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Resumo

Planet-Scale Leaderless Consensus

As aplicações de web modernas replicam os seus dados à escala planetária e exigem fortes garantias

na coerência dos seus dados mais críticos. Essas garantias são geralmente fornecidas por meio de re-

plicação de máquina de estados (RME). Avanços recentes em RME concentraram-se em protocolos sem

líder, pois estes melhoram o desempenho e a disponibilidade das soluções tradicionais baseadas em

Paxos. Embora os protocolos sem líder se tenham mostrado muito promissores, estes são ainda pouco

adequados para sistemas de escala planetária, pois utilizam grandes quóruns, oferecem um desempenho

imprevisível e têm mecanismos de recuperação complexos. Nesta tese propomos dois protocolos sem

líder, Atlas e Tempo, adaptados para sistemas de escala planetária. O Atlas minimiza o tamanho

dos seus quóruns fazendo uso da observação de que falhas simultâneas em centros de dados são ra-

ras. Também processa uma percentagem elevada de comandos da aplicação em uma única round trip,

mesmo quando estes comandos conflituam. O Atlas consegue isto com um mecanismo de recupera-

ção que é significativamente mais simples do que os protocolos sem líder que o precederam. O Tempo
baseia-se no Atlas, mas atinge um rendimento superior e oferece um desempenho previsível mesmo

em cargas de trabalho com elevado nível de conflitos. Para obter estes benefícios, o Tempo marca cada

comando da aplicação com uma timestamp e executa-o somente após esta timestamp se tornar estável,

ou seja, quando todos os comandos com uma timestamp menor são conhecidos. Ambos os mecanismos

para gerar uma timestamp e detetar quando esta fica estável são totalmente descentralizados, evitando

assim a necessidade de um líder. Avaliámos o Atlas e o Tempo em ambientes geo-distribuídos reais e

simulados e demonstramos que eles superam as alternativas oferecidas pelo estado da arte.

Palavras-chave: Consenso distribuído, Geo-replicação, Tolerância a falhas.
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Abstract

Planet-Scale Leaderless Consensus

Modern web applications replicate their data across the globe and require strong consistency guar-

antees for their most critical data. These guarantees are usually provided via state-machine replication

(SMR). Recent advances in SMR have focused on leaderless protocols, which improve the performance and

availability of traditional Paxos-based solutions. Although leaderless protocols have shown great promise,

they are poorly suited to planet-scale systems as they leverage large quorums, offer unpredictable per-

formance and have complex recovery mechanisms. In this thesis we propose two leaderless protocols,

Atlas and Tempo, tailored to planet-scale systems. Atlas minimizes the size of its quorums by making

use of the observation that concurrent data center failures are rare. It also processes a high percentage

of accesses in a single round trip, even when these conflict. Atlas achieves this while having a recovery

mechanism that is significantly simpler than that of previous leaderless protocols. Tempo builds upon

Atlas, but achieves superior throughput and offers predictable performance even in contended work-

loads. To achieve these benefits, Tempo timestamps each application command and executes it only

after the timestamp becomes stable, i.e., all commands with a lower timestamp are known. Both the

timestamping and stability detection mechanisms are fully decentralized, thus obviating the need for a

leader replica. We evaluate Atlas and Tempo in both real and simulated geo-distributed environments

and demonstrate that they outperform state-of-the-art alternatives.

Keywords: Consensus, Fault tolerance, Geo-replication.
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Introduction

Modern online applications run at multiple sites scattered across the globe: they are now planet-scale.

Deploying applications in this way enables high availability and low latency, by allowing clients to access

the closest responsive site. A major challenge in developing planet-scale applications is that many of their

underlying components, such as coordination kernels [2, 3] and critical databases [4], require strong

guarantees about the consistency of replicated data.

The classical way of maintaining strong consistency in a distributed service is state-machine replication

(SMR) [5]. In SMR, a service is defined by a deterministic state machine, and each site maintains its own

local replica of the machine. An SMR protocol coordinates the execution of commands at the sites,

ensuring that they stay in sync. The resulting system is linearizable [6], i.e., it behaves as if commands

are executed sequentially by a single site.

Unfortunately, existing SMR protocols are poorly suited to planet-scale systems. Common SMR pro-

tocols, such as Paxos [7] and Raft [8], are rooted in cluster computing where a distinguished leader site

determines the order in which client commands are executed at the replicas. This is unfair to clients

far away from the leader. It impairs scalability, since the leader becomes a bottleneck when the load

increases. It also harms availability as, if the leader fails, the system cannot serve requests until a new

one is elected. Moreover, adding more sites to the system does not help, but on the contrary, hinders

performance, requiring the leader to replicate commands to more sites on the critical path.

Recent efforts [9–12] to improve SMR have thus focused on leaderless protocols, which distribute the

task of ordering commands among replicas and thus allow a client to contact the closest replica instead of

the leader. Compared to centralized solutions, leaderless SMR offers lower average latency, fairer latency

distribution with respect to client locations, and higher availability. Moreover, leaderless protocols usually

exploit the fact that commands in SMR applications frequently commute [3, 4], and for the replicated

state machine to be linearizable, it is enough that replicas only agree on the order of non-commuting (aka

conflicting) commands [13, 14]. This permits processing a command in one round trip from the closest

replica using a fast path, e.g., when the command commutes with all commands concurrently submitted

for execution. In the presence of concurrent conflicting commands, the protocol may sometimes have to

take a slow path, which requires two round trips.

1



CHAPTER 1. INTRODUCTION

Leaderless SMR protocols also generalize to the setting of partial replication, where the service state

is split into a set of partitions, each stored at a group of replicas. A client command can access multi-

ple partitions, and the SMR protocol ensures that the system is still linearizable, i.e., behaves as if the

commands are executed by a single machine storing a complete service state. This approach allows

implementing services that are too big to fit onto a single machine. It also enables scalability, since com-

mands accessing disjoint sets of partitions can be executed in parallel. This has been demonstrated by

Janus [15] which adapted a leaderless SMR protocol called Egalitarian Paxos (EPaxos) [11] to the setting

of partial replication. The resulting protocol provided better performance than classical solutions such as

two-phase commit layered over Paxos.

Although leaderless protocols show great promise, they have not yet seen industry adoption. In

order to be practical for planet-scale systems, we argue that leaderless protocols have to provide the

following features: (i) low latency, (ii) simple recovery, and (iii) predictable performance. In this thesis we

propose Atlas and Tempo, two leaderless protocols tailored to planet-scale systems that aim to offer

these features. Atlas provides the first two features (low latency and simple recovery). Tempo builds

on Atlas, and also offers the third one (predictable performance). Next we cover each of these features

in detail.

Low latency We observe that common SMR protocols provide a level of fault-tolerance that is unnec-

essarily high in a geo-distributed setting. These protocols allow any minority of sites to fail simultaneously:

e.g., running a typical protocol over 11 data centers would tolerate 5 of them failing. However, natural

disasters leading to the loss of a data center are rare, and planned downtime can be handled by recon-

figuring the unavailable site out of the system [7, 16]. Furthermore, temporary data center outages (e.g.,

due to connectivity issues) typically have a short duration [17], and, as we confirm experimentally in our

evaluation (§5), rarely happen concurrently. For this reason, industry practitioners assume that the num-

ber of concurrent site failures in a geo-distributed system is low, e.g., 1 or 2 [4]. Motivated by this, Atlas
allows choosing the maximum number of sites that can fail (5 ) independently of the overall number of

sites (A ), and is optimized for small values of the former.

Making Atlas offer better latency for larger-scale deployments required two key changes to the

baseline scheme of a leaderless SMR protocol. First, the lower latency of the fast path in existing protocols

comes with a downside: the fast path must involve a fast quorum of replicas bigger than a majority, which

increases latency due to accesses to far-away replicas. For example, in Generalized Paxos [14] the fast

quorum consists of at least 2A
3 replicas, and in EPaxos of at least 3A

4 replicas. To solve this problem, in

Atlas the size of the fast quorum is a function of the number of allowed failures 5 – namely, b A2c + 5 .

Smaller values of 5 result in smaller fast quorums, thereby decreasing latency. Atlas thus trades off

higher fault tolerance for lower latency. Note that violating the assumption the protocol makes about the

number of failures may only compromise liveness, but never safety. In particular, if more than 5 transient

outages occur, due to, e.g., connectivity problems, Atlas will just block until enough sites are reachable1.
1Apart from data centers being down, geo-distributed systems may also exhibit network partitionings, which partition off

2



The second key change introduced by Atlas is that it can take the fast path even when conflicting

commands are submitted concurrently, something that is not allowed by existing SMR protocols [11, 14].

This permits processing most commands via the fast path when the conflict rate is low-to-moderate, as is

typical for SMR applications [3, 4]. Moreover, when 5 = 1, Atlas always takes the fast path and its fast

quorum is a plain majority.

Simple recovery Failure recovery is the most subtle part of an SMR protocol with a fast path because

the protocol needs to recover the decisions reached by the failed replicas while they were short-cutting

some of the protocols steps in the fast path. This is only made more difficult with smaller fast quorums,

as a failed process leaves information about its computations at fewer replicas. Atlas achieves its

performant fast path while having a recovery protocol that is significantly simpler than that of previous

leaderless protocols [10, 11]. We rigorously prove the correctness of this recovery mechanism.

Predictable performance Existing leaderless SMR protocols suffer from drawbacks in the way they

order commands. Some protocols [9–11] (including Atlas), maintain explicit dependencies between

commands: a replica may execute a command only after all its dependencies get executed. These de-

pendencies may form arbitrary long chains. As a consequence, in theory, the protocols do not guarantee

progress even under a synchronous network. In practice, their performance is unpredictable, and in par-

ticular, exhibits a high tail latency [9, 19]. Other protocols [20, 21] need to contact every replica on the

critical path of each command. While these protocols guarantee progress under synchrony, they make

the system run at the speed of the slowest replica. All of these drawbacks carry over to the setting of

partial replication where they are aggravated by the fact that commands span multiple machines.

Tempo lifts the above limitations while handling both full and partial replication settings. Tempo
guarantees progress under a synchronous network without the need to contact all replicas. It also exhibits

low tail latency even in contended workloads, thus ensuring predictable performance. Because it builds

on Atlas, Tempo also offers the two features above, low (average) latency and simple recovery – Tempo
is the first leaderless protocol to provide all three.

Tempo reuses most of Atlas techniques but, instead of maintaining explicit dependencies between

commands, it assigns a scalar timestamp to each command and executes commands in the order of these

timestamps. To determine when a command can be executed, each replica waits until the command’s

timestamp is stable, i.e., all commands with a lower timestamp are known. Ordering commands in this

way is used in many protocols [10, 21–23]. A key novelty of Tempo is that both timestamping and stability

detection are fault-tolerant and fully decentralized, which preserves the key benefits of leaderless SMR.

We organize this thesis as follows. Chapter 2 puts our work in context, covering the concept of

SMR and relevant SMR protocols. Chapter 3 and Chapter 4 present the Atlas and Tempo protocols,

respectively. Chapter 5 evaluates the protocols experimentally. Finally, Chapter 6 concludes this thesis.

several data centers from the rest of the system. Atlas may block for the duration of the partitioning, which is unavoidable
due to the CAP theorem [18].
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2

Background

In this chapter we put our work in context. We start by covering the system model in §2.1 and the concept

of State-Machine Replication (SMR) in §2.2. This is followed by a detailed explanation of Paxos in §2.3,

one of the most prominent SMR protocols. We then briefly cover other SMR protocols such as EPaxos and

Caesar in §2.4 and Janus §2.5. Finally, we conclude the chapter with an overall comparison between

Atlas, Tempo and the aforementioned protocols (§2.6), summarized in Table 2.1.

2.1 System Model

We consider an asynchronous distributed system where processes may fail by crashing but do not behave

maliciously. The system consists of A processes I = {1, . . . , A }, of which at most 5 may fail. We assume

that the set of processes is static. In this thesis we study how we can build a practical system that is

geo-replicated among this set of processes. For that, we will leverage the concept of consensus, and so

we start with a brief description of the consensus problem.

Consensus

Solving consensus entails having a set of processes reaching agreement on some value. Consensus is

one of the most fundamental problems in distributed systems and has many applications, e.g., deciding

whether to commit or abort a transaction, or decide which command to pick for a certain entry of a

replicated log (§2.2). A protocol that solves consensus ensures the following properties:

Validity. If a process decides on value E , then E was proposed by some process.

Agreement. If a process decides on value E and some other process decides on value E0, then

E = E0.

Liveness. All non-faulty process eventually decide on a value.

Having a protocol that ensures these three properties is simple if processes are reliable, but it is quite

challenging in the presence of faults. Famously, the FLP theorem [26] states that no protocol can solve

consensus in an asynchronous system prone to faults. Hence, to ensure Liveness we assume that the
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network is eventually synchronous [27]. This model guarantees that the system becomes synchronous

after some unknown time, with message delays between non-failed processes bounded by an unknown

constant X and with process clocks tracking real time. These timing assumptions allow us to implement

⌦, the leader election failure detector [28], which ensures that from some point on, all correct processes

nominate the same correct process as the leader. ⌦ will be leveraged by the Paxos liveness algorithm

presented later in this chapter (§2.3) and by the Tempo liveness algorithm (§4.2.7).

2.2 State-Machine Replication

There is an inherent trade-off when building planet-scale replicated systems: if we cannot afford high

latencies, then we have to settle for weak consistency; or similarly, if we have to provide strong consistency,

then we have to give up low latencies. This trade-off has been famously stated by the CAP theorem [18] and

some later variations such as the PACELC theorem [29] and the CAP critique [30] that better capture the

latency aspect of the trade-off. Systems providing strong consistency prevent anomalies (e.g., unexpected

behavior visible to users) and reduce programming complexity [4, 31, 32]. In this thesis, we focus on

these.

The strongest consistency level that replicated systems can offer is linearizability [6]. Informally, a sys-

tem is linearizable if it appears as if commands submitted by clients are executed by a sequential process

in an order consistent with the real-time order, i.e., the order of non-overlapping command invocations.

For example, if some command G by client � returns before some command ~ by client ⌫ is submitted,

then G must appear before ~ in the linearization order. However, if ~ is submitted in between G being

submitted and returned, then commands G and ~ can be ordered in any way (since their invocations

overlap).

State-Machine Replication (SMR) is a common way of implementing linearizable replicated services [5,

8, 22]. A service is defined by a deterministic state machine accepting a set of commands. Each process

maintains a local copy of the state machine and applies commands in an order determined by an SMR

protocol. In its most basic form, an SMR protocol decides on a sequence of commands. This sequence is

also known as the log. As processes start from the same initial state and execute commands in the order

dictated by log, this simple mechanism ensures that processes stay in sync.

2.3 Paxos

Paxos [7, 33] is one of the most used SMR protocols. Detailed descriptions of the protocol can be found

in many recent works [34–38]. In order to aid understanding Atlas (§3) and Tempo (§4), which use

Paxos as a building block, we also give a review of the protocol.

For each entry of the log (§2.2), Paxos ensures that a single command is decided for it, i.e., that all

processes agree on which command such entry should have. For this, Paxos uses a single-decree protocol
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that we present next. This protocol solves the consensus problem (§2.1). In Paxos the system consists

of A processes I = {1, . . . , A }, of which at most 5 = b A�12 c may fail.

Consensus protocol

Algorithm 2.1 specifies the single-decree Paxos protocol at a process 8 2 I. In Paxos there is an unbounded

collection of ballot numbers. Ballot numbers are totally ordered and are allocated to processes round-robin.

If for example we have 3 processes, we allocate ballots {1, 4, 7, . . . } to process 1, ballots {2, 5, 8, . . . }

to process 2 and ballots {3, 6, 9, . . . } to process 3. Paxos ensures that a single command is decided by

maintaining the following invariant:

Invariant 2.1. Assume that command 2 is decided at some ballot 1. If command 20 is decided at some

ballot 10 > 1, then 20 = 2.

Paxos maintains this invariant with a two-phase protocol. In Paxos phase 1, a process leading with

some ballot 1 (i) finds out which commands could have been decided at a ballot lower than 1 (if any),

and (ii) prevents any command to be decided at a ballot lower than 1. In Paxos phase 2, the process first

computes its proposal for the command: either a command that could have been decided at a lower ballot

(discovered during phase 1), or, if no command could have been decided, any command. The process

then sends this proposal to all processes, and if enough processes accept it, the command is considered

as decided. To better match the specification of Atlas and Tempo, Algorithm 2.1 denotes Paxos phase

1 messages by MRec and Paxos phase 2 messages by MConsensus1.

Every process stores the ballot number bal it is currently participating in and the last ballot abal in

which it accepted a consensus proposal (if any). Initially bal = abal = 0. In order to get a command

decided, a process first calls the function recover (line 1). In this function, the process picks a ballot

number it owns higher than any it participated so far (line 2) and starts Paxos phase 1 by sending an

MRec message with this ballot to all processes (line 3).

Upon the receipt of such a message, a process accepts the MRec message only if the ballot in the

message is greater than its bal (line 5). The process sets its bal to the received ballot. This ensures

that, during phase 2, the process will not accept a consensus proposal at a ballot lower than the ballot

received. Then, it replies with an MRecAck message containing the command (cmd) and the ballot at

which it was previously accepted (abal). Note that abal = 0 if the process has not yet accepted any

consensus proposal for the command.

Once a process receives MRecAck messages from a majority quorum (i.e., b A2c+1 processes) (line 8),

it starts Paxos phase 2 by sending an MConsensus message containing its proposal for the command.

To ensure Invariant 2.1, this proposal may have to be an earlier proposal by another process. Thus,

the process first inspects whether a consensus proposal could have been decided by checking if any of

the processes replied with a non-zero abal (line 10). If so, the process selects the consensus proposal

1MRec is commonly known by Paxos message 1a, MRecAck by 1b, MConsensus by 2a and MConsensusAck by 2b.
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Algorithm 2.1: Single-decree Paxos protocol at process 8 2 I.
1 recover()
2 1  8 + A (b bal�1

A c + 1)
3 send MRec(1) to I
4 receive MRec(1) from 9
5 pre: bal < 1
6 bal 1
7 send MRecAck(abal, cmd,1) to 9

8 receive MRecAck(01 9 , 2 9 ,1) from 89 2 &
9 pre: bal = 1 ^ |& | = b A2c + 1

10 if 9: 2 & . 01: < 0 then
11 let : be such that 01: is maximal
12 send MConsensus(2: ,1) to I
13 else
14 send MConsensus(some_cmd(),1) to I
15 receive MConsensus(2,1) from 9
16 pre: bal  1
17 cmd 2; bal 1; abal 1
18 send MConsensusAck(1) to 9

19 receive MConsensusAck(1) from &
20 pre: bal = 1 ^ |& | = b A2c + 1
21 decide(cmd)

accepted at the highest ballot (line 11). If no consensus proposal could have been accepted before (i.e.,

if all processes replied with a zero abal), then the process is free to propose any command (e.g., a

command submitted by a client) (line 14).

A process accepts an MConsensus message only if its bal is not greater than the ballot in the

message (line 16). Then it stores the proposal in cmd, sets bal and abal to the ballot in the message,

and replies with an MConsensusAck message. Note that abal < 0 after a process accepts a consensus

proposal. As mentioned above, this fact is used by processes executing the MRecAck handler.

Once a process gathers MConsensusAck messages by a majority quorum (line 20), it can finally

decide this proposal for the command (line 21). This is safe because any majority quorum used for Paxos

phase 1 must intersect with any majority quorum used for Paxos phase 2. Thus, after Paxos phase 2, the

process is sure that any other process trying to decide a command will find out about this proposal during

Paxos phase 1.

Skipping Paxos phase 1

By design, line 2 only computes ballots greater than A . This allows us to have one special ballot B < A

that can skip Paxos phase 1. During Paxos phase 1 with some ballot 1, a process tries to find out about

proposals smaller than 1 that could have been accepted. Because B < A and ballots computed in line 2

are greater than A , no proposal smaller B can ever be accepted, and thus this step is unnecessary for
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ballot B. Moreover, when accepting a Paxos phase 1 message with some ballot 1, a process promises to

not accept a consensus proposal with a lower ballot. Again, this is not necessary for ballot B as ballots

from line 2 are greater than A . For these two reasons, process B leading with ballot B can safely skip Paxos

phase 1. In this case, process B does not have to call recover in order to later propose a command –

it can simply send an MConsensus message containing its proposal. This mechanism is leveraged by

Atlas (§3) and Tempo (§4) in their slow paths.

Multi-Paxos optimization

In Paxos, a command is decided after 4 message delays – 2 message delays for each phase of Paxos.

However, practical implementations of Paxos employ the Multi-Paxos [7, 33] optimization which allows

commands to be decided after only 2 message delays. First, note that Paxos phase 1 can be performed

for any entry of the log independently of the command to be proposed for such entry. Thus, in Multi-Paxos,

a process performs phase 1 for all entries of the log. If it succeeds, this process is now called the leader

– this mechanism is called leader election. When the elected leader receives a command issued by a

client, it first selects the next available log entry, and then simply performs Paxos phase 2 by sending an

MConsensus message containing the command received. Once it gathers enough MConsensusAck
messages, it decides the command as usual, effectively reducing the number of message delays from 4

to 2.

Flexible Paxos optimization

As observed in Flexible Paxos (FPaxos) [35], Paxos safety relies on the fact that any phase 1 quorum

intersects with any phase 2 quorum. Paxos ensures this intersection requirement with majority quorums

for both phases, but the requirement can be met with other quorum sizes. For example, if we have

A � 5 processes for phase 1 and 5 + 1 processes for phase 2, then any phase 1 quorum must also

intersect with any phase 2 quorum. In this scheme, if 5 = b A�12 c (as assumed by Paxos), we have again

majority quorums for both phases (when A is odd). However, if we allow 5 to be any value such that

1  5  b A�12 c, we can have one of the Paxos phases with a much smaller quorum. For example, with

A = 7 and 5 = 1, FPaxos phase 1 quorums would be of size A � 5 = 6 and phase 2 quorums of size

5 + 1 = 2.

The above observation in FPaxos allows the leader elected in phase 1 to contact fewer processes

during phase 2. In planet-scale systems these processes might be located far away from the leader, and

thus this strategy can reduce the time the leader takes to complete phase 2. For this reason, the overall

protocol latency may be lowered since, in Multi-Paxos, Paxos phase 2 is much more frequent than Paxos

phase 1. In Atlas (§3) and Tempo (§4) we leverage this observation to reduce the quorum size of slow

paths at the expense of larger quorums during recovery.

9



CHAPTER 2. BACKGROUND

Algorithm 2.2: Paxos liveness protocol at process 8 2 I.
22 periodically
23 if leader = 8 ^ (bal = 0 _ bal_leader(bal) < 8) then
24 recover()

25 receive MConsensus(_,1) or MRec(1) from 9
26 pre: bal > 1
27 send MRecNAck(bal) to 9

28 receive MRecNAck(1)
29 pre: leader = 8 ^ bal < 1
30 bal 1
31 recover()

32 bal_leader(1)

33 return 1 � A ⇤
j
1�1
A

k

Liveness protocol

The Paxos rules we have covered so far ensure that the protocol is always safe, independently of how

the whole system behaves (e.g., which processes call function recover, whether messages are lost,

duplicated, reordered, and so on). However, if processes are allowed to call recover in an unconstrained

way, the protocol is not live, i.e., it may happen that no command is ever decided (even in a synchronous

network). Algorithm 2.2 addresses this issue and specifies a liveness protocol for Paxos. Again, we give a

detailed description of this mechanism as it is used as a building block by Tempo in its liveness protocol

(§4.2.7). This mechanism uses ⌦, the leader election failure detector [28], which ensures that from some

point on, all correct processes nominate the same correct process as the leader (§2.1). In Algorithm 2.2,

the variable leader denotes the current leader nominated at process 8. We say that leader stabilizes

when it stops changing at all correct processes.

Algorithm 2.2 refines Algorithm 2.1 by specifying a particular policy for invoking recover at a process

8 2 I. Process 8 is allowed to invoke recover at line 23 only if it is the leader according to leader.
Furthermore, it only invokes recover at line 23 either if it has not yet participated in consensus (i.e., bal =

0) or, if it did, the consensus was lead by another process (i.e., bal_leader(bal) < 8). In particular,

process 8 does not invoke recover at line 23 if it is the leader of bal (i.e., if bal_leader(bal) = 8).

This ensures that process 8 does disrupt a recovery lead by itself.

For a leader to make progress with some MRec(1) message, it is required that b A2c + 1 processes

(line 8) have their bal < 1 (line 5). This may not always be the case because, before the variable leader
stabilizes, any process can invoke recover at line 23 if it thinks it is the leader. To help the leader select a

high enough ballot, and thus ensure it will make progress, we introduce a new message type, MRecNAck.
A process sends an MRecNAck(bal) at line 27 when it receives an MConsensus(_,1) or MRec(1)
(line 25) with some ballot 1 lower than its bal (line 26). When process 8 receives an MRecNAck(1) with
some ballot number 1 higher than its bal, if it is still the leader (line 29), it joins ballot 1 (line 30) and
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invokes recover again. This results in process 8 sending a new MRec with some ballot higher than the

received 1 but lead by itself. As only leader is allowed to invoke recover at line 23 and line 29, and

since leader eventually stabilizes, this mechanism ensures that eventually the stable leader will start a

high enough ballot in which enough processes will participate.

2.4 EPaxos and Caesar

In the previous section we have covered Paxos, one of the most prominent leader-based protocols. With

its Multi-Paxos optimization, after a leader is elected, commands can be decided after 2 message delays.

However, this assumes that the client is co-located with the elected leader. When the client is faraway

from the Paxos leader, additional message delays are required.

Now we shift our focus to leaderless protocols, briefly covering EPaxos [11] and Caesar [10]. Because

these protocols do not have a distinguished leader, clients can submit their commands directly to the

closest process in the system (not some leader process that might be faraway), potentially reducing the

overall latency. This closest process is called a coordinator. Leaderless protocols offer a fast path where

commands are decided after 2 message delays, and fallback to a slow path when the fast path is unsafe,

deciding commands after a total of 4 message delays.

Leaderless protocols typically exploit the fact that commands in SMR applications frequently com-

mute [3, 4], and for the replicated state machine to be linearizable, it is enough that replicas only agree

on the order of non-commuting commands [13, 14]. This permits a command to take the fast path e.g.

when the command commutes with all commands concurrently submitted to the system. In the presence

of concurrent non-commuting (aka conflicting) commands, usually the slow path has to be taken.

