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Abstract 
Detergents and solvents are included in the list of compounds that can be inhibitory or toxic to anaerobic 
digestion processes. Industrial cleaning stages/processes produce vast amounts of contaminated 
wastewater. In order to optimize the control of these wastewaters it is important to know and predict the 
effects on the activity and physical properties of anaerobic aggregates in an early stage. Datasets 
gathering morphological, physiological and reactor performance information were created from three 
toxic shock loads (SL1 – 1.6 mgdetergent/L; SL2 – 3.1 mgdetergent/L; SL3 – 40 mgsolvent/L). The use of 
Principal Component Analysis (PCA) allowed the visualization of the main effects caused by the toxics, by 
clustering the samples according to its operational phase, exposure or recovery. The morphological 
parameters showed to be sensitive enough to detect the operational problems even before the COD 
removal efficiency decreased. Its high loadings in the plane defined by the first and second principal 
components, which gathers the higher variability in datasets, express the usefulness of monitor the 
biomass morphology in order to achieve a suitable control of the process. PCA defined a new latent 
variable t[1], gathering the most relevant variability in dataset, that showed an immediate variation after 
the toxics were fed to the reactors. t[1] varied 262, 254 and 80%, respectively in SL1, SL2 and SL3. 
Once more, the high weights of the morphological parameters associated with this new variable express 
its influence in shock load monitoring and control, and consequently in operational problems recognition. 
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INTRODUCTION 
Stable operation of high-rate anaerobic reactors is an essential but difficult task because of the 
complicated nature of the anaerobic process itself. Monitoring and control are therefore 
extremely important to improve process robustness by detecting disturbances leading to 
abnormal process operation. In this context, identification of process variables potentially 
useful as early alert detectors of instability has major relevance. Industrial wastewaters that 
are treated by anaerobic digestion processes are frequently affected by temporary toxic 
exposures. Detergents (Gavala and Ahring, 2002) and solvents (Enright et al., 2005), from 
cleaning stages, are some of that compounds that can deteriorate the performance of those 
processes. The earlier a potential fault is detected, the less severe its influence will be and the 
corresponding corrective action will be more constrained. 
An important factor for the efficient operation of anaerobic processes, extensively studied in 
the last decade, is the recognition of parameters that could be used for monitoring and control 
of the process. Parameters in the solid phase are not often used for automatic monitoring and 
control since they usually need manual operations, and are usually qualitative and inaccurate. 
Therefore, so far, parameters used for control have been limited to indicators of the liquid and 
the gaseous phases, such as pH, Volatile Fatty Acids (VFA), alkalinity, COD concentrations, 
carbon dioxide, methane and hydrogen contents in the biogas as well as biogas production 
(van Lier et al., 2001). In this framework, quantitative image analysis techniques emerge as a 
promising tool to overcome these difficulties, providing quantitative parameters of the solid 
phase dynamics. Image analysis has become a very important tool with a large field of 
applications in study of biomass morphology, due to its ability to remove the subjectiveness of 
human analysis, the possibility to extract quantitative data and avoid tedious and highly time-
consuming tasks to human researchers (Amaral, 2003). 
Because the experimental approach of integrating reactor performance, physiological and 



morphological data may produce correlated and redundant data, a statistical instrument should 
be applied in order to extract the essential information for process monitoring and fault 
detection applications. Often, important information lies not in any individual variable but in 
how the variables change with respect to one another, i.e. how they co-vary (Wise and 
Gallagher, 1996). Data reduction and interpretation can be approached through the application 
of multivariate statistical methods, such as Principal Components Analysis (PCA). This method 
allows identifying patterns in data, and expressing them in order to highlight their similarities 
and differences. PCA is a projection method for analyze data and reduce it from an n-
dimensional space to few latent/hidden variables (Lee et al., 2006), while keeping information 
on its variability. It has been successfully applied to the monitoring of industrial processes (Li 
et al., 2000; McGregor and Koutodi, 1995) and wastewater treatment processes (Lee et al, 
2004; Lee and Vanrolleghem, 2004; Rosen, 2001). Since patterns in data can be hard to find 
in data of high dimension, where graphical representation is not available, the possibility of 
grouping the variability in few variables is an important step to visualize and consequently 
analyze the information. Chemometrics based techniques are tools that can lead chemists to 
move more efficiently on the path from measurements to information to knowledge (Frank and 
Kowalski, 1982). 
Previously, three organic load disturbances were applied to lab-scale Expanded Granular 
Sludge Bed (EGSB) reactors (Costa el al., 2007, 2008a). The corresponding effects were 
monitored by quantitative image analysis, specific methanogenic activity tests and reactor 
performance. In the present study, the multivariate statistical tool Principal Components 
Analysis was applied in order to highlight patterns, groups, trends and outliers in the data. In 
addition, PCA was employed to identify the variables that mostly reflect the shock load effects, 
and respective operational changes/problems recognition. 
 
