Sustainable Construction
Materials and Practices

Challenge of the Industry for the New Millennium

edited by
Luis Bragança
Manuel Pinheiro
Said Jalali
Ricardo Mateus
Rogério Amoêda
Manuel Correia Guedes
Contents

Part 1

Foreword
Luis Bragança, Manuel Pinheiro, Said Jalali, Ricardo Mateus, Rogério Amoêda and Manuel Correia Guedes
Welcome

Chapter 1. Actions and Policies to Implement Sustainable Construction

Energy Ratings Based on Measured Energy Consumption: A Practical Approach for Implementation of EPBD and Identification of High-Energy Use Buildings
P. Hernandez, P. Kenny and R. Cohen
Achieving Sustainable Infrastructure in Washington DC
M. Cederoth

Sustainability Recommendations for a Social Housing Project: Barreiros, Vitória (BR)
M. Bissoli, J.L. Calmon and K. Caser

Sustainable Housing: From Consensual Guidelines to Broader Challenges
J. Mourão and J. Branco Pedro

The Impacts of Residential Buildings – How to Identify Life Cycle Based Improvement Potentials
B. Wittstock, C. Makishi, A. Braune, J. Kreißig, N. Gallon and C. Wetzel

The Contribution of the National Laboratory of Civil Engineering (LNEC) to a Sustainable Built Environment
C. Pina Santos, J. Branco Pedro and J. Vasconcelos Paiva

Energy Efficiency of Old and New Buildings in Romania
D. Dan, V. Stoian, T. Nagy-Gyorgy and C. Dănescu

Construction Sites Environment Management: Establishing Measures to Mitigate the Noise and Waste Impact
J.P. Couto and A.M. Couto

How to Attract Consumers and Real Estate Agents to Sustainable Housing
A. van Hal

Promoting the Environmental Management Systems into Construction Industry: The First Step
J. Šetih
Reasons to Consider the Deconstruction Process as an Important Practice to Sustainable Construction
 J.P. Couto and A.M. Couto

Methodology for the Application of Sustainable Construction
 L.N. Jesus, M.G. Almeida and A.C. Almeida

The Calculation Model of the New Portuguese Thermal Regulation – Put Side by Side with Dynamic Simulation
 P. Silva, L. Bragança and M. Almeida

Local Actions to Improve the Sustainable Construction in Italy
 C. Clemente

Alternative Network Geometry of Essential Networks for Enduring Sustainable Development
 A. van Timmeren, J. Kristinsson and L.C. Röling

The Certification of Buildings as an Enterprise Strategy of the Real Estate Sector: A National Scope Analysis
 E. Cepinha, P. Ferrão and S. Santos

The Sustainability in Rehabilitation and in its Education
 J.S. Eliziário, A.R. Pereira Roders and I. Valverde

Chapter 2. Sustainable Management of Existing Building Stock

A Framework to Sustainable Renewal of Existing Building Stock in Brazil
 M.A.S. González and A.P. Kern

Sustainability and Natural Resources Uses at a South Brazilian University: Proposing an Environmental Plan to University of Passo Fundo

The Service Integrated Envelope Applied for Sustainable Office Refurbishment
 T. Ebbert and U. Knaack

Characterization of the Lisbon Elementary Public School Building Stock
 S. Raposo, M. Fonseca and J. de Brito

Overcoming the Barriers to Improving the Sustainability of Existing Commercial Office Buildings
 J.B. Storey

Sustainable Management of Existing Building Stock: A Strategy to Reduce the Energy Consumption and the Environmental Impact
 É. Mata, F. López and A. Cuchi

Housing and Information Society: Integration of ICT in the Existing Housing Stock
 S. Eloy, I. Plácido and J.P. Duarte
Thermal Rehabilitation of a Student’s Hostel Belonging to the “Politehnica” University of Timișoara
D. Dan, V. Stoian, T. Nagy-Gyorgy and C. Dăescu
186

Existence and Progress of Deterioration of Concrete Facades
J. Lahdensivu, I. Weijo and U. Martila
194

Environmental Assessment of the Maintenance of façade Openings in Dwellings – The Dutch Case
I.S. Blom and L.C.M. Itard
202

How Sustainable Rehabilitation Designers Really Are
A.R. Pereira Roders, J. Post and P.A. Erkels
210

Sustainable Management of Building Stock Refurbishment by Using MCDM
J. Šelih
218

