy

The remaining methods were implemented in a similar way. PCA was performed as previously, but

now for 199 features. The same feature selection methods were used, as well as the same machine-

learning classifiers and neural networks, excepting the BiLSTM. Initially, the HO method was used to split

70% of the created dataset’s data for training and 30% for testing. The machine-learning classifiers were

used to obtain the subset of the most relevant features by performing an initial five-fold CV with one

repetition and using only training data. Once determined the subset of the most relevant features, a five-

fold CV with ten repetitions was performed to the four best classifiers from the previous step in order to

evaluate the generalisation capabilities of each model. The two best classifiers from this step were chosen,

and its hyperparameters were optimised through a grid-search process. The optimised machine-learning

classifiers and the neural networks architectures were further trained with all training data and tested with

the test data from the HO method and the final performance of each classifier was compared in order to

choose the best AI-based classification models. During all of the operations, test specifications such as

the loss function used, number of epochs, the optimiser employed, number of hidden layers, batch size

and the Learning Rate were kept constant for all the architectures. Table 24 provides a summary of all

these characteristics and respective values. Furthermore, the time required to perform the training and

testing of the KNN and Ensemble Learning classifiers for each of the window sizes was also computed.

This exercise had the objective of investigating the possibility of using one of the algorithms that presented

better performance in real-time situations.

Finally, the data collected in institutions from the target population were used as input for the models

that presented the best performance. This information went through the same pre-processing steps as the

previously used public and team-owned datasets (Fig. 43). However, only the following conditions were

tested: i) window size of 1s; ii) overlap of 80%; iii) normalisation between 0 and 1; and iv) Mode Labelling

Method. Initially, the HO method was used to split 90% of the created dataset’s data for training and 10%

for testing considering the labels proportion. This process implies that a model is trained and tested with

data from the same subject (Subject Dependent). This process is very similar to the one used previously

with public and team-owned datasets, having only changed the percentages of data for training and testing.

The LOO approach was then used. Of the 25 older adults, 24 were chosen to train the models and one

was set aside for model evaluation - the process was repeated until all subjects had been tested once.
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As a result, the model is tested using data from people who did not appear in its training set (Subject

Independent). As mentioned previously in Chapter 4, LOO method evaluates the generalisation capability

of the final classification models [241].

6.4 Activity Recognition: Results

6.4.1 PCA Outcomes

The scree plot determined that 11 PC were necessary for a cumulative percent explained greater than

70%. Furthermore, the resulting PC demonstrated that there were 55 features with PC values greater than

1/199. After performing the PCA, the number of features were reduced to lower the computational cost

of the comparative analysis, i.e., instead of using all 199 features, only the first 110 features were used

and ranked by the feature selection method included. Only training data split from HO method were used.

6.4.2 ADL and Fall Events Classification

The results attained from the five-fold CV with one repetition disclosed the Ensemble Learning classifier

as the one that presented the best performance among the used classifiers (MCC = 85.78%; ACC =

94.59%) when using the first 65 features ranked by the PCA method (Table 57 - Appendix C). With the

first 85 features ranked by the Relief-F (Table 57 - Appendix C), KNN produced similar but inferior results

(MCC = 85.10%; ACC = 93.63%). DT performed worse with the first 74 features ordered by the same

technique (MCC = 70.65%; ACC = 88.22%); and Quadratic and Linear DA had the worst performance

results with the first 55 and 66 features ranked by the Relief-F method, respectively. The two best classifiers

went through a five-fold CV with ten repetitions, and we realised that increasing the number of repetitions

did not change significantly the CV results either for the Ensemble Learning (MCC = 85.79%; ACC =

94.59%) or KNN classifier (MCC = 85.05%; ACC = 93.62%). From this second CV stage, the Ensemble

Learning using the first 65 features ranked by PCA and the KNN using the first 85 features ranked by

Relief-F were chosen for the next phases. Table 25 presents the main results for the two phases of the CV

process.

When using test data from the HO data split method, the two best classifiers presented slight im-

provements in their performance in comparison to the results shown in Table 25. However, the Ensemble

Learning model presented lower results (MCC = 88.36%; ACC = 95.44%) than the KNN classifier (MCC

= 93.19%; ACC = 97.27%) when tested with unseen data, contrary to what was verified during the CV

process. After the optimisation stage, KNN hyperparameters were: i) distance—minkowski; ii) distance

weight—squared inverse; iii) exponent—0.5; and iv) number of neighbors—1. Ensemble Learning hyperpa-

rameters were: i) Method—Bag; and ii) number of learning cycles—37. Table 26 depicts the main results

obtained for the HO validation process.
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Table 25: Comparison of the best classification results (ACC, SENS, SPEC, Precision, F1 Score, MCC),
attained after the 5-1 and 5-10 k-fold CV steps for the KNN and Ensemble Learning classifiers

ML Model
Feat.

Sel. Met.
CV Step

Nº of
Features

ACC (%) SENS (%) SPEC (%) Prec (%) F1 Score (%) MCC (%)

KNN
Relief-F

5 Fold
(1 rep.)

85 93.63 84.17 99.64 86.80 85.43 85.10
PCA 85 92.99 84.08 99.60 86.01 85.01 84.63
FSASL 70 91.49 81.39 99.51 83.66 82.48 82.02

Ensemble
Learning

PCA 65 94.59 82.22 99.68 90.54 85.80 85.78

KNN
Relief-F

5 Fold
(10 rep.)

85 93.62 ± 0.016 84.12 ± 0.066 99.64 ± 0.001 86.75 ± 0.055 85.38 ± 0.056 85.05 ± 0.056
PCA 85 92.95 ± 0.021 83.91 ± 0.094 99.60 ± 0.001 85.88 ± 0.085 84.86 ± 0.085 84.48 ± 0.086
FSASL 70 91.48 ± 0.026 81.40 ± 0.063 99.51 ± 0.001 83.59 ± 0.079 82.45 ± 0.066 81.99 ± 0.067

Ensemble
Learning

PCA 65 94.59 ± 0.015 82.18 ± 0.067 99.68 ± 0.001 90.64 ± 0.073 85.79 ± 0.061 85.79 ± 0.060

Table 26: HO test results for the Ensemble Learning with the first 65 features ranked by the PCA and for
the KNN classifier with the first 85 features ranked by the Relief-F.

ML Model
Feat.

Sel. Met.
Nº of

Features
ACC (%) SENS (%) SPEC (%) Prec (%) F1 Score (%) MCC (%)

KNN Relief-F 85 97.27 92.90 99.84 93.79 93.34 93.19
Ensemble
Learning

PCA 65 95.44 85.97 99.73 91.67 88.43 88.36

6.4.3 Deep Learning Outcomes

The BiLSTM stood out among the neural networks in both case studies, using the first 85 features ranked

by the Relief-F method (MCC = 82.83%; ACC = 92.55%) and the first 65 features ranked by PCA (MCC =

80.52%; ACC = 91.48%). However, in both cases, it presented lower results when compared to Ensemble

Learning and KNN. On the contrary, CNN presented the lowest performance results for both case studies,

using the first 85 features ranked by the Relief-F method (MCC = 37.87%; ACC = 57.01%) and the first

65 features ranked by PCA (MCC = 24.90%; ACC = 42.67%). Thus, the machine learning-based methods,

KNN and Ensemble Learning, were considered the classifiers with better performance for ADL and fall

events recognition, among all tested classifiers, being selected for the window size study and classification

time analysis. Table 27 contains the main results for ADL recognition when neural networks are used.

6.4.4 Window Size and Classification Time

The results attained in this last analysis, for the optimised KNN and Ensemble Learning classifiers, are

depicted in Table 28. It should be noted that the same labelling method was used during the feature

extraction step for each window size selected for this analysis. Both tables show a decreasing trend in the

performance of the two classifiers as the window size increases from 0.5 to 2 s.

In addition to the results obtained regarding performance metrics, the time required to perform the

training and testing of the KNN and Ensemble Learning classifiers for each of the window sizes used in

this last study was also computed. This exercise has the objective of studying the possibility of using one
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Table 27: Results for the test of the 4 Deep Learning architectures with the 85 first features ranked by
Relief-f and 65 first features ranked by PCA

Feat.
Sel. Met.

Feature
Number

Architecture ACC (%) SENS (%) SPEC (%) Prec (%) F1 Score (%) MCC (%)

Relief-F 85

CNN 57.01 37.06 97.22 54.67 35.47 37.87
LSTM 92.06 79.58 99.55 84.25 81.02 81.01
CLSTM 88.84 74.48 99.36 75.24 74.53 74.06
BiLSTM 92.55 81.14 99.57 85.56 83.14 82.83

PCA 65

CNN 42.67 26.46 96.15 54.49 22.27 24.90
LSTM 91.46 77.81 99.51 84.38 80.61 80.38
CLSTM 88.55 74.33 99.35 75.09 74.36 73.88
BiLSTM 91.48 79.33 99.52 83.32 80.67 80.52

Table 28: Window size comparative study results for the KNN best optimized model with the Relief-F feature
selection model

ML Model + FSM Window Size (s)
Window

Overlap (%)
ACC
(%)

SENS
(%)

SPEC
(%)

Prec
(%)

F1 Score
(%)

MCC
(%)

KNN + Relief-f

0.5

80

98.22 95.20 99.90 96.04 95.62 95.52
1 97.27 92.90 99.84 93.79 93.34 93.19
1.5 96.30 91.73 99.79 91.15 91.41 91.22
2 95.33 90.53 99.74 88.51 89.44 89.22

Ensemble + PCA

0.5 96.53 88.94 99.79 94.09 91.29 91.21
1 95.44 85.97 99.73 91.67 88.43 88.36
1.5 95.01 85.60 99.71 90.76 87.64 87.62
2 94.51 85.21 99.68 89.37 86.92 86.79

of the combinations which presented better performance results in real-time situations. Table 29 depicts

the results obtained for the training and testing time of each classifier and window size combination.

Through direct observation of Table 29, the KNN classifier has a training time of around four seconds,

regardless of the size of the windows. The Ensemble classifier’s training time shows an increasing trend

as the window size decreases. On the other hand, the time required to test only one window (last column

of Table 29) is lower than 4.5 × 10−5 s for every window size tested in the case of the Ensemble Learning

classification model. The test time per window for the KNN classifier shows an increasing trend as the

window size decreases.

6.4.5 ADL Recognition from Nursing Homes Data

KNN and Ensemble Learning were then selected for this last stage, since they were the models that

had previously the best performance. The results attained from the HO method as disclosed the KNN as

the one that presented the best performance (MCC = 95.81%; ACC = 99.10%) when using the first 85

features ranked by the Relief- F method. On the other hand, Ensemble Learning showed lower results,

although close to KNN (MCC = 95.81%; ACC = 99.10%) when using the first 65 features ranked by the
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PCA. These results are in accordance to what was obtained previously with the public and team-owned

datasets using only the HOmethod (Table 26). Table 30 details these results. The LOO approach presented

lower results when compared to the HO method. Both models presented similar results in terms of ACC

(KNN: 72.74±8.51%; Ensemble Learning: 72.73±13.78%), however Ensemble Learning presented a slight

higher value of MCC (KNN: 54.67±8.28%; Ensemble Learning: 59.75±12.87%). Standard deviation values

show that Ensemble Learning presents more variability in its outcomes. Table 31 resumes the results of

the LOO approach. Table 32 demonstrates this variety in outcomes, with a 60% difference between the

best and worst subjects in terms of ACC. Ensemble Learning produces the best and worst performance

for a subject for which the model has never seen data.

Table 29: Classification time for the training and testing of the two best combinations of Machine Learning
model and Feature Selection Method, for each of the selected windows for the window size study

ML Model +
Feat. Sel. Met.

Window
Size (s)

Window
Overlap (%)

Test
Windows

Train
Time (s)

Test
Time (s)

Test Time
per Window (s)

0.5 409,740 4.36 213,588.88 0.521
1 199,997 4.18 66,782.58 0.334
1.5 130,421 4.70 12,633.08 0.097

KNN + Relief-f

2 95,482 4.09 6752.47 0.071
0.5 409,740 829.55 15.99 3.90 × 10−5

1 199,997 279.03 8.54 4.27 × 10−5

1.5 130,421 145.21 5.68 4.35 × 10−5Ensemble + PCA

2

80

95,482 100.23 3.94 4.13 × 10−5

Table 30: HO test results for the Ensemble Learning and for the KNN classifier when using data from older
adults

ML Model
Feat.

Sel. Met.
Nº of

Features
ACC (%) SENS (%) SPEC (%) Prec (%) F1 Score (%) MCC (%)

KNN Relief-F 85 99.10 95.61 99.93 96.48 95.71 95.81
Ensemble
Learning

PCA 65 97.65 88.96 99.82 94.36 90.27 90.78

Table 31: LOO mean and standard deviation test results for the Ensemble Learning and for the KNN
classifier when using data from older adults

ML Model
Feat.

Sel. Met.
Nº of

Features
ACC (%) SENS (%) SPEC (%) Prec (%) F1 Score (%) MCC (%)

KNN Relief-F 85 72.74±8.51 54.22±8.84 97.25±0.75 60.54±8.78 57.50±8.53 54.67±8.28
Ensemble
Learning

PCA 65 72.73±13.78 57.40±12.72 97.24±1.38 69.73±12.27 67.03±6.46 59.75±12.87
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Table 32: LOO best and worst test results for the Ensemble Learning and for the KNN classifier when using
data from older adults

Subject ML Model
Feat.

Sel. Met.
Nº of

Features
ACC (%) SENS (%) SPEC (%) Prec (%) F1 Score (%) MCC (%)

Best
Subject

KNN Relief-F 85 84.23 63.03 98.37 75.11 64.62 64.45
Ensemble
Learning

PCA 65 90.47 76.66 98.73 85.06 77.73 78.06

Worst
Subject

KNN Relief-F 85 47.36 42.79 95.01 35.42 35.41 32.63
Ensemble
Learning

PCA 65 29.72 30.54 93.19 36.7 - 27.85

6.5 Conclusions

The architecture and functioning of a simple FRA tool was demonstrated with the aim of eliminating some

gaps found in the literature, namely reducing the subjectivity presented in tests and clinical scales, allowing

an assessment in real-time and using a wide range of risk factors to carry out the assessment, while still

being easy to use and comfortable for the target audience. This tool is based on recent developments in

AI techniques and in data acquisition methods from wearable sensors. Thus, all modules can work using

inertial data acquired by waistbands or smartwatches, thus making it an easy-to-use and comfortable

tool for everyday use by the elderly. With the Baseline Risk Module it should be possible to integrate and

evaluate different types of risk factors, whether associated with the subjects, such as age, weight, fear

of falling or results of clinical tests, or risk factors associated with the surrounding environment, such as

location or humidity level. This module will thus make it possible to address the question regarding the

need for a FRA tool that assesses the risk of falling in a multifactorial way. Another positive aspect that

differentiates this FRA tool from all others is its ability to classify in real-time the ADL that is being carried

out, and assign a risk level to that classification. Despite the positive aspects mentioned above and the

possibility of suppressing some disadvantages found in the literature, this tool is still require a validation of

each module described above. The validation of methods that make use of AI models is a complex process,

which requires the use of a large set of data and several processes, in order to find the best method for a

given task [71].

Considering the ADL Recognition Module, the first stage presented as result an algorithm capable

of recognising ADLs. This algorithm that recognises sixteen ADLs and four different types of fall (twenty

classes in total) from several AI-based classification models and feature selection models was built in order

to find the combination that presents better performance in this type of classification. The performance

of the different combinations was evaluated using the following parameters: i) performance evaluation

metrics, ii) subset of features used, and iii) classification time per window of the models. Two different

approaches (machine-learning and deep-learning) were investigated and compared: when performing one

waist-located inertial sensor-based ADL and fall events recognition. Furthermore, a new procedure of fusion

and normalisation of datasets was carried out in order to generate a vast dataset to validate the activity
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classification models in order to battle concerns observed in the literature. Taking into account the perfor-

mance values as well as the classification times found in this work for the machine used, it is concluded

that the most effective AI-based classifier was the Ensemble Learning classifier with the first 65 features

ranked by the PCA. Moreover, the classification time per window in this combination was lower than the

window advance time in every window tested, which represents an encouraging result for the application

of this algorithm in real time in the future. The deep learning outcomes were not as good as in the prior

procedure; however, their potential was demonstrated, indicating that they could be a good option in the

future with the appropriate future work regarding the input data used and its architectures.

Considering the data acquired in institutions and their usage in the best-performing models, it is

possible to verify that the HO results, as expected, are in line with those achieved with public and team-

owned datasets, because the method is the same, achieving even slightly better results. This could be

related to: i) the smaller number of activities to identify; and ii) the slower rate at which the elderly conduct

the activities, which could explain why the 1s window with these data produces equivalent outcomes

to the 0.5s window when public and team-owned datasets are used. KNN once again outperforms the

competition in terms of performance metrics. MCC and F1-Score metrics indicate a need for more data

collection, activity balancing, and possibly data processing (e.g. filtering data). Both for the KNN and the

Ensemble Learning, the LOO outcomes were much lower than the HO approach. Different ways of carrying

out tasks by different subjects, signal noise, and a short amount of data might all excuse this significant

drop in performance when a subject-independent analysis is undertaken.
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7
Knee Orthosis for Real-Time Fall Prevention

The purpose of this chapter is to establish a slip-related fall prevention strategy, which is divided into ac-

tuation and detection. The actuation strategy was developed based on human biomechanics responses

to slips, with the perturbed (leading) leg’s knee joint playing an important part in preventing slip-induced

LOB. Thereby, when a slip is detected, this strategy highlights a knee orthotic device that delivers assistive

torque to avoid falls. To predict gait parameters, the detection strategy took advantage of the appealing

qualities of bioinspired CPG controllers. To identify slips, threshold-based algorithms analysed the CPG’s

prediction error, which increases when there is an unexpected gait perturbation. As gait monitoring vari-

ables, the knee angle and shank angular velocity were used. An experimental protocol intended to induce

slip perturbations in human volunteers allowed data from these variables to be collected in order to further

verify the perturbation detection system.

7.1 Introductory Insight

Slips have been recognised as the leading cause of falls [337, 338]. Hence, researchers have been exam-

ining the biomechanics of slips in order to better understand human reactions to these occurrences and

mitigate their negative implications. Slips happen when the interaction between the subject’s foot and the

floor lacks adequate COF [105]. As a result, the environment has a significant impact on the chance of slip-

ping. These events occur mostly when the foot contacts or leaves the floor, and they resemble crucial body

weight transfer circumstances between the lower limbs, particularly when the heel strikes the floor [105].

Slips started at the HS cause a backward LOB by deviating the subject’s CoM relative to the BoS. When

human sensory systems identify this anomalous deviation, information is conveyed to the motor control

areas of the Central Nervous System (CNS) through afferent nerves. The CNS interprets the information
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and provides efferent signals to specific skeletal muscles to compensate for the LOB by correctly contract-

ing to keep the body position inside the BoS. The coactivity of recruited lower limb muscles counteracts

foot displacement and facilitates slip recovery [105]. The slip perturbation direction is also known as the

motion direction, i.e., the AP direction. Only 8.2% of the instability-induced falls are connected to the ML

orientation [339]. Cham and Redfern [340] discovered that the predominant reaction to to counteract the

LOB caused by a slip at the HS was a rise in both knee flexion and hip extensor moments at the leading

leg, which Moyer et al. [45] also verified. This allows to counteract the perturbed foot’s sliding action,

bringing it closer to the CoM and reducing the body’s V decline. Despite primarily considering the recov-

ery biomechanics of the leading limb, Cham and Redfern [340] acknowledged the trailing leg’s probable

helpful function during a slip. In this context, Moyer et al. [45] emphasised the relevance of trailing leg

kinematics in understanding the human biomechanical response to slips. Moyer et al. [45], as in Marigold

and Patla [341], found that the higher the severity of the slip, the sooner the swing phase of the trailing

foot was terminated by lowering the foot to the ground, using a corrective hip extension, and reestablishing

a stable BoS to maximise the odds of recovery. The increase in slip severity also causes the trailing foot

to settle on the ground more posteriorly and with a smaller contact area. The time it takes to reverse the

swing motion direction after a slip before putting the foot on the ground is critical to slip recovery [120].

If the slip caused only minor discomfort, the trailing limb’s swing phase was not disrupted [45]. Moyer

et al. [45] discovered evidence of interlimb coordination during recovering from slip events, since the in-

tensity of the trailing leg’s reaction was related to the knee moment exerted in the leading leg after the

slip. Consequently, interlimb cooperation of both lower limbs is required for effective recovery following

a slip incident. In order to slow the sliding motion of the slipping leg and bring it closer to the CoM, an

increase in the flexion moment applied at the knee is complemented by an increase in the hip extension

moment [340]. In parallel, the trailing leg’s reaction is characterised by greater moments at the hip and

knee joints [45]. The hip reaction is distinguished by a greater extension moment used to drop the foot

Leading
leg

Knee
flexion

Hip
extension

Counteract the forward
motion of the slipping foot

Minimise vertical body 
descent

Lower the foot onto the 
ground (interrupt swing)

Decelerate the forward 
swing motion

Trailing
leg

Knee
flexion

Hip
extension

Slip onset at
heel strike

Leg Actuation Outcome

Recovery

Slip-induced LOB recovery

Figure 49: Human biomechanical reactions adopted upon a slip event [120] (red dot = CoM).
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into the ground, interrupting the swing phase and reestablishing a stable BoS. To summarise the available

literature findings, Fig. 49 displays the primary human biomechanical responses to a slip incident. The

following sections will provide a Slip-Related Fall Prevention Strategy and the validation of its detection

system. This innovative technique aims to overcome the literature limitations by selecting the actuation

leg based on side-dominance and having a real-time detection system with greater performance.