 
METHODS 
Dataset. Three shock loads were applied to Expanded Granular Sludge Bed (EGSB) reactors. In 
the two first shock loads, SL1 and SL2, a detergent was fed to the reactor with a concentration 
of 1.6 and 3.1 mg/L, respectively (Costa et al., 2007). In the third shock load (SL3) 40 mg/L 
of solvent was fed to the EGSB reactor (Costa et al., 2008a). In table 1 are summarised the 
shock loads conditions. 
 
Table 1. Shock loads conditions. 
Shock Load SL1 SL2 SL3 
Ethanol 1.5 gCOD/L 1.5 gCOD/L 1.5 gCOD/L 
Toxic Detergent Detergent Solvent 
Concentration 1.6 mg/L 3.1 mg/L 40 mg/L 
Exposure phase 56 hours 222 hours 222 hours 
Recovery phase 14 days 12 days 7 days 

 
Variables summarizing the morphological, physiological and performance data obtained during 
the experiments were grouped to create the datasets used to perform the PCA (Table 2). Four 
datasets were created, one for each disturbance, and one integrating the data from all shock 
loads. 
 
Table 2. Variables included in dataset, summarizing the changes occurred during shock loads. 
Variable Name 
 
Reactor Performance Data: 

OLR Organic Loading Rate 
Cdet Detergent concentration (datasets 1 and 2) 
Csol Solvent Concentration (dataset 3) 
Tox Toxic Concentration (detergent or solvent) (dataset 4) 
Eff Chemical Oxygen Demand (COD) Removal Efficiency 
pH pH 
VSS Effluent Volatile Suspended Solids 

 



Physiological Data: 
SAA Specific Acetoclastic Activity 
SHMA Specific Hydrogenotrophic Methanogenic Activity 

 
Morphological Data: 

LfA Total Filaments Length per Total Aggregates Projected Area 
TL/VSS Total Filaments Length per Volatile Suspended Solids 
VSS/TA VSS per Total Aggregates Projected Area (Apparent Granules Density) 
>1 Percentage of Aggregates Projected Area with Equivalent Diameter (Deq) ≥ 1 mm 
>0.1 Percentage of Aggregates Projected Area within the range 0.1 ≤ Deq (mm) < 1 
<0.1 Percentage of Aggregates Projected Area with Deq < 0.1 mm 
vsed Settling Velocity 

 
Principal Components Analysis (PCA). Principal components analysis aims at finding and 
interpreting hidden complex, and possibly causally determined, relationships between features 
in a dataset. Correlating features are converted to the so-called factors which are themselves 
noncorrelated (Einax et al., 1997). PCA modeling, i.e., the approximation of a matrix by a 
model, defined by variables and a relatively small number of outer vector products, shows the 
correlation structure of a data matrix X, approximating it by a matrix product of lower 
dimension (TxP'), called the principal components (PC), plus a matrix of residuals (E): 

1 'X x T P E′= × + × +  
where, the term 1 x ′×  represents the variable averages. The second term, the matrix product 

