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ABSTRACT

Distributed Systems and Protocols are widely employed in the infrastructure that supports
the Internet and the services available online such as streaming services and social networks.
At the same time, they are well known for usually being hard to implement correctly, even
when this task is left to experienced programmers. Consequently, Distributed Systems are
prone to suffer from distributed concurrency bugs, which are a frequent source of significant
service outages. Thus, it is of the utmost importance to ensure that widely-used distributed
systems are reliable and do not suffer from this kind of bugs.

Formal Verification looks like a promising way to achieve this. However, we argue that
the currently available techniques require too much of an investment in order to verify
correctness of implementations of complex distributed systems. Instead, we defend the
usage of clever testing techniques and tools for all but the most critical of contexts. In this
dissertation, we present one such tool — SPIDER — designed to automatically detect data races
from traced executions of distributed systems. Data races originate when two memory
accesses to the same memory location occur concurrently and they have been shown to be a
major source of concurrency bugs in distributed systems. Unfortunately, data races are often
triggered by non-deterministic event orderings that are hard to detect when testing complex
distributed systems.

SPIDER encodes the causal relations between the events in the trace as a symbolic constraint
model, which is then fed into an SMT solver to check for the presence of conflicting
concurrent accesses. To reduce the constraint solving time, SPIDER employs a pruning
technique aimed at removing redundant portions of the trace. Our experiments with
multiple benchmarks show that SPIDER is effective in detecting data races in distributed
executions in a practical amount of time, providing evidence of its usefulness as a testing
tool.

Keywords: distributed systems, satisfiability modulo theories, software testing, offline

monitoring, dynamic race detection

iv



RESUMO

Os sistemas e protocolos distribuidos sdo amplamente utilizados na infraestrutura que
suporta a Internet e os servigos disponiveis online tais como, por exemplo, servigos de
streaming e redes sociais. Ao mesmo tempo, os sistemas distribuidos sdo reconhecidamente
dificeis de implementar corretamente e tendem a sofrer de bugs de concorréncia distribuida,
mesmo quando sdo desenvolvidos por programadores experientes. Este tipo de bugs é
uma causa frequentemente de falhas nos servigos e, por esta razdo, ¢ da maior importancia
garantir que os sistemas distribuidos amplamente utilizados sdo confidveis e ndo sofrem
deste tipo de erros.

A drea de verificagdo formal fornece ferramentas poderosas que permitem evitar que estes
bugs cheguem a c6digo de producdo. No entanto, consideramos que as técnicas do estado
da arte disponiveis atualmente exigem grandes investimentos caso se pretenda verificar que
uma implementacdo de um sistema distribuido estd correta. Em vez disso, defendemos
o uso de técnicas e ferramentas sofisticadas de teste para assegurar a confiabilidade das
implementagdes de sistemas distribuidos excepto nos contextos mais criticos, onde se devem
empregar técnicas de verificagdo formal.

Nesta dissertagdo, apresentamos a SPIDER, uma ferramenta de teste e debug de sistemas
distribuidos desenvolvida para detectar automaticamente data races a partir de traces obtidos
aquando da execugdo de sistemas distribuidos. As data races surgem quando dois acessos ao
mesmo endereco de memoria ocorrem concorrentemente. A existéncia de data races é uma
das principais causas de erros de concorréncia em sistemas distribuidos. Ao mesmo tempo,
sdo extremamente dificeis de detetar uma vez que se manifestam raramente e de forma nao
deterministica.

A ferramenta SPIDER codifica as relagdes causais entre os eventos no trace como um
modelo de restri¢des, e, através de um SMT solver, é capaz de inferir que pares de instrugoes
podem levar a acessos concorrentes a0 mesmo endere¢o de memoria. Para reduzir o tempo
da anélise, 0 SPIDER emprega uma técnica de elimina¢do de eventos que remove partes
redundantes do trace. Com recurso a varios benchmarks, mostramos experimentalmente
que o SPIDER ¢€ eficaz a detetar data races a partir de traces de sistemas distribuidos e que tal
é exequivel em tempo 1til, indiciando que a SPIDER ¢ 1til como ferramenta de teste.

Palavras-chave: sistemas distribuidos, satisfiability modulo theories, teste de software,

monitorizagao offline, detecdo dindmica de races
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INTRODUCTION

1.1 CONTEXT

Distributed Systems (DS) are ubiquitously used in critical contexts such as electronic voting
systems [Riemann and Grumbach (2017)], cryptographic coins [Nakamoto (2008)] and
avionic systems [Pike et al. (2013)]. Large-scale distributed systems play a major role in
the design of the infrastructure that supports the Internet and the services available online.
They are employed in the deployment of scalable computing frameworks, storage systems,
synchronization and cluster management services as reported by Leesatapornwongsa et al.
(2016). As a result, bugs in the design and implementation of distributed systems can
significatly hamper the availability and the quality of services which are used everyday
by millions of people and are considered indispensable to modern life. This statement is
corroborated by episodes of service outtages seen before, like the failure of Amazon Web
Services (AWS) [The AWS Team] in April 2011 that caused availability issues in services
like Reddit and Netflix, and the independent failures in 2015 which grounded United Airlines
flights for two hours and halted the New York Stock Exchange for four hours [Popper (2015)].

Distributed systems are notoriously hard to get right, even when developed by teams of
experienced programmers. Besides the typical bugs associated with non-concurrent software
and those that are characteristic of single-machine multi-threaded software (caused by
unsychronized memory accesses), these systems tend to suffer from distributed concurrency
bugs (DC bugs) caused by unexpected orderings of distributed events like message arrivals,
crashes and timeouts. Leesatapornwongsa et al. (2016) analysed various DC bugs from “four

widely-deployed cloud-scale datacenter distributed systems*”

and grouped them in TaxDC,
a taxonomy based on their triggering conditions, some of them quite common and complex.
This study also showed that, among the different types of distributed system bugs, data races
(§2.2) are particularly challenging to find and debug, as they occur non-deterministically
and manifest rarely. A data race consists of two concurrent accesses to the same memory

location, where at least one of them is a Write. Such races in distributed systems typically

Cassandra [Apache Cassandra], Hadoop MapReduce[Apache Hadoop], HBase[Apache HBase], and
Zookeeper [Apache ZooKeeper]
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stem from unpredictable message exchanges that violate atomicity and order assumptions
[Leesatapornwongsa et al. (2016), Liu et al. (2017)].

The difficulty associated with finding and fixing data races suggests that it is not enough
to reason informally in order to build reliable distributed systems, free of DC bugs. Indeed,
as Lamport et al. (1982) stated when talking about distributed algorithms,

"we strongly advise the reader to be very suspicious of such non-rigorous reasoning.
Although this result is indeed correct, we have seen equally plausible “proofs” of invalid
results. We know of no area in computer science or mathematics in which informal

reasoning is more likely to lead to errors than in the study of this type of algorithm.”

Consequently, there have been efforts to apply Formal Software Verification techniques to
distributed systems. Formal software verification consists in the use of rigorous mathematical
reasoning to prove that a computer program has the intended properties by showing that it
conforms to a given high-level specification. It compreends automated techniques such as
Software Model Checking (SMC) [Jhala and Majumdar (2009)] as well as manual techniques
based on axiomatic semantics and logics for reasoning about programs deductively, e.g.
Hoare Logic [Hoare (1969)], possibly aided by proof-assistants like Coq and Agda.

The aforementioned efforts have culminated in promising results. Model Checking has
been successfully used for years in academia and industry to verify high-level designs of
distributed systems. For example, Zave (2012) demonstrated that no version of the Chord
protocol [Stoica et al. (2003)] published before was correct, and Newcombe et al. (2013)
described how Model Checking is effectively used at Amazon to detect subtle flaws in the
design of their systems. More recently, the focus of researchers has shifted somewhat to the
development and verification of the actual implementations of such systems. For example,
Woos et al. (2016) provided a verified implementation of Raft [Ongaro and Ousterhout
(2014)], a protocol conceived to mantain a consistent view of a state machine across different
computers and which supports machine failures. Rahli et al. (2018) presented “the first
machine-checked proof of a crucial safety property” of an implementation of PBFT [Castro
and Loskov (1999)], a protocol that provides bizantine fault-tolerant state machine replication.
Section 6.1 offers a more thorough overview of formal software verification of distributed
systems.

In spite of these efforts, there are reasons to believe that formaly verified implementations
of distributed systems will not become mainstream in the next few years. On one hand, de-
spite its usefulness in verifying high-level designs, automatic techniques like SMC are still far
from being tractable for verifying implementations of DS [Leesatapornwongsa et al. (2014)].
The sheer ammount of possible event interleavings, e.g. memory accesses and message
exchanges, renders this method unusable due to state-space explosion, i.e. a combinatorial
explosion on the number of possible states of the system. On the other hand, deductive
methods require a significant investment. For example, the verified implementation of Raft
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presented by Woos et al. (2016) consists of 50.000 lines of proof scripts. It assumed “several
nontrivial invariants of the Raft protocol” and was written using Coq, a language and toolset

appropriate to write verified programs from the ground up.

1.2 MOTIVATION

Despite the setbacks mentioned in the previous section, we believe that formal verification
should be employed in the development of critical distributed systems and we look forward
to further developments in the field. At the same time, we think that there is room for
automated tools with a strong theoretical basis for testing and debugging existing distributed
programs, making it easier to detect complex bugs before they enter production code. Such
tools cannot offer the same correctness guarantees as actually verifying the programs against
a formal specification, but they can be automated and integrated in the development and
test stages, which makes them much easier to apply in practice. In fact, over the last
years, there have been multiple efforts to test and debug data races, although prior work
has mostly focused on multithreaded programs [Flanagan and Freund (2009); Kasikci et al.
(2012); Huang (2015)].

More recently, Liu et al. (2017) proposed DCatch, a tool that discovers distributed con-
currency bugs by employing a happens-before (HB) analysis on traces captured at runtime.
DCatch was effective in finding races in popular applications, such as Apache Cassandra and
ZooKeeper, even when monitoring correct executions, i.e. executions where the bugs were
not triggered. In order to decrease the size of the trace and improve the performance of the
analysis, DCatch filters events before tracing them. This filtering focuses mainly on memory
accesses; DCatch only traces accesses to heap objects and static variables in particular types
of functions:

1. Remote Procedure Call (RPC) functions;
2. functions that conduct socket operations;
3. event-handler functions;

All other memory accesses are not traced and thus, are not used for data race detection.
Despite that, DCatch’s approach scales poorly, as the experimental results in the paper
revealed that it consumes GBs of memory for processing traces with a few MBs.

In this dissertation, we make the observation that distributed protocols typically involve
inter-node communication steps that occur repeatedly along the execution (e.g. the leader
election protocol in Zookeeper or the node heartbeats in Cassandra). Such redundant
patterns, although useful to accurately understand the behavior of the system, not only
produce large event traces that are prohibitively expensive to process, but also typically do
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not contribute to the occurrence of new data races. We thus believe that removing redundant
events from the traces can improve the performance and scalability of distributed system
testing solutions without compromising their accuracy.

