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Abstract—Exploiting the natural metabolic abilities of mi-
croorganisms for the production of bioactive compounds has
been a research problem of great interest. The economical
and environmental costs associated with petrochemical-derived
industries have promoted the emergence of biochemical processes
from renewable carbon sources. However, optimally rewiring
microbial metabolism in a competitive and sustainable manner
is still a challenge. Recently, some retrobiosynthesis tools for the
design of de novo biosynthetic pathways have been proposed.
These tools generate a large number of intermediate compounds
that are beyond experimental feasibility. Thus, effective methods
to reduce the number of compounds by selecting the most
promising ones are still needed. Here, we propose the use
of classification and regression deep learning models, such as
fully-connected neural networks and 1D convolutional neural
networks, to predict the number of biochemical transformations
needed to produce a compound. The data to train and evaluate
the models was generated using a set of 13055 reaction rules
and 673 compounds from Escherichia coli metabolism as starting
compounds. The data was generated up to 5 steps resulting
in a dataset of over 2.6 million compounds. This approach
can be effectively used in biochemical applications, including
retrobiosyntesis, to prioritize compounds that can be produced
using fewer biochemical transformations.

Index Terms—deep learning, reaction rules, biochemical trans-
formations, biosynthesis

I. INTRODUCTION

During the last decades, microorganisms have been exten-

sively used as a platform for the production of added-value

compounds with a wide set of applications in the pharma-

ceutical, chemical, food, and agriculture industries. It was in

1928 when Sir Alexander Fleming discovered Penicillin from

Penicillium notatum [1], that microorganisms were seriously

regarded as a source of natural products triggering a big

wave of interest in the subject. Since then, the production

of drugs, chemicals, and biofuels using microorganisms grew

exponentially.

Microbial biosynthesis offers many advantages over tra-

ditional chemical synthesis. While traditional chemical syn-

thesis demands high energetic resources and often produces

toxic intermediates, microbial biosynthesis is safer and eco-

friendlier [2]. Additionally, taking into account how developed

the fields of metabolic engineering (ME), protein engineering,

and synthetic biology are nowadays, the high accessibility of

engineered strains to produce specific compounds makes the

process of redesigning microbial cellular networks and fine-

tuning physiological capabilities much easier [3]. ME also

offers established pathway optimization methods for improve-

ments on the yield and productivity of target compounds [4].

While multiple organisms can be used and are optimized to

produce specific compounds, none is as well characterized as

Escherichia coli. E. coli has been studied over several decades

and has shown its potential in many functional genomics and

ME efforts [5], [6]. Moreover, its ability to quickly grow on

minimal media, while maintaining its full metabolic function

offers an important advantage over other popular organisms,

such as the yeast [7].

In the last years, the application of machine learning (ML)

and deep learning (DL) in bioinformatics has seen a growing

interest as biological data becomes more accessible. In partic-

ular, the availability of comprehensive datasets of omics data

and metabolic pathways propelled the use of DL within the

field of ME. DL is a subfield of ML that uses multi-layer

neural networks to learn hierarchical abstract features using

a set of non-linear modules that transform, at each step, the

original input data into more abstract representations [8]. DL

has achieved remarkable results in many fields including com-

puter vision [9], speech recognition [10] and bioinformatics

[11]. In particular, the use of DL in MEs is evolving at a fast

pace. Some of the most prolific applications include product

maximization by, for example, predicting optimal reactor

conditions, de novo pathway design, phenotypic profiling, and

robust system modeling [12].

One recent challenging subject in ME involving the appli-

cation of DL, in particular reinforcement learning, is retro-

biosynthesis. Retrobiosynthesis consists in efficiently breaking

a target compound finding a series of producing reactions,

until readily available starting materials are obtained. Retro-
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biosynthesis is commonly carried on using template-based

approaches by identifying a set of reaction rules, representing

enzymatic reactions that have been observed in biological

systems, that can transform native metabolites of a host into

the target molecule [13], [14]. Other approaches do not rely on

reaction templates and use DL models to directly predict the

outcome of reactions in the reverse order [15], [16]. However,

the debate on whether template-based approaches are long-

term feasible, due to the sheer number of reaction templates

available for matching, or if the role of human experts is

indispensable due to the complexity of the reaction mechanism

is still on-going [17].

