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RESUMO 

A análise genómica das populações tem contribuído significativamente para o aumento do número de 

SNVs descritos em bases de dados. Estudos populacionais prévios têm contribuído com 18 a 57% novas 

variantes. A nova informação genética é particularmente relevante enquanto referência para propósitos 

clínicos. Iniciativas à escala global como o 1000 Genomes Project (1kG) incluem populações Ibéricas, 

contudo, nenhum indivíduo Português foi incluído no mesmo grupo. Tanto quanto se sabe, nenhum 

indivíduo Português foi incluído no projeto gnomAD, o maior conjunto de dados genómicos atual. 

Acreditamos que uma coleção de informação genómica referente à população Portuguesa poderia trazer 

grandes benefícios ao diagnóstico molecular em pacientes Portugueses. 

As alterações genéticas detetadas em 70 indivíduos Portugueses foram inseridas em uma base de dados 

não-relacional. A informação publicada pelos projetos 1kG e gnomAD para cada alteração incluída nas 

mesmas foi adicionada à referida base de dados. Frequências alélicas reportadas para sete populações 

incluídas na base de dados do gnomAD, cinco populações do 1kG e 5 subpopulações Europeias do 

mesmo projeto foram comparadas contra os valores calculados para os nossos dados. As diferenças das 

distribuições alélicas foram testadas com o Fisher’s Exact test. Os p-values obtidos foram corrigidos de 

acordo com a sua False Discovery Rate (FDR). 

Os exomas de indivíduos Portugueses analisados continham 224,155 alterações genéticas filtradas de 

acordo com critérios de qualidade definidos no presente estudo. Aproximadamente 16,4% das variantes 

não se encontravam descritas nas bases de dados dos projetos 1kG e gnomAD. Os resultados obtidos 

endossam evidências, previamente descritas na literatura, de uma correlação entre as diferenças 

genéticas das populações comparadas em relação à população Portuguesa e a distância geográfica das 

mesmas a Portugal. Diferenças significativas entre distribuições alélicas da população estudada e outras 

subpopulações Europeias foram encontradas para 7,284 alterações genéticas distribuídas por 2,571 

genes. Os resultados obtidos sugerem a existência de marcadores genéticos populacionais e podem 

motivar futuros estudos com vista a detetar marcadores genéticos específicos da população Portuguesa. 

O estudo apresentado representa uma contribuição significativa para, não só enriquecer iniciativas 

genómicas de grande escala, mas também para estabelecer uma referência auxiliar para análises 

genéticas a doentes Portugueses. 
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ABSTRACT 

The in-depth study of the genomics of single populations has contributed significantly to the enlargement 

of known SNVs in databases. Each single population study has contributed with 18 to 57% of novel SNVs. 

The new genetic information is particularly relevant as a reference for clinical purposes. Global-scale 

initiatives as the 1000 Genomes Project (1kG) already include Iberian population; however, no Portuguese 

individuals were included in this cohort. Furthermore, to our knowledge, gnomAD, the most extensive 

genomic dataset, does not include Portuguese individuals either. 

We believe that a Portuguese collection of genomic information would greatly benefit molecular diagnosis 

in Portuguese patients. 

Variants detected in 70 Portuguese individuals were inserted in a MongoDB No-SQL Database. The 1kG 

and gnomAD information for each variant were uploaded to the same database. Allele frequencies for 

seven gnomAD populations, five 1kG populations, and five 1kG European subpopulations were compared 

to the values calculated for our data. Allele distribution differences were tested with Fisher’s exact test. 

P-values were corrected for False Discovery Rate (FDR). 

The exomes of the Portuguese individuals contained 224,155 variants filtered accordingly to defined 

quality criteria. Approximately 16.4% of the variants had not been previously reported by 1kG or gnomAD 

projects. The present work endorsed the evidence for a correlation between genetic and geographic 

distance previously reported in the literature. Finally, significative differences were found for the allele 

distribution between our population and the other 1kG European subpopulations in 7,284 variants 

distributed by 2,571 genes. Results suggest the existence of populational genetic markers and may 

prompt future studies for detection of Portuguese-specific genetic markers. 

The present study is a significant contribution to enrich large-scale genomic initiatives and, to stand as a 

useful auxiliary reference for genetic analyses of Portuguese patients. 
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1. INTRODUCTION 

1.1 Motivation 

Nowadays, it is possible to re-sequence countless human exomes from all over the world aiding several 

working groups to connect genetic variants to clinical conditions. Nevertheless, large-scale genomic 

projects suggest that allele frequencies, which are highly relevant for clinical purposes, differ considerably 

across different populations [1], genetic diversity hinder specific conclusions regarding single populations 

from global-scale studies. 

The populational genetic identity has significant relevance; once genes are responsible for biological traits, 

different populations may present different susceptibilities to certain conditions or display higher risk to 

develop a given disease depending on the carried genetic information. Said so, the disclosure of specific 

characteristics of a population might be very helpful to foresight and diagnose genetic diseases on its 

individuals. It may also result in a robust reference to find and develop new drugs since it can evidence 

population-specific resistances or adverse effects, for example, by identifying modified binding sites. 

Although global-scale initiatives have already comprised Iberian population [2], no Portuguese individuals 

were included as all samples were obtained from Spanish individuals. Another study has denoted genetic 

proximity between Portuguese individuals and a Central Spanish sub-population but some differentiation 

to Eastern Spanish individuals [3] which disables a generalization of results obtained on Spanish samples 

to the Portuguese population. Moreover, this genetic similarity has not yet been characterized at the 

functional level hence it is not possible to assume similar disease risks for both populations. 

Single-population level studies [1,4,5] have been performed and successfully provided a genetic reference 

for clinical purposes. Identifying a Portuguese genetic paradigm may be useful to constitute a reference 

for future studies. 

1.2 Objectives 

The main goal of the presented work is to identify Portuguese population-specific genetic characteristics 

and describe its outcomes. To accomplish this purpose, progressive objectives may be defined as follow. 

1) Analyse previous initiatives, the methods and information needed to perform a similar study 

and understand the scientific context required to extract relevant conclusions. 
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2) Search for useful data that may be included on populational analyses, either from large-scale 

studies or from the previous initiatives analysed. 

3) Organize genetic data in a scalable structure to aid analytical processing and enable the 

compilation of information from multiple sources. 

4) Test genetic similarity between Portuguese individuals and other populations already 

described. 

5) Search on Portuguese population for genetic alterations with significantly different 

frequencies in comparison with other populations. 

6) Link Portuguese-characterising variants to its biologic effects and health consequences or 

benefits. 
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2. BIBLIOGRAPHIC REVISION 

2.1 Human Diversity 

The study of population-specific genetic variants requires the perception of how populations diverge on a 

genetic point of view, the biological fundament of genetic alteration and its consequences. Furthermore, 

these studies involve the methods to identify those alterations, the results obtained with that process, the 

way to store data and finally, the tools available to classify the alteration and predict its effects. 

Among human beings, it is possible to notice differences between persons with the unaided eye; besides 

that, human physiology reveals some degree of differentiation across populations.[6] These differences 

are expressions of genetic diversity. Besides identical twins, no two human individuals share identical 

genetic information.[7] That genetic constitution of any human organism is called its genotype, which 

produces any observable trait constituting a phenotype.[8] 

 Biological context 

Genetic data is encoded by a four-letter alphabet; adenosine (A), cytosine (C), guanine (G) or thymine (T) 

residues may be found on each position of the DNA sequence. Genetic terminology defines that position 

as locus (loci in plural), every locus is a template where an allele resides, and an allele is considered as 

the genetic information contained on a locus.[9] 

Any information required by an organism to perform a biological process is stored on its DNA sequence. 

Since the conception of a new living being, every cell on the organism carry that information and transmits 

it to its “daughter cells” created by one of two division processes. Somatic cells divide by mitosis. On this 

event, DNA molecules are replicated into sister chromatids and each chromatid is segregated into 

separate nuclei, producing two new diploid cells. Meiosis division occurs in germline cells, the main 

difference to mitosis resides on the first round of cell division after DNA replication, where homologous 

chromosomes recombine. This first division separates recombined chromosomes and the latter 

segregates complementary chromatids to separate nuclei, producing four haploid cells in the end. Since 

each chromatid strand acts as a template for its complementary sequence, the result of the replication 

process is two DNA molecules almost equal to the original DNA chain. The differences to the original 

chain usually arise from unrepaired DNA damage, errors on replication or interference by mobile genetic 

elements. On each replication process, approximately one on every 109 nucleotides is altered, generating 
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a mutation.[10] Those may be point mutations, that is, small insertions or deletions, or substitutions of a 

single nucleotide. Inversions, translocations, deletions or insertions of regions of the chromosome with a 

variable size may result from chromosome recombination in meiosis.[11] 

Mutation and polymorphism are two terms that could often be used afore this point, however, both are 

usually confused and incorrectly used. A mutation is intended as any permanent change in the nucleotide 

sequence, polymorphism is a genetic variation found on a population at an abundance meaningfully high 

to be caused by random events, nevertheless, on a genomic perspective, both “mutation” and 

“polymorphism” can be replaced by the term “variant”.[12]  

The most common variants are single-nucleotide polymorphisms (SNP), it accounts for about 90% of 

sequence alterations.[13] SNPs are loci at which different alleles may be found in a population in 

distinguishable abundances. Minor Allele Frequency (MAF) is an important measure on population 

genetics, MAF is the frequency value of the second most represented allele on a population [14] and may 

be used to infer how heterozygous is a population. To define a variant as a SNP, the MAF value threshold 

has been defined at 1%.[11,15] That is, two or more alleles shall be present on the population with a 

frequency of at least 1%.  

SNPs arise from mutations [16] that occur in a germline cell of a common ancestor and may disperse 

across the population over time. A germline mutation is inherited by the offspring conceived by the 

mutated gamete then, that specific individual bears the variant as a somatic one and may transmit it to 

its progeny.[11] Over generations, a mutation may be transmitted to progressively more individuals until 

the sub-population of individuals presenting that specific mutation make up to 1% of the population. 

One of the first endeavours to catalogue all single nucleotide polymorphism information in one platform 

was carried out by NCBI. dbSNP[17] was created as a repository for submitted SNP candidates, data is 

filtered, and a record is generated to be available in the database. Approximately a year after its creation, 

dbSNP accounted for 1.4 million submissions from 97 registered groups, data was referent to five 

species, among them, humans.[18] 

Nowadays, it is the largest polymorphism database, counting over 900 million submissions for Homo 

sapiens.[19] 

Henceforward, the term SNV (single nucleotide variant) will be used to refer to variants on a single locus 

independently of its population frequency, it must be distinguished from the SNP concept. 

SNVs may either cause functional differences when they occur on coding or regulatory regions or be 

harmless if located elsewhere.[13] 
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The genetic information undergoes a process that ultimately results in a protein, those are then the 

effectors of biological processes, that flow of information is stated on the central dogma of molecular 

biology [20]. DNA encodes information that is transcribed to polynucleotide chains of RNA, which in turn 

are translated into proteins. 

The translation process is based on codons, which are portions of a sequence with three nucleotides, 

each codon is read at a time by the ribosome to create and elongate the forming peptide chain. Each 

amino acid is added in agreement with a genetic code (Figure 1).[10] The genetic code consists of the 

correlation of the 64 possible combinations of the three nucleotides in the codon with the 20 natural 

amino acids (Figure 1). One of those codons, AUG, is responsible for the starting position of the nascent 

polypeptide, corresponding to the inclusion of a methionine. The three codons, UAA, UAG and UGA are 

represented on the genetic code as stop codons, they do not code for any amino acid and provide a signal 

for termination of the translation process.[21] 

 

Figure 1. Codon table representing the genetic code. Adapted from iGenetics [8] 

The genetic code is redundant; some codons may code for the same amino acid. When a SNV encodes 

for the same amino acid despite changing the codon, it is called synonymous (or silent) (Figure 2. a) and 

does not affect the protein. On the other hand, a nonsynonymous SNV (or missense) (Figure 2. b) do 

alter the coded amino acid and it may have diverse effects.[16] 

A nonsynonymous SNV may constitute a neutral variant (Figure 2. c) if it replaces the amino acid with 

another that has similar chemical proteins, a loss-of-function variant, which eliminates the normal function 
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of a protein, a hypomorphic variant, if it reduces the normal function of a protein and a gain of function 

variant, which may increase the protein normal function. If a SNV creates a termination codon in the 

middle of a coding region, the variant is called nonsense (or stop gain) and results in a truncated protein 

(Figure 2. d). On the other hand, a variant that changes a stop codon to any other codon that translates 

into an amino acid is called a stop loss variant, the resulting protein may be longer and may lose its 

function or may be affected by structural alterations.[22] 

Apart from SNVs, the most common polymorphisms are small insertions or deletions (INDELs) ranging 

from 1 to 10,000 base pairs.[23] INDELs may be either insertions and deletions of single base pairs, 

transposon insertions, INDELs of random DNA sequences or sequence expansions of small repeat 

units.[24]  

INDELs may have many different effects on coding regions, insertions or deletions of any number of base 

pairs not divisible by three causes a frameshift. A frameshift variant changes the reading frame of a mRNA 

sequence downstream to the variant locus, so the translation process adds incorrect amino acids to the 

peptide sequence. That variant usually generates a non-functional protein.[8] 

The modification of the reading frame may cause a bypass of the normal stop codon (stop loss variant) 

resulting on a protein longer than it should be or may generate a new stop codon resulting in a shortened 

polypeptide. On coding sequences, INDELs of a length divisible by three may also cause alterations on 

protein functions, either by deletion of important amino acids or length changes.[12] 

 

Figure 2. Types of base pair substitutions and frameshift examples. Adapted from iGenetics.[8] 



 

7 

At the end of the translation event, the DNA sequence information has been converted into a protein.[25] 

Reached this point, information cannot be transferred back from proteins [20], so the effects of genetic 

alterations are definitive, an altered protein cannot be corrected and may play a different role on organism 

physiology.  