1.3 GOALS AND CONTRIBUTIONS

In this dissertation, we propose SPIDER (§3), an automated tool to detect data races from
traced executions of distributed systems using redundancy pruning and symbolic constraint
solving. Given a trace of a distributed system under test (whose format is specified in
§3.1), SPIDER starts by performing a trace analysis aimed at eliminating events that appear
recurrently in the execution and whose absence does not lead to any missed races. To this
end, we leverage prior work on redundancy pruning for single-machine multithreaded
applications [Huang and Rajagopalan (2017)] and extend it to remove even more events from
the traces.

After trimming the trace, SPIDER builds a causality model by encoding the HB relations
between events into a system of constraints over logical order variables. Finally, SPIDER
resorts to an off-the-shelf SMT solver (§2.3) to compute which pairs of conflicting events can
run concurrently and, thus, form a data race. SMT constraint solving has been successfully
used in prior work to reproduce [Huang et al. (2013)], expose [Machado et al. (2016)], and
isolate [Machado et al. (2015); Terra-Neves et al. (2019)] concurrency bugs in multithreaded
programs. However, to the best of our knowledge, this is the first application of SMT solvers
to detect race conditions in distributed systems.

We conducted an experimental evaluation of SPIDER using multiple benchmarks with
distributed data races. Our results show that SPIDER is effective in detecting the bugs and
that our redundancy pruning algorithm dramatically reduces the size of the traces (especially
for distributed protocols based on rounds of message exchanges), which is paramount to
scale our constraint solving approach. In fact, our redundancy pruning strategy was able to
remove between 22% and 48% of the total ammount of events in our experiments (§5.3). In

summary, this paper makes the following contributions:

1. we present an algorithm, which draws on prior work by Huang and Rajagopalan (2017),
to eliminate redundant events from distributed system traces without hampering race

detection accuracy;

2. we propose SPIDER, a tool that leverages redundancy pruning and SMT constraint
solving for finding data races from traces of distributed systems;

3. we assess the performance and effectiveness of SPIDER on several benchmarks and
show that our tool is capable of finding distributed races in a practical amount of time,

even for executions with thousands of events.
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1.4 DOCUMENT STRUCTURE

The rest of this document is structured as follows:

e Chapter 2 includes an overview of the foundational topics which underly the work

presented in this document.

e Chapter 3 contains an extensive presentation of SPIDER. It concludes with a brief

practical demonstration of the tool.

e Chapter 4 discusses the problem of scalling our approach and describes at length how

we have dealt with traces containing a big number of events.

e Chapter 5 briefly mentions the implementation of SPIDER and presents the benchmarks
used to attest the effectiveness and efficiency of our approach, as well as the results of

said benchmarks.
e Chapter 6 summarizes other research areas with similar goals to ours.

e Chapter 7 concludes the dissertation and provides a critical analysis of the developed
work. Besides, it discusses the prospects for future work, identifying possible paths to

improve the work presented in this dissertation.
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BACKGROUND

The work developed throughout this dissertation is built upon elementary concepts such as
distributed systems and Satisfiability Modulo Theories (SMT). This section contains a brief
and tentative explanation of the topics that underly our work. It is, by no means, a complete
treatment of these topics. Instead, it is meant as introductory material for the readers not
familiar with the literature on the presented subjects, together with references to relevant
publications in each field.

2.1 DISTRIBUTED SYSTEMS

A distributed system consists of multiple software components, possibly running on different
computers, which operate as a single system. They are often characterized by the lack
of a global clock and by the fact that their components run concurrently and can fail
independently of other components. For the purposes of this dissertation, we will model a
distributed system as a set of nodes (or processes), with at least one thread running in each
node. Different threads communicate by exchanging messages, with no assumptions on
message losses and network delays. We also assume that two threads running in the same
node can share memory by using shared-variables, defined as variables that are accessible
in both threads. The accesses to shared-variables can be synchronized with the usual
synchronization primitives such as locks and monitors. Each thread can be viewed as a
sequence of events. An event is an atomic transition of the local state of a thread. Examples of
events include message sending, message receiving, and shared-variable access for either reading
or writing the value of the variable. The location of an event e is as a pair (n, t) meaning that
event e occurs at the thread ¢ of node n.

Distributed systems often implement one or more distributed protocols*. The distinction
between a distributed protocol and one implementation of such protocol is indeed important: while
a protocol describes at a high-level the actions that each node must perform in order to

solve a distributed problem, an implementation of a protocol corresponds to the code that

Even though they have slightly different semantics, the terms protocol and algorithm are used interchangeably
throughout this document, a common practice in the literature.
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each component runs that conforms to the high-level description provided by the protocol.
As such, bugs may arise from a poorly designed protocol or from a wrong implementation
of a distributed protocol. This separation of concerns allows for a modular approach to
building correct distributed systems — the programmers of the system should not worry
about whether the protocol obeys its specification. Similarly, the designer of a protocol does
not need to be concerned with low-level implementation-specific details.

As hinted before, distributed protocols are designed to tackle distributed problems. These
problems are often stated for a particular fault model. A fault model is a description of which
parts of the system, including processes and network, may fail and how they fail. Schneider
(1993) identified some common fault models appearing in distributed systems literature

such as:

e Failstop - Any process may halt and if so, remain in that state; other components can
detect the failure.

e Crash - Any process may halt and if so, remain in that state; unlike Failstop, other

components might not be able to detect the failure.

e Omission - Any process fails by not receiving a message sent to it, or by not succeeding

to send some message or by halting.

e Byzantine Failure - A process fails when it displays a behaviour not specified by the
algorithm. This is the most general kind of failure [Lamport et al. (1982)].

Each fault model listed above subsumes all those that appeared before. The fault model
greatly influences wether a problem can be solved by a distributed algorithm and, if so, how
complex the algorithm is. For example, Schneider (1993) states the following problem:

"Two processes, A and B, communicate by sending and receiving messages on a bidirec-
tional channel. Neither process can fail. However, the channel can experience transient
failures, resulting in the loss of a subset of the messages that have been sent. Devise a
protocol where either of two actions « and B are possible, but (i) both processes take the
same action and (ii) neither takes both actions.”

This problem is called the Two Generals’ Problem and it has been proven that no distributed
algorithm can solve it given the specified fault model. It is a particular case of a consensus
problem which consists in choosing a single value from a set of values proposed by a collection

of processes. Generally, a consensus algorithm is designed to have the following properties:
o Agreement — All correct processes choose the same value;
e Validity — A process can only choose a value that has been previously proposed;

o Termination — Each correct process eventually decides on a value.
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Algorithms designed to reach consensus such as Paxos and Raft are complex. It is not
easy to assert that these algorithms and its implementations have the stated properties.
Consequentely, efforts to formally verify consensus algorithms often tackle the verification

of variations of the correctness properties listed above.

2.2 DATA RACES IN DISTRIBUTED SYSTEMS

In general, a data race occurs when two accesses compete for the same resource in a
unsynchronized fashion and at least one is modifying the resource. Since there is no causal
relation enforced between the two accesses, their ordering can vary across executions, which
in some cases leads to failures.

Addressing data races in multithreaded applications has been the subject of extensive
research over the years [Flanagan and Freund (2009); Kasikci et al. (2012); Huang (2015); Li
et al. (2019)]. Unfortunately, data races in distributed systems are much more challenging
than their single-machine counterparts. As message handlers often change the node’s local
state and trigger additional actions (e.g. sending a new message to another node), the timing
in which messages are delivered and processed plays a decisive role in the correct execution
of distributed protocols. In fact, most concurrency bugs in real-world distributed systems
stem from the untimely delivery of messages [Liu et al. (2017)]. Since those problematic
execution interleavings are typically rare, they go unnoticed during testing and only surface
in production with serious consequences.

According to the TaxDC study [Leesatapornwongsa et al. (2016)], distributed data races
can be classified into two categories based on their message timing conditions:

e Order violation — An order violation occurs when the correct execution of a protocol
in a node N requires that two events e; and e, run in a determined order (say, ¢; should
execute before e;) but the program code wrongly permits an execution interleaving
in which e; occurs before e;, thus causing an error. At one node, order violations can

occur due to data races between:
1. two message arrivals,
2. a message arrival and a message sending,
3. a message arrival and a local computation.
In turn, across multiple nodes, they are caused by races between two message arrivals

at different nodes.

e Atomicity violation — An atomicity violation occurs when the correct execution of a
protocol in a node N requires that a critical region of events, denoted as ey, e, ..., e,

executes atomically but the program code wrongly permits an execution interleaving
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in which an external event x executes in-between e; and e,, thus causing an error. The
error would not manifest if x happens either before or after the critical region. At
one node, atomicity violations can occur due to data races between a message arrival
and an atomic local computation, whereas across multiple nodes they stem from races

between a message arrival and an atomic global computation.

Figure 13 illustrates several of the aforementioned scenarios of order and atomicity
violations, which we implemented as testbeds for our experimental evaluation (§5). We now
discuss SMT constraint solving, which is at the heart of our approach to detect distributed

data races.

2.3 SAT AND SMT

Satisfiability (SAT)

The propositional satisfiability problem, also known as SATISFIABILITY or SAT, is the problem
of determining if, given a propositional formula ¢, there exists an assignment that satisfies
¢. To put it another way, SAT consists in deciding if it is possible to assign a boolean value
to each variable in a propositional formula such that the formula is satisfied, i.e. it is true.
In that case, the formula is considered satisfiable. Otherwise, it is considered unsatisfiable.
For example, formula 1 is satisfiable — assigning true to a and b and false to ¢ makes the
formula have a truth-value of true — whereas formula 2 is unsatisfiable — no assignment can

make a and —a be true at the same time.

anNbA—c (1)

an-a (2)

Programs that take a set of logical formulas as input and determine wether the set is
satisfiable* are called SAT Solvers. Most modern SAT solvers such as Minisat and Glucose
receive its input in the DIMACS format3 and output SATISFIABLE if the set is satisfiable
or UNSATISFIABLE otherwise. Fig. 1 and Fig. 2 demonstrate the output of minisat when
it is passed a file with the Formula 1 and a file with the Formula 2, respectively.

SAT was the first problem to be proven NP-complete [Cook (1971)]. As such, there is no
known algorithm capable of efficiently solving all instances of the SAT problem. In other
words, generally speaking, there is no known polynomial-time algorithm which can decide if a
propositional formula is satisfiable. Notwithstanding SAT’s complexity, current SAT solvers

2 By abuse of notation, we consider that a set of propositional formulas S is satisfiable if there exists an assignment
which satisfies all the formulas in S.
3 A presentation of the DIMACS format is not required and it is out of the scope of this dissertation.
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$ minisat formulal.sat

[ Problem Statistics ]

| |
|  Number of variables: 3

|  Number of clauses: 0

| Parse time: 0.00 s

| Simplification time: 0.00 s

| |

[ Search Statistics ]

| Conflicts | ORIGINAL | LEARNT | Progress

| | Vars Clauses Literals | Limit Clauses Lit/Cl | |
restarts 1

conflicts : 0 (0 /sec)

decisions : 1 (0.00 \% random) (221 /sec)

propagations : 3 (664 /sec)

conflict literals : 0 (-nan \% deleted)

Memory used : 14.00 MB

CPU time : 0.004515 s

SATISFIABLE

Figure 1: Output of minisat after running with Formula 1 — the formula is satisfiable.