The tree of possibilities generated by retrosynthesis ap-

proaches results in a combinatorial explosion of possible

pathways. Thus, exhaustive exploration of these pathways

is not computationally feasible. To effectively explore the

most promising routes, a set of heuristics to prune the tree

needs to be defined. Many retrosynthesis studies approach

this problem in different manners. For example, in Simpheny

[18], to constrain the network size a maximum molecule

size is defined. In RetroPath [19], the network complexity

is limited by coding substrates, products, and reactions into

molecular signatures. A reaction signature is given by the

difference between the signatures of products and substrates.

This signature can be controlled using predefined distances,

defining graph distances of atoms, which leads to different

levels of specificity, thus the number of de novo pathways

can also be controlled. In RetroPath 2.0 [14], they also use

signatures, but introduce an additional enzyme score reflecting

the ability to retrieve enzyme sequences catalyzing defined

transformations. SimZyme/SimIndex [20] and PathPred [21]

use similarities between the molecules and the typical substrate

of an enzyme.

Despite many studies suggesting different strategies to de-

fine which compounds to prioritize when searching for the

best pathways to synthesize a compound, there is no single

method that is regarded as the best. Another important factor

to consider when computing these routes is how easy they

are to reproduce in a host microorganism. For this, different

factors such as atom conservation, thermodynamics, presence

or absence of toxic intermediates, product yield and pathway

length are taken into consideration when ranking the obtained

pathways.

In this study, we propose the use of DL to predict the

number of biochemical transformations needed to synthesize

a compound. We tested different DL architectures, in specific,

fully connected deep neural networks and 1D convolutional

neural networks. We also tested different compound repre-

sentations, such as molecular fingerprints and transformer-

based molecular embeddings. To our knowledge, this is the

first attempt to leverage DL to model the number of steps

needed to synthesize a compound. To train the DL models, we

generated data using reaction rules from public databases with

compounds from the E. coli metabolism as starting materials.

The performance of our models indicates that DL can promote

the study of compound synthetisability in host microorganisms

and it is expected that it can represent a useful tool to

effectively narrow down a large number of retrobiosynthesis-

derived compound candidates to more promising routes.

II. MATERIALS AND METHODS

A. Data

In this work, multiple DL architectures and compound

representations were tested. The data used to train the models

was generated using a set of 13055 reaction rules and a set of

673 compounds from E. coli metabolism as available starting

precursor compounds. The reaction rules were collected from

two public resources, RetroRules [22] and MINE databases

[23].

Reaction rules. Reaction rules are generic descriptions of

reactions that encode the way reactants are converted into

products. Reaction rules are very important for a variety of

synthetic biology approaches, mainly in de novo pathway

discovery. A reaction rule can be applied to a compound

if the compound contains a particular substructure that is

encoded by the reaction rule. Then, new product compounds

can be generated by applying the transformation encoded by

the reaction rule. These rules can encode single and multi

reactant reactions and can generate multiple products if they

match multiple parts of the reactant molecules. In Fig. 1, an

example of a known reaction is shown (id MNXR94682 in

the MetaNetX database [24]), which was used to generate a

reaction rule.

Original Reaction Reaction Rule

Fig. 1. Example of a reaction rule and respective original reaction.

The reaction rules from RetroRules were downloaded di-

rectly from the website https://retrorules.org/dl. Only the re-

action rules that apply in the forward direction and with a

diameter of 2 were selected resulting in a set of 5732 rules.

RetroRules contains reaction rules that were generated using

different diameters, in specific, 2 to 16. This diameter consist

in the distance considered around the reaction center of the

original metabolic reaction when generating the reaction rule.

So one reaction can be used to generate multiple reaction rules

at different diameter levels. The higher the diameter, the more

specific the rules will be. This diameter directly links with the

known promiscuity of enzymes. We selected the reaction rules

with diameter 2 for these reasons, they are less specific and

promote enzyme promiscuity.

The 7323 MINE database reaction rules were down-

loaded from the GitHub page https://github.com/tyo-nu/MINE-

Database and were used as they are. The final dataset con-

sisted of 13055 reaction rules identified using the SMARTS

notation [25]. The validity of each reaction rule SMARTS
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was determined using RDKit [26], an open source toolkit for

cheminformatics.