EPaxos

EPaxos [11] ensures that processes agree on the order of conflicting commands by associating each

command with a set of dependencies. We say that a command is committed when processes agree on

its dependencies. The sets of committed dependencies are then used to build a directed graph. Due to

the way that dependencies are computed in EPaxos (see below), this dependency graph may be cyclic,

and thus commands cannot be simply executed in the order dictated by the graph. Instead, the protocol

waits until it forms strongly connected components of the graph and then executes these components

one at a time. Cycles in the components are broken in some deterministic way (e.g., order by command

identifier). We cover this execution mechanism in more detail in §3.2.3 when presenting Atlas. The

size of the strongly connected components is a priori unbounded. In fact, as we show in §4.2.4, there are

pathological scenarios where the protocol continuously commits commands but can never execute them,

even under a synchronous network [11, 19]. For this reason, EPaxos does not ensure liveness. Atlas
leverages the same execution mechanism of EPaxos, and thus, it does not ensure liveness either. This is

not only a theoretical issue, as in practice these protocols offer high tail latencies (§5).
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As mentioned above, EPaxos commits each command 2 with a set of dependencies dep[2]. For this,
when the coordinator receives command 2, it first forwards it to a fast quorum of size b 3A4 c. Then, when

a fast-quorum process receives command 2, it computes a set of conflicts, i.e., the set of commands

previously processed that do not commute with 2. These sets of conflicts are then sent to the coordinator.

Once the coordinator receives the conflicts by all fast-quorum processes, if all sets of conflicts are equal,

then the fast path is taken. If not, the coordinator is forced to take a slow path, contacting a slow quorum

of size b A2c + 1. In both cases, the command is committed with dep[2] equal to the union of all sets

of conflicts reported by the fast quorum. Note that the slow path mechanism performs the equivalent of

Paxos phase 2. As Paxos phase 2 quorums must intersect with phase 1 quorums during recovery (in case

of coordinator failure), EPaxos employs a recovery quorum also of size b A2c + 1. Just like Paxos, EPaxos

assumes that the number of allowed failures (5 ) is always b A�12 c, and thus 5 is not configurable as in

Flexible Paxos.

Caesar

Caesar [10] commits each command 2 not only with a set of dependencies dep[2], but also with a unique

timestamp ts[2]. Commands are executed in timestamp order, and dependencies are used to determine

the predecessors of a command. Timestamps and dependencies are combined in Caesar with the goal

of improving performance in workloads with a low-to-moderate conflict rate. The quorum sizes are similar

to EPaxos with the exception of the size of fast quorums (d3A4 e). We cover the protocol in more detail

in §4.2.3. We also show in §4.2.4 that Caesar allows pathological scenarios where commands are never

committed at all, and thus Caesar does not ensure liveness either.

2.5 Janus

Janus is a leaderless protocol that generalizes EPaxos to the setting of partial replication. It is based on

an unoptimized version of EPaxos whose fast quorums contain all A processes in a given partition. When

processing commands accessing a single partition, Janus behaves just like EPaxos. When processing

a multi-partition command 2, Janus commits the command in each partition individually, and then sets

dep[2] to the union of the dependencies committed per partition2. Since Janus is based on EPaxos, it

also does not ensure liveness (§2.4).

Once dep[2] is known, a process tries to build a strongly connected component containing 2, just

like in EPaxos. However, a process may not have all the dependencies it needs, and may have to find

them out from other processes that do not replicate 2 (see the example below). For this reason, Janus

is not genuine. We say that a protocol is genuine when, for every command 2, only the processes that

replicate 2 take steps to order and execute it [39].

2Janus was not originally presented exactly like this. However, the dependencies computed are the same when one sees
the protocol this way. Our implementation of Janus is based on Atlas, not on EPaxos, and takes this interpretation (§5).
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212 223

234241
“depends on”

oo

OO

//

✏✏

//

Figure 2.1: Dependency graph containing a cycle between 4 multi-partition commands: 212, 223, 234 and
241.

To better understand why Janus is not genuine, consider the following example. Let us consider four

partitions: 1, 2, 3 and 4. Consider also four multi-partition commands: 212 that accesses partitions 1

and 2, 223 that accesses partitions 2 and 3, 234 that accesses partitions 3 and 4, and 241 that accesses

partitions 4 and 1. Assume that partition 1 receives first 241 and then 212, partition 2 receives first 212 and

then 223, partition 3 receives first 223 and then 234, and partition 4 receives first 234 and then 241. This

arrival order results in commands being committed with the following dependencies: dep[212] = {241},

dep[223] = {212}, dep[234] = {223}, and dep[241] = {234}. These dependencies form the strongly

connected component depicted in Figure 2.1.

Let ? be some process from partition 1 that wants to order and execute 241. For that, ? has to build the

strongly connected component in Figure 2.1. Like in EPaxos (§2.4), once the component is built, cycles

should be broken in some deterministic way (e.g., order by command identifier). Finally, following this

deterministic order, process ? has to execute only the commands from the component that are replicated

by itself, i.e., 241 and 212. Note that process ? does not replicate 234, the dependency of 241, and thus,

it must inquire a process that does. When ? receives such information, it learns that dep[234] = {223}.

Now ? knows about 234, but because it does not replicate its dependency 223, it must perform another

inquiry. Note that process ? initially wanted to order and execute 241, which is replicated by partitions

4 and 1. For the protocol to be genuine, process ? could only contact these two partitions to order and

execute 241. However, ? needs information about 223, which is replicated only by partitions 2 and 3, and

these partitions are not accessed by 241.

Note that these inquires by ? are necessary for a correct ordering of the commands. Given only the

information ? had before the inquires, i.e., dep[212] = {241} and dep[241] = {234}, ? would execute

first 241 and then 212 (as the latter depends on the former). However, this may not be the correct execution

order. To understand why, assume that cycles are broken by ordering commands using their identifiers,

and that the command identifiers are ordered in the following way: 212 < 223 < 234 < 241. In this

case, the correct execution order would instead be 212 and then 241. This shows why these inquires are

necessary for a correct command ordering.
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quorum sizes
configurable 5 live genuine

fast slow (phase 2) recovery (phase 1)

Flexible Paxos — 5 + 1 A � 5 3 3 —

EPaxos b
3A
4 c b

A
2c + 1 b

A
2c + 1 7 7 —

Caesar d
3A
4 e b

A
2c + 1 b

A
2c + 1 7 7 —

Janus A b
A
2c + 1 b

A
2c + 1 7 7 7

Atlas (§3) b
A
2c + 5 5 + 1 A � 5 3 7 —

Tempo (§4) b
A
2c + 5 5 + 1 A � 5 3 3 3

Table 2.1: Comparison between SMR protocols.

2.6 Protocol Comparison Summary

In Table 2.1 the compare Atlas and Tempo with each protocol covered so far. We analyze several

dimensions. First we consider the size of fast, slow and recovery quorums. Flexible Paxos does not have

a fast quorum size as the protocol does not employ a fast path. Atlas and Tempo have fast quorums of

size b A2c + 5 so that smaller values of 5 result in smaller fast quorums.

We also analyze whether protocols allow the number of failures (5 ) to be configurable – Atlas and

Tempo are the only leaderless protocols that do. As for liveness, Atlas inherits the liveness issue of

EPaxos that we describe in §4.2.4, and thus Atlas is marked as not live. Tempo builds on Atlas but

is able to solve this liveness issue, being the only leaderless protocol in Table 2.1 that ensures liveness.

Finally, for the two protocols designed to support partial replication, Janus and Tempo, we also mark them

also genuine or not.
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Atlas: Low-Latency, Simple Leaderless

Consensus

In this chapter we present Atlas, a leaderless SMR protocol specially tailored to planet-scale systems that

provides low average latency and employs a simple recovery mechanism. Like previous protocols such as

EPaxos and Caesar (§2), Atlas is leaderless, i.e., it orders commands in a decentralized way, without

relying on a distinguished leader site. This improves availability and allows serving clients with the same

quality of service independently of their geographical locations. As is common, Atlas also exploits the

fact that commands in SMR applications frequently commute [3, 4], and for the replicated state machine

to be linearizable, it is enough that replicas only agree on the order of non-commuting commands (§2.2).

This permits processing a command in one round trip from the closest replica using a fast path, e.g.,

when the command commutes with all commands concurrently submitted for execution. In the presence

of concurrent non-commuting commands, the protocol may sometimes have to take a slow path, which

requires two round trips.

Low-latency Atlas employs two techniques in order to provide low average latency. First, and fol-

lowing the ideas of Flexible Paxos (§2.3), Atlas allows choosing the maximum number of sites that can

fail (5 ) independently of the overall number of sites (A ). This is motivated by the fact that common SMR

protocols allow any minority of sites to fail simultaneously: e.g., deploying a typical protocol with A = 11

sites allows the concurrent failure of 5 = 5 of them. However, natural disasters leading to the loss of a

data center are infrequent, and temporary data center outages rarely happen concurrently (§5). Industry

practitioners thus assume small values for 5 in geo-distributed systems, e.g., 1 or 2 [4]. Atlas exploits

this fact to offer low latency. The size of the fast quorum in Atlas is a function of the number of allowed

failures 5 – namely, b A2c + 5 – and thus, smaller values of 5 result in smaller fast quorums, thereby

decreasing latency. This is not allowed by prior protocols with a fast path, which have fast quorum sizes

that are simply a function of the number of sites A . For example, the fast quorum consists of at least 2A
3

sites in Generalized Paxos [14] and at least 3A
4 sites in EPaxos (§2).
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Secondly, Atlas can take the fast path even when non-commuting commands are submitted concur-

rently, something that is not allowed by Generalized Paxos and EPaxos. This flexibility permits processing

most commands via the fast path when the conflict rate is low-to-moderate, as is typical for SMR applica-

tions [3, 4].

Simple recovery The biggest challenge we faced in achieving the above features – smaller fast quo-

rums and a flexible fast-path condition – was in designing a correct failure recovery mechanism. Failure

recovery is the most subtle part of an SMR protocol with a fast path because the protocol needs to recover

the decisions reached by the failed replicas while they were short-cutting some of the protocols steps in

the fast path. This is only made more difficult with smaller fast quorums, as a failed process leaves infor-

mation about its computations at fewer replicas. Atlas achieves its performant fast path while having

a recovery protocol that is significantly simpler than that of previous leaderless protocols [10, 11]. We

rigorously prove the correctness of this recovery mechanism.

We organize this chapter as follows. We start by covering the system model in §3.1. This is followed

by a detailed explanation of the Atlas protocol in §3.2: we cover the commit protocol in §3.2.1, the

recovery protocol in §3.2.2, the execution protocol in §3.2.3, a comparison with EPaxos in §3.2.4, and a

few optimizations in §3.2.5. In §3.3 we show the correctness of Atlas. We conclude this chapter with

a summary and related work in §3.4.

3.1 System Model

We consider an asynchronous distributed system where processes may fail by crashing but do not behave

maliciously. The system consists of A processes I = {1, . . . , A }, of which at most 5 may fail. Following

Flexible Paxos [35], 5 can be any value such that 1  5  b A�12 c. This allows using small values of 5

regardless of the replication factor A , which is appropriate in geo-replication [4, 17]. In a geo-distributed

deployment, each process represents a data center, so that a failure corresponds to the outage of a whole

data center. Failures of single machines are orthogonal to our concerns and can be masked by replicating

a process within a data center using standard techniques [7, 8]. We assume that the set of processes is

static. Classical approaches can be used to add reconfiguration to Atlas [7, 11]. Reconfiguration can

also be used in practice to allow processes that crash and recover to rejoin the system.

State-Machine Replication (SMR) is a common way of implementing strongly consistent replicated

services (§2). A service is defined by a deterministic state machine accepting a set of commands, denoted

by C. Each process maintains a replica of the machine and receives commands from clients, external

to the system. An SMR protocol coordinates the execution of commands at the processes, ensuring that

they stay in sync. The protocol provides a command submit(2), which allows a process to submit a

command 2 2 C for execution on behalf of a client. The protocol may also trigger an event execute(2)
at a process, asking it to apply 2 to the local service replica; after execution, the process that submitted
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the command may return the outcome of 2 to the client. Without loss of generality, we assume that each

submitted command is unique.

The strongest property a replicated service implemented using SMR may satisfy is linearizability (§2).

As observed in [13, 14], for the replicated service to be linearizable, the SMR protocol does not need to

ensure that commands are executed at processes in the exact same order: it is enough to agree on the

order of non-commuting commands.

We now give the specification of the SMR protocol. We say that commands 2 and 3 commute if in

every state B of the state machine: (i) executing 2 followed by 3 or 3 followed by 2 in B leads to the same

state; and (ii) 2 returns the same response in B as in the state obtained by executing 3 in B, and vice versa.

If commands 2 and 3 do not commute, we say that they conflict1 and denote it by conflict(2,3). Given
two commands 2 and 3 , we write 2 7!8 3 when conflict(2,3) and 2 is executed before 3 at some

process 8 2 I. We also define the following real-time order: 2 { 3 if the command 2 returns before

the command 3 was submitted. Let 7! = (
–

82I 7!8) [ {. An SMR protocol ensures the following

properties:

Validity. If a process executes some command 2, then it executes 2 at most once and only if 2 was

submitted before.

Ordering. The relation 7! is acyclic.

The Ordering property enforces that conflicting commands are executed in a consistent manner across

the system. In particular, it prevents two conflicting commands from being executed in contradictory

orders by different processes. If the SMR protocol satisfies the above properties, then the replicated

service implemented using it is linearizable. In the following sections we present Atlas, which satisfies

the above specification.

3.2 The Atlas Protocol

To aid understanding, we first illustrate by example the message flow of the Atlas protocol, which corre-

sponds to a common structure of leaderless SMR protocols [11]. We then describe the protocol in detail

(§3.2.1-§3.2.5).

Figure 3.1 illustrates how Atlas processes two conflicting commands, a and b, with A = 5 processes

and at most 5 = 2 failures. At a given process, a command usually goes through several phases: the

initial phase START, then COLLECT, COMMIT and EXECUTE (an additional phase RECOVER is used when

handling failures). We summarize these phases and allowed phase transitions in Figure 3.2.

Command a starts its journey when submit(a) is invoked at process 1. We call process 1 the initial

coordinator of a. This coordinator is initial because, if it fails or is slow, another process may take over.

Command a then enters the COLLECT phase at process 1, whose goal is to compute the set of commands
1Detecting if two commands conflict must be possible without executing them. In practice, this information can often

be extracted from the API provided by the replicated service. In cases when such inference is infeasible, it is always safe to
consider that a pair of commands conflict.
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Figure 3.1: Example of processing two conflicting commands a and b in Atlas with A = 5 processes
and up to 5 = 2 failures. We omit the messages implementing consensus and depict this step abstractly
by the consensus box.

that are dependencies of a, denoted by dep[a]. These dependencies are later used to determine the

order of execution of conflicting commands. To compute dependencies, process 1 sends an MCollect
message containing command a to a fast quorum of processes, which is at least a majority but may be

bigger. In our example the fast quorum picked by 1 is {1, 2, 3, 4}.

Each process in the fast quorum returns the set of commands conflicting with a that it received before

a. In Figure 3.1,! indicates the order in which processes receive commands. For instance, process 4

receives b first, whereas 1, 2 and 3 do not receive any command before a. Based on the replies, process

1 computes the value of dep[a] as {b}, the union of all conflicting commands reported.

If a coordinator of a command is suspected to have failed, another process may try to take over. In

Figure 3.1, process 2 suspects 1 and becomes another coordinator of a, denoted by recover(a). Process

2 contacts a majority quorum of processes {2, 3, 5} and computes its own version of the dependencies

of a: dep[a] = ú.
Dependencies are used to determine the order in which conflicting commands are executed, and all

processes have to execute conflicting commands in the same order. To ensure this, the coordinators of

command a need to reach a consensus on the value of dep[a]. This is implemented using an optimized

variant of single-decree Paxos (§2.3), with all A processes acting as acceptors. In our example, this makes

the processes agree on dep[a] = ú. The use of consensus represents the slow path of the protocol.

If a coordinator can ensure that all the values that can possibly be proposed to consensus are the

same, then it can take the fast path of the protocol, avoiding the use of consensus. In Figure 3.1, this

is the case for process 4 coordinating command b. For a process to take the fast path, we require it to

receive a response from every process in the fast quorum, motivating the name of the latter.

After consensus or the shortcut via the fast path, a coordinator of a command sends its final depen-

dencies to other processes in an MCommit message. A process stores these dependencies and marks

the command as having entered the COMMIT phase. A command can be executed (and thereby transition

to the EXECUTE phase) only after all its dependencies are in the COMMIT or EXECUTE phases. Since in

our example dep[a] = ú, processes can execute command a right after receiving its final dependencies

(ú). This is exploited by processes 1 and 2 in Figure 3.1. However, as dep[b] = {a}, processes must
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Figure 3.2: Command journey through phases in Atlas.

delay the execution of b until a is executed. This is the case for processes 3, 4 and 5 in Figure 3.1. Such

an execution mechanism guarantees that the conflicting commands a and b are executed in the same

order at all processes.

3.2.1 Commit Protocol

Algorithm 3.1 specifies the Atlas commit protocol at process 8 2 I in the failure-free case. We assume

that self-addressed protocol messages are delivered immediately.

Start phase

A client submits a command 2 2 C by invoking submit(2) at one of the processes running Atlas,
which will serve as the initial command coordinator. When submit(2) is invoked at a process 8 (line 1),

this coordinator first assigns to command 2 a unique identifier using a function next_id. In the following

we denote the set of all identifiers by D. We summarize in Table 3.1 the data maintained by each

process for a command with identifier id 2 D. In particular, the mapping cmd stores the payload

of the command, and the mapping phase tracks the progress of the command through phases. For

brevity, the name of the phase written in lower case also denotes all the identifiers in that phase, e.g.,

start = {id 2 D | phase[id] = START}.
Once the coordinator assigns an identifier to 2, the command starts its COLLECT phase, whose goal

is to compute a set of identifiers that are the dependencies of 2. At the end of this phase, the coordinator

sends an MCommit(id, 2,⇡) message including the computed dependencies ⇡ . Before this, it agrees

with other possible coordinators on the same final value of ⇡ , resulting in the following invariant.

Invariant 3.1. For any two messages MCommit(id, 2,⇡) and MCommit(id, 20,⇡0) sent, 2 = 20 and

⇡ = ⇡0.

Hence, each identifier is associated with a unique command and final set of dependencies. The key

property of dependencies is that, for any two distinct conflicting commands, one has to be a dependency

of the other. This is stated by the following invariant.
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Algorithm 3.1: Atlas commit protocol at process 8 2 I.
1 submit(2)
2 id  next_id()
3 past  conflicts(2)
4 &  fast_quorum(8)
5 send MCollect(id, 2, past,&) to &
6 receive MCollect(id, 2, past,&) from 9
7 pre: id 2 start
8 dep[id]  conflicts(2) [ past
9 cmd[id]  2; quorum[id]  &

10 phase[id]  COLLECT
11 send MCollectAck(id, dep[id]) to 9

12 receive MCollectAck(id, dep 9 ) from 89 2 &
13 pre: id 2 collect ^& = quorum[id]
14 ⇡  

–
& dep

15 if
–

& dep =
–
5 & dep then

16 send MCommit(id, cmd[id],⇡) to I
17 else
18 send MConsensus(id, cmd[id],⇡, 8) to I
19 receive MConsensus(id, 2,⇡,1) from 9
20 pre: bal[id]  1
21 cmd[id]  2; dep[id]  ⇡
22 bal[id]  1; abal[id]  1
23 send MConsensusAck(id,1) to 9

24 receive MConsensusAck(id,1) from &
25 pre: bal[id] = 1 ^ |& | = 5 + 1
26 send MCommit(id, cmd[id], dep[id]) to I
27 receive MCommit(id, 2,⇡)
28 pre: id 8 commit [ execute
29 cmd[id]  2; dep[id]  ⇡ ; phase[id]  COMMIT

30 conflicts(2)
31 {id 8 start | conflict(2, cmd[id])}

Invariant 3.2. Assume that messages MCommit(id, 2,⇡) and MCommit(id0, 20,⇡0) have been sent.

If id < id0 and conflict(2, 20) then either id0 2 ⇡ or id 2 ⇡0, or both.

This invariant is key to ensure that conflicting commands are executed in the same order at all pro-

cesses, since we allow processes to execute commands that are not a dependency of each other in any

order. We next explain how Atlas ensures the above invariants.

Collect phase

To compute the dependencies of a command 2, its coordinator first computes the set of commands it

knows about that conflict with 2 (denoted by past, line 3) using a function conflicts. The coordinator
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Table 3.1: Atlas variables at a process.

cmd[id]  noOp 2 C Command
phase[id]  START Phase

dep[id]  ú ✓ D Dependency set
quorum[id]  ú ✓ I Fast quorum

bal[id]  0 2 N Current ballot
abal[id]  0 2 N Last accepted ballot

then picks a fast quorum& of size b A2c + 5 that includes itself (line 4) and sends an MCollect message

with the information it computed to all processes in & .

Upon receiving an MCollect message from the coordinator, a process in the fast quorum computes

its contribution to 2’s dependencies as the set of commands that conflict with 2, combined with past

(line 8). The process stores the computed dependencies, command 2 and the fast quorum & in map-

pings dep, cmd and quorum, respectively, and sets the command’s phase to COLLECT. The process

then replies to the coordinator with an MCollectAck message, containing the computed dependencies

(line 11).

Once the coordinator receives an MCollectAck message from all processes in the fast quorum

(line 13), it computes the dependencies for the command as the union of all reported dependencies

⇡ =
–

& dep =
–
{dep 9 | 9 2 &} (line 14). Since a fast quorum contains at least a majority of

processes, the following property implies that this computation maintains Invariant 3.2.

Property 3.1. Assume two conflicting commands with identifiers 83 and 830 and dependencies ⇡ and

⇡0 computed as in line 14 over majority quorums. Then either id0 2 ⇡ or id 2 ⇡0, or both.

Proof. Assume that the property does not hold: there are two conflicting commands with distinct iden-

tifiers 83 and 830 and dependencies ⇡ and ⇡0 such that 830 8 ⇡ and 83 8 ⇡0. We know that ⇡ was

computed over some majority & and ⇡0 over some majority &0. Since 830 8 ⇡ , we have: (i) the majority

& observed 83 before 830. Similarly, since 83 8 ⇡0: (ii) the majority &0 observed 830 before 83 . However,

as majorities & and &0 must intersect, we cannot have both (i) and (ii), which yields a contradiction. ⇤

After computing the command’s dependencies, its coordinator decides to either take the fast path

(line 15) or the slow path (line 17). Both fast and slow paths end with the coordinator sending an MCommit
message containing the command and its final dependencies.

Slow path

If the coordinator of a command is suspected to have failed, another process may try to take over its job

and compute a different set of dependencies. Hence, before an MCommit message is sent, processes

must reach an agreement on its contents to satisfy Invariant 3.1. They can always achieve this by running
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a consensus protocol – this is the slow path of Atlas. Consensus is implemented using single-decree

(Flexible) Paxos [35]. For each identifier we allocate ballot numbers to processes round-robin, with ballot

8 reserved for the initial coordinator 8 and ballots higher than A for processes that try to take over. Every

process stores for each identifier id the ballot number bal[id] it is currently participating in and the last

ballot abal[id] in which it accepted a proposal (if any). Initially, bal[id] = abal[id] = 0.

When the initial coordinator 8 decides to go onto the slow path, it performs an analog of Paxos Phase

2: it sends an MConsensus message with its proposal and ballot 8 to a slow quorum that includes itself2.

Following Flexible Paxos [35], the size of the slow quorum is only 5 + 1, rather than a majority like in

classical Paxos. This minimizes the additional latency incurred on the slow path in exchange for using

larger quorums in recovery (as described below). As usual in Paxos, a process accepts an MConsensus
message only if its bal[id] is not greater than the ballot in the message (line 20). Then it stores the

proposal, sets bal[id] and abal[id] to the ballot in the message, and replies to the coordinator with

MConsensusAck. Once the coordinator gathers 5 + 1 such replies (line 25), it is sure that its proposal

will survive the allowed number of failures 5 , and it thus broadcasts the proposal in an MCommit message

(line 26).

Fast path

The initial coordinator of a command can avoid consensus when it can ensure that any process performing

recovery will propose the same set of dependencies to consensus [40] – this is the fast path of Atlas,
in which a command is committed after a single round trip to the closest fast quorum (line 16). In order

to take the fast path, previous SMR protocols, such as Generalized Paxos [14] and EPaxos [11], require

fast-quorum replies to match exactly. One of the key innovations of Atlas is that it is able to take the fast

path even if this is not the case, e.g., when conflicting commands are submitted concurrently.

In more detail, the coordinator takes the fast path if every dependency reported by some fast-quorum

process is actually reported by at least 5 such processes. This is expressed by the condition
–

& dep =–
5 & dep in line 15, where

–
5 & dep = {id 2 D | count(id) � 5 };

count(id) = |{ 9 2 & | id 2 dep 9 }|.

Figure 3.3 contains several examples that illustrate the flexibility of the above fast-path condition.

All examples consider A = 5 processes while tolerating varying numbers of faults 5 . The example in

Figure 3.3a considers Atlas 5 = 2. The coordinator of some command, process 1, picks a fast quorum

& = {1, 2, 3, 4} of size b A2c + 5 = 4. It receives replies dep1 = {a}, dep2 = {a, b, c}, dep3 = {a, b, d},

dep4 = {a, c, d}. The coordinator then computes
–
2 & dep = {a, b, c, d}, i.e., all the dependencies

reported at least twice. Since
–

& dep =
–
2 & dep, the coordinator takes the fast path. This is not the

2As noted in §2.3, the initial coordinator 8 can safely skip Paxos Phase 1: since processes perform recovery with ballots
higher than A , no proposal with a ballot lower than 8 can ever be accepted.
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Figure 3.3: Examples in which the fast path is taken 3 or not 7, for both Atlas and protocols that
require matching replies from fast-quorum processes, such as EPaxos [11]. All examples consider A = 5
processes while tolerating 5 faults. The coordinator is always process 1, and circles with a solid line
represent the processes that are part of the fast quorum. Next to each process we depict the set of
dependencies sent to the coordinator (e.g., {a, b}).

case for the example in Figure 3.3b where
–

& dep = {b} < ú =
–
2 & dep (b is excluded from

–
2 & dep

because count(b) = 1). In this case the coordinator has to take the slow path. Back in Figure 3.1 we

had the same situation: coordinator 1 had to take the slow path because dependency b was declared

solely by process 4. On the other hand, coordinator 4 was able to take the fast path, because dependency

a was declared by 3 � 5 processes: 1, 2 and 3.