Those differences are responsible for the diverse characteristics (or traits) presented by the individuals of 

a population. [26] Alterations may also stand as the onset of diseases or health conditions. The term 

“susceptibility locus“ is used to point out that an alteration on a specific locus may increase the risk but 

is neither necessary nor sufficient for disease expression. Variants on susceptibility loci may be taken as 

indicators of a greater propensity of an individual or population to develop any given disease or disorder 

with a genetical burden. [27–29] Susceptibility Ioci may also indirectly affect health conditions by being 

associated with eventual risk factors like blood lipids. [30] 

 Hardy-Weinberg Law and Genetic Drift 

Understanding human evolution, requires knowledge and interpretation of the genetic profile of any given 

population. 

The Mendelian principle of segregation states that any allele A has the same probability to be present on 

a gamete, so the offspring of two heterozygous progenitors has 25, 50 and 25% of chance to present 

respectively the A1A1, A1A2 and A2A2 genotypes. Based on that principle, the Hardy-Weinberg Law 

(HWL) is the groundwork for any evolution genetic study.  

According to HWL, being, respectively, p and q the allele frequencies for A1 and A2, the genotypic 

frequencies appear at a proportion where p2 + 2pq + q2 = 1.[8] 

However, the Hardy-Weinberg model builds on various assumptions, some of them concordant to the 

human biologic condition. The organism must be diploid and have sexual reproduction. The law is only 

applied to di-allelic genes (p + q = 1) and allele frequencies are assumed to be identical in males and 

females (only applies to genes on autosomal chromosomes). Finally, HWL does not take in account any 

selective pressure, random mating is assumed among individuals on very large population (assumedly 

infinite), migration and mutations events are ignored, and natural selection does not affect the allele 

frequencies under consideration.[7] 

HWL provides a good approximation to real proportion values found on populations but, the influence of 

any of those ignored factors deviates frequency ratios from the predicted values. Besides that, the 

impossibility to comply with the assumption of infinite populations generates a genetic drift. That is, 

random changes in allele frequencies caused by a different number of descendants of individuals. On a 
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finite population, it leads to a frequency rise on some alleles over others across generations. Alleles of 

individuals who generate a bigger progeny will be perpetuated on the population over time. It leads to a 

dispersive pressure that vanishes genetic variation. The smaller the population, the bigger is the allele 

extinction rate.[9]  

A gene pool is constituted by all unique alleles carried by the individuals of a population at a given 

moment. If the Hardy-Weinberg Equilibrium is not perturbed the individuals of the next generation can 

only inherit its progenitor alleles, therefore, the gene pool will be maintained, and the genetic diversity of 

that population preserved as it is. 

However, HWL assumptions may be contravened and consequently this diversity may suffer alterations 

over time by evolution events as mutations, selective pressures or migrations and interaction between 

populations.[8] 

 Natural selection 

It has been made clear that a mutation may alter various aspects of organism physiology. The 

consequence of an alteration ranges from prejudicial or fatal malfunctions to gainful traits regarding 

ability, health or any other aspect. On several cases, altered features affect fitness to a given environment, 

so, adaptation to the environment dictates whether a mutation is harmful, neutral or advantageous to the 

organism.  

Greater suitability of some traits over others leads to the evolution of species [31] by natural selection. 

The organism traits which increase its chance of surviving or reproducing are perpetuated on the 

population by genetic drift, bearers of those traits naturally have more chances to generate a greater 

progeny which may carry the genetic information in charge to manifest the characteristic.[8,9] 

 Migration and Gene Flow 

Associated with the factors approached at this point, there is an important phenomenon to the historical 

evolution of the human species, migration. 

Migration has been a determinant aspect in settlement of genetic differences over geographically 

scattered populations. 

Influence of new populations on a given location goes beyond culture or habits; migrations may introduce 

new alleles on the prevalent gene pool, thus altering allele frequencies and disturbing Hardy-Weinberg 

equilibrium.  
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The incorporation of new alleles into a population is called gene flow. The importance of gene flow on 

population genetics resides on the propagation of variants, a variant that arises on a given population 

allows to trace back population course over history, that variant may characterize descendant generations 

and allows to identify contacts with other populations on which the variant is found.[8] 

Besides population interaction, migration is the basis of the founder effect, another major event on 

population genetics. The founder effect consists of the detachment of a small group of individuals (sub-

population) from an established population. The detachment itself is pointed out as a bottleneck. It results 

in a noteworthy genetic drift; the new population experiences a significant loss in heterozygosity since it 

represents a “sample” of the original gene pool. Bottlenecks may also be the consequence of an event 

that drastically reduces population size, like natural disasters, disease outbreaks or population isolation 

on specific locations.[7] 

Nowadays, population genetics studies had revealed that the modern-day patterns of genomic variation 

are the consequence of several major demographic events in the past.[32] Comparison of genomic data 

from ancient and modern populations provide a great amount of information, it may provide an 

approximation about the time of divergence of two given populations, unveil more complex genealogical 

relationships and facilitate determination of migration routes, founder effects and genetic admixture 

among various groups.[33] 

 Genetic ancestry of the Portuguese population 

Since the first global level analysis of genetic variation, both human origin in Sub-Saharan Africa and the 

out-of-Africa model of population expansion had been mainly accepted.[33,34] Additionally, the 

correlation between geographic and genetic proximity has been strongly evidenced; the relationship 

extends to support the deduced migration routes and historic relations.[35,36] 

Although the earliest fossil evidence of Homo Sapiens existence comes from East Africa – estimated to 

be 150 to 190 thousand years (kyr) old [37,38] – there is no consensus on pinpointing origin within the 

continent, there are evidence that supports either East African [39] or west to central origin [34]. 

The great genetic diversity among actual African sub-populations in comparison to the rest of the world 

also supports African human origin.[35] Several ancestral population clusters can be identified and a 

bigger divergence on Sub-Saharan populations is denoted.[40,41] This data is consistent with theoretical 

population genetics explained before. Subsets of an initial population may have migrated to distinct parts 

of the continent and evolved independently, the genetic differences would be more easily explained by 

the eventual small size of the founder groups. 
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From that diverse population, East African subsets of individuals began the population expansion to the 

Middle East instituting the first out-of-Africa event (Figure 3). The gene pool of the founder group 

undergone a major genetic drift. Then, all non-African human populations descended from that less 

diverse group.[34,36] 

 

Figure 3. Major human migrations over the world. IP – Iberian Peninsula; CA – Central Anatolia, present-day Turkey; FC – Fertile 
Crescent, present-day Middle East; PCS – Pontic-Caspian Steppe. [33] 

The earliest Homo sapiens evidence in the Middle East region is dated from over 100 thousand years 

ago (kya).[42] However, the population split that originated modern Eurasian population is estimated to 

have happened between 50 to 75 kya [43,44]. It is currently supposed that a single major migration 

group was on the origin of any other population worldwide, that is supported by the evidence of an 

equivalent effect on non-African populations of an encounter and admixture with Neanderthals shortly 

after humans leaving Africa.[45] All Non-African individuals analysed on this aspect until this moment 

bears roughly 2% Neanderthal ancestry.[46,47] 

The arrival to Europe happened around 45 kya, which is the age of the earlier evidence of anatomically 

modern human presence.[48] However, the genetic contributions of these first inhabitants to present day 

Europeans is still under debate.[32] 

Several individuals studied by Fu et al.[45] seem to share the same ancestry and do not display 

substantial differentiation evidence, it indicates the presence of a single population lineage in Europe from 

37 kya until 14 kya. However, the contribution to modern-day Europeans comes from a subset of the 

original population. During the Last Glacial Maximum (LGM) – between 26 and 19 kya – northern Europe 
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was covered with Ice, it led to human migrations into southern refugia, causing a severe bottleneck that 

reduced the genomic diversity of later European populations. [49,50] 

After the end of LGM, Europe was recolonized by a group named West European hunter-gatherers (WHG). 

Those individuals contribute ancestry to every European population and none to modern-day Middle 

Easterners. Indicating that this population never reached the Middle East.[46]  

WHG individuals had been found over northern Iberia.[45,51,52] Nevertheless, the trace of that 

population in actual Europe is located mainly in northern Europe, individuals from that region bear up to 

50% WHG ancestry.[46,53] 

On early Neolithic, Early European farmers (EEF), a new population from Anatolia (modern day Turkey) 

expanded into Europe. There is evidences that indicates that this group arrived in Iberia roughly 7-6 

kya[52], and influenced the gene pool of the local population.[32,54] 

EEF presented 44% ancestry from a “basal Eurasian” population from Near East and spread over the 

continent founding a new lifestyle and setting themselves on given locations. [33] It was essential to the 

demographic growth verified by that time.[50] Nowadays, EEF genetic influence is more relevant in 

southern Europe.[46] 

Finally, Ancient North Eurasians (ANE) the ancient population from which modern-day Siberians 

descended. Although it has been reported that by the Neolithic transition, EEF and WHG were the two 

main ancestral populations in Europe and there are no indications of the presence of ANE in central and 

western Europe on that period, today, its ancestry is found in nearly all Europeans at a percentage that 

reaches up to 20%.[46] 

Both WHG populations who may not have migrated to northern Europe – Martiniano et al.[55] suggests 

a prolonged WHG interaction at European Atlantic littoral – and EEF populations size growth have a 

significant impact on the genetic composition of modern-day southwestern European populations. Both 

groups admixture [50] and natural increase in genetic variation of growing populations [56] led to a higher 

level of genetic diversity compared to most northern regions.[57] 

A third influential factor arose more recently. In the Iberian Peninsula, North African invasions began in 

the 8th century of the common era and lasted until the 13th century. This occupation embodies a gene 

flow event that modified Iberian gene pool. This region has the biggest North African ancestry among 

European populations.[57,58] 

On the present day, it is suggested that in Europe, even geographically distant individuals share a 

common ancestry from the past 3,000 years.[59] Nevertheless, a clear correspondence between genetic 

and geographic distances might be denoted, Iberia could be demarked from the rest of Europe by the 
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genetic characteristics of its population.[60] A continental-level study performed by Lao et al.[3] that 

includes Portuguese subpopulations denotes a close relation of that group to a Central Spanish sub-

population,  some differentiation to Eastern Spanish individuals and suggests some proximity with Italian 

individuals. 

However, Iberian-Italian clusters relations may not be mostly caused by shared ancestry but rather by 

scarce similarities of both populations with other European regions. Both Portuguese and Spanish 

individuals show very low common ancestry with the rest of Europe but a high relation within them. The 

low rate of shared ancestry may be explained by the aforementioned North African occupation and 

possibly by geographic isolation due to the Pyrenees that may have difficulted the contact with 

neighbouring populations.[59] 

 Global-scale population studies 

As it has been presented, the divergence between different populations results in a vast diversity of the 

global population. Data collection from sufficient independent populations enables large-scale analyses 

to deepen the comprehension of human population genetics. It triggered the development of various 

initiatives like the HapMap Project that aimed to characterize the variants by its frequencies and 

correlations between them. DNA samples of 270 individuals were obtained from 4 populations, including 

90 samples from the Utah (United States of America) population with Northern and Western European 

ancestry.[61] HapMap has been discontinued by 2016.[62] 

1000 Genome Project. On this regard, the 1000 Genome Project is one of the biggest endeavours to 

create a base for further genomic studies. It was launched in 2008 to create a public reference database 

for DNA polymorphism. 

The main goal of the project is assumed to be the search on the “accessible genome” and characterize 

over 95% of genetic variants which presents an allele frequency of 1% or higher in each of five major 

population groups, which are the descendants from populations of ancient Europe, East Asia, South Asia, 

West Africa and the Americas. Clustered sampling was employed to ameliorate the detection capability 

of low frequency variants. That is, in a cluster of related populations, genetic drift may provide variants 

with a higher frequency than may be found on other populations that present an overall low frequency 

for that variant. Hence, that variant is easily detectable.[63] On the sampling process, not more than 100 

unrelated individuals were sampled from related populations.[2] 

On a first phase, the 1000 Genome Project performed whole-genome sequencing on low coverage, array-

based genotyping and targeted sequencing of some coding regions for 1,092 individuals sampled from 
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14 populations. The design proved to be powerful and cost-effective on the task to search for almost every 

variant.[63] 

For each variant, there was considered information about mapping quality, the quality of the reads and 

the distribution of variant calls in the population. Variant sites were ranked accordingly to results from 

machine-learning approaches using the quality information, this enabled to establish thresholds to ensure 

low False Discovery rates. 