Starting compounds. The list of starting precursors that we

assume to be available are the ones existing in the metabolism

from E. coli. We selected this microorganism because it is

widely used in a great set of biochemical processes including

in the synthesis of added-value compounds. These E. coli
sink compounds were downloaded from the RetroPathRL [27]

GitHub https://github.com/brsynth/RetroPathRL. The authors

extracted these compounds from the E. coli iJO1366 genome-

scale metabolic model [28]. They selected the compounds

that lie in the cytosol compartment except for the ones

that cannot be produced by any reactions in a steady-state

metabolic model. This was obtained by performing a Flux

Variability Analysis [29] using the COBRApy package [30].

After downloading these data, we selected only the compounds

with available and valid identifiers, in this case, the Interna-

tional Chemical Identifier (InChI) [31], resulting in a set of

673 compounds. The validity of each compound InChI was

determined using RDKit. For further usability, the compounds

were converted into the SMILES notation [32] also using

RDKit.

Generated Dataset. The dataset used to train and evaluate

our DL models was generated by successively trying to

applying randomly selected reaction rules to randomly selected

compounds from the previous step starting from the E. coli
iJO1366 sink compounds (step 0). In the first step, because

the number of compounds was low, we applied all possible

reaction rules to all E. coli iJO1366 sink compounds, resulting

in a set of 146157 compounds. After this step, we tried to

apply randomly selected reaction rules to randomly selected

compounds over 5 million iterations. This second step resulted

in a set of 464994 compounds. We repeated this process up

to five steps, resulting in the dataset described in Table I.

When a compound that was already generated in a previous

step was generated again, only the first one was kept. We

defined a maximum of five biochemical transformations based

on the fact that, in general, microbial networks have small-

world properties and thus small average path length [33],

[34]. This means that, in theory, with a small number of

biochemical transformations we can go from any compound

to any compound in the network.

TABLE I
NEW COMPOUNDS GENERATED AT EACH STEP.

Step Generated Dataset Independent Dataset
1 146157 16439
2 464994 27151
3 600280 44681
4 698529 97249
5 773586 70342

Total 2683546 255862

After the dataset was generated it was divided into train,

validation, and test sets using ScikitLearn [35]. The splits were

made in a stratified fashion based on the step value with the

proportions of approximately 60%, 20%, and 20% for train,

validation, and test sets respectively.

Independent Dataset. Since the compounds present in later

steps were generated using the compounds from the previous

step, there is a dependency between the compounds generated

at each step. To validate if the previously generated dataset

was representative enough we generated an independent set

using the same approach. The newly generated independent

test set comprises 255862 unique compounds. The number of

compounds for each step is shown in Table I.

B. Molecular Representations

There has been a lot of research on how to better represent

compounds in a suitable form so that ML algorithms can

learn and generalize the information shared among sets of

compounds. Several approaches to encode the properties and

structural characteristics of compounds have been reported

in the literature. From single descriptors to complex multi-

dimensional graph-based formulations, compound represen-

tation remains a hot topic. The most traditional molecular

features include molecular descriptors and fingerprints, such as

the Extended-Connectivity Fingerprints [36]. Other successful

approaches that make use of representations like other types of

fingerprints, weave, graph convolutions, and Natural Language

Processing (NLP)-inspired embeddings are actively being used

[37]–[39]. In this study, we focus on two distinct molecular

representations, the well-known Morgan fingerprints [36] and

the NLP-based Molecular Transformer Embeddings [40].

Morgan Fingerprints. Also known as circular fingerprints,

Morgan fingerprints are built by applying the Morgan algo-

rithm to a defined set of atom invariants up to a defined radius

around each atom of the molecule. We computed Morgan

fingerprints of radius 2 hashed to 1024 bits using the RDKit

package.

Molecular Transformer Embeddings (MTE). With the

emergence of the transformer architecture [41], the field of

NLP saw some considerable improvements. The use of such

architecture has been explored in the field of chemoinfor-

matics, in particular by translating between two distinct text-

based molecular representations in well-studied subsets of the

chemical space. In the study by Morris et al. [40], the authors

trained and repurposed, through transfer learning, a trans-

former network to predict binding affinity. The intermediate set

of features representing abstract features that describe general

molecular structures that are generated by this architecture can

be used as embeddings. These embeddings can then be used

as features to train other models for diverse purposes. We

computed these MTE for our datasets. We defined a maximum

length of our compound SMILES of 300 characters and an

embedding size of 512.