7.2 Slip-Related Fall Prevention Strategy

Two major modules constitute the slip-related fall prevention strategy concept: i) the actuation strategy;

and ii) the detection strategy. Each strategy’s requirements were developed in order to encourage effective

performance from the identification of slip-induced LOB through the successful corrective actuation of the

assistive device. Given that the slip-related fall prevention strategy is intended at real-world settings, the

sensors used for data collection were thought to be wearable devices or incorporated on the assistive

device. Also for the current strategy, only slips caused at the HS were examined, as this gait event was

proven to be the most conspicuous and prevalent to onset slip perturbations during walking [105]. In terms

of actuation strategy definition, the optimal situation would include the provision of assistive torque to all

lower limb joints from both legs following a slip, taking into account the prominent role of the perturbed

(leading) and unperturbed (trailing) legs in counteracting slip-induced LOB. However, such an approach

would increase the fall prevention strategy’s complexity, both computationally and mechanically, perhaps

making it useless. As a result, only the leg and joint deemed to be most relevant in counteracting slip-

induced LOB would get assistive actuation. Trkov et al. [81] and Mioskowska et al. [37] actually only assisted

one joint with their slip fall prevention device. Thus, in order to define the strategy’s assistive device, it is

critical to answer the following questions: i) Which leg has a more significant role in preventing slip-induced

LOB?; ii) Which lower limb joint has a more determinant role in preventing slip-induced LOB?; and iii) Which

joint moment characteristics should be applied to the actuation joint? The definition of the detection strategy

is based on the usage of bioinspired controllers that can learn and modify their output to practically periodic

inputs. These controllers are well-suited for monitoring human locomotion characteristics and offer benefits

over conventional training-based algorithms. The signal anticipated by the bioinspired controller will diverge

from the actual motion signal in the presence of a gait perturbation. Based on these produced deviations,

threshold-based algorithms were employed to detect gait disturbances. However, in order to detect slip-

induced LOB, it is vital to objectively pick the variables that will be monitored. Important human motion

variables from the literature were considered and filtered to select the most suitable variables to be used by

the CPG controller. Finally, the timings allocated to the slip-related fall prevention strategy, specifically the

durations attributed to the detection and actuation phases, were established based on literature evidence

on biomechanical reactions to slip-like perturbations.
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7.2.1 Actuation

The full characterisation of assistive actuation properties is required for successful fall prevention. Given

that only one joint will be provided with assistive actuation, it is critical to accurately determine which

leg and joint exhibit the most appropriate reactionary response to counteract a slip-induced LOB. After

identifying a joint, the assistive actuation characteristics and the assistive device were determined. The

assistive actuation features recommended for the present slip-related fall prevention strategy are shown in

Fig. 50. This decision was made based on the evidence gathered from the literature, which is explained

further below.

Leading
dominant leg

Knee
Complementary 

knee flexor torque
Knee

orthosis

Actuation
joint moment?

Actuation
joint?

Actuation
leg?

Assistive
device?

Slip 
perturbation

detected

Figure 50: Assistive actuation strategy features.

7.2.1.1 Actuation Leg

Two factors must be considered while choosing the actuation leg: i) the perturbed leg; and ii) the subject’s

side-dominance. For the first criterion, evaluate the system’s actuation in either the leading or trailing legs.

The option for the second criterion is whether to actuate on the dominant or non-dominant legs. Previous

research has highlighted the importance of both the leading [340] and trailing [45] legs in terms of balance

recovery following a slip perturbation at the HS. The leading leg’s duty is mainly to move the anteriorly

displaced BoS closer to the CoM as a result of the sliding action of the foot [340]. In the event of a more

severe slip, the trailing leg’s task is to break the swing phase by lowering the swing limb onto the ground to

give support and prevent the body from collapsing [45]. The interlimb coordination of both legs’ corrective

responses is responsible for the total recovery response to slip disturbances [45, 133, 144, 342]. However,

the leading leg’s corrective reactions are thought to be the most important since a large number of studies

choose to examine them over those that research the trailing leg’s responses [45, 340, 343]. Yang et al.

[344] discovered that slip outcomes were crucially affected by the leading leg before to the trailing limb’s

recovery landing, implying that slip-induced falls can be avoided by individually managing the leading leg

[142]. Thereby, the actuation on the leading leg may address the slip at its source by reducing the distance

between the CoM and the BoS, so reducing the severity of the slip. As a result, the actuation leg was chosen

to be the leading leg. Nevertheless, the leading leg might be either the right or left leg. The side-dominance

or laterality, i.e., the preference for one side of the body over the other, should be examined. This results in

bilateral asymmetries during healthy gait. The ”functional asymmetry”theory, on the other hand, indicates

that this asymmetry may be related to the task discrepancy between the two lower limbs. According to

134



CHAPTER 7. KNEE ORTHOSIS FOR REAL-TIME FALL PREVENTION

this idea, the dominant lower limb is more responsible for propelling the body forward, whereas the non-

dominant lower limb is more responsible for providing support [345]. The laterality may influence the

reactions adopted to both standing [346] and walking [347] corrective reactions towards perturbations

since fall risk increase when the non-dominant leg was perturbed [348]. Thus, the non-dominant leg is

more used and equipped to give body support than the dominant leg.

7.2.1.2 Actuation Joint

To prevent slip-induced LOB, the knee appears to be the most important lower limb joint. Sawers et al.

[144] discovered that during slip trials, patients who fell had a delayed knee muscle activity start time in

the leading leg when compared to participants who recovered. These findings showed that the capacity

to coordinate muscle activation around the knee in a timely manner might be critical in preventing slip-

induced falls. Sawers & Bhatt [349] also discovered that individuals who recovered from slips had greater

neuromuscular control variety and complexity, which is based on the synchronisation of knee muscle

activity in perturbed and unperturbed legs. Furthermore, the critical role of knee joints in preventing slip-

induced falls has been demonstrated both experimentally [340] and analytically [344]. As a result, the

conceptualised fall prevention strategy would emphasise the knee joint as the actuation joint for slip fall

prevention.

7.2.1.3 Actuation Joint Moment

The principal answer to slip-induced LOB is to increase the knee flexion moment, which is proportional to

the severity of the slip [45, 133, 340]. This joint moment increase lets the slipping foot to slow down its

sliding motion and lessen its anterior displacement, bringing it closer to the CoM. As a result, literature

data suggests that the torque used to bend the knee allows for control of crucial factors for preventing

slip-induced falls, such as heel acceleration [350] and the shank-to-ground angle, i.e, the angle created by

the shank segment relative to the ground [142]. The acceleration of the heel in the direction of motion at

the HS is thought to be a key predictor of slip incidence [105, 350], being used in experimental research to

assess the severity of slips [45, 351]. Beschorner et al. [350] found that the torque exerted by the leading

leg’s knee affected the heel acceleration during HS.Furthermore, Wang et al. [142] discovered that the

leading leg’s shank-to-ground angle in the sagittal plane of motion was linked to the forward displacement

of the BoS caused by slips and was the most important predictor in LOB prevention.

Despite the fact that high-fall-risk people are often not nimble or powerful enough to prevent falling from

slip-induced LOB, they are nevertheless capable of taking some steps to mitigate these gait disturbances

[40]. As a consequence, the torque values exerted by the assistive device must be context-dependent,

taking into account the reactive torque created by the subject during the gait perturbation in order to

calculate the extra torque required to recover from the slip-induced LOB. Hence, the actuation joint would
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only receive a complimentary ’delta’ torque. In this case, the assistive robotic system would only aid the

subject as and when needed, promoting a symbiotic relationship between the human and the robotic

system [40]. An orthotic system would be worn on the knee to produce the necessary assistive torque.

Previous research on human knee reflexes has demonstrated that providing brief and quick knee torque

assistance during walking is safe, indicating that the knee orthosis can be used [352].

7.2.1.4 Assistive Device

The assistive equipment for the slip-related fall prevention strategy designed was a knee orthosis. The

SmartOs system, which was developed by a research team at BiRD Lab, includes a PKO. SmartOs is

a wearable active lower limb orthotic device that delivers repeated and user-oriented gait training while

measuring human motor condition using kinematic and muscular gait parameters. The ankle and knee

right-side modules of the lower-limb H2-exoskeleton are currently integrated into SmartOs’ architecture

(Technaid S.L., Spain). For gait speeds between 0.5 and 1.6 km/h, the PKO aids gait in the sagittal plane

of motion. It also has the following embedded sensors: i) an angle position sensor with a resolution of

0.5º; ii) a user-PKO interaction torque sensor with a resolution of 1 Nm (4 strain gauges connected in a full

Wheatstone bridge); and iii) a hall effect sensor that measures the motor’s angular speed (rpm), current,

and torque. The actuation system of the PKO consists of an electrical actuator (flat brushless DC motor

EC60-100 W, Maxon) linked to a gearbox (CSD20-160-2A strain wave gear, Harmonic Drive) with a ratio of

160:1, producing an average torque of 35 Nm and peak torques of 180 Nm. The mechanical construction

of the PKO is built of type 7005 aluminium and stainless steel, and it has a 4-strap system with two lower

straps on the shank and two upper straps on the tight, as shown in Fig. 51 [353]. In accordance with the

proposed fall prevention strategy, the PKO would provide participants with an assistive torque anytime a

slip-like disturbance is detected.

(a) (b)

Figure 51: PKO device [353]. (a) Device’s elements. (b) Mounted in one subject.
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7.2.1.5 Requirements

Previous research proposed and attempted to meet several conditions that the fall prevention system

should accomplish. The most often used fall prevention system identified needs were: i) flexible customi-

sation amongst various users [40]; ii) assisted-as-needed behaviour [40, 354]; iii) no (or very limited)

disturbance to the subjects, as demonstrated by: a) lightweight and comfortable to wear while walking

[37, 40, 81]; b) compact design [81]; c) mechanical compliance between the subject and the exoskeleton

[354]; and d) positioning heavy parts of the device away from the actuation joint [37, 81, 354]; iv) high

torque development in a short time [37, 81]; and v) adapt to the mechanical needs of the subject’s mobil-

ity and intents on a constant basis. The fulfilment of these requirements enables the system to ensure a

normal gait in the absence of aid and quick assistive torque supply to counteract LOB occurrences in the

presence of assistance. Furthermore, in the case of the proposed fall prevention strategy, the actuation of

the assistive system must be accomplished within the actuation time period (100 ms).

7.2.2 Detection

The identification of slip-induced LOB needs a careful selection of the perturbation detection algorithm and

the motion variables that will be monitored. Figure 52 depicts the properties of the proposed detection

approach. Literature studies were used to identify potential motion variables that were then subjected to

objective criteria to guarantee that the final monitoring variables chosen highlight visible changes upon a

slip without needing time-consuming computation. To collect data from the specified monitoring variables,

a slip-like perturbation protocol was developed and conducted, yielding data for testing the perturbation

detection algorithm. The suggested detection technique includes: i) a CPG controller that monitors and

anticipates the signals of the specified variables; and ii) a threshold-based algorithm for detecting slip

perturbations based on the prediction error signal. When the error signal exceeded a certain threshold, a

perturbation was recognised.
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Figure 52: Detection strategy features.
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7.2.2.1 Monitoring Variables Selection

The heel acceleration, shank-to-ground angle, and hip angle were identified as relevant kinematic variables.

Other variables were also incorporated to increase the number of possibly important kinematic character-

istics and undertake a more thorough selection. As a result, the knee angle and shank angular velocity

were also taken into account [45, 112, 340, 351]. The following criteria were used to try an objective

selection of the most important monitoring variables. As a result, the majority of the criteria were aimed

at describing technical aspects of the variables, such as: i) the simplicity of data processing required to

extract the variable in real time from sensor data (Criterion 1); ii) based on the scientific literature, the

capacity of the variable’s signal to efficiently identify gait events (Criterion 2); iii) the number of sensors

required to compute the variable, the ease of sensor positioning, and if further instrumentation beyond

the assistive device is required (Criterion 3); iv) bibliographical proof of the variable or its corresponding

body segment (e.g. knee) being used to research and/or detect human biomechanical responses to slips

(Criterion 4). In addition, certain movies from the slip-like perturbation protocol’s perturbation trials were

visually analysed in order to detect visual modifications in human body segments caused by a slip-like

perturbation. This allowed to collect visual signals regarding the changes caused by gait perturbations in

the temporal evolution of the variable signal (Criterion 5). Furthermore, an innovation criteria was included

in order to account for whether the variable has previously been addressed in a fall prevention strategy in

the scientific literature, to the best of the author’s knowledge (Criterion 6).

As an outcome, the knee angle and shank angular velocity appear to be the most appropriate variables

for detecting slip-induced LOB. Despite the relevance of heel acceleration in slip biomechanics [350], it

was overlooked for two reasons: i) the challenge of appropriately positioning and using wearable sensors

attached to the heel; and ii) the impact of the foot on the floor puts significant noise into the heel accel-

eration signal, limiting its usability and capacity to identify gait events. Beschorner et al. [350] gathered

the heel acceleration data using reflexive markers, which alleviated the noise problem. The hip angle and

shank-to-ground angle variables were also discarded, owing to the necessity to integrate the angular ve-

locity signal in real time to produce the angle signal, which represents computational costs. The encoder

from the PKO provides the knee angle, and its extraction would not require any integration and so would

not cause any drift issues. Subsequently, the identification of slip-induced LOB was carried out while the

knee angle and shank angular velocity variables were monitored.

7.2.2.2 Central Pattern Generators Controllers

Human movement and vital vegetative functions are recognised to be recurrent and cyclic processes.

Despite the importance of neuromuscular dynamics and sensory feedback in modulating these rhythmic

functions, the functional activity of the neuronal circuits located in the spinal cord, i.e., CPG, is attributed to

the foundation of cyclic activity pattern generation [355, 356]. The word ”central”means that the peripheral
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nervous system and its sensory feedback are not used to generate rhythm [47]. Thereby, the use of

biomimetic or biologically inspired CPG controller systems to monitor and regulate human locomotion

variables becomes appealing, because such motion is almost certainly controlled by spinal oscillators, i.e.,

biological CPG [357, 358]. The artificial CPG is thus expected to synchronise with the biological one, which

plays a critical role in rhythmic movement support [357, 359]. In terms of rehabilitation, the artificial CPG

would provide assistive torque to the controlled joint whenever appropriate, allowing for the compensation

of biological CPG deficiencies, such as those caused by a brain lesion, towards healthy locomotion [357].

CPG controllers based on nonlinear Adaptive Frequency Oscillators (AFO) emerge as a dependable method

to aid in the detection of abrupt and unexpected gait perturbations [360]. An AFO is a mathematical

instrument that can synchronise its output to a frequency component of a periodic or quasi-periodic input

signal while learning its key properties like amplitude and phase. A network of AFO, i.e., a CPG controller,

may then constantly synchronise with and estimate a periodic or quasi-periodic input signal [359–361].

An unanticipated perturbation during steady walking would cause irregular changes in the input signal,

prompting the AFO to search for new signal patterns associated with various frequencies. This would soon

divert the input signal from the CPG’s expected trajectory, allowing for the early and effective detection

of an unexpected gait perturbation [360]. When a perturbation is identified, the artificial CPG activates

a robotic assistive system to deliver timely assistive torque at the controlled joints to counterbalance the

LOB and encourage an efficient balance recovery [40].

Because human biped locomotion consists of a periodic or quasi-periodic motor activity, it may be

decomposed into the sum of periodic or quasi-periodic signals [362]. As such, prior knowledge of the

periodicity of human locomotion can be performed by taking advantage of nonlinear oscillators’ ability to

generate stable rhythmic patterns, i.e., limit cycle behaviour, which is useful for decomposing the respective

signals into a sum of sinusoidal waves that can be learned by an oscillator network [359, 361]. The CPG

controller must have the same number of AFO as the number of major frequency components required to

correctly characterise the input signal, i.e., the learning signal. If the number of oscillators is inadequate

to account for all of the essential frequency components of the input signal, the oscillator network will only

learn and adapt to the higher-power frequency components [363]. Thereby, the learnt signal generated by

the CPG will be a rather approximate approximation of the input signal. Righetti et al. [363] state that if the

number of oscillators is more than the number of frequency components to learn from the input signal, one

of two things might happen: i) some oscillators will not converge towards any frequency and so contribute

nothing to the learned signal; or ii) several oscillators will code the same frequency component and the

sum of their corresponding amplitudes will equal the amplitude of the relevant frequency component.

In comparison to other alternative approaches, Ijspeert et al. [364], Tropea et al. [360], and Santos et

al. [47] identified some intriguing aspects that make CPG controllers suited for monitoring human locomo-

tion: i) can create stable limit cycles that are resistant to disturbance. If the rhythmic pattern is disrupted,

the controller quickly returns to its prior cyclic behaviour; ii) can be userd to control distinct segments or
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modules within the same system. The various CPG can be linked together via a phase connection. As a

consequence, the CPG model design is ideally suited for distributed implementation [47]; iii) feature a few

control parameters that allow them to modulate locomotion based on changes in direction and speed.

This characteristic enables CPG to generate online trajectories with smooth modulations even when the

control parameters are abruptly changed; iv) allow for reciprocal entrainment between the mechanical

system and them; v) do not require any training before implementation, unlike other algorithms, because

the algorithm’s learning process is integrated into network dynamics. vi) do not have large computing cost

since no demanding signal or algorithmic processing is required; vi) offer low computing costs since no

intensive signal or algorithmic processing is required. and vii) Once the frequency bandwidth of the reg-

ulated signals is known, they may be configured to monitor only these signals (all the higher frequency

components can be associated to LOB reactions). Hence, unlike training-based algorithms, the CPG tuning

does not need the use of signals captured during sophisticated unexpected gait disruption procedures, as

only steady-state walking parameters are employed to tune the system.

7.2.2.3 Threshold-based algorithms

A simple threshold-based approach has been shown to be successful and generalizable for detecting slip-

like perturbations based on the error caused between the actual kinematics and the kinematics predicted

by an oscillator network [360]. In the presence of a perturbation, the error signal rapidly grows and exceeds

the specified threshold values, allowing for early and effective detection of postural changes. This timely

identification would allow a powered orthosis worn by the individual to give mechanical help in order to

reduce the danger of a fall [40, 360]. In this regard, the capacity of a simple and an adaptive threshold

algorithm to identify perturbations was investigated. The simple threshold algorithm began by determining

whether the current sample, 𝑖, of the error signal was between the set fixed threshold levels. If the error

value exceeded one of the thresholds indicating an abnormal condition, a warning was issued and a

counter variable, 𝑐, was increased. 𝑐 was otherwise reset. Second, the number of consecutive warnings

was checked to see if it exceeded the number of acceptable warnings, 𝑟 . The variable 𝑟 was used to enable

a more consistent perturbation detection by reducing the amount of false alarms generated by individual

samples that exceeded a threshold but were not perturbations. If 𝑐 is less than 𝑟 , the algorithm moves on

to the assessment of the next sample, 𝑖 + 1. The algorithm, on the other hand, recognised a perturbation
if 𝑐 was equal to or larger than 𝑟 . The detection time was determined to ensure that the perturbation was

correctly detected. To obtain this metric, it is necessary to obtain the time difference between the actual

beginning of the perturbation, as determined by pert sample, and the perturbation onset recognised by

the algorithm. The detection was considered a false alarm if it was discovered before the perturbation

began or later than 1 second after it occurred. The perturbation was declared effectively identified if it was

noticed within the 1 second interval following its beginning. This time interval was used as a reference

since earlier studies indicated that falls can occur in as little as 1 second [40, 365].
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In comparison to the fixed threshold, the adaptive threshold technique follows a similar strategy. Unlike

the fixed threshold strategy, this approach allowed for the use of contextual information from prior samples

in the setting of threshold values. The mean, 𝜇, and standard deviation, 𝜎 , of the m-sized window before

the present sample 𝑖 were acquired in order to compute the dynamic thresholds tailored to each sample.

To improve the effectiveness of the subject-specific perturbation detection, the thresholds were additionally

determined based on the coefficients 𝑎 and 𝑏 assigned to each subject. The coefficients 𝑎 and 𝑏 show

how the standard deviation, 𝜎 , affects the computation of the upper and lower thresholds, respectively.

The concept of perturbation detection was identical to the fixed threshold approach once the thresholds

were calculated. These algorithms’ threshold and window size parameters were set for each participant

and are explained further. The variable 𝑟 was set to 3 in order to identify a perturbation only if three or more

consecutive samples exceeded one of the threshold values. Because both threshold-based algorithms do

not need knowledge from future samples, they are thought to conduct online perturbation detection in

real-world contexts.

7.2.2.4 Requirements

Despite the fact that few research [40] explain the detection of slip-induced LOB, several conditions for

the detection stage of the fall prevention strategy were identified in order to validate the perturbation

detection performance: i) The detection ACC of actual perturbations must be more than 75%; ii) the real

perturbations’ mean detection time must be less than the detection time further provided for the fall

prevention strategy (360 ms); and iii) the number of false perturbations detected must be smaller than

the number of right perturbations detected. Given that this chapter is still in its early stages, the present

purpose of this work is to determine whether the perturbation detection algorithm can reach acceptable

rather than ideal performance. Hence, satisfying the above-mentioned parameters would demonstrate

acceptable performance of the perturbation detection method and open the path for future optimisation

of the detection process.

