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ABSTRACT 10 

The water sensitivity of asphalt mixtures affects the durability of the pavements, and it 11 

depends on several parameters related to its composition (aggregates and binder) and the 12 

production and application processes. One of the main parameters used in the European 13 

Standards to measure the water sensitivity of asphalt mixtures is the indirect tensile 14 

strength ratio (ITSR). Therefore, this work aims to obtain a predictive model of ITSR of 15 

asphalt mixtures using several parameters that affect water sensitivity and assess their 16 

relative importance. The database used to develop the model comprises thirteen 17 

parameters collected from one hundred sixty different asphalt mixtures. Data Mining 18 

techniques were applied to process the data using Multiple Regression, Artificial Neural 19 

Networks, and Support Vector Machines (SVM). The different metrics analysed showed 20 

that SVM is the best predictive model of the ITSR (mean absolute deviation of 0.116, 21 

root mean square error of 0.150 and Pearson correlation coefficient of 0.667). The 22 

application of a sensitivity analysis indicates that the binder content is the parameter that 23 

most influences the water sensitivity of asphalt mixtures (26%). However, this property 24 

depends simultaneously on other factors such as the characteristics of the coarse and fine 25 

aggregates (24.9%), asphalt binder characteristics (19.3%) and the use of additives (10%).  26 
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1. Introduction 29 

Asphalt mixtures with hydrocarbon binder stabilised materials, usually asphalt bitumen, 30 

form the surface layers of flexible pavements [1]. Water sensitivity is a characteristic that 31 

may jeopardise the excellent performance of asphalt mixtures, causing significant losses 32 

in terms of strength and durability [2]. The resistance of asphalt mixtures to water action 33 

depends on several factors: the aggregates, the binder type and content, the volumetric 34 

and grading composition, the layers' thicknesses, and the environmental and traffic 35 

conditions [3]. 36 

Evaluating the water sensitivity of asphalt mixtures is essential in selecting the type and 37 

content of the materials used in the mixtures. Inadequate selection of materials and 38 

incorrect consideration of water sensitivity during mix design can lead to premature 39 

deterioration of the pavement and excessive maintenance and rehabilitation costs [4]. 40 

Therefore, developing an innovative and reliable method that estimates the influence of 41 

different parameters on water sensitivity becomes essential, mainly to assist practitioners 42 

in selecting the mixture composition.  43 

This method must use extensive data obtained through laboratory tests to increase its 44 

reliability. Data mining (DM) aims to capture patterns or models from databases generally 45 

with a large amount of data. They use intelligent algorithms that learn with examples or 46 

experiences and extract valuable knowledge. Several DM algorithms, such as artificial 47 

neural networks (ANN), support vector machines (SVM), regression trees, and multiple 48 

regression (MR), can be used for that purpose.  49 

Considerable developments in computing have led to an exponential increase in data 50 

storage capacity and, consequently, to an enormous amount of stored information in 51 

different fields and activities. Harnessing this information may contain helpful 52 

knowledge. Therefore, the so-called knowledge discovery in databases arose. Data 53 

mining is an intermediate step in the discovery process that encompasses five main steps: 54 

data selection, pre-processing, transformation, DM, and interpretation. DM applies 55 

specific algorithms which extract models from data [5]. 56 
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The literature review confirmed the successful use of DM in many areas related to road 57 

pavements and asphalt materials. Nevertheless, none of the reviewed works assessed the 58 

dependence of water sensitivity on several input factors related to asphalt mixture 59 

composition. The only reference on using DM techniques (ANN and MR) to model water 60 

sensitivity of asphalt mixtures [6] focused on assessing the influence of using 61 

nanoparticles (TiO2) to improve that property. 62 

Some authors used DM techniques (neural network models) to improve the pavement 63 

design concerning rutting prediction [7] and optimise rehabilitation procedures [8]. Hsie 64 

et al. [9] used machine learning algorithms to improve the rehabilitation of asphalt 65 

pavements with overlays. 66 

Flexible pavement performance was assessed by Guo and Hao [10], using a random forest 67 

model to predict its lifetime potential damage. Amin and Amador Jimenez [11] used a 68 

generalised learning algorithm based on a backpropagation neural network that could 69 

model pavement performance without uncertainties. Gu et al. [12] addressed the same 70 