C. Deep Learning Models

In this study, we leverage the use of DL models to predict

the number of biochemical transformations needed to synthe-

size a compound. We defined this problem as both a multiclass

classification problem with 5 labels, the 5 steps, and as a
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regression problem, where the number of biochemical steps

is modulated as a continuous variable. For this, we use fully

connected neural networks (FCNNs) and 1D convolutional

neural networks (CNNs) for both classification and regression

tasks.

Fully Connected Neural Networks. A FCNN consists in

a set of fully connected layers. In a fully connected layer,

all possible neuron connections between layers are present,

meaning that every input dimension influences each output

dimension. Fully connected layers are the most common layers

in artificial neural networks. One of the major advantages

of FCNNs is that no special assumptions about the input

data need to be made, making them very broadly applicable.

However, these networks are very computationally intense,

prone to overfitting, and tend to have weaker performance than

specific networks tuned for the problem in question.

In this study, we used FCNNs for both classification and

regression tasks using Morgan fingerprints and MTE as inputs.

All our FCNN models follow a similar architecture. The

models consists of an initial input Dense layer with 1024 units

in the case of using Morgan fingerprints and 512 for the MTE.

Then a variable number of Dense, with L1 and L2 regularizers,

BatchNormalization and Dropout layers are added to the

model. A final output Dense layer concludes the model. The

initial and intermediate Dense layers use the Relu activation

function. In the case of classification, the final dense layer has

5 units and uses softmax as the activation function. In this case,

we also use the categorical cross-entropy as the loss function

and accuracy as the metric to follow during training. In the

case of regression, the last Dense layer has 1 unit and uses

the linear function as activation function. The loss function

and metric to follow during training was the mean absolute

error. We used the Adam as our optimization algorithm and

a ReduceLROnPlateau callback with a minimum learning rate

of 0.000001, a factor of 0.25, and patience of 10 epochs that

reduces the learning rate by 25% if there is no improvement

in the validation loss for 10 epochs. We defined a maximum

of 250 epochs and a batch size of 256. We also use the

EarlyStopping callback with patience of 15 epochs that stops

training when there is no improvements in the validation loss

for 15 epochs.

1D Convolutional Neural Networks. CNNs are a class of

feed-forward artificial neural networks that gained popularity

during the last decades and became the dominant method for

computer vision applications. CNNs employ mathematical op-

erations called convolutions in at least one of its layers. Other

building blocks of CNNs are pooling and fully connected

layers. Both convolution and pooling layers are designed to

identify spatial hierarchies of features that are then mapped to

the final output by the fully connected layers. Despite being

designed for two-dimensional inputs, CNNs can also deal with

other dimensional inputs such as 1D and 3D. As opposed to

2D convolutions that act in two dimensions, 1D convolutions

operate in only one dimension applying 1D convolutions

(scalar multiplications and additions). This allows the use of

these types of models in data such as 1D numerical vectors,

including molecular descriptors, fingerprints, and embeddings.

In this study, we used 1D CNNs for both classification and

regression tasks using Morgan fingerprints and MTE. All our

1D CNN models follow a similar architecture. The models

consist of an initial GaussianNoise layer that adds noise to

the data helping to mitigate overfitting, followed by 2 Conv1D

layers using the Relu activation function. Then one Flatten

and one Dropout layer are added to the model. Before the

output layer, a set of 1 Dense, 1 BatchNormalization, and 1

Dropout layers are added to the model. The model is then

concluded with an output Dense layer. We used Adam as our

optimization algorithm and a ReduceLROnPlateau callback

with a minimum learning rate of 0.000001 with a factor of

0.25 with patience of 10 epochs. We defined a maximum

of 150 epochs and a batch size of 512. We also used the

EarlyStopping callback with patience of 15 epochs.

D. Performance metrics

The use of performance metrics is a key step in any ML

pipeline to ensure that the model is performing as expected.

There are dozens of metrics for both classification and regres-

sion, we will discuss the ones used in this study.