$ minisat formula2.sat
[ Problem Statistics 1]

| |
|  Number of variables: 1

|  Number of clauses: ¢}

| Parse time: 0.00 s

| Simplification time: 0.00 s

| |

Solved by simplification

restarts 1 0

conflicts : 0 (0 /sec)

decisions 1 0 (-nan \% random) (0 /sec)
propagations 11 (667 /sec)

conflict literals : 0 (-nan \% deleted)

Memory used : 14.00 MB

CPU time : 0.0015 s

UNSATISFIABLE

Figure 2: Output of minisat after running with Formula 2 — the formula is unsatisfiable.
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achieve acceptable performance for many practical applications thanks to algorithms such as
Conflict Driven Clause Learning (CDCL) [Silva and Sakallah (1996)]. SAT solvers have a wide
range of practical applications which include, but are not limited to, model checking and

planning in artificial intelligence [Marques-Silva (2008)].

Satisfiability Modulo Theories (SMT)

SMT is the decision problem of determining wether a first-order logical formula is satisfiable
with respect to a background theory. A background theory provides interpretations for function
and predicate symbols. For example, the theory of integers T provides interpretations for
the symbols 0, 1, +, — and <. It is possible to devise theories to reason about varied kinds
of objects, from real numbers to data-structures such as arrays [SMT-Lib: Logics].

An SMT instance can be seen as a generalization of a Satisfiability (SAT) instance where,
in the place of propositional variables, there are predicates over non-binary variables (i.e.
binary-valued functions of non-binary variables) whose interpretations are given by a

background theory.

In the context of the already mentioned theory T (also called Presburger arithmetic),
formula 3 is satisfiable — the assignment x =1, y = —1 and z = 1 satisfies the formula - but
formula 4 is not.

x+y<zAz<x—y (3)
x<0A1l<x (4)

Tz is a decidable theory — there is a decision procedure capable of determining the satisfiability
of formulas written in this theory [Stansifer (1984)]. That is generally not the case. For
example, the theory T, also known as Peano arithmetic, consists in the theory Tz expanded
with the operator x and is undecidable.

Programs which take as input a set of first-order formulas written in the context of a
background theory and determine the satisfiability of the set are called SMT solvers. Most
modern SMT solvers like Z3 [Z3 Github Page] support the SMT-LIB2 format* [Barrett et al.
(2010)] for representing sets of formulas and print sat or unsat depending on the satisfiability
of the input. Figures 3 and 4 exemplify the usage of an SMT solver when it is passed a
file with the formulas 3 and 4, respectively. SMT solvers have been employed in a wide
range of applications, from program synthesis [Feng et al. (2018)] to testing, as seen on this
dissertation.

4 A presentation of the SMT-LIB2 format is not required and it is out of the scope of this dissertation.
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$ z3 --smt2 formula3.smt
sat
(model
(define-fun z () Int
0)
(define-fun y () Int
0)
(define-fun x () Int
0)
)

Figure 3: Output of Z3 after running with Formula 3 - the formula is satisfiable. Besides, Z3
provides an assignment which satisfies the formula: all variables are assigned to 0.

$ z3 --smt2 formula4d.smt
unsat

Figure 4: Output of Z3 after running with Formula 4 — the formula is unsatisfiable.

2.4 RUNTIME VERIFICATION

The approaches to verification presented previously are performed either before or during
compilation. Because of this, they are considered static verification techniques. There are
other approaches which rely on runtime checks to detect property violations. Accordingly,
such techniques commonly receive the label of Runtime Verification even though they do
not offer the same guarantees as traditional (static) verification techniques — generally, a
program cannot be proved correct using runtime verification techniques alone because the
information used by such techniques is often limited to particular executions of the system;
for example, runtime verification does not provide a way to verify the code that is not
exercised in the particular execution under consideration.

Runtime techniques such as monitoring [Leucker and Schallhart (2009)] are often employed
to reason about a single execution of a computer program. It is also possible to exploit
information about one execution of the program to reason about multiple possible executions.
Section 3 describes one way to achieve this.

Monitoring is a method where a component called monitor runs along the evaluated
system. The monitor is responsible for analysing the behaviour of the program in order to
reach a verdict, i.e., a truth-value, indicating whether a property holds in the program or not.
Monitoring can be performed in different ways — Cassar et al. (2017) present a spectrum of
monitoring techniques regarding the way monitors are coupled with the monitored system
and the level of control they have over it. If a monitor uses a set of logged executions
to reach a verdict, then it is called an offline monitor. Otherwise, the monitor checks the

current execution of the system and is considered an online monitor. Online monitors can

12



2.4. Runtime Verification

be used to detect violations of properties and react to them accordingly, e.g. by calling an
error-handling function in the monitored system.

There are monitoring tools which permit the encoding of the properties to be monitored
in a Domain Specific Language (DSL). The properties are automatically translated into
the monitor’s code to be run alongside the monitored system. For instance, Copilot [Pike
et al. (2013)] provides a stream-based DSL embedded in Haskell to specify properties to be
monitored in embedded systems. Properties are encoded as streams of booleans. Each value
in the stream corresponds to the truth-value of the property in each sampled point. The
specification is utilized to generate the monitor’s code written in C to be cross-compiled
with the monitored system.

Depending on the implementation, a monitor is capable of reading either a finite log of the

running system or its internal state. Besides, work has been carried out to build monitors to

reason locally (i.e., in each node of the system) about the global state of a distributed system.

For example, Sen et al. (2004) proposed Past Time Distributed Temporal Logic (PTDTL), a
logic to specify properties in distributed systems using epistemic operators to reason about
what each process knows about other processes. Simply put, a process is associated with a
set of temporal formulas about its local state, which includes the last known states of the
other processes in the system. Each process is run with a local monitor generated from the
set of formulas stated for that process.

13



INTRODUCING SPIDER

In the work leading up to this dissertation, we developed SPIDER, a tool for detecting data
races in executions of distributed systems by analysing traces obtained at runtime using a
tool such as Minha [Machado et al. (2019)] or Falcon [Neves et al. (2018)]. A trace consists in
a log that has entries for each relevant event occurring during the system’s execution. For
this reason, SPIDER can be considered an offline monitoring tool (§2.4). The idea for SPIDER
came from the the need to analyse traces produced by Minha (in fact, it was originally called
Minha-checker) but it grew into an independent project capable of handling traces captured
from any system, as long as the traces conform to the specified trace format (§3.1).

SPIDER explores the idea presented by Lamport (1978) that, in distributed systems, it is
often impossible to tell which one of two events (e.g. message sending, message receving,
memory access) happened first - even if the events have timestamps associated with them,
there’s no guarantee that the clocks on the nodes where the events ocurred are synchronized.
Hence, it may be impossible to establish a unique total-order on the events ocurring in a
distributed system. However, it is always possible to establish a partial-order on the events
based on which events cause or affect other events. In other words, it is possible to build a
causality relation, also known as a Happens-Before (HB) relation which is a partial ordering.
Given such an ordering on the events pertaining to one execution of a system, it is possible
to determine wether two events occur concurrently. In particular, it is possible to infer that
two accesses to the same memory location are concurrent, which often translates into a race
condition.

Figure 5 summarizes the worflow intended for SpipEr. Each of the steps is further

described below.

Trace a running Buﬂ('i the causal Detect concu'rrent
distributed system relation between accesses using
the traced events an SMT solver

Figure 5: Spider’s intended workflow
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3.1. Tracing a running distributed system

3.1 TRACING A RUNNING DISTRIBUTED SYSTEM

SPIDER relies on external tools such as Minha or Falcon to capture a trace of a distributed
system’s execution. Such tools must be able to detect and log the following kinds of events

when a distributed system is running;

1. Intra-node shared memory accesses: accesses to shared variables including their types
(Read or Write), as well as Lock Acquire and Lock Release events;

2. Intra-node thread events: Fork, Join, Thread Start and Thread End events represent-
ing, respectively, the creation of a new thread in a node, the termination of a thread,

the start of a thread execution and the end of a thread execution;

3. Inter-node communication events: Send and Receive events representing message

sending and receiving through sockets;

4. Message handling region delimiters: events signaling the beggining and the end of a

message handler.

The tracing mechanism is not required to detect custom synchronization protocols based on
combinations of RPC/socket communication and intra-node computation [Liu et al. (2017)].
If the traced system relies on such mechanisms, the results returned by SpipEr will not be
precise (§5.4).

The tracing mechanism should produce either a file with all the traced events or else, a file
per node with the events relative to each node. In both cases, the file has to be locally sorted.
A trace file is locally sorted when, given two events e; and e in the trace, if they occur in
the same thread and e, appears in the trace after e;, then e, does not causally precede e;.
SPIDER currently uses the Falcon Event Trace API [Falcon TAZ] to parse trace files.

3.2 BUILDING THE CAUSAL RELATION BETWEEN THE TRACED EVENTS

SPIDER is able to model multiple distributed execution orderings from the same event trace
by leveraging the Happens-Before (HB) <y, (binary) relation between events. This relation
states that, for two events e; and e, in the trace, if e; <j; e» then event ey must have run
before event e, at runtime [Lamport (1978)]. The <}, relation encodes causal dependencies
between events in a strict partial order, which means that it has the following properties:

1. irreflexivity — no event can happen before itself:

Va.—-a<ya (5)
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3.2. Building the causal relation between the traced events

2. transitivity — if an event a happens before an event b and b happens before another
event ¢, then a happens before c:

Va,b,c.a <, bAb <ppc — a =<y c (6)

3. asymmetry —no event a can simultaneously happen before and after another event b:

Vﬂ,b.ﬂ%hbb—} -b <np a (7)

The HB relation is commonly captured by means of logical clocks (also known as Lamport
clocks) [Lamport (1978)], which are integer values that indicate the logical time in which
events occur in the execution. If an event e; happens-before an event e, then their respective
logical clocks C(e1) and C(ez) will reflect that dependency: e; <, e2 — C(e1) < C(e2).

SPIDER casts the problem of assigning logical clocks to events as an SMT constraint
solving problem. However, since the time necessary to solve an SMT formulation increases
proportionally to its number of constraints, it is of paramount importance to reduce them as
much as possible in order to obtain a solution in a practical amount of time. In chapter 4,
we discuss this issue at length and describe how SPIDER employs redundancy pruning to
achieve this goal.

SPIDER builds the HB model, denoted ®;;, in two steps:

1. encode each event’s logical clock as a symbolic integer variable,
2. encode the causal dependencies <j,;, as constraints over those symbolic variables.