topic, which predicted geogrid-reinforced flexible pavement performance using ANN 71 

models, while Karballaeezadeh et al. [13] forecasted the remaining service life of a road 72 

pavement using an SVM regression model. 73 

The characterisation of flexible pavements is associated with back-analysis procedures, 74 

which are essential to understanding the evolution of the structural properties of the 75 

different layers and subgrade soil. Several authors found DM techniques valuable to 76 

improve this process. Several authors applied ANN [14], SVM regression [15], and an 77 

adaptive neuro-fuzzy inference system (ANFIS) [16] to predict the subgrade resilient 78 

modulus with good results. Maalouf et al. [17] also studied the resilient modulus of 79 

stabilised aggregate bases subjected to seasonal variations with SVM regression 80 

techniques. The elastic modulus and Poisson's ratio of different flexible pavement layers 81 

were also correctly estimated by applying ANN and MR to falling weight deflectometer 82 

data [18, 19]. Gopalakrishnan et al. [20] combined SVM, ANN, decision trees, and meta-83 

algorithms with the same objective.  84 

Several authors successfully applied DM techniques to predict the pavement condition, 85 

namely for crack, rutting and pothole detection, and surface characteristics, mainly to 86 
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predict roughness (IRI). Therefore, regression techniques, ANN, genetic programming 87 

models and machine learning algorithms based on pavement age or distress level [21-23] 88 

were able to predict the pavement condition index (PCI). Majidifard et al. [24] and 89 

Gavilan et al. [25] achieved the same objective using a hybrid model and SVM based on 90 

image processing systems. Other authors [26, 27] assessed the general pavement 91 

diagnostics and distress classification using specific ANN techniques. Several authors 92 

suggested crack detection methods using DM techniques, including RF and a space 93 

invariant neural network [28-30], a combination of ANN with deconvolution layers [31] 94 

and SVM [32]. Different SVM models could predict pavement rutting [33] and detect 95 

potholes [34]. Bashar and Torres-Machi [35] demonstrated the advantages of random 96 

forest, ANN, and SVM in studying IRI. The mean texture depth and the long-term skid 97 

resistance are other surface properties predicted with a convolutional neural network [36] 98 

and ANN combined with genetic algorithms [37]. 99 

There are also rigid pavement studies with data mining. Typical and hybrid ANN 100 

architectures predicted top-down cracking failure in airport rigid pavements [38], roller 101 

compacted concrete pavement flexural and compressive strength [39], and shrinkage and 102 

creep performance of concrete mixtures [40].  103 

After presenting the objectives and results of several studies using data mining to predict 104 

pavement performance and characteristics at a broader scale, the following paragraphs 105 

will focus on the use of DM to estimate the asphalt mixtures' performance. The evaluation 106 

of water sensitivity is closer to this level of analysis, demonstrating the applicability of 107 

such techniques to discover knowledge on this topic. 108 

Bitumen is the component that most influences the behaviour of asphalt mixtures. 109 

Therefore, bitumen modification is currently a common practice to improve its 110 

rheological performance. Data mining could optimise the composition of modified 111 

asphalt binders and predict their rheological properties. Several authors adequately 112 

predicted the dynamic shear modulus and the physical-mechanical properties of base and 113 

modified bitumens using ANN techniques [41-43]. Ziari et al. [44] used MR and ANN 114 

models to investigate the effects of loading frequency and temperature on the rutting 115 

susceptibility of asphalt binders with carbon nanotubes. Other researchers [45, 46] used 116 

different machine learning techniques, such as ANN, MR, regression models and fuzzy 117 
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logic, to optimise the composition of polymer and rubber modified binders and improve 118 

their mechanical characteristics (e.g., dynamic shear modulus and viscosity).  119 

The performance of asphalt mixtures is closely related to their mix design, which led 120 

some authors to use data mining to improve the composition of the mixtures. Some 121 

developed ANN models optimised Marshall [47] and Superpave [48] mix designs and 122 

predicted specific properties of the mixtures (air voids content at different gyrations, 123 

Marshall stability, flow, and quotient). Air voids were also estimated by Androjić and 124 