'T P× , models the structure and the third term, E, contains the deviations between the 
original values and the projections, i.e., the noise. T is a matrix of scores that summarizes the 
X-variables (scores), and P is a matrix of loadings showing the influence of the variables on 
each score. Geometrically, it corresponds to fitting a line, plane, or hyper plane to the data in 
the multidimensional space, with the variables as axes. The scaling of the variables specifies 
the length of the axes of this space. 
SIMCA-P (Umetrics AB) software package was used to perform the Principal Components 
Analysis. The first step of the analysis consists in the pre-treatment of data by standardization 
of the variables, i.e., guarantee that each individual variable has about the same range, 
avoiding that some variables would be more important than others because of scale effects. 
During this work each variable was autoscaled by: 

  
where,  is the value of the variable  in the sample ,  and  are the mean and the 

standard deviation of the variable , respectively, and,  is the autoscaled value of . At the 
end of this standardization, each variable has mean zero and unit standard deviation. 
Subsequently, the software iteratively computes one principal component at a time, comprising 
a score vector ta and a loading vector pa. The score vectors contain information on how the 
samples relate to each other. Otherwise, the loading vectors define the reduced dimension 
space and contain information on how the variables relate to each other. Usually, few principal 
components (2 or 3) can express most of the variability in the dataset when there is a high 
degree of correlation among data. 
 
The criterion used to determine the model dimensionality (number of significant components) 
was cross validation (CV). Part of data is kept out of the model development, and then are 
predicted by the model and compared with the actual values. The prediction error sum of 
squares (PRESS) is the squared differences between observed and predicted values for the 
data kept out of the model fitting. This procedure is repeated several times until data element 
has been kept out once and only once. Therefore, the final PRESS has contributions from all 
data. For every dimension, SIMCA computes the overall PRESS/SS, where SS is the residual 
sum of squares of the previous dimension. A component is considered significant if PRESS/SS 
is statistically smaller than 1.0. 
 
 



RESULTS AND DISCUSSION 
 
Recognition of shock load effects 
Apply a chemometric technique such as Principal Component Analysis (PCA) is advantageous 
when an effective reduction of the multi dimensional space into few components is 
accomplished, while keeping the variability of the dataset. In this study, three principal 
components (PCs) in detergent shock loads (SL1 and SL2) and four PCs in solvent shock load 
(SL3) gathered more than 80% of the total variability in the datasets (Table 3). 
 
Table 3. Total datasets variability contained in the firsts Principal Components. 
PC SL1 SL2 SL3 
1 65.5 % 46.3 % 38.1 % 
2 14.3 % 23.9 % 23.8 % 
3 9.6 % 14.6 % 12.0 % 
4 7.5 % 7.0 % 11.2 % 
Cumulative 96.9 % 91.7 % 85.1 % 

 
In the score plots of the first and second PCs, t[1] vs. t[2] (Fig. 1a,c,e) is observed that the 
PCA grouped samples according to its operational phase. A cluster encompassing the 
observations obtained during exposure phase is visible in each score plot. Besides, is clearly 
observed that a deviation occurred immediately after the shock loads were applied. The 
inoculum sample, which emerge as an isolated observation, is located far from the first 
observation during exposure time (see line in Fig. 1a,c,e). 
The influence that each measured variable had in each score, is given by its loadings, i.e. 
weighted variables, and respective loading maps (Fig. 1b,d,e). It allows decide which variables 
are most important for the differences observed between the samples. The interpretation of 
the loadings is essentially done by looking at what variables have the higher coefficients 
(positive or negative) on a certain PC. Coupled visualization of score and loading plots (Fig. 1) 
allows for the detection of the main effects/problems occurred during the shock loads. For 
example, the main effects caused by SL1 were detected in the morphological parameters. The 
introduction of the toxic compound in the feeding caused an increase in LfA and TL/VSS 
parameters and decrease in VSS/TA (Fig. 1b). These results suggest changes at the granules 
microstructure level with release of filaments and decrease of apparent density (VSS/TA). 
However, during reactors operation, the COD removal efficiency remained unaffected (Costa et 
al., 2007). 
Increasing the detergent concentration (SL2) caused an immediate decrease in specific 
acetoclastic activity (SAA) and VSS/TA (Costa et al., 2007). Analysing the Figure 1c is 
observed that sample 0 (inoculum) is situated in the top of the graph with the higher score in 
PC2. Simultaneously, the variables with higher influence in PC2, were SAA and VSS/TA (Fig. 
1d, p[2]). PC1 distinguished samples during exposure time (positive scores) from samples 
during recovery phase/inoculum (negative scores) (Fig. 1c, t[1]). Once more, the 
morphological parameters LfA and >1, were the most sensitive to recognize the shock load 
(Fig. 1d, p[1]). 
In SL3 the isolation of exposure phase samples is not so effective using only the first PC, since 
it gathered just 38.1% of the dataset variability (Fig. 1e, t[1]). However, analysing PC1–PC2 
plane, a cluster encompassing these samples is visible. The granules size distribution (<0.1, 
>0.1 and >1) show high loadings in PC2 (Fig. 1f, p[2]). Simultaneously, vsed and VSS present 
high loadings in PC1 (Fig. 1f, p[1]). Therefore, it is possible to say that these were the 
variables with higher influence in clustering the samples. Thus, although the reactor 
performance deteriorates only in the last hours of the exposure phase (Costa et al., 2008a), a 
change in the macrostructure of granules was observed immediately when the shock load was 
applied. In fact, the % of aggregates projected area with equivalent diameter (Deq) higher than 
1 mm decreased from 81 to 53, indicator of granules fragmentation and consequent washout 
(increase of the effluent VSS). 
 