Additionally, genotype likelihoods were used to assess the evidence for each genotype found at bi-allelic 

sites, at every site in each sample it was inspected if there were 0, 1 or 2 copies of the variant. 

On overall, the project discovered and genotyped 38 million SNVs, 1.4 million bi-allelic indels, and 14 

thousand large deletions. The results were filtered and validated to avoid inconsistent or ambiguous data. 

This study estimates to have detected 1% frequency SNVs with a certainty of 99.3% over the genome and 

99.8% on the exomic region. Moreover, the power to detect 0.1% frequency variants is nearly 70% on the 

genome and 90% across the exome. From the reported variants, 6% of the variants with frequencies over 

5% were not known, 38% of variants in the range from 0.5 to 5% had never been described previously, as 

well as 87% variants with frequencies under 0.5%.  

Among the results obtained by the Project, some findings may be highlighted, variants with a frequency 

above 10% are almost all found in all populations studied, at the other hand, 53% of variants at 0.5% or 

below were observed only in a single population. Allele frequency distributions show that African ancestry 

populations carry up to three times as many variants with low frequency (in the range of 0.5 to 5%) as 

the populations of European or East Asian ancestry, supporting ancestral bottlenecks in the origin of non-

African populations.  

Regarding the effect of the variant, at the most highly conserved coding sites, 85% of the nonsynonymous 

variants and 90% of nonsense and splice-disrupting variants are rare (frequency below 0.5%). Only 65% 

synonymous variants present that scarce frequency.[2] 

By 2015, the project was completed, using the same approach as reported earlier, it reconstructed, in 

total, 2,504 individual genomes from 26 populations, finding 88 million variants distributed on 84.7 

million SNVs, 3.6 million short indels and 60 thousand structural variations. It accounts for over 99% of 

the known SNPs with a frequency of 1% or above. On this phase, multi-allelic events were also analysed, 

expanding the restriction to bi-allelic polymorphisms that was previously imposed.  

Almost ¾ variants reported are rare (frequency below 0.5%), more precisely, 64 million variants. Besides 

those, there are 12 million variants that present a frequency between 0.5 and 5% and approximately 8 
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million variants have a frequency above 5%. However, every single genome carries just 40 to 200 

thousand rare variants, which represent 1 to 4% of the genome variants. 

The final project report stated that a typical genome differs from the reference genome at a range between 

4.1 and 5 million loci. It also supported the out-of-Africa model by finding that individuals with African 

ancestry carried the greatest number of variant sites.[64] 

On present day, the 1,000 Genome Project contains 107 Iberian samples, all collected on Spanish 

territory from individuals who were born in Spain as well as their direct relatives on the last two 

generations.[65] 

ExAC. The Exome Aggregation Consortium had a more ambitious initiative by calling variants from the 

exomes of 60,706 individuals.[66] Six ancestry groups were defined; AFR included African and African 

American individuals, AMR represent South America, EAS East Asian, SAS South Asian, FIN Finnish and 

NFE Non-Finnish individuals from Europe. The specific territories where the sampled individuals lived 

were not provided. 

The study identified over 10 million variant candidates. After quality filters, a subset of approximately 7.4 

million high-quality variants was defined. From that subset, over 317 thousand variants are indels. Those 

results correspond to one variant for every eight base pairs. Almost all of the high-quality variants, 99%, 

have a frequency below 1%, 54% are seen only once in the whole dataset and 72% were absent from the 

data sets of other projects. 

ExAC has been built to serve as a support for medical genetic analysis and a scope to study the effect of 

different variants on human physiology. However, the dataset itself is among the most complete 

collections of exomic data.[67] 

Although still available as a stand-alone browser, ExAC has recently been complemented with genomic 

data hence constituting gnomAD (Genome Aggregation Database) [68], the current dataset spans 

123.136 exomes and 15,496 genomes from unrelated individuals. 

 Single-population genetic studies 

Regarding diversity between populations, studies have been performed either to characterize the genetic 

proximity of isolated groups to other populations or to assess population predisposition to certain diseases 

or conditions based on populational genetics. Those searched for SNVs on susceptibility loci or any other 

variants that might affect health conditions of the individuals that are comprised of the population. 

The comparison with 1,000 Genomes Project data is widely recurrent in recent studies, Zlobin et al.[69] 

examined 12 exomes from Yakuts, a secluded Siberian indigenous population, and searched for 
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similarities with populations described on the project. In this study, 746,396 variants were called. 56,949 

of those were absent from variant databases. Finally, it succeeded to identify Yakuts as a genetically 

secluded population. 

Einhorn et al.[70] also succeeded to find Ashkenazi Jewish specific variants. One hundred and twenty-

eight individuals from that population were sampled, and the 1,000 Genome Projects populations from 

Europe, Africa, East Asia and South Asia were taken as a control group, one hundred and twenty-eight 

individuals were randomly selected from each population. The authors found 222,179 SNVs, of which 

18.3% were not present in population genetics databases and 30.6% were present on only one individual. 

Moreover, several studies addressed allele frequencies of specific variants to determine the propensity of 

populations to express a condition or the influence of a gene to a given clinical effect. Zhou et al.[71] 

integrated ExAC data from 56945 individuals and linkage information from the 1000 Genome Project to 

derive the frequencies of 176 alleles, representing 12 cytochrome P450 genes with the highest relevance 

for human drug metabolism. Their study establishes an overview for cytochrome p450 gene allele 

distributions on five major populations (Europeans, Africans, South Asians, East Asians, and admixed 

Americans). Slavin et al.[72] sampled 2,134 women with familial breast cancer. They identified 2,859 

variants in 26 known or proposed breast cancer susceptibility genes, then, to detail the spectrum of 

susceptibility genes and its correlation with clinical outcomes and refine risk estimates for specific 

mutations, they analysed the results using the frequencies of 9,647 variants associated to those genes 

on the non-Finnish European group control from ExAC. 

With a broader focus, the UK10K project was designed to characterize rare and low frequency variants 

from the United Kingdom population to assess the contributions of genetic variation to diverse 

biomedically relevant traits and diseases within the population.[4] A similar initiative took place in the 

Netherlands, there, 250 families, totalizing 769 individuals, were sampled.[5] 

Dopazo et al.[1] collected samples from 267 healthy Spanish individuals and downloaded exomic data of 

13 populations from the 1,000 Genomes Project in a VCF file. The selected populations represented 

European, Asian, American and African descendants. The final dataset totaled 1,359 individuals. 

This study reported 170,888 variant positions. Almost one-third of the variants found were not described 

on public repositories. They were found, on average, approximately 19,000 variants per individual, 9,194 

of those were nonsynonymous and 85 % were found in only one individual. The main goal of the study 

was to describe disease-related variants. Around 3,000 variants were present on disease databases. The 

authors then compared the MAFs of those variants for the 267 analysed individuals with the MAFs 

presented by the other populations included in the study, 193 variants were two times more frequent in 
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Spanish populations than in the 1,000 Genome Project populations, 69 of those variants still had a MAF 

2-fold higher when concerning only European populations. 

The study yielded useful conclusions, for example, it found significantly higher (between 4 and 18-fold) 

variant frequencies for various conditions like Marfan syndrome, Von Willebrand syndrome, Ellis-van 

Creveld syndrome, Wilson disease, cystinuria, Crohn’s disease, or Charcot-Marie-Tooth disease among 

others. Additionally, the study identified drug binding sites which have a higher probability to be found 

affected on Spanish populations, such as the gene CYP11B2 from the Cytochrome P450 family, it is 

affected by a nonsynonymous alteration with 15-fold higher prevalence on the Spanish population [1]  

On the sequence of this study, the Collaborative Spanish Variant Server (CSVS) was developed to store 

and supply variability information based on a bigger dataset with 1582 unrelated Spanish individuals. 

VCF files aggregated on the server are enriched with annotation data from NoSQL CellBase Database.[73] 

Regarding what has been said until this point, the significant genetic similarity between Portuguese and 

Spanish populations is expected. However, Portuguese individuals samples have not been included in 

global scale endeavours, therefore, it is not possible to compare both populations to assess eventual 

differences, Dopazo et al results cannot be generalized to the Iberian Peninsula population, therefore, it 

is conceivable that different susceptibilities and risks may be found, once both populations may manifest 

different predisposition to health disorders or different responses to drugs or treatments, it is important 

to beacon the differences between both populations. 

2.2 Technologic Context 

So far, it has been presented why it is important to know the nucleotide order on the sequence, for that, 

the polynucleotide chain must be sequenced. It then allows identifying genetic variants [74] by mapping 

reads against a reference genome and identifying the differences between both sequences.[75] 

Through the last 40 years, sequencing technologies had been developed and improved in order to 

perform, faster, cheaper and more accurate processes.[76] 

On the 1970s, there were two predominant and influential protocols. Coulson and Sanger’s “plus and 

minus” system relied on radiolabelled nucleotides and two different alternated reactions. The “minus” 

reaction, uses three different nucleotides to produce sequences until the missing nucleotide is required, 

in the “plus” reaction, that nucleotide is provided so all extensions will end with that base.[77] That 

method takes several polymerization reactions and neither the “plus” nor the “minus” reactions were 

completely accurate.[78] 
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 First generation 

The other protocol developed by Maxam and Gilbert on 1977 consists of sequencing by chemical 

degradation. To determine a nucleotide sequence, the DNA molecules were radiolabelled, cleaved and 

separated into four aliquots containing, respectively, fragments cleaved on adenine (A), adenine and 

guanine (A+G), cytosine (C) and cytosine and thymine (C+T) residues. On both protocols, fragments were 

separated by its length on polyacrylamide gels where the nucleotide order could be inferred (Figure. 4). 

[79,80] 

Maxam and Gilbert method was the first widely used technique, standing as the initial first-generation 

DNA sequencing protocol. Nonetheless, on the year of 1977, Frederick Sanger and colleagues developed 

the chain-termination method, the first “sequencing-by-synthesis” process, meaning that it requires the 

direct action of DNA polymerase to produce an observable output. It would become one of the 

benchmarks of DNA sequencing processes (Figure 4). [78] 

Sanger method improved accuracy, robustness and ease of the sequencing process by using 

dideoxynucleosides (ddNTP), chemical analogues of the DNA functional units that lack the hydroxyl group 

on the 3’ end, thus impeding DNA sequence extension beyond that position. Those analogues were 

incorporated at random positions on the synthesis process rendering DNA strands of all possible lengths 

which were revealed by autoradiography.[79] In the following years, advances in fluorescence substituted 

radiolabelling with fluorometric detection, simplifying and enhancing sequencing protocols.[81] 

 

Figure 4. First Generation sequencing methods. (a) DNA molecule to be sequenced. (b) Sanger method. (c) Maxam-Gilbert method. (d) 
Fragments visualized via electrophoresis.[79] 
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Base detection was also improved with capillary-based electrophoresis.[82] It augmented the rate at 

which fragments could be separated by applying much higher electric fields that were used on standard 

electrophoresis. The progress verified on sequencing methods manifested itself on the development of 

automated sequencing machines. Nowadays, Sanger method is still used by some of those machines 

like ABI 3730xl DNA Analyzer, a Gold Standard on automated high-throughput sequencing. It produces 

reads up to 900 base pairs. A run yields a total of 96 kb (thousand bases) pairs in 3 hours.[81] The 

sequencing process cost lowered a lot, in 1985, for every single base, the read cost 10$. On the mid-

2000s, 10$ rendered 10 kb pairs.[76] 

 Second generation 

As Sanger method was still being improved, its limitations motivated the appearance of new alternatives. 

The development of emulsion PCR, an in vitro process that anchors DNA fragments to primer-coated 

beads, augmented the yield and accuracy of the sequencing process by using more than a hundred clonal 

copies of the DNA molecule per bead. Over the years, this parallelized process allowed to perform 

gradually larger amounts of reactions, increasing the sequencing throughput.[83] 

Pyrosequencing arose in the early 1990s as the first real alternative to the Sanger method, a sequencing-

by-synthesis technique that measures inorganic pyrophosphate synthesis with a luminescent chemical 

method. It consists of a series of enzymatic reactions following nucleotide incorporation events that 

ultimately emit light photons that are detected and measured by a sensor.[76,84] 

The market reference to this technique is the Genome Sequencer FLX marketed by Roche 454 Life 

Science. It is capable of generating reads of 250 base pairs to a total of 80-120 Mb (million bases) in a 

4-hour run. More recent instruments like FLX Titanium may yield 400 base pairs reads. As today, this 

technology is no longer commercialized. 