Marović [49], combining MR and ANN models. Sebaaly et al. [50] developed an 125 

optimisation model based on ANN and a genetic algorithm for automatically selecting 126 

aggregate gradation and binder content of asphalt mixtures. The permeability of asphalt 127 

concrete was also predicted by Tarefder et al. [51] using an ANN model. 128 

Several authors have also successfully predicted the rutting performance of asphalt 129 

mixtures using ANN models [52, 53], genetic programming [54], an accurate 130 

combination of multi expression programming and ANN [55], a combination of MR and 131 

ANN models [56] and ANFIS system [57]. 132 

An adequate evaluation of asphalt mixtures' dynamic or resilient modulus is relevant for 133 

pavement design. Thus, several authors have used DM techniques to forecast this critical 134 

property. With exciting results, SVM, ANN, and deep convolution neural networks, 135 

isolated or combined, have predicted the dynamic modulus of asphalt mixtures [58, 59]. 136 

ANN was also associated with polynomials to indicate the resilient modulus of emulsified 137 

asphalt mixtures with the curing time [60, 61]. Shafabakhsh and Tanakizadeh [62] and 138 

Pourtahmasb et al. [63] correctly estimated the resilient modulus of different asphalt 139 

mixtures under various loading conditions using the ANFIS technique.  140 

Data mining modelled other properties of asphalt mixtures related to their cracking 141 

resistance. ANN and genetic algorithms [64] modelled the fracture energy of asphalt 142 

concrete. SVM regressions predicted the indirect tensile strength (ITS) of foamed 143 

bitumen-stabilised materials [65], and SVM firefly algorithms [66] predicted the fatigue 144 

life of polyethene modified asphalt mixtures.  145 
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The literature review showed that DM techniques are adequate to model different 146 

properties of asphalt mixtures used in road paving, validating the objective of this work. 147 

Thus, using the knowledge discovery in databases through data mining techniques, it was 148 

possible to obtain a credible predictive model of water sensitivity of asphalt mixtures and 149 

the relative importance of each input parameter of this model in the water sensitivity 150 

results. In addition, the lack of previous publications about DM techniques applied to 151 

evaluate the relative importance of several input parameters on the water sensitivity 152 

modelling of asphalt mixtures confirmed the novelty of this work. The DM algorithms 153 

most commonly used in the literature were selected to perform the analysis in this work, 154 

as shown in Section 2. 155 

2. Used DM algorithms 156 

The DM algorithms selected to evaluate the influence of different parameters on the water 157 

sensitivity of asphalt mixtures were artificial neural networks (ANN), support vector 158 

machines (SVM), and multiple regressions (MR). Thus, this work used the mentioned 159 

data mining techniques to generate forecast models of the indirect tensile strength ratio 160 

(ITSR) and applied sensitivity analysis to obtain the relative importance of each 161 

parameter in the water sensitivity of asphalt mixtures. 162 

ANN tries to mimic the functioning of the human brain through an architecture based on 163 

neurons linked to each other. Each link has an associate weight, wi,j (i and j are neurons 164 

or nodes). An activation function that introduces a non-linear component determines the 165 

level of activation of a neuron [67]. This study used the multilayer perceptron architecture 166 

composed of an input layer, a hidden layer with H processing units, and an output layer 167 

(Figure 1). Furthermore, the calculation process used a logistic activation function f, given 168 

by 1/(1+e-x), and the general Equation 1, where xi are the input parameters or nodes, I is 169 

the number of input parameters, and o is the output parameter. 170 

𝑦𝑦� = 𝑤𝑤𝑜𝑜,0 + ∑ 𝑓𝑓�∑ 𝑥𝑥𝑖𝑖𝑤𝑤𝑗𝑗,𝑖𝑖 + 𝑤𝑤𝑗𝑗,0
𝐼𝐼
𝑖𝑖=1 �𝑤𝑤𝑜𝑜,𝑖𝑖

𝑜𝑜−1
𝑗𝑗=𝐼𝐼+1  (1) 171 
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 172 
Fig. 1. Multilayer perceptron applied to this particular study case. 173 

Cortes and Vapnik [68] developed the Support Vector Machines for binary classification. 174 