 
 
Figure 1. PCA score plot of the first PC (t[1]) versus the second PC (t[2]), in dataset of: (a) SL1; (c) SL2; 
and, (e) SL3. And, PCA loading plot of the first and second principal components (p[1] vs. p[2]), from dataset 
of: (b) SL1; (d) SL2; and, (f) SL3. 
 
 
In the last decade a vast number of methods to monitoring and/or control of wastewater 
anaerobic digestion processes have been proposed with different parameters as indicators of 
operational problems (Garcia et al., 2007, Lardon et al., 2005). However, the integration of 
morphological parameters has not yet been studied, mainly because expeditiously and 
quantitative information is difficult to obtain. The use of image analysis techniques, previously 



described by Amaral (2003) and Costa et al. (2007) provides quantitative information about 
the dynamic evolution of the granules morphology at macro and microstructures levels. The 
use of PCA illustrates the usefulness of monitoring the granules morphology to detect possible 
toxic contamination and future operational problems. The early detection of these problems is 
essential to attain timely control of the process before it evaluates to an irreversible problem. 
In this work was visible that morphological changes occurred before reactors performance 
deterioration, proving the sensitivity of the proposed parameters to detect the toxic 
contaminations. 
PCA provides information on the most meaningful parameters, which describes a whole dataset 
affording data reduction with minimum loss of original information (Helena et al., 2000). 
During PCA, it was defined a new latent variable, t[1], that includes a weighted sum of 
performance, physiological and morphological information. This new variable can be used as a 
warning indicator of operational problems during toxic shock load disturbances. The variable 
t[1] was calculated for the inoculum and the first sample of exposure phase and the 
corresponding % of variation was 262, 254 and 80%, respectively in SL1, SL2 and SL3. This 
result evidenced the high sensitivity of the latent variable to recognize deviations of the normal 
process operation. 
Analyzing the loadings/weights associated with the new latent variable t[1], it is possible to 
distinguish the variables that most influence the early detection of reactors contaminations. 
The morphological parameters emerge due to its high loadings in all datasets (Table 4). These 
results confirm that quantitative morphological parameters should be considered in monitoring 
and control of high rate anaerobic reactors, especially those based on granular sludge. Similar 
conclusions were obtained when high-rate anaerobic reactors were subjected to organic 
loading disturbances (Costa et al. 2008b). 
 