Classification metrics: Some of the most popular metrics

in classification tasks include classification accuracy, precision,

recall, F1-score, and the confusion matrix, which is essential

to compute some metrics.

• Confusion Matrix: The confusion matrix is a two-

dimensional matrix that summarizes the classification

performance of a classifier regarding the model label

predictions versus ground-truth labels [42]. Each row

in the confusion matrix represents the predicted classes

by the classifier and each column represents the actual

class. In a confusion matrix for a binary classification

there are four important terms: True positives (TPs), true

negatives (TNs), false positives (FPs), and false negatives

(FNs). TPs represent the number of positive class samples

that were predicted correctly. TNs represent the number

of negative class samples that were predicted correctly.

FPs represent the number of negative class samples that

were predicted incorrectly. FNs represent the number of

positive class samples that were predicted incorrectly.

In multiclass problems there are no negative or positive

classes, so the TPs, TNs, FPs, and FNs are calculated for

each class.

• Accuracy: This classification metric represents the ratio

of correct predictions in the total number of input samples

[43].

• Precision: Focused on Type-I errors, precision measures

the fraction of positive class predictions that were actually

positive [44]. Precision for each class can be calculated

using the following formula: TPs
TPs+FPs . Values of pre-

cision near 1 mean that the model is performing well

on classifying the positive cases as positive, whereas low

precision scores means that the model is classifying a

high portion of negative cases as positive, i.e. produces a

high number of false positives.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on November 05,2022 at 18:56:27 UTC from IEEE Xplore.  Restrictions apply.



• Recall: Focused on Type-II errors, recall, also known

as sensitivity, measures the fraction of all true positive

samples that were actually predicted as positive by the

model [45]. Recall for each class can be calculated using

the following formula: TPs
TPs+FNs . Recall near 1 mean

that the model is not missing many TPs, i.e. can correctly

classify positive samples as positive. Low recall values

mean that a high number of FNs are being predicted by

the model, i.e. the model is classifying positive samples

as negative.

• F1-score: This metric combines both precision and recall,

actually it is the harmonic mean of these two metrics

[46]. The f1-score can be calculated using the following

formula: 2
1

precision
+ 1

recall

= 2TPs
2TPs+FPs+FNs . In a perfect

model, the respective f1-score would be equal to 1, which

means that both precision and recall would also be equal

to 1 which also means that the model would have a

100% accuracy. The f1-score is particularly important on

imbalanced classification problems as it tells you how

precise your model is, i.e. how many cases it classifies

correctly, and how robust it is, i.e. if it misses a significant

number of samples.

Regression metrics: The output of regression models are

continuous values. So, we need metrics that can calculate the

numeric distance between the predicted value and the ground

truth. Some of the most popular metrics in regression tasks

include Mean Absolute Error (MAE), Mean Squared Error

(MSE) and, R2.

• MAE: This metric computes the average difference be-

tween the predicted values and the ground truth val-

ues [47]. Mathematically, it can be represented as:
1
N

∑N
j=1 |yj − y̌j |, where yj is the ground truth value, y̌j

is the predicted value and N is the number of instances

[47]. MAE gives a measure of how far the predictions

are from the actual value. However, it does not give the

direction of the error, i.e. if we are under-prediction or

over-predicting the data.

• MSE: Perhaps the most popular metric in regression

problems, MSE computes the average of the squared

difference between the predicted values and the ground

truth values [48]. Mathematically, it is represented by the

following formula: 1
N

∑N
j=1 (yj − y̌j)

2
, where yj is the

ground truth value, y̌j is the predicted value and N the

number of instances [48]. When compared with MAE it

penalizes outliers harder by squaring them. However, this

sometimes can lead to an overestimation of how bad the

model is.

• R2: Also known as the coefficient of determination,

the R2 calculates the proportion of variance which is

explained by the predictor variables in the sample [49].

When the R2 is close to 1, it means that the model was

able to capture a high proportion of the variance in the

target variable. If it is close to 0 it means that the model

wasn’t able to capture any variance in the target variable.

E. Development Environment

This work was developed using Python version 3.6.12.