Renewal of a Big High Density Housing Block in Berlin Kreuzberg
S. Giussani
226

Sustainable Management of Buildings
T. Häkkinen, E. Vesikari and S. Pulakka
233

Effect of Balcony Glazing on the Durability of Concrete Structures in Nordic Climate
J.S. Mattila
241

Technical Solutions for Sustainability in Post-War Residential Areas
S. Vidén
249

Sustainable Technologies in the Refurbishment of Existing Building Envelopes in Italy
S. Brunoro
257

Sustainable Recovery Approach to the Existing Housing Stock in Italy
P. Civiero
265

Living Building Concept: New Approach to Value Delivery in the Built Environment
R. Vrijhoef and H. de Ridder
273

Measuring the Effect of Design Changes by a Neuro-Fuzzy System
S. Durmisevic, S. Sarıyıldız and Ö. Ciftcioglu
281

Chapter 3. Building Sustainability Assessment Tools

Early Design Stage Evaluation Tool for Sustainable Energy Systems in Large New Buildings
K. Shanks
291

The Use of EPDs in Building Assessment – Towards the Complete Picture
A. Braune, J. Kreißig and K. Sedlbauer
299

Some Observation About the Efficiency of Building Sustainability Assessment Tools
C. Monterotti and A. Cuchi
305
Vitória’s Healthcare Buildings Environmental Performance Based on LEED/NC 2.2
L.S. Araujo and J.L. Calmon
310

Assisting the Commissioning of the Low-Energy Buildings Design: From a Methodology to a Dynamic Tool
N. Harmachi-Belkadi, M. Jandon, F. Guéna and Y. Diab
318

Selecting Aspects and Indicators in Environmental Assessment Methods for Buildings
T. Malmqvist and M. Gläumann
326

Life Cycle Assessment Tool for Building Assemblies
J. Carmody, W. Trusty, J. Meil and M. Lucuik
334

Performance Assessment for Sustainable Construction: Lest We Forget About the Client
W. Gyadu-Asiedu, F.J. Scheublin and E.L.C. van Egmond
341

Urban Bioclimatic Indicators for Urban Planers with the Software Tool SOLENE
F. Miguet and D. Groleau
348

Perspectives of Building Sustainability Assessment
L. Bragança, R. Mateus and H. Koukkari
356

Life Cycle Assessment of Construction Processes
J. Šelih and A.C.M. Sousa
366

Optimization of Variable Selection for Sustainable Construction
S. Pushkar, A. Katz and R. Becker
373

Sustainability Assessment of Building Refurbishing Operations
L. Bragança and R. Mateus
381

The Portuguese LiderA System – From Assessment to Sustainable Management?
M.D. Pinheiro
389

Life Cycle Assessment of Steel and Reinforced Concrete Structures: A New Analysis Tool
A. Peyroteo, M. Silva and S. Jalali
397

Constant or Variable Indoor Environments? Sustainable Option of Adaptive Thermal Comfort
L. Matias, C. Santos, M. Rebelo, D. Silva and M. Correia Guedes
403

Developing a Method to Characterize Indoor Environmental Parameters in Naturally Ventilated Classrooms
N. Mahyuddin and H.B. Awbi
411

Towards an Integrated Decision Process of Sustainable Urban Projects
L. Adolphe and B. Rousval
418

Application of the EcoBlock method to Eco-Design – Electric Hand Dryers Versus Paper Towels
J. Joanaç de Melo, L. Macedo and A. Galvão
426
Life Cycle Costing as Part of Decision Making – Use of Building Information Models
 G. Krigsvoll 433

A Fuzzy-Neural Tree Knowledge Model for the Assessment of Building’s Transformation
 S. Durmisevic and Ö. Ciftcioglu 441

Chapter 4. Design for Sustainability

Splitting and Managing the Solar Spectrum for Energy Efficiency and Daylighting
 A.V. Pelegrini, D. Harrison and J. Shackleton 451

A Sustainable Technical System for Ventilated Façades
 J. Avellaneda, J.M. Gonzalez, A. Carbonnel and D. López 459

Architectural Beam of Light Use of Daylight Pipes in Climates of High Latitude
 A. Perez, R. Serra and A. Isalgué 466

Examination of Solar Control of Existing Building Stock in Izmir and Suggestions for a Sustainable Future
 M. Altın 475

Energy Consumption of RC Buildings During Their Life Cycle
 Ö. Bozdağ and M. Seçer 480