On the late 1990s, the nowadays known as Illumina sequencing technology was developed. It relied on 

clonal bridge amplification, another method to amplify DNA that consists of attaching both ends of single-

stranded DNA fragments to a solid surface covered with sequence adapters. That amplification process 

yields more than 40 million single molecule clusters, each one with a diameter of 1 μm and counting 

approximately 1000 copies of a single template.[76,81] 

Sequencing itself is performed with fluorescently colour labeled dNTPs, one colour for each dNTP; all 

provided at a time. On each cycle, every cluster is scanned to identify the base incorporated by the colour 

emitted.[76,79,81] 



 

19 

The first instrument to apply this method, the Illumina GA genome analyser, generated 35-bp reads and 

sequenced a total of 1 Gbps (1 thousand million base pairs) on a 2-3 day run. This instrument sequenced 

each base by approximately 1% of the cost of Sanger sequencing.[76,81] There are more recent 

instruments that are capable of sequence small genomes in 4 hours and others may sequence 1.8 Tb 

(billion base pairs) in 3 days.[75] 

Ion Torrent technology proceeds to an amplification step by emulsion PCR to scatter millions of copies of 

a DNA single-stranded chain over the surface of a bead. The method is based on measuring H+ protons 

release into the solution during polymerization reactions. A pH sensor plays a fundamental role to detect 

those variations. Besides yielding the highest throughput (Ion Proton produces over 50 million reads with 

200 bases length per run) [85], this process is much faster-completing runs within 2 to 4 hours.[86] 

 Third generation sequencing 

The focus on improving speed, accuracy and reducing costs of sequencing large amounts of genetic 

information, ultimately led to the development of methods to sequence single molecules hence avoiding 

the amplification requirement.[79] 

The most impacting single-molecule sequencing method in the present day is PacBio Real Time 

Sequencing-by-synthesis (SMRT). In SMRT, DNA polymerization occurs on nanometer-scale wells with 

holes that focuses light on approximately 20 zl (10-21 liters) of the volume of the well. A single DNA 

polymerase immobilised on that spot incorporates fluorescently labeled nucleotides thereby exposing the 

base-specific fluorophore. There are SMRT instruments distributed by PacBio that may produce reads 

with a length of 10 kb at a rate around 10 bases per second.[81,87] SMRT can generate reads with an 

average of more than 14 kb in length. Individual reads may reach 60 kb.[75] 

Another approach to single-molecule sequencing consists of the use of nanopores. Nanopores are already 

used on detection and quantification of various biological molecules by trespassing a lipid bilayer through 

ion channels. The technique is based on that principle using 1.5 nanometres wide synthetic pores, a 

current is applied and the negatively charged DNA chain traverses the nanopore at a flow rate proportional 

to the size of the nucleotide. A major issue on nanopore technology is the low detection sensitivity. Once 

this method could surpass that problem, nanopore technology may disrupt DNA sequencing paradigm 

since it has the potential to produce very long reads (around 6 kb on average and a maximum length of 

more than 60 kb[75]) cheaper and faster than was previously possible.[79] 
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 Comparison 

A comparative analysis performed by Quail et al. in 2012 reported that Ion Torrent sequencing would 

cost approximately 1,000 US Dollars per Gb on Ion-318 chip model. That sequencing process would 

produce 98 to 99% accurate data.[88] Presently available Proton-I chips yield between 60 to 80 million 

200 bp reads, reaching 10 Gb within a 4-hour run. This amount of data is equivalent to the sequence of 

two human exomes at a 50-times coverage.[86] 

Quail et al. also compared SNV calling ability of Ion Torrent, PacBio and three Illumina sequencers. The 

rate of 82% correct calls for Ion Torrent was higher than for Illumina machines, which accomplished 

correct rates ranging 68 to 76%. PacBio identified 71% SNVs correctly, this low rate could be explained 

with the optimization of existing tools for short-read data instead of for long reads where errors are more 

prone to occur.[88] 

2.3 Data Context 

 Data processing 

It has been presented how the evolution of NGS sequencing technologies permit to generate the 

enormous amount of data that is daily obtained. However, this aroused issues with data storing and 

quality control. As an illustrative example, although currently, whole-genome sequencing is the most 

informative and complete genetic analysis method, exome sequencing is still advantageous due to lower 

cost, higher speed and greater ease of storage and analysis.[89] 

Several steps are needed to process and extract genetic variant information from raw sequencing data 

(Figure 5). [90,91] After generating short reads from the sequencing process, the next step consists on 

quality control of those reads. Following this, the reads are aligned to a reference sequence and the 

alignment is post-processed to improve the quality of the final steps that fulfill the variant calling. 
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Figure 5. General pipeline for SNP calling. Adapted from “A beginners guide to SNP calling from high-throughput DNA-sequencing data”, 
Altmann et al., 2012. [90] 

Overall quality of the results must be assessed by universal classifiers, concordantly to this, base calling 

certainty is measured by statistical models that take in account factors such as signal intensities, number 

of sequencing cycles performed and distance to other sequencing clusters.[90] Error estimates are 

usually expressed as Phred-like quality scores which essentially relies on the expected error probability of 

the base call as is noted on the following formula.[92] 

𝑄 = −10 × log 𝑃(𝑒𝑟𝑟𝑜𝑟) 

Currently, most platforms perform the entire process until this point, results are optimized removing 

redundant reads and contaminating primers, adapters or other artifacts. Manufacturer software verifies 

and compiles quality scores that are stored together with base calling data in FASTQ files. Those are 

widely accepted as the standard file for NGS raw data.[91,93] 

 Sequence Alignment 

On the alignment step, the short reads contained in the FASTQ file are aligned to a reference sequence. 

This process was only possible after the completion of the Human Genome Project (HGP). 

HGP was the first initiative taken to sequence the entire human genome. The project started in 1990 and 

in 2003 its conclusion was announced two years ahead of schedule. Project results presented 99% of the 

gene-containing region of human sequence with a 99.99% accuracy. Fifteen thousand full-length cDNA 

stretches have been identified and 3.7 million SNVs were mapped. To accomplish this endeavour, 

genome portions have been sequenced in several universities and research centres throughout the 

world.[94] HGP cost approximately 2.7 billion US Dollars. Afterward, sequencing costs progressively got 

lower allowing to generate larger amounts of data. [94] 
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The definition of a reference sequence established a major benefit to multiple scopes; biology, medicine 

and more specific subjects like proteomics, experienced a significant improvement supported by the 

enhancement of sequencing processes. As parallelization was enabled by a standard mapping against 

the reference sequence, second generation methods widespread was accompanied by higher 

throughputs and lower costs. [95,96] Reference sequence may be altered due to advances in the human 

genome sequence or more accurate determinations, the actual build is the Genome Reference 

Consortium Human Build 38 (GRCh38 or hg38). [62] 

Notwithstanding this reference, it is known that there will be variations between sequences, so algorithms 

must be tolerant to imperfect matches toward finding optimal alignments.[91] Smith-Waterman score-

based dynamic programming algorithm is implemented on alignment methods to provide at least one 

optimal local alignment.[97] 

Two approaches have been used to speed up this process by compressing data, Burrows-Wheeler 

transform (BWT) rearranges a character string into runs of similar characters[98] and is faster and more 

efficient than hash-based aligners – which transforms strings into shorter fixed-length values or keys that 

are retrieved in a database – that by its time is more sensitive than BWT.[90] 

The most popular BWT-implemented software are BWA[99], Bowtie[100] and its successor Bowtie2. As 

examples of hash-based software, there may be referred Novoalign[101], SHRiMP[102] and 

SHRiMP2[103].[104] 

Besides those software, Ion Torrent technology has a specifically oriented set of utilities. Tmap[105] is 

designed to meet Ion Torrent data mapping challenges; it also applies BWT algorithms to build an index 

of the reference genome. 

Subsequently to the alignment, the reads are stored in a Sequence Alignment Map (SAM) format file, 

besides the reads, also the mapped positions in relation to the reference sequence, the orientation of the 

read and the quality of the alignment are stored.[90] This file may then be compressed into a binary 

format (BAM) that reduces by 3 or 4 times the size of the file.[106] BAM is, nowadays, the de facto 

standard format for alignment files.[89] 

BAM files are then used as the input for most processing tools, the most commonly used of them are 

SAMtools[106], Genome Analysis Toolkit (GATK)[107] and Picard[108]. Alignment post-processing 

process is useful to reduce even more the size of the file and avoid some errors that eventually could 

affect variant calling.[104] On this process, several tasks are performed, the reads are sorted in relation 

to their chromosomal positions, PCR-remaining artifacts (reads that start at the same position and have 

the same length) are removed, reads with more than one optimal alignment are also removed – because 
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it cannot be determined where it has been originated – and reads are realigned around small indels to 

avoid the detection of artificial SNVs that might be created by inaccurate alignments.[90] 

Alternative formats have been developed to obtain more compressed files that still retain much of the 

original information. CRAM format[109] has been increasingly used in recent years, it may reduce the 

size of a BAM file by 38-55%.[110] 

 Variant Calling 

The alignment of the reads provides a comparative perspective between sequences. It is powerful support 

for identifying rare and de novo variants and quantifies genotype expression levels.[111] 

Variants are identified as nonreference alleles found on at least one sample. Then, variant calling may be 

defined as the search and identification of locus differing from a reference sequence. It should not be 

confused with genotyping which is the estimation of genotypes on each locus.[112] 

By analysing reads from different samples concerning a genomic region, a probabilistic framework which 

facilitates variant calling is created. Although at the expense of speed and computing resources, a higher 

depth of coverage increases the possibility to find low-frequency alleles and guarantees a bigger certainty 

on the identification of alleles with low coverage in single samples. Besides, there is a reduction of the 

probability to call a random sequencing error as a variant.[91,104] 

The biggest advantage in using a probabilistic framework is the possibility to integrate previous data on 

allele frequency and compare experimental results with these values. The baseline data may be found 

and derived from genomic and variation databases like ExAC [67], the 1,000 Genome Project [63] or 

dbSNP [18].[90] 

The abovementioned GATK[107] and SAMtools[106] are two of the most used software to call variants. 

GATK includes two programs to perform the task, UnifiedGenotyper calls SNVs and indels assuming each 

variant locus as independent, HaplotypeCaller also detects SNVs and indels in addition to structural 

variations by performing local de novo assemblies of the aligned reads. SAMtools apply mpileup utility to 

scan every position of the genome and produce a BCF format file. It enables the calculation of the allele 

frequency for each position covered in the sample. Then, bcftools takes that file as input to call SNVs and 

indels.[91] 

Among several variant calling tools, there is a third most used software to be mentioned, FreeBayes. This 

is a short polymorphism caller built on a Bayesian statistical framework, that is, it takes previous data 

and new evidence to infer variants. It can simultaneously detect SNVs, indels, multi-base mismatches, 

polyallelic sites and copy number variants.[113] 



 

24 

Like in the alignment step, Ion Torrent technology uses a variant caller designed and optimized to exploit 

its platforms data to evaluate variants. That customizable tool is called Torrent Variant Caller (TVC). [114] 

The standard output for the process is the Variant Call Format (VCF). Those files comprise the variants 

and their positions and it may have the genotype and haplotype information for each polymorphism.[115] 

Large VCF files may be compressed into Tabix format, which indexes the position sorted file to perform 

efficient querying of genome positions. In Tabix, the size is reduced by 3 to 5 times.[116] Another format, 

gVCF, store adjacent reference alleles as a block, in these files, start and end positions correspond to the 

first and the last position of an uninterrupted sequence of reference alleles.[117] 

 Comparison 

The number of available tools to perform variant calling enables multiple comparisons between them. As 

it has been mentioned before, GATK and SAMtools are the most widely used and are present in almost 

every benchmarking studies. 

Altmann et al. compared the results generated by both software and concluded that GATK provided five 

thousand additional SNV candidates compared to SAMtools.[90] 

Concordantly, most performance analyses point the best general results to GATK, either over 

SAMtools[118] or both SAMtools and FreeBayes[119] among others.[111,120] 

In some cases, the authors mention that GATK outperformance over other tools consists of a slight 

difference, Laurie et al.[121] concludes that GATK, SAMtools and FreeBayes are equivalent regarding 

SNV calling, the main difference between them consists on indel calling accuracy, on which GATK 

performance is substantially better than that of the other callers. 

Once there Ion Torrent data is included to a benchmark, it is possible to compare those callers with TVC, 

Hwang et al.[122] results support the better suitableness from GATK to indel calling, but points SAMtools 

and FreeBayes as better SNV callers for Illumina platforms data. Regarding Ion Proton data, SAMtools 

outperformed any other caller. However, authors mention that they could not predicate TVC performance 

based on their results since one Ion Proton data set was tested, which also also had low exome coverage. 

A comparative study performed by Zhang et al.[123] on the same year concluded that TVC, properly 

optimised to Ion Proton system, processed data better than GATK.  