7.2.3 Strategy Timings

As previously stated, the trailing leg plays an important role in preventing slip-induced LOB. A good reaction

to a slip perturbation of sufficient severity is characterised by rapidly pausing the forward swing motion

of the trailing limb after its lift-off, reversing its direction, and landing the trailing foot posteriorly [45].

Consequently, the time it takes the subjects to reverse the trailing leg’s swing motion direction may be

connected to the time it takes to identify a slip perturbation. Martelli et al. [120] dubbed this variable

reverse time and linked it to the time required by individuals to pick the best biomechanical reaction. They

verified that the seniors had a greater reverse time than the younger subjects, although they presented

similar spatial-temporal features of the rearward swing motion in response to the slip. As a consequence of
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Figure 53: Proposed Fall Prevention strategy timings. The time durations are not to scale.

the provided results and the strategy’s targeting of senior people, 360 ms was designated as the maximum

time period required to notice the perturbations and thus the system must identify the perturbation before

the subject [120]. This immediate identification of the disturbance would allow for the provision of early

and appropriate mechanical assistance to assist people in regaining their balance before they are even

aware of the perturbation. Furthermore, the actuation time, i.e., the maximum time required to complete

the assistive actuation from the instant of perturbation detection, was set at 460 ms since Martelli et al.

[347] discovered that the compensatory cycle caused by a slip perturbation lasted 0.46 ± 0.07 s from

the moment the perturbation began to the moment the trailing foot landed on the ground. . Because this

duration already included the mean time required by the subjects to identify the perturbation occurrence,

360 ms [120], the actuation time was defined as the time interval between the subjects’ perturbation

detection and the trailing foot striking on the ground. As an outcome, the actuation time was set to 100

ms. Moreover, Lockhart [105] said that hazardous slips that result in falls are most likely to occur between

70 and 120 ms following the HS. As such, the detection and actuation timings are applied after this time

interval. Figure 53 summarises the established fall prevention method timings. Table 33 compares the

timings provided for the present slip-related fall prevention strategy to the literature timings.

Table 33: Comparison between the timings proposed and the ones obtained for the literature fall prevention
strategies analysed. N\A: not available.

Study Detection time (ms) Actuation time (ms)
Monaco et al. [40] 350 250

Mioskowska et al. [37] 100 N\A
Trkov et al. [81] 90 N\A

Current proposal 360 100
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7.3 Methods & Materials

To accurately develop and test gait perturbation detection algorithms, it is necessary to acquire meaning-

ful human motion data while dealing with gait perturbations. In order to extract the selected monitoring

variables, i.e., knee angle and shank angular velocity in the motion direction, during normal and perturbed

walking, a slip-like perturbation protocol was created and carried out. As a preliminary approach of the

slip-related fall prevention strategy, older subjects were not enrolled and the PKO was not worn by the sub-

jects during the experiments. However, an acceptable perturbation detection performance using healthy

steady-state gait data is required. As a result, the protocol was created addressing some of the limitations

mentioned in the scientific literature section 2.5: i) data from slip-like perturbations induced in both legs

was collected to account for individuals’ side-dominance; ii) one of the walking speeds used during the

trials was customised for each subject. This enabled participants to recreate similar dynamic situations

while dealing with slip-like perturbations; and iii) data was collected from a variety of sensors, including

not only kinematic data but also physiological data. This enabled the creation of a dataset including huge

amounts of sensor data, which could then be employed to extensively analyse the motion changes caused

by slip-like perturbations. Furthermore, the slip-like perturbations were induced by pulling the participant’s

ankle anteriorly at the HS or posteriorly at the TO using a rope. Because slip-induced LOBs are primarily

initiated during these gait events, they were chosen as the slip onset events. The rope pulling was done

manually by an experienced operator.

7.3.1 Participants & Equipment

The experimental protocol included eleven healthy young individuals (age: 24.55 ± 2.15; height: 1.70 ±

0.09 m; weight: 63.25 ± 7.11 kg; males = 6; females = 5) that respected the following inclusion criteria:

i) healthy locomotion; ii) total postural balance; iii) more than 18 years; and iv) body mass lower than

135 kg. Subjects were excluded in the following cases: i) presence of a disease or deficit that affects lo-

comotion; and ii) were recently subjected to surgical procedures that affect mobility. All subjects willingly

agreed to participate in the experimental studies after providing written informed consent. Each participant

completed the Waterloo Footedness Questionnaire to make a qualitative assessment of their preferred foot

[366]. To better understand the changes that slip perturbations introduce to human motion, data were

collected from a variety of sensor systems, resulting in a massive dataset of kinematic and physiological

data.Xsens MVN Awinda (Enschede, The Netherlands) and Optitrack V120 Trio (Corvallis, OR, USA) sys-

tems offer data on any changes in motion kinematic parameters that may occur. On the other hand, the

remaining sensory systems collect physiological data, namely: i) Delsys Trigno (Natick, MA, USA) - mus-

cles’ electrical activity data; ii) RespiBAN (Lisbon, Portugal) - subject’s respiration data; and iii) Shimmer

GSR (Dublin, Ireland) - GSR and heart frequency rate. A Kinect v2.0 camera (Redmond, WA, USA) also

provides video help for labelling occurrences.
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(a) (b)

(d)(c) (e)

Figure 54: Muscles monitored by the EMG sensors, which were placed on the ”x”marks highlighted in each
of the 4 subfigures (a-d) and the remaining monitoring systems (e). (a) Tibialis Anterior. (b) Gastrocnemius
Lateralis. (c) Rectus Femoris. (d) Biceps Femoris. The images were extracted from [367]. (e) Reflexive
marker (black dots), IMU (orange squares), RespiBAN device (blue square) and Shimmer electrodes (brown
dots) placement.

Subjects were first equipped with eight Delsys Trigno wearable sensors placed in the Rectus Femoris,

Biceps Femoris, Tibialis Anterior and Gastrocnemius Lateralis muscles from both legs (Fig. 54.a-d), which

gathered EMG data at 1111 Hz. To normalise the EMG envelope, this device requires a calibration method

that consists of three trials of Maximum Voluntary Contraction (MVC) for each muscle. Participants were

further outfitted with the full body configuration of Xsens MVN Awinda (17 IMU), which collected data at 60

Hz. The N-Pose calibration procedure followed the sensor placement. Based on previous research [368],

reflexive markers were then implanted in the following bodily landmarks and tracked at 120 Hz by the

Optitrack V120 Trio camera bar: i) head; ii) sternum; iii) midtrunk; iv) right and left shoulders; v) right and

left elbows; vi) right and left wrists; vii) right and left hips; viii) right and left knees; ix) right and left heels; and

x) right and left feet. To reduce noise on the cameras while monitoring the reflexive markers, any existing

shiny surface from the subjects’ clothing was removed. The video records from the experimental trials were

provided by a Kinect camera operating at 30 frames per second. Finally, the RespiBAN system was worn

on the upper trunk between the sternum and the Xiphoid process, and the Shimmer GSR device was worn

on the dominant forearm with electrodes placed on the index and middle fingers. These devices gathered

data at 1000 Hz and 100.21 Hz, respectively. Figure 54.e shows the locations of the wearable sensors

used during this experiment. Thereafter, participants wore a safety harness device, which consisted of a

vest tethered to a structure in the ceiling by a rope, to prevent irreversible slip-induced LOB from happening.

For the subject’s safety, the harness rope length was adjusted to register a minimum of 15 cm between

the knees and the treadmill belt [158].
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7.3.2 SyncLab: Synchronisation Framework

Synchronise data acquisition can be facilitated by the use of an appropriate framework. A logical and

intuitive desktop application that allows fast connection with the intended systems, commercial and/or

self-developed, represents an automatic and reliable way to ensure a more precise start and stop of data

acquisition process. Thus, it is necessary to create an open-source application capable of providing syn-

chronisation between several systems for users who just want to synchronise data in a faster and more

intuitive way for their studies and applications. Considering this need, SyncLab 2021 was created, a

C# desktop application for Windows OS capable of synchronously start/stop recording and saving data

in the computer that runs the app. It contains the following commercial devices, namely Xsens, Delsys

Trigno, respiBan, Optitrack, Kinect V2, Shimmer GSR, and at least 3 self-developed systems (Fig. 55). This

application only has two simple stages before start and stop recording: i) device selection stage - it displays

a list of systems available for synchronisation; and ii) configuration and connection stage - it allows the

configuration of some system settings and the serial and wireless connection between the application and

the systems to start/stop data acquisition.

USB

SYNC BOX

Awinda Base 
Station

Trigger Module

Trigger
Pulse

Lab SystemsOptitrack

Kinect v2.0
USB

USB

Bluetooth

BNC 
CONNECTION

Figure 55: Schematic resuming SyncLab 2021 connections.

7.3.2.1 Software & Hardware Requirements

The open-source desktop application must fulfill the following main requirements based on the user and

system needs: i) an easy and interactive way to select which systems will be used; ii) allow to configure

the main settings for each system; iii) allow start and stop recording; iv) data collection with Xsens, Delsys

Trigno and self-developed systems must be enabled or disabled by 5V trigger pulses (1kHz) through Bay-

onet Neill–Concelman (BNC) connectors (except for Xsens - 3.3V max.); v) Optitrack must be connected

to the computer through USB and the Motive software must be open; vi) Optitrack start and stop com-

mands must be implemented in the desktop app using the NatNet SDK; vii) Bluetooth communication with

respiBAN and Shimmer GSR; and viii) the app must be connected and receive data from Kinect.
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7.3.2.2 SyncLab 2021 Interface

Once the system requirements were defined, SyncLab 2021 was designed and developed to fulfilled

them. Each requirement has been evaluated and structured to be represented in the application with

simplicity, so the user can easily and intuitively interact. When the application is initialized (Fig. 56.a), it

is displayed: i) the user’s experience level, where the users indicate their expertise on sensor systems as

beginner (needs help during the configuration) or expert (needs no help); and ii) icons assigned to the

different sensor systems such the users can select which sensors will be used. Upon system selection,

the user press the forward button (available on the lower left corner) to reach the configuration panel (Fig.

56.b). It allows the user to correctly establish the connection and configure some systems. For instance,

the application allows the user to change the sampling frequency of Optitrack and respiBAN, the record take

name from Optitrack, and the folders to save the data when the user selects the Kinect V2 or the respiBAN.

Only if the connection is established or the folder to save the data is chosen/created, the application allows

the user to move forward onto the next and last panel, the record panel (Fig. 56.c). This last panel depicts:

i) the Start/Stop Button - responsible to trigger the systems. Threads are created in cascade, i.e., one

thread at a time to send start/stop commands; and ii) the Output Message List - responsible for giving

feedback on start/stop data acquisition and alerts of synchronisation problems through text messages.

7.3.2.3 SyncBox

To trigger the data acquisition in Xsens, Delsys or other self-developed systems, SyncBox was developed.

This equipment includes an STM32F303K8 that establishes a serial connection with the computer where

the SyncLab 2021 is, and 6 BNC female connectors. Both the processor and the connectors are on a

PCB. For aesthetic reasons, 3D-printed box was modulated to place the hardware inside (Fig. 55). Based

on information from SyncLab 2021, SyncBox sends the single pulse trigger to the appropriate BNC

connectors, which are distributed as follows: i) one to Xsens Awinda Station; ii) two for Delsys Trigger

Module (one to start and other to stop); and iii) three for self-developed systems. If the users need more

trigger exits, they can use BNC T-adapters.

7.3.2.4 Synchronisation Assessment

The synchronisation times were evaluated by following a strict protocol that focus on answering the following

questions: i) Does more systems to synchronise represent more delay time?; ii) How long does each system

take to start or shut down? and iii) Does the distance between respiBAN and the computer influence

synchronisation times? Thus, 100 starts and stops were performed for 2 to 4 connections (SyncBox,

respiBAN, Optitrack, Kinect) and collected information about the time each system takes to start/stop

data acquisition after clicking on the Start/Stop button, and the overall time of the recording operation.

These commands are sent in cascade, i.e., one system at a time and with this assessment relevant
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Figure 56: SyncLab 2021 App. (a) First Panel where users can interactively select the available systems.
(b) Configuration Panel. (c) Record Panel.

information about the command order can improve the framework’s performance. allows us to have a

better idea of the framework’s ability to synchronise systems and the order of activation and deactivation.

The assessment process allows to establish an order in which the systems will receive the command,

using the results presented on Table 34. With this information it is possible to minimise the overall time

delay of the used set of systems to respond to the start/stop instructions. Results demonstrate that the lag

between systems is generally lower than 10 ms (Table 34). Only with four devices the lag was 13.4±12.7
ms. It also appears that Kinect is the system that takes the longest time to respond to the command,

specially when stop data acquisition (start: <3.0±2.9 ms; stop: <9.1±3.8 ms). The stop time is higher

due to the time delay associated with the generation of an additional file that saves information about each

frame captured. On the other hand, respiBAN presents the lowest times and the distance to the computer

does not affect the synchronisation times (∼0.1 ms). As soon as the wireless connection with respiBAN is

established, it starts sending data to the computer. Thus, when the user presses the Start/Stop button,

the framework requires only the time necessary to change a Boolean variable. In case of Start, the data is

written to a file to be saved. Finally, the time taken to respond to commands by SyncBox (<2.4±2.2 ms)

and Optitrack (<5.6±7.0 ms) raises with the increase of the number of devices used.
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Table 34: Synchronisation times for each system and for each set during start and stop recording

Seta SyncBox Opti. Kin. respiBANb Total (ms)
Start Time (ms)

1 0.7±0.9 0.2±0.4 - - - 1.0±1.0
2 0.8±3.4 0.4±0.6 3.0±2.9 - - 4.3±4.7
3 2.4±2.2 4.4±3.8 1.2±1.8 Tot. 0.10±0.1 7.8±13.9

1m 0.10±0.2
5m 0.10±0.1
8m 0.13±0.2

Stop Time (ms)
1 0.5±0.8 0.2±0.4 - - - 0.7±0.7
2 0.4±0.8 0.3±0.5 9.1±3.8 - - 9.8±3.9
3 2.2±2.9 5.6±7.0 4.6±6.5 Tot. 0.10±0.2 13.4±12.7

1m 0.12±0.1
5m 0.10±0.2
8m 0.10±0.1

a1:SyncBox+Optitrack; 2:1+Kinect; 3: 2+respiBAN.bDifferent distances
to the computer (left) and time (right). CPU:i5-7300HQ; RAM:8GB.

7.3.3 Slip-like Perturbation Protocol

Participants were instructed to manage unanticipated slip-like perturbations during treadmill locomotion,

being blind to the protocol to avoid any prior bias in their biomechanical response to the slip-like perturba-

tions. As a result, subjects had no idea when, how, or how many times they would be disturbed. To begin,

participants walked on the treadmill without slip-like perturbations while using the whole sensor setup for

a familiarisation experiment. To avoid anticipating the commencement of a potential disturbance, subjects

were told to fix their gaze on a spot at eye level while walking. During perturbation trials, a trained operator

tugged a rope tied to the subjects’ ankle during some HS and TO events, i.e., causing an instability com-

parable to a slip event. Throughout the trials, the rope was always tied to one of the participants’ feet, thus

they had no idea whether there would be a disruption or not. Each individual was put through eight trials

(Table 35) that included every possible combination of disturbed leg (right or left), perturbed gait event

(HS and TO), and treadmill belt inclination (0 and 10%). Six sub-trials were conducted inside each trial,

where subjects walked at three distinct speeds (1.8 km/h, 5.4 km/h, and a normalised speed) and in

two different settings (perturbation or non-perturbation). Normalised speed was estimated using a method

based on the subject’s leg length in order to reproduce equal dynamic circumstances across all partici-

pants. Scientific literature helped defining slow and fast gait speed values [279, 369, 370]. Normalised

speed (𝑣 ) was computed using the dynamic similarity principle, which is stated by the equation below:

𝑣 =
√
𝐹𝑟𝑔𝐿 (2)
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𝐹𝑟 is the Froude number (0.15);𝑔 is the gravity accelerations (9.81𝑚/𝑠2); and 𝐿 is the leg length from

the prominence of the greater trochanter external surface to the lateral malleolus [347]. The features of

each of the six sub-trials are depicted in Table 36. To increase the unpredictability of the slip-like perturba-

tions, these sub-trials were executed in a randomised order. The operator introduced three perturbations

in random moments per perturbation trial. Non-perturbation trials lasted an average of 30 seconds, while

perturbation trials lasted anything from 30 seconds to 1 minute.

Table 35: Trial’s order organisation during the experimental protocol for data acquisition

Trial No.
Perturbed

Leg
Perturbed

Gait Event (%)
Treadmill

Inclination (%)

1 0
2

HS
10

3 0
4

Right
TO

10

5 0
6

HS
10

7 0
8

Left
TO

10

Table 36: Characteristics of the 6 sub-trials performed within each trial

Velocity (km/h) Perturbation?

1.8 3

1.8 7

𝑣 3

𝑣 7

5.4 3

5.4 7

7.3.4 Data Processing

After acquisition, data were processed using Matlab software to transform data from all of the sensors

into a single Matlab table, which required some and varying stages depending on the sensory system

and its features. Before Matlab, EMG data collected was normalised per muscle and per subject with the

respective MVC information using the Delsys analysis software. Motive software was used to label Optitrack

reflexive markers for each trial. Only some of the markers were labelled because some of them experienced

frequent occlusions during the treadmill gait, namely: i) head; ii) sternum; iii) midtrunk; iv) right and left

shoulders; and v) right and left hips. To create a video for each trial, the frames produced by the Kinect

camera were aligned together using Adobe Premiere Software. After completing these processes, all data
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were ready to be analysed in Matlab and downsampled to 60 Hz because Xsens had the lowest sampling

frequency. Further, the timestamps of start and stop data recording provided by the SyncLab Desktop App

were used to align data samples from the monitoring systems. This was especially important in RespiBAN

and Shimmer GSR devices, which, since they are wireless, did not always start and finish data collection

exactly at the same time as the other sensor systems. As a result, data obtained from the various sensors

was aligned and had the same number of samples for each trial, allowing information to be concatenated

into a single Matlab table. Now is the time to move on to the event labelling process. The events of interest

are: i) start of a sub-trial: marked in the frame of the first HS of the foot being perturbed (with the rope)

since the subject achieved steady walking during the sub-trial; ii) end of a sub-trial: marked in the frame of

the last HS of the foot being perturbed in steady walking during the sub-trial; iii) perturbation onset: marked

in the frame where the operator starts to pull the rope to perturb the participant’s gait; and iv) end of the

perturbation: marked in the frame of the first HS of the perturbed foot after the participant has recovered

from the perturbation and regained steady walking. To help the labelling process, videos generated from

the Kinect frames for each experiment were uploaded to Djv software, which can easily identify the frame

number which an event occurred. Thus, it was possible to correlate the identified frame timestamps with

data table timestamps from the same trial in order to indicate events because the Sync Lab Desktop App

gave the timestamp associated with each Kinect frame. As a result of this labelling process, two columns

were added to each trial data table. One column indicates the type of subtrial of the data samples and the

other indicates if the data samples correspond to a perturbation or not.

7.3.5 Validation Strategy Proposal

This validation strategy will cover three key study issues for each selected variable: i) determine the best

number of oscillators inside the CPG for monitoring reasons; ii) do the Normal Walking Testing; and iii)

perform the Perturbed Walking Testing. The slip-like perturbation detection system was validated using data

from the knee angle and shank angular velocity. Figure 57 depicts the validation scheme. The perturbation

detection algorithm was evaluated for each selected variable using perturbation data from the perturbed

and unperturbed legs. The validation strategy was used with data obtained from regular walking trials

and perturbation delivery trials while individuals were ambulating on the treadmill with a 0% incline at

a normalised speed computed for each subject. The locomotion settings evaluated for this investigation

describe a level-ground walking scenario and a velocity that the individuals are likely to use in their daily

lives. Hence, data from these conditions were included for analysis, as they are the most likely to occur

prior to the occurrence of a real-life slip perturbation for the recruited individuals [337, 338]. Furthermore,

according to the literature review, only perturbation trials in which slips were induced during the HS were

examined, because this gait event is the most notable for the initiation of real-world slips [105]. As such,

each individual had data from six trials: i) four regular walking trials, i.e., without perturbation; and ii) two
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For each subject

Obtain the frequency, 
amplitude, and phase

for each main
frequency component

Obtain the mean of
these parameters for 
each main frequency

component

Tune the CPG’s
oscillators with the

mean values

Test the learning
performance of the

tuned CPG

Obtain Performance 
metrics:

Mean error and RMSE

Test the perturbation
detection performance of

the threshold-based
algorithms based on the
CPG’s prediction error

Obtain Performance metrics:
1) Mean Detection Time
2) Detection Accuracy
3) Mean number of false 
Perturbations
4) Mean number of false alarms

Augment data 
by a factor of

200

Divide the trials for 
tuning and testing

Obtain and process data 
from each perturbation
from the perturbation

trials

Normal Walking Testing

Tuning data 
(3 trials)

Testing data 
(1 trial)

For all the valid
perturbations

Perturbed Walking Testing

Obtain CPG’s prediction
error based on the

processed data from each
perturbation

Figure 57: Schematic of the validation strategy for slip-like perturbation detection.

perturbation trials. However, owing to data loss, data from two participants could not be used. There were

23 legitimate slip-like perturbations which were then used to assess the performance. Initially, the collected

data were jointly normalised within the interval between 0 and 1. Normalisation was used to adjust the

amplitude changes of the kinematic signals to a shorter and equal interval while respecting and keeping

the disparities between data from various trials. Data from 3 of the 4 normal walking trials were used to

tune the oscillators inside the CPG. The remaining trial data was used to further evaluate the tuned CPG.