The goal was to separate the dataset into two classes or categories using a hyperplane in 175 

multidimensional space to separate the samples into sets of the same category. The margin 176 

between the closest points of the two classes is maximised, originating the optimal 177 

separating hyperplane in the middle of the margin. The support vectors correspond to the 178 

points lying in the boundaries, and the points situated on the wrong side are weighted 179 

down to reduce their influence [69]. 180 

When a linear separator is undetected, there is a transformation via kernel techniques to 181 

a higher dimensional space (Figure 2) [69].  182 

 183 
Fig. 2. Example of an SVM transformation. 184 

This study adopted the Radial Basis Function kernel (Equation 2). 185 

𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝛾𝛾‖𝑥𝑥 − 𝑥𝑥′‖2) ,   𝛾𝛾 > 0 (2) 186 
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The performance of this function is affected by the kernel parameter, γ, the width of the 187 

ε-insensitive zone, and a penalty parameter, C. The heuristics proposed in Cherkassky 188 

and Ma [70] allowed to set ε and C according to the procedure suggested by Cortez [71] 189 

because the standard search intervals for these parameters are significant.  190 

The optimisation of both H and γ parameters used in ANN and SVM techniques followed 191 

a grid search according to Hastie et al. [72]: H {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20} and 192 

γ {2−15, 2−13, 2−11, 2−9, 2−7, 2−6, 2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23}. 193 

3. Database construction and modelling methodology 194 

3.1. Database construction 195 

The database for this study assembled sixty records obtained from water sensitivity tests 196 

performed in the Highways Laboratory of the Civil Engineering Department of the 197 

University of Minho [73-91]. The remaining hundred records derive from other published 198 

works on the water sensitivity of asphalt mixtures [2, 92-101]. 199 

Water sensitivity is a property determined by the EN 12697-12 standard and is suitable 200 

for almost all asphalt mixtures specified in the EN 13108 family of standards. This work 201 

used the results obtained by method A of the mentioned standard for six specimens 202 

prepared with the impact compactor. Then, they are volumetrically characterised and 203 

divided into two groups. One is immersed in water (applying a vacuum pressure of 204 

6.7 kPa for 30 minutes) and then left in a water bath at 40 °C for 72 hours. The other is 205 

kept dry at 20 °C. After this procedure, all the specimens are conditioned at 15 °C for 206 

2 hours and then subjected to an indirect tensile strength test, according to EN 12697-23 207 

standard. Finally, the main water sensitivity parameter (indirect tensile strength ratio, 208 

ITSR) assesses the ratio between the mean indirect tensile strength of the group of wet 209 

specimens (ITSw) and that of the group of dry specimens (ITSd). For several years, 210 

method A was the only one specified in the European Standards for assessing this 211 

property. For this reason, ITSR is the main water sensitivity parameter evaluated in 212 

several European countries. 213 

The database assembled one hundred and sixty asphalt mixtures to apply the DM 214 

techniques. Thirteen input parameters related to the composition of the mixtures and the 215 
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characteristics of their components, described in the following section, were used to 216 

predict the output variable ITSR. 217 

3.2. Input and output variables 218 

The thirteen input variables of the database were the aggregate type (AT), maximum 219 

aggregate size (Dmax), filler type (F), percentage of reclaimed asphalt pavement (%RAP), 220 

the percentage of recycled material (%RM), the percentage of aggregate passing through 221 

the sieve size of 0.063 mm (% #0.063), the bitumen penetration test value (BPT), the 222 

softening temperature of bitumen obtained by the ring and ball method (R&B), the 223 

percentage of bitumen (%Bit), the percentage of polymer modifying the bitumen (%Pol), 224 

the percentage of other additives incorporated in the bitumen (%Ad), the mean air void 225 

content of the compacted mixture (Vv) and the Indirect Tensile Strength of the dry group 226 

of specimens (ITSd). The output parameter was the Indirect Tensile Strength Ratio 227 

(ITSR). 228 

The distinction between reclaimed material and recycled material, used as part of the 229 

aggregate in the mix design, is because they have different origins. The reclaimed material 230 

results from milling one or more asphalt layers from distressed pavements undergoing 231 

rehabilitation. The recycled material is associated with construction and demolition 232 

wastes or other industrial by-products [94, 98] other than reclaimed material. 233 

The tensile strength reduction (ITSR) evaluated in the water sensitivity tests of asphalt 234 

mixtures is a complex phenomenon resulting from adhesive failure in the interface 235 

between aggregates and asphalt binder or mastic [102]. Water has easy access to weak 236 

interfaces (caused by low bitumen-aggregate compatibility) when mixtures have lower 237 

binder contents (%Bit) to cover the aggregates and higher air voids contents (Vv) that 238 

allow easier access of water into the mixture [103]. The other input variables were 239 

selected because the interfacial strength depends on the characteristics of coarse 240 

aggregates (AT, Dmax) [103], fine aggregates (F, % #0.063) [104] and asphalt binder 241 