Poly-Optimal Method of Designing Environmentally Friendly Buildings
 R.R. Gajewski, A. Weglarz and K.H. Żmijewski 488

Natural Lighting in Office Buildings – Energy Saving Potencial in Electrical Lighting
 A.D. Coelho 494

Gypsum Plasters for Energy Conservation
 N. Silva, J. Aguiar, L. Bragança, T. Freire and I. Cardoso 502

Implementing the Low Energy Concept into Current Irish Housing Building Delivery Processes – Issues and Barriers
 I. Kondratenko, V. Brophy and P. Hernandez 508

Service Life Prediction for Buildings’ Design to Plan a Sustainable Building Maintenance
 B. Damiotti and S. Lupica Spagnolo 515

Durability Design of Metal Structures Based on Lifetime Safety Factor Method
 L. Cascini, F. Portioli and R. Landolfo 522

The Redesign for Residual Service Life of Existing Structures
 A. Kudzys, P. Bulota and O. Lukoseviciene 530

The Flexible and Upgradeable Facade Concept for Refurbishment
 T. Ebbert and U. Knaack 538

Performance Based Design Using Life Cycle Cost Analysis
 M. Seçer and Ö. Bozdağ 546
Hygrothermal Profiles of Building Elements in the Context of Service Life Design
 C. Giarma, D. Bikas and D. Aravantinos 553

Comparison of Two Structural Reuse Options of Two-by-Four Salvaged Lumbers
 S. Nakajima and T. Murakami 561

Building Deconstruction and Building Heritage Preservation: A Case Study at Porto’s World Heritage Historical Centre
 R. Amoêda and C. Pinheiro 569

Organisation of Reverse Logistics Tasks in the Construction Industry
 F. Schultmann and N. Sunke 577

Overview of Deconstruction Activities in Portugal
 A. Santos and J. de Brito 585

Salvageability of Building Materials
 A.S. Nordby, B. Berge and A.G. Hestnes 593

Reusability of Massive Wood Components
 A.S. Nordby, B. Berge and A.G. Hestnes 600

Motives for Design for Disassembly in Building Construction
 C. Thormark 607

Bionic Breathing Skin for Buildings
 L. Badarnah and U. Knaack 612

An Ecosystem Based Biomimetic Theory for a Regenerative Built Environment
 M. Pedersen Zari and J.B. Storey 620

Practices and Sustainable Principles on the Rural Constructions in Molise Region (Italy)
 G. Ausiello and D. Fornaro 628

Author Index

Part 2

Foreword
 Luis Bragança, Manuel Pinheiro, Saïd Jalali, Ricardo Mateus, Rogério Amoêda and Manuel Correia Guedes v

Welcome
 vii

Chapter 5. Designing the Sustainable City of Tomorrow and Urban Sustainability

Environmental Performance and Management of Sustainable Urban Projects
 E.D. Dufrasnes, E.W. Wurtz, G.A. Achard and C.B. Buhe 637
Assessment on Urban Ecosystems
J. Mourão and A. Cuchi

The Compact City: An Urban Path Towards Sustainability in Arid Areas
K. Hamel and S. Mazouz

One Planet Living Pioneer Project
P. Reis Silva

Reflecting About the Emergence of Sustainable Urban Communities – A Social Ecological Point of View
J. Craveiro, P. Machado, D. Silva and Á. Pereira

Sustainable Tourism Indicators for the Coastal Places. State of Research
M.N. Suárez Sánchez

Sustainability and Human Comfort at Urban Level: Evaluation and Design Guidelines
F. Ali-Toudert

reCHARGEdCity$^{21+}$ – From a Perforated, Shrinking City to a Energy-Self-Sufficient Town
F. Lüter and T. Meinberg

Methods in Sustainable Urban Process
M.P. Amado, A.J. Pinto, C.V. Santos and A. Cruz

Towards Urban Sustainability: Trends and Challenges of Building Environmental Assessment Methods
F. Ali-Toudert

Green Cities of Tomorrow?
E. Alexandri

Comprehensive Water and Nutrient Planning for Sustainable Design
J.H. Todd, D. Benjamin and J. Todd

Noise Abatement from the Point of View Sustainable Environment
O. Yilmaz Karaman

Regenerating Lost Places in Old Cities (Link Linguistic with Sustainability)
S. Shadravan

The Urban Planning Tools as Quality Control Device for Sustainable Projects
E. Arbizzani, C. Clemente, P. Civiero, M. Nocera and P. Piermattei