Two CPG were adjusted and tested for each participant, one using knee angle data and the other with

shank angular velocity data. The tuning data was decomposed using the Fourier frequency spectrum to

produce the frequency, amplitude, and phase values associated with each relevant frequency component.

After obtaining these parameters, the mean of each relevant frequency component was calculated in order

to set the start conditions of the CPG’s oscillators for each subject. Normal walking testing data were then

augmented by a factor of 200 and fed into the adjusted CPG. This enabled the subject-specific adjusted

CPG to be tested in tracking the steady-state walking profile of the specified variables. The use of such

a large augmentation factor enabled to observe and investigate the CPG’s response to input signals over

extended time periods. The mean error metrics (Mean error and RMSE values) were used to evaluate

the Normal Walking Testing performance across the specified variables. For each selected variable, data

from each perturbation were further individually processed and further concatenated between normal

walking data from the respective subject. This concatenation process allowed to obtain, for each valid

perturbation, steady-state walking data before and after the slip-like perturbation occurrence. The CPG

were subject-specifically calibrated during the Normal Walking Testing, allowing simulation data to be
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obtained from the CPG’s signal prediction when a slip-like perturbation occurred during steady walking.

In this regard, for each perturbation, an error signal was generated between the CPG output and the real

kinematic signal, which was then used by threshold-based algorithms to identify the perturbation beginning

(Perturbed Walking Testing). The mean detection time, detection ACC of real perturbations, mean number

of false perturbations detected per each real perturbation identified, and mean number of samples per

false perturbation detected (false alarms) were used to assess the threshold-based algorithms’ perturbation

detection performance. The Matlab programme was used to execute all of the previously stated data

processing, while the Simulink software was used to collect the simulation data.

7.4 Slip-like Perturbation Detection Results

7.4.1 Number of CPG Oscillators

The number of oscillators inside the respective CPG must be set in order to adjust the oscillator network ac-

cording to the selected variables. The examination of the number of main frequency components required

to correctly represent the signals of the selected variables allows for the optimal number of oscillators to

track each variable. This saves on computational costs caused by the usage of an excessive number of

oscillators. First, a spectrum analysis was done to identify the most important frequency components in

each changing signal. Appendix D contains examples of regular knee angle and shank angular velocity

signals, and their corresponding frequency spectrum. Moreover, two tables depict the first 6 frequency

components of both variables highlighting the means of frequency, amplitude, and phase values. After

the AFO were tuned with their respective initial parameters, the number of oscillators inside the CPG was

altered across numerous simulations to determine the best number of oscillators to follow both variables.

The relationship between the error metrics acquired during simulations (mean error and RMSE) and the

time required for the last oscillator’s frequency to converge (convergence time) was investigated. Tables

37 and 38 provide the results for knee angle and shank angular velocity, respectively. Considering the

knee angle variable, this investigation (Table 37) indicates that a greater number of oscillators is usually

associated with a decrease in error levels. The greater the number of AFO, which compensates for the

incorporation of more frequency components from the variable, the better the approximation of the CPG

output to the input signal and hence the lower the error produced. The CPG with three oscillators had

the greatest error levels. Nonetheless, the difference in error across all CPG designs was not particularly

obvious, as increasing the number of oscillators did not significantly lower the error caused. Regarding the

shank angular velocity (Table 38), the largest and lowest error values were produced by CPG designs with

three and six oscillators, respectively. However, increasing the number of oscillators did not result in a

decrease in error values, since the CPG with 4 oscillators produced lower error values than the CPG with 5

oscillators. In fact, the difference in inaccuracy across CPG designs with 4, 5, and 6 oscillators was barely
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Table 37: Performance results of knee angle monitoring for all the tested CPG configurations

Number of oscillators RMSE Convergence time (s)

3 0.0482 (0.0659) instantaneous

4 0.0459 (0.0656) 1868

5 0.0407 (0.0607) 2506

6 0.0413 (0.0635) 5912

Table 38: Performance results of shank angular velocity monitoring for all the tested CPG configurations

Number of oscillators RMSE Convergence time (s)

3 0.0615 (0.0869) instantaneous

4 0.0486 (0.0733) instantaneous

5 0.0491 (0.0735) Did not converge

6 0.0451 (0.0685) 5453

discernible. The RMSE values for the CPG with four oscillators (0.0733) and the CPG with six oscillators

(0.0685) differed by just around 6.5%. Nonetheless, the RMSE difference between CPG setups with 3 and

4 oscillators was more noticeable, with the CPG with 3 oscillators being 15.7% higher. The results indicate

that the fifth and sixth frequency components give insufficient extra useful information. The CPG with four

oscillators looks to be the best choice for monitoring the shank angular velocity variable since it has the

best relationship between the error metrics produced and the frequency convergence time.

7.4.2 Normal Walking Testing

To compare tracking performance for the knee angle and shank angular velocity variables, the mean error

values from all individuals were averaged (Table 39). Only 9 participants were evaluated since data from

two subjects could not be used. Although both variables gave a comparable mean RMSE, the average

mean error for the shank angular velocity was somewhat shorter. Figures 80 and 81 (Appendix D) depict

three different stages of the CPG’s output signal (blue) adaptation to the steady-state signal (orange) for

knee angle and shank angular velocity, respectively.

7.4.3 Threshold Algorithm Parameters Definition

The thresholds were applied 80 seconds after the simulation start since the error signal began to stabilise

at this timing across all individuals. Although the frequencies were thought to achieve instantaneous con-

vergence, as previously stated, the amplitude of the CPG output required longer to adapt to the input signal

and so attain steady-state error levels. Then, a pair of upper and lower threshold values were obtained, in

which no false perturbations were detected. A considerable variation from the usual gait, which might be

caused by a perturbation, would cause the error signal to exceed one of the threshold values, allowing the
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Table 39: Mean Error and RMSE values obtained during the normal walking testing using knee angle and
shank angular velocity data

Subjects Knee Angle Shank Angular Velocity
Mean Error RMSE Mean Error RMSE

1 0.0485 0.0664 0,0494 0,0746

2 0.0531 0.0714 0,0488 0,0716

3 0.0505 0.0676 0,0448 0,0676

4 0.0456 0.0605 0,0374 0,0587

5 0.0593 0.0853 0,043 0,0617

6 0.0493 0.0639 0,048 0,0718

7 0.063 0.0909 0,0395 0,0591

8 0.0458 0.0657 0,0583 0,0908

9 0.0523 0.0721 0,0553 0,0873

Mean 0.0519 0.0715 0.0472 0.0715

perturbation to be detected. For the fixed threshold algorithm, the upper and lower threshold values were

defined as 0.3 and -0.35 for knee angle, and 0.35 and -0.27 for shank angular velocity (mean values). Ad-

ditionally, the adaptive threshold-based algorithm was based on the variation of the standard deviation’s

(𝜎 ) multiplier factor and a time-window of previous samples (knee angle: 200 samples; shank angular

velocity: 400 samples) to compute signal’s mean (𝜇) and standard deviation (𝜎 ) [360]. The upper and

lower threshold values were defined for knee angle as 𝜇 + 3𝜎 and 𝜇 − 4.1𝜎 , respectively, while for shank
angular velocity were 𝜇 + 4.4𝜎 and 𝜇 − 4.8𝜎 . Comparisons of the threshold parameters indicate that the
shank angular velocity signal was given higher absolute threshold values and window sizes than the knee

angle variable. This might be because the shank angular velocity signal is more complex than the knee

angle signal. As such, the increasing complexity of the shank angular velocity variable during simulations

may have increased its respective inaccuracy between the real signal and the respective CPG prediction.

In fact, the shank angular velocity variable required one extra oscillator, when compared to the knee angle

variable, to achieve comparable RMSE values during the Normal Walking Testing simulations (Table 39).

Furthermore, a larger window size was required for the shank angular velocity to accommodate for the

signal’s increased complexity and fluctuation during the threshold parameters computation.

7.4.4 Online Perturbation Detection

7.4.4.1 Knee Angle

Regarding to the use of knee angle data to detect the perturbations, Table 40 depicts the performances

obtained for the fixed and adaptive threshold algorithms. Both threshold methods successfully detected

real perturbations with ACC rates greater than 80%. However, a mean of 1.78 and 1.61 false perturbations
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Table 40: Knee angle detection performance based on the type of threshold algorithm

Type of
threshold

Mean Det.
Time (s)

Detection
ACC (%)

Mean Number of False
Perturbations detected

Mean Number of False
Alarms per false perturbation

Fixed 0.52 80.44 1.78 9.29

Adaptive 0.34 84.78 1.61 2.95

were discovered for each true perturbation successfully recognised for the fixed and adaptive thresholds,

respectively. Although no false perturbation was discovered in some perturbed walking simulation data,

others had a higher false perturbation detection rate, which raised the global mean of false perturbations.

The fixed threshold got a significantly higher mean detection time than the adaptive threshold, with a 180

ms difference. Furthermore, the detection ACC was quite greater with the adaptive threshold, by roughly 4%.

Furthermore, while the mean number of false perturbations detected by the fixed threshold algorithm was

slightly higher, the mean number of samples of each false perturbation detected by the adaptive threshold

algorithm (2.95) was significantly lower than that detected by the fixed threshold algorithm (9.29). This

implies that after the adaptive threshold method discovered a false perturbation, it quickly ceased detecting

it, within a mean of less than three samples. Overall, the adaptive threshold approach outperformed the

fixed threshold technique in terms of perturbation detection.

Nonetheless, for each type of threshold technique, the individual detection performance of disturbed

and unperturbed knee angle data was assessed, as shown in Table 41. This allowed to determine which

leg’s data had a more significant detection role. There were few variations in the usage of disturbed and

unperturbed knee angle data for the fixed threshold. The altered knee angle data had a shorter mean

detection time (by a mean difference of 25 ms) and a lower mean number of both erroneous perturbations

identified and false alarms. However, the unperturbed knee angle data had a greater ACC (82.60%) than

the perturbed knee angle data (78.30%). The adaptive threshold findings revealed a significant difference

between the mean detection time values achieved. A mean duration of 250 ms was required to identify the

perturbation beginning in the perturbed leg data, but a mean detection time of 419 ms was seen in the

unperturbed leg data. Furthermore, the mean number of false perturbations discovered was significantly

lower when utilising perturbed leg data. In fact, fewer than one false perturbation (0.65) was discovered on

average for each true perturbation recognised, compared to the mean 2.565 false perturbations detected

using data from the unperturbed leg. Furthermore, the mean number of samples associated with each

Table 41: Knee angle detection performance based on the type of leg and type of threshold algorithm

Type of
threshold Leg Mean Det.

Time (s)
Detection
ACC (%)

Mean Number of False
Perturbations detected

Mean Number of False
Alarms per false perturbation

Fixed Perturbed 0.51 78.26 1.70 8.51
Unperturbed 0.53 82.61 1.87 10.00

Adaptive Perturbed 0.25 78.26 0.65 2.60
Unperturbed 0.42 91.30 2.57 3.03
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erroneous perturbation identified (false alarms) was lower for the perturbed leg data (2.60) than for the

unperturbed leg data (3.03). However, the ACC of 91.30% obtained with unperturbed leg data was higher

than the 78.26% obtained with perturbed leg data. Thus, the adaptive threshold showed a general better

perturbation detection performance than the fixed threshold. In contrast, the perturbed knee angle data

presented an overall higher perturbation detection performance in comparison to the unperturbed leg data.

7.4.4.2 Shank Angular Velocity

Table 42 shows the performance of the fixed and adaptive threshold techniques for detecting perturbations

using shank angular velocity data. The detection ACC of the real perturbations produced by both threshold

techniques was less than 80%. Although the fixed threshold attained an overall ACC of 78.26%, the adaptive

threshold achieved a much lower ACC of 56.52%. Nonetheless, for each true perturbation successfully

recognised, a mean of 5.28 and 3.94 false perturbations were discovered for the fixed and adaptive

thresholds, respectively. Despite the fact that no false perturbations were discovered for certain perturbed

walking simulation data, some of these data had a greater false perturbation detection rate, resulting in an

overall rise in the mean of false perturbations detected. The fixed threshold approach had a much larger

mean detection time than the adaptive threshold, with a mean time difference of 192 ms. Furthermore,

the fixed threshold algorithm recognised a much larger mean of both erroneous perturbations and related

false alarms. This meant that once the adaptive threshold method discovered a false perturbation, it quickly

ceased detecting it, within a mean of roughly 3 samples.

Furthermore, the performance of perturbation detection was tested between perturbed and unper-

turbed shank angular velocity data using the fixed and adaptive thresholds (Table 43). The unperturbed

leg data allowed a better detection performance with a much lower mean detection time, significantly

greater ACC, and a lower mean number of false perturbations identified per true perturbation detected

when using the fixed threshold approach. Nonetheless, the perturbed leg had a lower mean number of

false alarms per erroneous perturbation. When the results of the adaptive threshold algorithm were consid-

ered, the unperturbed leg data allowed the best performance. This is seen by the reduced mean detection

time (266 ms) and substantially greater ACC (73.91%) attained in contrast to the adaptive threshold’s

mean detection time (486 ms) and ACC (39.13%). Using unperturbed leg data, however, was related with

a larger number of false perturbations identified and a slightly higher number of false alarms per false

perturbation.

Table 42: Shank angular velocity detection performance based on the type of threshold algorithm

Type of
threshold

Mean Det.
Time (s)

Detection
ACC (%)

Mean Number of False
Perturbations detected

Mean Number of False
Alarms per false perturbation

Fixed 0.53 78.26 5.28 6.91

Adaptive 0.34 56.52 3.94 3.16

156



CHAPTER 7. KNEE ORTHOSIS FOR REAL-TIME FALL PREVENTION

Table 43: Shank angular velocity detection performance based on the type of leg and type of threshold
algorithm

Type of
threshold Leg Mean Det.

Time (s)
Detection
ACC (%)

Mean Number of False
Perturbations detected

Mean Number of False
Alarms per false perturbation

Fixed Perturbed 0.80 73.91 5.87 6.07
Unperturbed 0.30 82.61 4.70 7.97

Adaptive Perturbed 0.49 39.13 2.70 2.72
Unperturbed 0.27 73.91 5.17 3.42

7.5 Conclusions

The studies on human biomechanical responses to slip perturbations reveal that both the leading and

trailing legs play an important role in counteracting the slip perturbation. Despite the large number of

articles that have examined the slip event and its repercussions on human motion, few slip-related fall

prevention techniques have been developed. Thus, a slip-related fall prevention strategy was presented

based on the limitations and information available in the scientific literature.

In order to minimise the complexity of the actuation to only the principal joint that counteracts slip-

induced LOB, the actuation stage examined the assistive torque supply on a single leg adopting a single

assistive device, an orthosis. The strategy emphasised the need of providing a knee flexion moment to the

leading leg, which is considered the dominant limb, in the event of a slip-induced LOB caused by a HS. To

counteract the slip, the amplitude of the assistive knee flexor torque must be complimentary to the torque

created by the subject’s knee.

The detection stage addressed the appealing qualities associated with biologically-inspired CPG con-

trollers for monitoring quasi-periodic variables of human locomotion and assisting in the timely identifica-

tion of gait perturbations. Because CPG do not recognise the irregular patterns presented by the distur-

bance, the introduction of a perturbation rapidly increases the inaccuracy caused between the monitoring

signal and the signal anticipated by the CPG. Simple threshold-based algorithms can then detect the com-

mencement of the perturbation based on the increase in the error signal. In light of the choice criteria

used, the knee angle and shank angular velocity variables were chosen as the best kinematic variables

for detecting slip-induced LOB. Furthermore, the determination of timings and conditions to be met for

both stages based on scientific literature allowed for the conceptualisation of a fall prevention strategy that

avoids slip-initiated falls in a timely and effective manner.

Considering the literature evidence found, an experimental protocol was designed in order to collect

data from healthy young subjects while dealing with unexpected slip-like perturbations during treadmill

walking. This allowed to obtain a vast dataset with kinematic and physiological information concerning

subjects’ reactions to slip-induced LOB events. Some kinematic features obtained were used for the further

perturbation detection algorithm analysis. A novel open-software solution was presented, SyncLab 2021,

allowing to sync various systems widely used for human motion analysis, through trigger signals. The
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results showed an average delay between systems of few milliseconds, which introduces a significant

contribution to easily and intuitively acquire synchronous data from different sensing devices. This software

allowed the construction of a more reliable dataset in terms of synchronisation.

CPG with 3 and 4 oscillators were assigned to the knee angle and shank angular velocity variables,

respectively, based on a trade-off analysis between the frequency convergence times and the mean error

values obtained throughout the simulations. Overall, the CPG configurations chosen based on the pre-

ceding research produced output signals with similar shape and phase to the signals from the specified

kinematic variables. In terms of perturbation detection, the performance was assessed by taking into ac-

count the various combinations of the two kinematic variables chosen, two lower limbs (perturbed and

unperturbed), and two types of threshold methods (fixed and adaptive threshold algorithms). In general,

the adaptive threshold algorithm performed better than the fixed threshold algorithm. The monitoring of

the perturbed leg’s knee angle using the adaptive threshold technique resulted in the best overall per-

formance. This combination produced real perturbation detection ACC close to 80% (78.26%), a mean

detection time of 250 ms, and a mean number of 0.65 false perturbations identified for each accurate

perturbation detected. These findings demonstrated that the perturbation detection method applied per-

formed satisfactorily in terms of detection requirements. However, in order to attain peak performance,

the average number of false perturbations identified must be decreased even more.
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8
Virtual Reality to Provoke Imbalance

State of the art pointed out a lack of datasets regarding real-world falls [19, 371]. Thus, this chapter’s

aim is to establish a realistic VE with different fall-related visual perturbations capable of disrupting the

user’s equilibrium, envisioning a future training rehabilitation tool. To answer the proposed RQ5 in Chap-

ter 1, relevant human motion data were collected while coping with visual perturbations induced by a

HMD. Therefore, an experimental protocol was designed and conducted to extract relevant information

from kinematic and physiological sensors. Data gathering on compensatory reactions when coping with

visual disturbances is useful in balance control analysis, the creation of balance training procedures, and,

most significantly, combining data from numerous sensors into a big and multivariate dataset. Innova-

tively, while the occasional use of visual perturbations speeds up the gathering of data about imbalanced

circumstances, their ongoing usage encourages the training of postural reactions, contributing significantly

for biomechanical studies on how to deal with falls or imbalances. Given the volume of data obtained and

the observed disparities in kinematic reactions in the presence of perturbations, statistical analysis was

applied by using ANOVAs to investigate the effect of visual perturbations on creating imbalances during

gait. Furthermore, the purpose was not to discover gait abnormalities, but rather to determine whether the

visual disturbance was an efficient way to create gait variability, which implies imbalance.

8.1 Introductory Insight

Due to the low frequency of natural falls occurrence and the inherent difficulties in collecting biomechanical

and physiological data in a non-obstructive and user-friendly way in community-dwelling older adults, the

scientific literature shows a lack of public datasets of real-world falls [31–33]. Immersive VR environments

with the concepts of place illusion and plausibility illusion create a medium in which people respond
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with their whole body, treating what they perceive as real [372]. As evidenced in section 2.6 of the state of

the art, it is thus possible to accelerate the process of collecting data of postural reactions that occur after

visual disturbances. The proprioceptive, vestibular, and visual systems all work together to keep the human

being aware of its environment, allowing the response to present situations and plan for future changes.

Balance control is a complex skill made up of these three subsystems. Immersive VR radically alters how

the surroundings are seen, leading to a LOB on its own [216]. Additionally, HMDs are responsible for

presenting tricky scenarios endowed with the mentioned concepts of place and plausibility illusions

while increasing the immersiveness of the whole virtual experience [373].

Because of the unique immersive properties of VR, motor rehabilitation is also one of the health fields

that is rapidly advancing and has various benefits when integrated with VR systems [374–376]. There are

various reasons why training with VR is of greater interest and produces better outcomes in motor learning

[377–379]. Repetitive practise, feedback (proprioceptive and exteroceptive), and motivation are the basic

principles of motor rehabilitation that may be enhanced with the use of VR [380, 381]. The benefit of

repetitive practise in motor learning, which translate into changes in the cerebral cortex, do not occur

simply via huge practise. There must be a specified task or target, which the patient must attain through

trial and error [381], getting feedback on their performance [382]. Motivation and dedication are required

for a repetitive task, which are two common characteristics of a VR user experience [383]. Feedback

in VEs can be supplied in real-time in a highly intuitive manner or recognised immediately following a

training block. It has been demonstrated that it results in changes in the amount of cortical plasticity and

subcortical cells and synaptic connections [384, 385]. However, repetition alone is insufficient to cause

changes in the motor cortex associated with motor learning. Increasing a member’s frequency of usage

does not result in substantial changes. It is vital to do skilled limb motions [386]. Humans may learn motor

abilities in a VE and then transfer those skills to a real-world context [387].

Inducing balance disturbances through audiovisual stimuli to impose changes in postural control is the

core action point of this chapter, attempting to mimic realistic falls even before performing rehabilitation

training. Despite the fact that VR has a wide range of applications and might lead to imbalances while

also helping with training recovery as mentioned, the work developed during this PhD thesis essentially

focused on developing a realistic VE endowed with high ecological validity and resembling a

home-living scenario [206, 388] that could trigger postural responses. Scientific literature that used VR

headsets and simultaneously introduced visual perturbations (Section 2.6) also found a propensity for each

study to solely use one type of perturbation [164, 177, 192]. This might limit the range of compensatory

reactions [389, 390]. For this reason, this chapter suggests a wide range of visual disturbances to be given

in the VE. These postural reactions induced by imposing a conflict between the visual and proprioceptive

systems, are going to be recorded and analysed to cover the gap in existing data regarding real falls. These

postural reactivity patterns to visual disturbances are recorded using inertial sensors as a motion tracking

system, capturing biomechanical and kinematic data, as well as physiological data such as EMG and
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GSR to record muscle and electrodermal activity signals. Moreover, this early study’s analysis will make it

possible to reduce the amount of visual disturbances that will be included in a future rehabilitation tool.