(BPT, R&B, %Pol) [105]. Moreover, some additives (%Ad) [106] can improve the 242 

aggregate-binder bond (e.g., anti-stripping agents). The alternative reclaimed and 243 

recycled materials (%RAP, %RM) currently used to increase the sustainability of paving 244 

works [107] were included as input variables to assess their possible influence on the 245 

water sensitivity and durability of asphalt mixtures. The last input variable used was the 246 
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tensile strength of asphalt mixtures before being conditioned in water (ITSd) to check 247 

possible relations between the cohesive and adhesive strength [108] of asphalt mixtures.  248 

Table 1 presents the basic statistics of the input and the output parameters. 249 

Table 1. Basic descriptive statistics of the input and the output parameters.  250 

Parameter Min. Mean Max. Std Dev. CV (%) 

Inputs 

Dmax (mm) 11 17.27 22 4.13 23.89 
%RAP 0 2.94 50 10.97 373.30 

%RM 0 9.72 69 17.49 179.95 
% #0.063 1.5 5.83 10 1.65 28.24 

BPT (0.1 mm) 15 46.56 106 14.37 30.86 

R&B (°C) 21.5 57.59 109 9.98 17.33 
%Bit 3 5.10 10.5 1.12 22.02 

%Pol 0 1.97 21 5.02 254.95 
%Ad 0 0.735 10 2.01 273.62 

%Vv 1.2 4.88 20.7 2.98 61.06 
ITSd (kPa) 680 1953.27 5148 636.71 32.60 

Output ITSR (%) 42 77.64 113 14.35 18.48 
 251 

The coefficients of variation indicate medium to high dispersion around the mean, which 252 

shows that the data are very heterogeneous. In particular, the %RAP, %RM, %Pol, and 253 

%Ad are the parameters with a higher coefficient of variation because the use of these 254 

solutions is not standard, and most of the asphalt mixtures in the database do not use these 255 

components. Therefore, the percentages of these materials used in asphalt mixtures are 256 

significantly different from their mean values. On the other hand, the parameters with a 257 

lower coefficient of variation are Dmax, %#0.063, R&B, %Bit, and ITSR, with values 258 

below 30%. This statistic results from a limited range of specified values imposed for 259 

these parameters when producing asphalt mixtures. 260 

The type of aggregate and type of filler are categorical variables. There are seven different 261 

types of aggregates in the database (basaltic, limestone, pelitic cornean, granitic, ophite, 262 

steel slag, and sienitic-limestone) and five types of filler (basaltic, limestone, cement, 263 

granitic, and nano clays). 264 
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3.3. Modelling and Evaluation 265 

This study used the DM process to predict ITSR and, consequently, the water sensitivity 266 

of asphalt mixtures. This process ran in the R environment with the help of the RMiner 267 

library developed by Cortez [71], which uses a set of functions that make the data mining 268 

algorithms easier to use. 269 

The database parameters showed a significant difference in their values' order of 270 

magnitude. Thus, Equation 3 normalised these values between 0 and 1 to allow consistent 271 

use of all parameters when applying the DM techniques. 272 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 273 

A 10-fold cross-validation process divided the data into ten sets of an equal number of 274 

registers [109]. Then nine sets (train data) were used to create a model, using the 275 

remaining set (test data) for validation. The developed model was tested with the 276 

remaining set, calculating the errors with the predicted and measured values and repeating 277 

this process ten times to use every set as a validation set. Then, the average errors after 278 

those ten repetitions measured the quality of the DM algorithms. The errors used in this 279 

study are the mean absolute deviation (MAD) and the root mean square error (RMSE) 280 

given by Equations 4 and 5. Furthermore, the Pearson correlation coefficient (R) was also 281 

evaluated by Equation 6.  282 

MAD = 1
N

× ∑ |yi − y�i|N
i=1  (4) 283 

RMSE = �∑ (yi−y�i)2N
i=1

N
 (5) 284 

R = ∑ (yi−ȳi)×�y�i−y�̄i�N
i=1

�∑ (yi−ȳi)2N
i=1 ∑ �y�i−y�̄i�

2N
i=1

 (6) 285 

Where N denotes the number of examples, 𝑦𝑦𝑖𝑖 the desired value, 𝑦𝑦�𝑖𝑖 the estimated value for 286 

the model concerned, 𝑦𝑦�𝑖𝑖 the average of the desired values, and 𝑦𝑦��𝑖𝑖 the average of the 287 

estimated values. 288 
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These metrics compared the three DM techniques' performance, and the best one showed 289 

minor errors (MAD and RMSE) and the highest R. 290 

Finally, a sensitivity analysis evaluated each input parameter's relative importance in the 291 