Notice that in Figure 3.3a, the coordinator takes the fast path even though dependencies reported

by processes do not match, a situation which may arise when conflicting commands are submitted con-

currently. Furthermore, when 5 = 1 we have {id 2 D | count(id) < 5 } = ú, so that the fast-path

condition in line 15 always holds. Hence, Atlas 5 = 1 always takes the fast path, as is the case in

Figures 3.3c and 3.3d. In contrast, EPaxos is able to take the fast path only in Figure 3.3d, since it is the

only example in which fast-quorum replies match.

3.2.2 Recovery Protocol

The initial coordinator of a command may fail or be slow to respond, in which case Atlas allows a process

to take over its role and recover the command and its dependencies. We start by describing the idea of

the most subtle part of this mechanism – recovering decisions reached by failed coordinators via the fast

path.

Let ⇡ =
–

& dep =
–
5 & dep be some fast-path proposal (line 16). By definition of

–
5 & dep, each

id 2 ⇡ was reported in the MCollectAck message of at least 5 fast-quorum processes. It follows that

⇡ can be obtained without 5 � 1 of those processes by taking the union of the dependencies reported

by the remaining processes. Moreover, as the initial coordinator is always part of the fast quorum and

each process in the quorum combines its dependencies with the ones declared by the coordinator (i.e.,

past in line 8), the latter is also not necessary to obtain ⇡ . Thus, the proposal ⇡ can be obtained

without 5 fast-quorum processes including the initial coordinator (e.g., if the processes fail), by combining
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Algorithm 3.2: Atlas recovery protocol at process 8 2 I.
32 recover(id)
33 1  8 + A (b bal[id ]�1

A c + 1)
34 send MRec(id, cmd[id],1) to I
35 receive MRec(id, _, _) from 9
36 pre: id 2 commit [ execute
37 send MCommit(id, cmd[id], dep[id]) to 9

38 receive MRec(id, 2,1) from 9
39 pre: bal[id] < 1 ^ id 8 commit [ execute
40 if bal[id] = 0 ^ id 2 start then
41 dep[id]  conflicts(2); cmd[id]  2
42 bal[id]  1
43 phase[id]  RECOVER
44 send MRecAck(id, cmd[id], dep[id], quorum[id], abal[id],1) to 9

45 receive MRecAck(id, 2 9 , dep 9 ,&0
9 ,01 9 ,1) from 89 2 &

46 pre: bal[id] = 1 ^ |& | = A � 5
47 if 9: 2 & . 01: < 0 then
48 let : be such that 01: is maximal
49 send MConsensus(id, 2: , dep: ,1) to I
50 else if 9: 2 & .&0

: < ú then
51 �  & \&0

:
52 B  initial? (id) 2 �
53 & 0  if B then & else �
54 ⇡  

–
&0 dep

55 send MConsensus(id, 2: ,⇡,1) to I
56 else send MConsensus(id, noOp,ú,1) to I

the dependencies reported by the remaining (b
A
2c + 5 ) � 5 = b A2c processes. The following property

captures this observation.

Property 3.2. Any fast-path proposal can be obtained by taking the union of the dependencies sent in

MCollectAck by at least b A2c fast-quorum processes that are not the initial coordinator.

As an example, assume that after the fast path is taken in Figure 3.3a, 5 = 2 processes inside the

fast quorum fail, one of them being the coordinator, process 1. Independently of which b A2c = 2 fast-

quorum processes survive, the proposal is always recovered by set union:
–

{2,3} dep =
–

{2,4} dep =–
{3,4} dep = {a, b, c, d}.

In the case of Figure 3.3b it is unsafe to take the fast path since the proposal may not be recoverable:

the failure of process 4 would lead to losing the dependency b, since this dependency was reported

exclusively by this process.

24



3.2. THE ATLAS PROTOCOL

Recovery in detail

The recovery protocol of Atlas at a process 8 2 I is given in Algorithm 3.2. We use initial(id) to
denote a function that extracts from the command identifier id its initial coordinator.

A process takes over as the coordinator for some command with identifier id by calling recover(id)

(line 32 in Algorithm 3.2). In order to find out if a decision on the dependencies of id has been reached in

consensus, the new coordinator first performs an analog of Paxos Phase 1 (§2.3). It picks a ballot number

it owns higher than any it participated in so far (line 33) and sends an MRec message with this ballot to

all processes.

Upon the receipt of such a message, in case id is already committed or executed (line 36), the

process notifies the new coordinator with an MCommit message. Otherwise, as is standard in Paxos, the

process accepts the MRec message only if the ballot in the message is greater than its bal[id] (line 39).
In this case, if the process is seeing id for the first time (line 40), it computes its contribution to id’s

dependencies as the set of conflicting commands (line 41). Then, the process sets bal[id] to the new

ballot and phase[id] to RECOVER. Finally, the process replies with an MRecAck message containing all

the information it has regarding id: the corresponding command (cmd), its current set of dependencies

(dep), the ballot at which these were previously accepted (abal), and the fast quorum (quorum). Note
that quorum[id] = ú if the process did not see the initial MCollect message, and abal[id] = 0 if

the process has not yet accepted any consensus proposal.

In the MRecAck handler (line 45), the new coordinator computes its proposal given the information

provided by processes and sends this proposal in an MConsensus message to all processes. As in

Flexible Paxos, the new coordinator waits for A � 5 MRecAck messages. This guarantees that, if a

quorum of 5 + 1 processes accepted an MConsensus message with a proposal (which could have thus

been sent in an MCommit message), the new coordinator will find out about this proposal. To maintain

Invariant 3.1, if any process previously accepted a consensus proposal (line 47), by the standard Paxos

rules [7, 35], the coordinator selects the proposal accepted at the highest ballot (line 48).

If no consensus proposal has been accepted before, the new coordinator checks whether any of the

processes that replied has seen the initial MCollect message, by looking for any non-empty fast quorum

(line 50). If the fast quorum is known, the new coordinator first computes at line 51 the set of processes

� that belong both to the recovery quorum & and the fast quorum &0
: . Then, depending on whether the

initial coordinator replied or not, there are two possible cases that we describe next.

1) The initial coordinator replies to the new one (B = tAD4, line 52). In this case the initial coordinator

has not taken the fast path before receiving the MRec message from the new one, as it would have replied

with MCommit instead of MRecAck (line 37). It will also not take the fast path in the future, since when

processing the MRec message it sets the command phase to RECOVER (line 43), which invalidates the

MCollectAck precondition (line 13). Since the initial coordinator never takes the fast path, the new

coordinator can choose the command’s dependencies in any way, as long as it maintains Invariant 3.2.

By Property 3.1, this is satisfied if the coordinator chooses the set union of the dependencies declared by
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at least a majority of processes. Hence, the new coordinator takes the union of the dependencies reported

by the A � 5 � A � b A�12 c � b
A
2c + 1 processes in & (line 54).

2) The initial coordinator does not reply to the new one (B = f0;B4, line 52). In this case the

initial coordinator could have taken the fast path and, if it did, the new coordinator must propose the

same dependencies. Given that the recovery quorum & has size A � 5 and the fast quorum &0
: has

size b A2c + 5 , the set of processes � = & \ &0
: (line 51) contains at least b A2c fast-quorum processes

(distinct from the initial coordinator, as it did not reply). Furthermore, recall that when a process from �

replies to the new coordinator, it sets the command phase to RECOVER (line 43), which invalidates the

MCollect precondition (line 7). Hence, if the initial coordinator took the fast path, then each process in

� must have processed its MCollect before the MRec of the new coordinator, and reported in the latter

the dependencies from the former. Then using Property 3.2, the new coordinator recovers the fast-path

proposal by taking the union of the dependencies from the processes in � (line 54). It can be shown that,

even if the initial coordinator did not take the fast path, this computation maintains Invariant 3.2, despite �

containing only b A2c processes and Property 3.1 requiring a majority of them. This is for the same reason

this number of processes is sufficient in Property 3.2: dependencies declared by the initial coordinator

are included into those declared by other fast-quorum processes (line 8).

It remains to address the case in which the process performing the recovery observes that no process

saw the initial fast quorum, and consequently the submitted command (line 56). For instance, suppose

that process 8 sends an MCollect(id, 2, _, _) only to process 9 and then fails. Further, assume that

9 receives another MCollect(_, 20, _, _) from process : , replies with a dependency set that includes

the identifier id of 2, and also fails. Now, process : cannot execute 20 without executing 2 (since 2 is a

dependency of 20), and it cannot execute 2 because its payload has been lost. We solve this issue similarly

to EPaxos: if a process takes over as the new coordinator and cannot find the associated payload, it may

replace it by a special noOp command (line 56) that is not executed by the protocol and conflicts with

all commands. With this, the final command for some identifier can take two possible values: the one

submitted (line 1) or noOp. It is due to this that we include the command payload in addition to its

dependencies into consensus messages associated with a given identifier (e.g., line 18), thus ensuring

that a unique payload will be chosen (Invariant 3.1). Due to the possible replacement of a command by

a noOp, the protocol actually ensures the following weakening of Invariant 3.2, which is still sufficient to

establish its correctness.

Invariant 3.20. Assume that messages MCommit(id, 2,⇡) and MCommit(id0, 20,⇡0) have been sent.

If id < id0, conflict(2, 20), 2 < noOp and 20 < noOp, then either id0 2 ⇡ or id 2 ⇡0, or both.

3.2.3 Execution Protocol

Algorithm 3.3 describes a background task employed by Atlas that is responsible for executing com-

mands after they are committed. This task runs in an infinite loop trying to execute a batch of commands.

We define a batch as the smallest set of committed identifiers ( ✓ commit such that, for each identifier
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Algorithm 3.3: Atlas execution protocol.
57 loop
58 let ( be the smallest subset of commit such that

8id 2 ( . (dep[id] ✓ ( [ execute)
59 for id 2 ( ordered by <
60 execute(cmd[id])
61 phase[id]  EXECUTE

id 2 ( , its dependencies are in the batch or already executed: dep[id] ✓ ( [ execute (line 58). This

ensures that a command can only be executed after its dependencies or in the same batch with them,

which yields the following invariant.

Invariant 3.3. Assume two commands 2 and 20 with identifiers id and id0, respectively. If a process

executes a batch of commands containing 2 before executing a batch containing 20, then id0 8 dep[id].

As processes agree on the dependencies of each command (Invariant 3.1), the batch in which a

command is executed is equal in every process, as reflected in following invariant.

Invariant 3.4. If a process executes command 2 in batch ( and another process executes the same

command 2 in batch (0, then ( = (0.

Inside a batch, commands are ordered according to some fixed total order < on identifiers (line 59).

This guarantees that conflicting commands are executed in a consistent order across all processes.

Consider again the example in Figure 3.1, where the final dependencies are dep[a] = ú and

dep[b] = {a}. There are two cases, depending on the order in which processes commit the commands

a and b:

• a then b: at processes 1 and 2. When the command a is committed, the processes execute

it in a singleton batch, as it has no dependencies. When later the command b is committed,

the processes execute it in a singleton batch too, since its only dependency a has already been

executed.

• b then a: at processes 3, 4 and 5. When the command b is committed, the processes cannot exe-

cute it, as its dependency a has not yet been committed. When later the command a is committed,

the processes execute two singleton batches: first a, then b.

Note that a is executed before b in both cases, thus ensuring a consistent execution order across pro-

cesses.

Assume now we had final dependencies dep[a] = {b} and dep[b] = {a}. In this case, indepen-

dently of the order in which processes commit the commands, a batch will only be formed when both are

committed. Since all processes will form the same batch containing both a and b, these commands will

be executed in a predefined order on their identifiers, again ensuring a consistent execution order.

27



CHAPTER 3. ATLAS: LOW-LATENCY, SIMPLE LEADERLESS CONSENSUS

3.2.4 Properties and Comparison with EPaxos

Complexity. Atlas commits a command after two communication delays when taking the fast path,

and four otherwise. As pointed out in §3.2.1, when 5 = 1, a fast quorum contains exactly a majority of

processes and Atlas always takes the fast path. This is optimal for leaderless protocols [18, 41] and

results in a significant performance pay-off (§5).

Fault tolerance. Atlas is parameterized by the number of tolerated concurrent faults 5 : smaller

values of 5 yield smaller fast and slow quorums, thus reducing latency. As observed in the literature [4, 17]

and as we experimentally confirm in §5.1, assuming small values of 5 is acceptable for geo-distribution.

Furthermore, violating our assumption that the number of failures is bounded by 5 may only compromise

the liveness of the protocol, and never its safety: if more than 5 transient outages occur, due to, e.g.,

connectivity problems, Atlas will just block until enough sites are reachable.

Comparison with EPaxos. Atlas belongs to the family of leaderless SMR protocols. We now provide

a concise comparison with the most prominent protocol in this family, EPaxos [11]. The two protocols

share the message flow, including the splitting into fast and slow paths. However, as we demonstrate

experimentally in §5, Atlas outperforms EPaxos in several settings, which is due to a number of novel

design decisions that we took.

First, EPaxos requires the conflicts reported by the fast quorum processes to match exactly, whereas

Atlas allows processes to report different dependencies, as long as each dependency can be recovered

after 5 failures. This allows Atlas to take the fast path even when non-commuting commands are

submitted concurrently.

Second, Atlas allows choosing the number of failures 5 independently of the size of the system A ,

which yields fast quorums of size b A2c + 5 . EPaxos assumes up to b A2c failures and sets the fast quorum

size to b 3A4 c. Our decision results in smaller quorums for small values of 5 , which are appropriate in

planet-scale systems [4, 17, 42]; smaller quorums then result in lower latency.

Third, Atlas achieves its smaller fast quorums with a simple recovery protocol that is able to re-

cover fast-path decisions using Property 3.2. In contrast, EPaxos recovery mechanism is much more

complex [43, 44], and in fact has been recently shown to contain a bug [45]. Due to this complexity, the

authors of Janus (§2.5) based their protocol on a simpler version of EPaxos that employs large fast quo-

rums [15, 43]. Such complexity also does not allow EPaxos to be easily modified to exploit the independent

bound on failures 5 , unlike plain Paxos [35] or Fast Paxos [46].

Lack of liveness. The Atlas execution mechanism presented in §3.2.3 is the same as that of

EPaxos [11]. For this reason, Atlas does not ensure liveness even under a synchronous network. We

present in §4.2.4 a counterexample that demonstrates this. Tempo, which we present in the next chapter

(§4), employs a different execution mechanism that is able to avoid this issue.
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3.2.5 Optimizations

This section presents one mechanism employed by the Atlas protocol to accelerate command execution

and one mechanism that can be used to avoid slow fast-quorum processes.

Non-fault-tolerant reads. We observe that reads can be excluded from dependencies at lines 3 and 8

when the conflict relation between commands is transitive. In this case, a read is never a dependency and

thus it will never block a later command, even if it is not fully executed, e.g., when its coordinator fails (or

hangs). For this reason, reads can be executed in a non-fault-tolerant manner. More precisely, for some

read with identifier id, the coordinator selects a plain majority as a fast quorum (line 4), independently

of the value of 5 . Then, at the end of the COLLECT phase, it immediately commits id, setting dep[id]
to the union of all dependencies returned by this quorum (line 16). This optimization, that we denote

by NFR, accelerates the execution of linearizable reads and reduces their impact in the protocol stack.

The transitivity requirement on conflicts is satisfied by many common applications. We experimentally

evaluate the case of a key-value store in §5.

Avoiding a fast-quorum straggler. Notice that if a process in the fast quorum is slow, Atlas needs

to execute recovery. We now sketch a mechanism that can be used to avoid such fast-quorum stragglers.

First, instead of sending the MCollect message only to the fast-quorum processes, the initial coordinator

sends it to all processes. Similarly to the fast-quorum processes, the remaining processes also propose a

set of dependencies for the command. Then, if all fast-quorum processes are responsive, the replies by

non-fast-quorum processes can be simply ignored. However, if some fast-path process is slow to answer,

these additional replies can be used to take the slow path: this path can always be taken as long as the

coordinator has the replies from a majority of processes, thus maintaining Property 3.1.

3.3 Correctness

In this section we prove that the Atlas protocol satisfies the SMR specification (§3.1). We omit the trivial

proof of Validity and prove Ordering next.

Consider the auxiliary invariants below:

Invariant 3.5. At any process, if cmd[id] < noOp, then cmd[id] has been previously submitted by a

client.

Invariant 3.6. Assume MCollect(id, 2, _, _) has been sent. Then for any MConsensus(id, 20, _, _),
MCommit(id, 20, _) and MRec(id, 20, _), we have 20 = 2 or 20 = noOp.

Invariant 3.7. Assume MConsensus(id, _, _,1) has been sent. Then 1 = initial(id) or 1 > A .

Invariant 3.8. Assume MConsensus(id, 2,⇡,1) and MConsensus(id, 20,⇡0,10) have been sent. If

1 = 10, then 2 = 20 and ⇡ = ⇡0.
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Invariant 3.9. Assume MRecAck(id, 2, _,&,01, _) and MRecAck(id, 20, _,&0,010, _) have been sent.

If & < ú and &0 < ú, then & = &0. If additionally 01 = 010 = 0, then 2 = 20.

Invariant 3.10. Assume MRecAck(_, _, _, _,01,1) has been sent by some process. Then 01 < 1.

Invariant 3.11. Assume MConsensusAck(id,1) and MRecAck(id, _, _, _,01,10) have been sent by

some process. If 10 > 1, then 1  01 < 10 and 01 < 0.

Invariant 3.12. Assume a slow quorum has received MConsensus(id, 2,⇡,1) and responded to it

with MConsensusAck(id,1). For any MConsensus(id, 20,⇡0,10) sent, if 10 > 1, then 20 = 2 and

⇡0 = ⇡ .

Invariant 3.13. Assume MCommit(id, 2,⇡) has been sent at line 16. Then for any

MConsensus(id, 20,⇡0, _) sent, 20 = 2 and ⇡0 = ⇡ .

Invariant 3.14. Assume MCommit(id, 2, _) and MCommit(id0, 20, _) have been sent, 2 < noOp,
20 < noOp and conflict(2, 20). Assume further that some process sends two messages: ei-

ther MCollectAck(id, dep) or MRecAck(id, _, dep, _, 0, _) and either MCollectAck(id0, dep0) or

MRecAck(id0, _, dep0, _, 0, _). Then id0 2 dep or id 2 dep0.

Invariants 3.5-3.11 easily follow from the structure of the protocol. Next we prove the rest of the

invariants and use them to prove Invariant 3.1 and Invariant 3.20 (we omit the easy proofs of Invariant 3.3

and Invariant 3.4). Finally, we introduce and prove two lemmas that are then used to prove the Ordering

property of the SMR specification.

Proof of Invariant 3.12. Assume that at some point

(*) a slow quorum has received MConsensus(id, 2,⇡,1) and responded to it with

MConsensusAck(id,1).

We prove by induction on10 that, if a process 8 sends MConsensus(id, 20,⇡0,10) with10 > 1, then 20 = 2

and ⇡0 = ⇡ . Given some 1⇤, assume this property holds for all 10 < 1⇤. We now show that it holds for

10 = 1⇤. We make a case split depending on the transition of process 8 that sends the MConsensus
message.

First, assume that process 8 sends MConsensus at line 18. In this case, 10 = 8. Since 10 > 1, we

have 1 < 8. But this contradicts Invariant 3.7. Hence, this case is impossible.

The remaining case is when process 8 sends MConsensus during the transition at line 45. In this

case, 8 has received

MRecAck(id, 2 9 , dep 9 , _,01 9 ,10)

from all processes 9 in a recovery quorum &' . Let abmax = max{01 9 | 9 2 &'
}; then by Invariant 3.10

we have abmax < 10.
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Since the recovery quorum&' has size A � 5 and the slow quorum from (*) has size 5 +1, we get that

at least one process in&' must have received the MConsensus(id, 2,⇡,1) message and responded to

it with MConsensusAck(id,1). Let one of these processes be ?. Since 10 > 1, by Invariant 3.11 we

have 01? < 0, and thus process 8 executes line 49. By Invariant 3.11 we also have 1  01? and thus

1  abmax.

Consider an arbitrary process : 2 &' , selected at line 48, such that 01: = abmax. We now prove

that 2: = 2 and dep: = ⇡ . If abmax > 1, then since abmax < 10, by induction hypothesis we have

2: = 2 and dep: = ⇡ , as required. If abmax = 1, then since abmax < 0, process : has received

some MConsensus(id, _, _, abmax) message. By Invariant 3.8, process : must have received the same

MConsensus(id, 2,⇡, abmax) received by process ?. Upon receiving this message, process : stores 2 in

cmd and⇡ in dep and does not change these values at line 40: abmax < 0 and thus bal[83] cannot be 0
when the process executes this line. Then process : must have sent MRecAck(id, 2: , dep: , _, abmax,10)

with 2: = 2 and dep: = ⇡ , which concludes the proof. ⇤

Proof of Invariant 3.13. Assume MCommit(id, 2,⇡) has been sent at line 16. Then, the process

that sent this MCommit message must be process initial(id). Moreover, we have that for some fast

quorum &� such that initial(id) 2 &� :

(*) every process 9 2 &� has received MCollect(id, 2,&� , past) and responded with

MCollectAck(id, dep 9 ) such that ⇡ =
–
5
&� dep =

–
&� dep.

We prove by induction on1 that, if a process 8 sends MConsensus(id, 20,⇡0,1), then 20 = 2 and⇡0 = ⇡ .

Given some 1⇤, assume this property holds for all 1 < 1⇤. We now show that it holds for 1 = 1⇤.

First note that process 8 cannot send MConsensus at line 18, since in this case we would have

8 = initial(id), and initial(id) took the fast path at line 16. Hence, process 8 must have sent

MConsensus during the transition at line 45. In this case, 8 has received

MRecAck(id, 2 9 , dep 9 ,&0
9 ,01 9 ,1)

from all processes 9 in a recovery quorum &' .

If MConsensus is sent at line 49, then we have 01: > 0 for the process : 2 &' selected at line 48.

In this case, before sending MRecAck, process : must have received

MConsensus(id, 2: , dep: ,01:)

with 01: < 1. Then by induction hypothesis we have 20 = 2: = 2 and ⇡0 = dep: = ⇡ . This establishes

the required.

If MConsensus is not sent in line 49, then we have 01: = 0 for all processes : 2 &' . In this case,

process 8 sends MConsensus in either line 55 or line 56. Since the recovery quorum &' has size A � 5

and the fast quorum &� from (*) has size b A2c + 5 , we have that
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(**) at least b A2c processes in &' are part of &� and thus must have received

MCollect(id, 2,&� , past) and responded to it with MCollectAck.

Let process ? be one these processes. Due to the assignment at line 43 and the check at line 7,

process ? must have received MCollect before sending MRecAck. Then, since 01? = 0, process ?

reports the initial fast quorum&� and command 2, i.e., process ? sends MRecAck(id, 2?, _,&0
?,01?, _)

with &0
? = &� and 2? = 2. Then &0

? < ú, so that process 8 must send MConsensus at line 55.

By Invariant 3.9, and since process ? has sent MRecAck(id, 2, _,&� , _, _), any process : selected

in line 50 has &0
: = &� and 2: = 2. For this reason, 20 = 2: = 2, as required. We now show that

⇡0 = ⇡ . Let � be the set of fast-quorum processes that replied to the new coordinator, i.e. � = &'
\&� .

By our assumption, process initial(id) sent an MCommit(id, 2,⇡) at line 16. Then due to line 36,

this process would reply to MRec with MCommit instead of MRecAck. Hence, initial(id) 8 � , and

with that, the set � is selected in line 53. By Property 3.2, the fast path proposal ⇡ =
–

&� dep can

be recovered by the set union of the dependencies initially reported by any b A2c fast quorum members

(excluding the initial coordinator). By (**), and since all processes : 2 � have 01: = 0, then all processes

in � replied with the dependencies that were reported to the initial coordinator. Thus, by Property 3.2 we

have ⇡ =
–

&� dep =
–

� dep = ⇡0, which concludes the proof. ⇤

Proof of Invariant 3.1. Consider that MCommit(id, 2,⇡) and MCommit(id, 20,⇡0) have been sent.

We prove that 2 = 20 and ⇡ = ⇡0.

Note that, if an MCommit(id, 2,⇡) was sent at line 37, then some process sent an MCommit(id, 2,⇡)
at line 16 or line 26. Hence, without loss of generality, we can assume that the two MCommit under

consideration were sent at line 16 or at line 26. We can also assume that the two MCommit have been

sent by different processes. Only one process can send an MCommit at line 16 and only once. Hence, it

is sufficient to only consider the following two cases.

Assume first that both MCommit messages are sent at line 26. Then for some 1, a slow quo-

rum has received MConsensus(id, 2,⇡,1) and responded to it with MConsensusAck(id,1). Like-

wise, for some 10, a slow quorum has received MConsensus(id, 20,⇡0,10) and responded to it with

MConsensusAck(id,10).
Assume without loss of generality that 1  10. If 1 < 10, then 20 = 2 and ⇡0 = ⇡ by Invariant 3.12.

If 1 = 10, then 20 = 2 and ⇡0 = ⇡ by Invariant 3.8. Hence, in this case 20 = 2 and ⇡0 = ⇡ , as required.

Assume now that MCommit(id, 2,⇡) was sent at line 16 and MCommit(id, 20,⇡0) at line 26.

Then for some 1, a slow quorum has received MConsensus(id, 20,⇡0,1) and responded to it with

MConsensusAck(id,1). Then by Invariant 3.13, we must have 20 = 2 and ⇡0 = ⇡ , as required. ⇤

Proof of Invariant 3.14. Assume MCommit(id, 2, _) and MCommit(id0, 20, _) have been sent,

2 < noOp, 20 < noOp and conflict(2, 20). Assume further that process 9 sends two messages:

either MCollectAck(id, dep) or MRecAck(id, _, dep, _, 0, _) and either MCollectAck(id0, dep0)
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or MRecAck(id0, _, dep0, _, 0, _). If MCollectAck(id, dep) is sent, it must be in response to

MCollect(id,3, _, _), and by Invariant 3.6 we have 3 = 2. Similarly, if MCollectAck(id0, dep0)
is sent, it must be in response to MCollect(id0,30, _, _), and by Invariant 3.6 we have 30 = 20. If

MRecAck(id, _, dep, _, 0, _) is sent, it must be in response to MRec(id,3, _), and by Invariant 3.6 we

have 3 2 {2, noOp}. If MRecAck(id0, _, dep0, _, 0, _) is sent, it must be in response to MRec(id0,30, _),
and by Invariant 3.6 we have 30 2 {20, noOp}.