Thus, this chapter aims to answer the following questions: i) Can a HMD introduce imbalances through

visual perturbations?; ii) Can they cause postural reactions typical of a fall?; iii) Which visual perturbation

challenged the participants’ balance the most?; iv) Which virtual situation placed the participant over the

most anxiety?; and v) What influence does the real-time representation of the avatar have in situations of

virtual heights? The answers to the first and second questions will be revealed through statistical analysis.

Both questions are validated if statistical relevance that distinguishes representative parameters of postural

imbalance in gait between undisturbed and disturbed conditions is discovered. In addition, a qualitative

comparison will be done between the parameters gathered in this study and those described in studies

involving physical disorders. If this comparison reveals parallels, the original question’s validity is strength-

ened. Considering the third question, this study filters the visual perturbations by looking into the most

effective perturbations considering the statistical analysis outcomes. This is due to the fact that different

visual perturbations will cause distinct postural reactions with variable intensities, activating muscles dif-

ferently. Moreover,no scientific paper, to the best of our knowledge, has addressed this problem, and a

future rehabilitation tool could use this knowledge for a more personalised intervention. Fourth and fifth

questions work on anxiety and stress. Using the electrodermal data, one can first identify the events that

put the person under stress and connect this state with a deterioration in balance ability. It also provides

information about the perceived reality of the VE. Finally, the role of the avatar in stressful conditions is an

understudied issue in the literature. Perhaps due to a paucity of studies incorporating the avatar in real

time. The answer to this issue will be offered by contrasting vertigo circumstances in which the participant

can see their own body and those in which they cannot. If there is statistical significance between these

two situations, one can respond whether or not the avatar plays a part in maintaining balance.

Figure 58 outlines the chapter’s organisation. The VE as well as the automatic method of adding

perturbations are firstly scrutinised. A visual perturbation-based protocol for multimodal data collecting is

also discussed, after which the data processing and statistical analysis are detailed. The results of this

screening can be used to: i) fine-tune perturbation training and use only the disturbances that are most

effective; and ii) extract patterns of kinematic and muscle reactions of interest to do exposure training on

particular muscles or compensatory movements, causing an impact on the prevention of falls.

Statistical Analysis

Statistical test assumptions

ANOVA

Data Processing

Raw data treatment

Kinematic/muscular metrics

Dataset labeling

Data Collection

Experimental protocol

Questionnaires

Materials

Virtual Environment

Unity scene development

Visual perturbations

Triggers and scripts

Figure 58: Set of processes implemented within the scope of this work.
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8.2 Virtual Environment Design

It is essential to begin by establishing a few requisites that the VE must abide by. A reasonable compromise

must be struck between stringent experimental protocols and the addition of naturalistic, dynamic, and

contextually embedded stimuli if the objective of future research is to make predictions about real-world

fall occurrences [388]. To improve the participant’s experience, VE mix appealing surroundings with ex-

perimental measurement control. Real-world information differs from laboratory simulated data in three

distinct ways, according to Zaki and Ochsner [388]: i) cues are multimodal; ii) they include visual, seman-

tic, and prosodic information; and iii) it is dynamic in the sense that information is presented serially or

concurrently. It is embedded in a context that can influence the interpretation of the study. Moreover, some

studies in the neuroscience field use uncomplicated stimuli and miss crucial facets of real-world activities

and interactions [391].

It is possible to combine laboratory control with ADL by using HMDs to offer virtual settings that digitally

mimic real-world tasks [392]. Today, effective administration, stimulus presentation, and computerised

logging of participant responses are all made possible by current computational capabilities. Background

narratives engage participants and improve the experience since VEs enable experimental control and

dynamic stimulus presentation in ecologically realistic settings [393]. Technology advancements that assist

in immersing the user in convincing, lifelike sensory illusions are closely related to the future of VR in

neuroscience [214]. Verisimilitude, or how closely the test conditions mirror ADL, is one of the criteria

for ecological validity, according to Franzen and Wilhelm [394]. Ecological validity describes experimental

conditions that are essentially representative of the real world. Compared to environments that merely

contain the necessary and sufficient features for an experiment, contextually rich simulations with diverse

sensory inputs may be thought to have more ecological validity in VEs [206]. The creation of a VE as

close to reality as possible was then the priority of this work to achieve ecological validity and thus ensure:

i) transfer of motor skills to the real world and ii) compensatory reactions to perturbation as natural as

possible.

It is possible to better investigate human-environment interactions by doing it in a controlled environ-

ment by placing individuals in an environment that enhances their presence [395]. Neo et al. [396] have

made significant observations about the degree of realism needed in a VE to study human behaviour. The

requirement for realistic details and textures must first be assessed. They then emphasise the necessity of

context for existence, i.e., the antithesis of an abstract world. Other crucial elements to elicit the most au-

thentic responses from participants are the real-time display of the participant’s avatar, ongoing positional

tracking of head movement, and sensory input. Only the equipment’s rendering capabilities will serve as

a limit on how realistic the VE can be made.

The VE was created using Unity 2020.3.2f1 programme [397]. The game engine and Integrated De-

velopment Environment (IDE) Unity, often known as Unity3D, was used to create interactive media, most
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Figure 59: The workspace layout is organised into two main windows for previewing the environment
visually, two bars, and three important tabs: A - Toolbar; B - Hierarchy window; C - Scene View; D - Game
Preview; E - Inspector; F - Project Window; G - Status Bar.

often video games. The speed with which Unity can prototype is well known. Due to its native C# program-

ming language, which should be familiar to all developers, and its general workspace structure, users

generally found Unity to be slightly easier to use than Unreal Engine. With a somewhat steeper learning

curve than Unreal Engine, it is a more approachable platform to begin producing on [398]. Figure 59

shows the Unity IDE’s default view. The VE structure follows the assumptions that were proposed earlier to

elicit natural responses from the participants. A typical suburban block served as the starting point for the

base of the VE. The VE was created to be as realistic and comfortable as possible to improve participation.

It consists of two fully furnished houses, a suburban block that includes the roads and its integral units,

such as parked cars, pavements, and accesses to the houses. The two distinct houses are organised into

rooms just as they exist in the real world. These rooms include a kitchen, a living room, two bedrooms,

a bathroom, an outdoor area with a pool and garden, and the commuting areas such as hallways and

stairs. The created house rooms are depicted in screenshots in Fig. 60. Reproductions of the divisions

can be further found throughout the chapter. Additionally, Xsens will enable the real-time representation

of a real-time body avatar that is embedded with head motion throughout the immersion, adding sensory

input with physical aspects in the real environment.

8.3 Visual perturbations

The most important decision in this VR perturbation-based solution was the selection and implementation

of visual perturbations to be used. Once the purpose of the visual perturbations is to produce a postural
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(a) (b)

(c)

Figure 60: Snapshots from the VE. Representations of exterior views of houses. (a) House 1. (b) House 2.
(c) House 1 backyard.

reaction as close to a real-world fall as possible, they must elicit all fall categories during normal walking

at this stage of the study, i.e., backward, forward and lateral falls, slip, trip, and syncope, as shown in

Table 44. This information was obtained from the state of the art (Section 2.6), which enables multiple

comparisons at the statistical level. Scientific literature categorises the visual perturbations into: i) transla-

tions or rotations on one or several axes simultaneously [164, 171, 172, 174–177, 185, 186]; ii) changes

in proprioceptive feedback [168, 179, 190, 197]; iii) visuomotor disturbance introduction [162, 169, 173];

Table 44: List of visual perturbations and corresponding fall categories

Visual Perturbation Fall category

Roll Rotation / ML Translation Lateral

Object Avoidance Lateral/Forward/Backward

AP Translation Forward/Backward Forward/Backward

Pitch Rotation Slip

Virtual/Real Object Trip

Vertigo Fall from heights

RPY Rotation Syncope
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iv) visual field oscillations [30]; and v) predefined trajectories object movement [184, 194]. This categori-

sation serves to support the choices of the visual perturbations conceptualised, allowing data collection

of data that best approximates to an occurrence of these types of falls. The following subsections go into

greater detail on the relationships between the type of visual disturbance and the type of fall.

8.3.1 Axis Rotations

The rotation direction for these visual perturbations was expressed using Euler angles. The roll, pitch

and yaw angles are formed in three directions in Euler angle notation. A roll perturbation is defined as

a rotation about the AP-axis or the coronal plane. A pitch disturbance is caused by a rotation about the

ML-axis, which is the same as rotating the sagittal plane. Similarly, rotation about the V-axis would cause a

yaw disturbance. Figure 61 specifies the notations used for translations and rotations in the human body’s

anatomical planes.

Roll rotation is designed to represent a swing from left to right or vice versa in the human body.

Bugnariu and Fung [186] use this form of visual disturbance in conjunction with a physical disturbance

that is concordant or discordant in vestibular sensory levels. The amplitude of the perturbation used by

this author was 8º with a speed of 36 º/s. The stimulus was delivered in each direction independently. This

type of rotation was also used by Peterson and Ferris [177] while the subject was attempting to balance

by walking on a beam (Fig. 62). This perturbation had a 20º amplitude and a half-second duration. The

direction was chosen at random, either Clockwise (CW) or Counter-Clockwise (CCW). Riem et al. [171]

applied a roll perturbation in the form of a pseudo random sinusoidal stimulus. The perturbation had

Figure 61: Notation of Roll, Pitch and Yaw angles used for visual perturbations.
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Figure 62: Subject walking on the beam, exposed to pull (left) and visual rotation (right) perturbations.
Inset sketches show example 20 degree perturbations in CCW (top) and CW (bottom) directions [177].

three different intensities: 3º, 6º, and 11º. Based on the previous mentioned investigations, Roll-based

visual perturbation was used in the created VE along with two directions of rotation (CW and CCW) and

three distinct amplitudes (10º/s, 20º/s and 30º/s). Figure 63 exemplifies a CCW with 30º/s. As indicated

in the first two entries of Table 45, the rotation speed is constant. These amplitude values were not exactly

the same as those found in the literature. Because the literature is lacking in justifying the selection of this

type of values, the chosen ones are near and rounded to the tenth, which simplifies the analysis.

Pitch perturbations are also used by Bugnariu and Fung [186]. The intensity and speed are the same.

Liu et al. [174] and Parijat et al. [175, 176] performed efforts to address or induce slips virtually. They

accomplished this by using a visual perturbation that tilted the VE by 25º at a rate of 60º/s. This pertur-

bation was introduced at the right foot’s heel contact. Considering these studies, the VE includes a pitch

disturbance with the same conditions (25º; 60º/s) (Fig. 64).

CCW 30

Figure 63: The optical flow undergoes a CCW rotation of 30º/s around AP-axis.
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Figure 64: Animation of the pitch rotation. The example in the figure is depicted in one of the places that
this disturbance can occur, in a bathroom. This animation is intended to simulate a slip.

Two studies used the visual perturbation around the V-axis, i.e., the yaw perturbation. While the individ-

ual walks forward. This perturbation progressively shifts the focus of vision to the left or right over a range

of 40º. The purpose of this disturbance was to demonstrate the subjects’ response when compelled to

glance away from the direction of walking. In these studies [166, 167], the elderly exhibited irregularities

in their gait trajectory, whereas the young individuals were able to down-regulate the visual information.

Because the participants in this preliminary tests are all healthy young adults, this form of disturbance

was not created.

So far, the research reported has only looked at the effect of one rotation. The visual disturbance, on

the other hand, can comprise rotations in all three axes at the same time. Three studies [180, 191, 399]

look at the risk of falling in patients with bilateral vestibular loss by performing rotations simultaneously.

Each axis’ velocities were independent and guided by a pseudo random sum of sines. This visual pertur-

bation is related to the syncope event before fall. Syncope or fainting is a temporary loss of consciousness

usually related to insufficient blood flow to the brain. This particular event and falls are two prevalent and

interconnected geriatric syndromes that cause significant mortality and morbidity among the elderly. These

studies inspired the creation of a disturbance that rotated the participant’s field of view on all three axes.

This disruption is caused by getting up from a physically present chair. The participant is virtually sitting

on a bed and must get up. As the participant stands up, he or she experiences a disturbance that mimics

a fainting spell or a dip in blood pressure. The amplitude values for each axis were determined base on

the work of Chiavorano et al. [180] that used a sum of sinusoids. Figure 65 shows the participant’s point

of view in the room.
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Figure 65: The participant is sitting on a bed with this viewpoint, is instructed to stand up, and undergoes
the perturbation that rotates the camera in the three axes.

8.3.2 ML-Axis Translation

Visual perturbations consisting of translations in the ML axis are meant to simulate a physical disturbance

that pulls or pushes the body to the left or right mimicking lateral falls. Guzman et al. [164] recreated a

school corridor and used continuous oscillations in the ML axis to produce foreground movement, whereas

Riem et al. [172] uses discrete shifts with a speed of 1 m/s in the same axis. The participant is standing

on a bridge with a pole as a visual aid. The participant viewpoint and virtual position are moved to the

left or right, kept for 9 seconds, and then returned to the original viewpoint in the middle of the bridge for

one second. Dennison and D’Zmura [185] built a VE that imitated a space station with lengthy corridors.

While freely exploring the hallways, a visual disturbance would occur every 2s for 260 ms and pull the

participant’s body to the left or right. These directions were estimated in relation to the participant’s gaze

direction. Visual perturbations that pull the participant’s body forward or backward are also used in this

work. This sort of disturbance is classified as ML-axis translations. With the help of the literature, it was

generated a visual perturbation consisting of a bidirectionally moving floor at 1 m/s while the avatar was

in the area of the perturbation. Figure 66 depicts the virtual configuration implemented.

8.3.3 AP-Axis Translation

This form of translation is also used by Denison and D’Zmura [185]. These visual disturbances give the

subject the sense of being pulled or pushed, imitating a backward or forward fall. Santoso and Philips
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Figure 66: ML floor translation, continuous and bi-directional.

[192] employed the same visual disturbance by abruptly shifting a hallway for three metres in both di-

rections at three different speeds. The axis is positioned in the participant’s eye, which is inside a virtual

tunnel. The disruption occurs in peripheral vision and is a sum of sinusoids, implying that it is continuous,

causing the participant to move forward and backward on the AP axis. Considered the created VE, AP-axis

translations in a corridor were the two perturbations devised to cover this type of backward or forward falls.

These translations take place in distinct places (a corridor and inside of a bedroom), but they both have a

translation speed of 1m/s for 3 seconds and are not bidirectional: one forward, one backward. Figure 67

depicts the VE corridor that will serve as a way for one of these perturbations.

8.3.4 Predefined Trajectories

Programmed trajectories of virtual objects or movements of the background can also be considered a visual

perturbation. The participant’s point of view is not abruptly altered in this sort of visual disruption. However,

Figure 67: AP-axis Translation Corridor.
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Figure 68: Object avoidance clip animation setup with Xsens Avatar.

while maintaining the viewpoint, one aspect of the scene or the entire scene moves. Ida et al. [184] virtually

positioned an object coming from the floor toward the participant. The command was to lift one foot and

avoid making contact with the simulated object. Lubetzky et al. [194] employed virtual object movements.

A ball flying towards the participant’s head, with moving cars and cubes symbolising pedestrians in the

backdrop. From the studies that put objects taking off against the participant, the idea of throwing bottles

against the participant’s head was conceived. Thus, compensatory reactions typical of deflecting an object

can be recorded, which can result in lateral unbalance and falling. The visual disturbance is depicted in

Fig. 68.

8.3.5 Vertigo

Translations in the V-axis while the subject is placed in a virtual high height can cause fear and anxiety,

and has been proven to influence postural control. Four studies [168, 179, 190, 197] used virtual height
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(a) (b)

(c)

Figure 69: Vertigo places. (a) Simple roof. (b) Electricity Pole. (c) Window Roof Beam Walking.

changes to induce vertigo and anxiety in their subjects in order to better understand how these situations

affected gait patterns and standing balance. Habibnezhad et al. [168] also investigated the effects of having

or not having the real-time depiction of an avatar as the subject walked along a limited route on a scaffold

at the top of an incomplete structure. Three unique vertigo scenarios have emerged as a result of these

studies. In the VE, the higher locations were used. One of the homes’ roofs serves as the initial vertigo

trigger (Fig. 69.a). The second requires the users to walk as though they are on a beam to prevent their

virtual avatar from slipping off (Fig. 69.c). It is located on another ceiling and has a much smaller walking

space. The final site (Fig. 69.b) is situated between two high voltage poles. In this approach, three different

vertigo scenarios were produced, each one with a particular feature: a) where the subject may only fall

to one side; b) where the subject can fall to both sides; and c) where the subject can fall and slide if the

users do not follow the line. The avatar is influenced by gravitational force in the same way as a human

body is, in order to increase the participant’s fear and stress. Gago et al. [187] and Yelshyna et al. [188]

used the V-axis translation to simulate a fall from the top of a staircase. Both studies inspired the idea of

inducing a virtual fall in the participant from an upper floor to a lower floor of the house by opening up the

floor beneath the participant. This disturbance is called a Free Fall from now on.

171



CHAPTER 8. VIRTUAL REALITY TO PROVOKE IMBALANCE

8.3.6 Visuomotor Disturbance

Hagio and Kouzaki [162] produced a discordance between the visual and proprioceptive systems by dis-

playing on the HMD a virtual representation of leg height different from the real one, while the participant

was traversing an obstacle. A discordant proprioceptive feedback was therefore introduced. This explana-

tion raised the possibility of placing a target in the VE that participants would need to pass. This object

would be put in the participant’s path on the floor, but it would have a lower virtual height. The participant

would attempt to pass the obstacle with the assurance that nothing would hit his foot. Since the height

of the real item is bigger than what the subject perceives in the virtual world, it is likely that they may

collide in reality. Due to the fact that it would collide with an actual item, this visual disturbance might

cause real trips. So, it was defined that the participant is instructed to ascend the sidewalk naturally for

this disturbance (Fig. 70). The operator is responsible to timely place a real higher object to cause the trip.

A combination of physical and visual disruption was also developed by Frost et al. [169] and Drolet et

al. [173]. By altering the stiffness of the ground using a mechanical device, this perturbation is visual infor-

mation that is uncorrelated with proprioception. Participants were therefore instructed to go in a straight

path on a simulated stone surface that contained random sand or grass fragments. In some circum-

stances, when the participant walked on a substance they anticipated to be soft, a surface of stone-like

hardness was added, producing contradictory sensory information. When the subject was getting ready to

land with the leg on a softer surface, this disturbance resulted in alterations in their kinematic and muscle

behaviour. Since none of the authors reported any LOB, this visual disturbance had no relevance to the

current investigation.

Figure 70: Sidewalk trip induction via visual and proprioceptice mismatch.
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8.3.7 Visual Field Oscillations

Because it refers to the superimposition of visual oscillations over the regular flow of vision, the visual field

oscillations are distinguished from translations and rotations. A pseudo-random sum of sine waves with

four different frequencies made up the oscillations. They can happen in either the ML or AP directions [30].

Due to the minor changes in gait patterns and gait speed observed in the data obtained with this form of

perturbation, this type of background oscillation was disregarded. Rotating cameras was preferred. Once all

visual disturbances have been discussed and presented, it is important to summarise all information about

the visual disturbances implemented in the created VE. Table 45 describes all the visual perturbations

choices supported by the literature search mentioned beforehand.

Table 45: Visual perturbations code, name and parameters

Code Perturbation Parameters

VP001 Roll Axis Tilt - Clockwise [10º, 20º, 30º] during 0.5s

VP002 Roll Axis Tilt – Counter-Clockwise [10º, 20º, 30º] during 0.5s

VP003 Support Surface ML Axis Translation - Bidirectional Discrete Movement (static pauses between movements) – 1 m/s

VP004 AP Axis Translation - Front 1 m/s

VP005 AP Axis Translation - Backwards 1 m/s

VP006 Pitch Axis Tilt 0º-25º, 60º/s

VP007 Virtual object with lower height than a real object Variable object height

VP008 Roll-Pitch-Yaw Axis Tilt Sum of sinusoids drive each axis rotation [399]

VP009 Scene Object Movement Objects fly towards the subject’s head. Variable speeds

VP010 Vertigo Sensation Walk at a comfortable speed. With and without avatar. House’s height

VP011 Axial Axis Translation Free fall

8.4 Methods & Materials

Using visual perturbations and data gathered from kinematic and physiological sensors, an experimental

protocol was created and put into action to create imbalance in the participants. Data collection on com-

pensatory reactions is vital in balance control analysis, designing balance training methods, and compiling

data from numerous sensors into a dataset. On the other hand, literature protocols (Section 2.6) presented

two main limitations: i) lack of fusion of inertial sensors with physiological sensors for further analyses and

conclusions; and ii) introduction of only one visual perturbation. Thus, this protocol attempts to overcome

these drawbacks by using various types of sensors used in the scientific literature and introducing a varied

list of visual perturbations in a fully immersive VE. This protocol will allow these perturbations to be intro-

duced randomly in an ecologically realistic VE. After data collection, a multivariate dataset will be used to

investigate the possibility of using visual disturbances to induce near-fall reactions.
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8.4.1 Participants and Equipment

Twelve healthy young subjects (age: 25.09 ± 2.81; height: 167.82 ± 8.40 cm; weight: 64.83 ± 7.77 kg;

males = 6; females = 6) were enrolled in the experimental protocol and they respected the following

inclusion criteria: i) healthy locomotion; ii) total posture balance; iii) age ≥ 18 years; iv) body mass < 135

kg. Subjects were excluded if they met any of these criteria: i) disease or deficit affecting locomotion; ii)

epilepsy, vestibulopathy or other neurological condition resulting in potential instability during trials; iii)

have recently undergone surgical procedures affecting mobility; iv) are included in another experimental

protocol intervention; v) are under judicial protection/guardianship; and vi) have complications from using

VR with a HMD (e.g. motion sickness). All participants provided written and informed consent, respecting

the ethical conduct defined by the University of Minho Ethics Committee that follows the standards set by

the declaration of Helsinki and the Oviedo Convention. The choice of not to use elderly subjects was not

based on their susceptibility to cybersickness. In fact, several studies show that the elderly suffer from

less cybersickness than the youngest, and a higher presence attribute is noted [373, 400, 401]. However,

aging causes neuromuscular degradations that decrease muscle strength, balance, proprioception and

reaction time. Aging may be accompanied by adjustments in muscle activation such as a decrease in

voluntary activation. This progressive decline in physical capacities reduces the ability of older adults to

perform complex motor tasks and is associated with impaired mobility. For this reason, and to avoid the

risk of a fall and injury, older adults were not used in this preliminary study. All subjects must be blinded

to the protocol because otherwise it would introduce bias in anticipation to visual perturbations. Due to

this, it was also chosen to deliver the visual disturbances in a random sequence and at various locations.