Molecular operations like compound SMILES validity,

standardization, reaction SMARTS validity, and Morgan

fingerprints generation was done using RDKit version

2019.09.3. Molecular Transformer Embeddings were gen-

erated using the release from September 16, 2020. All

the models were implemented using Tensorflow version

2.2.0. Hyperparameter optimization and model training and

evaluation were done using scikit-learn version 0.23.2.

Source code and small data examples are available at

https://github.com/jcorreia11/WCCI2022 scripts.

III. RESULTS AND DISCUSSION

Before training any DL model, we divided our data into

three sets, training set, validation set, and test set. We made

sure that there was no duplicated data in and between all our

datasets. Only the train and validation sets were used in the

parameter optimization and training phases. The models only

saw the test set and the independent set in the evaluation phase

to produce the metrics shown here.

We performed 5-fold hyperparameter optimization using

RandomizedSearchCV for 15 iterations for all our FCNN

models. We optimized the number of hidden dense layers,

the number of units in the hidden layers, the first dropout,

the dropouts that followed hidden layers, and the l1 and

l2 regularizers. In Table II, the optimized parameters and

the ones that produced the best results for each case are

shown. For our 1D CNN models, we performed a 3-fold

hyperparameter optimization using RandomizedSearchCV for

10 iterations. We optimized the standard deviation of an initial

GaussianNoise layer, the number of output filters and kernel

size of the Conv1D layers, the number of units in the Dense

layers, and the dropout ratio introduced by the Dropout layers.

In Table III, the optimized parameters and the ones that

produced the best results for each case are shown.

In Fig. 2, the accuracy for the four classification models

using the test and independent sets are shown. The use of

Morgan fingerprints to encode the compounds was consider-

ably superior when compared with the embeddings generated

with the MTE. The use of FCNNs versus 1D CNNs produced

better results, but the differences were smaller than the differ-

ences obtained when comparing the molecular representation

methods. The FCNNs with Morgan fingerprints obtained a test

accuracy of 63% which was 4% better than our second best

performing model, the 1D CNN also with Morgan fingerprints.

The best classification model, the FCNN with Morgan

fingerprints, was trained using the best parameters from the

hyperparameter optimization search for 27 epochs (early stop-

ping with a maximum of 250 epochs) and obtained a training

accuracy of 0.735, a validation accuracy of 0.646, and a test

accuracy of 0.630.

By analyzing the results shown in Table IV, we can see

that the model performs the best in classifying compounds

that require 1, 2, and 5 biochemical transformations to be

synthesized with higher precision, recall, and f1-score metrics.
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TABLE II
PARAMETERS OPTIMIZED USING A 5-FOLD RANDOMIZEDSEARCH FOR THE FCNNS.

Parameter Values Morgan Classification MTE Classification Morgan Regression MTE Regression
# of hidden layers 2, 4, 6 2 2 6 2
Hidden layers units 1024, 512, 256 512 1024 256 512

First dropout 0, 0.2, 0.5 0.2 0 0.2 0
Dropout hidden layers 0, 0.3, 0.4 0 0.4 0 0.3

l1 0, 0.001, 0.01 0 0 0 0
l2 0, 0.001, 0.01 0 0.01 0 0

TABLE III
PARAMETERS OPTIMIZED USING A 3-FOLD RANDOMIZEDSEARCHCV FOR THE 1D CNNS.

Parameter Values Morgan Classification MTE Classification Morgan Regression MTE Regression
Gaussian noise stddev 0.01, 0.05 0.05 0.01 0.05 0.05
Size of output filters 4, 8, 16 16 8 16 8

Kernel size 32, 64, 128 32 32 64 64
Dense layers units 512, 256, 128 512 512 256 128

Dropout 0, 0.3, 0.5 0.5 0.3 0.5 0

Test set Independent set
0.0
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Fig. 2. Test and independent set accuracy for all models.

The compounds that require 3 and especially 4 biochemical

transformations have worse performance metrics. Additionally,

TABLE IV
CLASSIFICATION REPORT OF THE FCNN WITH MORGAN FINGERPRINTS.

Step Precision Recall F1-Score
1 0.77 0.81 0.79
2 0.61 0.79 0.69
3 0.52 0.55 0.54
4 0.49 0.37 0.42
5 0.66 0.65 0.66

if we take a closer look at the confusion matrix in Table V we

can see that the majority of the mispredictions, around 78%,

only fail by one step, which may be a reasonable estimate in

practical applications since we are looking for an estimation

of how near we are from our available starting precursors.