Without loss of generality, assume that process 9 sends the message about id before the message

about id0. We prove that id 2 dep0. We have four cases depending on which message (MCollectAck
or MRecAck) is sent for each identifier:

1) Process 9 sends MCollectAck(id, dep) and then MCollectAck(id0, dep0). When handling

MCollect(id, 2, _, _), process 9 stores 2 in cmd[id]. By Invariant 3.6, cmd[id] can only change to

noOp. When handling MCollect(id0, 20, _, _), since cmd[id] 2 {2, noOp} and noOp conflicts with all

commands, we have id 2 conflicts(20) in line 8, and thus id 2 dep0 in MCollectAck(id0, dep0), as
required.

2) Process 9 sends MCollectAck(id, dep) and then MRecAck(id0, _, dep0, _, 0, _). When han-

dling MCollect(id, 2, _, _), process 9 stores 2 in cmd[id]. By Invariant 3.6, cmd[id] can only change

to noOp. When handling MRec(id0,30, _) with 30 2 {20, noOp} we have two cases depending on

phase[id0]. If id0 2 start, then since cmd[id] 2 {2, noOp} and noOp conflicts with all commands,

we have id 2 conflicts(30) in line 41. If id0 8 start, then process 9 is a member of the original fast

quorum for id0 and thus included id into dep[id0] when it processed MCollect(id0, 20, _, _). Thus, in
both cases id 2 dep0 in MRecAck(id0, _, dep0, _, 0, _), as required.

3) Process 9 sends MRecAck(id, _, dep, _, 0, _) and then MCollectAck(id0, dep0). Analogous to

the above.

4) Process 9 sends MRecAck(id, _, dep, _, 0, _) and then MRecAck(id0, _, dep0, _, 0, _). Analogous
to the above. ⇤

Proof of Invariant 3.20. Assume that MCommit(id, 2,⇡) and MCommit(id0, 20,⇡0) have been sent

with id < id0, 2 < noOp, 20 < noOp and conflict(2, 20). The protocol structure ensures that

⇡ =
–

& dep for& and dep given as parameters of handlers at lines 12 or 45, and the computation of ⇡

occurs at lines 14 or 54. We start by proving that there exists a quorum b& with |b& | � b
A
2c + 1 and cdep

such that
–

& dep =
–b& cdep, where each process 9 2 b& computes its cdep 9 in either line 8 or line 41

and sends it in either MCollectAck(id, cdep 9 ) or MRecAck(id, _, cdep 9 , _, 0, _).
The computation of ⇡ occurs either in the transition at line 14 or at line 54. If the computation of ⇡

occurs in the transition at line 14, then & is a fast quorum with size b A2c + 5 . In this case, we let b& = &

and cdep = dep. Since 5 � 1, we have |b& | � b
A
2c + 1, as required. If the computation of ⇡ occurs

at line 54, we have two situations depending on whether initial(id) replies to the new coordinator

(line 52). If it does (B = tAD4, line 52), then & is a recovery quorum of size A � 5 . In this case, we

let b& = & and cdep = dep. Since 5  b A�12 c, we have |b& | � b
A
2c + 1, as required. If initial(id)
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does not reply (B = f0;B4, line 52), then & consists of the fast quorum members that are part of the

recovery quorum (line 51). Given that fast quorum size is b A2c + 5 and the recovery quorum size is A � 5 ,

in this case & contains at least b A2c + 5 � 5 = b A2c fast quorum processes, and thus |& | � b
A
2c.

Since ⇡ is computed in the branch where the initial fast quorum is known (line 50), at least one of

the fast quorum members in & must have computed its set of dependencies at line 8, including in its

dependencies those reported by the original coordinator. In this case, we let b& = & [ {initial(id)},
89 2 & . cdep 9 = dep 9 and cdepinitial(id) be the set of dependencies sent by initial(id) in its

MCollectAck(id, cdepinitial(id)) message. Since |& | � b
A
2c and initial(id) 8 & (as it did not

reply), we have |b& | � b
A
2c + 1, as required.

Similarly to the above, we can also prove that there exists a quorum b&0 with |b&0| � b A2c + 1 and ddep0
such that

–
& 0 dep

0 =
–b& 0 ddep0, where each process 9 2 b&0 computes its ddep09 in either line 8 or line 41

and sends its ddep09 in either MCollectAck(id0, ddep09 ) or MRecAck(id0, _, ddep09 , _, 0, _).
We now prove that 830 2 ⇡ or 83 2 ⇡0. By contradiction, assume that id0 8 ⇡ and id 8 ⇡0. Since

830 8 ⇡ , we have 89 2 b& . id0 8 cdep 9 . Similarly, since 83 8 ⇡0, we have 89 2 b&0. id 8 ddep09 . Given that

|b& | � b
A
2c + 1 and |b&0| � b A2c + 1, b& and b&0 must intersect. For this reason, there must exist a process

? 2 b& \ b&0 such that 830 8 cdep? and 83 8 ddep0? . But this contradicts Invariant 3.14. ⇤

We now prove that Atlas ensures Ordering. First we introduce the following two lemmas.

Lemma 3.1. The relation
–A

8=1 7!8 is asymmetric.

Proof. By contradiction, assume that for some processes 8 and 9 and conflicting commands 2 and 20

with identifiers id and id0, we have 2 7!8 20 and 20 7! 9 2; then 2 < noOp and 20 < noOp. By Validity we
must have 8 < 9 and 2 < 20.

Assume first that 2 and 20 are executed at process 8 in the same batch ( . Then by Invariant 3.4 they

also have to be executed at process 9 in the batch ( . Since inside a batch commands are ordered using

the fixed order < on their identifiers, 2 and 20 have to be executed in the same order at the two processes:

a contradiction.

Assume now that 2 and 20 are not executed at process 8 in the same batch. Then by Invariant 3.4 this

also must be the case at process 9 . Hence, Invariant 3.3 implies that id0 8 dep[id] at process 8, and

id 8 dep[id0] at process 9 . Then process 8 received MCommit(id, 2,⇡) with id0 8 ⇡ , and process 9

received MCommit(id0, 20,⇡0) with id 8 ⇡0, which contradicts Invariant 3.20. ⇤

Lemma 3.2. Assume 21 7! . . . 7! 2= for = � 2. Whenever a process 8 executes 2=, some process has

already executed 21.

Proof. We prove the lemma by induction on =. The base case of = = 2 directly follows from the

definition of 7!. Take = > 3 and assume 21 7! . . . 7! 2=�1 7! 2=. Consider the moment when a

process 8 executes 2=. We want to show that by this moment some process has already executed 21.
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Since 2=�1 7! 2=, either 2=�1 { 2= or 2=�1 7! 9 2= for some process 9 . Consider first the case when

2=�1 { 2=. Then 2=�1 is executed at some process : before 2= is submitted and, hence, before 2= is

executed at process 8. By induction hypothesis, 21 is executed at some process before 2=�1 is executed

at process : and, hence, before 2= is executed at process 8, as required. We now consider the case

when 2=�1 7! 9 2= for some process 9 . Since process 8 executes 2=, we must have either 2=�1 7!8 2= or

2= 7!8 2=�1. The latter case would contradict Lemma 3.1, so that 2=�1 7!8 2=. By induction hypothesis,

21 is executed at some process before 2=�1 is executed at process 8 and, hence, before 2= is executed at

process 8, as required. ⇤

Proof of Ordering. By contradiction, assume that 21 7! . . . 7! 2= = 21 for = � 2. Then some

process executed 21. Consider the moment when the first process did so. By Lemma 3.2 some process

has already executed 21 before this, which yields a contradiction. ⇤

3.4 Summary and Related Work

The classical way of implementing SMR is by funnelling all commands through a single leader replica [7,

8, 47, 48], which can create a bottleneck. A way to mitigate this problem is to distribute the leader

responsibilities round-robin among replicas, as done in Mencius [20]. However, this makes the system

run at the speed of the slowest replica.

Exploiting commutativity to improve the scalability of SMR was first proposed in Generalized Paxos [13]

and Generic Broadcast [14]. These protocols still rely on a leader to order concurrent non-commuting

commands, which also creates a bottleneck.

The closest SMR protocol to Atlas is EPaxos [11], which is also leaderless and exploits commutativity.

We compared Atlas with EPaxos in detail in §3.2.4. There have been two follow-up protocols to EPaxos,

Alvin [12] and Caesar [10]. Atlas compares to these protocols similarly to EPaxos; in particular, both

follow-ups have large fast quorums that depend on the overall number of processes only.

Flexible Paxos [35] reduces the size of Paxos Phase 2 quorums to 5 + 1, a technique we also use on

the slow path of Atlas. However, this technique is not directly applicable to computing dependencies

via fast path, as required by leaderless SMR. To the best of our knowledge, Atlas is the first protocol to

reduce the size of fast quorums to b A2c + 5 .

An approach to scaling SMR is to shard the state of the application being replicated and add cross-

shard coordination to preserve consistency [49]. Such approaches build on a non-sharded SMR protocol

and are hence orthogonal to our proposal: Atlas can be combined with them to scale SMR even further.

Protocols such as M2Paxos [50], WPaxos [51] and DPaxos [52] scale up SMR using a variation of the

sharding approach. These protocols exploit access locality by optimizing for workloads where commands

do not frequently access objects in multiple locations.
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There have been recent proposals of SMR protocols that improve scalability using special hardware

capabilities, such as low-latency switches or RDMA [53–55]. However, currently these protocols work

within a single data center only.

Summary This chapter presented Atlas, the first leaderless SMR protocol parameterized with the

number of allowed failures. Atlas is designed for planet-scale systems where concurrent site failures

are rare. It employs three mechanisms to reduce latency: small quorums, a flexible fast-path condition,

and non-fault-tolerant reads. Atlas leverages the same execution mechanism of EPaxos based on ex-

plicit dependencies. As highlighted in §2, this mechanism can result in pathological scenarios where

the protocol continuously commits commands but can never execute them, even under a synchronous

network [11, 19]. In practice, this translates into a high tail latency (§5). In the next chapter we introduce

Tempo, a leaderless protocol that leverages the ideas of Atlas presented in this chapter, but addresses

these liveness and performance issues.
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Tempo: Predictable Leaderless Consensus

In this chapter we present Tempo, a leaderless SMR protocol that offers predictable performance. Existing

leaderless SMR protocols suffer from drawbacks in the way they order commands. For example, EPaxos

and Atlas maintain explicit dependencies between commands: a replica may execute a command

only after all its dependencies get executed. These dependencies may form arbitrary long chains. As

a consequence, in theory the protocols do not guarantee progress even under a synchronous network

(§2). In practice, their performance is unpredictable, and in particular, exhibits a high tail latency [9, 19].

These drawbacks carry over to the setting of partial replication where they are aggravated by the fact that

commands span multiple machines. To lift these limitations, Tempo redesigns the way commands are

typically ordered in leaderless SMR. Tempo assigns a scalar timestamp to each command and executes

commands in the order of these timestamps. To determine when a command can be executed, each

replica waits until the command’s timestamp is stable, i.e., all commands with a lower timestamp are

known. Ordering commands in this way is used in many protocols [10, 21–23]. A key novelty of Tempo is

that both timestamping and stability detection are fault-tolerant and fully decentralized, which preserves the

key benefits of leaderless SMR. This allows Tempo to offer low tail latency even in contended workloads,

thus ensuring predictable performance. Tempo builds on Atlas and thus it also offers low (average)

latency and simple recovery (§3).

In more detail, each Tempo process maintains a local clock from which timestamps are generated.

In the case of full replication, to submit a command a client sends it to the closest process, which acts

as its coordinator. The coordinator computes a timestamp for the command by forwarding it to a quorum

of replicas, each of which makes a timestamp proposal, and taking the maximum of these proposals. If

enough replicas in the quorum make the same proposal, then the timestamp is decided immediately (fast

path). If not, the coordinator does an additional round trip to the replicas to persist the timestamp (slow

path); this may happen when commands are submitted concurrently. Thus, under favorable conditions,

the replica nearest to the client decides the command’s timestamp in a single round trip.

To execute a command, a replica then needs to determine when its timestamp is stable, i.e., it knows

about all commands with lower timestamps. The replica does this by gathering information about which

timestamp ranges have been used up by each replica, so that no more commands will get proposals in
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these ranges. This information is piggy-backed on replicas’ messages, which often allows a timestamp of

a command to become stable immediately after it is decided.

The above protocol easily extends to partial replication: in this case a command’s timestamp is the

maximum over the timestamps computed for each of the partitions it accesses.

We organize this chapter as follows. We start by covering the system model in §4.1. This is followed

by a detailed explanation of the Tempo protocol in §4.2: we cover the single-partition commit protocol in

§4.2.1, the execution protocol in §4.2.2, a comparison with Atlas, EPaxos and Caesar in §4.2.3, the

multi-partition commit protocol in §4.2.5, the recovery protocol in §4.2.6, the liveness protocol in §4.2.7,

and a few optimizations in §4.2.9. In §4.3 we show the correctness of Tempo. We conclude this chapter

with a summary and related work in §4.4.

4.1 System Model

We consider a general version of State-Machine Replication (SMR) (§3.1) where each machine replicates

only a part of the service state – partial SMR (PSMR) [15, 56, 57]. We assume that the service state is

divided into partitions, so that each variable defining the state belongs to a unique partition. Partitions are

arbitrarily fine-grained: e.g., just a single state variable. Each command accesses one or more partitions.

We assume that a process replicates a single partition, but multiple processes may be co-located at the

same machine. Each partition is replicated at A processes, of which at most 5 may fail, where 5 can be

any value such that 1  5  b A�12 c. We write I? for the set of all the processes replicating a partition ?,

I2 for the set of processes that replicate the partitions accessed by a command 2, and I for the set of all

processes.

A PSMR protocol provides a command submit(2), which allows a process 8 to submit a command

2 2 C on behalf of a client. For simplicity, we assume that each command is unique and the process

submitting it replicates one of the partitions it accesses: 8 2 I2 . For each partition ? accessed by 2, the

protocol then triggers an upcall execute? (2) at each process storing ?, asking it to apply 2 to the local

state of partition ?. After 2 is executed by at least one process in each partition it accesses, the process

that submitted the command aggregates the return values of 2 from each partition and returns them to

the client.

PSMR ensures the highest standard of consistency of replicated data – linearizability [6] – which

provides an illusion that commands are executed sequentially by a single machine storing a complete

service state. To this end, a PSMR protocol has to satisfy the following specification. Given two commands

2 and 3 , we write 2 7!8 3 when they access a common partition and 2 is executed before 3 at some

process 8 2 I2 \I3 . We also define the following real-time order: 2 { 3 if the command 2 returns before

the command 3 was submitted. Let 7! = (
–

82I 7!8) [ {. A PSMR protocol ensures the following

properties:
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Validity. If a process executes some command 2, then it executes 2 at most once and only if 2 was

submitted before.

Ordering. The relation 7! is acyclic.

Liveness. If a command 2 is submitted by a non-faulty process or executed at some process, then

it is executed at all non-faulty processes in I2 .

The Ordering property ensures that commands are executed in a consistent manner throughout the

system [58]. For example, it implies that two commands, both accessing the same two partitions, cannot

be executed at these partitions in contradictory orders. As usual, to ensure Liveness we assume that the

network is eventually synchronous (§2.1). In the following sections we present Tempo, which satisfies the

above specification.

PSMR is expressive enough to implement a wide spectrum of distributed applications. In particular,

it directly allows implementing one-shot transactions, which consist of independent pieces of code (such

as stored procedures), each accessing a different partition [15, 59, 60]. It can also be used to construct

general-purpose transactions [15, 61].

Note that SMR is a special case of PSMR where eachmachine replicates the whole service state. In this

case, however, the above PSMR specification is not equivalent to the SMR specification introduced in §3.1.

The SMR specification in §3.1 is parameterized by a conflict relation which only prevents two com-

mands 2 and3 from being executed in contradictory orders by different processes when conflict(2,3).
In particular, it allows two commands reading the same partition to be executed in contradictory orders

(since read commands do not conflict with each other). On the other hand, the PSMR specification

above enforces that any two commands accessing the same partition are executed in the the same order

at all the processes replicating such partition, even when the commands do not conflict. We discuss

the implications of this assumption at the end of §4.2.3. Lastly, the SMR specification in §3.1 does not

include a Liveness property as the PSMR specification above. This is due to the fact that Tempo ensures

Liveness, while Atlas does not.

4.2 The Tempo Protocol

For simplicity, we first present the protocol in the case when there is only a single partition ?, and cover

the general case in §4.2.5. We start with an overview of the single-partition protocol.

To ensure the Ordering property of PSMR, Tempo assigns a scalar timestamp to each command.

Processes execute commands in the order of these timestamps, thus ensuring that processes execute

commands in the same order. To submit a command, a client sends it to a nearby process which acts as

the coordinator for the command. The coordinator is in charge of assigning a timestamp to the command

and communicating this timestamp to all processes. When a process finds out about the command’s

timestamp, we say that the process commits the command. If the coordinator is suspected to have failed,

another process takes over its role through a recovery mechanism (§4.2.6). Tempo ensures that, even in
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case of failures, processes agree on the timestamp assigned to the command, as stated by the following

invariant.

Invariant 4.1 (Timestamp agreement). Two processes cannot commit the same command with different

timestamps.

A coordinator computes a timestamp for a command as follows (§4.2.1). It first forwards the com-

mand to a fast quorum of b A2c + 5 processes, including the coordinator itself. Each process maintains

a Clock? variable. When the process receives a command from the coordinator, it increments Clock?
and replies to the coordinator with the new Clock? value as a timestamp proposal. The coordinator

then takes the highest proposal as the command’s timestamp. If enough processes have made such a

proposal, the coordinator considers the timestamp decided and takes the fast path: it just communicates

the timestamp to the processes, which commit the command. The protocol ensures that the timestamp

can be recovered even if the coordinator fails, thus maintaining Invariant 4.1. Otherwise, the coordinator

takes the slow path, where it stores the timestamp at a slow quorum of 5 + 1 processes using a variant of

Flexible Paxos [35]. This ensures that the timestamp survives any allowed number of failures. The slow

path may have to be taken in cases when commands are submitted concurrently to the same partition

(however, recall that partitions may be arbitrarily fine-grained).

Since processes execute committed commands in the timestamp order, before executing a command

a process must know all the commands that precede it.

Invariant 4.2 (Timestamp stability). Consider a command 2 committed at 8 with timestamp C . Process

8 can only execute 2 after its timestamp is stable, i.e., every command with a timestamp lower or equal

to C is also committed at 8.

To check the stability of a timestamp C (§4.2.2), each process 8 tracks timestamp proposals issued

by other processes. Once the clocks (Clock? ) at any majority of the processes pass C , process 8 can be

sure that new commands will get higher timestamps: these are computed as the maximal proposal from

at least a majority, and any two majorities intersect. Process 8 can then use the information gathered

about the timestamp proposals from other processes to find out about all the commands that have got a

timestamp lower than C .

4.2.1 Commit Protocol

Algorithm 4.1 specifies the Tempo single-partition commit protocol at a process 8 replicating a partition ?.

We assume that self-addressed messages are delivered immediately. A command 2 2 C is submitted by

a client by calling submit(2) at a process 8 that replicates a partition accessed by the command (line 1).

Process 8 then creates a unique identifier id 2 D and a mapping Q from a partition accessed by the

command to the fast quorum to be used at that partition. Because we consider a single partition for now,
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Figure 4.1: Command journey through phases in Tempo.

in what follows Q contains only one fast quorum, Q[?]. Finally, process 8 sends MSubmit(id, 2,Q) to

a set of processes I82 , which in the single-partition case simply denotes {8}.

A command goes through several phases at each process: from the initial phase START, to a COMMIT
phase once the command is committed, and an EXECUTE phase once it is executed. We summarize these

phases and allowed phase transitions in Figure 4.1. A mapping phase at a process tracks the progress

of a command with a given identifier through phases. As before, the name of the phase written in lower

case denotes all the commands in that phase, e.g., start = {id 2 D | phase[id] = START}. We also

define pending as follows: pending = payload [ propose [ recoverp [ recoverr . We summarize in

Table 4.1 the data maintained by each process for a command with identifier id, where O denotes the

set of all partitions. Note that Table 4.1 also contains data that is not specific to any command, such as

Clock? .

Start phase

When a process receives an MSubmit message, it starts serving as the command coordinator (line 5).

The coordinator first computes its timestamp proposal for the command as Clock? + 1. After computing

the proposal, the coordinator sends an MPropose message to the fast quorum Q[?] and an MPayload
message to the remaining processes. Since the fast quorum contains the coordinator, the coordinator

also sends the MPropose message to itself. As mentioned earlier, self-addressed messages are delivered

immediately.

Payload phase

Upon receiving an MPayload message (line 9), a process simply saves the command payload in a

mapping cmd and sets the command’s phase to PAYLOAD. It also saves Q in a mapping quorums. This
is necessary for the recovery mechanism to know the fast quorum used for the command (§4.2.6).

Propose phase

Upon receiving an MPropose message (line 12), a fast-quorum process also saves the command payload

and fast quorums, but sets its phase to PROPOSE. Then the process computes its own timestamp proposal
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Algorithm 4.1: Tempo commit protocol at process 8 2 I? .

1 submit(2)
2 pre: 8 2 I2
3 id  next_id(); Q  fast_quorums(8, I2)
4 send MSubmit(id, 2,Q) to I82
5 receive MSubmit(id, 2,Q)

6 C  Clock? + 1
7 send MPropose(id, 2,Q, C) to Q[?]
8 send MPayload(id, 2,Q) to I? \ Q[?]

9 receive MPayload(id, 2,Q)

10 pre: id 2 start
11 cmd[id]  2; quorums[id]  Q; phase[id]  PAYLOAD
12 receive MPropose(id, 2,Q, C) from 9
13 pre: id 2 start
14 cmd[id]  2; quorums[id]  Q; phase[id]  PROPOSE
15 ts[id]  proposal(id, C)
16 send MProposeAck(id, ts[id]) to 9
17 send MBump(id, ts[id]) to I82
18 receive MBump(id, C)
19 pre: id 2 propose
20 bump(C)

21 receive MProposeAck(id, C 9 ) from 89 2 &
22 pre: id 2 propose ^& = quorums[id] [?]
23 C  max{C 9 | 9 2 &}

24 if count(C) � 5 then send MCommit(id, C) to Icmd[id ]
25 else send MConsensus(id, C, 8) to I?
26 receive MCommit(id, C 9 ) from 9 2 % s.t. % contains one process from each partition accessed by cmd[id]
27 pre: id 2 pending
28 ts[id]  max{C 9 | 9 2 %}; phase[id]  COMMIT; bump(ts[id])
29 receive MConsensus(id, C,1) from 9
30 pre: bal[id]  1
31 ts[id]  C ; bal[id]  1; abal[id]  1; bump(C)
32 send MConsensusAck(id,1) to 9

33 receive MConsensusAck(id,1) from &
34 pre: bal[id] = 1 ^ |& | = 5 + 1
35 send MCommit(id, ts[id]) to Icmd[id ]

36 proposal(id,<)

37 C  max(<, Clock? + 1)
38 Detached Detached [ {h8,Di | Clock? + 1  D  C � 1}
39 Attached[id]  {h8, Ci}
40 Clock?  C
41 return C

42 bump(C)
43 C  max(C, Clock?)
44 Detached Detached [ {h8,Di | Clock? + 1  D  C}
45 Clock?  C
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Table 4.1: Tempo variables at a process from partition ?.

cmd[83]  ? 2 C Command
ts[83]  0 2 N Timestamp

phase[83]  START Phase
quorums[83]  ú 2 O õ! P(I?) Fast quorum used per partition

bal[83]  0 2 N Current ballot
abal[83]  0 2 N Last accepted ballot

Clock?  0 2 N Current clock
Detached ú 2 P(I? ⇥N) Detached promises

Attached[83]  ú 2 P(I? ⇥N) Attached promises
Promises ú 2 P(I? ⇥N) Known promises

using the function proposal and stores it in a mapping ts. Finally, the process replies to the coordinator

with an MProposeAck message, carrying the computed timestamp proposal (line 16). Lines 17-20 are

explained later as they are only necessary in the multi-partition case (§4.2.5).

The function proposal takes as input an identifier id and a timestamp< and computes a timestamp

proposal as C = max(<, Clock? + 1), so that C � < (line 37). The function bumps the Clock? to

the computed timestamp C and returns C (lines 40-41); we explain lines 38-39 later. As we have already

noted, the coordinator computes the command’s timestamp as the highest of the proposals from fast-

quorum processes. Proactively taking the max between the coordinator’s proposal< and Clock? + 1 in

proposal ensures that a process’s proposal is at least as high as the coordinator’s; as we explain shortly,

this helps recovering timestamps in case of coordinator failure.

Commit phase

Once the coordinator receives an MProposeAck message from all the processes in the fast quorum

& = Q[?] (line 21), it computes the command’s timestamp as the highest of all timestamp proposals:

C = max{C 9 | 9 2 &}. Then the coordinator decides to either take the fast path (line 24) or the slow path

(line 25). Both paths end with the coordinator sending an MCommit message containing the command’s

timestamp. Since |& | = b A2c + 5 and 5 � 1, we have the following property which ensures that a

committed timestamp is computed over (at least) a majority of processes.

Property 4.1. For any message MCommit(id, C), there is a set of processes& such that |& | � b
A
2c +1

and C = max{C 9 | 9 2 &}, where C 9 is the output of function proposal(id, _) previously called at process

9 2 & .

This property is also preserved if C is computed by a process performing recovery in case of coordinator

failure (§4.2.6).
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Once a process receives an MCommit message (line 26), in the single-partition case it simply saves

the command’s timestamp received in ts[id]. It then moves the command to the COMMIT phase and

bumps the Clock? to the committed timestamp using a function bump (line 42). We next explain the

fast and slow paths, as well as the conditions under which they are taken.

Fast path

The fast path can be taken if the highest proposal C is made by at least 5 processes. This condition is

expressed by count(C) � 5 in line 24, where count(C) = |{ 9 2 & | C 9 = C}|. If the condition holds,

the coordinator immediately sends an MCommit message with the computed timestamp1. The protocol

ensures that, if the coordinator fails before sending all the MCommit messages, C can be recovered as

follows. First, the condition count(C) � 5 ensures that the timestamp C can be obtained without 5 � 1

fast-quorum processes (e.g., if they fail) by selecting the highest proposal made by the remaining quorum

members. Moreover, the proposal by the coordinator is also not necessary to obtain C . This is because

fast-quorum processes only propose timestamps no lower than the coordinator’s proposal (line 15). As

a consequence, the coordinator’s proposal is only the highest proposal C when all processes propose the

same timestamp, in which case a single process suffices to recover C . It follows that C can be obtained

without 5 fast-quorum processes including the initial coordinator by selecting the highest proposal sent

by the remaining (b A2c + 5 ) � 5 = b A2c quorum members. This observation is captured by the following

property.