The unpredictable and naturalistic elements of the reactions are strengthened since the subjects are never

sure when or if they will be disturbed.

HTC Vive Pro 
Headset

Controller

SteamVR Base 
Stations 2.0

Figure 71: HTC VIVE Pro Full Kit.
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Table 46: Headset technical specifications

Headset Specs

Screen Dual AMOLED 3.5”diagonal
Resolution 1440 x 1600 pixels per eye (2880 x 1600 pixels combined)
Refresh rate 90 Hz
Field of View 110 degrees
Audio Hi-Res certificate headset
Connections Bluetooth, USB-C port for peripherals
Sensors SteamVR Tracking, G-sensor, gyroscope, proximity, Eye Comfort Setting (IPD)

The VR headset was the main equipment involved. It comes with two controllers and two base stations

(Fig. 71). The base stations, synchronised wirelessly, are responsible for tracking the headset, which can

change the participant’s field of view with the movement of the head, and the controllers in a 5 𝑚2

area. The technical specifications of this headset are described in Table 47. The controllers were used

only for setting up the virtual space. The motion tracking system, i.e., the Xsens, was used with full body

configuration, which changed the user interaction in the VE. The controllers were deactivated, and if the

user wanted to grab or pick some object, the Xsens avatar inserted in the VE allowed that interaction. During

the experimental protocol, the following systems were used to capture kinematics, muscle contractions

and electrodermal activity: i) Xsens; ii) Delsys Trigno; and iii) Shimmer GSR. A safety harness was used to

avoid possible fall injuries. The harness system included a vest that was connected to a ceiling-mounted

support via a rope. To ensure that there was at least 15 cm between the knees and the floor, the length of

the harness rope was modified. Participants were instructed to lift their feet to apply their entire body weight

on the harness system in order to complete this process [158]. SyncLab 2021 was used to synchronise

the systems used.

8.4.2 EMG Sensor Location

The selection of EMG sensors location is emphasised. Several studies used EMG in their experimental

protocols while causing visual disturbances. By drawing a diagram (Fig. 72) to represent their sensors’

locations, it was possible to cross this information with the visual disturbances employed by the same

studies. At the bottom of the diagram is the colour code that legends the visual perturbations. Thus, it

is possible to instrument the participant with as few sensors as possible, covering the essential muscles

for the analysis of different visual disturbances. As an outcome, in order to collect muscle activation data

illicited by most compensatory reactions, the following muscles were chosen: i) Tibialis Anterior (both legs);

ii) Gastrocnemius Medial Head (both legs); iii) Semitendinosus; iv) Rectus Femoris; v) External Oblique;

and vi) Sternocleidomastoid.
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Tibialis Anterior
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Gastrocnemius Lateral
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Gastrocnemius 
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10, 11, 12]

Neck [2]
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12]
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Erector Spinae

[6, 7, 12]

Vastus

Lateralis

[7, 8, 11]

Semitendinosus
[7, 8, 11]

Tensor Fascia

Latae

[7]

L3 Level

[7, 9]

Middle Deltoid

[9, 12]

Peroneus Longus

[10]

Color - Visual Perturbation
Vertical translation (heights) | Vertical and Horizontal | Roll Axis Tilt | Roll & Pitch Axis Tilt 

Pitch Tilt | Visual Motor Perturbation | Virtual and Real Obstacles 

Figure 72: Muscles analysed by the literature within the scope of visual perturbation application. Selected
muscles in bold. 1 - Sun et al. 2019 [179]; 2 - Peterson et al. 2018 [170]; 3 - Chiarovano et al. 2018 [180];
4 - Mohebbi et al. 2020 [182]; 5 - Drolet et al. 2020 [173]; 6 - Ida et al. 2017 [184]; 7 - Bugnariu and Fung
2007 [186]; 8 - Liu et al. 2015 [174]; 9 - Cleworth et al. 2016 [190]; 10 - Peterson and Ferris 2018 [177];
11 - Parijat et al. 2015 [175]; 12 - Porras et al. 2021 [402].

8.4.3 Balance Perturbation Protocol

VR has advantages for experiment control and repeatability. The design of the experimental protocol brings

together four key elements, namely: i) stimulus control; ii) experiment reproducibility; iii) ecological validity

and iv) real-world learning transfer. On top of carrying out sequential tasks, the experimental protocol was

created. The user’s demographic information, including age, height, weight and gender, must be gathered

after collecting the written and informed consent. In order to maximise the quality of the electrical signal

communicated and to ensure that the EMG sensors were securely fastened to the skin, the locations where

the sensors were to be placed were cleansed with alcohol. The participant was then instrumented with the

EMG sensors in the chosen muscles. The sensors were firmly glued to the skin. For each muscle, three

MVC attempts were done to further normalise the EMG envelope with the help of Delsys dedicated software.

Participants were also equipped with the full body configuration of Xsens MVN Awinda wearable inertial

system, and the Shimmer GSR device on the dominant forearm with the electrodes placed on the index

and middle fingers. The hand dominance was determined using the Waterloo Handedness Questionnaire

[366]. Following sensor placement, participants went through the Xsens’ N-Pose calibration. Finally, the

HTC Vive Pro headset was placed on the participant’s head. SyncLab Desktop App assured system’s

synchronisation.
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The subject was advised to: i) ask for help whenever necessary, such as episodes of motion sickness;

ii) adjust the distance between the lenses and between the face and the lenses for a proper and more

comfortable usage; iii) stay within the playing area restricted by a virtual blue boundary; and perform a

familiarisation trial without perturbations while using the entire setup. The familiarisation trial consisted in

performing three times the following activities without interruption and visual perturbations while exploring

the VE in different virtual locations: walk forward, turn around, and return to the starting location. Dur-

ing the experimental protocol, the subject performed these activities over and over again for almost one

hour. The 11 virtual perturbations provided on Table 45 were applied to the subjects. Considering their

variants, a total of 35 different situations were considered for this experimental protocol (Table 48). During

the entire experimental protocol, each perturbation variant was applied three times, being carried out se-

quentially and in a distinct order for each subject. The order of virtual perturbations and non-perturbations

introduction was created randomly using a Matlab script. Finally, participants were asked to complete the

Simulation Sickness Questionnaire (SSQ), a questionnaire about motion sickness during the experimental

activity [403]. Igroup Presence Questionnaire (IPQ) was posed to assess the level of immersion and the

efficiency of the visual disturbances [404].

8.4.4 Triggers and Scripts

Given the prevalence of visual disturbances, it is essential to fully maximise Unity’s capabilities to accom-

plish the following tasks for a faster execution of the experimental protocol: i) quickly position the avatar in

the desired initial position, given that there are multiple initial positions associated with the various visual

disturbances; ii) automatically activate visual disturbances when the avatar reaches regions of the VE that

have been specifically designated for this purpose; and iii) automatically and temporally record the begin-

ning and end of the various visual disturbances to expedite the labelling process. A system of predefined

spaces termed triggers was employed to automate the delivery of the visual perturbations. When the par-

ticipant enters these spaces virtually, an animation or a visual perturbation seen by the user is activated.

The subject will experience visual disruption as long as he or she stays in the area.

Unity’s built-in 3D physics engine is a system that simulates aspects of physical systems so that

objects can accelerate correctly and be affected by collisions, gravity, and other forces. For this purpose,

rigid body collisions and the idea of a trigger need to be described in terms of physics engine principles.

A Rigidbody is the main component that enables physical behaviour for a GameObject. With a Rigidbody

attached, the object will immediately respond to gravity. If one or more Collider components are also

added, the GameObject is moved by incoming collisions. For physical collisions, a GameObject’s form

is determined by collider components. A cube-shaped collider component called a box collider manages

game object collisions. Figure 73 displays an example of a box collider. The box colliders designed to outline

the visual perturbation activation zone have a dimension on the x-axis of 2 Unity measurement units, or
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Figure 73: Representation of a box collider (Left). Setting the box collider as a trigger and the associated
script visible in the inspector (Right).

2 metres in reality (Fig. 73). The scripting system can detect when collisions occur and initiate actions

using the OnCollisionEnter function. However, one can also use the physics engine simply to detect when

one collider enters the space of another without creating a collision. A collider configured as a Trigger,

using the Is Trigger property, does not behave as a solid object and will simply allow other colliders to

pass through. When a collider enters its space, a trigger will call the OnTriggerEnter function on the trigger

object’s scripts.

8.4.5 Data Processing

Data processing was carried out similarly to the process described in Section 7.3.4. EMG and electrodermal

activity data were resampled to 60 Hz, which is the sampling frequency of Xsens and the lowest value

among all systems. SyncLab synchronising information helped to combine data into a single Matlab table

per subject. Before proceeding to the statistical analysis, data were labelled. Each visual disturbance was

assigned a unique number. Except for the trip perturbation, which contains an extra number to identify

the foot strike. Uninterrupted walking conditions are also labelled. Table 48 presents the label for each

visual perturbation created. The Matlab-generated random sequence with the list of visual perturbations

sorted chronologically served as a guide for the labelling process. In addition, the VE was programmed to

generate a Log file that records the timestamp of Trigger events This instant of time was compared with

the timestamps in the unlabelled dataset. The matching frame was filled with the proper label until the

end of the visual perturbation. Some corrections and manual entries of perturbations onsets and finals

were necessary. For this, the frames associated with the timestamps were useful for visual inspection in

Xsens MVN software. The label plot shown in Fig. 74 helped to correct flaws, as it gives an overview of the

perturbations that occurred throughout the experimental protocol.
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Table 48: Label encoding

Visual Perturbation Label Visual Perturbation Label Visual Perturbation Label

Roll Indoor 1 CW10 1 Roll Indoor 1 CW20 2 Roll Indoor 1 CW30 3

Roll Indoor 1 CCW10 4 Roll Indoor 1 CCW20 5 Roll Indoor 1 CCW30 6

Roll Indoor 2 CW10 7 Roll Indoor 2 CW20 8 Roll Indoor 2 CW30 9

Roll Indoor 2 CCW10 10 Roll Indoor 2 CCW20 11 Roll Indoor 2 CCW30 12

Roll Outdoor CW10 13 Roll Outdoor CW20 14 Roll Outdoor CW30 15

Roll Outdoor CCW10 16 Roll Outdoor CCW20 17 Roll Outdoor CCW30 18

ML-Axis Trans - Kitchen 19 AP-Axis Trans - Corridor Forward 20 AP-Axis Trans - Corridor Backward 21

Pitch Indoor - Bathroom 22 Pitch Indoor - Fridge 23 Window Roof Beam Walking - Vertigo 24

Walking - Vertigo No Avatar 25 Simple Roof - Vertigo 26 Simple Roof - Vertigo No Avatar 27

Pitch Outdoor - Near Car Oil 28 Trip - Sidewalk / Trip Shock 29 / 290 Bedroom Syncope 30

Garden - Object Avoidance 31 Electricity Pole - Vertigo 32 Electricity Pole - Vertigo No Avatar 33

Free Fall 34 Stairs 35

La
b
el
N
u
m
b
e
r

Sample

Figure 74: Labels throughout the experimental protocol for a subject. The horizontal axis represents the
samples collected and the V axis represents the labels number.

8.4.6 Statistical Analysis Procedures

Once it has been labelled, data were statistically treated and ANOVAs were applied to each dependent

variable in order to answer the RQ5. Statistical measures from kinematics (CoM, acceleration and angular

velocity from pelvis and sternum), muscle and electrodermal activity data were estimated per dependent

variable to perform this analysis (Fig. 75): i) mean (AVG); ii) standard deviation (STD); iii) minimum (MIN);

iv) maximum (MAX); v) kurtosis (KUR); vi) skewness (SKW); and vii) Lyapunov exponents (LYAP). This

calculation was performed for each of the visual disturbances collected and even for situations with no
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Tibialis Anterior (Both)

Gastrocnemius Medial Head

(Both)

Rectus Femoris (Right)

Semitendinosus (Right)

External Oblique (Right)

Sternocleidomastoid (Right)

Muscular

Accelerometer (Sternum + 

Pelvis)

Gyroscope (Sternum + 

Pelvis)

Center of Mass

Kinematic

Skin Conductance

Skin Resistance

PPG

GSR

Figure 75: Dependent variables used for statistical analysis.

perturbations. The physiological dependent variables included the 8 muscles and the information from

the electrodermal sensor, i.e., Photoplethysmography (PPG) and the skin conductance and resistance.

Considering the kinematic variables, the sternum and pelvis acceleration and angular velocity were chosen

since they reflect trunk bend that may be a consequence of hip strategy, body sway, and trunk rotation

[405]. CoM velocity was also chosen since it is the determining factor of balance [406].

The prerequisites for an ANOVA are independent observations, properly distributed response variables,

and homogeneous covariance matrices across groups. Research in the past has demonstrated that the

type I error rate of the conventional test statistics can be inflated while their power can be decreased when

the conditions of normality and homogeneous covariance matrices are not met [407]. The presence of mul-

tivariate outliers, the absence of multicollinearity, and the linearity of the dependent variables for each level

of the independent variables were also investigated. The normality of the continuous data can be tested

using a number of different methods. The two well-known tests of normality, namely, the Kolmogorov–

Smirnov test and the Shapiro–Wilk test, are the most widely used methods to test the normality of the

data [408]. However, skewness and kurtosis can also be used for large samples (>300). Normality tests

were conducted in the statistical software SPSS. Although it can handle higher sample sizes, the Shapiro-

Wilk test is more suitable for small sample sizes (<50 samples). For sample sizes greater than 50, the

Kolmogorov-Smirnov test is commonly used. The null hypothesis states that data arises from a normally

distributed population for both of the above tests. When p>0.05, the null hypothesis is accepted, and

data is normally distributed. For a preliminary study, a binary classification was taken into consideration,

dividing variables measured under perturbation and those without perturbation.

In an ANOVA, a significant F-value simply indicates that there are disparities between the population

means. This significant value indicates that visual disturbances have an effect on gait characteristics. In

other words, visual disturbances effectively cause imbalances. However, it does not specify which precise

perturbations cause the averages to diverge greatly. This distinction will help determine which disturbances

posed the most difficulty to the participant’s balance. At this point, after conducting the ANOVAs, differ-

ences between means individually will be inspected. In the case of this experimental protocol, an important

180



CHAPTER 8. VIRTUAL REALITY TO PROVOKE IMBALANCE

comparison will be between the cases where there is no perturbation and the cases where there is visual

perturbation. In this situation, the unaffected gait will act as a control. When comparing one group to an-

other, the suggested test is Dunnett’s test [409]. Dunnett’s test is carried out by calculating a Student’s

t-statistic for each group and comparing the treatment group (perturbation labels) to a single control group

(no perturbation). Because each comparison shares the same control, the process takes into account the

dependencies between them. The t-statistics, in particular, are all derived from the same estimate of the

error variance, which is acquired by aggregating the sums of squares for error across all groups. The formal

test statistic for Dunnett’s test is either the t-statistic with the highest absolute value, or the t-statistic with

the highest negative or positive value.

8.5 Statistical Analysis Outcomes

8.5.1 Dataset Normality

Final dataset contains 553 observations of no perturbation and 543 observations of perturbation. Thus,

the first step was to identify normal variables following the rule for sample size over 300 (skewness value

≤2 or kurtosis ≤4). However, literature supports an easy path for analysis considering the sample size.

In order to draw conclusions about associations between variables, as intended to do in ANOVA, it is

acknowledged that in large samples, these statistical methods rely on the Central Limit Theorem, which

states that the average of a large number of independent variables is roughly normally distributed around

the true population mean [410]. Thus, it was possibly to use all dataset in ANOVA.

8.5.2 ANOVA

ANOVA was performed to compare the effect of visual perturbations on the estimated dependent variables

(Fig. 75). Overall, there are 32 variables from muscle activity, 48 variables from acceleration and angular

velocity of the pelvis and sternum in the 3-axis, 12 variables from CoM velocity, and 9 variables from GSR

sensor. The ANOVA revealed that there was a statistically significant difference in the dependent variables

listed in Table 49 between at least two groups. F-value and p-value are presented in Table 49 for each

dependent variable. The table is arranged to show the variables with the most significant p-value first (left

side of the table). There was no significant difference in the dependent variables showing the p-value with

p>0.05 (right side of the table - variables with green p-value). This table also disclosures that CoM velocity,

mainly AP-axis, along with angular velocity, specially from sternum, and muscular activity from right and

left Tibialis Anterior prevail as dependent variables with the most significant p-value. This variables will be

further used to narrow the analysis while obtaining relevant conclusions about the visual perturbations.

Additionally, lower body muscle-related variables also present more significant p-values than variables

from the upper body. The variables referring to the galvanic response of the skin that reflect physiological
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Table 49: One-way ANOVA results: F-value and p-value. The order of this table is done in order to understand
which variables had the highest F-value, i.e., which were most influenced by the situations where there
were visual disturbances. Additionally, variables are separated by colour to get an idea of which groups of
variables were most affected. Blue - muscle variables; Green - Gyroscope; Orange - Accelerometer; Purple
- CoM Velocity.

F-value p-value Independent Variable F-value p-value Independent Variable F-value p-value Independent Variable
44.3876 4.9562E-181 COMVelXMIN 7.398 1.67488E-31 RGMSTD 3.349156 3.9924E-10 StrGyrzAVG
30.3299 2.9712E-134 COMVelXAVG 7.397 1.68877E-31 RTASTD 3.095718 7.0099E-09 StrAccyAVG
22.269 1.3568E-102 StrGyrxSTD 7.307 5.07651E-31 RGMAVG 3.05817 1.0655E-08 StrAcczMIN
20.1081 2.34E-93 StrGyrzMAX 6.589 3.55611E-27 PelGyrzSTD 3.03915 1.3164E-08 PelAccyMIN
19.552 6.33223E-91 PelGyrzMAX 6.083 1.83851E-24 PelAccyMAX 3.017882 1.6667E-08 StrAccyMAX
18.9544 2.7722E-88 PelAccxSTD 5.544 1.40609E-21 PelAcczMIN 3.012572 1.7677E-08 StrAcczSTD
17.8613 2.22145E-83 PelAccySTD 5.367 1.2499E-20 RGMMAX 3.007972 1.8601E-08 StrAccxMIN
14.9473 7.81648E-70 PelGyrxSTD 5.22 7.57E-20 PelGyrxMAX 3.004329 1.9366E-08 StrAccyMIN
12.9882 2.50855E-60 COMVelYMAX 5.003 1.07675E-18 PelAccxMAX 3.00356 1.9532E-08 StrAcczMAX
12.8724 9.36689E-60 PelAcczSTD 4.979 1.45508E-18 LGMSTD 3.00045 2.0216E-08 StrAccxMAX
11.6453 1.26888E-53 StrGyrzMIN 4.744 2.56E-17 StrGyryMAX 2.980041 2.5328E-08 StrAccxSTD
11.18100 2.87403E-51 RTAAVG 4.724 3.25173E-17 COMVelZAVG 2.969282 2.8519E-08 StrAccxAVG
11.035 1.5833E-50 PelGyrzMIN 4.458 8.16166E-16 PelAcczMAX 2.966565 2.9386E-08 StrAccySTD
10.8063 2.33108E-49 LTAMAX 4.417 1.35E-15 StrGyryMIN 2.916839 5.07E-08 PelGyryMIN
10.5536 4.60525E-48 COMVelZSTD 4.292 6.04921E-15 PelAccxMIN 2.741791 3.38E-07 PelGyryMAX
10.4218 2.19047E-47 StrGyrySTD 3.934 4.34E-13 PelGyrxMIN 2.683527 6.2881E-07 PelAccxAVG
9.80508 3.385E-44 PelGyrySTD 3.781 2.66E-12 SCMMAX 2.680819 6.4714E-07 EXTOMAX
9.26007 2.35024E-41 RTAMAX 3.693 7.44721E-12 COMVelYSTD 2.662867 7.8266E-07 StrGyrxAVG
8.7332 1.37279E-38 StrGyrzSTD 3.678 8.9323E-12 LGMMAX 2.660458 8.0286E-07 EXTOSTD
8.64069 4.21946E-38 COMVelXSTD 3.663 1.06239E-11 COMVelYAVG 2.640012 9.9626E-07 COMVelZMAX
8.42246 5.9924E-37 LTASTD 3.619 1.77103E-11 StrGyryAVG 2.5719 2.0341E-06 PelAccyAVG
8.21407 7.60E-36 StrGyrxMAX 3.618 1.79964E-11 STMAX 2.501778 4.2048E-06 COMVelXMAX
7.4828 5.88E-32 StrGyrxMIN 3.596 2.32318E-11 COMVelYMIN 2.415235 1.0169E-05 RFMIN
7.47933 6.13649E-32 LTAAVG 3.531 4.92824E-11 RFMAX 2.400227 1.1833E-05 LGMAVG

3.467 1.03E-10 RFSTD 2.332105 2.3405E-05 STAVG
3.465 1.05448E-10 SCMSTD 2.123562 0.0001764 STSTD
3.366 3.27661E-10 PelGyrzAVG 2.063500 0.00030898 RTAMIN

2.045522 0.00036468 PelGyryAVG
2.03077 0.0004175 RFAVG
1.959229 0.00079695 RGMMIN
1.906913 0.00126532 PelAcczAVG
1.894578 0.00140912 LTAMIN
1.572945 0.01891391 StrAcczAVG
1.558554 0.02101814 PelGyrxAVG
0.955329 0.54398981 COMVelZMIN
0.836843 0.73760913 LGMMIN
0.709917 0.89614266 STMIN
0.580864 0.97617683 EXTOMIN
0.181758 0.99999998 EXTOAVG
0.14402 1 SCMMIN
0.120651 1 SCMAVG

activity related to anxiety and fear of falling did not obtain significant values. Thus, were not included in

the aforementioned table.