This can also mean that this problem can better be modeled

as a regression task. If we consider that our model predictions

are correct if the output step is no more that 1 step, up and

TABLE V
CONFUSION MATRIX OF THE FCNN WITH MORGAN FINGERPRINTS.

Step 1 2 3 4 5
1 25141 3316 228 101 82
2 4073 77539 9361 1632 753
3 1229 21039 76363 19234 2115
4 841 10837 30449 75675 22091
5 594 7145 17113 46150 83609

down, far from the labeled value, our accuracies increase

by a considerable margin achieving a 92% test and 91%

independent test accuracies using the FCNN with Morgan

fingerprints. The test and independent test accuracies, when

allowing a 1 step margin error, for all our models are shown

in Fig. 3.
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Fig. 3. Test and independent set accuracy allowing miss-classification by one
step for all models.

Fig. 4 shows the main results for the regression models.

Looking at these results, we can argue if we obtained better

results using FCNNs or 1D CNNs. Regarding the molecular
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representation, again, the use of Morgan fingerprints showed

considerably better results when compared with the MTE. The

FCNN with Morgan fingerprints performed better than the 1D

CNN also with Morgan fingerprints with a MAE of 0.465.

However, as we can see in Table VI, despite the lower MAE

obtained by the FCNN with Morgan fingerprints, the 1D CNN

with Morgan fingerprints obtained a slightly lower MSE and

slightly higher R2. Additionally, as shown in Fig. 4, if we

check the performance of these two models in the independent

set, both MAEs are similar.

TABLE VI
REGRESSION METRICS TEST SET.

Model Features MAE MSE R2

FCNN Morgan 0.465 0.623 0.583
FCNN MTE 0.691 1.165 0.220

1D CNN Morgan 0.595 0.615 0.588
1D CNN MTE 0.737 0.888 0.405
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Fig. 4. Test and independent set MAE for all models.

The FCNN with Morgan fingerprints was trained, using

the best parameters from the hyperparameter optimization

search, for 196 epochs (early stopping with a maximum of

250 epochs) and obtained a test MAE of 0.465. This means

that in mean the predictions are 0.465 steps far from the real

step value.
As far as we know, there is no similar study in the literature

that followed a similar approach to the one showed in this

study. However, we are confident to say that the prediction of

the number of biochemical transformations needed to synthe-

size a compound can be modeled as a DL problem. Despite the

lack of other studies to compare our results with, we can say

that the results obtained by our best models, a 63% accuracy,

92% if we give a one step margin, in a 5-label classification

and 0.465 MAE in the regression, are promising. We also

shown that, in some cases, the use of more complex molecular

representations like molecular embeddings does not lead to

better results. The results shown in this study corroborates

that the use of traditional methods is still relevant in many

cases.

IV. CONCLUSION

In this study, we propose the use of different DL architec-

tures and molecular representations to predict the approximate

number of biochemical transformations needed to synthesize a

compound having the E. coli metabolites as available starting

materials. The models were trained using newly generated

compounds obtained by successively applying reaction rules

to compounds generated in the previous step, starting by

the compounds in the E. coli sink, up to five steps. Both

Morgan fingerprints and MTE were computed and tested using

FCNNs and 1D CNNs. As a result, these models showed

good performance both in classification and regression tasks

especially when using Morgan fingerprints and FCNNs.

As far as we know, this is the first time that the prediction of

the number of biochemical transformations needed to synthe-

size a compound using DL is described in the literature which

makes the task of comparing results hard. However, we think

that the results obtained in this study indicate that approaches

like this one can benefit the field of ME and specially be useful

in retrobiosynthesis tools to narrow the number of generated

compounds allowing the exploration of most promising path-

ways for the synthesis of target compounds.

In the future, it would be interesting to test other compound

representations and models like recurrent neural networks and

the Transformer architecture. Further exploration of the data

can also be conducted to understand if the generated data

are representative of what happens in microbial networks

and which types of biochemical reactions are being used

and left out when generating new data. Additionally, model

interpretability could also be used to understand why the

models make certain predictions and which properties of the

molecules are more impactful for those predictions.
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