Property 4.2. Any timestamp committed on the fast path can be obtained by selecting the highest

proposal sent in MPropose by at least b A2c fast-quorum processes distinct from the initial coordinator.

This property is identical to Property 3.2 from Atlas (§3). For this reason, the recovery mechanism

of the two protocols is very similar, as we detail in §4.2.6.

Fast path examples

Table 4.2 contains several examples that illustrate the fast-path condition of Tempo and Property 4.2.

All examples consider A = 5 processes while tolerating 5 faults. We highlight timestamp proposals in

bold. Process A acts as the coordinator and sends 6 in its MPropose message. The fast quorum &

is {A, B, C} when 5 = 1 and {A, B, C, D} when 5 = 2. The example in Table 4.2 0) considers Tempo
5 = 2. Once process B receives the MPropose with timestamp 6, it bumps its Clock? from 6 to 7

and sends a proposal 7 in the MProposeAck. Similarly, processes C and D bump their Clock? from

10 to 11 and propose 11. Thus, A receives proposals CA = 6, CB = 7, CC = 11 and CD = 11, and

computes the command’s timestamp as C = max{6, 7, 11} = 11. Since count(11) = 2 � 5 , the

coordinator takes the fast path, even though the proposals did not match. In order to understand why this

1In line 24 we send the message to I2 even though this set is equal to I? in the single-partition case. We do this to reuse
the pseudocode when presenting the multi-partition protocol in §4.2.5.
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Table 4.2: Tempo examples with A = 5 processes while tolerating 5 faults. Only 4 processes are depicted,
A, B, C and D, with A always acting as the coordinator.

A B C D match fast path
0) 5 = 2 6 6! 7 10! 11 10! 11 7 3
1) 5 = 2 6 6! 7 10! 11 5! 6 7 7
2) 5 = 1 6 6! 7 10! 11 7 3
3) 5 = 1 6 5! 6 1! 6 3 3

is safe, assume that the coordinator fails (before sending all the MCommit messages) along with another

fast-quorum process. Independently of which b A2c = 2 fast-quorum processes survive ({B, C} or {B, D}
or {C, D}), timestamp 11 is always present and can be recovered as stated by Property 4.2. This is not

the case for the example in Table 4.2 1). Here A receives CA = 6, CB = 7, CC = 11 and CD = 6, and again

computes C = max{6, 7, 11} = 11. Since count(11) = 1 < 5 , the coordinator cannot take the fast

path: timestamp 11 was proposed solely by C and would be lost if both this process and the coordinator

fail. The examples in Table 4.2 2) and3) consider 5 = 1, and the fast path is taken in both, independently

of the timestamps proposed. This is because Tempo fast-path condition count(max{C 9 | 9 2 &}) � 5

trivially holds with 5 = 1. Thus, just like Atlas 5 = 1 (§3), Tempo 5 = 1 always takes the fast path.

Note that when the Clock? at a fast-quorum process is below the proposal< sent by the coordinator,

i.e., Clock? < <, the process makes the same proposal as the coordinator. This is not the case

when Clock? � <, which can happen when commands are submitted concurrently to the partition.

Nonetheless, Tempo is able to take the fast path in some of these situations, as illustrated in Table 4.2.

Slow path

When the fast-path condition does not hold, the timestamp computed by the coordinator is not yet guaran-

teed to be persistent: if the coordinator fails before sending all the MCommit messages, a process taking

over its job may compute a different timestamp. To maintain Invariant 4.1 in this case, the coordinator first

reaches an agreement on the computed timestamp with other processes replicating the same partition.

Following the approach of Atlas (§3), this is implemented using single-decree Flexible Paxos [35]. For

each identifier we allocate ballot numbers to processes round-robin, with ballot 8 reserved for the initial

coordinator 8 and ballots higher than A for processes performing recovery. Every process stores for each

identifier id the ballot bal[id] it is currently participating in and the last ballot abal[id] in which it

accepted a consensus proposal (if any). When the initial coordinator 8 decides to go onto the slow path,

it performs an analog of Paxos Phase 2: it sends an MConsensus message with its consensus proposal

and ballot 8 to a slow quorum that includes itself. Following Flexible Paxos, the size of the slow quorum

is only 5 + 1, rather than a majority like in classical Paxos. As usual in Paxos, a process accepts an

MConsensus message only if its bal[id] is not greater than the ballot in the message (line 30). Then

it stores the consensus proposal, sets bal[id] and abal[id] to the ballot in the message, and replies
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to the coordinator with MConsensusAck. Once the coordinator gathers 5 + 1 such replies (line 33), it is

sure that its consensus proposal will survive the allowed number of failures 5 , and it thus broadcasts the

proposal in an MCommit message.

4.2.2 Execution Protocol

A process executes committed commands in the timestamp order. To this end, as required by Invari-

ant 4.2, a process executes a command only after its timestamp becomes stable, i.e., all commands with

a lower timestamp are known. To detect stability, Tempo tracks which timestamp ranges have been used

up by each process using the following mechanism.

Promise collection

A promise is a pair h 9,Di ✓ I?⇥N where 9 is a process andD a timestamp. Promises can be attached to

some command or detached. A promise h 9,Di attached to command 2 means that process 9 proposed

timestamp D for command 2, and thus will not use this timestamp again. A detached promise h 9,Di

means that process 9 will never propose timestamp D for any command.

The function proposal is responsible for collecting the promises issued when computing a timestamp

proposal C (line 36). This function generates a single attached promise for the proposal C , stored in

a mapping Attached (line 39). The function also generates detached promises for the timestamps

ranging from Clock? + 1 up to C � 1 (line 38): since the process bumps the Clock? to C (line 40), it will

never assign a timestamp in this range. Detached promises are accumulated in the Detached set. In

Table 4.2 3), process B generates an attached promise hB, 6i, while C generates hC, 6i. Process B does

not issue detached promises, since its Clock? is bumped only by 1, from 5 to 6. However, process C
bumps its Clock? by 5, from 1 to 6, generating four detached promises: hC, 2i, hC, 3i, hC, 4i, hC, 5i.

Algorithm 4.2 specifies the Tempo execution protocol at a process replicating a partition ?. Period-

ically, each process broadcasts its detached and attached promises to the other processes replicating

the same partition by sending them in an MPromises message (line 47)2. When a process receives

the promises (line 48), it adds them to a set Promises. Detached promises are added immediately. An

attached promise associated with a command identifier id is only added once id is committed or executed

(line 49). Lines 51-52 are necessary for the liveness protocol (§4.2.7).

Stability detection

Tempo determines when a timestamp is stable (Invariant 4.2) according to the following theorem.

Theorem 4.1. A timestamp B is stable at a process 8 if the variable Promises contains all the promises

up to B by some set of processes & with |& | � b
A
2c + 1.

2To minimize the size of these messages, a promise is sent only once in the absence of failures. Promises can be
garbage-collected as soon as they are received by all the processes within the partition.
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Algorithm 4.2: Tempo execution protocol at process 8 2 I? .

46 periodically
47 send MPromises(Detached, Attached) to I?
48 receive MPromises(⇡,�)
49 ⇠  

–
{0 | hid,0i 2 � ^ id 2 commit [ execute}

50 Promises Promises [ ⇡ [⇠
51 for hid, _i 2 � · id 8 commit [ execute
52 send MCommitRequest(id) to Icmd[id ]

53 periodically
54 ⌘  sort{highest_contiguous_promise( 9) | 9 2 I? }
55 ids {id 2 commit | ts[id]  ⌘[ b A2c ]}
56 for id 2 ids ordered by hts[id], idi
57 send MStable(id) to Icmd[id ]
58 wait receive MStable(id) from 89 2 I8cmd[id ]
59 execute? (cmd[id])
60 phase[id]  EXECUTE
61 highest_contiguous_promise( 9)
62 return max{2 2 N | 8D 2 {1 . . . 2} · h 9,Di 2 Promises}

Proof. Assume that at some time g the variable Promises at a process 8 contains all the promises up

to B by some set of processes& with |& | � b
A
2c + 1. Assume further that a command 2 with identifier id

is eventually committed with timestamp C  B at some process 9 , i.e., 9 receives an MCommit(id, C). We

need to show that command 2 is committed at 8 at time g . By Property 4.1 we have C = max{C: | : 2 &0},

where |&0| � b A2c + 1 and C: is the output of function proposal(id, _) at a process : . As & and &0

are majorities, there exists some process ; 2 & \&0. Then this process attaches a promise h;, C;i to 2

(line 39) and C;  C  B. Since the variable Promises at process 8 contains all the promises up to B

by process ; , it also contains the promise h;, C;i. According to line 49, when this promise is incorporated

into Promises, command 2 has been already committed at 8, as required. ⇤

A process periodically computes the highest contiguous promise for each process replicating the

same partition, and stores these promises in a sorted array ⌘ (line 54). It determines the highest stable

timestamp according to Theorem 4.1 as the one at index b A2c in ⌘. The process then selects all the

committed commands with a timestamp no higher than the stable one and executes them in the timestamp

order, breaking ties using their identifiers. After a command is executed, it is moved to the EXECUTE
phase, which ends its journey. Lines 57-58 are explained later as they are only necessary in the multi-

partition case (§4.2.5).

To gain more intuition about the above mechanism, consider Figure 4.2, where A = 3. There we

represent the variable Promises of some process as a table, with processes as columns and timestamps

as rows. For example, a promise hA, 2i is in Promises if it is present in column A, row 2. There are

three sets of promises, - , . and / , to be added to Promises. For each combination of these sets, the

right hand side of Figure 4.2 shows the highest stable timestamp if all the promises in the combination
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3 hB, 3i hC, 3i
2 hA, 2i hB, 2i hC, 2i
1 hA, 1i hB, 1i hC, 1i

A B C
processes

- = {hA, 1i, hC, 3i} ! 0
. = {hB, 1i, hB, 2i, hB, 3i} ! 0
/ = {hA, 2i, hC, 1i, hC, 2i} ! 0
- [ . ! 1
- [ / and . [ / ! 2
- [ . [ / ! 3

Figure 4.2: Stable timestamps for different sets of promises.

are in Promises. For instance, assume that Promises = . [ / , so that the set contains promise

2 by A, all promises up to 3 by B, and all promises up to 2 by C. As Promises contains all promises

up to 2 by the majority {B, C}, timestamp 2 is stable: any uncommitted command 2 must be committed

with a timestamp higher than 2. Indeed, since 2 is not yet committed, Promises does not contain any

promise attached to 2 (line 49). Moreover, to get committed, 2 must generate attached promises at a

majority of processes (Property 4.1), and thus, at either B or C. If 2 generates an attached promise at B,
its coordinator will receive at least proposal 4 from B; if at C, its coordinator will receive at least proposal

3. In either case, and since the committed timestamp is the highest timestamp proposal, the committed

timestamp of 2 must be at least 3 > 2, as required.

In our implementation, promises generated by fast-quorum processes when computing their proposal

for a command (line 36) are piggybacked on the MProposeAck message, and then broadcast by the

coordinator in the MCommit message (omitted from the pseudocode). This speeds up stability detection

and often allows a timestamp of a command to become stable immediately after it is decided. Notice

that when committing a command, Tempo generates detached promises up to the timestamp of that

command (line 28). This helps ensuring the liveness of the execution mechanism, since the propagation

of these promises contributes to advancing the highest stable timestamp.

4.2.3 Timestamp Stability vs Explicit Dependencies

Prior leaderless protocols [9–11, 62] (including Atlas) commit each command 2 with a set of explicit

dependencies dep[2]. In contrast, Tempo does not track explicit dependencies, but uses timestamp

stability to decide when to execute a command. This allows Tempo to ensure progress under synchrony.

Protocols using explicit dependencies do not offer such a guarantee, as they can arbitrarily delay the

execution of a command. In practice, this translates into a high tail latency.

Figure 4.3 illustrates this issue using four commands G1, G2, G3, G4 and A = 3 processes. Process A
submits G1 and G4, B submits G2, and C submits G3. Commands arrive at the processes in the following

order: G1, G4, G3 at A; G2, G1 at B; and G3, G2 at C. Because in this example only process A has

seen command G4, this command is not yet committed. In Tempo, the above command arrival order

generates the following attached promises: {hA, 1i, hB, 2i} for G1, {hA, 2i} for G4, {hB, 1i, hC, 2i} for G2,
and {hC, 1i, hA, 3i} for G3. Commands G1, G2 and G3 are then committed with the following timestamps:

ts[G1] = 2, ts[G2] = 2, and ts[G3] = 3. On the left of Figure 4.3 we present the Promises variable
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Figure 4.3: Comparison between timestamp stability (left) and two approaches using explicit dependencies
(right).

of some process once it receives the promises attached to the three committed commands. Given these

promises, timestamp 2 is stable at the process. Even though command G4 is not committed, timestamp

stability ensures that its timestamp must be greater than 2. Thus, commands G1 and G2, committed with

timestamp 2, can be safely executed. We now show how two approaches that use explicit dependencies

behave in the above example.

Dependency-based ordering

EPaxos [11], BPaxos [62], Gryff [9] and Atlas (§3) order commands based on their committed depen-

dencies. For example, in EPaxos the above command arrival order results in commands G1, G2 and G3
committed with the following dependencies: dep[G1] = {G2}, dep[G2] = {G3}, dep[G3] = {G1, G4}.

These form the dependency graph shown on the top right of Figure 4.3. Since the dependency graph

may be cyclic (as in Figure 4.3), commands cannot be simply executed in the order dictated by the graph.

Instead, the protocol waits until it forms strongly connected components of the graph and then executes

these components one at a time (§3.2.3). The size of such components is a priori unbounded. In fact, as

we show next in §4.2.4, there are pathological scenarios where the protocol continuously commits com-

mands but can never execute them, even under a synchronous network [11, 19]. It may also significantly

delay the execution of committed commands, as illustrated by our example: since command G4 has not

yet been committed, and the strongly connected component formed by the committed commands G1,

G2 and G3 depends on G4, no command can be executed – unlike in Tempo. As we demonstrate in our

experiments (§5), execution delays in such situations lead to high tail latencies.

Dependency-based stability

Caesar [10] associates each command 2 not only with a set of dependencies dep[2], but also with a

unique timestamp ts[2]. Commands are executed in timestamp order, and dependencies are used

to determine when a timestamp is stable, and thus when the command can be executed. For this,

dependencies have to be consistent with timestamps in the following sense: for any two commands 2 and

20, if ts[2] < ts[20], then 2 2 dep[20]. Then the timestamp of a command can be considered stable

when the transitive dependencies of the command are committed.
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Caesar determines the predecessors of a command while agreeing on its timestamp. To this end, the

coordinator of a command sends the command to a quorum together with a timestamp proposal. The

proposal is committed when enough processes vote for it. Assume that in our example A proposes G1
and G4 with timestamps 1 and 4, respectively, B proposes G2 with 2, and C proposes G3 with 3. When B
receives command G1 with timestamp proposal 1, it has already proposed G2 with timestamp 2. If these

proposals succeed and are committed, the above invariant is maintained only if G1 is a dependency of

G2. However, because G2 has not yet been committed, its dependencies are unknown and thus B cannot

yet ensure that G1 is a dependency of G2. For this reason, B must block its response about G1 until G2
is committed. Similarly, command G2 is blocked at C waiting for G3, and G3 is blocked at A waiting for

G4. This situation, depicted in the bottom right of Figure 4.3, results in no command being committed

– again, unlike in Tempo. In fact, as we show next in §4.2.4, the blocking mechanism of Caesar allows

pathological scenarios where commands are never committed at all. Similarly to EPaxos, in practice this

leads to high tail latencies (§5). In contrast to Caesar, Tempo computes the predecessors of a command

separately from agreeing on its timestamp, via background stability detection. This obviates the need for

artificial delays in agreement, allowing Tempo to offer low tail latency (§5).

Limitations of timestamp stability

Protocols that track explicit dependencies are able to distinguish between read and write commands.

In these protocols writes depend on both reads and writes, but reads only have to depend on writes.

The latter feature improves the performance in read-dominated workloads. In contrast, Tempo does not

distinguish between read and write commands (§4.1), so that its performance is not affected by the ratio

of reads in the workload. However, this may result in higher average latencies in certain workloads. We

show in §5 that this limitation does not prevent Tempo from providing similar throughput as the best-case

scenario (i.e., a read-only workload) of protocols such as EPaxos and Janus. We discuss in §6 how this

limitation can be lifted.

4.2.4 Pathological Scenarios

As previously discussed, EPaxos, Caesar and Atlas cannot ensure liveness even under a synchronous

network. In this section we present a pathological scenario that demonstrates this. This scenario is a

continuation of the example presented in the previous section (Figure 4.3 from §4.2.3) and applies to the

three protocols.

Example. Let us consider 3 processes: A, B, C. Assume that all the commands in the example are

conflicting. The (infinite) example we consider is as follows:

• A proposes G1, G4, G7, . . .

• B proposes G2, G5, G8, . . .
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• C proposes G3, G6, G9, . . .

Processes receive these commands in the following order:

A : G1 G4 G3 G7 G6 . . .

B : G2 G1 G5 G4 G8 G7 . . .

C : G3 G2 G6 G5 G9 G8 . . .

EPaxos and Atlas. In EPaxos and Atlas, the command arrival order from above results in the

following dependency sets being committed:

• dep[G1] = {x2}

• dep[G2] = {x3}

• dep[G3] = {G1, x4}

• dep[G4] = {G1, G2, x5}

• dep[G5] = {G2, G3, x6}

• dep[G6] = {G1, G3, G4, x7}

• …

With these committed dependencies, no strongly connected component is ever formed. This is because

G1 depends on G2, which depends on G3, which in turn depends on G4, and so on. As a result, commands

are continuously committed but never executed.

Caesar. In Caesar, timestamps proposed by processes must be unique. This can be ensured e.g. by

assigning timestamps to processes round-robin. For this, assume that in the example above if a process

proposes a command GC , then this command is proposed with timestamp C .

First, process A proposes G1. When command G1 reaches process B, B has already proposed G2.

Since G2 was proposed with a timestamp higher than the timestamp proposed for G1 (i.e., 2 > 1), the reply

about G1 is blocked on G2 until G2 is committed. However, when G2 reaches C, C has already proposed

G3, and thus command G2 is blocked on G3. This keeps going forever, as depicted in the diagram below

(where denotes ”blocked on”).

A : G1 G4  G3 G7  G6 . . .

B : G2  G1 G5  G4 G8  G7 . . .

C : G3  G2 G6  G5 G9  G8 . . .

As a result, no command is ever committed. This liveness issue is due to Caesar’s wait condition [10].
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4.2.5 Multi-Partition Protocol

We now explain how the single-partition protocol can be extended to handle commands that accessmultiple

partitions. This is achieved by submitting a multi-partition command at each of the partitions it accesses.

Once committed with some timestamp at each of these partitions, the command’s final timestamp is

computed as the maximum of the committed timestamps. A command is executed once it is stable at all

the partitions it accesses. As previously, commands are executed in the timestamp order.

In more detail, when a process 8 submits a multi-partition command 2 on behalf of a client (line 1),

it sends an MSubmit message to a set I82 . For each partition ? accessed by 2, the set I82 contains a

responsive replica of ? close to 8 (e.g., located in the same data center). The processes in I82 then serve

as coordinators of 2 in the respective partitions, following the steps in Algorithm 4.1. This algorithm ends

with the coordinator in each partition sending an MCommit message to I2 , i.e., all processes that replicate

a partition accessed by 2 (lines 24 and 35; note that I2 < I? because 2 accesses multiple partitions).

Hence, each process in I2 receives as many MCommits as the number of partitions accessed by 2. Once

this happens (line 26), the process computes the final timestamp of the multi-partition command as the

highest of the timestamps committed at each partition (line 28), moves the command to the COMMIT
phase and bumps the Clock? to the computed timestamp, generating detached promises.

Similarly to the single-partition case, commands are executed using the handler at line 53. This

detects command stability using Theorem 4.1, which also holds in the multi-partition case. The handler

signals that a command 2 is stable at a partition by sending an MStable message (line 57). Once such

a message is received from all the partitions3 accessed by 2, the command is executed. The exchange

of MStable messages follows the approach in [49] and ensures the real-time order constraint in the

Ordering property of PSMR (§4.1). Figure 1 in [49] contains an example (that also applies to Tempo)
showing why this message exchange is necessary.

Example

Figure 4.4 shows an example of Tempo 5 = 1 with A = 5 and 2 partitions. Only 3 processes per partition

are depicted. Partition G is replicated at A, B and C, and partition ~ at F, G and H. Processes with

the same color (e.g., B and G) are located nearby each other (e.g., in the same machine or data center).

Process A and F are the coordinators for some command that accesses the two partitions. At partition G , A
computes 6 as its timestamp proposal and sends it in an MPropose message to the fast quorum {A, B, C}
(the downward arrows in Figure 4.4). These processes make the same proposal, and thus the command

is committed at partition G with timestamp 6. Similarly, at partition ~, F computes 10 as its proposal and

sends it to {F, G, H}, all of which propose the same. The command is thus committed at partition ~ with

timestamp 10. The final timestamp of the command is then computed as max{6, 10} = 10.

3When a command accesses a single partition, these are messages from a process to itself, and thus, are processed
immediately.
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Figure 4.4: Example of Tempo with 2 partitions. Next to each process we show the clock updates upon
receiving MPropose messages and, in dashed boxes, the updates upon receiving MCommit or MBump
messages (whichever occurs first).

Assume that the stable timestamp at A is 5 and at F is 9 when they compute the final timestamp for

the command. Once F receives the attached promises by the majority {F, G, H}, timestamp 10 becomes

stable at F. This is not the case at A, as the attached promises by the majority {A, B, C} only make

timestamp 6 stable. However, processes A, B and C also generate detached promises up to timestamp

10 when receiving the MCommit messages for the command (line 28). When A receives these promises,

it declares timestamp 10 stable. This occurs after two extra message delays: an MCommit from A and F
to B and C, and then MPromises from B and C back to A. Since the command’s timestamp is stable at

both A and F, once these processes exchange MStable messages, the command can finally be executed

at each.

Faster stability

Tempo avoids the above extra delays by generating the detached promises needed for stability earlier

than in the MCommit handler. For this, after processing an MPropose message, a process also sends

an MBump message containing its proposal to the nearby processes that replicate a partition accessed

by the command (line 17). Upon receiving this message (line 18), a process bumps its Clock? to the

timestamp in the message, generating detached promises.

In Figure 4.4, MBump messages are depicted by horizontal dashed arrows. When G computes its

proposal 10, it sends an MBump message containing 10 to process B. Upon reception, B bumps its

Clock? to 10, generating detached promises up to that value. The same happens at A and C. Once the

detached promises by the majority {A, B, C} are known at A, the process again declares 10 stable. In this

case, A receives the required detached promises in two message delays earlier than when these promises

are generated via MCommit. This strategy often reduces the number of message delays necessary to

execute a multi-partition command. However, it is not always sufficient (e.g., imagine that H proposed 11

instead of 10), and thus, the promises issued in the MCommit handler (line 28) are still necessary for

multi-partition commands.
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4.2.6 Recovery Protocol

The initial coordinator of a command at some partition ? may fail or be slow to respond, in which case

Tempo allows a process to take over its role and recover the command’s timestamp. We now describe

the protocol Tempo follows in this case, which is inspired by that of Atlas (§3). We detail the main

differences between the two recovery mechanisms at the end of this section. Tempo recovery protocol

at a process 8 2 I? is given in Algorithm 4.3. We use initial? (id) to denote a function that extracts

from the command identifier id its initial coordinator at partition ?.

A process takes over as the coordinator for some command with identifier id by calling function

recover(id) at line 63. Only a process with id 2 pending can take over as a coordinator (line 64): this

ensures that the process knows the command payload and fast quorums. In order to find out if a decision

on the timestamp of id has been reached in consensus, the new coordinator first performs an analog of

Paxos Phase 1. It picks a ballot number it owns higher than any it participated in so far (line 65) and

sends an MRec message with this ballot to all processes.

As is standard in Paxos, a process accepts an MRec message only if the ballot in the message is

greater than its bal[id] (line 68). If bal[id] is still 0 (line 69), the process checks the command’s

phase to decide if it should compute its timestamp proposal for the command. If id 2 payload (line 70),

the process has not yet computed a timestamp proposal, and thus it does so at line 71. It also sets

the command’s phase to RECOVER-R, which records that the timestamp proposal was computed in the

MRec handler. Otherwise, if id 2 propose (line 73), the process has already computed a timestamp

proposal at line 15. In this case, the process simply sets the command’s phase to RECOVER-P, which
records that the timestamp proposal was computed in the MPropose handler. Finally, the process sets

bal[id] to the new ballot and replies with an MRecAck message containing the timestamp (ts), the
command’s phase (phase) and the ballot at which the timestamp was previously accepted in consensus

(abal). Note that abal[id] = 0 if the process has not yet accepted any consensus proposal. Also

note that lines 70 and 73 are exhaustive: these are the only possible phases when id 2 pending

(line 68) and bal[id] = 0 (line 69), as the remaining phases RECOVER-P and RECOVER-R (recall that

pending = payload [ propose [ recoverp [ recoverr) have non-zero ballots due to line 75.

In the MRecAck handler (line 77), the new coordinator computes the command’s timestamp given

the information in the MRecAck messages and sends it in an MConsensus message to all processes.

As in Flexible Paxos, the new coordinator waits for A � 5 such messages. This guarantees that, if a

quorum of 5 +1 processes accepted an MConsensus message with a timestamp (which could have thus

been sent in an MCommit message), the new coordinator will find out about this timestamp. To maintain

Invariant 4.1, if any process previously accepted a consensus proposal (line 79), by the standard Paxos

rules [7, 35], the coordinator selects the proposal accepted at the highest ballot (line 80).

If no consensus proposal has been accepted before, the new coordinator first computes at line 83 the

set of processes � that belong both to the recovery quorum & and the fast quorum quorums[id] [?].
Then, depending on whether the initial coordinator replied and in which handler the processes in � have
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Algorithm 4.3: Tempo recovery protocol at process 8 2 I? .