Urban Rehabilitation with Sustainable Principles: The Case Study of Montefalcone, South Italy
D. Francese and C.F. Ambrosino

Chapter 6. Sustainable Resources, Eco-Materials and Technologies

Energy and Resources, Material Choice and Recycling Potential in Low Energy Buildings
C. Thormark
Construction and Demolition Waste Management in Portugal
A.D. Coelho and J. de Brito 767

Lime-Meta-kao-lin Mortars – Properties and Applications
A. Velosa and R. Veiga 775

Characterisation of External Renderings of Rammed Earth Construction in Algarve
L. Mateus, J. de Brito and M.R. Veiga 781

Environmental Life Cycle Assessment of Concrete Made with Fine Recycled Concrete Aggregates
L. Evangelista and J. de Brito 789

Recycled Aggregate Production: Remark and Assessment of the Economical Advantage of a Case Study
V. Basilico and M. Quattrone 795

Be Aware: Built Environment Action on Waste Awareness and Resource Efficiency
G. Hobbs and A. Conroy 803

The Need and Means for Sustainable Use of Wood in the Tanzanian Construction Industry
T.S. Mufuruki, E.L.C. van Egmond and F.J.M. Scheublin 810

An Experimental Study on Properties of Mortar Mixing Activated Hwangtoh Considering Pozzolanic Reaction

A Study on the Physical Properties of Hard Concrete Mixing Various Type of Recycled Aggregate
S.-S. Go, D.-R. Yoo, H.-C. Lee, G. Lee and Y.-C. Park 826

Sustainable Steel Buildings Through Natural Fire Safety Concept
M. Braun 834

Sustainable Concrete Production
J. Šeliň and R. Žarnič 842

General Issues of Construction Materials Recycling in the USA
A.R. Chini 848

Eco-Concrete: Preliminary Studies for Concretes Based on Hydraulic Lime
A. Velosa and P. Cachim 856

Structural Aluminium Alloys and Sustainability in Building Applications
E. Efthymiou 861

Eco-Efficiency and Sustainability of Traditional Turkish Houses
M. Tanac Kýray 868
Dynamical and Thermal Modelling of PDEC: Using Traditional Chimney and New Dwelling as Case Studies in Portugal
C. Melo

Eco-Efficient Mortars with Enhanced Mechanical, Durability and Bactericidal Performance
R. Eires, A. Camões and S. Jalali

Structural Concrete with Incorporation of Coarse Recycled Concrete and Ceramic Aggregates
M. Gomes and J. de Brito

An Energy Efficient Solution to Mitigate Heat Islands and Reduce Cooling Energy Loads
A. Synnefa, A. Dandou, M. Santamouris, M. Tombrou and N. Soulakellis

Chapter 7. Use of Industrial Waste

Composite Panels Reinforced with Waste Fibrous Materials
M.G. Gomes, R. Fangueiro and C. Gonilho Pereira

Using Mine Waste Mud to Produce Environmentally Friendly New Binders
F.P. Torgal, J.P. de Castro Gomes and S. Jalali

Use of Cellulose Sludge in the Production of Fibrocement Building Materials
R. Modolo, J.A. Labrincha, V.M. Ferreira and L.M. Machado

Application of Crushed Glass Residues in Mortars

Optimization of Pozzolanic Reaction of Ground Waste Glass Incorporated in Cement Mortars
L.A. Pereira de Oliveira, J.P. Castro Gomes and P. Santos

Chemical Characterization and Leaching of Treated Fly Ash from a MSWI Plant
I.M. Martins, A.M. Esteves and J.P. Forth

Eco-Friendly Construction Materials Using Gypsum and Industrial Wastes
R. Eires, A. Camões and S. Jalali

Concrete Produced Using Crushed Bricks as Aggregate
P.B. Cachim

Chapter 8. Innovative Sustainable Construction Systems

Glocal Structural System in a Seismic Desert City
S. Shahnoori and A.I.M. Voorbij

Coolhouse: Integrating Very Low Energy Geothermal Cooling with Sustainable Construction
J. Maimwaring

The Environmental Benefits of the off-Site Manufacturing
S. Russo Ermolli
Jee – Janela Eco-Eficiente (Eco Efficient Window); Development of a High Performance Standard Window
M. Veríssimo, M.G. de Almeida and L. Bragança

A Research on the Integrated System for Efficient Management of Construction Site