Considering the types of the events, the ®;;, model can be defined as a conjunction of the
following sub-formulae:

1. Program Order: Let E; and E; be the logical clocks of two events e; and e, occurring
in the same thread context (meaning that they occur in the same thread and either ¢;
and e; are outside of any message handler or both are inside the same handler). If ¢
appears before e, in the trace, then: E; < Ej.

2. Thread Synchronization: assuming that Fork;, Start;, End;, and Join; represent, re-
spectively, the logical clocks of the creation, beginning, end, and join operations of a
thread ¢, then:

Fork; < Start, (8)
End; < Joing (9)
Start; < End,; (10)
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3.2. Building the causal relation between the traced events

3. Message Exchange: let Snd,,;, and Rcv,,;, represent the logical clocks of the events of

sending a message m on location /; and receiving m on location I, respectively. Then:
Snd,, 1, < Revy,, (11)

Simply put, a message can only be received if it was previously sent.

4. Message Handling: let Rcv,, ; denote the event logical clock for receiving m on location
I, and let H_Begin,, and H_End,, represent, respectively, the logical clocks signaling
the beginning and the end of m’s message handler. Then:

Rcv,,; = H_Beginy, (12)
H_Begin, < H_End,, (13)

Assuming that the handler is the region of the program responsible for processing the
message, the first constraint means that a handler for message m begins immediately
after m has been received. Thus, a message m cannot be processed before it was
received. The second constraint ensures that the event signaling the beginning of a
handler occurs before the event signaling its end.

5. Mutual Exclusion: let Lock;,; and Unlock,,; represent, respectively, the logical
clocks of the lock acquisition and release operations by thread t on a synchronization
variable v at locations /1 and [5. Then:

Lock;,;, < Unlocky ), (14)

Moreover, when different threads compete to execute the same critical region, we need
additional constraints to ensure mutual exclusion, i.e., that only one thread at a time accesses
the variables encompassed by the lock.

Let P denote the set of locking pairs on a synchronization variable and let (L, U) and
(L', U’") be any two different locking pairs in P. The constraint encoding the mutual exclusion
between locking pairs is as follows:

V(L,U),(L’,U’)EP U< L/ V U/ <L (15)

Solving the constraint model thus consists in assigning an integer value to each symbolic
variable (i.e. to each logical clock), such that all constraints are satisfied. In other words, by
solving the model, SPIDER is able to obtain a feasible execution interleaving, in which events

are guaranteed to be ordered according to their happens-before relations.
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3.3. Detecting concurrent accesses using an SMT solver

3.3 DETECTING CONCURRENT ACCESSES USING AN SMT SOLVER

The last step of SPIDER’s approach consists in using an SMT solver to identify race conditions.
More precisely, we use an SMT solver to detect two different kinds of data races:

1. inter-thread data races resulting from concurrent accesses to shared memory origi-
nating from two different threads. These races are characteristic of multi-threaded

software.

2. intra-thread data races resulting from racing messages whose handlers modify the
same portions of a node’s state. These races are unique to distributed systems.

3.3.1 Handling inter-thread data races.

Let (e1, e2) represent a pair of conflicting accesses (i.e., read-write events to the same variable
on the same node, with at least one write), and let E; and E; be the respective logical clocks
of e; and e,. The pair (e1,ez) is considered a data race iff the following race property is
satisfiable:

race(ey,e2) = Oy A (E1 = Ep) (16)

The data race property @4 requires the logical clocks E; and E; to have identical values
while satisfying all other constraints in ®;;, which can only occur when the events ¢; and
ey are not causally ordered. In other words, e; and e, form a data race because they are no
related via the happens-before relation.

SPIDER resorts to an SMT solver to check whether equation 16 holds for each candidate
pair (e1,e2). If the solver returns satisfiable, then (e1,e;) is considered an actual data race.
Conversely, if the formula is unsatisfiable, then e; and e, cannot execute concurrently, hence
(e1,e2) is not reported as a race.

After validating all candidate pairs of conflicting accesses, SPIDER outputs the list with the
data races detected in the execution trace. It should be noted that the checking procedure is
embarrassingly parallel, as each pair can be checked independently from the others.

3.3.2 Handling intra-thread data races.

Contrary to shared-memory programs on a single machine, in which data races can only
occur in the presence of multiple threads, distributed systems can suffer from race conditions
in a single thread. This scenario happens when there is an order violation due to a race
between the arrival of two messages processed by the same thread, where at least one of the
message handlers changes the node’s state (see Figure 13b for an example).
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SPIDER addresses these types of data races in a two-fold fashion. First, it identifies message
races in each thread. This is done by applying equation 16 to pairs of send events. Let 1
and m; be two different messages processed by thread t and let Snd,,, and Snd,,, be the
logical clocks of their sending events. If race(Snd,,,, Snd,,) is satisfiable, then both messages
are racing.

Second, SPIDER detects conflicting accesses in the message handlers by computing the
intersection of the sets of shared variables that each handler accesses. Let rw; and rw,
be two events belonging to the handlers of m; and my, respectively, that access the same
variable, and at least one of them be a Write. If my and m; are racing, then (rwq, rw;) forms
an intra-thread data race.

3.4 A RUNNING EXAMPLE

In this section, it is shown how to use SPIDER in practice with a simple but elucidating
example. Figure 6 presents Examplel, a Java program® that suffers from two distinct data
races. When the program starts, it launches a child thread. Then, the main thread writes on
the shared variable counter by incrementing its value (line 77) before trying to read the value
in order to print it (line 8). At the same time, the child thread writes on the shared variable
counter by also incrementing it (line 12). Given that no synchronization mechanism is
employed, the increment operation in the child thread is concurrent with both the increment
and read operations in the main thread. Because of these data races, there are two possible
outputs that Example1 may produce, shown in fig. 7 and fig. 8. The increment and read
operations on the main thread are not concurrent because they happen in the same thread
and the increment operation has to happen first.

1 Even though Examplel is written in Java, SPIDER could, in principle, be utilized to detect data races in programs
written in other programming languages, as long as there is an effective way to trace their executions.
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3.4. A running example

1 class Examplel implements Runnable {

2

O 00 N o U B~ W

10
11
12
13
14 }

static int counter = 0;

public static void main(String[] args) {
Thread tl = new Thread(new Ex1());
tl.start();
counter++;
System.out.println("The value of counter is " + counter);

public void run() {
counter++;

Figure 6: Example1 source code (written in Java)

The value of counter is 1

Figure 7: Possible output of Examplex (1)

The value of counter is 2

Figure 8: Possible output of Examplex (2)
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"thread": "main@l0.0.0.1",
"type": "START",
"timestamp": 1525270020050

H
"thread": "main@l0.0.0.1",
"type": "FORK",
"child": "Thread-1@10.0.0.1",
"timestamp": 1525270020069

H
"thread": "Thread-1@10.0.0.1",
"type": "START",
"timestamp": 1525270021812

H
"thread": "main@l0.0.0.1",
"loc": "demos.Examplel.main.7",
"variable": "demos.Examplel.counter",
"type": "WRITE",
"timestamp": 1525270021837

H
"thread": "main@l0.0.0.1",
"loc": "demos.Examplel.main.8",
"variable": "demos.Examplel.counter",
"type": "READ",
"timestamp": 1525270021852

H
"thread": "Thread-1@10.0.0.1",
"loc": "demos.Examplel.run.12",
"variable": "demos.Examplel.counter",
"type": "WRITE",
"timestamp": 1525270021875

H
"thread": "Thread-1@10.0.0.1",
"type": "END",
"timestamp": 1525270022188

H
"thread": "main@l0.0.0.1",
"type": "END",
"timestamp": 1525270022200

Figure 9: File example1.log - a traced execution of Example1

To detect the data races using SPIDER, the program must be traced while it runs using
tools such as Minha or Falcon. Figure 9 shows the contents of file examplel.log, containing

a traced execution of the program in the format specified by the Falcon Event Trace APL



3.4. A running example

Each entry contains the relevant data pertraining to one event, including its type and the
thread where it occurs. SPIDER can then be invoked with the collected trace in order to find
the data races in Examplel. Internally, it will build a causality relation, shown as a directed
graph in fig. 10, and then it will use it to determine which conflicting memory addresses are

concurrent.

Threadinit0
where: Threadl

1

Fork
newThread: Threado
where: Threadl

WriteO
variable: Sharedvariable
where: Threadl

!

Threadinitl
where: Threado

Read Writel
variable: Sharedvariable variable: Sharedvariable
where: Threadl where: Threado
r
ThreadEndd ThreadEndl
where: Threadl where: Threado

Figure 10: Abstract representation of the Happens-Before relation built from the events of exam-
plel.log - this figure was obtained from an Alloy specification of the possible traces. As
such, it uses the generic terms instead of concrete ones: it uses SharedVariable instead
of demos.Examplel.counter, Threadl instead of main@10.0.0.1 and Thread0 instead of
Thread-1@10.0.0.1.
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$ spider -f examplel.log

[main] Loading events from examplel.log

[main] Trace successfully loaded!

[RaceDetector]
[RaceDetector]
[RaceDetector]
[RaceDetector]
[RaceDetector]
[RaceDetector]
[RaceDetector]

Data Race Candidates:

-- (W_demos.
W_demos.
-- (R_demos.
W_demos.

Actual Data
-- (W_demos.
W_demos.
-- (R_demos.
W_demos.

Examplel.
Examplel.
Examplel.
Examplel.

Races:

Examplel.
Examplel.
Examplel.
Examplel.

Generate program order constraints
Generate fork-start constraints
Generate join-end constraints
Generate wait-notify constraints
Generate locking constraints

Generate communication constraints
Generate message handling constraints

counter_main@l0.0.0.1 3@demos.Examplel.main.7,
counter_Thread-1@10.0.0.1_5@demos.Examplel.run.12)
counter_main@l0.0.0.1 4@demos.Examplel.main.8,
counter_Thread-1@10.0.0.1_5@demos.Examplel.run.12)

counter_main@l0.0.0.1_3@demos.Examplel.main.7,
counter_Thread-1@10.0.0.1_5@demos.Examplel.run.12)
counter_main@l0.0.0.1 _4@demos.Examplel.main.8,
counter_Thread-1@10.0.0.1_5@demos.Examplel.run.12)

RESULTS

> Number of events in trace: 8

> Number of constraints in model: 6

> Time to generate constraint model: 0.001 seconds

## DATA RACES:

> Number of data race candidates: 2
> Number of actual data races: 2
> Time to check all candidates: 0.007 seconds

Figure 11: Invoking Spider with the file example1.log

3.4. A running example

Fig. 11 shows the output presented by SPIDER when it runs with file examplel.log. The

output is structured in the following manner:

1. first, some logging messages reporting the generation of constraints are shown;

2. then, it presents the candidate pairs of events which may form a data race;

3. next, it lists the actual data races, i.e. the candidate pairs whose events are concurrent

4. finally, some metrics collected during SPIDER’s execution are shown.