ITSR prediction models [110]. Therefore, each input parameter was changed from its 292 

lowest to its highest value while keeping the remaining parameters with their mean 293 

values. This process was repeated for all DM models used and is essential to identify the 294 

most relevant parameters affecting the water sensitivity of asphalt mixtures. The more 295 

relevant the parameter, the greater the variance it causes in the model response. 296 

4. Results and discussion 297 

4.1. Performance of the different water sensitivity models 298 

The performance measures MAD, RMSE, and R, obtained with all DM techniques in the 299 

cross-validation process, are presented in Table 2.  300 

Table 2. Mean values of the metrics obtained in the cross-validation process. 301 

DM technique MAD RMSE R 

MR 0.129 0.164 0.607 
ANN 0.130 0.165 0.601 
SVM 0.116 0.150 0.667 

 302 

The SVM algorithm presented minor errors and had the highest correlation coefficient 303 

when using the selected database to predict the water sensitivity of asphalt mixtures. 304 

Therefore, SVM had the highest predictive capacity, while ANN presented a slightly 305 

lower performance than MR in the cross-validation process. This result means that neural 306 

networks fail to grasp the complex relationships between the variables that control the 307 

asphalt mixtures' non-linear water sensitivity performance. 308 

The efficiency of the different DM models in predicting the water sensitivity of asphalt 309 

mixtures was also analysed by comparing the predicted versus measured normalised 310 

values of the output variable ITSR. Figure 3 presents those results for the MR, ANN, and 311 

SVM models, demonstrating the best performance of SVM in the cross-validation 312 

process.  313 
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(a) (b) 

 
(c) 

Fig. 3. Performance of (a) MR, (b) ANN, and (c) SVM models. 

The adequate performance of the SVM model and the inferior performance of the other 314 

models become evident when comparing the predicted versus measured values. The 315 

predictions of SVM are similar to the normalised measured ITSR values, while ANN and 316 

MR presented a high dispersion. This observation highlights the lower capacity of ANN 317 

and MR to translate the non-linearity relation between the variables governing the water 318 

sensitivity of asphalt mixtures. 319 

4.2. Relative importance of the input variables to the predicting models 320 

After assessing the performance of the different DM techniques, a sensitivity analysis 321 

evaluated the relative importance assigned by each model to the thirteen input variables. 322 
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This step is essential to demonstrate which variables should be controlled more carefully 323 

during the design of asphalt mixtures to assure a better water sensitivity performance. 324 

Figure 4 presents the importance given by MR, ANN, and SVM models to the input 325 

parameters. The importance given by the SVM model to the input parameters is different 326 

from the other models and may justify its better predictive performance. 327 

  
(a) (b) 

 
(c) 

Fig. 4. Importance of the variables in evaluating ITSR using the (a) MR, (b) ANN, and 

(c) SVM models. 
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MR and ANN algorithms attribute about half the importance to the aggregate type. The 328 

five most important parameters for these models were the same, namely the aggregate 329 

type (aggregate), the filler type (filler), the air void content (%Vv), the bitumen softening 330 

point temperature (R&B), and the amount of reclaimed asphalt incorporated (%RAP) in 331 

the mixture. These input variables account for more than 90% of the total relative 332 

importance of all input parameters. Moreover, the only two categorical variables used in 333 

this work have cumulative importance of 79% and 57%, respectively, in MR and ANN. 334 