A recent study by Sandmann et al. [124] suggests not to use GATK to detect variants with low allele 

frequencies. They recommend FreeBayes and VarDict [125] to achieve more accurate results regarding 

those variants. Bao et al. [91] on a previous analysis also concluded that FreeBayes achieved best 

performances than GATK and SAMtools. 
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 Annotation 

The variant calling pipelines yield high-scale and complex sets of information, hence the management 

and interpretation in phenotypic context end up being a substantial challenge. Annotation tools have been 

developed to catalogue genetic variants to enhance data analysis and identify subsets of functionally 

important variants. 

ANNOVAR. One of the first mainly used annotation tools was ANNOVAR [126]. ANNOVAR is a licensed 

software tool freely available for academic use. It needs to download pre-compiled gene annotation data 

sets and save them on local disk to annotate variants with respect to their functional consequences. 

These data sets are scanned to identify and report allele changes. It also performs genomic region-based 

annotations, compares variants to existing databases and evaluates subsets of variants not reported on 

them. 

ANNOVAR can take VCF files to annotate, however, they must be converted since ANNOVAR requires a 

standard simple text-based input format. Each line represents one genetic variant and is composed of 

five mandatory columns which respectively represent chromosome, start position, end position, reference 

allele(s) and observed allele(s). Additional commentary columns can be supplied, in output files, these 

columns are printed out in identical form. 

ANNOVAR can filter specific variants. Furthermore, it may automatically filter functionally important 

variants through a multi-step procedure that executes sequential annotations with several different 

parameters and generates a final output file containing the most likely phenotype causal variants and 

their corresponding candidate genes.[126] 

VEP. Among a wide variety of prediction tool choices, there are useful options like Variant Effect Predictor 

(VEP)[127]. VEP is a software suite that performs annotation and analysis of most types of genomic 

variation in coding and noncoding regions of the genome using a wide range of reference data, including 

two of the most used scores, SIFT[128] and Polyphen-2[129]. 

Compilation of various prediction scores increases analysis reliability. Although the diversity of prediction 

methods, comparison studies have noted that none of the existing tools achieves repetitively satisfactory 

results. They report equivalent results of simpler approaches and more recent machine learning-based 

methods, however, the tools do not present constant performances, prediction accuracies greatly vary 

depending on the used dataset. These studies recommend considerable caution in interpreting the 

predictions generated, the available tools may not be accurate enough to give definitive conclusions.[130–

132] 
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To improve analyses quality, there have been published guidelines to evaluate the pathogenicity of 

reported variants. Among other suggestions, Wallis et al. recommend using at least three programmes to 

obtain reliable results.[133] 

GEMINI. Further initiatives arose from the studied evidence that damaging loss-of-function variants are 

frequently artifacts of data, annotation or analysis. [134,135] Moreover, the size and complexity of 

genome annotation datasets, its varying documentation, frequent updates and the storage on centralized 

repositories or individual laboratory websites constitute technical and methodological challenges to 

reliably identify and characterize genetic variation. 

GEMINI [136] is an open-source framework built to stand as a flexible, reproducible, and scalable software 

for mining genome variation. It integrates genetic variation data in VCF format files with GRCh37-based 

genome annotations into a unified database framework that suppresses the need to develop complex 

analysis pipelines. This tool allows querying variants and genome annotations in a common SQL database 

which may be augmented with custom annotations. GEMINI developers preferred SQLite relational 

database engine over NoSQL approaches due to the SQL expressiveness on constructing data exploration 

queries and its intuitive syntax.  

Annotated variants are also loaded as table rows. To facilitate individual samples comparison for observed 

variants, genotype information is stored for each sample as a compressed array in a single column for 

each variant row. This strategy enhances both query performance and scalability while still providing 

necessary access to individual sample genotype information. Additionally, data for each variant is 

complemented with calculated statistics and population metrics.[136] 

dbNSFP. Integrative tools that include both variant annotation and its phenotypic effect predictions have 

also been developed. dbNSFP collects all possible nonsynonymous SNVs in the human genome as they 

are found on the annotation of the Consensus Coding Sequence (CCDS) Project.[137] CCDS set is built 

by consensus of genomic datasets from diverse public resources. 

dbNSFP first version compiled over 75 million SNVs, their respective scoring scores from four prediction 

algorithms, SIFT[128], Polyphen2[129], LRT[138] and MutationTaster[139], and one conservation score 

from PhyloP [140]. 

Although CCDS was based on the human reference sequence built hg18 (GRCh36), the coordinates were 

converted to hg19 on the database building process. However, 561 SNVs were not successfully 

converted. Both coordinates are available on the database as well as both reference and alternative 

alleles, reference and alternative amino acid, gene name and ID, CCDS ID, reference codon, position on 

the codon, amino acid position on the protein and the referred algorithms scores and predictions.[141] 
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On the second version of dbNSFP, the database was rebuilt, the information was separated into two parts, 

one regarding variant annotation and the latter regarding gene annotation. CCDS annotation was replaced 

with hg19-based GENCODE 9 annotation[142] and two prediction scores were added, 

MutationAssessor[143] and FATHMM[144], as well as two conservation scores, GERP++[145] and 

SiPhy[146,147]. Allele frequencies were also added from the 1,000 Genome Project [2] and the Exome 

Sequencing Project[148]. The database then included over 89 million SNVs and their respective updated 

scores.[149] 

The third and current version also presented some major updates, the database backbone has been 

rebuilt using GENCODE 22 annotation which is based on the latest human reference sequence version 

GRCh38. It now contains over 82 million SNVs, along with it, there is also distributed a database called 

dbscSNV [150]. It, compiles all potential human SNVs within splicing consensus regions and their 

deleteriousness predictions, accounting over 15 million additional SNVs. 

This latest version adds various prediction scores, MetaSVM and MetaLR [151], CADD [152], VEST3 

[153], PROVEAN [154], fitCons [155], FATHMM-MKL [156] and DANN [157] and the conservation score 

phastCons [158]. Every algorithm version has been updated. Finally, allele frequencies from UK10K 

cohorts [4] and ExAC [66] were also added. [159] 

Various annotation tools have been developed relying on dbNSFP data. 

Vanno. As an example of a web-based application, Vanno[160] is a freely available tool that generates 

an integrated database from multiple annotation sources, those sources are regularly updated, hence a 

batch script was created to be executed monthly to keep up-to-date information available. 

The differentiating feature presented by this tool is the visual architecture based on Circos visualization 

tool [161] and interactive filters that update the results and regenerate the image in real time. 

The tool is capable of processing any variant calling file only requiring to the user to select the correct 

targeted gene panel and the respective variant calling package from which the variant calling file is 

generated. Those files are converted into a standard format subsequently stored into a SQLite database. 

Variant annotation consists of compiling information from several tools, molecular consequences are 

obtained from ANNOVAR and function predictions from multiple tools are extracted from dbNSFP [141]. 

Finally, information on gene ontology terms, biological pathway, protein domain, protein structure, and 

interaction networks are also annotated by consulting available databases. The output summarizes 

genetic variants rendered in charts, tables, and Circos plots. The major limiting factor of this feature on 

large datasets is the time consumption of generating high-resolution plots. [160] 
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VarAFT. VarAFT [162] is a system freely available to non-commercial usage that annotates variants 

based either on GRCh37 or GRCh38 reference sequences and filters variant files besides enabling to 

compare several individuals. 

It implements ANNOVAR as a basal annotation tool. As a useful feature, VarAFT provides a direct link to 

Integrative Genomics Viewers (IGV) visualization tool [163] to visualize any variations using a BAM file. 

Instead of displaying standardized tables, VarAFT allows the user to select which columns are to be 

displayed. Among available information, VarAFT includes gene annotation data, function prediction scores 

and allele frequency information from diverse sources. VarAFT additionally allows the user to create a 

local database to filter and analyse given variants. 

To examine data, VarAFT relies on a Java based interface with diverse filtering options and the possibility 

to customize analyses. 

Final output presents a summarized table containing all variants, for each variant is possible to access a 

panel that provides full detailed information displayed on an organized interface. [162] 

Highlander. Like VarAFT, Highlander [164] is an annotation tool that relies on a Java based interface. 

Yet, unlike VarAFT, Highlander is an open source software coupled to a local MySQL database which 

compiles available variant data and annotations and enables query-based filtering methods. Database 

information comes from various sources, among them, dbNSFP [141] provides functional predictions, 

prioritization scores and allele frequencies. Global statistics are then computed to enable variant 

discrimination through filtering queries. Complex queries are simplified by using shortcuts for certain 

standard criteria. 

The software facilitates analysis of filtered data by allowing the user to sort, mask and highlight information 

besides accessing useful tools to visualize the alignment or explore variants on specific genes among 

other functionalities. Variant details may be accessed by selecting any given variant. 

Highlander enables customized filtering functions that may be saved, edited and loaded at any moment. 

Conditional highlighting and implemented search tool are also meant to enhance result analyses. 

Finally, BAM and VCF files for current analysis may be downloaded and the table content might as well 

be exported as Excel or TSV files. [164] 

Finally, the amount of information required by these tools has motivated the development of alternative 

ways to store data. 

CellBase. With the same purpose of joining information from various sources into only one database, 

CellBase is a NoSQL-based repository for genomic information of more than 20 species, for humans, 

annotations are based on the GRCh37 reference sequence. 
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It compiles protein annotation from UniProt and its functions from SIFT and Polyphen, allele frequencies 

provided by the 1,000 Genome Project, Exome Sequencing Project, ExAC, GnomAD, UK10K and GoNL 

and conservation scores obtained with PhastCons, PhyloP and GERP++ besides clinical information. 

Sequence effect prediction is calculated on the fly and described by Sequence Ontology (SO) terms. 

Although it can be accessed by a Java application programming interface, CellBase has been designed 

to enable access by web services that can be queried by different programming languages like Python, 

R, Java and JavaScript or by user-developed methods. [73] 

Considering the size of the database, the integration of the various scores and the allele frequencies 

derived from the major population genetics endeavours, and mainly for being built accordingly to the 

actual human reference sequence, GRCh38, dbNSFP is ideal to stand as a comparative reference for our 

project. It is already used by different tools to obtain annotation data. Allows to directly analyse the 

phenotypic outcomes of overrepresented alleles in the regarded population, beneficing our study even 

more. As it has been mentioned before, predictive approaches may not be entirely accurate, said that, 

the inclusion of diverse pathogenicity prediction scores is helpful in obtaining reliable conclusions. 

2.4 Population analysis 

To be able to compare genetic data between samples or populations, information must be organized. 

Different approaches may be taken, a VCF file may be used as groundwork for frequency analyses. 

However, basing genetic analyses solely on VCF files could hamper the linkage to more in-depth 

information and functional scores, nonetheless, the main defect on this approach would be the crescent 

complexity of analysis scripts with a bigger number of files. Therefore, data compilation in a database 

improves scalability and information retrieval through queries. Regarding it relational nature, a SQL-based 

approach is a more natural choice to provide a local structural support to comparative studies. As it has 

been presented, both Vanno and Highlander, compile all information in this kind of structure, on the other 

hand, CellBase uses a NoSQL repository to fetch annotation data yet this repository and variant call 

information are stored independently. 

To store variant data in a SQL database, each variant must be stored on a table row, this because, as it 

has been presented, a variant call pipeline may detect millions of variants, SQL management systems 

compile a limited number of columns, for example, MySQL [165] and SQLite [166], two of the most used 

systems, have a table column count limit of 4,096 and 32,767 columns respectively. 
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The referred databases stores information row-by-row, the biggest issue in using these systems to query 

databases with, eventually, millions of rows is that each row must be scanned in totality, the more rows, 

the more is the time and resources consumed. For this kind of data, alternative systems stand as a 

ponderable choice. Column-store database management systems keep the same SQL syntax and the 

same methods found on row-based systems, the main difference consists of the way that information is 

accessed, instead of fetching the necessary information in each row, systems like MariaDB ColumnStore 

[167] and MonetDB [168] handle only the columns required to respond to a query, it is more suited for 

analytical workloads and particularly for datasets that compile diverse types of information which is the 

case of the addressed issue, as it may utilize genetic data, frequency values and diverse scores in the 

same analysis. 

Once data has been compiled, it is possible to compute different measures for population genetic 

analyses. 

Principal Component Analysis. PCAs have been widely used in populational studies. As before the 

advent of large-scale usage of SNP data, it is still used to summarize allele frequency data from diverse 

populations. It groups a set of observations by sets of values of linearly uncorrelated variables called 

principal components (PC). The first principal component of this set has the largest possible variance and 

the following components are increasingly more specific. A plot composed of the first 2 PCs is generally 

used to reproduce the geographic arrangement of sampled individuals. [169] 

PCAs may be used to characterize differences among populations and individuals regarding its ancestry. 