Recycling Prefabricated Concrete Components – A Contribution to Sustainable Construction
C. Asam

Guidelines for a Good Practices Manual on Sustainable Construction
I. Santos, L. Soares and J. Teixeira

Sustainability in Lightweight Modular Construction for Housing
G. Wadel, J. Avellaneda and A. Cuchi

Chapter 9. Case Studies

East London Line Sustainability Initiatives
L.B. Carse

The First Cooperative Building of Sustainable Housing in Portugal
J.P.T. Coimbra

Directing Sustainable Investments in Commercial Real Estate
A.G. Entrop and H.J.H. Brouwers

Life Cycle Assessment of a Tourism Resort with Renewable Materials and Traditional Construction Techniques
H. König, E. Schmidberger and L. de Cristofaro

A Sustainable Planning Design Tool for the Environmental Compatibility of the Tourist Coastal Territory
A. Serafino

Building Deconstruction in Portugal: A Case Study
A. Santos and J. de Brito

Impacts in the Internal Environment Quality of a Music School from the Urban Design of a University Campus
I.S. Castro, M.C.G. Silva, P.A. Rheingantz, L.E. Bastos and E. Diniz

Reducing CO₂. Are Industrialised Construction Systems Better?
A. Pagès, O. Paris and A. Cuchi

Integration of Sustainability Solutions in Sanitary Installations: The Example of the AveiroDOMUS “House of the Future”
R. Castro and A. Silva-Afonso

Certifying a Sustainable Reconstruction of Vernacular Architecture in Peneda-Gerês National Park
M.I. Cabral
Sustainable Building Structures for Housing
D. Dubina, V. Ungureanu and M. Mutiu
1096

Sustainability of Constructions. Van Abbemuseum, Eindhoven
Y.K. Aktuglu
1104

Sustainability of Constructions. Suleyman’s Mosque, Istanbul
Y.K. Aktuglu, M. Altin, M. Tanac Kiray, O. Yilmaz Karaman,
M. Secer, O. Bozdag and I. Kahraman
1110

Case Study: LEED™ by Design in the School of the Future
J. Kliwinski
1118

Influence of End-of-Life Scenarios on the Environmental Performance of a
Low-Rise Residential Dwelling
H. Gervásio and L. Simões da Silva
1126

The SHE Project: Sustainable Housing in Europe. Social Housing Coops’ Best
Practices for Sustainable Communities
A. Lusardi and A. Braccioni
1134

Natural Illumination Availability in Ponte Da Pedra Apartment Block –
A Case Study
C. Cardoso, M. Almeida and L. Bragança
1142

Author Index
1151
Gypsum plasters for energy conservation

N. Silva, J. Aguiar, L. Bragança
University of Minho, Department of Civil Engineering, Guimarães, Portugal

T. Freire
Sival – Industrial Society of Várzea, Leiria, Portugal

L. Cardoso
Micropolis – Production and Development of Powder Polymers, Braga, Portugal

ABSTRACT: Energy conservation in buildings, through materials thermal storage, is relatively low relying only on sensible heat. There are however other materials, phase change materials (PCM), that have been incorporated in buildings as an effective solution both for more efficient use of energy and its consumption reduction, allowing the use of free energy in the environment, by latent heat storage, and so regulating thermal comfort parameters inside buildings.

This paper presents part of the ADI/2006/V4.1/0035, “GESREV – Development of new integrated system, based in gypsum, for interior plastering of construction systems” research project, financed by IDEIA – POCI 2010 Program. The objective to develop based on an existing technique, a new finishing gypsum plaster with thermal enhanced properties, namely latent heat storage capacity, by incorporating microencapsulated phase change materials. With the experimental work done so far, plaster composition was developed in order to fulfill the mechanical properties standard requirements, while thermal performance in Passys test cells is being carried.

1 INTRODUCTION

In Portugal residential buildings account for 20% of the final energy consumption, 25% of which is used for space heating and cooling. Despite over 20% of the buildings have less than 10 years, around 60% were built before 1990, not fulfilling energy efficiency regulations. Therefore much of the above mentioned energy is wasted both due to inefficient thermal insulation and lack of thermal energy storage systems (passive or active).

Thermal storage through materials is based on two important properties: sensible heat and latent heat, with the later much greater than the first. For instance, comparison between the sensible heat capacity of concrete (1.0 kJ/kg.°C) with the latent heat of a phase change material (PCM), such as a technical grade paraffin as octadecane (205 kJ/kg with a melting range temperature between 22.5-26 °C), shows significant difference between both properties.