7
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Even though the lists of pairs of events in SPIDER’s output look hard to read, they are
actually simple - each pair in the list contains two event identifiers. Each identifier starts
with a "W’ if it is a write or with 'R’ if it is a read and is followed by the accessed variable,
the thread where it occurs, the node where the thread is running, and the line of code
responsible for the event. Table 1 summarizes the actual data races found in fig. 11, which
are exactly those reported in the beggining of this section, demonstrating that SPIDER is

effective at finding the data races that are present in Examplel.

Table 1: Data races in Examplel

’ Race Pair ‘ Instruction #1| Instruction #2

(W_demos.Example1.counter_main@10.0.0.1_3@demos.Example1.main.7, Line 7 in class | Line 12 in class
W_demos.Example1.counter_Thread-1@10.0.0.1_.5@demos.Example1.run.12) Examplel Examplel

(W_demos.Example1.counter_main@10.0.0.1_.3@demos.Example1.main.7, Line 8 in class | Line 12 in class

W_demos.Example1.counter_Thread-1@10.0.0.1_.5@demos.Example1.run.12) Examplel Examplel




CHALLENGE: SCALING SPIDER’S APPROACH

From empirical observations (Table 2), it became clear that SPIDER did not scale sufficiently
well to analyse long traces of a distributed application. Runtime tracing of distributed
systems usually results in traces which, due to their size, are not amenable to being analysed
using SMT solvers. Explicitly selecting the variables to be tracked and ignoring accesses
to all other variables could significantly improve the performance of the analysis but even
in that case, the performance would be severely degraded if there were multiple and
repetitive accesses to the selected variables. Such degradation is, above all, a consequence
of the assimptotic complexity of the trace-analysis algorithm which is bounded below by
O (Mevents®), Where Tepents stands for the number of events in the trace file(s). This bound

factors in the following observations:

e The worst case occurs when reading a trace after having read n traced memory accesses
to a shared variable. In such conditions, when a new Write is read in a thread that did
not contain any accesses to the shared variable before, there will be n new conflicting
pairs of memory accesses, one for each access performed in other threads and read
by the trace analysis algorithm before the current access. For each conflicting pair
of acesses, there will be a call to an SMT solver to determine wether the accesses
are concurrent, as seen in Fig. 5. Thus, the number of queries to the SMT solver is
quadratic in the number of memory accesses. It is also quadratic in the number of

traced events.

e All models passed to the SMT solver have the same size, i.e., the same number of
variables and constraints. Every query to the SMT solver includes the complete model
of the happens-before relation and one concurrency constraint.

e The number of constraints in the model is linear in the number of traced events —
each event appears, at most, in three constraints. As such, there cannot be more than
3 * 1ppents constraints. Besides, the number of variables in the model is also linear in the
number of traced events — for each event, there is a variable in the model representing

the relative ordering of the event.
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e For each conflicting pair of memory accesses, the SMT solver will be called with
the model containing a number of constraints and variables that is linear in 7,yens.
SPIDER uses an SMT solver to determine the satisfiability of formulas in QF_IDL
(sec. 3.3). In turn, the solver makes use of efficient decision procedures to determine
the satisfiability of the constraints. However, in order to simplify the complexity
analysis of the problem that SPIDER solves and to provide a lower-bound to the time
complexity in the worst case of the problem, we only consider the complexity of
decision procedures used independently of SMT solvers. An example of this is the
Bellman-Ford algorithm which reduces the problem of consistency checking for difference
logic to the detection of negative cycles in weighted digraphs in O(n - m) time, where
n is the number of variables and m is the number of constraints. Ge et al. (2016)
realized that it is not necessary to use the full QF_IDL for this purpose, and devised
the theory of Ordering Constraints, a fragment of QF_IDL which includes conjunctions
and disjunctions of boolean expressions over ordering comparisons such as O10JO,,
with O € {<,<,>,>,=,#}. They also provided a decision procedure that can be
used with or without an SMT solver and showed that, in the latter case, the consistency
of conjunctions of ordering constraints can be decided in O(n + m) time. Given that
the number of variables n and the number of constraints m are linear in 7.yet5, the
complexity of verifying consistency of conjunctions of ordering constraints in this
context can be simplified to O (npents)-

To sum up, the number of traced events is the major factor influencing the performance of
SPIDER.

HANDLING TOO MANY EVENTS

Trace a running lzlllter redun- Bllnlc‘i th]e; causal Detect concu'rrent
distributed system ant events relation between accesses using
from the trace traced events an SMT solver

Figure 12: Spider’s workflow including redundant event pruning — the new step is highlighted in
yellow.

Having shown that the performance of SPIDER depends mainly on the number of traced
events, we now observe that SPIDER’s run time can decrease substantially by eliminating
events from the trace. Furthermore, it is possible to remove events from the trace without
changing the results obtained by the trace analysis. For example, Huang and Rajagopalan
(2017) observed that, in multi-threaded systems, most accesses to shared variables arise
typically from the same locations in the code, often leading to races being reported multiple
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times due to repeated execution of the same faulty instruction. Subsequently, a repetitive
memory access which does not reveal new races, dubbed a redundant event, can be ignored
for race detection purposes. Huang and Rajagopalan (2017) designed ReX, an algorithm to
identify and remove redundant events from multi-threaded systems’ traces. They tested ReX
against several benchmarks and found out that almost all of the resulting traces consisted of
more than 90% of redundant events.

Inspired by the amount of redundant events present in the traces and by the effectiveness of
ReX, we implemented an extended version of this algorithm to detect and remove redundant
events from traces. However, unlike single-node multi-threaded systems, distributed systems
tend to use messaging primitives quite extensively. As such, our algorithm uses an extended
notion of redundant event applicable not only to memory accesses but to any kind of event
and is capable of removing redundant message handlers from the traces. This algorithm
was integrated in SPIDER to reduce the size of the traces before analysing them. The next

section presents the algorithm.

REDUNDANCY PRUNING

As noted by Huang et al., previous reasearch on how to decrease the size of traces focused
mainly on dynamic sampling [Bond et al. (2010); Marino et al. (2009)] and static analy-
sis [Rhodes et al. (2017); Biswas et al. (2015)] but these approaches have the disadvantage
of producing too many false positives and leading to races being missed from the analysis.
Instead, they propose a way to prune events based on a redundancy criterion: a memory access
is deemed redundant and can be removed from the trace if its removal does not affect the
results of data race detection [Huang and Rajagopalan (2017)]. To this end, they introduce
the concept of Concurrential-Subsume Equivalence: for two memory accesses e; and ¢;, ¢; is

concurrentially-subsumed by e; when

1. both e; and e; are caused by the same program instruction and have the same access

type (i.e. both are Reads, or both are Writes)
2. they access the same memory location
3. for every event ¢ such that t, # to, At, # te;,

ex <y € — ek <pp € (17)

€ =<np €k —> €j <pb Ck (18)

Besides, they prove that an event is redundant if the trace contains one concurrential-

subsuming equivalent event from the same thread, or two concurrential-subsuming events
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from different threads; finally, they present ReX, an algorithm designed to efficiently prune
redundant events based on this observation.

The inner workings of ReX are out of the scope of this dissertation. Interested readers
should look into the original paper on ReX. Nonetheless, we present a brief description on
how it works. ReX keeps track of the concurrency contexts of each thread. The concurrency
context of a threadt ¢, represented by Gammay, is continuously updated and encodes the
history of Send, Lock Release and Fork events observed by t. The concurrency context of an
event e generated by thread f is the value of I'; at the time e is observed. For each thread, its
concurrency context has a stack associated. Based on the contents of this stack, there are
four cases to consider when an event e occurs in thread t:

1. the stack is empty — this particular concurrency context was not seen in any of the

accesses so far, and thus the event is not redundant;

2. the stack contains t — e can be eliminated because there is already a concurrential-

subsuming event from the same thread;
3. the stack does not contain the thread t — the event is not redundant;

4. the stack has size two — e can be eliminated because there is already a concurrential-

subsuming event from two different threads;

Inspired by this work, we have implemented an event filter in SPIDER that runs before any
trace analysis and significatly improves its performance on large traces while mantaining
the results of data race detection. It results from composing two other filters. First, we apply
a version of the ReX algorithm adapted to our systems model® (algorithm 1). After ReX has
been applied, there will be no redundant memory accesses left in the trace but the presence
of all other kinds of events will remain unchanged.

We then perform a second filtering on the events designed to prune redundant message
handlers and redundant threads (algorithm 3). Redundant message handlers and redundant
threads are defined in terms of a generalization of redundancy for block of events: a block ¢
of events ocurring in the same thread is redundant if the removal of every event in ¢ from
the trace does not change the results of the HB race detection. Furthermore, an event is
redundant if it is an element of a redundant block. In order for a block to be redundant,
it must not have any non-redundant memory access and its events must not enforce any
particular ordering on events occurring in different threads, e.g., a redundant block must
not contain a Send event because it enforces an event ordering where the events ocurring
before the Send event in the sending thread occur before the events occurring after the
corresponding Receive event in the receiving thread. To determine if a block is redundant, it
suffices to check that the block has the following properties:

The original ReX algorithm does not take into consideration the existence of Fork and Join events signaling the
creation and joining of threads.
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Algorithm 1: ReX (Trace trace)

for Event e : trace do
t < e.getThread();
loc < e.getLineOfCode();
switch e.getType() do
case Read, Write do
if isRedundant(e, t, T';) then
L L remove event e from the trace;

case Unlock do
L add e.getLock() to I'y;

case Send do
L add e.getSocketld() to T';

case Fork do
L add e.getChildThreadID() to T';

Algorithm 2: isRedundant(Event e, Thread t, ConcurrencyCtxt I';)

stack <— obtain the stack associated with event e location and concurrency context I';;
if stack is empty then
// add thread t to the stack
stack.push(t);
else if stack.contains(t) then
| return true;
else if stack.size() = 1 then
stack.push(t);
return false;
else
// the stack is full
return true;
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1. it does not contain a non-redundant message access?;
2. it does not contain a Send or Receive event;
3. it does not contain a Fork or Join operation whose child thread is not redundant.

4. all locks acquired in the block are released in the block, and all locks released in the
block have been previously acquired in the block.

We can now define a redundant message handler as a message handler whose events
constitute a redundant block, and a redundant thread as a redundant block that contains all
the events of that thread. In the case of redundant threads, it is also possible to delete the
corresponding Fork and Join events without affecting the results of data race detection. In
the case of redundant message handlers, it is not correct to remove the corresponding Send
and Receive events because its removal may lead to the removal of constraints between two
different non-redundant threads in the generated model and this can, in principle, lead to
false positives.

The second filter does not remove any memory access, neither does it modify the generated
HB relation between non-redudant events. The two filters in conjunction do not cause the
removal of non-redudant memory accesses neither do they modify the generated happens-
before relation between non-redundant events. Consequently, the results of data race
detection when run after filtering the events will not differ from those obtained when data
race detection is run without previously filtering the events.