8.5.3 Dunnett Post Hoc

Dunnett’s t-test with no Pertubation as control group for multiple comparisons found that the mean values

of independent variables in Table 50 were significantly different between control group ”No Perturba-

tion”and the visual perturbations implemented. To illustrate the results obtained in the Post Hoc test, a

muscle variable was picked - the average value of the percentage of activation of the Right Tibialis Anterior

muscle during the occurrence of the various perturbations. Table 50 shows the results of this test. The

greatest differences between the averages when comparing the control group (no disturbance) with the
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visual disturbances are coloured green. The red colours indicate the opposite, i.e., that there was minimal

interference of the visual disturbance on the average activation of this muscle. From the mentioned table,

it is apparent that the visual disturbance that most affects the contraction of this muscle is Roll Indoor 2

CCW30. This process was replied for all metrics and considerations are further described.

8.5.3.1 Muscle variables

Table 49 reveals a massive presence at the top of muscle variables from the lower leg muscles: Right and

Left Tibialis Anterior and Right and Left Gastrocnemius Medial Head. By itself, this discovery supports

the hypothesis in the direction intended to prove. The visual disturbances induced in this experimental

protocol primarily activate the muscles needed to maintain and recover balance after gait disturbance.

The ankle muscles (plantarflexors/dorsiflexors) in the AP direction and the hip abd/adductor muscles in

the ML direction were identified as dominants during quiet or perturbed standing by studies of balance and

posture [405]. Kim et al. [411] summarise reports of muscle activations during perturbed walking. Each

study examined the Tibialis Anterior, a muscle involved in dorsiflexion of the ankle. The Gastrocnemius

is the muscle that functions as its antagonist. The findings of these articles imply that a crucial factor in

abnormal gait is the involvement of the plantarflexor and knee flexor muscles.

According to Dunnett’s post hoc results, the Pitch visual disturbance significantly interfered with the

Gastrocnemius muscles. This resemblance suggests that a physical perturbation and a visual perturbation

induce similar muscle patterns. The same EMG pattern is observed in the backward translation of the

platform. Statistical analysis oncemore confirms the significant relationship between the visual disturbance

and AP-axis Translation Backward and the activation of the Gastrocnemius.

The Tibialis Anterior and Gastrocnemius Medial muscles of the dominant leg similarly demonstrated

statistically significant variations (p=0.0005 and p=0.0019, respectively) in the means between the ML-

axis perturbation and the non-perturbation condition, which is consistent with the findings of Acuna et

al. [412]. This demonstrates that the Tibialis Anterior and Gastrocnemius Medialis, two ankle stabiliser

muscles, were significantly affected by the ML-axis Translation visual perturbation that was performed.

Additionally, in line with the findings of Hallal et al. [413], the results of the Dunnett’s post hoc test on the

variables pertaining to the dominant thigh muscles reveal that the perturbations Trip and Object Avoidance

were the most successful in eliciting these muscles.

8.5.3.2 Kinematic variables

The CoM velocity in AP direction must be considered for the ANOVA outcomes. According to Pai et al.

[414], balance will not be maintained when there is sufficient velocity of the CoM in AP direction, even

if the position of the CoM is within the BoS. Both model simulations and human experimental data have
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Table 50: Dunnett t-test (2-sided) result - Right Tibialis Anterior. The color gradationmeans a higher value for
the green-tone colors and a lower value for the red ones, i.e., in green are the entries that the corresponding
visual disturbance introduced the most difference in means.

Dependent Variable: RTAAVG
Dunnett t (2-sided): control group ”No Perturbation”

(I) Label (J) Label Mean Difference (I-J) Sig.

Roll Indoor 1 CW10 No Perturbation 2.619624074 0.014

Roll Indoor 1 CW20 No Perturbation 2.640917425 0.013

Roll Indoor 1 CW30 No Perturbation 2.82942145 0.005

Roll Indoor 1 CCW10 No Perturbation 3.068273265 0.001

Roll Indoor 1 CCW20 No Perturbation 3.182434604 0.001

Roll Indoor 1 CCW30 No Perturbation 4.154222882 0.000

Roll Indoor 2 CW10 No Perturbation 3.229842329 0.000

Roll Indoor 2 CW20 No Perturbation 1.720165351 0.505

Roll Indoor 2 CW30 No Perturbation 3.045723908 0.001

Roll Indoor 2 CCW10 No Perturbation 3.591367025 0.000

Roll Indoor 2 CCW20 No Perturbation 4.049127951 0.000

Roll Indoor 2 CCW30 No Perturbation 4.903273231 0.000

Roll Outdoor CW10 No Perturbation 4.198288474 0.000

Roll Outdoor CW20 No Perturbation 1.597146009 0.662

Roll Outdoor CW30 No Perturbation 2.031776184 0.191

Roll Outdoor CCW10 No Perturbation 3.05686819 0.001

Roll Outdoor CCW20 No Perturbation 4.553190306 0.000

Roll Outdoor CCW30 No Perturbation 3.400362578 0.000

ML Axis Trans - Kitchen No Perturbation 1.896113135 0.001

AP Axis Trans - Corridor Forward No Perturbation 2.020538563 0.000

AP Axis Trans - Corridor Backward No Perturbation 2.004027816 0.000

Pitch Indoor - Bathroom No Perturbation 2.541397364 0.021

Pitch Indoor - Fridge No Perturbation 2.696144191 0.010

Window Roof Beam Walking - Vertigo No Perturbation 3.453513534 0.000

Window Roof Beam Walking - Vertigo No avatar No Perturbation 2.612068727 0.015

Simple Roof - Vertigo No Perturbation 1.518723557 0.830

Simple Roof - Vertigo No avatar No Perturbation 1.620855505 0.632

Pitch Outdoor - Near Car Oil No Perturbation 2.304171836 0.063

Bedroom Syncope No Perturbation 2.101540562 0.000

Garden - Object Avoidance No Perturbation 1.778019862 0.002

Electricity Pole - Vertigo No Perturbation 2.432576435 0.035

Electricity Pole - Vertigo No avatar No Perturbation 2.280966349 0.070

Free Fall No Perturbation 2.213991566 0.000

Stairs No Perturbation 2.392414359 0.001

Trip - Sidewalk No Perturbation 3.86578572 0.000

previously indicated that the CoM velocity plays an important role in regulating stable walking [406]. Dun-

nett’s test results detected which visual perturbations, compared to the ”No Perturbation”control, caused
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the CoM velocity variable to show the greatest difference in the means, representing a greater influence

of the perturbations that have a larger (I-J) Mean Difference value. The ones with a larger value of mean

difference are the Roll and Pitch perturbations (p<0.05). It is possible that the perturbations that make

the participant walk faster or halt abruptly by adopting the hip strategy are those that, on average, have

the highest effects on the variable CoM velocity AP-axis. This occurs in all Roll perturbations that, despite

attempting to generate a lateral drop, result in a compensatory response that causes erratic oscillations in

the AP direction during the perturbed gait. On the other hand, a ML-Axis Translation perturbation has no

statistical significance. This is because it induces a lateral sway that is not as abrupt as Roll. A note of spe-

cial attention to the angular velocity around the V axis, evidencing clear differences between disturbance

and non-disturbance situations. This can be explained by a compensatory movement of the hip, causing

a greater rotation than when walking or when standing still.

The average value of the gyroscope in the y-axis of the inertial sensor placed on the Pelvis. This variable

anatomically represents trunk flexion average, which reflects a strategy of the hip to counteract external

perturbations in the AP plane. Dunnett’s post hoc test reveals that the visual perturbations of backward

translation and free fall are those that induce the greatest difference in means compared to no perturbation.

8.5.4 Visual Disturbances and Type of Falls

To discover the visual disturbances that actually perturb balance and gait, the variables that presented

statistically significant differences were analysed. Considering the average activation of the Tibialis Anterior,

Roll and Trip visual perturbations have generally more influence on the activation of this particular muscle.

Among Roll perturbations, the Roll CCW30, CCW20 and CW10 were the most effective in the muscles

of both legs. Moreover, the perturbation Window Roof Beam Walking, vertigo-related perturbation, also

presented statistical significance regarding the average activation of these muscles. Vertigo scenarios

stand out for their amazing values when it comes to maximum values, especially in the two situations

where the participant has the notion that he can fall on both sides.

Average activation of the Right Medial Gastrocnemius revelead that Roll perturbations are generally the

most influential, more specifically Roll CCW20 and CCW30. Interestingly, two pitch perturbations (Pitch

Bathroom and Pitch Fridge) were also among the most effective at activating this dominant leg muscle, as

well as Trip. On the other hand, the Left Gastrocnemius Medial (non-dominant) was only influenced by the

Free Fall and Trip perturbations. Maximum values from this muscle did not exhibit significant differences

for any visual perturbations considering the right leg. For the left leg, contrarily, AP-axis translation (forward

and backward) presented significance statistical differences, as well as the Bedroom Syncope perturbation.

The last one perhaps because the period of disturbance includes sitting.

Kinematic variables also exhibit statistically significant differences. Regarding mean CoM velocity, it can

be stated that in AP direction all Roll perturbations proved to be quite homogeneously influenced. Moreover,
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all perturbations in the Pitch and AP-axis Translation were highly statistically significant. This result was

expected since these perturbations try to induce a forward or backward drop. Considering the maximum

value in the same direction, only the Bedroom Syncope perturbation stands out. This can happen due to

the sitting activity caused by the visual perturbation. However, not all subjects needed to sit during the

perturbation. The CoM velocity in the ML-axis can also provide crucial information kinematically. Regarding

the mean values, the Free Fall, Trip and AP-axis translation perturbation showed the greatest influence.

On the maximum value, there was a general influence of the Roll perturbations and a main influence

of the AP-axis translation backward perturbation. All Pitch perturbations are also effective at producing a

change in the maximum value, as well as Free Fall and Trip perturbations. Analysing the CoM velocity in

the V direction, it revealed the Bedroom Syncope perturbation as statistical significant. As mentioned, the

subject lowered the CoM due to the sitting activity.

8.6 Conclusions

An immersive VE was designed respecting the concept of ecological validity endowed with a high level of

realism conferred by a home-living paradigm to create a tool capable of induce imbalance through a VR

headset. It includes animations that can be found outdoors or in different parts of the houses (e.g. kitchen,

bathroom, stairs, bedroom). The animations, on the other hand, were created to provoke different types

or categories of falls, being as multivariate as possible.

In accordance with the experimental protocol, these visual disturbances are presented randomly to

the participants in order to collect data, allowing the construction of a new, vast and multivariate dataset

of imbalance situations as close as possible to real-world imbalance situations. The paucity of physical

space that only allowed for back and forth movement of the subject was one of the protocol’s execution’s

constraints. Furthermore, it was not possible to apply all of the perturbations to each subject’s gait cycle at

precisely the same time due to the nature of the animations’ triggering mechanism. However, the statistical

analysis fills in this gap.

The statistical analysis was then used in order to determine if the visual perturbations caused variations

in the means of the dependent variables relative to the no-perturbation circumstances. ANOVAs were

carried out to see which variables changed the most when visual disturbances were applied. These ANOVAs

revealed that the muscle groups with the strongest correlations to the recovery of balance following external

disturbances were the most statistically significant. Kinematic variables that reflect the LOB showed the

same behaviour. Thus, it may be concluded from these findings and the substantial associations with

compensating responses to physical perturbations that the visual disturbance alone was sufficient to cause

the individual imbalance. However, it is also possible to categorise visual perturbations.
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9
Conclusions

Concluding remarks and major contributions are highlighted in this chapter by placing the findings of the

earlier chapters into perspective. To highlight the achievements and contributions of the work produced,

the RQs are addressed as a way to complement and summarise the previous section. Additionally, this

chapter also disclosures opportunities for further technical improvement among the hardware and software

developed, as well as future directions to increase the technological and clinical value of the research

project.

9.1 Concluding Remarks and Main Contributions

This PhD thesis proposes fall prediction and prevention strategies oriented to the senior in order to meet the

current challenges evidenced by the scientific literature. These strategies were initially developed through-

out this thesis while developing or enhancing robotic monitoring systems considering the levels of mobility

(Objective 2). The research and development actions carried out, as well as the promising results produced

through benchmarking assessments, all contributed to the achievement of the PhD thesis’s final aim. It

was also pointed out the clear necessity to stimulate the usability and acceptability of these cutting-edge

technologies to reduce the incidence of falls, specially among the elders. Thus, this technology followed

an user-centred design approach, considering the end-users’ reports, clinicians’ expertise and literature

annotations considering both. However, this project is not finished, i.e., this PhD thesis only represents

the beginning of the entire idea.

Chapter 4 addresses the development and instrumentation of a conventional cane to detect falls and

cane events (Objectives 1 and 2). The end product is a lightweight, compact device that can be quickly fitted

inside of any regular cane. The system is made simpler by using a single IMU to collect kinematic data,

187



CHAPTER 9. CONCLUSIONS

making setup easier. Concerning the detection of falls, fall detectors have been implemented as a FSM

and an AI-based tool (Objective 4). The second one presents better performance than the first to detect

falls, however it is recommended the test on a dedicated board for real-time usage. On the other hand,

both tools can detect the occurrence of a fall with short lead times before the impact. Benchmarking

analysis reveals AI-based model with higher lead times than most of the studies analysed, being just

behind Nyan et al. [253]. This AI-based tool also detects fall phase and category. Furthermore, two real-

time cane event detection tools were developed, consisting in a FSM and a AI-based model. The FSM

showed to be accurate to handle inter-subject and inter-step variability when varying gait speed, slope,

climbing staircases, barefoot and footwear conditions (Objective 4). The suggested detection method is

suited as a benchmark for real-time measuring human gait events indirectly due to features like decreased

computing burden, easy usage (only using a small sensor), and more holistic gait segmentation (up to four

cane events) when compared to the literature. The AI-based model stands out in terms of performance

despite being more complex, which requires further analysis to select an approach for a future stand-alone

version.

In Chapter 5, an innovative and cutting-edge technology-based cane-type robot is presented (Objec-

tives 1, 2 and 4). Initially, a product design strategy inspired by Ulrich and Eppinger [50] was followed in

order to achieve a solution that was as close to ideal as possible. A mission statement followed by the

identification of consumers needs and target specifications represent an important stage of the product

conception since it further limits the design of various concepts or ideas. From concept to concept, a virtual

prototype was finally obtained and mechanically tested to verify if it complies with ISO standards. These

mechanical simulations were performed successfully, since each test was passed with distinction. After

mechanically validating the virtual prototype, a company proceeded to build its skeleton, which was further

instrumented considering an idealised hardware architecture. This whole process culminated with the im-

plementation of a motion control system capable of detecting user’s motion intention through FSRs placed

on the junction between cane’s upper and lower parts. The motorised holonomic base is then responsible

to act accordingly to the user intended direction. Thus, this motion control system can be considered as

a simple, intuitive and cost-effective system. Finally, the total cost resulting from the acquisition of all the

parts to be included in the cane-type robot was €688.97. Despite the fact that this price is a little bit more

than the €650 specified in the target specifications, it is crucial to remember that this particular robotic

cane is just a prototype for a possible later commercially available product. As a result, every component

was bought individually, and every piece of hardware is now deemed experimental. Later on, the design

may be over-engineered to improve performance and alter the final cost of the robotic cane.

Chapter 6 describes the design of a three-part modular architecture FRA strategy (Objectives 1-4). It

was defined for future development an eHealth platform that will allow real-time FRA using only a waist-

band equipped with one inertial sensor and electronic gadgets, as discussed previously. The addition of

a few wearable sensors makes this equipment more pleasant to daily use. Furthermore, the suggested
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modular technique should enable a multifactorial risk assessment, which includes several risk aspects,

making it more complete and reliable. It applies AI-based technology to combine both future and immedi-

ate FRA techniques to offer a single FRA. Studies have shown that it is statistically important to take into

account the activities that a person was engaged at the time of the fall since the number of falls (and

thus the fall risk) changes depending on the activity that the person was engaged in at the time of the

fall [319]. A comparative analysis analysed machine and deep learning-based methodologies to solve a

20 class (between ADLs and fall events) classification problem. Online public and team-owned datasets

were merged and processed to generate a vast dataset, larger than any existent in the researched state

of the art, used to validate the proposed Activity Recognition Module. Benchmarking reveals that the best

performance achieved with the procedures implemented in Chapter 6 is better than the current state of

the art results and it classifies more activities. Moreover, the best-performing models achieved similar

performances when using data collected from older adults at nursing homes. However, LOO approach

suggests more data collection, activity balancing, and possibly different data processing to achieve reliable

performances for a daily use.

Chapter 7 scrutinises a proof-of-concept slip-related fall prevention strategy based on the human biome-

chanical responses to these gait perturbations highlighted in the scientific literature (Objectives 1, 3-5).

This strategy was divided into detection and actuation stages. To minimise the complexity of the actuation

to just the primary joint that counteracts slip-induced LOBs, the actuation stage took into account the

assistive torque supply on a single leg using a single assistive device, an orthosis. The strategy stressed

the necessity of providing to the leading leg, which is considered the dominant leg, a knee flexion moment

in the event of a slip-induced LOB caused by the HS.

The knee angle and shank angular velocity variables were chosen as the most suitable kinematic

variables to accomplish the identification of slip-induced LOBs. An experimental protocol was designed

in order to collect multivariate data from healthy young subjects while dealing with unexpected slip-like

perturbations during treadmill walking.

In order to track the quasi-periodic variables of human locomotion and aid in the timely identification

of gait disturbances, biologically inspired CPG controllers’ appealing qualities were considered for the

detection stage. In particular, adaptive Hopf oscillators were used to learn the trajectory of the identified

kinematic variable. The appearance of a perturbation quickly increases the error between the monitoring

signal and the signal anticipated by the AFO. Based on the rise in the error signal, straightforward threshold-

based algorithms can then accurately predict when the perturbation will start. Generally speaking, the

adaptive threshold algorithm outperformed the fixed threshold algorithm in terms of performance. The

adaptive threshold approach, accompanied by the AFO’s outcome, was used to monitor the knee angle of

the affected limb, and this provided the best overall performance.

A home-living paradigm that intends to be extremely similar to reality is used in Chapter 8 to suggest a

VE that has a high level of realism because of its ecological validity and presence qualities (Objectives 1, 3
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and 6). Animations or visual perturbations were then developed tomaterialise the visual disturbances in this

virtual world. In an experimental protocol for data collection, building a vast and multivariate dataset, these

visual disturbances are applied randomly to the participants. This dataset intends to contain data very close

to those collected in real-world settings. A statistical analysis was applied to data collected as a way to verify

if the visual perturbations introduced variations in the means of the dependent variables in comparison

to the no-perturbation conditions. ANOVAs showed that variables of muscle groups strongly connected to

balance restoration after external perturbations were the most statistically significant. Kinematic variables

that reflect the LOB behaviour showed the same behaviour. It is feasible to infer that the visual disturbance

alone was sufficient to bring the participant into imbalance in light of these results and the substantial

connections with compensatory reactions brought on by physical perturbations.

This PhD thesis also contributed to the creation of a broad and varied collection of ADLs and imbalances

data. Imbalances were artificially produced by slips-like perturbations during treadmill walking and by

various visual disturbances that caused fall-related postural reactions. This enabled the varied conclusions

stated in this section to be reached, which may serve as a foundation for future work in this field of

investigation.

9.2 Research Questions

The developed work enabled to answer the following RQs.

• RQ1: What are the main FRA and fall prevention methods implemented in the scientific literature

and how input information is obtained and used?

Chapter 2 answered this RQ. Two main FRA methods were identified. The long-term evaluation of fall

risk, based on clinical scales, was the most extensively used. This method involved gathering data from

wearable sensors to forecast a subject’s risk of falling based on the results of a clinical scale. Subjects

are then assigned to either a high fall risk category or a low fall risk category. By allowing participants

to regularly analyse their long-term fall risk, it will help to reduce that risk. The second method involved

monitoring fall risk occurrences in real time. To identify fall risk conditions and detect imbalance, wearable

sensor data was employed. By enabling daily real-time monitoring of subjects and informing them when a

fall risk event is occurring, this approach will help to reduce short-term fall risk.