In lightweight constructions, Trombe walls are used for direct solar gains. In typical Portuguese buildings high thermal mass masonry is used, making it suitable for passive solar applications. Nevertheless most buildings still present interior temperatures above comfort limits in summer and below in winter. Another problem is the variation on energy net demand, leading to differential pricing system for peak and off-peak periods.

Interior walls offer large areas for passive heat transfer. As the interior lining is usually made with multilayer gypsum plaster, in which the finishing layer is very thin, phase change materials can be easily added to the plaster and installed, both in new constructions and during rehabilitation processes with no additional cost, except for the material. Introducing latent heat thermal energy storage, contributes to stabilize the internal environment, improving thermal comfort by storing either heat or cool and releasing it in periods when the demand is higher, this way minimizing energy consumptions.
2 PHASE CHANGE MATERIALS (PCM)

Organic and inorganic compounds are the two most common groups of PCM. Organic PCM are divided in paraffins and non-paraffins, while inorganic PCM are divided in salt hydrates and metal salts. There are also eutectics which are a minimum melting composition of two or more components. Some of the materials used as PCM and their properties are shown in Table 1.

Before selecting the appropriate PCM several characteristics should be considered: range of melting and freezing required; high latent heat of transition, thermal conductivity and specific heat; density; little or no subcooling during freezing; chemical stability; melting/freezing point congruency; low vapour pressure at room temperature; small transition volume change as well as renewable vegetable and animal sources of supply.

Commercial paraffin waxes are cheap, have moderate thermal storage densities (200 kJ/kg or 150 MJ/m³), present a wide range of melting temperatures, negligible subcooling, no phase segregation and are chemically inert and stable, however they present low thermal conductivities (0.2 W/m°C).

Hydrated salts present high volumetric storage density (350 MJ/m³) when compared to paraffins, relatively high thermal conductivity (0.5 W/m°C) and moderate costs, however due to phase segregation and subcooling their application is limited. Because they melt congruently, storage density decreases with thermal cycling.

Table 1. PCM and their properties (Tyagi et al. 2005 and Kelly 2000).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Melting Point (°C)</th>
<th>Heat of Fusion (kJ/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KF·4H₂O</td>
<td>18.5</td>
<td>231</td>
</tr>
<tr>
<td>CaCl₂·6H₂O</td>
<td>29</td>
<td>190</td>
</tr>
<tr>
<td>Na₂SO₄·10H₂O</td>
<td>32</td>
<td>251</td>
</tr>
<tr>
<td>LiNO₃·3H₂O</td>
<td>30</td>
<td>296</td>
</tr>
<tr>
<td>Zn(NO₃)₂·6H₂O</td>
<td>36.4</td>
<td>147</td>
</tr>
<tr>
<td>Butyl stearate</td>
<td>19</td>
<td>140</td>
</tr>
<tr>
<td>1-dodecanol</td>
<td>26</td>
<td>200</td>
</tr>
<tr>
<td>45/55 Capric-lauric acid</td>
<td>21</td>
<td>143</td>
</tr>
<tr>
<td>Propyl palmitate</td>
<td>19</td>
<td>186</td>
</tr>
<tr>
<td>1-tetradecanol</td>
<td>38</td>
<td>205</td>
</tr>
<tr>
<td>66.6% CaCl₂·6H₂O / 33.3% MgCl₂·6H₂O</td>
<td>25</td>
<td>127</td>
</tr>
<tr>
<td>47% Ca(NO₃)₂·4H₂O / 53% Mg(NO₃)₂·6H₂O</td>
<td>30</td>
<td>136</td>
</tr>
<tr>
<td>60% Na(CH₃COO)₃·H₂O / 40% CO(NH₂)₂</td>
<td>30</td>
<td>200</td>
</tr>
</tbody>
</table>

Energy stored in a PCM product depends on the melt temperature range of the PCM and on the latent capacity per unit area of the product. The melting temperature range should be chosen, based on the objective of its application, whether is to save energy during cooling or heating.

Over the years different techniques to integrate PCM into the building materials have been studied. These techniques included mainly immersion and encapsulation.

In the immersion process the porous building material is dipped into the hot melt PCM, which is absorbed by capillarity. This is easy to perform but PCM may interact with the structure, changing the properties of the materials matrix by reacting with it or by leakage.