However, given the weak predictive capacity of the MR and ANN models, the importance 335 

of the several parameters obtained in these models has a limited meaning.  336 

SVM distributes the relative importances more evenly by the different variables and gives 337 

the bitumen content the utmost importance (26.0%). This result stresses the importance 338 

of strict control of asphalt binder content in asphalt plants to obtain resilient mixtures that 339 

are less sensitive to moisture and climate changes. In order to reach the previously 340 

mentioned 90% cumulative importance, it is necessary to gather up to ten input 341 

parameters. Therefore, the SVM model was able to catch adequately the most relevant 342 

parameters that control the water sensitivity of asphalt mixtures. Therefore, the bitumen 343 

content is the most relevant parameter that influences the ITSR of asphalt mixtures. Using 344 

the same criterion mentioned for the other models, the remaining four parameters with 345 

higher relative importance are the percentage of filler (passing the 0.063 mm sieve), 346 

bitumen penetration (BPT), the percentage of additives (%Ad) included in the mixture, 347 

and the aggregate type (aggregate). 348 

Conventionally, the water damage in asphalt mixtures increases when exposing the 349 

aggregate surfaces to moisture, thus justifying the importance of increasing the bitumen 350 

content to fully cover the aggregate surface and improve the water sensitivity 351 

performance [103, 111]. The filler percentage is also significant since it forms an asphalt 352 

mastic with bitumen that influences the bond between coarse aggregates, reducing water 353 

access to the aggregate surface [84]. Bitumen penetration or consistency can influence its 354 

ability to cover the aggregates or present adhesive failure (instead of cohesive failure) at 355 

lower temperatures, thus influencing the moisture resistance [108]. Finally, the 356 

percentage of additives can also significantly improve the water sensitivity of asphalt 357 

mixtures because some specific additives are anti-stripping agents used to improve the 358 

ITSR values [112].  359 
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Surprisingly, the relative importance of the air voids content (%Vv) of asphalt mixtures 360 

(4.9%) was lower than expected because these voids may facilitate the water access to 361 

the aggregates, reducing the water sensitivity performance. Nevertheless, that parameter 362 

may be less relevant when bitumen adequately covers the aggregates (e.g., in porous 363 

asphalt mixtures), explaining the lower importance given to the aggregate type in the 364 

SVM model. Despite this, the model's cumulative importance of coarse and fine aggregate 365 

input parameters (%#0.063, aggregate, filler, Dmax) is significant (24.9%) [111]. When 366 

modelling the water sensitivity with SVM, the importance of asphalt binder modification 367 

(%Pol) was only 4.3%. However, the physical-mechanical properties of the asphalt 368 

binders (BTP and R&B) and their modification correspond to cumulative importance of 369 

19.3% in the SVM model, emphasising the importance for the paving industry of carefully 370 

selecting the type of bitumen when producing asphalt mixtures that should be resistant to 371 

weather agents [113]. 372 

Thus, this work demonstrates that the water sensitivity depends simultaneously on several 373 

factors such as the bitumen content (26%), characteristics of coarse and fine aggregates 374 

(24.9%), asphalt binder characteristics (19.3%) and use of additives (10%) that can 375 

improve the aggregate-binder bond. Thus, asphalt mixture producers need to control all 376 

these parameters to ensure adequate resistance to water damage. 377 

The evaluated reclaimed and recycled materials showed a low influence in the water 378 

sensitivity models (7.2% and 4.1%, respectively), demonstrating that using these 379 

alternative materials in asphalt mixtures does not compromise their durability [114, 115]. 380 

The ITSR value does not significantly rely on the ITS value, which demonstrates that the 381 

sensitivity to water is not very dependent on the stiffness of the mixture. 382 

4.3. Accuracy of predicting models with a reduced number of input variables  383 

Considering that the models gave low importance to some input parameters, it was 384 

essential to evaluate redundant variables that are statistically correlated. Thus, Table 3 385 

shows the correlation between all doubly input parameters used in this work. Recognising 386 

that R values higher than ±0.80 are considered statistically significant at 95% confidence 387 

[116], there are no significant correlations between the input parameters since all R2 388 

values are below 0.64. These results mean that the models should discard none of the 389 

input parameters used in this work. 390 
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Table 3. Coefficient of determination (R2) values between all doubly parameters 391 
Parameter Dmax %RAP %RM %#0.063 BPT R&B %Bit %Pol %Ad %Vv ITSd 