Regarding fall prevention methods, scientific literature identifies three methods for robotic canes. The

first method is based on an inverted pendulum concept, being conceived for devices with one and two

wheels. By moving in the same direction as the forces being given to the cane, this method of action seeks

to preserve the cane’s upright posture. The cane will therefore travel in that way to maintain balance while

helping the user avoid falling by moving alongside him when pressures are applied in that direction, as

if in a potential falling situation. The second method is appropriate for robotic canes with passive motion
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control, in which the user’s efforts alone, without the aid of any triggering device, cause the cane to move.

This method manages the braking torques of the wheels, controlling the device’s movement, i.e., modify

the speed of the mobile base. The third method consists in moving the robotic cane to a strategic position

favorable to the user during a fall situation, providing stably support to the body weight on the cane.

Methods for smart walkers and powered orthoses are clearly more simple, since smart walkers only stops

when a risky situation is detected, while powered orthoses apply rotational forces obligating the joint to

move accordingly. In general, the hip is extended and the knee is flexed when the objective is to counteract

a slip-like perturbation.

Real-world fall data comes essentially from long-term experimental protocols where the participant

is instrumented with a technological device, usually an IMU-based. The SensAction-AAL [89] and the

FARSEEING [31] projects cared about this scarcity of data and tried to obtain more fall data. However,

since an adult falls 1-2 times per year, it is very difficult to obtain real-world fall data as quickly as desired.

This information can be used to improve fall detection algorithms, but also to perform statistical analysis

to the sensor’s characteristics of the on-ground and recovery phases after real-world falls; the neck’s

importance on stabilising the head, and compare signals.

State of the art presents alternative solutions to collect fall-related data, namely methods to provoke

artificial slip and trip perturbations, or even through the use of VR to induce visually imbalances. Artificial

slip and trip perturbations may be created on treadmill walking or overground walking. Slip perturbations

are provoked during treadmill locomotion by changing the belt’s acceleration or during overground walking

by using: i) a movable platform; ii) a slippery solution; or iii) novel robotic devices. Treadmill trips were

elicited by means of: i) changing belt acceleration; ii) using a brake-and-release-system; or iii) using a

tripping device. Trips were provoked during overground locomotion by: i) triggering an obstacle; ii) manually

placing an obstacle along the walking path; or iii) using a novel robotic device.

Regarding the use of VR to induce imbalance, literature categorises the visual perturbations into: i)

translations or rotations on one or several axes simultaneously; ii) changes in proprioceptive feedback;

iii) visuomotor disturbance introduction; iv) visual field oscillations and v) predefined trajectories object

movement. As mentioned previously in Chapter 8, researchers try to elicit all fall categories during normal

walking at this stage of the study, i.e., backward, forward and lateral falls, slip, trip, and syncope. So,

despite being used as a PBT, they can also be used to provoke falls.

• RQ2: Can an instrumented conventional cane and a cane-type robot detect falls and indirectly gait

events?

Chapters 4 and 5 answered this RQ. Kinematic data representative of the conventional cane’s move-

ment is vital for both approaches developed in this chapter, as well as in the scientific literature. Considering

fall detection, both approaches detect accurately cane’s falls with performances higher than 99%. On the
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other hand, regarding cane events, the best AI-based method presented results higher than 98%, while the

FSM was 90%, approximately.

It was found that the majority of robotic canes that had systems to determine how user forces inter-

acted either relied on pricey sensors or needed significant structural changes are required to install an

equivalent system. Therefore, a novel motion control system considered economical, straightforward, and

understandable was implemented and used to solve this challenge. Initially, virtual mechanical simulations

helped out finding that strain gauges would not have the necessary resolution to detect user’s intentions.

Thus, small FSRs in the junction between cane’s parts was considered the most suitable option since it

can actually detect well the applied forces by the user. Three FSRs were installed in the cane’s handle

to detect the user’s gait phase since that area is vulnerable to pressures directly put on by the user. The

cane-type robot is not yet capable of detecting falls.

• RQ3: What is the best machine learning and deep learning-based strategy, as well as the most

suitable features, to implement for real-time ADL and fall events recognition?

Chapter 6 answered this RQ. Recognise ADLs and fall events reveals to be challenging according to the

scientific literature. A comparative analysis was performed to discover the best set of features and AI-based

model for this particular classification problem. The Ensemble Learning classifier, using as input the first

65 features ranked by PCA, achieved the highest overall performance amongst all combinations tested: i)

10-5-Fold CV - 99.08%, 99.39%, 97.72%, 99.47%, 99.43%, and 97.00% for ACC, SENS, SPEC, precision,

F1-Score and MCC, respectively, for a 1s window; and ii) Test data - 99.65%, 100%, 84.44%,99.64%,

99.82% and 91.73% for ACC, SENS, SPEC, precision, F1-Score and MCC, respectively, for a 1s window.

These main results are meaningful since they overcome the scientific literature using more ADLs.

• RQ4: Are the biological-inspired CPG controllers and the threshold-based algorithms able to effec-

tively track human motion variables and timely detect slip perturbation occurrences, respectively?

Chapter 7 answered this RQ. The CPG algorithms were effective in producing an acceptable estimation

of the monitoring signals, according to the findings produced. The comparatively small mean error values

observed throughout the simulations illustrate how these biologically inspired controllers created output

signals with a comparable shape and in phase with the knee angle and shank angular velocity variables.

Additionally, the slip-induced LOBs were successfully recognised using the adaptive threshold algorithm.

This algorithm produced the best overall results when used to monitor the knee angle of the perturbed leg.

It did so with a mean detection time of 250 ms, a mean number of 0.652 false perturbations detected

for every correct perturbation detected, and a detection ACC of real perturbations close to 80%. These

findings point to a respectable performance of the perturbation detection method in light of the previously

mentioned detection requirements.
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• RQ5: Can a VR headset introduce imbalances through visual perturbations, causing postural reac-

tions typical of a fall?

Chapter 8 answered this RQ. The results presented in Chapter 8 statistically support that it is possible

and effective to induce postural reactions similar to a real-world fall by introducing visual disturbances

via an HMD. The most effective perturbations to induce imbalances are rotations in the Roll, in the CCW

direction and with amplitudes of 20º and 30º. The visual disturbance that tries to simulate a syncope,

called ”Bedroom Syncope”, also excelled in the effectiveness and strength of inducing imbalance, as well

as AP-axis Translation perturbations, albeit to a lesser extent. Moreover, the electrodermal variables did not

show sufficient statistical relevance to infer in which situations the participants were under greater anxiety

and stress. Finally, there was no discernible difference in postural reactions with and without the avatar.

When vertigo circumstances had an effect on parameters indicating loss of balance, the values were equal

in situations with and without avatar.

9.3 Future Directions

This section highlights some of the potential areas for scientific and technological advancement. Future

directions will be scrutinised per chapter. Work resultant from Chapter 4 helped identifying the following

ideas for future work: i) long-term application is to test both approaches with cane’s users and investigate

whether the achievements of this study translate with similar performances in continuous real-life usage;

ii) Use or collect real-world fall data as input for the developed algorithms; iii) create and implement

a new hardware architecture to update components; iv) invest in the interoperability of this system; v)

comparison analysis to identify which tool should be in a stand-alone version; vi) new conditions must be

implemented in the FSM for cane event detection; vii) deep learning must be optimised in order to obtain

better performances; and viii) explore new relevant features for gait analysis, e.g. foot clearance.

Future work within the scope of the cane-type robot includes: i) the implementation of a battery with

greater capacity, so that the cane has a longer period of use, enabling its applications to domestic use

and at hospital areas; ii) the application of fall detection and prevention strategies; iii) the implementation

of a motor control strategy to achieve smoother and more controlled movement of the cane to match the

user’s changes in speed and acceleration during gait; iv) the implementation of an alert system, triggered

when a fall is detected, that contacts the hospital emergency unit and the user’s emergency contacts with

the location of where the fall occurred; v) the exploration of a gravity compensation strategy, through the

data acquired by the cane’s inertial system, to prevent the cane from slipping or falling while moving on

inclined planes, using the torque applied by the motors; vi) human in the loop gait trials to obtain results

in a real-life context with the elderly or people with reduced mobility.
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Regarding the FRA strategy and its Activity Recognition Module, it is crucial to consider the next steps:

i) perform usability tests and develop the first prototype of the eHealth platform, containing all modules

idealised; ii) miniaturise the enhanced smart waistband to a level closer to be something commercialised;

iii) the hardware must include other sensors capable of assessing the environment; iv) improve activity

recognition by reducing computational costs; v) data augmentation processes can be used in order to

obtain an even more diversified dataset; vi) new key stakeholders such as older individuals and healthcare

experts should be involved in any future work to build a super dataset of data similarly to the ones developed

by FARSEEING and SensAction-AAL but with more sensory systems, including physiological sensors; and

vii) Ablation studies should be conducted to determine the impact of the various stages of each architecture

and module.

Several improvement opportunities within the scope of slip-like perturbation detection were identified

along the Chapter 7, and which should be addressed in future work: i) optimisation of the adaptive thresh-

old algorithm to improve the reliability of the perturbation detection towards the algorithm’s adaptation

to the real-world settings; ii) AI algorithms should be tested to understand their possible application and

performance towards the slip-like perturbation detection; iii) more variables, kinematic and physiological,

should be addressed in the future for perturbation detection; iv) find more objective and automatic pro-

cedures to compute optimal parameters, i.e., threshold value and the window size; v) development of an

inter-subject perturbation detection approach; vi) deeply explore CPG’s parameters to reduce the error and

convergence time; vii) continue the study but now using more conditions from the experimental protocol;

viii) collect data while using elders as participants; ix) replicate the experimental protocol but now with a

wearable robotic device to account the participant’s effort of moving when equipped with the device; x)

consider the gait phase to classify different types of perturbations; and xi) integrate the CPG controller

algorithm into an electronic development board and connect it to the knee orthosis system.

Flaws were identified throughout the Chapter 8 within the scope of VE developed and they are as follows:

i) make labelling fully automated (e.g. Trip perturbation can be automatically labelled using directly data

from Xsens); ii) allocation of a control group will be beneficial, specially for PBT; and iii) improve some

functionalities such as, moving the avatar for a specific place correctly and save Unity Log file in a ”.txt”.

Finally, EEG has been used previously, specially among the VR-based articles found for the state of the art

(Section 2.6). It should be used more frequently, so researchers do not focus exclusively on kinematics to

explore different patterns and analyses while studying the compensatory reaction to a specific type of fall.
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A
Conventional Cane Support

A.1 Cane Representative Signals

Figure 76 presents representative signals of the acceleration and angular velocity of the cane collected

from a fall. Moreover, Figure 77 presents the data labelling.
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Figure 76: Cane’s a) acceleration data and b) angular velocity collected from one fall (min-max normalisa-
tion).
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Figure 77: Cane’s fall phases labelled using the acceleration SumVM: Collapse, Impact and Shock.

A.2 Confusion Matrices

Tables 51 to 54 present the confusion matrices when HO Test was applied.

Table 51: Confusion matrix of fall event classification model

Fall Non-fall
Fall 0.9839 0.0647

Non-fall 0.0161 0.9353

Table 52: Confusion matrix of fall phase classification model

Collapse Impact Shock
Collapse 0.9794 0.0347 0.0232
Impact 0.0075 0.8301 0.0188
Shock 0.0131 0.1351 0.9580

Table 53: Confusion matrix of fall category classification model

Forward+Right Left
Forward+Right 0.7391 0.2330

Left 0.2609 0.7670

Table 54: Confusion matrix of cane event classification model

FGC-MSM MSM-FCO FCO-CMSW CMSW-FGC
FGC-MSM 0.8611 0.1669 0.0438 0.0198
MSM-FCO 0.0661 0.8293 0.0704 0.0007
FCO-CMSW 0.0031 0.0037 0.5858 0
CMSW-FGC 0.0698 0.0001 0.3001 0.9795
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B
Cane-Type Robot Support

B.1 Target Specifications & Components

All information regarding the relationship between customer needs and product specification metrics is

presented, with the respective description, units, and value range is summarized in Table 55. Table 56

resumes the components’ weight, current consumption, voltage required to function, and price per unit.
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Table 55: Correlation between customer needs and metrics, with the respective description, units, and
value range associated

Metric
No.

Need
No.

Metric Description Value
Range

Units Ref.

1 1 Cane manufacturing cost 150-650 € [273, 275]
2 2 Time necessary to make

the cane usable
< 3 s [260]

3 3 Distance from the user’s
wrist crease to the floor

350-1100 mm [278]

4 4 Handle length 65-100 mm [278]
5 4 Handle width 25-50 mm [278]
6 4 Handle slope 0-15 º [278]
7 4 Handgrip surface material

biocompatibility test
Pass/ Fail Binary [415]

8 5 Stability test Pass/ Fail Binary [278]
9 5 Separation test Pass/ Fail Binary [278]
10 5 Friction test Pass/ Fail Binary [285]
11 5 Light distance ≤ 5 m [286]
12 5 Vibrations perception in

the hand
Pass/ Fail Binary -

13 6 Total mass of the cane ≤ 6 Kg [273, 275]
14 7 The cane is stylish N/A Subjective [272]
15 8 Static load test Pass/ Fail Binary [278]
16 8 Lateral speed 1.3 m/s [279]
17 8 Lateral acceleration 1 m/s2 -
18 8 Rotational speed 1.3 rad/s -
19 8 Rotational acceleration 1 rad/s2 -
20 9 Possible ways of obtaining

the cane
N/A List [271, 416]

21 10 Fall Prevention (ACC) ≥ 84 % [224]
22 10 Motion Intention (ACC) ≥ 95 % -
23 10 Gait Phase Detection

(ACC)
≥ 95 % -

24 11 Fatigue test Pass/ Fail Binary [278]
25 11 Durability of tips/ wheels Pass/ Fail Binary [285]
26 11 Battery life >1 hour [287]
27 12 Reliability test ≥ 0.8 Pearson’s

correlation
coefficient

[417, 418]
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Table 56: Summary of all components that make up the robotic cane

Unit / Structure Component Qt. Weight
(Kg)

Average
Current
Drawn (A)

Voltage
(V)

Price
(unit)

Ref.

Physical Structure P1 Tripod Main Body 1 0.729 – – 3.52€ [419]
Holonomic Base 1 0.327 – – 4.61€ –
Omnidirectional wheel 3 0.350 – – 22.86€ [420]
Set Screw Hub 3 0.178 – – 3.27€ –

Control Unit Jetson Nano 1 0.249 3.0 5.0 52.31€ [421]
Jetson Nano Fan 1 – – 3.0 8.67€ [422]
Wi-fi Adaptor 1 – – – 11.68€ [423]
Memory Card SD 1 – – – 25.92€ [424]
STM32 F446RE 1 0.198 0.3 5.0 12.32€ [293]

Sensory Unit Force Sensitive Resistor 400
(Handle)

3 – – -3.3 8.08€ [295]

Force Sensitive Resistor 400
(Rod)

4 – – -3.3 7.07€ [294]

Multiplexer 1 – – ±3.3 3.03€ [425]
AmpOp 1 – – ±3.3 0.26€ [426]
Capacitor (10uF) 2 – – ±3.3 0.76€ [427]
Voltage Converter 1 – – ±3.3 1.31€ [428]
Photoresistor 1 – – 5.0 0.74€ [429]
IMU 1 0.002 – 5.0 12.37€ [430]

Actuation Unit Vibrotactile motors 2 0.001 0.1 5.0 3.08€ [300]
Haptic Drivers 2 – – 5.0 7.54€ [301]
LED 1 0.006 0.7 5.0 1.95€ [431]
DC motor 3 0.180 3.6 12.0 76.75€ [304]

Power Unit Battery 1 0.733 – 14.8 106.35€ [305]
DC Voltage Regulator (5V) 1 0.063 – 5.0 12.80€ [306]
DC Voltage Regulator (12V) 1 0.100 – 12.0 12.50€ [307]
Fuses 4 – – – 0.42€ [308]
Power Button 1 0.005 – – 1.90€ [432]

Cables and USB type-C (male) 1 – – 5.0 11.90€ [433]
Connectors USB type-A to Mini-B (male) 1 – – 5.0 3.19€ [434]

EC5 Cable (male) 1 – – – 2.05€ [435]
JST Connector (male) 12 – – – 0.78€ [436]
6-Pin Connector (male) 6 – – – 0.22€ [437]
2-Pin Terminal Block 3 – – – 0.81€ [438]
Fuse Support 4 – – – 0.22€ [439]

Total 71 5.5 7.8 – 688.97€
(All)

–
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C
Fall Risk Awareness Strategy Support

C.1 Features and Rankings

Table 57 contains the list of features ranked in descending order for the two FSMs used for activity recog-

nition. Table 58 is a similar table to the one available at Chapter 4, however, since it were used more

features a new table was created.

Table 57: Features ranked in descending order per feature selection model

FSM No. of
Features

Ranked Features

Relief-F 85 66, 69, 70, 68, 67, 65, 110, 128, 142, 143, 144, 35, 31, 101, 12, 9,
111, 148, 15, 14, 112, 114, 151, 45, 11, 20, 13, 188, 10, 42, 109,
102, 113, 85, 153, 96, 154, 17, 147, 23, 41, 103, 145, 146, 116, 21,
22, 18, 190, 19, 16, 152, 74, 83, 149, 84, 24, 88, 197, 64, 123, 90,
89, 155, 28, 46, 194, 174, 59, 48, 71, 60, 29, 61, 191, 62, 115, 97,
32, 40, 91, 80, 87

PCA 65 9, 97, 188, 42, 102, 43, 101, 128, 144, 113, 148, 110, 184, 31, 142,
154, 116, 83, 41, 103, 111, 143, 114, 183, 182, 33, 176, 30, 109,
86, 149, 47, 151, 74, 153, 112, 126, 84, 44, 26, 147, 69, 180, 127,
100, 145, 115, 27, 155, 146, 120, 4, 35, 85, 36, 1, 42, 7, 91, 46,
45, 186, 175, 192, 96
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Table 58: List of all extracted features from each window created for ADL recognition

Feature Number Feature Description

1–6 Acceleration and Angular velocity (AP, V, ML)
7–8 SumVM of acceleration and Angular velocity
9–24 Skewness and kurtosis of acceleration, Angular velocity (AP, V, ML) and

SumVM signals
25–64 Min, max, mean, variance and Std deviation of acceleration, angular velocity

(AP, V, ML) and SumVM signals
65–70 Correlation between V-ML, V-AP and ML-AP axis of acceleration and Angular

velocity
71–77 Slope, Total angular change, Resultant angular acceleration, ASMA, SMA,

Absolute vertical acceleration, Cumulative horizontal displacement
78–102 Peak-to-Peak, RMS and RI of Acceleration, Angular velocity (AP, V, ML) and

SumVM signals
103–115 Resultant angle change, Flutuation frequency, Resultant of average accelera-

tion and Resultant of standard deviation (AP, V, ML)
116–117 Resultant of Delta changes of acceleration and Angular velocity
118–133 Gravity component, Displacement, Displacement range, Cumulative sway

length and Mean sway velocity (AP, V, ML); Slope changes, Zero crossings,
Waveform length of acceleration, Angular velocity (AP, V, ML) and SumVM
signals

134–189 Energy, Mean frequency, Peak frequency and magnitude of acceleration, An-
gular velocity (AP, V, ML) and SumVM signals

190–195 SumVM of resultant angular velocity, average acceleration and Standard devi-
ation, Maximum resultant angular velocity and Acceleration in the horizontal
plane

196–199 Acceleration EMA, Rotational angle of acceleration SumVM, Z-Score, Magni-
tude of angular displacement
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D
Slip-like Perturbation Detection

D.1 Selected Variables FFT Investigation & Signals

Figures 78 and 79 depict representative signals and the power spectrum of the knee angle and shank

angular velocity, respectively. Additionally, Tables 59 and 60 contain the mean values of the frequency,

powered amplitude and phase for each frequency component identified for the same variables mentioned.

This parameters were used at the beginning of the CPG operation.
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Figure 78: Knee angle (a) time-course amplitude; and (b) frequency amplitude spectrum.
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Table 59: Values of frequency, amplitude and phase of each frequency component identified - Knee Angle

Mean Frequency (rad/s) Mean powered Amplitude Mean Phase (rad)

0 0.137105 0

5.130428 0.027485 1.127517

10.260863 0.008293 -1.886689

15.319455 0.000321 -0.506588

20.539733 0.000034 -1.891332

25.670161 0.000016 0.526089
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Figure 79: Shank angular velocity (a) time-course amplitude; and (b) frequency amplitude spectrum.

Table 60: Values of frequency, amplitude and phase of each frequency component identified - Shank
Angular Velocity

Mean Frequency (rad/s) Mean powered Amplitude Mean Phase (rad)

0 0.251751 0

5.130428 0.00798 0.1053

10.260863 0.006535 0.8925

15.319455 0.000286 -1.9516

20.539733 0.000116 0.6312

25.670161 0.000051 -1.0527

D.2 CPG Outcome

Figures 80 and 81 depict the evolution of the CPG outcome for the knee angle and shank angular velocity

variables, respectively. It is possible to visualise its capacity to learn specific signals.
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Figure 80: Time-course adaptation of the CPG output signal (blue) to the knee angle signal (orange).
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Figure 81: Time-course adaptation of the CPG output signal (blue) to the shank angular velocity signal
(orange).
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