63 recover(id)
64 pre: id 2 pending
65 1  8 + A (b bal[id ]�1

A c + 1)
66 send MRec(id,1) to I?
67 receive MRec(id,1) from 9
68 pre: id 2 pending ^ bal[id] < 1
69 if bal[id] = 0 then
70 if id 2 payload then
71 ts[id]  proposal(id, 0)
72 phase[id]  RECOVER-R
73 else if id 2 propose then
74 phase[id]  RECOVER-P
75 bal[id]  1
76 send MRecAck(id, ts[id], phase[id], abal[id],1) to 9

77 receive MRecAck(id, C 9 , ph 9 , ab 9 ,1) from 89 2 &
78 pre: bal[id] = 1 ^ |& | = A � 5
79 if 9: 2 & · ab: < 0 then
80 let : be such that ab: is maximal
81 send MConsensus(id, C: ,1) to I?
82 else
83 �  & \ quorums[id] [?]
84 B  initial? (id) 2 � _ 9: 2 � · ph: = RECOVER-R
85 & 0  if B then & else �
86 C  max{C 9 | 9 2 & 0}
87 send MConsensus(id, C,1) to I?

computed their timestamp proposal, there are two possible cases that we describe next.

1) The initial coordinator replies or some process in � has computed its timestamp proposal in the

MRec handler (B = tAD4, line 84). In either of these two cases the initial coordinator could not have

taken the fast path. If the initial coordinator replies (initial? (id) 2 � ), then it has not taken the

fast path before receiving the MRec message from the new one, as it would have id 2 commit [

execute and the MRec precondition requires id 2 pending (line 68). It will also not take the fast path

in the future, since when processing the MRec message it sets the command’s phase to RECOVER-P
(line 74), which invalidates the MProposeAck precondition (line 22). On the other hand, even if the initial

coordinator replies but some fast-quorum process in � has computed its timestamp proposal in the MRec
handler, the fast path will not be taken either. This is because the command’s phase at such a process

is set to RECOVER-R (line 72), which invalidates the MPropose precondition (line 13). Then, since the

MProposeAck precondition requires a reply from all fast-quorum processes, the initial coordinator will

not take the fast path. Thus, in either case, the initial coordinator never takes the fast path. For this

reason, the new coordinator can choose the command’s timestamp in any way, as long as it maintains

Property 4.1. Since |& | = A � 5 � A � b A�12 c � b
A
2c +1, the new coordinator has the output of proposal
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by a majority of processes, and thus it computes the command’s timestamp with max (line 86), respecting

Property 4.1.

2) The initial coordinator does not reply and all processes in � have computed their timestamp proposal

in the MPropose handler (B = f0;B4, line 84). In this case the initial coordinator could have taken the

fast path with some timestamp C = max{C 9 | 9 2 quorums[id] [?]} and, if it did, the new coordinator

must choose that same timestamp C . Given that the recovery quorum & has size A � 5 and the fast

quorum quorums[id] [?] has size b A2c + 5 , the set of processes � = & \ quorums[id] [?] contains
at least b A2c processes (distinct from the initial coordinator, as it did not reply). Furthermore, recall that

the processes from � have the command’s phase set to RECOVER-P (line 74), which invalidates the

MPropose precondition (line 13). Hence, if the initial coordinator took the fast path, then each process

in � must have processed its MPropose before the MRec of the new coordinator, and reported in the latter

the timestamp from the former. Then using Property 4.2, the new coordinator recovers C by selecting the

highest timestamp reported in � (line 86).

4.2.7 Liveness Protocol

Tempo liveness protocol in Algorithm 4.4 builds on the Paxos liveness protocol presented in §2.3. Tempo
uses ⌦, the leader election failure detector [28], which ensures that from some point on, all correct

processes nominate the same correct process as the leader (§2.1). Tempo runs an instance of ⌦ per

partition ?. In Algorithm 4.4, leader? denotes the current leader nominated for partition ? at process

8. We say that leader? stabilizes when it stops changing at all correct processes in ?. Tempo also

uses I82 , which we call the partition covering failure detector (§4.2.5). At each process 8 and for every

command 2, I82 returns a set of processes � such that, for every partition ? accessed by 2, � contains one

process close to 8 that replicates ?. Eventually, I82 only returns correct processes. In the definition above,

the closeness between replicas is measured in terms of latency. Returning close replicas is needed for

performance but not necessary for the liveness of the protocol. Both I82 and ⌦ are easily implementable

under our assumption of eventual synchrony (§4.1).

For every command id with id 2 pending (line 88), process 8 is allowed to invoke recover(id)

at line 91 only if it is the leader of partition ? according to leader? . Furthermore, it only invokes

recover(id) at line 91 if it has not yet participated in consensus (i.e., bal[id] = 0) or, if it did, the

consensus was lead by another process (i.e., bal_leader(bal[id]) < 8). In particular, process 8 does

not invoke recover(id) at line 91 if it is the leader of bal[id] (i.e., if bal_leader(bal[id]) = 8). This

ensures that process 8 does disrupt a recovery lead by itself.

For a leader to make progress with some MRec(id,1) message, it is required that A � 5 processes

(line 78) have their bal[id] < 1 (line 68). This may not always be the case because before the vari-

able leader? stabilizes, any process can invoke recover(id) at line 91 if it thinks it is the leader. To

help the leader select a high enough ballot, and thus ensure it will make progress, we introduce a new

message type, MRecNAck. A process sends an MRecNAck(id, bal[id]) at line 95 when it receives
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Algorithm 4.4: Tempo liveness protocol at process 8 2 I? .

88 periodically
89 for id 2 pending
90 send MPayload(id, cmd[id], quorums[id]) to Icmd[id ]
91 if leader? = 8 ^ (bal[id] = 0 _ bal_leader(bal[id]) < 8) then
92 recover(id)

93 receive MConsensus(id, _,1) or MRec(id,1) from 9
94 pre: bal[id] > 1
95 send MRecNAck(id, bal[id]) to 9

96 receive MRecNAck(id,1)
97 pre: leader? = 8 ^ bal[id] < 1
98 bal[id]  1
99 recover(id)

100 receive MCommitRequest(id) from 9
101 pre: id 2 commit [ execute
102 send MPayload(id, cmd[id], quorums[id]) to 9
103 send MCommit(id, ts[id]) to 9

104 bal_leader(1)

105 return 1 � A ⇤
j
1�1
A

k

an MConsensus(id, _,1) or MRec(id,1) (line 93) with some ballot number 1 lower than its bal[id]
(line 94). When process 8 receives an MRecNAck(id,1) with some ballot number 1 higher than its

bal[id], if it is still the leader (line 97), it joins ballot 1 (line 98) and invokes recover(id) again. This

results in process 8 sending a new MRec with some ballot higher than 1 lead by itself. As only leader? is

allowed to invoke recover(id) at line 91 and line 97, and since leader? eventually stabilizes, this mech-

anism ensures that eventually the stable leader will start a high enough ballot in which enough processes

will participate.

Given a command 2 with identifier id submitted by a correct process, a correct process in I2 can

only commit 2 if it has id 2 pending and receives an MCommit(id, _) from every partition accessed

by 2 (line 26). Next, we let ? be one such partition, and we explain how every correct process in I2
eventually has id 2 pending and receives such an MCommit(id, _) sent by some correct process in I? .

We consider two distinct scenarios.

In the first scenario, some correct process 8 2 I? already has id 2 commit [ execute. This

scenario is addressed by adding two new lines to the MPromises handler: line 51 and line 52. Since

id 2 commit[ execute at 8, by Property 4.1 there is a majority of processes in each partition @ accessed

by 2 that have called proposal(id, _), and have thus generated a promise attached to id. Moreover,

given that at most 5 processes can fail, at least one process from such a majority is correct. Let one of

these processes be 9 2 I@. Due to line 47, process 9 periodically sends an MPromises message that

contains a promise attached to id. When a process : 2 I@ receives such a message, if id is neither

committed nor executed locally (line 51), : sends an MCommitRequest(id) to I2 . In particular, it
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sends such message to process 8 2 I? . As id 2 commit [ execute at process 8, when 8 receives the

MCommitRequest(id) (line 100), it replies with an MPayload(id, _, _) and an MCommit(id, _). In

this way, any process : 2 I@ will eventually have id 2 pending and receive an MCommit(id, _) sent by
some correct process in I? , as required.

In the second scenario, no correct process in I? has id 2 commit [ execute but some correct

process in I2 has id 2 pending. Due to line 90, such process sends an MPayload message to I2 .

Thus, every correct process in I? eventually has id 2 pending. In particular, this allows leader? to

invoke recover(id) and the processes in I? to react to the MRec(id, _) message by leader? . Hence,
after picking a high enough ballot using the mechanism described earlier, leader? will eventually send

an MCommit(id, _) to I2 , as required.
Finally, note that calling recover(id) for any command id such that id 2 pending (line 88) can

disrupt the fast path. This does not affect liveness but may degrade performance. Thus, to attain good

performance, any implementation of Tempo should only start calling recover(id) after some reasonable

timeout on id. In order to save bandwidth, the sending of MCommitRequest messages can also be

delayed in the hope that such information will be received anyway.

Atlas recovery vs Tempo recovery As described in §3.2.2, there are situations in Atlas where the

payload of some command id is lost and some other command id0 depends on it (i.e., id 2 dep[id0]).
In this case, without the information about id, the execution mechanism of Atlas will simply block, and

thus the protocol has to allow id to be committed even though its payload is lost. Since Atlas may have

to commit commands with unknown payloads, the protocol introduces a special noOp command. As a

result, a command can be committed with the payload initially supplied by the client or noOp when such

payload is lost. It is due to this that Atlas includes the command payload into MConsensus messages,

thus ensuring that a unique payload will be chosen (Invariant 3.1). Tempo does not require a special

noOp command, and thus, MConsensus messages do not have to include the command payload. The

noOp command is avoided by Tempo because its execution mechanism can never block (as long as at

most 5 processes have failed). We prove this formally in §4.3.

The second difference between the two recovery mechanisms is in the preconditions of recover(id)

and MRec. As we just mentioned, Atlas has to allow any command to be recovered, and thus

recover(id) has no precondition. Tempo, however, requires that id 2 pending (lines 64 and 68),

which ensures that the payload of the command being recovered is known by the process performing

recovery.

Finally, the two protocols track whether a fast-quorum process has seen the initial message by the

coordinator (MCollect in Atlas and MPropose in Tempo) in different ways. In Atlas a fast-quorum

process has seen the initial message when the fast quorum is known (line 50 in Algorithm 3.2), and in

Tempo when the command phase at the process is RECOVER-P (line 84 in Algorithm 4.3). This is mostly

a cosmetic difference and Atlas could have also used phases to track this information.
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4.2.8 Properties

In §3.2.4 we have analyzed two properties of the Atlas protocol: its complexity and fault-tolerance. Such

analysis also applies to the Tempo protocol. We now discuss two other properties of Tempo.

Genuineness and parallelism

The above protocol is genuine: for every command 2, only the processes in I2 take steps to order and exe-

cute 2 [39]. This is not the case for existing leaderless protocols for partial replication, such as Janus [15].

With a genuine protocol, partitioning the application state brings scalability in parallel workloads: an in-

crease in the number of partitions (and thereby of available machines) leads to an increase in throughput.

When partitions are colocated in the same machine, the message passing in Algorithm 4.1 and Algo-

rithm 4.2 can be optimized and replaced by shared-memory operations. Since Tempo runs an indepen-

dent instance of the protocol for each partition replicated at the process, the resulting protocol is highly

parallel.

4.2.9 Optimizations

In §3.2.5, we have introduced two techniques that can improve the performance of Atlas: non-fault

tolerant reads (NFR) and avoiding a fast-quorum straggler. Tempo can also be improved using similar

strategies. In this section we describe how the first one is implemented in Tempo.

Non-fault-tolerant reads. Similarly to Atlas, we observe that single-partition reads can be handled

in a more efficient way. In Algorithm 4.1, when proposing a timestamp for a command, a process al-

ways bumps Clock? (line 37) and generates an attached vote with its proposal (line 39). With NFR,
single-partition reads do not have attached votes and only bump clocks if detached votes are needed for

timestamp stability. For this, we change the Clock? + 1 in lines 6 and 37 to be simply Clock? and

eliminate line 39 where attached votes are generated. Because a read never has votes attached to it, it

will never block a later command, even if it is not fully executed, e.g., when its coordinator fails (or hangs).

For this reason, and like Atlas, single-partition reads can be executed in a non-fault-tolerant manner.

More precisely, for some read with identifier id, the coordinator selects a plain majority as a fast quorum

(line 3), independently of the value of 5 . Then, at the end of the PROPOSE phase, it immediately commits

id, setting ts[id] to the maximum of all timestamp proposals returned by this quorum (line 23).

4.3 Correctness

In this section we prove that the Tempo protocol satisfies the PSMR specification (§4.1). We omit the

trivial proof of Validity, and first prove Ordering and then Liveness.

Consider the auxiliary invariants below:
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Invariant 4.3. Assume MConsensus(_, _,1) has been sent by process 8. Then 1 = 8 or 1 > A .

Invariant 4.4. Assume MConsensus(id, C,1) and MConsensus(id, C 0,10) have been sent. If 1 = 10,

then C = C 0.

Invariant 4.5. Assume MRecAck(_, _, _,01,1) has been sent by some process. Then 01 < 1.

Invariant 4.6. Assume MConsensusAck(id,1) and MRecAck(id, _, _,01,10) have been sent by

some process. If 10 > 1, then 1  01 < 10 and 01 < 0.

Invariant 4.7. If id 8 start at some process then the process knows cmd[id] and quorums[id].

Invariant 4.8. If a process executes the MConsensusAck(id, _) or MRecAck(id, _, _, _, _) handlers
then id 8 start.

Invariant 4.9. Assume a slow quorum has received MConsensus(id, C,1) and responded to it with

MConsensusAck(id,1). For any MConsensus(id, C 0,10) sent, if 10 > 1, then C 0 = C .

Invariant 4.10. Assume MCommit(id, C) has been sent at line 24. Then for any MConsensus(id, C 0, _)
sent, C 0 = C .

Invariants 4.3-4.8 easily follow from the structure of the protocol. Next we prove the rest of the

invariants. Then we prove Invariant 4.1 and Property 4.1 (the latter is used in the proof of Theorem 4.1).

Finally, we introduce and prove two lemmas that are then used to prove the Ordering property of the PSMR

specification.

Proof of Invariant 4.9. Assume that at some point

(*) a slow quorum has received MConsensus(id, C,1) and responded to it with

MConsensusAck(id,1).

We prove by induction on 10 that, if a process 8 sends MConsensus(id, C 0,10) with 10 > 1, then C 0 = C .

Given some 1⇤, assume this property holds for all 10 < 1⇤. We now show that it holds for 10 = 1⇤. We

make a case split depending on the transition of process 8 that sends the MConsensus message.

First, assume that process 8 sends MConsensus at line 25. In this case, 10 = 8. Since 10 > 1, we

have 1 < 8. But this contradicts Invariant 4.3. Hence, this case is impossible.

The remaining case is when process 8 sends MConsensus during the transition at line 77. In this

case, 8 has received

MRecAck(id, C 9 , _, ab 9 ,10)

from all processes 9 in a recovery quorum &' . Let abmax = max{ab 9 | 9 2 &'
}; then by Invariant 4.5

we have abmax < 10.
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Since the recovery quorum &' has size A � 5 and the slow quorum from (*) has size 5 + 1, we get

that at least one process in &' must have received the MConsensus(id, C,1) message and responded

to it with MConsensusAck(id,1). Let one of these processes be ; . Since 10 > 1, by Invariant 4.6 we

have ab; < 0, and thus process 8 executes line 81. By Invariant 4.6 we also have 1  ab; and thus

1  abmax.

Consider an arbitrary process : 2 &' , selected at line 80, such that ab: = abmax. We now prove

that C: = C . If abmax > 1, then since abmax < 10, by induction hypothesis we have C: = C , as required. If

abmax = 1, then since abmax < 0, process: has received some MConsensus(id, _, abmax) message. By

Invariant 4.4, process : must have received the same MConsensus(id, C, abmax) received by process ; .

Upon receiving this message, process: stores C in ts and does not change this value at line 71: abmax < 0

and thus bal[83] cannot be 0 at line 69. Thus process : must have sent MRecAck(id, C: , _, abmax,10)

with C: = C , which concludes the proof. ⇤

Proof of Invariant 4.10. Assume MCommit(id, C) has been sent at line 24. Then the process that

sent this MCommit message must be process initial? (id). Moreover, we have that for some fast

quorum mapping &� such that initial? (id) 2 &�
[?]:

(*) every process 9 2 &�
[?] has received MPropose(id, 2,&� ,<) and responded with

MProposeAck(id, C 9 ) such that C = max{C 9 | 9 2 &�
[?]}.

We prove by induction on 1 that, if a process 8 sends MConsensus(id, C 0,1), then C 0 = C . Given some

1⇤, assume this property holds for all 1 < 1⇤. We now show that it holds for 1 = 1⇤.

First note that process 8 cannot send MConsensus at line 25, since in this case we would have

8 = initial? (id), and initial? (id) took the fast path at line 24. Hence, process 8 must have sent

MConsensus during the transition at line 77. In this case, 8 has received

MRecAck(id, C 9 , ph 9 , ab 9 ,1)

from all processes 9 in a recovery quorum &' .

If MConsensus is sent at line 81, then we have ab: > 0 for the process : 2 &' selected at line 80.

In this case, before sending MRecAck, process : must have received

MConsensus(id, C: , ab:)

with ab: < 1. Then by induction hypothesis we have C 0 = C: = C . This establishes the required.

If MConsensus is not sent in line 81, then we have ab: = 0 for all processes : 2 &' . In this case,

process 8 sends MConsensus in line 87. Since the recovery quorum &' has size A � 5 and the fast

quorum &�
[?] from (*) has size b A2c + 5 , we have that

(**) at least b A2c processes in &' are part of &�
[?] and thus must have received

MPropose(id, 2,&� ,<) and responded to it with MProposeAck.
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Let � be the set of processes &'
\ &�

[?] (line 83). By our assumption, process initial? (id)
sent an MCommit(id, C) at line 24, and thus id 2 commit [ execute at this process. Then due to the

check id 2 pending at line 68, this process did not reply to MRec. Hence, initial? (id) is not part

of the recovery quorum, i.e., initial? (id) 8 � at line 84. Moreover, since the initial coordinator takes

the fast path at line 24, all fast quorum processes have set phase[83] to PROPOSE when processing

the MPropose from the coordinator (line 14). Due to this and to the check at line 73, their phase[id]
value is set to RECOVER-P in line 74, and thus, we have that all fast quorum processes that replied report

RECOVER-P in their MRecAck message, i.e., 8: 2 � · ph: = RECOVER-P at line 84. It follows that

the condition at line 84 does not hold and thus the quorum selected is � (line 85). By Property 4.2, the

fast-path proposal C = max{C 9 | 9 2 &�
[?]} can be obtained by selecting the highest proposal sent in

MPropose by any b A2c fast-quorum processes (excluding the initial coordinator). By (**), and since all

processes: 2 � have ab: = 0, then all processes in � replied with the timestamp proposal that was sent to

the initial coordinator. Thus, by Property 4.2 we have C = max{C 9 | 9 2 &�
[?]} = max{C 9 | 9 2 � } = C 0,

which concludes the proof. ⇤

Proof of Invariant 4.1. Assume that MCommit(id, C) and MCommit(id, C 0) have been sent. We

prove that C = C 0.

Note that, if an MCommit(id, C) was sent at line 103, then some process sent an MCommit(id, C)
at line 24 or line 35. Hence, without loss of generality, we can assume that the two MCommit under

consideration were sent at line 24 or at line 35. We can also assume that the two MCommit have been

sent by different processes. Only one process can send an MCommit at line 24 and only once. Hence, it

is sufficient to only consider the following two cases.

Assume first that both MCommit messages are sent at line 35. Then for some 1, a slow quorum has

received MConsensus(id, C,1) and responded to it with MConsensusAck(id,1). Likewise, for some10,

a slow quorum has received MConsensus(id, C 0,10) and responded to it with MConsensusAck(id,10).
Assume without loss of generality that 1  10. If 1 < 10, then C 0 = C by Invariant 4.9. If 1 = 10, then

C 0 = C by Invariant 4.4. Hence, in this case C 0 = C , as required.

Assume now that MCommit(id, C) was sent at line 24 and MCommit(id, C 0) at line 35. Then for some

1, a slow quorum has received MConsensus(id, C 0,1) and responded to it with MConsensusAck(id,1).
Then by Invariant 4.10, we must have C 0 = C , as required. ⇤

Proof of Property 4.1. Assume that MCommit(id, C) has been sent. We prove that there exists a

quorum b& with |b& | � b
A
2c+1 andbC such that C = max{bC 9 | 9 2 b&}, where each process 9 2 b& computes

itsbC 9 in either line 15 or line 71 using function proposal and sends it in either MProposeAck(id,bC 9 ) or
MRecAck(id,bC 9 , _, 0, _).

The computation of C occurs either in the transition at line 23 or at line 86. If the computation of C

occurs at line 23, then the quorum & defined at line 22 is a fast quorum with size b A2c + 5 . In this case,

we let b& = & and 89 2 & ·bC 9 = C 9 , where C 9 is defined at line 21. Since |& | = b A2c + 5 and 5 � 1,
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we have |b& | � b
A
2c + 1, as required. If the computation of C occurs at line 86, we have two situations

depending on the condition at line 84. Let � be the set computed at line 83, i.e., the intersection between

the recovery quorum& (defined at line 77) and the fast quorum quorums[id] [?] (quorums[id] [?] is
known by Invariant 4.7 and Invariant 4.8). First, consider the case in which the condition at line 84 holds.

In this case, we let b& = & and 89 2 & ·bC 9 = C 9 , where C 9 is defined at line 77. Since |& | = A � 5

and 5  b A�12 c, we have |b& | � b
A
2c + 1, as required. Now consider the case in which the condition at

line 84 does not hold. Given that the fast quorum size is b A2c + 5 and the size of the recovery quorum

& is A � 5 , we have that � contains at least (b A2c + 5 ) � 5 = b A2c fast quorum processes. Note that,

since C is computed at line 86, we have that 8: 2 & · ab: = 0 (line 79). For this reason, each process

in & had bal[id] = 0 (line 69) when it received the first MRec(id, _) message. Moreover, as each

process in � reported RECOVER-P (i.e., 8: 2 � · ph: = RECOVER-P at line 84), the phase[id] was

PROPOSE (line 73) when the process received the first MRec(id, _) message. It follows that each of

these processes computed their timestamp proposal in the MPropose handler at line 15 (not in the

MRec handler at line 71). Thus, these processes have proposed a timestamp at least as high as the one

from the initial coordinator. In this case, we let b& = � [ {initial? (id)}, 89 2 � ·bC 9 = C 9 where C 9 is

defined at line 77 andbCinitial? (id) be the timestamp sent by initial? (id) in its MProposeAck(id, _)
message. Since |� | � b A2c and initial? (id) 8 � , we have |b& | � b

A
2c + 1, as required. ⇤

We now prove that Tempo ensures Ordering. First we introduce the following two lemmas. Consider

two commands 2 and 20 submitted during a run of Tempo with identifiers id and id0. By Invariant 4.1, all

the processes agree on the final timestamp of a command. Let C and C 0 be the final timestamp of 2 and

20, respectively.

Lemma 4.1. If 2 7!8 20 then hC, 83i < hC 0, 830i.

Proof. By contradiction, assume that 2 7!8 20, but hC 0, 830i < hC, 83i. Consider the point in time when

8 executes 2 (line 60). By Validity, this point in time is unique. Since 2 7!8 20, process 8 cannot have

executed 20 before this time. Process 8 may only execute 2 once it is in ids (line 56). Hence, C  ⌘[ b A2c ]

(line 55). From Theorem 4.1, C is stable at 8. As hC 0, 830i < hC, 83i, we get C 0  C , and by Invariant 4.2,

id0 2 commit [ execute at 8. Then, since C 0  C  ⌘[ b A2c ] and 2
0 cannot have been executed before

2 at process 8, we have id0 2 ids. But then as hC 0, 830i < hC, 83i, 20 is executed before 2 at process 8

(line 56). This contradicts 2 7!8 20. ⇤

Lemma 4.2. If 2 7! 20 then whenever a process 8 executes 20, some process has already executed 2.

Proof. Assume that a process 8 executed 20. By the definition of 7!, either 2 { 20, or 2 7! 9 20 at

some process 9 . Assume first that 2 { 20. By definition of {, 2 returns before 20 is submitted. This

requires that command 2 is executed at least at one replica for each of the partition it accesses. Hence,

at the time 20 is executed at 8, command 2 has already executed elsewhere, as required.
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Assume now that 2 7! 9 20 for some process 9 . Then 2 and 20 access a common partition, say ?,

and by Lemma 4.1, hC, 83i < hC 0, 830i. Consider the point in time g when 8 executes 20. Before this,

according to line 58, process 8 receives an MStable(id0) message from some process : 2 I? . Let

g0 < g be the moment when : sends this message by executing line 57. According to line 56, id0

must belong to ids at time g0. Hence, C 0  ⌘[ b A2c ] (line 55). From Theorem 4.1, C 0 is stable at : . As

hC, 83i < hC 0, 830i, we have C  C 0, and by Invariant 4.2, id 2 commit [ execute holds at time g0 at

process : . Since C  C 0  ⌘[ b A2c ], either : already executed 2, or id 2 ids. In the latter case, because

hC, 83i < hC 0, 830i, command 2 is executed before : sends the MStable message for id0. Hence, in both

cases, 2 is executed no later than g0 < g , as required. ⇤

Proof of Ordering. By Validity, cycles of size one are prohibited. By Lemma 4.2, so are cycles of size

two or greater. ⇤

We now prove the Liveness property of the PSMR specification (§4.1). For simplicity, we assume that

links are reliable, i.e., if a message is sent between two correct processes then it is eventually delivered.

In the following, we use dom(<) to denote the domain of mapping< and img(<) to denote its image.

We let id be the identifier of some command 2, so that I2 denotes the set of processes replicating the

partitions accessed by 2.

Lemma 4.3. Assume that id 2 commit [ execute at some process from a partition ?. Then id 2

dom(Attached) and id 8 start at some correct process from each partition @ accessed by command

2.