Algorithm 3: RemoveRedundantBlocks(Trace trace)

for Event e : trace do
switch e.getType() do
case Receive do
messageHandler < events in the corresponding message’s handler;
if isRedundantBlock(messageHandler) then
L remove all events in messageHandler from the trace;

case Fork do
childThreadID < e.getChildThreadID();
threadEvents < events in thread childThreadlD;
if isRedundantBlock(threadEvents) then
remove all events in threadEvents from the trace;
remove corresponding Fork event;
remove corresponding Join event;

2 This filtering is performed after ReX, so any memory access in the block is non-redundant.



Algorithm 4: IsRedundantBlock(Block block)

acquiredLocks <« ©;

for Event e : block do

switch e.getType() do

case Send, Receive, Write, Read, Join do
L return false;

case Fork do
childThreadID < e.getChildThreadID();
eventsThread < events in thread childThreadlD;
if — isRedundantBlock(eventsThread) then
L return false;

case Lock do
| acquiredLocks < acquiredLocks U {e.getLock()};

case Unlock do
L acquiredLocks < acquiredLocks \ {e.getLock()};

return acquiredLocks = @;
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EVALUATION

Our prototype of SPIDER was implemented in Java in around 1.9K lines of code and is
publicly available at https://github.com/jcp19/SPIDER. Currently, SPIDER only supports
the Z3 SMT solver but there are plans to make SPIDER agnostic of the underlying solver, as
long as the solver supports the SMT-LIB2 format. Appendix A briefly summarizes how the
implementation of SPIDER is structured.

To assess the potential and limitations of our prototype, we conducted an experimental

evaluation focused on answering the following four questions:
e How effective is SPIDER in finding data races in distributed executions? (§5.2)
e How does the SPIDER’s efficiency vary with the size of the execution trace? (§5.3)
e How does redundancy pruning affect SPIDER’s effectiveness and efficiency? (§5.3)

Besides, this chapter ends with a brief discussion on the soundness and precion of
SPIDER (§5.4). In our experiments, we used Minha[Machado et al. (2019)] to collect the
execution traces, and the Z3 SMT solver Z3 (v4.4.1) to solve the constraints. We assumed
a timeout of 2 hours for constraint solving, after which the Z3 process was killed. All the
experiments were ran on commodity hardware equipped with an Intel Core i7-8550U CPU
and 16GB of RAM.

The next sections describe the benchmarks used to evaluate SPIDER and discuss the results
obtained.

5.1 BENCHMARKS

We used the following test cases to evaluate SPIDER’s race detection approach.

5.1.1  TaxDC Micro-Benchmarks

We tested SPIDER agains five micro-benchmarks developed by Nuno Machado that were
inspired in real-world races on popular distributed systems, namely HBase [Apache HBase]
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and Hadoop MapReduce [Apache Hadoop], as described in the TaxDC database [Leesat-
apornwongsa et al. (2016)]. These micro-benchmarks contain different types of data races
(§2.2) and are publicly available in github.com/jcp19/micro-benchmarks. We believe they
can be useful for the community to evaluate similar testing tools in the future.

Figure 13 depicts the distributed data races considered in our micro-benchmarks. Fol-
lowing TaxDC’s notation, in Figure 13, each race condition is associated with a label that
indicates the real-world bug on which the test case is inspired: the starting letter indicates
the system (H stands for HBase, whereas M stands for MapReduce) and the number denotes
the issue identifier (e.g. H5780 represents issue 5780 in HBase’s issue tracking system).
In turn, the node subscript indicates the system component present in the original buggy
scenario: ZK stands for ZooKeeper, RS for region server, Master for master node, AM for
application master, RM for resource manager, and NM for node manager.

Since the purpose of these benchmarks is to allow evaluating SPIDER’s ability to auto-
matically detect different types of distributed data races, rather than mimicking real-world
workloads and code complexity, we developed them focusing solely on the aspects that
contribute to the occurrence of the bug. As such, we represent local state queries and updates
respectively as reads and writes on shared variables, and confine the behavior of each node
to its message handlers.

a) Message-message race between arrival/sending (H5780) — Brs attempts to join the
cluster by sending Caaster @ JOIN message. However, since it does so before receiving
the security-key message from Azk, the value null is sent to Cajaster, thus causing an

error.

b) Message-message race at one node (M3724) — Bry schedules a container for Cnp to
work on a reduce task by sending the message CONTNR. Concurrently, A4y sends a
KILL message to Cny in order to preempt the reduce task. Since the two messages
race with each other, the KILL message can arrive before CONTNR and be ignored
by Cnm because no container exists yet (i.e. container = null). This untimely message
arrival will cause Cn to later reply to A p with a task-completion message, instead
of the expected ACK.

c) Message-message race across two nodes (M5358) — A 4 assigns a task to Cypn along
with a backup speculative task to Bya. When receiving the success confirmation
from Cypi1, Aam changes the state of the task to succeeded (tState = OK) and sends a
KILL message to Byy. However, if By, manages to finish the task and also send
the confirmation message OK to A prior to receiving the KILL signal, Ay will

consider Byap's message as a wrong state transition and throw an exception.

d) Message-compute race (M4157) — In the original bug, after finishing the task, A4y

unregisters itself to Brys and starts removing its local temporary files. Concurrently to
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Figure 13: Overview of the TaxDC micro-benchmarks with distributed data races - boxes on the
left describe the steps of the failing executions, as well as how the bugs are prevented.
Message diagrams containing, respectively, the failing and correct executions are depicted
on the right of the figure. Data races detected by SPIDER are represented by red dashed
boxes.



5.1. Benchmarks

the local cleanup, Bry sends a KILL message to A 4 for stopping its execution. As a
consequence, A 4y does not finish removing all files, which might cause storage space
issues in the future.

This error is illustrated in our benchmark by means of a flag isCleaning in A4p. In
particular, A4y spawns a worker thread to perform the local cleanup. This thread sets
flag isCleaning to true (resp. true) at the beginning (resp. end) of the cleaning task. If
Aam receives Bry's KILL before its working thread completes the cleanup, an error

will occur.

e) Atomicity violation (M5009) — After finishing a reduce task, By starts committing
the results to C4)s (Which sets the flag commit to true). Simultaneously, Agrp sends a
KILL message to Byp, thus preempting the task without resetting the commit states
on C4py. As a result, when later Byps reruns the task and attempts to initiate a new
commit transaction, C 4 fails due to a double-commit exception. The error does not

manifest if the KILL message arrives either before or after the transaction.

5.1.2 Peer Sampling Service.

To assess how SPIDER’s constraint solving time varies with the increase in the number of
events in the execution, we used the implementation of a popular peer sampling service
(PSS), named Cyclon [Voulgaris et al. (2005)], already used in prior work by Machado et al.
(2019). The goal of a PSS is to provide a gossip-based application with a churn-tolerant
logical overlay for message dissemination.

Briefly, the Cyclon protocol operates as follows. For each node of the system, Cyclon
maintains a view, which is a set of references to other nodes in the network associated with a
timestamp. To ensure that this view remains consistent with the nodes alive at each moment,
Cyclon performs periodic shuffle cycles, in which a node A sends a subset of randomly
sampled peers to another node B, and receives a random subset of B’s entries in return.
Upon receiving a shuffle response, A replaces the oldest entries in its view by those received
from B.

As noted by Machado et al. (2019), the atomicity of the shuffle operation is not guaranteed
by the original description of Cyclon. This scenario happens when a node A requests a
shuffle to a node B and, before receiving the response from B, A receives a shuffle request
from another node C. As a result, the state of A’s view upon receiving the references from B
will not be the expected, as it was already updated with the entries sent by C. In the long
term, this atomicity violation may generate corrupted views and break the connectivity of
the dissemination overlay provided by Cyclon.

We picked the Cyclon PSS to evaluate SPIDER due to the possibility of obtaining arbitrarily

large traces simply by changing the number of nodes and cycles used by the protocol.
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5.2. Effectiveness

Moreover, we note that Cyclon is an adversarial example for race detection, as the message
race scenario described above might not manifest in every execution of the protocol and,
when it does, the nodes involved and the cycles in which the violation occurs might vary
across test runs.

5.2 EFFECTIVENESS

Table 2 reports the results of running SPIDER over traces captured from the benchmarks’
execution. The experiments show that SPIDER successfully found all the pairs of racing
instructions that caused the concurrency bugs. In particular, for test case H5780, SPIDER
detects that there is a data race between the read of and the write to variable code, in steps 2
and 4. For M3724, SPIDER finds the data race on variable container. For M5358, SPIDER is
able to detect that the state of variable tState can be concurrently modified by the message
handlers of Cypi and Byap. For M4157, SPIDER correctly signals the flag set in the worker
thread and the flag check in the message handler as a data race. Alongside, for M5o09,
SPIDER warns that the write to flag commit on step 2 and the read of the same variable on
step 5 are not causally ordered (because they occur on two independent message handlers)
and thus form a data race.

Finally, for Cyclon test cases, SPIDER is also effective in discovering problematic data races
in the different execution scenarios. We note, however, that all of the races actually refer to
the same unique pair of instructions in the source code. The reason why SPIDER reports them

individually is that they correspond to events on different nodes and at different cycles.

5.3 EFFICIENCY

We assessed the efficiency of SPIDER’s data race detection technique by measuring its time
and space overhead, respectively in terms of constraint solving time and trace sizes. To this
end, we executed SPIDER with multiple configurations of Cyclon, varying the number of
nodes in the system and the number of cycles of the protocol between the values {5,10,100}.
The different configurations show how the constraint solving approach scales with the
increase in the number of events in the execution and, consequently, the constraints in the
model. Table 2 reports the results of our experiments. The columns of the table indicate,
respectively, the benchmark that was run, the size of the trace, the number of events in the
trace, the number of constraints in the generated SMT model, the number of candidate data
race pairs (i.e. the number of pairs of events with conflicting memory accesses in the trace),
the number of confirmed pairs of events which contain data races, and the time the SMT
solver took to check all candidate pairs.
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5.3. Efficiency

”

Table 2: Race detection results without redundancy pruning - column “Actual Races (Unique)
reports the number of data race candidate pairs that were confirmed by the SMT solver (the
value within parenthesis indicates the amount of data races with unique code locations).
Benchmarks whose names are of the form Cyclon-XN-YC indicate that the trace was obtained
from runs of the protocol with X nodes and Y cycles. “-” means that SPIDER did not output
any results due to timeout.