Encapsulation of the PCM in tubes, pouches, spheres or panels is an effective way of containing the material, however, macro-capsules heat transfer rates decrease due to low heat transfer coefficients during freezing, preventing the system to fully discharge. More, this method requires protection of the containers from destruction during integration.

Micro-encapsulation allows easy integration of the PCM into conventional porous materials, preventing the interaction of the PCM with the matrix, good stability and larger heat transfer surface, affecting however mechanical strength of the elements.
For wallboards for example, direct incorporation at the mixing stage is preferred because little additional process equipment and labour is required, however, if no contention mechanisms are used, leakage may be a problem. Nevertheless, PCM wallboard and conventional wallboard characteristics present flexural comparable strengths, around 15% difference in thermal conductivities depending on the PCM used and its amount and excellent fire resistance. For radiant floor applications shape-stabilized PCM plates are most common.

Major concerns with safety codes and flammability requirements imposed to construction materials lead to the development of techniques to prevent fire hazards. Adding fire retardants in materials composition is usually an effective measure. Examples include, non-flammable surface materials such aluminum foil or rigid PVC film for plasterboards and brominated hexadecane and octadecane combined with antimony oxide for other applications, since it self extinguishes.

3 THERMAL STORAGE MATERIALS PERFORMANCE

The incorporation of PCM in different materials for several applications has been studied. Due to widespread application, most of these researches focus on wallboards, concrete blocks and shape stabilized PCM plates for radiant under floor heating.

Peippo et al. (1991) showed that a house with 120 m² in Madison, Wisconsin (43°N), could save up to 4 GJ a year (or 15% of the annual energy cost). They have also concluded that the optimal diurnal heat storage occurs with a melt temperature 1–3 °C above average room temperature.

Feldman et al. (1995) studied the performance of gypsum wallboard, for cooling storage at night, impregnated by immersion with 22.25%-wt (2 kg/m²) PCM with a melting range of 22-26 °C. Wallboard presented good stability with thermal properties remaining unchanged after cycling. Researchers concluded that within a temperature interval of 3.5 °C, the total storage capacity of the PCM wallboard was 381 kJ/kg, which was 12 times higher than the storage capacity of the wallboard alone.

Thermal performance of a full-scale outdoor test room with inside lining made of gypsum wallboard containing 25%-wt. PCM, with a temperature transition range of 16-21 °C, was investigated by Athienitis et al. (1997). Results showed a maximum temperature of 21 °C registered in the wallboard containing PCM against 27 °C in regular wallboard. Freezing process was observed to last up to 7-11 hours. With a total wallboard area of 20 m², a 10 MJ increase in heat transfer was measured, corresponding to approximately 15% of the total heat load.

The thermal dynamics of gypsum-PCM wallboard not directly illuminated by sunlight were studied by Nepper (2000). In this study daily variation of room temperature was between 20 °C and 26 °C with an average around 21.5 °C. The wallboard was 12.7 mm thick, containing 10% and 20% PCM, with a latent heat capacity of 192 kJ/m² and 427 kJ/m² respectively. From his studies Neeper concluded that a design value for wallboard energy storage was in the range of 300-400 kJ/m², which is very important data when calculating heating or cooling needs.

Another wallboard thermal performance study was carried by Kissock et al. (1998). The wallboard was imbied with 30-wt% with commercial paraffin PCM (K18). In the simulations conducted, solar radiation, ambient temperature and interior temperatures in the test cells were continuously monitored for 14 days. Results indicated that peak temperature in the phase change test cell were up to 10 °C less than in the control test cell during sunny days.

A combined system for space heating and hot water was investigated by Ip (2000). Water heated by a solar panel is used to charge the PCM of an under floor panel, through which the mat of water tubes circulate. Considering a solar radiation of 9.8 MJ/m² with a total system efficiency of 25%-50%, applied in a two storey 3 bedroom house with 100 m², a heating load of 1.6 MJ/m² and a collector with 6 m², Ip estimated energy savings of around 6%-12.5%.

More recently Schossig et al. (2004) studied the behaviour of PCM gypsum plaster in full-size lightweight test rooms. Gypsum plasterboard was mounted on wooden slats with 14 cm thick polyurethane foam insulation. Two different gypsum plasters were used: a 40 %-wt. PCM 6 mm thick and a 20 %-wt. PCM 15 mm thick. The PCM melting temperature range was 24-27 °C.
Results of this experiment demonstrated that, for the 6 nm plaster, maximum room temperature with PCM was reached 1 hour later and was 4 °C lower. More, during three weeks, the reference room temperature was above 28 °C during 50 hours while in the PCM test room was only around 5 hours. One important feature of this work was the use of Venetian blinds and night ventilation to achieve full discharge of the PCM.