The proportion of the variance explained by the first PC may indicate the presence of population 

substructure regardless of the influence of migrations or isolation between populations. [170] 

Although PCA may be used for diverse types of analytical studies, there are tools specifically focused on 

a genetic application, LASER [171] is a program based on a PCA approach that estimates individual 

ancestry background by analysing its sequence reads. 
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3. METHODS  

3.1 Samples 

Samples of 71 Portuguese patients between the ages of 48 and 80 years old were sequenced previously 

to the present work by Genoinseq – Next Gen Sequencing unit at CNC - Centro de Neurociências e Biologia 

Celular da Universidade de Coimbra facilities, in the scope of the project DoIT (FCOMP-01-0202-FEDER-

013853). Individuals were diagnosed with diabetes type 2 and had no congenital diseases. Raw 

sequencing data was also previously processed and aligned to the reference genome sequence GRCh37, 

the resulting BAM files stored internally stood as the initial working material for the present dissertation.  

Of the 71 samples, “Exome 51” was excluded by parenthood with “Exome 41”. All analyses, therefore, 

were based on 70 unrelated individuals. 

3.2 Populations 

Besides the 70 Portuguese samples, 1000 Genomes Project (1kG) data was also included in the present 

work. Genotypic information for the populations was downloaded from the 1000 Genomes Project web 

page [172]. Overall, 2,504 1kG samples were considered for frequency comparisons to world population. 

For European-level comparisons, only data from European populations from the 1000 Genome Project 

was included in the analysis: 107 Iberian samples from Spain (IBS), 91 British samples from England 

and Scotland (GBR), 99 Finnish from Finland (FIN), 99 Central-European residents of Utah, USA (CEU) 

and 107 Tuscan samples from Tuscany, Italy (TSI). The number of samples totalizes 503 European 

individuals. Besides frequency values, the genotypes provided in the VCF files corresponding to those 

samples were also used. According to the Coriell Institute collection information [65], all IBS samples 

were collected throughout the Spanish territory, the individuals were identified as born in Spain and having 

its entire two previous generations born in the same area. 

GnomAD frequencies were also used for frequency comparisons. The used file, corresponded to the 

release 2.0.2 with gnomAD exomes, can be found on its website [68]. This dataset comprises 123,136 

exomes, 55,860 of them are non-Finnish European samples. Corresponding allele frequency values were 

the ones used for the comparisons at the European level. 
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3.3 Database construction 

 Insertion of Portuguese variants 

BAM files were used as input for TVC variant caller [114], this plugin was used to perform the variant 

calling procedure against the reference genome GRCh37 The results for each sequenced sample were 

stored in a different gVCF file, which store uninterrupted extensions of adjacent reference alleles as a 

block.  

gVCF blocks were then decomposed by gvcftools break-blocks function [117], the output VCF, hence 

store the information for each position separately. Finally, vcftools [115] merge function was used to 

compile in a single VCF file all Portuguese variants from the 70 sequenced exomes. 

Those variants were inserted into a MongoDB (version 2.4.14) [173] database by a script, developed to 

generate, for each variant, a database unit named document. 

The script granted that the database would only include variants for which at least one Portuguese sample 

had a heterozygous or an alternative homozygous genotype.  All unaltered positions were excluded of this 

work, otherwise, the database would be unmanageably large for the available resources. 

The script also separated multiallelic variants (Figure 6. A to B) – various alternative alleles for the same 

position – to create distinct database documents for each variant. Reference homozygous genotypes were 

included in each decomposed document, altered genotypes were only attributed to the correspondent 

variant. 

To normalize data from different sources, all variants were reduced to its minimal representation by this 

script through a function developed by the MacArthur Lab affiliate member, Eric Vallabh Minikel  [174]. 

This reduction consists on the removal of nucleotides in common for both reference and alternative alleles 

at its extremities, therefore, the added alleles would start at the first altered nucleotide and end at the 

last altered nucleotide – which could be the same, if the subjacent variant was a SNV (Figure 6, B to C 

last case). 

 

 

Figure 6. Schema depicting multiallelic variants decomposition – transition from A to B – and reduction to minimal representation – 
transition from B to C. POS stands for position, REF for reference allele and ALT for alternative allele. 

____________A____________  _________B_________  ________C________ 
POS REF  ALT    POS REF ALT  POS REF ALT 
1001 CTCC  CCC, C, CCCC  → 1001 CTCC CCC → 1001 CT C 

→ 1001 CTCC C → 1001 CTCC C 
→ 1001 CTCC CCCC → 1002 T C 
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After the insertion, MNVs were decomposed into multiple independent variants to avoid superposition 

cases with other variants (Figure 7). A script was developed to add each position and its corresponding 

alleles to the database along with all genotype information as a new document; the MNV document was 

then removed. 

 

 

Figure 7. Schema depicting MNV decomposition. POS stands for position, REF for reference allele, ALT for alternative allele and SAMP for 
the samples for which the variant was called. Variant in position 1002 in A is not subjected to MNV decomposition procedure, 
nonetheless, the process generates a document containing the same variant with information for different samples. 

 

Subsequently, this step generated some variants with the same general information as another variant 

detected for other samples. Genotypes called for different samples, were merged by a second script that 

joined all information of both documents and then removed the original ones. At this point, there were no 

repeated or superposed variants in our database. The merged file will be referenced as VCF of Portuguese 

variants (Figure 8, column Data Insertion). 

 

 1kG and gnomAD files processing 

To reduce the size of the 1kG data files, vcftools isec function was used to intersect original files and the 

VCF of Portuguese variants, creating VCF files containing the information for positions shared by both 

VCFs. Along vcf-isec command, the options -f (--force), -o (--one-file-only) and -n +2 (--nfiles [+-=] <int>) 

were provided. The first option forces the script to continue even if identifying a different number of 

columns in both files, otherwise, this condition would stop the process. For the present case, the number 

of columns corresponds to the number of samples. Since both populations include a different number of 

individuals, -f must be used.  

The option -o orders to only print the entries from the left-most file (writing order) to the output document. 

In every case the left-most file was the 1kG VCF. Without this option, 1kG and PT data would be printed 

as separated entries for each variant found in common in both files. 

 Finally, -n establishes the number of files that must share the position, the +2 modifier defines that it 

should be found on, at least, two files. 

_____________A_____________  _____________B_____________ 
POS REF  ALT SAMP  POS REF ALT SAMP 
1001 AG CT Ex1 → 1001 A C Ex1 
    → 1002 G T Ex1 
1002 G T Ex2, Ex3 → 1002 G T Ex2, Ex3 
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Figure 8. Schema depicting the construction of the database used for the present work. 

 

gnomAD file information was extracted into a different smaller file for each chromosome using vcftools 

querying options. Subsequently, those files have undergone the same process as 1kG files to filter the 

variants which were not found in the Portuguese population (Figure 8, column Document processing). 

Finally, database documents were updated with the information contained in the obtained files. 

 Variant annotation 

The abovementioned VCF containing all variants found in Portuguese samples and its genotypes was 

used as input for variant annotation with GEMINI [136]. This provided, for each variant, its respective 

gene name, an effect classification accordingly to Variant Effect Predictor (VEP), impact predictions by 

SIFT and Polyphen, clinical significance and disease name for the variants found in ClinVar and identified 

the exomic variants. 

The information was recorded in a CSV file along with the variant chromosome position, reference and 

alternative allele and was updated to the respective database document. 
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 Database structure 

The database includes a separated collection of documents for each chromosome. Each document 

represents a sole distinct variant and its respective information (Figure 9), as variant position (Pos), 

reference allele (Ref), alternative allele (Alt) and all available genotypes (gt). Additionally, the alternative 

allele frequency for the Portuguese samples (AF) was calculated and included in the document as an 

independent field. (Figure 9, in orange)  

The field PT_Counts (Figure 9, in blue) contains a dictionary that includes the values for the sum of 

reference (RefAll) and alternative alleles (AltAll), number of reference homozygous (Hom_Ref), 

heterozygous (Het) and alternative homozygous (Hom_Alt) samples and the total of samples (NSamps). 

Two distinct fields include information referent to 1kG (Figure 9, in purple) and gnomAD (Figure 9, in 

green), respectively. From its files, for each variant in common to the Portuguese population, the Allele 

Frequency (AF) values for each population presented were updated together with the general AF value to 

the respective document. Additionally, Allele Count (AC) and Allele Number (AN) values for both European 

populations – NFE for gnomAD and EUR for 1kG – were updated to its respective field.  

In relation to 1kG, alongside the provided information, the values for AC, AN and AF for each European 

subpopulation were calculated and updated to the database as a dictionary included in the 1kG field. 

Samples were associated to each subpopulation accordingly to the information provided by the sample 

list downloaded from the International Genome Sample Resource website[172]. 

For gnomAD, the Filter flag provided in its files for each variant is also included in its database field. 

A field named Annotation consists of a dictionary of additional information for the variant. HWE p-value 

for the Portuguese samples was calculated and compared to a threshold of 0.05, the sub-field HWE_PT 

presents a Boolean flag that indicates whether the value is superior or inferior to the threshold, which 

corresponds, respectively to variants found at equilibrium (value: 1) or not (0). 

Finally, information obtained from the annotation procedure was added to the Annotation field, a Boolean 

flag to distinguish exonic (1) and non-exonic variants (0), Gene name, SIFT and Polyphen predictions, a 

VEP field containing a dictionary that presents its impact and severity classification and a ClinVar 

dictionary field that contain both significance and the name of the disease associated to the variant. 
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Figure 9. Representative schema of all the information that may be contained in a document. Field names are presented in italic. 
In gnom field: AFR – African/African American; AMR – Admixed American; ASJ – Ashkenazi Jewish; EAS – East Asian; FIN – Finnish; NFE 
– Non-Finnish Europeans; SAS – South Asian. In KG field: AFR – African; AMR – American; EAS – East Asian; EUR – European; SAS – South 
Asian. In EUR sub-field: FIN – Finnish; GBR – British; CEU – Central Europeans from Utah; TSI – Tuscans; IBS – Iberians. 

 

The database does not present empty fields, if there is no information for a field, it is not generated. The 

non-existence of a field or a sub-field does not affect other information on the document.  

Documents were indexed by position in ascending order through Mongo index function. Index enabled 

faster searches and information updates. 
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3.4 Population comparison 

 Allele Frequency scatterplots 

From the created database, the allele frequencies values of each population were obtained for each SNV 

in HWE (HWE_PT: 1) that presents 60 or more Portuguese genotypes (NSamps >= 60). A distinct CSV 

document was generated for 1kG and gnomAD containing the AF values of its correspondent populations, 

in the case of 1kG, the allele frequencies of the European subpopulations were also included separetely. 

Each document was read in R environment and the ggplot package was used to generate scatterplots of 

AF values to compare Portuguese information to each population contained in each file. The graphics 

generated for each population in one or another project were presented in World Maps that linked a 

population to its location, ggmap package provided the map template and enabled to pinpoint each image 

to its respective location. The same approach has been applied for 1kG European subpopulations with a 

Europe map. 

 Principal Component Analysis 

Another CSV file was generated from the presented database to contain all available genotypes for the 

503 European individuals from 1kG and the 70 Portuguese samples for each variant that comply with a 

set of conditions. These conditions postulated that the variants might be autosomal SNVs, present HWE 

conditions in the Portuguese population, 60 or more Portuguese samples, an allele frequency above 0.1% 

for the European individuals and relatively to the latter, at least 453 reported genotypes (maximum of 50 

missing values). 

An Adegenet [175] genlight object was generated in R environment, providing the genotypes for each 

sample of the CSV file, a unique variant ID, and both chromosome and position of the variant. A population 

label was added to link each sample name to either ‘PT’ or its respective KG sub-population groups. 

Finally, an adegenet glPCA object was generated by performing a Principal Components Analysis. It 

contained each Principal Component Eigenvalue and a matrix of scores containing a list of values by 

individual (rows) for each Principal Component axis (columns). 

PCA scores were then converted into graphical representations reflecting the distribution of individual 

values for the first 4 Principal Components. The plots were generated using ggplot2 package [176]. The 

package scatterplot3d [177] has been used to combine the distribution of the first three Principal 

Components in a single plot. 
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 Fisher’s exact test 

The statistical significance of the differences between allele frequency values found for Portuguese and 

European populations of 1kG were measured with Fisher’s exact test. 

For that, alternative allele and total allele counts for each populational group compared were obtained 

from the constructed database. 

Fisher’s exact test of independence is preferentially applied to smaller sample sizes, yet it may be used 

to analyse contingency tables for any sample. Instead of relying on approximation approaches as other 

statistical tests like the Chi-squared test, Fisher’s method calculates the exact deviation from a null 

hypothesis (same allele frequency in both populations). 

In cases where at least one cell of the contingency table presents a value below 5, it is recommended to 

use an exact approach as Fisher’s test. As it is, its choice over other statistical tests relies on the low 

allele count values, which were found on contingency tables in respect to many variants. 

To ascertain the significance of the independence between the populations analysed, p-values were 

corrected for False Discovery Rate (FDR). 
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4. RESULTS AND DISCUSSION 

4.1 Genomic position 

The 70 sequenced samples contained 57,142,483 genomic positions. A variant was found in 272,207 

of them (0.48%), 49.5% of these positions corresponded to exonic regions (Table 1).  