Dmax 1.00           

%RAP 0.01 1.00          

%RM 0.41 0.02 1.00         

%#0.063 0.01 0.00 0.02 1.00        

BPT 0.00 0.01 0.00 0.08 1.00       

R&B 0.08 0.00 0.05 0.01 0.04 1.00      

%Bit 0.06 0.00 0.00 0.02 0.14 0.04 1.00     

%Pol 0.11 0.00 0.05 0.01 0.10 0.13 0.63 1.00    

%Ad 0.03 0.02 0.04 0.06 0.10 0.13 0.00 0.00 1.00   

%Vv 0.00 0.01 0.02 0.09 0.03 0.00 0.07 0.02 0.02 1.00  

ITSd 0.11 0.03 0.06 0.01 0.12 0.01 0.00 0.02 0.10 0.04 1.00 

 392 

Finally, additional analyses were performed, reducing the number of input parameters 393 

when running the DM models to assess the changes in their predictive performance when 394 

some parameters are missing. Different attempts removed the parameters with lower 395 

relative importance in the SVM model. This model was selected since it could catch the 396 

most relevant parameters that control the water sensitivity of asphalt mixtures. Thus, three 397 

additional models with fewer input parameters were developed and labelled as M1, M2, 398 

and M3, as follows: 399 

- M1 is a model developed by removing the Dmax input; 400 

- M2 is a model developed by removing the Dmax and filler inputs; 401 

- M3 is a model developed by removing the Dmax, filler, and ITSd inputs.  402 

Table 4 presents the mean values of the metrics obtained in the cross-validation process 403 

for these models with fewer input parameters. 404 

Table 4. Mean values of the metrics obtained in the cross-validation process for models 405 

M1 to M3 with fewer input parameters. 406 
Model M1 M2 M3 

DM technique MR ANN SVM MR ANN SVM MR ANN SVM 

MAD 0.128 0.127 0.118 0.127 0.128 0.119 0.125 0.124 0.115 

RMSE 0.163 0.162 0.153 0.160 0.164 0.156 0.159 0.157 0.152 

R 0.611 0.615 0.653 0.621 0.605 0.637 0.627 0.638 0.661 
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The metrics show that the SVM model's performance with fewer input parameters 407 

degenerated compared to the previous model with all input parameters. This result 408 

demonstrates the importance of all input parameters used in this work to explain the water 409 

sensitivity performance of asphalt mixtures. However, the metrics (MAD, RMSE, and R) 410 

obtained for MR and ANN techniques did not significantly alter when running the M1 to 411 

M3 models with fewer input parameters, showing no evident influence of those missing 412 

parameters on ITSR prediction.  413 

Figure 5 shows the relationship between the measured and predicted normalised ITSR for 414 

the models with fewer input parameters (M3).  415 

  
(a) (b) 

 
(c) 

Fig. 5. Performance of (a) MR, (b) ANN, and (c) SVM algorithms for M3 models 

using ten input parameters. 
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The predictive performance degradation of the SVM model becomes evident when 416 

comparing the predicted versus measured normalised ITSR values. In addition, the low 417 

performance of the other models was not significantly affected compared to that obtained 418 

for the models with all input parameters. All M3 models with ten input parameters 419 

presented a high dispersion.  420 

5. Conclusions 421 

Resilient road infrastructures with circular materials demand predictive methods with 422 

improved performance. Data mining algorithms can be the solution for that need. Water 423 

sensitivity is a critical design property for sustainable mixtures and durable pavements. 424 

Thus, it is imperative to research DM algorithms for water sensitivity prediction to test 425 

their accuracy and find the main parameters that control this behaviour. 426 

This study demonstrated the significant influence of the selected data mining model on 427 

the water sensitivity forecast results. The SVM algorithm emerged as the most accurate 428 

method, assigning the importance of the several input parameters more equitably. The 429 

DM models should discard none of the thirteen input parameters due to the complex water 430 

sensitivity behaviour. The performance mainly depends on the binder content, the 431 

characteristics of the coarse and fine aggregates, the asphalt binder characteristics, and 432 

the use of additives. The use of reclaimed and recycled materials in durable asphalt 433 

mixtures is feasible due to their low influence on water sensitivity. 434 

Data mining algorithms can be a powerful tool for predicting the water sensitivity of 435 

asphalt mixtures. The research on this topic should continue to improve the accuracy of 436 

DM models further. Asphalt mixture producers must control several mix design 437 

parameters mentioned above to develop new solutions resistant to water damage. 438 
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