Gypsum plasters incorporating PCM have also been study and investigate in Minho University, in order to develop a new multilayer plastering system. Commercial gypsum plaster (Monteiro, 2005) has been mixed with 25%-wt. micro-encapsulated PCM with a melting temperature around 20 °C, by direct incorporation and compared with the same conventional plaster. Figures 1 and 2 present some of the results achieved.

![Figure 1. Air temperature profiles for the two test rooms in the hottest day (Monteiro, 2005).](image1.jpg)

![Figure 2. Air temperature profiles for the two test rooms in the coldest day (Monteiro, 2005).](image2.jpg)

Results, obtained during winter, indicate a reduction of 29% in the maximum temperature for the hottest day, while in the coldest this reduction was of 32%. For the minimum temperature increases of 4% and 14% in the hottest and in the coldest day, respectively, were observed.

These results led to conclude that PCM with a melting range around 20 °C are suitable for thermal performance in winter, when heating loads are higher, effectively regulating interior thermal comfort parameters.

One of the drawbacks of Monteiro’s work, was the non conformity of the gypsum plaster with the requirements of the new EN 13279-1 (CEN 2005), namely, in what concerns to mechanical properties of the gypsum-PCM mortar. This new European standard (CEN 2005) sets at least 1 MPa for flexural strength and 2 MPa for compressive strength.
4 EXPERIMENTAL WORK

The first part of the experimental work consisted in the development and evaluation of the gypsum mortars mechanical properties (flexural, compressive and adhesive strengths), while the second consists in the comparison between the thermal performances of two rooms plastered with and without PCM. The final goal is to predict the amount of energy that can be saved by incorporating the PCM, while maintaining comfort parameters in the room.

Three different compositions (F3, F4 and F5) of finishing layer gypsum plaster, in which 25%-wt. PCM was directly incorporated at the time of mixture, were evaluated. The amount of PCM incorporated was defined, based on the mentioned references and in preliminary mechanical tests (Silva et al. 2006). The PCM, a technical grade hexadecane paraffin wax, microencapsulated in a melamine-formaldehyde resin, with an average particle size distribution of 20-30 µm, presented a melting temperature around 20 °C and a latent heat of fusion of 140 kJ/kg.

Flexural and compressive tests were carried in 40 x 40 x 160 mm³ specimens while adhesive strengths were tested directly in plastered pilot scale brick walls, according with EN 13279-2 standard (CEN 2004).

5 RESULTS

Figures 3 and 4 present the results obtained for mechanical properties testing carried, in order to select the appropriate finishing plaster for thermal testing.

The analysis of the experimental results led to conclude that the incorporation of PCM in the mortar reduces significantly the mechanical properties of the final plaster. Nevertheless, through the research work carried out the three different compositions could be established, in order to fulfil the requirements of standard EN 13279-1 (CEN 2005).

It was also concluded that the ideal mixing water content, both for workability and mechanical properties is around 70% for the other three (F3, F4 and F5). The EN 13279-1 doesn’t set any requirement standard for adhesion between plaster layers in test walls, this property showed good results, both with and without paint, despite the different fracture patterns.

Figure 3. Mechanical properties of modified compositions incorporating 25% PCM.

Figure 4. Adhesive strengths of modified compositions incorporating 25% PCM.
6 CONCLUSIONS

The incorporation of PCM in buildings is an effective way of improving thermal performance by energy storage in construction elements. It can be used for passive solar heating by integrating mainly the walls, maximizing solar radiation gains, in active heating systems combined with solar collectors or electricity through radiant floor and also in cooling systems with night ventilation.

Studies have demonstrated that PCM can contribute to minimize temperature fluctuations inside buildings, regulating thermal comfort parameters, while shifting heating or cooling peak loads to off peak electricity periods.

In order to compare the performance in terms of energy consumption and heat fluxes of two rooms, one containing a PCM material and the other the conventional material, identical temperature histories must be established. Careful experimental design is required to demonstrate quantitative energy savings and to emulate buildings performance; glazing and temperature history, insulation and ventilation should be similar to the real building.

REFERENCES