Benchmark Trace | #Trace #Constraints #Race | #Actual Races | Solving

Size | Events Candidates (Unique) Time
hs780 3KB 15 12 3 1(1) <1s
m3274 3KB 18 14 1 1 (1) <1s
m5358 5KB 27 19 2 2 (2) <1s
m4157 2KB 12 11 4 2(2) <1s
m5009 4KB 19 14 2 2 (2) <1s
Cyclon-5N-5C 74KB 420 488 325 121 (1) <1s
Cyclon-5N-10C 145KB 820 1464 1150 481 (1) 1.8s
Cyclon-5N-100C 1433KB| 8020 104505 101500 49835 (1)| 1hg3m
Cyclon-10N-5C 147KB 840 976 650 243 (1) <1s
Cyclon-10N-10C 290KB| 1640 2020 2300 969 (1) 7.8s
Cyclon-10N-100C | 2869KB| 16040 6031 203000 - | Timeout
Cyclon-100N-5C 1486KB| 8401 9800 6500 2394 (1)| 2mj53s
Cyclon-100N-10C | 2934KB| 16401 29298 23000 9651 (1) | 1ho3m
Cyclon-100N-100C | 29076KB | 160400 60301 2030000 - | Timeout

The results show that, as expected, the constraint solving time increases with the number
of events in the trace. From our experiments, it also became clear that the traces contain a
large portion of redundant events, varying between 22% and 48% of the total number of
events. Table 3 summarizes our observations. The columns of the table indicate, respectively,
the benchmark that was run, the number of redundant events and their ratio of the total trace,
the number of constraints in the generated SMT model after removing redundant events,
the number of candidate data race pairs, the number of confirmed pairs of instructions
which contain data races, and the time the SMT solver took to check all candidate pairs.
Table 3 shows that removing redundant events before looking for data races can lead to
big speedups in the time that the analysis takes. Despite this fact, there’s still a timeout
when SPIDER runs with the largest benchmark (Cyclon-100N-100C). We believe that this
problem can be mitigated in future versions of SPIDER by optimizing the number of queries
that are performed: instead of determining wether the events are concurrent for all pairs
of candidates, we can analyse only the pairs whose corresponding code locations haven'’t
yet been shown to produce concurrent events. Finally, we observe that even though the
elimination of redundancy causes a decrease in the number of data race candidate pairs that
were confirmed by the SMT solver, the number of data races with unique code locations

remains unchanged and thus, no race was missed by removing redundant events.
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5.4. Soundness and precision of the approach

Table 3: Race detection results with redundancy pruning

Benchmark #Redundant #Constraints #Candidate | #Actual Races| Solving Time

Events Data Races (Unique) (Speed Up)
Cyclon-5N-5C 122 (29%) 196 62 27 (1) <1s
Cyclon-5N-10C 296 (36%) 339 99 45 (1) <1s
Cyclon-5N-100C 3875 (48%) 2179 135 65 (1)| 8.0s ({ 777.5x)
Cyclon-10N-5C 207 (24%) 446 173 78 (1) <1s
Cyclon-10N-10C 520 (32%) 838 348 149 (1) <1s ({ 7.8x)
Cyclon-10N-100C 7466 (47%) 5180 1028 509 (1) 4M44S
Cyclon-100N-5C 1980 (24%) 4437 1668 753 (1)|  30.3s ({ 5.7%)
Cyclon-100N-10C 3719 (22%) 11893 6615 3134 (1) |22m25s (| 2.8x)
Cyclon-100N-100C | 47800 (30%) 47601 350202 - Timeout

5.4 SOUNDNESS AND PRECISION OF THE APPROACH

In this section, we argue why the results of data race analysis using SPIDER are trustworthy.
First, we observe that SPIDER is sound in the sense that, given any trace, SPIDER is always able
to find all pairs of instructions which lead to data races present in the trace. The analysis
performed by SPIDER always terminates because, for each trace, there is a finite number
of data race candidates, and the SMT constraints used to encode the causality model, and
to find which pairs of instructions are concurrent, are encoded in Quantifier-Free Integer
Difference Logic (QF IDFL), a decidable fragment of first-order logic.

Furthermore, we claim, without giving a formal proof, that redundant events are indeed
of no importance for data race detection. As such, the redundancy pruning algorithm does
not affect the soundness of Spider.

Assuming that the tracing mechanism captures all relevant synchronization events, no
false positives will be reported by SPIDER, i.e. SPIDER will only report pairs of instructions
if they can indeed produce non-synchronized (and thus, concurrent) memory accesses.
Given that the redundancy pruning algorithm does not modify the HB relation between
non-redundant events, it cannot lead to false positives being introduced in the results. As
such, the elimination of redundant events does not affect the precision of the results.

It is important to stress that SPIDER should be used with traces captured during executions
which exercise as much code as possible from the traced program, since SPIDER can only
detect a race between two instructions if there are events in the trace pertaining to both
instructions. Alternatively, SPIDER can be used with multiple traces to achieve a considerable

coverage of the code of the traced program.
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RELATED WORK

This chapter presents research that, like SPIDER, aims at improving the reliability of dis-
tributed systems. This section foccuses mainly on formal software verification and testing of
distributed systems.

6.1 FORMAL VERIFICATION
6.1.1  An overview of formal verification of computer programs

Static program analysis, commonly referred to as static analysis, offers static compile-time
techniques for predicting safe and computable approximations to the set of values or
behaviours arising dynamically at run-time when executing a program on a computer
[Nielson et al. (1999)]. This branch of Computer Science is historically related to code
optimization and compiler design and subsumes fields like Abstract Interpretation, Data Flow
Analysis and Control Flow Analysis.

Formal Verification grew independently from Program Analysis leading to techniques like
Model Checking, an automated way of checking whether a property holds in a formal model
of a system by systematically exploring the state-space of the model. Traditionally, models
are described as finite-state transition systems and the properties to be checked are expressed
in temporal logics [Ben-Ari et al. (1981)]. Checked properties are usually divided into two

main categories:

e safety properties specify the states that should never be reached. For example, in a
model of a crossroad with traffic lights on each entrance of the crossroad, a critical
safety property would be

P1: No two traffic lights are green at the same time
Any violation of a safety property is representable as a finite execution of the system

leading to the undesired state. In the given example, if P1 is invalidated the model
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checker will give a finite execution leading to a state where more than one traffic light

is green.

e liveness properties specify the properties that are desired to eventually hold in the model.

In the example of the crossroad model, it is expected that
P2: Each traffic light will always become green eventually

Liveness properties can only be invalidated with an infinite execution where the
desired property is never reached. P2 can be invalidated with an infinite run of the
system where a traffic light never becomes green. P2 can also be invalidated in an
execution where a traffic light becomes green and then returns to red without ever

becoming green again.

Model Checking has the advantage of providing a counter-example if a property is found
to be invalid. However, this approach is limited in the sense that only finite-state systems
can be verified and, even in that case, the size of the state-space may render this technique
intractable - the famous state explosion problem. Readers interested in a complete treatment
of Model Checking are directed to the book by Baier and Katoen (2008). A weaker form
of model checking, Bounded Model Checking (BMC) [Biere et al. (2003)], was introduced

to search for counterexamples in executions whose length is bounded by some integer.

Implementations of Bounded Model Checkers often work in two main steps: (1) generate
propositional formulas which are satisfiable iff the property holds for executions with a
length not bigger than the bound (2) dispatch the generated formulas to SAT solvers. BMC
cannot be used to prove the absence of property violations since the analyis is limited to
executions whose length is limited by a pre-defined bound. It can however be useful to

detect early violations of properties.

Formal Software Verification results from the intersection of static analysis and formal
verification. The holy grail of formal software verification would be to have algorithms both
sound and complete to fully automate the verification of properties about computer programs
in the sense that no additional input besides the program and the properties to verify are
required. A verification algorithm is said to be complete ift for every program P and every
valid property of the program ¢, the algorithm returns True. An algorithm is said to be
sound iff for every program P and every property i the algorithm returns True only when ¢
is valid in the program. Any attempt to develop sound and complete algorithms is however
doomed to fail: Henry Gordon Rice demonstrated in his PhD thesis that all non-trivial

semantic properties of programs are undecidable’. This result is known as Rice’s Theorem

1 A semantic property is a property about the program’s behavior e.g. the program terminates on all inputs. A
property is non-trivial if it is neither true nor false for every computer program.
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and implies that there cannot be a fully automated, sound and complete algorithm which
for all properties and programs written in any sufficiently powerful programming language
returns True if and only if the property is valid in the program. This does not mean that it is
impossible to solve particular instances of the verification problem but that one has to be
aware that sacrifices must be made when conceiving theoretical and practical frameworks to
tackle it.

The initial research in the area focused on creating formal semantics for sequential
programs in order to manually and deductively reason about them. Floyd-Hoare logic
[Hoare (1969)] was conceived to allow system verifiers to specify the pre-conditions P and

post-conditions Q of a computer program C as a triplet of the form

{Pyc{Q}

and to prove, through well defined inference rules, that for any initial state satisfying P,
the program C would run and, in case of termination, would reach a state satisfying Q.
The proof system of Floyd-Hoare logic is sound and relatively complete, i.e. it is complete
if there is a complete proof system for proving assertions in the underlying logic®. Proofs
in Floyd-Hoare logic are difficult and cannot be automated due to the need of finding loop
invariants for each loop in the program. A loop invariant is a property that is preserved
during all iterations of the loop and, after the loop terminates, implies the post condition of
the loop.

Manual proofs rapidly grew too long and complex, albeit repetitive. Consequently,
researchers started to look for ways to obviate and automate parts of software verification
giving birth to the area of Software Model Checking. The goal of the research in this area is to
increase the scope of automated techniques for reasoning about programs, both in power
and applicability. Tool designers have to choose either completeness or soundness when
they design algorithms for software model checking. Jhala and Majumdar (2009) state in
their survey about Software Model Checking that algorithms tend to preserve soundness

and give up on completeness. There are two approaches to achieve this:

e software model checking geared towards falsification — a subset of the computations is
explored in order to find a violation of the property. If one is found, it proves that the
program does not satisfy the property. Otherwise, no conclusion can be drawn. BMC

can be seen as a particular case of this.

e software model checking geared towards verification — a superset of the possible computa-
tions is explored. If a violation is found, there is no conclusion to be drawn. Otherwise,

it is certain that the property is valid in the program.

2 First-order logics are incomplete and are commonly used as the underlying logic.
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A proper coverage of Software Model Checking is out of the scope of this document.
Nevertheless, the surveys by D’Silva et al. (2008) and Jhala and Majumdar (2009) are highly
recommended.

Research on SMC didn’t stop the use of deductive techniques for verifying complex
programs; in fact, those techniques have been used in conjunction with proof assistants to
verify a wide range of non-trivial programs such as compilers [Leroy (2009)], operating
systems” kernels [Gu et al. (2016)] and distributed systems (discussed in the next section).

6.1.2  Formal verification of distributed systems

In the last decade, there has been no shortage of research directed at the verification of
distributed systems originating not only from academia but also from industry as well.
Initially, the focus of research on verifying distributed systems was on proving that the
high-level designs (or models) of these systems conform to a given specification. Such
tools can be used to demonstrate that a high-level design of a system is free of DC bugs,
including data races. More recently, researchers’ focus has expanded to include not only
the verification of designs of distributed algorithms but also of their implementations. In
this section, we show some techniques that have been proposed to ensure that a distributed
system is free of bugs, and in particular, of DC bugs. We start by discussing some automated
approaches (§6.1.2) and then consider techniques which require manual intervention to

complete correctness proofs (§6.1.2).