Table 1. General characterization of the positions covered by the constructed database for the Portuguese population, the amount of exomic 
positions in each subset presented is calculated in relation to the total number of positions covered. 

 Total Exomic 

Positions 
272,207 

(100%) 
49.5% 

Covered by all samples 49.5% 27.7% 

One alternative allele (biallelic) 99.0% 49.1% 

More than one alternative allele (multiallelic) 1.0% 0.4% 

 

Less than half of the positions are covered in all the sequenced samples (Table 1). This finding raised a 

concern for future analysis as sample size influences AF values, that would be the base for several 

comparisons. The position coverage distribution (Figure 10) depicts a great difference between the 

amount of positions covered by 70 and by 60 or more individuals, suggesting a substantial lack of 

information for 1 to 10 samples. 

 

Figure 10. Count of positions by number of samples where are reported, in percentage. Number of samples were grouped in intervals of 
10. Percentages (%) were calculated in relation to the total number of positions covered.  
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This result was confirmed by the coverage analysis for each sample. It was noticeable that there were 10 

samples (1-8,166 and 168, Table 2) that presented considerably lower values than the remaining. Those 

samples had information for less than 90% of the positions, four of them for less than 80%, while the 

coverage average stood at 94.3%. In opposition, the 10 samples with higher values for this analysis 

covered more than 97.5% of the positions and 53 samples covered, at least, 95%. 

 

Table 2. Position coverage by sample. The number of positions covered (Cov) for each exome (Ex) and the percentage (%) that it represents 
among the total number of positions where an identified variant is presented. The 10 samples with lowest coverages are presented in red, 
the 10 samples with highest coverages are presented in green. 

Ex Cov % Ex Cov % Ex Cov % Ex Cov % 

1 242,355 89.03 19 260,130 95.56 37 262,265 96.35 130 256,083 94.08 

2 241,827 88.84 20 261,175 95.95 38 261,889 96.21 132 256,319 94.16 

3 225,778 82.94 21 262,910 96.58 39 261,523 96.08 134 266,737 97.99 

4 211,528 77.71 22 263,081 96.65 40 263,104 96.66 135 265,828 97.66 

5 243,766 89.55 23 262,831 96.56 41 261,646 96.12 136 266,398 97.87 

6 236,178 86.76 24 260,246 95.61 42 262,760 96.53 138 265,757 97.63 

7 234,847 86.28 25 262,762 96.53 43 262,601 96.47 140 266,630 97.95 

8 215,166 79.04 26 260,484 95.69 44 261,521 96.07 142 265,979 97.71 

9 262,429 96.41 27 259,228 95.23 45 261,604 96.10 149 266,881 98.04 

10 262,889 96.58 28 262,709 96.51 46 260,800 95.81 151 264,158 97.04 

11 260,658 95.76 29 262,415 96.40 47 262,984 96.61 155 266,131 97.77 

12 263,161 96.68 30 258,201 94.85 48 262,266 96.35 158 266,316 97.84 

13 261,955 96.23 31 261,785 96.17 49 261,372 96.02 161 264,948 97.33 

14 261,240 95.97 32 263,642 96.85 50 259,613 95.37 164 263,839 96.93 

15 260,673 95.76 33 265,819 97.65 114 252,398 92.72 166 196,958 72.36 

16 263,121 96.66 34 264,682 97.24 116 252,316 92.69 168 196,363 72.14 

17 262,191 96.32 35 261,214 95.96 123 252,847 92.89    

18 260,836 95.82 36 263,364 96.75 126 255,963 94.03    

 

For populational analyses, it was convenient to include positions that comprise information for as many 

samples as possible while not reducing the number of variants involved excessively. As it is, considering 

the last two results presented – 91.1% of the positions including 60 or more samples (Figure 10), and 

the 60 samples that present a coverage above 90% (Table 2) – the threshold of 60 exomes was recurrently 

used for diverse comparisons. This value does not represent a defined group of samples, each 

combination of 60 or more called genotypes for the same variant met this condition.  
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Finally, among all positions, 1% of them were multiallelic (Table 1), that is, they represent loci for which 

more than two alleles were found. This value is lower than previously reported, nonetheless, the cohort 

size presents a large influence on this proportion. For this case, this low percentage of multiallelic 

positions is concordant with our small number of samples. [178] 

Regardless of that, the existence of multiple variants in common positions took the focus of the analysis 

from the positions to the variants. 

4.2 Variants Characterization 

 Singletons 

Considering that multiallelic positions contain multiple variants. There were 275,159 variants registered 

in the database, these variants have constituted the basis for all presented analysis – a detailed schema 

of the variants considered is presented in Attachment I. 90.3% (248,547) of the variants database 

documents included 60 or more samples. Subsequent comparisons were made among this subset.  

39.9% of those variants (99,142) (Table 3) presented a sole alteration among all samples reported 

(singleton variants), that is, for these variants, all but one sample were homozygous for the reference 

allele. That value presented itself among the results obtained in other population-level projects, 31.6% for 

a Spanish initiative [1], 28.4% among Dutch [5] and 42.8% in a large-scale British study. [4]. 

Exomic regions comprised 50.1% of the variants (124,541). This group includes 53,860 singletons, which 

stand for 21.7% of the total. Overall, 94.7% of the singletons presented were heterozygous and 51.7% of 

the variants were exomic singletons. 

Table 3. Characterization of singleton variants. Singleton variants are those for which a single sample presents an alteration. In each table 
section, its values are calculated in relation to a total indicated as 100% of the variants accounted.  

 Total Exomic 

Variants 248,547 (100%) 50.1% 

Percentage of singletons 39.9% 21.7% 

Singletons 99,142 (100%) 54.3% 

 Heterozygous 94.7% 51.7% 

 Homozygous for alternative 5.3% 2.6% 
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For the present subset, all heterozygous singletons presented an allele frequency value below the 

threshold of 1% – the convention to define rare variants – henceforward, those variants were referred as 

low-frequency variants and presented AF values between 0.71% (1 alternative allele among 140 alleles) 

for variants that included information for all 70 samples and 0.83% (1/120) for variants that included 

information for 60 samples. 

All homozygous singletons present 0 heterozygous genotypes. None of them was found at Hardy-Weinberg 

equilibrium, on the other hand, all heterozygous singletons met HWE conditions.  

 Hardy-Weinberg Equilibrium 

Overall, 90.2% of the subset variants (224,155 variants) were at Hardy-Weinberg Equilibrium (HWE). HWE 

has been used as a measure to ascertain whether the genotypes detected for each variant reflected a 

conceivable allele distribution for a population. [7,8] 

The alternative homozygous singletons may be taken as a representative example to endorse this 

approach. Those variants represented 36.5% of the non-HWE variants, they portray unusual cases once 

if a whole population does not include heterozygous individuals, homozygous genotypes for different 

alleles cannot be inherited. Said that, besides technology errors, the most viable explanation for these 

occurrences would be that the variant was more prevalent in some subsets of a population than in others. 

This would increase the probability of selecting, during the sampling process, an individual with that 

specific alteration, for that variant, the cohort would not be representative. 

Two examples may be presented in accordance with this hypothesis. One of them relied on the 9.6% 

(855) of all non-HWE variants found in chromosome X. This value corresponded to 17.2% of the variants 

of that chromosome while the average for that proportion was 3.8% for each chromosome. That 

discrepancy may be explained by the fact that all males are hemizygous, hence, present an abnormal 

allele distribution in the population. These numbers draw attention to possible inaccuracies of some 

analyses when including variants with unbalanced amounts of alleles. 

The presented hypothesis was also endorsed when regarding all SNVs, which are less prone than 

insertions or deletions to be wrongly called by Ion Torrent technology [88], thus enabling more reliable 

conclusions about the quality filters.  

There were found 1,787 non-HWE autosomal SNVs that did not report any heterozygous occurrences, 

among them, 75.4% presented a sole homozygous genotype for the less abundant allele, that is, despite 

not representing a balanced population, it corroborated the assumption that homozygous genotypes were 

scarce on the actual population. 
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It is worthy of mention that, overall, 45.6% of those 1,787 variants were found neither on 1kG nor gnomAD 

exomes and may be eventual population-specific variants. Additionally, 10.7% presented an AF below 1% 

in both European populations of those projects and 20.5% presented those low values for one source and 

were not present in the other one. Those two scenarios included 31.2% of the variants in the analysis. 

Nonetheless, these variants represent only 3.6% of the SNVs excluded. As most of the variants that did 

not pass the filters might be errors, excluding them in the populational analysis would not cause a 

substantial loss of effective information an might prevent result bias by erroneous values. 

Henceforward, the minimal value of 60 genotypes and HWE conditions will be abbreviated as “quality 

filters”, the term “filtered variants” will be used for the presented 224,155 variants that meet both 

conditions.  

 SNV, Insertions and deletions 

The most notable effect of this quality filters was observed in the exclusion of insertions and deletions 

(Indels). 

Although most of the variants were expected to be SNVs [8], the differences in relation to the number of 

indels were even more noticeable after applying the filters (Table 4). 

 

Table 4. Number of variants by type of alteration. The presented percentages are calculated, for each row, in relation to the presented 
number of variants in the second column. 

Variant Type Total Filtered Filtered Exomic 

SNV 253,336 215,511 (85.1%) 110,635 (43.7%) 

Indel 21,823 8,644 (39.6%) 2,815 (12.9%) 

 

The presented values denoted a tendency of the filters to exclude indels. This is concordant with the error 

propensity of the used technology in relation to that type of variants [179]. 

Only 39.6% of the indels passed the quality filters (Table 4), corresponding to 8,644 variants, which 

accounted for 3.9% of all the filtered variants. This value was lower than the one presented for large-scale 

exomic studies as ExAC [67], however, this proportion was even lower when taking into account only 

filtered variants in exomic regions, for which only 2.5% of the variants were indels. Besides constituting 

an additional indication of a higher error rate, this finding may be explained by the higher percentages of 

Loss-of-Function (LoF) Indels (Table 5). As these variants comprise more prejudicial effects, they tend to 

be rarer in the regions that code for proteins [134]. 
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Table 5. Total count of filtered variants by impact according to GEMINI classification from Variant Effect Predictor (VEP). Impacts were 
grouped by its severity as classified by GEMINI (LOW, MED and HIGH). SNV and Indel counts were discriminated for each impact, the 
percentage of SNVs was calculated for the sum of variants by severity classification and depicts the proportion between SNVs and Indels. A 
more detailed table is available in Attachment II. 

Impact Total SNVs Indels Severity %SNVs 

Synonymous variants 42,517 42,517 0 

LOW 

 

Intron variants 99,273 93,960 5,313 96.2% 

Other Low-impact variants 15,156 14,449 707  

Missense variants 54,949 54,949 0 
MED 98.7% 

Other Medium-impact variants 8,811 7,972 839 

Frameshift Variants 1,707 0 1,707 

HIGH 48.2% 
Stop loss variants 92 91 1 

Stop gain variants 835 821 14 

Other High-impact variants 815 752 63 

LoF variants 3,335 1,567 1,768  47.0% 

 

The rareness of LoF variants was corroborated by the number of individual-specific alterations among 

them, 68.3% of the cases were found in a single occurrence among all reported genotypes. 

4.3 Population Representativity 

67.4% of the filtered variants (151,053) found in the Portuguese samples were also reported among the 

gnomAD exomes files. 73.9% (165,589) were reported by the 1kG project. 

gnomAD contains information for a considerably larger number of samples than 1kG [64,68], however, 

the number of variants found in common with our data was lower. This might be explained by the usage 

of its exomic files. Those files include information for a considerably larger number of individuals than its 

genomic files (123,136 against 15,496), yet, less positions were screened for variants as exome 

sequencing spares a lesser extent than genome sequencing. [180] 

By focusing the comparison in exomic variants, the percentages of variants not reported by each project 

were more concordant to the expected scenario. gnomAD presented both a lower number and percentage 

of unreported variants among the variants contained in exomic regions (21.7% for gnomAD against 37.3% 

against 1kG; Table 6). 

The term “unknown” (Table 6) will be used when discussing variants that are not reported among the 

information extracted from both projects, assessments of a single project will be declared 
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Table 6. Number of variants reported by each genomic project. Percentages of unknown variants were calculated in comparison to the total 
number of variants for each column and project. Percentages of exomic variants were calculated against the values of the column “Total”. 

Variants Total Exomic % Exomic 

gnomAD 151,053 93,247 61.7% 

 Unknown 73,102 20,203 27.6% 

% Unknown 32.6% 17.8%  

1kG 165,589 82,853 50.0% 

 Unknown 58,566 30,867 52.7% 

% Unknown 26.1% 27.1%  

4.4 Unknown Variants 

16.4% (36,732) of the filtered variants were unknown. This value was concordant to previous studies 

results, considering the number of individuals analysed (Table 7). The obtained value is higher than the 

results reported for 12 individuals of the Yakut population from North East Asia (7.6%) [69] and lower 

than the results presented for 128 Ashkenazi Jews (18.3%) [70], 267 Spanish (approximately 33%) [1], 

for 250 Dutch families (14.6%) [5] and 3781 British individuals (approximately 57%) [4]. A consistent 

relationship between the number of individuals included in each cohort and the percentage of novel 

variants detected among them was evidenced. 