Proof. Since id 2 commit [ execute at a correct process from ?, an MCommit(id, _) has been sent

by some process from each partition accessed by 2 (line 26). In particular, it has been sent by some

process from partition @. By Property 4.1, there is a majority of processes & from partition @ that called

proposal(id, _), generating a promise attached to id (line 39), and thus, have id 2 dom(Attached).
Since at most 5 of these processes can fail, at least some process 9 2 & is correct. Moreover, since

9 has generated a promise attached to id, it is impossible to have id 2 start at 9 (see the MPropose
and MRec handlers where proposal(id) is called). Thus id 2 dom(Attached) and id 8 start at 9 , as

required. ⇤

Lemma 4.4. Assume that id 8 start at some correct process 8 from partition ?. Then eventually

every correct process 9 from some partition @ accessed by command 2 has id 8 start and receives an

MCommit(id, _) sent by some process from partition ?.

Proof. We consider the case where id 8 commit [ execute never holds at 9 (if it does hold, then 9

has id 8 start and received an MCommit(id, _) sent by some process from partition ?, as required).
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First, assume that id 2 commit[ execute eventually holds at process 8. By Lemma 4.3, there exists

a correct process : from @ that has id 2 dom(Attached). Due to line 47, : continuously sends an

MPromises message to all the processes from @, including 9 . Note that, since id 2 dom(Attached)
at : , this MPromises message contains a promise attached to id. Once 9 receives such a message,

since it has id 8 commit [ execute (line 51), it sends an MCommitRequest(id) to I2 (line 52), and

in particular to process 8. Since id 2 commit [ execute at 8 (line 101), process 8 replies with an

MPayload(id, _, _) and MCommit(id, _). Once 9 processes such messages, it has id 8 start and

received an MCommit(id, _) by process 8, a correct process from partition ?, as required.

Now, assume that id 2 pending holds forever at process 8. Consider the moment g0 when the vari-

able leader? stabilizes. Let process ; be leader? . Assume that id 8 commit [ execute at processes

8 and ; forever (the case where it changes to id 2 commit [ execute at process 8 is covered above; the

case for process ; can be shown analogously). Due to line 89, process 8 sends an MPayload(id, _, _)
message to I2 (line 90), in particular to ; and 9 . Once ; processes this message, it has id 2 pending for-

ever (since we have assumed that id 8 commit [ execute at ; forever). Once 9 processes this message,

it has id 8 start, as required. We now prove that eventually process ; sends an MCommit(id, _) to 9 .

First, we show by contradiction that the number of MRec(id, _) messages sent by ; is finite. Assume

the converse. After g0, due to the check leader? = ; at line 91 and at line 97, only process ; sends

MRec(id, _) messages. Since MRec(id, _) messages by processes other than ; are all sent before g0,

their number is finite. For this same reason, the number of MConsensus(id, _, _) messages by pro-

cesses other than ; are also finite. Thus, each correct process joins only a finite number of ballots that

are not owned by ; . It follows that the number of MRec(id, _) messages sent by ; at line 92 because it

joined a ballot owned by other processes (i.e., when bal_leader(bal[id]) < ; ) is finite. (Note that a

single MRec(id, _) can be sent here due to bal[id] = 0, as process ; sets bal[id] to some non-zero

ballot when processing its first MRec(id, _) message). For an MRec(id, _) to be sent at line 99, process

; has to receive an MRecNAck(id,1) with bal[id] < 1 (line 97). If bal_leader(1) < ; , the number

of such MRecNAck messages is finite as the number of MRec(id, _) and MConsensus(id, _, _) by pro-
cesses other than ; are finite. If bal_leader(1) = ; , the MRecNAck(id,1) must be in response to an

MRec(id,1) or MConsensus(id, _,1) by ; . Note that when ; sends such a message, it sets bal[id] to
1. For this reason, process ; cannot have bal[id] < 1, and hence this case is impossible. Thus, there is

a point in time g1 � g0 after which the condition at line 97 does not hold at process ; , and consequently,

process ; stops sending new MRec(id, _) messages at line 99, which yields a contradiction.

We have established above that id 2 pending at process ; forever. We now show that process ;

sends at least one MRec(id, _) message. Since id 2 pending forever, process ; executes line 91 for this

id infinitely many times. If ; does not send at least one MRec(id, _) at this line it is because bal[id] > 0

and bal_leader(bal[id]) = ; forever. If so, we have two cases to consider depending on the value of

bal[id]. In the first case, bal[id] = ; at ; forever. In this case, process ; took the slow path by sending

to I? an MConsensus message with ballot ; (line 25). We now have two sub-cases. If any process sends

an MRecNAck to process ; (line 95), this will make process ; send an MRec(id, _) (line 99), as required.
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Otherwise, process ; will eventually gather 5 +1 MConsensusAck messages and commit the command.

As we have established that id 2 pending at process ; forever, this sub-case is impossible. In the second

case, we eventually have bal[id] > ; . Since from some point on, bal_leader(bal[id]) = ; at ; , this

means that this process sends an MRec(id, bal[id]) (line 75), as required.

We have now established that process ; sends a finite non-zero number of MRec(id, _) messages.

Let 1 be the highest ballot for which process ; sends an MRec(id,1) message. We now prove that ; even-

tually sends an MCommit(id, _) to I2 , in particular to 9 . Given that at most 5 processes can fail, there

are enough correct processes to eventually satisfy the preconditions of MRecAck and MConsensus.
First we consider the case where the preconditions of MRecAck and MConsensus eventually hold

at process ; . Since the precondition of MRecAck eventually holds, process ; eventually sends an

MConsensus(id, _,1). Since the precondition of MConsensus eventually holds, process ; eventually

sends an MCommit(id, _) to 9 , as required. Consider now the opposite case where the preconditions

of MRecAck or MConsensusAck never hold at process ; . Since there are enough correct processes

to eventually satisfy these preconditions, the fact that they never hold at process ; implies that there

is some correct process 9 with bal[id] > 1 (otherwise 9 would eventually reply to process ; ). Thus,

the precondition of MRecNAck holds at 9 (line 94), which causes 9 to send an MRecNAck(id,10) with

10 = bal[id] > 1 to ; . When ; receives such a message, it sends a new MRec(id,100) with some ballot

100 > 10 (line 99). It follows that 100 > 10 > 1, which contradicts the fact that 1 is the highest ballot sent

by ; , and hence this case is impossible. ⇤

Lemma 4.5. Assume that id 8 start at some correct process 8 from some partition ? accessed by

command 2. Then eventually id 2 commit [ execute at every correct process 9 2 I2 .

Proof. For 2 to be committed at process 9 , 9 has to have id 8 start and to receive an MCommit(id, _)
from each of the partitions accessed by 2 (line 26). We prove that process 9 eventually receives such

a message from each of these partitions. To this end, fix one such partition @. By Lemma 4.4, it is

enough to prove that some correct process from partition @ eventually has id 8 start. By contradiction,

assume that all the correct processes from partition @ have id 2 start forever. We have two scenarios

to consider. First, consider the scenario where ? = @. But this contradicts the fact that id 8 start at

process 8. Now, consider the scenario where ? < @. In this scenario we consider two sub-cases. In the

first case, eventually id 2 commit [ execute at process 8. By Lemma 4.3, there is a correct process

from each partition accessed by 2, in particular from partition @, that has id 8 start, which contradicts

our assumption. In the second case, id 2 pending at process 8 forever (the case where it changes to

id 2 commit [ execute is covered above). Due to line 90, process 8 periodically sends an MPayload
message to the processes in partition@. Once this message is processed, the correct processes in partition

@ will have id 2 payload. Since partition @ contains at least one correct process, this also contradicts

our assumption. ⇤
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Definition 4.1. We define the set of proposals issued by some process 8 2 I? as LocalPromises8 =
img(Attached) [ Detached.

Lemma 4.6. For each process 8 2 I? we have that h8, Ci 2 LocalPromises8 ) (8D 2 {1, . . . , C} ·

h8,Di 2 LocalPromises8).

Proof. Follows trivially from Algorithm 4.1 and Algorithm 4.2. ⇤

Lemma4.7. Consider a command 2 with an identifier id and the final timestamp C , and assume that id 8

start at some correct process in I2 . Then at every correct process in I2 , eventually variable Promises
contains all the promises up to C by some set of processes ⇠ with |⇠ | � b A2c + 1.

Proof. By Lemma 4.5, eventually id 2 commit[execute at all the correct processes in I2 . Consider a

point in time g0 when this happens and fix a process 8 2 I2 from a partition ? that has id 2 commit. Let

⇠ be the set of correct processes from partition ?, MPromises(⇡0
9 ,�

0
9 ) be the MPromises message

sent by each process 9 2 ⇠ in the next invocation of line 47 after g0, and ids =
–
{dom(�0

9 ) | 9 2 ⇠}.

Due to line 28, by Lemma 4.6 we have that

(*) 89 2 ⇠,D 2 {1, . . . , C} · h 9,Di 2 img(�0
9 ) [ ⇡

0
9 .

Note that, for each id0 2 ids, we have id0 8 start at some correct process (in particular, at the processes

9 that sent such id0 in their MPromises(⇡0
9 ,�

0
9 ) messages). Thus, by Lemma 4.5, there exists g1 � g0

at which ids ✓ commit [ execute at process 8. Let MPromises(⇡1
9 ,�

1
9 ) be the MPromises message

sent by each process 9 2 ⇠ in the next invocation of line 47 after g1. Since at process 8 we have that

ids ✓ commit [ execute, once all these MPromises messages are processed by process 8, for each

9 2 ⇠ we have that
–
{�1

9 [id
0
] | id0 2 ids} ✓ Promises and ⇡1

9 ✓ Promises at process 8. Given

the definition of ids and since �0
9 ✓ �1

9 and ⇡
0
9 ✓ ⇡1

9 , we also have that img(�0
9 ) ✓ Promises and

⇡0
9 ✓ Promises at process 8. From (*), it follows that 89 2 ⇠,D 2 {1, . . . , C} · h 9,Di 2 Promises at

process 8. ⇤

Lemma 4.8. Consider a command 2 with an identifier id, and assume that id 8 start at some correct

process in I2 . Then every correct process 8 2 I2 eventually executes 2.

Proof. Consider a command 2 with an identifier id, and assume that id 8 start at some correct

process in I2 . By contradiction, assume further that some correct process 8 2 I2 never executes 2. Let

20 = 2, id0 = id, and C0 be the timestamp assigned to 2. Then by Lemma 4.7, eventually in every

invocation of the periodic handler at line 53, we have ⌘  C0. By Lemma 4.5 and since 8 never executes

20, eventually 8 has id0 2 commit. Hence, either 8 never executes another command 21 preceding 20
in ids, or 8 never receives an MStable(id0) message from some correct process 9 eventually indicated
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by I820 . The latter case can only be due to the loop in the handler at line 53 being stuck at an earlier

command 21 preceding 20 in ids at 9 . Hence, in both cases there exists a command 21 with an identifier

id1 and a final timestamp C1 such that hC1, id1i < hC0, id0i and some correct process 81 2 I21 never

executes 21 despite eventually having id1 2 commit. Continuing the above reasoning, we obtain an

infinite sequence of commands 20, 21, 22, . . . with decreasing timestamp-identifier pairs such that each of

these commands is never executed by some correct process. But such a sequence cannot exist because

the set of timestamp-identifier pairs is well-founded. This contradiction shows the required. ⇤

Proof of Liveness. Assume that some command 2 with identifier id is submitted by a correct process

or executed at some process. We now prove that it is eventually executed at all correct processes in I2 .

By Lemma 4.7 and Lemma 4.8, it is enough to prove that eventually some correct process in I2 has

id 8 start. First, assume that id is submitted by a correct process 8. Due to the precondition at line 2,

8 2 I2 . Then phase[id] is set to PROPOSE at process 8 when 8 sends the initial MPropose message,

and thus id 8 start as required. Assume now that id is executed at some (potentially faulty) process. By

Lemma 4.3, there exists some correct process in I2 with id 8 start, as required. ⇤

4.4 Summary and Related Work

Timestamping (aka sequencing) is widely used in distributed systems. In particular, many storage systems

orchestrate data access using a fault-tolerant timestamping service [63–67], usually implemented by a

leader-based SMR protocol [7, 8]. As reported in prior works, the leader is a potential bottleneck and is

unfair with respect to client locations [11, 62, 68, 69]. To sidestep these problems, leaderless protocols

order commands in a fully decentralized manner. Early protocols in this category, such as Mencius [20],

rotated the role of leader among processes. However, this made the system run at the speed of the slowest

replica. More recent ones, such as EPaxos [11] and its follow-ups (Atlas (§3), BPaxos [62] and Gryff [9]),

order commands by agreeing on a graph of dependencies (§4.2.3). Tempo builds on one of these follow-

ups, Atlas (§3), which leverages the observation that correlated failures in geo-distributed systems are

rare [4] to reduce the quorum size in leaderless SMR. As we demonstrate next in our evaluation (§5),

dependency-based leaderless protocols exhibit high tail latency and suffer from bottlenecks due to their

expensive execution mechanism.

Timestamping has been used in two previous leaderless SMR protocols. Caesar [10], which we

discussed in §4.2.3, suffers from similar problems to EPaxos. Clock-RSM [21] timestamps each newly

submitted command with the coordinator’s clock, and then records the association at 5 +1 processes using

consensus. Stability occurs when all the processes indicate that their clocks have passed the command’s

timestamp. As a consequence, the protocol cannot transparently mask failures, like Tempo; these have

to be handled via reconfiguration. Its performance is also capped by the speed of the slowest replica,

similarly to Mencius [20].
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Partial replication is a common way of scaling services that do not fit on a single machine. Some

partially replicated systems use a central node to manage access to data, made fault-tolerant via standard

SMR techniques [70]. Spanner [4] replaces the central node by a distributed protocol that layers two-

phase commit on top of Paxos. Granola [23] follows a similar schema using Viewstamped Replication [71].

Other approaches rely on atomic multicast, a primitive ensuring the consistent delivery of messages across

arbitrary groups of processes [39, 57]. Atomic multicast can be seen as a special case of PSMR as defined

in §4.1.

Janus [15] generalizes EPaxos to the setting of partial replication. Its authors shows that for a large

class of applications that require only one-shot transactions, Janus improves upon prior techniques, in-

cluding MDCC [72], Tapir [73] and 2PC over Paxos [4]. Our experiments in §5 demonstrate that Tempo
significantly outperforms Janus due to its use of timestamps instead of explicit dependencies. Unlike

Janus, Tempo is also genuine, which translates into better performance.

Summary This chapter presented Tempo, the first leaderless SMR protocol to determine the order of

command execution solely based on scalar timestamps. Tempo cleanly separates timestamp assignment

from detecting timestamp stability, and such mechanisms easily extend to partial replication. As we

show next in our evaluation (§5), Tempo’s approach enables the protocol to offer low tail latency and

high throughput even under contended workloads, thus addressing the performance issue inherent to the

execution mechanism of EPaxos and Atlas.
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5

Performance Evaluation

In this chapter we experimentally evaluate Atlas and Tempo. In §5.1 we assess whether assuming small

values of 5 is acceptable for geo-distribution. In §5.2 we cover the protocols considered in this evaluation

and the framework we developed to implement and evaluate them. In §5.3 we detail our sets of testbeds

and benchmarks. Finally, we study the performance of Atlas and Tempo in full replication (§5.4) and

partial replication deployments (§5.5).

5.1 Bounds on Failures

In a practical deployment of Atlas and Tempo, a critical parameter is the number of concurrent site

failures 5 the protocol can tolerate. It has been reported that concurrent site failures are rare in geo-

distributed systems [4]. However, the value of 5 should also account for asynchrony periods during which

sites cannot communicate due to link failures: if more than 5 sites are unreachable in this way, Atlas
and Tempo may block for the duration of the outage. We have thus conducted an experiment on Google

Cloud Platform (GCP) to check that assuming small values of 5 is still appropriate when this is taken into

account.

Our experiment ran for 3 months (October 2018 – January 2019) among 17 sites, the maximal

number of sites available in GCP at the time. During the experiment, sites ping each other every second

(in the spirit of [17] but on a much larger scale). A link failure occurs between two sites when one

of them does not receive a reply after a (tunable) amount of time. Figure 5.1 reports the number of

simultaneous link failures for various timeout thresholds. Note that no actual machine crash occurred

during the campaign of measurements.

When the timeout threshold is set to 10s, only two events occur, each with a single link failure. Fixing

the threshold to either 3s or 5s leads to two events of noticeable length. During the first event, occurring

on November 7, the links between the Canadian site and five others are slow for a couple of hours. During

the second event, on December 8, the links between Taiwan and seven other sites are slow for around

two minutes.

From the data collected, we compute the value of 5 as the smallest number of sites : such that,
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Figure 5.1: The number of simultaneous link failures among 17 sites in GCP when varying the timeout
threshold.

at any point in the experiment, crashing : sites would cover all the slow links. During our experiment,

timeouts were reported on the links incident to at most a single site (e.g., the Canadian site on November

7). Thus, we may conclude that 5  1 held during the whole experiment, even with the smallest timeout

threshold. In other words, Atlas and Tempo with 5 � 1 would have been always responsive during this

3-month experiment. In light of these results, we evaluate deployments of Atlas and Tempo in which 5

is set to 1, 2 or 3.

5.2 Protocols and Implementation

We compare Atlas and Tempo with Flexible Paxos (FPaxos) [35], EPaxos [11], Caesar [10] and

Janus [15]. All these protocols have been briefly covered in §2. FPaxos is a variant of Paxos that,

like Tempo, allows selecting the allowed number of failures 5 separately from the replication factor A : it

uses quorums of size 5 + 1 during normal operation and quorums of size A � 5 during recovery. EPaxos,

Atlas and Caesar are leaderless protocols that track explicit dependencies (§4.2.3). EPaxos and Cae-

sar use fast quorums of size b 3A4 c and d
3A
4 e, respectively. Atlas and Tempo use fast quorums of size

b
A
2c + 5 . Atlas also improves the condition EPaxos uses for taking the fast path: e.g., when A = 5 and

5 = 1, Atlas always processes commands via the fast path, unlike EPaxos. To avoid clutter, we exclude

the results for EPaxos from some of our plots with A = 5 since its performance is similar to (but never

better than) Atlas 5 = 1. Janus is a leaderless protocol that generalizes EPaxos to the setting of partial

replication. This protocol is representative of the state-of-the-art for partial replication, and the authors

of Janus have already compared it extensively to prior approaches (including MDCC [72], Tapir [73] and

2PC over Paxos [4]). Janus is based on an unoptimized version of EPaxos whose fast quorums contain

all replicas in a given partition. Our implementation of Janus is instead based on Atlas, which yields

quorums of the same size as Tempo and a more permissive fast-path condition. We call this improved

version Janus*.
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To improve the fairness of our comparison, all protocols are implemented in the same framework

which consists of 35K lines of Rust and contains common functionality necessary to implement and

evaluate the protocols. This includes a networking layer, an in-memory key-value store, dstat moni-

toring, and a set of benchmarks (e.g., YCSB [74]). The source code of the framework is available at

github.com/vitorenesduarte/fantoch.

The framework provides three execution modes: cloud, cluster and simulator. In the cloud mode, the

protocols run in wide area on Amazon EC2. In the cluster mode, the protocols run in a local-area network,

with delays injected between the machines to emulate wide-area latencies. Finally, the simulator runs

on a single machine and computes the observed client latency in a given wide-area configuration. Our

simulator disregards CPU and network bottlenecks: messages between processes are not sent through

sockets, and the time it takes to process each message is not accounted for. Thus, the output of the

simulator represents the best-case latency for a given scenario. Together with dstat measurements,

the simulator allows us to determine if the latencies obtained in the cloud or cluster modes represent the

best-case scenario for a given protocol or are the effect of some bottleneck.

5.2.1 Implementation details

The framework is built using Tokio1, an asynchronous runtime for Rust with the building blocks needed

for writing network applications. Using Tokio, Machines are connected via 16 TCP sockets, each with a

16MB buffer. Sockets are flushed every 5ms or when the buffer is filled, whichever is earlier2.

Key-Value Store

We have implemented a simple in-memory key-value store (KVS) that supports two operations: read (:) to

fetch the content of the KVS record under key : , andwrite(:, E) to update its value to E . SMR commands

can then access one or more keys at a time3. The KVS is used in all our benchmarks (§5.3).

Atlas implementation

Atlas, EPaxos and Janus rely on sets of dependencies which can grow unboundedly large as the system

keeps running. EPaxos [11] solves this issue by compressing a set of dependencies reported by a fast-

quorum processes as a vector clock with A entries, where entry 9 contains the conflicting command with

the highest identifier issued by process 9 . Janus [15] suggests instead that fast-quorum processes report

only the direct dependencies of each command (i.e., the most recent conflicting commands seen by each

fast-quorum process).

We follow this second approach in the implementation of Atlas, EPaxos and Janus. For each key

in the KVS, we maintain two command identifiers: the identifier of the latest read-only command (that

1https://tokio.rs
2fantoch/src/run/task/server/mod.rs
3fantoch/src/kvs.rs
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accessed such key), and the identifier of the latest write command (where latest means the command

most recently seen by the process). In order to allow multiple worker threads to compute and update

conflicts (when handling MCollect and MRec messages), this mapping is maintained in a concurrent

hash-map, and each value (i.e. the identifier of a command) is protected by a read-write lock4. As we

detail next, there are cases in which such values are only read, which explains the use of a read-write lock.

When computing the dependencies of a read-only command with identifier id, for each key accessed

by the command, we first retrieve the identifier of the latest write, and then set the latest read to be id.

When computing the dependencies of a write command with identifier id, for each key accessed by the

command, we first retrieve the latest read and latest write, and then set the latest write to be id. With

NFR (§3.2.5), the latest read is ignored and only the latest write is retrieved. Overall we have that all

commands depend on writes, reads never depend on reads, and writes only depend on reads if NFR is

disabled.

Tempo implementation

We assume that each partition in Tempo contains a single key. When partitions/keys are colocated in the

same machine, the message passing in Tempo is optimized and replaced by shared-memory operations

(§4.2.8). For that, the implementation of Tempo also makes use of a concurrent hash-map that maps

each key to a clock. Instead of protecting this clock with a read-write lock, we use atomics5. When

computing the timestamp proposal of a command, the clock associated with each key accessed by the

command is bumped by one and its new value is fetched. The timestamp proposal is then the highest

new clock value fetched. After this, a new round of bumps occurs, incrementing these clocks up to the

timestamp proposal computed. With NFR (§4.2.9), the timestamp proposal of a single-key read command

is simply the current clock value associated with such key.

5.3 Experimental Setup

Testbeds

One of the testbeds uses Amazon EC2 with c5.2xlarge instances (machines with 8 virtual CPUs and

16GB of RAM). Another testbed is a local cluster where we inject wide-area delays similar to those observed

in EC2. This cluster contains machines with 6 physical cores and 32GB of RAM connected by a 10GBit

network. The experiments in Figure 5.5 and Figure 5.6 are performed in EC2, and most of the remaining

experiments are conducted on the local cluster. We have validated some of the experiments performed

on the local cluster using Google Cloud Platform with an Erlang implementation of Atlas [24].

4fantoch_ps/src/protocol/common/graph/deps/keys/locked.rs
5fantoch_ps/src/protocol/common/table/clocks/keys/atomic.rs
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Table 5.1: Ping latency (milliseconds) between Amazon EC2 sites.

N. California Singapore Canada S. Paulo Hong Kong N. Virginia Tokyo Stockholm Mumbai Oregon
Ireland 141 186 72 183 220 70 204 35 118 127

N. California – 181 78 190 154 59 111 162 231 21
Singapore – 221 338 34 235 77 195 63 162
Canada – 123 202 15 154 114 196 65
S. Paulo – 315 113 267 217 299 180

Hong Kong – 213 51 230 98 144
N. Virginia – 152 105 181 72
Tokyo – 265 136 100

Stockholm – 131 157
Mumbai – 223
Oregon –

Experiments span up to 11 EC2 regions, which we call sites: Ireland (eu-west-1), Northern Califor-

nia (us-west-1), Singapore (ap-southeast-1), Canada (ca-central-1), São Paulo (sa-east-
1). Hong Kong (ap-east-1), Northern Virginia (us-east-1), Tokyo (ap-northeast-1), Stockholm
(eu-north-1), Mumbai (ap-south-1) and Oregon (us-west-2). Table 5.1 shows the average ping

latencies between these sites. When A = 3, the first 3 sites (eu-west-1, us-west-1 and ap-
southeast-1) are used. When A = 5, the next 2 sites (ca-central-1 and sa-east-1) are added,

and so on, until we reach A = 11.

Benchmarks

We first evaluate full replication deployments (§5.4) initially using a microbenchmark where each com-

mand carries a key of 8 bytes and (unless specified otherwise) a payload of 100 bytes. We assume that

commands conflict when they carry the same key. In the case of Tempo, each partition contains a single

key, and thus, commands conflict when they access the same partition. To measure performance under a

conflict rate d of commands, a client chooses key 0 with a probability d , and some unique key otherwise.

We then evaluate Atlas and Tempo with a geo-replicated key-value store under the YCSB workload [74].

Finally, we evaluate Tempo in partial replication deployments (§5.5) using YCSB+T [75], a transactional

version of YCSB. Clients are closed-loop and always deployed in separate machines located in the same

regions as servers.

5.4 Full Replication Deployment

Fast-path likelihood

We first evaluate the benefits of Atlas and Tempo flexible fast-path conditions. To this end, Figure 5.2,

Figure 5.3 and Figure 5.4 compare their fast-path ratio with that of EPaxos for different conflict rates and

values of 5 . We also plot worst-case scenario, i.e., when all conflicting commands take the slow path.

Note that we do not consider 5 = 1 as both Atlas and Tempo always take the fast path in this case (i.e.,
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Figure 5.2: Ratio of fast paths for varying conflict rates with A = 5 sites and 1 client per site.
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Figure 5.3: Ratio of fast paths for varying conflict rates with A = 7 sites and 1 client per site.

the best-case scenario). The system consists of A = 5 sites in Figure 5.2 and A = 7 sites in Figure 5.3,

with 1 client per site. In Figure 5.4 we consider A = 7 sites but with 8 clients per site instead6.

In Figure 5.2, with A = 5, Atlas 5 = 2 and EPaxos have similar fast-path rates up to 40% conflicts.

Even though fast quorum size of Atlas 5 = 2 is larger than EPaxos (4 vs 3), and thus there is a higher

chance of fast-quorum processes reporting more conflicts, Atlas flexible fast-path condition compen-

sates for it, allowing the protocol to offer a similar performance to EPaxos. However, this compensation

disappears with conflict rates higher than 40%, and EPaxos offers a percentage of fast paths higher than

Atlas 5 = 2. In Figure 5.3, the number of sites is increased to A = 7. With this setting, EPaxos and

Atlas 5 = 2 have exactly the same quorum size (5), and thus performance only depends on the fast-path

condition. Due to this, Atlas 5 = 2 is able to provide slightly higher fast-path ratios than EPaxos: these

ratios for Atlas 5 = 2 and EPaxos are respectively 89 and 85 (20% conflicts), 73 and 66 (40% conflicts),

56 and 46 (60% conflicts), and 37 and 25 (80% conflicts).