Table 4. Loadings/weights of the variables in datasets associated to the PC1. 
Variable SL1 SL2 SL3 Notes 
OLR 0.295 0.377 0.300 Controlled Variable 
Cdet 0.295 0.377 - Controlled Variable 
Csol - - 0.283 Controlled Variable 
Eff -0.278 0.241 -0.206  
pH 0.297 0.253 -0.256  
VSS 0.158 -0.280 0.290  
<0.1 0.265 -0.227 0.104 Morphological Variable 
>0.1 -0.297 -0.329 0.236 Morphological Variable 
>1 0.293 0.345 -0.241 Morphological Variable 
SAA -0.194 -0.030 -0.321  
SHMA -0.236 0.003 -0.275  
LfA 0.306 0.336 -0.246 Morphological Variable 
VSS/TA -0.302 0.009 0.164 Morphological Variable 
TL/VSS 0.313 0.283 -0.316 Morphological Variable 
vsed -0.126 0.207 -0.384  

 
 
Differentiate the shock loads 
A PCA in a dataset integrating all available information was performed in order to highlight 
differences between the shock loads. Watching at Figure 2a three clusters, one for each shock 
load, can be perfectly distinguished. The cluster encompassing the SL2 samples is isolated 
from the others. Effectively, SL2 caused the most negative effects to the anaerobic granular 
sludge, since it was the only one where the COD removal efficiency decreased significantly 
during the exposure phase. 
The score and loading plots of PC1 and PC2, t[1] vs. t[2] and p[1] vs. p[2] (Fig. 2), show the 
variables with higher influence in each shock load. SL1 was characterized by an increase in 
TL/VSS and LfA. The decrease of Efficiency (Eff) and SAA and increase of granules density 
describe SL2. Regarding to SL3 it was categorized mostly by the granules Deq ranges >1 and 
>0.1, sign of granules fragmentation. 
Searching for possible correlations between variables, it is possible to observe a high positive 



correlation between the total filaments (TL/VSS) and the dynamic of filaments per area of 
aggregates (LfA) (Fig. 2b). This was already postulated by Costa et al (2008b), suggesting that 
the granules microstructure stabilization, by locking the filaments inside the aggregates, play a 
more important role in the maintenance of a high efficiency than granules macrostructure/size 
stabilization. 
During the shock loads was observed that LfA increased 3, 5, and 2 days before effluent 
volatile suspended solids, respectively in SL1, SL2, and SL3. It was hypothesized that LfA 
could be an early-warning indicator of washout events (Amaral et al., 2004, Costa et al., 2007, 
2008a). In Figure 2b is visible that LfA and VSS are inversely proportional, enhancing the 
hypothesis that LfA increases before VSS, decreasing afterwards when VSS increases. 
 
 

 
Figure 2. PCA in dataset integrating data from all shock loads: (a) score plot of the first PC (t[1]) versus the 
second PC (t[2]); and, (b) loading plot of the first and second principal components (p[1] vs. p[2]). 
 
 
CONCLUSIONS 
Principal Component Analysis was performed in three datasets gathering morphological, 
physiological and Expanded Granular Sludge Bed reactor performance information obtained 
during three toxic shock loads. It was demonstrated that the use of a multivariate statistical 
tool was appropriate to visualize and isolate the main effects caused by the detergent and 
solvent shock loads. 
The proposed morphological parameters proved to be more sensitive to detect the toxic 
contaminations than the normal operating parameters, such as Chemical Oxygen Demand 
removal efficiency. In shock load 1 (1.6 mgdetergent.L-1) and 3 (40 mgsolvent.L-1), although the 
reactors performance seemed to be unaffected by the toxics concentration and exposure time, 
changes in micro and macrostructure of the granules were observed. In shock load 2 (300 
mgdetergent.L-1) the morphological changes were detected in the morphological parameters 
before reactor efficiency decreased. The new latent variable t[1], defined as an weighted sum 
of all variables included in the dataset, showed a variation of 262, 254 and 80 %, respectively 
in SL1, SL2 and SL3. The high loadings/weights of the morphological parameters enhanced the 
need to monitor the anaerobic digestion process solid phase in order to achieve an effective 
and feed forward control. 
Integrating all information in a single dataset allowed the differentiation of the several shock 
loads. The shock load 2 (SL2) had the most negative effects to the anaerobic granular sludge. 
Consequently, the observations in SL2 were grouped in a cluster opposite to the clusters 
relating SL1 and SL3.  
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