Model Checking and Software Model Checking of Distributed Systems

Model Checking techniques are often used to verify high-level designs of distributed proto-
cols against a specification. Zave (2012) formally modeled and specified the Chord algorithm
[Stoica et al. (2003)] which implements a distributed hash-table and found, using Alloy
[Jackson (2006)], that no previously published version of the algorithm was correct. Besides,
the author stated that

"Whether one cares about Chord or not, the significance of these results is that important
research protocols such as Chord exist in a haze of uncertainty about their specifica-
tions, properties, versions, and performance characteristics. Lightweight modeling can
reduce this uncertainty with relatively little effort and without specialized knowledge of
verification.”

At Amazon, Newcombe et al. (2013) reported the successful adoption of two specification
and modelling languages — Temporal Logic of Actions+ (TLA+) and PlusCal, both created by
Lamport. By creating models and specifications in these languages and running them in

the TLC model checker, they were able to detect serious bugs in the design of some of their
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most complex systems. Besides, the authors noted that the protocols are better understood
by developers when they are formally specified. Table 4 summarizes some of the results
achieved by adopting verification techniques to scrutinize the design of complex distributed

systems.
System Components Line Benefit
Count
S3 Fault-tolerant low-level | 804 in Found 2 bugs. Found further
network algorithm PlusCal | bugs in proposed optimizations.
S3 Background 645in | Found 1 bug, and found a
redistribution of data PlusCal | bug in the first proposed fix.
DynamoDB | Replication & group 939 in Found 3 bugs in long runs
membership system TLA+ | of the system.
EBS Volume management 102in | Found 3 bugs.
PlusCal
Internal Lock-free data 223in | Improved confidence on the
Distributed | structure PlusCal | system. No bugs found.
lock manager
Internal Fault tolerant repli- 318in | Found 1 bug and verified
Distributed | cation and reconfi- TLA+ one agressive optimization
lock manager | guration algorithm

Table 4: Usage of TLA+ and PlusCal to verify parts of some of the most complex systems from Amazon
as presented by Newcombe et al. (2013)

Software Model Checking aimed at distributed programs has been the subject of improve-
ments in recent times. Software Model Checkers such as MaceMC [Killian et al. (2007)],
Demeter [Guo et al. (2011)], MoDist [Yang et al. (2009)], dBug [Simsa et al. (2010)] system-
atically explore different execution orderings by permuting message arrivals and injecting
node crashes and timeouts. Like SPIDER, software model checkers of this sort (also called
execution-based model checkers) are often used as a test amplification mechanism in the sense
that programs under evaluation are tested against a typical workload of the system instead
of running with all possible inputs, and rely on various re-executions of the target system
to detect bugs. However, unlike SPIDER which only looks into a single execution of the
program to detect possible concurrency bugs, execution-based model checkers usually re-
quire multiple runs of the program under the same workload. This is due to the underlying
assumption that the non-determinism that affects a concurrent program comes from either
the inputs from the environment or the scheduling choices made by the OS’s scheduler. As

such, the set of program behaviours can be identified by the set of all inputs and schedules.
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This assumption dictates the way execution-based model-checkers find bugs. Jhala and

Majumdar (2009) summarize:

"The user provides a test harness corresponding to a workload under which
the program is run. The usual operating system scheduler would execute the
workload under a fixed schedule, thereby missing most possible behaviors.
However, the execution-based model checker’s scheduler is able to systematically
explore the possible executions of the same workload under different schedules,
e.g., exploring what happens under different interleavings of shared operations
like message sends, receives etc., and is able to find various safety errors like
assertion failures, deadlocks and divergences, that are only manifested under

corner-case schedules.”

Solutions based on SMC still suffer from state-space explosion. As a result, the exaustive
exploration of program executions is bounded by a “shallow depth” of interleavings. State-
space reduction techniques like partial order reduction alleviate state-space explosion but this
problem remains a major hindrance [Yabandeh and Kostic (2009); Leesatapornwongsa et al.
(2014)].

The key advantage of SMC compared to SPIDER’s approach is that whenever a system is

found to have bugs, an execution where the bug manifests itself is also presented.

Verification Techniques requiring manual intervention

There has been a growing body of work studying how to build correct distributed systems
and how to develop them correctly from scatch using proof assistants such as Coq and Agda.

The following list presents a sample of relevant works published recently:

o Verdi [Wilcox et al. (2015)] — framework used to implement and verify distributed
systems in the Coq Proof Assistant. It provides various semantics for the network
and its fault model. Verdi’s authors claim that it simplifies proofs by allowing the
developer to first verify a system on an idealized fault model and then proving its
correctness in more complex fault models without extra work. To that end, they use
a Verified System Transformer (VST) to transform a correct system in a given fault
model into another one that tolerates faults in different fault models while providing

analogous guarantees.

e IronFleet [Hawblitzel et al. (2015)] — methodology for building provably correct dis-
tributed systems using Dafnny which can later be compiled to C#. The core idea of the
IronFleet methodology revolves around proving that a distributed system is correct
by showing that it meets a high-level centralized specification. For example, if one

can prove that the implementation of a sharded key-value store acts like a centralized
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key-value store then there cannot be bugs like race conditions otherwise it would not
behave like a centralized key-value store. According to the IronFleet methodology, a
distributed system implementation and proof of correctness should be organized into
three layers:

1. specification layer — the system is specified as a state machine, i.e. a set of initial
states and a description of the allowed transitions between states. This layer
defines all behaviours allowed in the system.

2. protocol layer — the developer specifies a distributed state machine consisting of
multiple host state machines which communicate through messages and a set of
packets in the network.

3. implementation layer — this layer contains the single-threaded, imperative code to
be run on each host.

To prove the implementation correct, it must be proved that the protocol layer is a
refinement of the specification layer and that the implementation layer is a refinement
of the protocol layer3.

e Jvy [Padon et al. (2016)] — tool for implementing and verifying safety properties on
infinite-state systems. Ivy’s main use case is the interactive construction of inductive
invariants, presenting visual cues to help a human come up with one. Ivy can
automatically check whether a property is an inductive invariant or not, terminating
with either a proof of inductiveness of the invariant or a finite Counterexample to
Induction (CTI) which is represented visually. In order to guarantee that Ivy will
produce one of these two possible outputs, programs are written and specified using
a restricted specification language — Relational Modeling Language (RML) — that
guarantees that all verification conditions are in EPR, a decidable fragment of first
order logic. When a CTI is found, one of the following three statements has to be true:

1. there is a bug in the model;

2. one of the conjectures of the invariant is wrong and the invariant should be

weakened;

3. the CTI is not reachable from the initial states. The invariant should be strength-
ened by adding conjectures that rule out the CTI and generalize from it.

Ivy also allows the compilation of the RML program into an executable program.

e Disel [Sergey et al. (2017)] — separation-style logic based framework for implementing
and verifying distributed systems in a compositional way inside Coq.

3 A state machine X is said to refine another Y if for each possible sequence of states in machine X there exists a
corresponding one in Y.
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o Velisarios [Rahli et al. (2018)] — framework based on logic-of-events for proving the
correctness of Byzantine Fault Tolerance (BFT) protocols and their implementation in
Cog. It provides a model of Byzantine faults as well as a set of tactics that capture
frequently used patterns in proofs about BFT protocols.

6.2 OTHER APPROACHES

SPIDER is not the first tool to employ SMT constraint solving to test and debug concurrent
programs. In fact, SMT solvers were successfully employed in the past to test and debug
concurrent programs. For instance, CLAP [Huang et al. (2013)] uses SMT solving to replay
failing interleavings, MCR [Huang (2015)] and Cortex [Machado et al. (2016)] to uncover
latent concurrency bugs, and Symbiosis [Machado et al. (2015); Terra-Neves et al. (2019)] to
isolate their root cause. Prior research efforts have also shown that SMT constraint solving
can be useful to find races in distributed systems. However, contrary to SPIDER, these
solutions assume that the system is either partially synchronous [Valapil et al. (2017)] or
modeled as BPEL processes [Elwakil et al. (2010)].

Like SpipER, DCatch [Liu et al. (2017)] also aims at detecting distributed concurrency
bugs based on an HB model. This work abstracts the causality of events into HB rules
and builds a graph representing the timing relationships of several distributed concurrency
and communication mechanisms. However, DCatch does not attempt to remove redundant
portions of the state space, thus incurring unnecessary slowdowns during the analysis of the

trace.
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CONCLUSION AND FUTURE WORK

In this paper, we propose SPIDER, a tool that relies on SMT constraint solving to detect data
races in execution traces captured during the testing of distributed systems. To reduce the
time necessary to solve the constraints and scale to executions with thousands of events,
SPIDER employs a redundancy pruning step, aimed at eliminating portions of the trace that
are not relevant to the occurrence of new races.

Our experiments with multiple benchmarks show that SPIDER is capable of discovering
different types of distributed data races in a timely fashion, and that our redundancy pruning
algorithm is effective at reducing the size of the trace with no consequences to the accuracy
of our tool. This fact supports our claim that SPIDER is an effective tool to test distributed
systems against data races.

Notwithstanding, we believe that there are multiple paths to improve SriDER. First,
as we have hinted in section 5.3, we believe that it is possible to optimize SPIDER by
restructuring the queries it makes to SMT solvers — instead of determining wether two
events are concurrent for all pairs of conflicting memory accesses, it is enough to ask if a
pair of program instructions that leads to conflicting memory accesses has at least a pair of
conflicting accesses which are concurrent. This way, we only test if two events are concurrent
while their locations haven’t been shown to produce data races.

Second, we observe that some data races might not manifest during a particular execution
of the system (if, for example, a branch which leads to data races is not executed). As such,
SPIDER may benefit from the hability to analyse multiple different traces of the same system
and combining the results in a single report. The goal of this would be to cover multiple
execution paths, possibly uncovering more race conditions than what would be possible
with a single execution.

Finally, we could extend SPIDER to act as an online monitor, capable of reacting to data
races at runtime. This however would require a complete rewriting of SPIDER. Besides, using
SMT solvers in an online monitor might prove to be slow and affect the performance of the
monitored program. Thus, we would need to look into alternative algorithms to detect data

races in an online setting.
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SPIDER’S REPOSITORY ORGANIZATION

The core functionality of SPIDER is implemented in the classes of the package pt.haslab.spider
available in SPIDER’s repository and the package pt.haslab.taz provided in Falcon’s repository.
The latter contains all classes required to parse the traces, while the former contains the
actual code of SpIDER. Figure 14 presents a class diagram of the SPIDER’s repository.

Each class implements the following functionality:

e CheckerParallel — main class which connects all components of SPIDER;

e RaceDetector — class responsible for finding all conflicting memory accesses and
invoking Z3 to figure out which pairs of conflicting memory accesses actually lead to a

data race;

¢ RedundantEventPruner — class that contains the functionalitty required to reduce the

number of events in the traces;

e Stats — singleton class storing metrics related to SPIDER’s execution, including the time
it took for the analysis, the number of conflicting pairs of memory accesses, and the

number of data races found;

e Z3SolverParallel — wrapper class that spanwns Z3 processes in parallel;
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Figure 14: Class Diagram of Spider
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