6We claim in [24] that the results with 1 or more clients are almost identical. This experiment with more clients shows
otherwise.
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Figure 5.4: Ratio of fast paths for varying conflict rates with A = 7 sites and 8 clients per site.

In both Figure 5.2 and Figure 5.3, Tempo 5 = 2 provides noticeable higher fast-path ratios than the

other two protocols. For example, with A = 5 in Figure 5.2, the ratios for Tempo 5 = 2 and Atlas 5 = 2

are respectively 97 and 91 (20% conflicts), 90 and 78 (40% conflicts), 82 and 63 (60% conflicts), 76 and

40 (80% conflicts), and 58 and 4 (100% conflicts). The difference between Tempo and Atlas may be

surprising given that the two protocols have similar flexible fast-path conditions. However, timestamps

reported by fast-quorum processes in Tempo simply count the number of conflicts while dependencies

in Atlas report exactly which conflicts have occurred. By being less precise in the conflicts detected,

Tempo is able to take the fast path more frequently than Atlas7. In Figure 5.4, the number of clients

is increased from 1 to 8. In this case, the superior performance by Tempo is less apparent since all

protocols start approaching the worst-case scenario.

Fairness

We now evaluate a key benefit of leaderless SMR, its fairness: the fairer the protocol, the more uniformly it

satisfies different sites. We compare Tempo, Atlas, Caesar and FPaxos when the protocols are deployed

over 5 EC2 sites under two fault-tolerance levels: 5 2 {1, 2}. We also compare with Caesar which tolerates

5 = 2 failures in this setting. At each site we deploy 512 clients that issue commands with a low conflict

rate (2%).

Figure 5.5 depicts the per-site latency provided by each protocol. The FPaxos leader site is Ireland, as

we have determined that this site produces the fairest latencies. However, even with this leader placement,

FPaxos remains significantly unfair. When 5 = 1, the latency observed by clients at the leader site is 82ms,

while in São Paulo and Singapore it is 267ms and 264ms, respectively. When 5 = 2, the clients in Ireland,

7To gain intuition on why this is the case, consider the following example with 3 conflicting commands G , ~ and I. Process
A receives first command G and then ~, while B receives the commands in the opposite order, first ~ then G . Now a third
command I arrives to these processes. In Atlas, process A reports ~ as a dependency while B reports G . This disagreement
between A and B may force the coordinator of I to take the slow path. This is not the case in Tempo as both A and B will
propose the same timestamp for I (say timestamp 3).
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Figure 5.5: Per-site latency with 5 sites and 512 clients per site under a low conflict rate (2%).

São Paulo and Singapore observe respectively the latency of 142ms, 325ms and 323ms. Overall, the

performance at non-leader sites is up to 3.3x worse than at the leader site.

Due to their leaderless nature, Tempo, Atlas and Caesar satisfy the clients much more uniformly.

With 5 = 1, Tempo and Atlas offer similar average latency – 138ms for Tempo and 155ms for Atlas.
However, with 5 = 2 Tempo clearly outperforms Atlas – 178ms versus 257ms. Both protocols use

fast quorums of size b A2c + 5 . But because quorums for 5 = 2 are larger than for 5 = 1, the size

of the dependency sets in Atlas increases. This in turn increases the size of the strongly connected

components in execution (§4.2.3). Larger components result in higher average latencies, as reported in

Figure 5.5. Caesar provides the average latency of 195ms, which is 17ms higher than Tempo 5 = 2.

Although Caesar and Tempo 5 = 2 have the same quorum size with A = 5, the blocking mechanism of

Caesar delays commands in the critical path (§4.2.3), resulting in slightly higher average latencies. As we

now demonstrate, both Caesar and Atlas have much higher tail latencies than Tempo.

Tail latency

Figure 5.6 shows the latency distribution of various protocols from the 95th to the 99.99th percentiles.

At the top we give results with 256 clients per site, and at the bottom with 512, i.e., the same load as in

Figure 5.5. The protocols are again deployed over 5 EC2 sites.

The tail of the latency distribution in Atlas, EPaxos and Caesar is very long. It also sharply deterio-

rates when the load increases from 256 to 512 clients per site. For Atlas 5 = 1, the 99th percentile

increases from 385ms to 586ms while the 99.9th percentile increases from 1.3s to 2.4s. The trend is

similar for Atlas 5 = 2, making the 99.9th percentile increase from 4.5s to 8s. The performance of

EPaxos lies in between Atlas 5 = 1 and Atlas 5 = 2. This is because with 5 sites EPaxos has the same

fast quorum size as Atlas 5 = 1, but takes the slow path with a similar frequency to Atlas 5 = 2. For

Caesar, increasing the number of clients also increases the 99th percentile from 893ms to 991ms and

99.9th percentile from 1.6s to 2.4s. Overall, the tail latency of Atlas, EPaxos and Caesar reaches sev-

eral seconds, making them impractical in these settings. These high tail latencies are caused by ordering
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Figure 5.6: Latency percentiles with 5 sites and 256 (top) and 512 clients (bottom) per site under a low
conflict rate (2%).

commands using explicit dependencies, which can arbitrarily delay command execution (§4.2.3).

In contrast, Tempo provides low tail latency and predictable performance in both scenarios. When

5 = 1, the 99th, 99.9th and 99.99th percentiles are respectively 280ms, 361ms and 386ms (averaged

over the two scenarios). When 5 = 2, these values are 449ms, 552ms and 562ms. This represents an

improvement of 1.4-8x over Atlas, EPaxos and Caesar with 256 clients per site, and an improvement

of 4.3-14x with 512. The tail of the distribution is much shorter with Tempo due to its efficient execution

mechanism, which uses timestamp stability instead of explicit dependencies.

We have also run the above scenarios in our wide-area single-machine simulator. In this case the

latencies for Atlas, EPaxos and Caesar are up to 30% lower, since CPU time is not accounted for. The

trend, however, is similar. This confirms that the latencies reported in Figure 5.6 accurately capture the

effect of long dependency chains and are not due to a bottleneck in the execution mechanism of the

protocols.

Increasing the load and contention

We now evaluate the performance of the protocols when both the client load and contention increases.

This experiment, reported in Figure 5.7, runs over 5 sites. It employs a growing number of clients per

site (from 32 to 20K), where each client submits commands with a payload of 4KB. The top scenario of

Figure 5.7 uses the same conflict rate as in the previous experiments (2%), while the bottom one uses a

moderate conflict rate of 10%. The heatmap shows the hardware utilization (CPU, inbound and outbound

network bandwidth) for the case when the conflict rate is 2%. For leaderless protocols, we measure the
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hardware utilization averaged across all sites, whereas for FPaxos, we only show this measure at the

leader site.

As seen in Figure 5.7, the leader in FPaxos quickly becomes a bottleneck when the load increases

since it has to broadcast each command to all the processes. For this reason, FPaxos provides the

maximum throughput of only 53K ops/s with 5 = 1 and of 45K ops/s with 5 = 2. The protocol saturates

at around 4K clients per site, when the outgoing network bandwidth at the leader reaches 95% usage.

The fact that the leader can be a bottleneck in leader-based protocol has been reported by several prior

works [11, 62, 68, 69].

FPaxos is not affected by contention and the protocol has identical behavior for the two conflict rates.

On the contrary, Atlas performance degrades when contention increases. With a low conflict rate (2%),

the protocol provides the maximum throughput of 129K ops/s with 5 = 1 and of 127K ops/s with

5 = 28. As observed in the heatmap (bottom of Figure 5.7), Atlas cannot fully leverage the available

hardware. CPU usage reaches at most 59%, while network utilization reaches 41%. This low value is due

to a bottleneck in the execution mechanism: its implementation, which follows the one by the authors

of EPaxos, is single-threaded. Increasing the conflict rate to 10% further decreases hardware utilization:

the maximum CPU usage decreases to 40% and network to 27% (omitted from Figure 5.7). This sharp

decrease is due to the dependency chains, whose sizes increase with higher contention, thus requiring

fewer clients to bottleneck execution. As a consequence, the throughput of Atlas decreases by 36% with

5 = 1 (83K ops/s) and by 48% with 5 = 2 (67K ops/s). As before, EPaxos performance (omitted from

Figure 5.7) lies between Atlas 5 = 1 and 5 = 2.

As we mentioned in §4.2.3, Caesar exhibits inefficiencies even in its commit protocol. For this reason,

in Figure 5.7 we study the performance of Caesar in an ideal scenario where commands are executed

as soon as they are committed. We denote this version by Caesar*. Caesar’s performance is capped

respectively at 104K ops/s with 2% conflicts and 32K ops/s with 10% conflicts. This performance decrease

is due to Caesar’s blocking mechanism (§4.2.3) and is in line with the results reported in [10].

Tempo delivers the maximum throughput of 230K ops/s. This value is independent of the conflict

rate and fault-tolerance level (i.e., 5 2 {1, 2}). Moreover, it is 4.3-5.1x better than FPaxos and 1.8-3.4x
better than Atlas. Saturation occurs with 16K clients per site, when the CPU usage reaches 95%. At

this point, network utilization is roughly equal to 80%. Latency in the protocol is almost unaffected until

saturation.

Increasing the number of sites

We now study a scenario in which the service expands to new locations to serve new clients. The exper-

iment in Figure 5.8 considers 3 to 11 sites, with 256 clients per site under a low conflict rate of 2%. As

before, we deploy the FPaxos leader in Ireland.

8We claim in [24] that in some situations Atlas 5 = 2 is better than Atlas 5 = 1. This was due to an optimization
called Reducing dependencies in the slow path [24] which was incorrectly implemented when the set of dependencies was
compressed using a vector clock (§5.2). This thesis simply disregards this optimization.

79



CHAPTER 5. PERFORMANCE EVALUATION

� �� ��� ��� ���
���

���

���

���

���

���

����
OD
WH
QF
\�
�P

V�
�>O
RJ
�V
FD
OH
@

7HPSR�I� ��
7HPSR�I� ��

$WODV�I� ��
$WODV�I� ��

)3D[RV�I� ��
)3D[RV�I� ��

&DHVDU


� �� ��� ��� ���
WKURXJKSXW��.�RSV�V�

���

���

���

���

���

���

����

OD
WH
QF
\�
�P

V�
�>O
RJ
�V
FD
OH
@

�� ��
�

��
��

��
��

��
��

��
��

��
��
�

��
��
�

7HPSR�I� ��
7HPSR�I� ��
$WODV�I� ��
$WODV�I� ��

)3D[RV�I� ��
)3D[RV�I� ��

&DHVDU


FSX QHWBLQ QHWBRXW

� �� �� �� ���
XWLOL]DWLRQ����

Figure 5.7: Throughput and latency with 5 sites as the load increases from 32 to 20480 clients per site
under a low (2% – top) and moderate (10% – bottom) conflict rate. The heatmap shows the hardware
utilization when the conflict rate is 2%.

First, note that A = 5 is roughly equivalent to the average bars in Figure 5.5. The only noticeable

difference between the two is Atlas 5 = 2: because in Figure 5.5 we deploy two times more clients

(i.e. 512 per site instead of 256), the size of the strongly connected components (§4.2.3) is higher in that

experiment, which results in higher average latencies. In Figure 5.8, with A = 5, EPaxos performance

is similar to that of Atlas 5 = 1 and Tempo 5 = 1 as the protocols have the same fast quorum size.

However, due to its large fast quorums of size b 3A4 c, as A increases, we observe that EPaxos becomes the

protocol offering the worst performance. For example, with A = 11, EPaxos offers a latency 1.4x higher

than Atlas 5 = 1, 1.2x higher than Atlas 5 = 2, 2x higher than Tempo 5 = 1 and 1.8x higher than

Tempo 5 = 2.
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Figure 5.8: Average latency with 256 clients per site under a low conflict rate (2%) while increasing the
number of sites from 3 to 11.

FPaxos performance is closely tied to which sites are considered and which of these sites is chosen

as the leader. To better understand this, consider what happens when we move from A = 7 to A = 9 by

focusing on Table 5.1. With A = 7, the closest sites to Ireland, the site where the FPaxos leader is located,

are Canada and Northern Virginia (both roughly 70ms away). With A = 9, two new sites are added, one

of them being Stockholm. Note, however, that this site is only 35ms away from Ireland. For this reason,

FPaxos 5 = 1 phase 2, which requires contacting only a single site, is two times faster with A = 9 than

with A = 7. As a result, the protocol can offer a average latency lower than the other protocols in this

setting. With 5 = 2, the FPaxos leader has to contact, not one, but two additional processes in FPaxos

5 = 2 phase 2. Although one of these processes is nearby (Stockholm), The distance to the second

closest site to Ireland did not change when we moved from A = 7 to A = 9, which is explains why FPaxos

5 = 2 offers a similar latency in both settings. This was not the case when we moved from A = 5 to

A = 7, where the improvement in the performance of FPaxos 5 = 2 is quite clear. In this case, the added

site responsible for the latency reduction in FPaxos 5 = 2 is Northern Virginia.

As reported before in Figure 5.5, FPaxos remains significantly more unfair than the remaining proto-

cols. For example, with A = 11, FPaxos 5 = 1 provides 75ms at the leader site, but this latency more

than triples at Singapore (241ms), São Paulo (235ms), Hong Kong (275ms) and Tokyo (260ms). On the

other hand, leaderless protocols satisfy clients much more uniformly. For example, for the above sites,

the latencies offered by Tempo 5 = 1 are respectively 169ms, 193ms, 203ms, 166ms and 149ms.

Availability under failures

Figure 5.9 depicts an experiment demonstrating that leaderless protocols are inherently more available

than a leader-driven protocol. The experiment compares Atlas and FPaxos across 3 Google Cloud

Platform (GCP) sites: Taiwan, Finland and South Carolina9. Such configuration tolerates a single site

9Our implementation of the protocols in github.com/vitorenesduarte/fantoch does not include the recovery mecha-
nism of each protocol. For this reason, we report the experiment that was done in the Atlas publication [24] using our Erlang
implementation of Atlas.
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Figure 5.9: The impact of a failure on the throughput of Atlas and FPaxos (3 sites, 5 = 1).

failure, so FPaxos is the same as Paxos. We do not evaluate the remaining protocols (Tempo, EPaxos
and Caesar) as their availability guarantees are similar to those of Atlas in this configuration. Each site

hosts 128 clients. Half of the clients issue commands targeting key 0 and the other half issue commands

targeting a unique key per client. Hence, commands by clients in the first half conflict with each other,

while commands by clients in the second half commute with all commands by a different client.

After 30s of execution, the SMR service is abruptly halted at the Taiwan site, where the Paxos leader

is located. Based on the measurements reported in §5.1, we set the timeout after which a failure is

suspected to 10s for both protocols. Upon detecting the failure, the clients located at the failed site

(Taiwan) reconnect to the closest alive site, South Carolina. In the case of Paxos, the surviving sites

initiate recovery and elect South Carolina as the new leader. In the case of Atlas, the surviving sites

recover the commands that were initially coordinated by Taiwan.

As shown in Figure 5.9, Paxos blocks during the recovery time. In contrast, Atlas keeps executing

commands, albeit at a reduced throughput. The drop in throughput happens largely because the clients

issuing commands on key 0 (50% of all clients) collect as dependencies some of the commands being

recovered (those that also access key 0). The execution of the former commands then blocks until the

latter are recovered. In contrast, the clients at non-failed sites issuing commands with per-client keys

continue to operate as normal. Since commands by these clients commute with those by other clients,

their execution never blocks on the commands being recovered. This means that these clients operate

without disruption during the whole experiment.

The bottom right plot contains the aggregate throughput of the system. Before failure, Atlas is

almost two times faster than Paxos, and operates consistently better during the whole experiment. Note,
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Figure 5.10: YCSB performance for update-heavy (80% writes), balanced (50% writes), read-heavy (20%
writes) and read-only (0% writes) workloads, with A = 7 sites with NFR optimization is enabled. The latency
provided by protocols when the NFR optimization is not enabled is obtained by also considering the light
gray bar on top of each colored bar.

however, that Paxos has a slightly higher throughput at the leader (Taiwan) before the crash, and at the

new leader (South Carolina) after recovery. This is due to the delay between committing and executing

commands in Atlas.

Key-value store service

We now compare Tempo, Atlas and EPaxos when the protocols are applied to a replicated key-value

store (KVS) service. When accessing a KVS record stored under key : , a client executes either command

read (:) to fetch its content, or write(:, E) to update it to value E . To benchmark the performance

of the replicated KVS we use the Yahoo! Cloud Serving Benchmark (YCSB) [74]. We apply four types

of workloads, each with a different mix of read/write operations: update-heavy (w = 80%), balanced

(w = 50%), read-heavy (w = 20%), and read-only (w = 0%), where w represents the percentage of write

commands. The KVS contains 106 records and all workloads select records following a Zipfian distribution

with the default YCSB skew (zipf = 0.99).

In this experiment, Tempo with 5 2 {1, 2}, Atlas with 5 2 {1, 2} and EPaxos are deployed over 7

sites. At each site running the benchmark we execute 256 YCSB client threads. Colored bars represent

the latency provided protocols when the NFR optimization (§3.2.5 and §4.2.9) is enabled. As pointed out

in §3.2.5 and §4.2.9, this optimization accelerates the execution of read commands and reduces their

impact in the protocol stack. With the light gray bar on top of each colored bar we obtain the latency

provided by protocols when the NFR optimization is not enabled.

In the update-heavy workload without NFR, EPaxos offers 676ms whereas Atlas offers 377ms when

5 = 1 and 643ms when 5 = 2. Although EPaxos and Atlas 5 = 2 have the same fast quorum size with

A = 7, due to its more flexible fast-path condition, Atlas is able to provide a slightly better performance

than EPaxos: Atlas 5 = 2 takes the fast path for 58% of commands, while EPaxos does so in 43% of

cases. Tempo 5 = 2 improves on this and is able to take the fast path for 77% of commands, offering

83



CHAPTER 5. PERFORMANCE EVALUATION

]LSI� ���� ]LSI� ���� ]LSI� ���� ]LSI� ���� ]LSI� ���� ]LSI� ����
�

���

���

���

���

����
P
D[
��W
KU
RX
JK
SX
W��
.�
RS
V�
V�

��VKDUGV ��VKDUGV ��VKDUGV

7HPSR
-DQXV
�Z� ���

-DQXV
�Z� ���
-DQXV
�Z� ����

Figure 5.11: Maximum throughput with 3 sites per shard under low (zipf = 0.5) and moderate con-
tention (zipf = 0.7). Three workloads are considered for Janus*: 0% writes (its best-case scenario), 5%
writes and 50% writes.

259ms. This is 2.5x faster than Atlas 5 = 2 and 2.6x faster than EPaxos. Tempo 5 = 1 offers 192ms,

which is 2x faster than Atlas 5 = 1 and 3.5x faster than EPaxos.

Increasing the percentage of read operations improves the performance of Atlas and EPaxos the

protocols because reads do not conflict with other reads. In the read-only workload the performance is

simply determined by the quorum size, since the protocols always take the fast path. In this case, both

EPaxos and Atlas 5 = 2 offer 172ms, while Atlas 5 = 1, which has a smaller fast quorum, offers

133ms. As mentioned in §4.2.3, Tempo does not distinguish between reads and writes. For this reason,

the performance of the protocol is the same in all four workloads.

With the NFR optimization, Tempo 5 = 1, Tempo 5 = 2, Atlas 5 = 1, Atlas 5 = 2 and EPaxos

reduce their latency by up to 30%, 48%, 20%, 30% and 27%, respectively. The highest speedup occurs for

Tempo as, without NFR, the protocol does not optimize the execution of reads (§4.2.3). In the read-only

workload, all the protocols execute commands after a single round trip to the closest majority. In this

case, NFR allows Tempo 5 = 1, Tempo 5 = 2, Atlas 5 = 2 and EPaxos to match the performance of

vanilla Atlas 5 = 1, while maintaining their higher fault-tolerance level. Overall, Tempo 5 = 1, Tempo
5 = 2, Atlas 5 = 1 and Atlas 5 = 2 with NFR are up 3.5x, 2.9x, 2.2x and 1.5x faster than vanilla

EPaxos, respectively.

5.5 Partial Replication Deployment

We now consider a partial replication setting and compare Tempo with Janus* using the YCSB+T bench-

mark [75]. We define a shard as set of several partitions co-located in the same machine. Each partition

contains a single YCSB key. Each shard holds 106 keys and is replicated at 3 sites (Ireland, N. Califor-

nia and Singapore) emulated in our cluster. Clients submit commands that access two keys picked at

random following the YCSB access pattern (a zipfian distribution). In Figure 5.11 we show the maximum

throughput for both Tempo and Janus* under low (zipf = 0.5) and moderate contention (zipf = 0.7).
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For Janus*, we consider 3 YCSB workloads that vary the percentage of write commands (denoted by

w): read-only (w = 0%, YCSB workload C), read-heavy (w = 5%, YCSB workload B), and update-heavy

(w = 50%, YCSB workload A). The read-only workload is a rare workload in SMR deployments. It repre-

sents the best-case scenario for Janus*, which we use as a baseline. Since Tempo does not distinguish

between reads and writes (§4.2.3), we have a single workload for this protocol.

Janus* performance is greatly affected by the ratio of writes and by contention. More writes and higher

contention translate into larger dependency sets, which bottleneck execution faster. This is aggravated

by the fact that Janus* is non-genuine, and thus requires cross-shard messages to order commands.

With zipf = 0.5, increasing w from 0% to 5% reduces throughput by 25-26%. Increasing w from 0% to

50% reduces throughput by 49-56%. When contention increases (zipf = 0.7), the above reductions on

throughput are larger, reaching 36-60% and 87%-94%, respectively.

Tempo provides nearly the same throughput as the best-case scenario for Janus* (w = 0%). Moreover,

its performance is virtually unaffected by the increased contention. This comes from the parallel and

genuine execution brought by the use of timestamp stability (§4.2.5). Overall, Tempo provides 385K

ops/s with 2 shards, 606K ops/s with 4 shards, and 784K ops/s with 6 shards (averaged over the two

zipf values). Compared to Janus* w = 5% and Janus* w = 50%, this represents respectively a speedup

of 1.2-2.5x and 2-16x.
The tail latency issues demonstrated in Figure 5.6 also carry over to partial replication. For example,

with 6 shards, zipf = 0.7 and w = 5%, the 99.99th percentile for Janus* reaches 1.3s, while Tempo
provides 421ms. We also ran the same set of workloads for the full replication case and the speed up of

Tempo with respect to EPaxos and Atlas is similar.
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Conclusions and Future Work

In this thesis we have presented Atlas and Tempo, two SMR protocols tailored to planet-scale systems.

The two protocols follow a leaderless approach, ordering commands in a fully decentralized manner and

thus offering similar quality of service to all clients. These are the first leaderless SMR protocols parame-

terized with the number of allowed failures 5 . Both protocols leverage the fact that concurrent site failures

are rare in planet-scale systems, and are thus optimized for small values of 5 . Atlas and Tempo employ

small fast quorums of size b A2c + 5 and offer a flexible fast-path condition that allows a high percentage

of operations to be processed within a single round trip. When 5 = 1, the protocols always take the

fast path and the fast quorum is a plain majority. Moreover, the protocols employ an optimization called

non-fault-tolerant reads that allows for low-latency linearizable reads with a low impact in the protocol

stack.

Following EPaxos, Atlas orders commands based on explicit dependencies. In theory, EPaxos-like

protocols do not ensure liveness, and in practice they offer high tail latencies. In contrast to previous

leaderless protocols, Tempo determines the order of command execution solely based on scalar times-

tamps, and cleanly separates timestamp assignment from detecting timestamp stability. Moreover, this

mechanism easily extends to partial replication. As shown in our evaluation, Tempo’s approach enables

the protocol to offer low tail latency and high throughput even under contended workloads.

In this thesis we focused on simplifying and improving the performance of leaderless protocols. Below

we list some limitations of our work and possible research avenues that may allow leaderless protocols to

fulfil their potential and finally be adopted by industry practitioners [76].

Linearizablemulti-key reads As mentioned in §4.2.3, Tempo does not currently distinguish between

reads and writes (with the exception of the NFR optimization §4.2.9, which only applies to single-key

reads). Multi-key reads can be natively supported in Tempo if, instead of maintaining a single clock per

key/partition, we maintain two: one for reads, and another for writes [77]. Such strategy would be similar

to how we have implemented the dependency tracking mechanism of Atlas that also distinguishes

between reads and writes (§5.2.1).
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Local sequentially consistent reads (LSCR) Many real-world workloads are read-dominated. Com-

mon SMR protocols that build a total order (like Paxos [7], Raft [8] and Zab [47]) can be adjusted to allow

serving reads locally, without incurring a wide-area round trip. The resulting reads are not linearizable,

but sequentially consistent [78, 79], i.e., they may read stale data. This is acceptable for many applica-

tions [80], and thus, local reads are crucial to the scalability of practical systems such as ZooKeeper [2]

and etcd [81].

Allowing LSCR in leaderless protocols like EPaxos [11], Atlas or Tempo is challenging because

these protocols may deliver commuting write commands in different orders at different replicas. As a

consequence, reading locally from a replica may violate sequential consistency.

We believe that dependency-based protocols like EPaxos and Atlas cannot be easily modified to

support LSCR without great performance costs. These protocols would have to build total order, which

would essentially require setting the conflict rate to 100%. This would result in no fast paths and high tail

latencies due to the issues in their execution mechanism (§4.2.3).

On the other hand, timestamp-based protocols like Tempo can be more easily modified to support

LSCR: if a replica wants to serve a read at timestamp C , it is enough to delay the execution until C becomes

stable at all keys/partitions accessed by the read. For keys/partitions to become stable in a timely fashion

in Tempo, replicas should periodically issue detached promises. However, this may result in a fast-path

ratio decrease.

Tiny fast quorums Tempo can be modified in order to use fast-quorums of size 25 . In this case,

Property 4.1 and Theorem 4.1 would have to be modified to require 5 +1 and A�5 processes, respectively:

this would still ensure that the sets of processes used to compute a timestamp and to decide when a

timestamp is stable always intersect. Further investigations are required to understand if smaller quorums

required for committing a command can compensate for larger quorums required for executing them.
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