 

Table 7. Comparison of new variants reported by 5 populational endeavours against the results of the present work (highlighted in grey). 
The name for Ashkenazi Jews in the fourth column has been abbreviated to A. Jews. GoNL and UK10K represent, respectively, a Dutch and 
a British national-level projects. Populations are ordered by the number of samples involved in the respective study. 

Population Yakuts PT A. Jews Spanish GoNL UK10K 

Number of 

individuals 
12 70 128 267 250 families 3,781 

New variants 7.6% 16.4% 18.3% 33% (approx.) 38% (approx) 57% (approx.) 

 

Among the reported unknown variants, 45.3% (16,624) are exomic, 9.8% (3,616) are indels and 75.0% 

(27,547) present an allele frequency below 1% (Table 8), which meets the expectation that most of them 

would be found at low frequencies. This value is much lower than the value reported by the UK10K project 

(99.9%) [4] and the Spanish population (85.6%) [1], on the other hand, it is concordant with the number 

of singletons among novel variants in GoNL (75.6%) [5] 
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Table 8. Distribution of unknown variants by allele frequency in Portuguese population. 
A) Portuguese AF values grouped in intervals of 10%, the percentages presented correspond to the number of variants among all unknown 
variants that report 60 or more genotypes and present HWE conditions. 

AF(%) 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 

Count 35,785 725 88 44 27 19 9 7 14 14 

% 97.42 1.97 0.24 0.12 0.07 0.05 0.02 0.02 0.04 0.04 

B) Portuguese AF values below 10% grouped in intervals of 1%. The percentages presented correspond to the number of variants in relation 
to the total number of unknown variants. 

AF(%) 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 

Count 27,547 3,672 1,996 846 445 459 254 270 170 126 

% 74.99 10.00 5.43 2.30 1.21 1.25 0.69 0.74 0.46 0.34 

 

By comparing unknown low-frequency variants with the remaining variants, it was revealed that less 

severe classifications become more prevalent among the variants that present higher frequency values 

(Table 9). This might be explained by the lower selective pressure against those variants as they do not 

cause a phenotypic difference between individuals. [7,8] 

A hypothesis to explain why those variants were not found among other populations consists in the 

appearance of that specific alteration among the Portuguese population throughout its history and the 

prevalence of the alteration in the succedent generations due to its low selective pressure. Said so, these 

variants may be eventual populational markers. 

 

Table 9. Classification of unknown filtered variants accordingly to VEP classification for variant impact and severity (Sev.). Variants are divided 
into three groups, low-frequency variants, with an AF below 1%, variants with a frequency between 1% and 10% and variants with a frequency 
above 10%. This distinction shall reflect how variant impacts influences the probability to find more frequent alterations. The values in “%” 
columns are calculated in relation to the total number of variants found in each frequency interval. 

Sev. Impact AF < 1 % AF 1-10 % AF >= 10 % 

LOW 

Intron Variants 13,278 48.20 4,397 53.37 549 57.97 

Synonymous variant 2,736 9.93 737 8.95 84 8.87 

Other low sev. variants 2,074 7.53 644 7.81 76 8.03 

MED 
Missense variant 7,156 25.98 1,852 22.48 171 18.06 

Other medium sev. variants 928 3.37 274 3.33 22 2.32 

HIGH 
Frameshift variant 904 3.28 242 2.94 32 3.38 

Other high sev. variants 471 1.71 92 1.11 13 1.38 

 Loss-of-Function variants 1,362 4.94 330 4.01 42 4.44 
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On the other hand, and accordingly to the influence of the effect of the variant in its prevalence, variants 

classified by VEP as presenting a medium severity were progressively scarcer as AF ranges augmented. 

In the case of missense variants, SIFT [128] and Polyphen [129] provided predictions for its effects, 

however, there were discordances between both predictors (Table 10, yellow cells), 24.1% presented a 

damaging/deleterious effect in one of them and a benign/tolerated in the other. As it is, these results did 

not present general conclusive findings, yet, the percentage of Benign/Tolerated classifications (42.1%) 

suggest that a considerable amount of those variants may also be subject to low selective pressures and 

may constitute eventual populational markers.  

 

Table 10. SIFT and Polyphen effect predictions of missense variants with Allele frequencies above 1%. Each document presents both 
predictions, the cell values represent the number of variants that share each combination of predictions. Benign/Tolerated predictions by 
both predictors are highlighted at green, damaging/deleterious at red and discordances at yellow. 

  Polyphen 

  Benign Possibly_damaging Probably_damaging Unknown 

SI
FT

 

Tolerated 33.1% (670) 5.8% (117) 3.0% (60) 0.1% (2) 

Tolerated 

low_confidence 
9.0% (183) 0.9% (18) 0.4% (8) 0.3% (6) 

Deleterious 

low_confidence  
4.2% (85) 1.7% (35) 2.2% (45) 0.1% (3) 

Deleterious 9.8% (198) 8.4% (169) 18.5% (374) 0 

None 0.9% (18) 0.4% (9) 0.6% (13) 0.5% (10) 

 

 

Finally, regarding the variants classified by VEP as presenting a high severity, the higher percentage of 

frameshifts at larger frequency values would not be expected [181,182], this value might have been 

influenced by the reported error propensity associated to indel detection. [179] As it is, eventual analyses 

and conclusions regarding populational comparisons of this type of variants should be made cautiously. 

In a clinical point of view, it is worthy of notice that 7 of the 53 filtered unknown variants reported in 

ClinVar were included in the gene ADAMTSL2 on chromosome 9, that variants are associated by ClinVar 

to Geleophysic dysplasia. There were not known, by the time of writing, any populational comparisons 

concerning variants on this specific gene. 
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Although, only one of them constitutes a missense variant, this specific alteration will not cause a 

phenotypical manifestation by itself as the condition is inherited accordingly to an autosomal recessive 

pattern [183]. The alteration was found in a single heterozygous sample. 

4.5 Low Frequency Variants 

Among the 224,155 filtered variants, 41.9% (93,902) display a Portuguese AF below 1%. This value is 

considerably lower than the proportions of approximately 80% obtained for 3,781 genomes and 99% for 

60,706 exomes respectively reported by the projects UK10K [4] and ExAC [67]. 

The value was also lower than the percentage of Minor Allele Frequency values below 0.5% presented by 

1kG, 72.7% [64] and GoNL, 50% [5]. Allele frequencies for the present work do not represent MAFs, 

nonetheless, a great discrepancy of the values presented may still be noticed. 

This confirms that the lower number of samples included in a cohort limits the capability to assess the 

rareness of its variants. As it was not possible to assess the rareness of the detected variants further the 

first decimal point, the following comparisons will not consider how rare is any variant in either gnomAD 

or 1kG. All values below the convention 1% [11,15] will be included in a single comparison group. 

Low frequency variants were distributed in 29.3% (27,547) unknown variants, 41.1% (38,589) variants 

reported in both 1kG and gnomAD, 9.9% variants (9,339) only reported by 1kG and 19.6% (18,428) 

exclusively reported by gnomAD (Table 11).  

  

Table 11. Distribution of the European population AF values reported by gnomAD and 1kG for the variants that present a Portuguese AF 
value below 1%. Only filtered variants were included in the comparison. As both projects include other population besides the European, the 
latter may present null frequencies for some variants, these variants are distinguished from the remaining variants. The red cells in the first 
row represent the variants that are absent from 1kG only, red cells in the first column represent the variants that are not found among 
gnomAD exomes. Green cells correspond to all variants reported by both projects, the bottom-right cells contain the sum of those values. 
White cells correspond to the sum of values for its respective row/column, percentages were calculated in relation to the number of variants 
included in the present comparison reported by the respective project.  

  gnomAD  

  Not Found 0% <1% >=1% Total 

1
kG

 

Not found 27,547 4,249 14,018 161 18,428 

0% 2,657 525 10,677 5 13,864 (28.9%) 

<1% 5,068 56 20,442 1,176 26,742 (55.8%) 

>=1% 1,614 2 982 4,724 7,322 (15.3%) 

 Total 9,339 4,832 (8.5%) 46,119 (80.9%) 6,066 (10.6%) 38,589 
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Overall, 86.9% (57,692) of the known Portuguese low-frequency variants were concordantly reported with 

a low, or null, European allele frequency in the databases where they were found. 

Among the 38,589 variants reported by both databases, 5.6% (2,165) presented an AF above 1% in only 

one of them, 2.5% (984) in the 1kG European population and 3.1% (1,181) in gnomAD Non-Finnish 

Europeans. Nonetheless, 94.5% (930) and 97.4% (1150) respectively of those cases present an AF value 

below 2% (not shown in Table 11). 

The obtained values suggested that, although the presented data could not be analysed for its rareness, 

a differentiation between common and low-frequency variants might be established. Therefore, the 

analysis of the 12.2% of the variants present in both databases (4724) with an AF value above 1% 

assumed a greater interest. 

Most of those variants – 79.0% – displayed an AF value below 3% in both compared populations (Figure 

11), besides it, there was an observable diminution of the number of variants accounted as the AF 

intervals were considered for higher values. At this point, it was plausible to believe that some of these 

differences were effectively caused by a limited sampling [184] that increased the probability to produce 

deviations to the real populational scenario. This finding constitutes an indication that a larger number of 

samples might lead to a general approximation to the values found in the high-scale projects compared. 

This would provide a stronger certainty to indicate effective differences. Still, some abnormally discrepant 

values may be observed, 2% of the variants present an AF value above 10% for, at least, one of the 

European populations. 5.6% present values above 5% (Figure 11). 

 

 

Figure 11. Distribution of variants AF values in both 1kG and gnomAD European populations. All variants used to construct this graphic 
present a Portuguese allele frequency below 1%. Left graphic represents the distribution of values by intervals of 10 percentual units. The 
second graph displays the number of variants with an AF value above 1% and below 10% for both projects grouped in intervals of 1%. 
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There could be expected more discrepancies between 1kG and gnomAD AF values since its respective 

European populations were used for the comparison. In the case of gnomAD, the Finnish population (FIN) 

constitutes an independent group in relation to Non-Finnish Europeans (NFE) [68], by its turn, 1kG include 

99 Finnish individuals as a European subpopulation accounting approximately one fifth (19.7%) of the 

EUR population [65]. This could influence the comparison of AF values between both groups, 

nevertheless, it does not seem to cause atypical discrepancies. This might be intended as another benefit 

of larger sample sizes, while a subset may present a different frequency of a variable in relation to a larger 

group, yet, after combining both groups, that difference would only be noticeable if the difference was 

pronouncedly discrepant. 

Table 12. Impact and severity (Sev.) classification provided by VEP for the variants that present frequency values below 1% for the Portuguese 
population and above 1% for both 1kG and gnomAD European populations. The four last columns present, respectively, a distribution for 
the entire set and for the subsets of variants that present AF values above 5, 10 and 25% for both European populations in comparison. 

Sev. Impact >1% > 5% > 10% > 25% 

LOW 

Intron Variants 1,593 100 39 13 

Synonymous variant 1,122 11 2 0 

Upstream gene variant 11 0 0 0 

Downstream gene variant 6 2 2 2 

Non-coding exon variant 20 3 3 3 

3-prime UTR variant 136 6 3 0 

5-prime UTR variant 98 7 4 1 

Stop retained variant 2 0 0 0 

MED 

Inframe deletion 17 4 3 0 

Inframe insertion 15 5 4 0 

Missense variant 1,432 22 5 2 

Splice region variant 221 8 4 1 

HIGH 

Frameshift variant 20 5 1 0 

Splice donor variant 8 1 1 0 

Splice acceptor variant 5 0 0 0 

Start loss 2 0 0 0 

Stop loss 2 0 0 0 

Stop gain 14 1 0 0 
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4.6 Population Comparison 

AF values of Portuguese samples and other populations have been compared by scatterplots. 

These graphics can be used as an indication of the genetic distance between two populations by the 

distribution of its points, narrower bulks of dots indicate a low variation of AF values in both populations. 

Few genetic differences in relation to European populations in gnomAD and 1kG were revealed (Figure 

12). Interestingly, the plot of general AF values in respect to gnomAD is similar to the one obtained to its 

European population, this may be explained by the high percentage of NFE samples in relation to the 

total number of samples (45.4%) [185]. European samples in 1kG correspond to 20.1% of the total [172]. 

 

      

      

Figure 12. Comparison of Portuguese allele frequency values to the allele frequencies obtained from 1kG and gnomAD. Left-to-right and top-
to-bottom, the presented scatterplots correspond, respectively to comparisons against gnomAD general population, gnomAD Non-Finnish 
European population, 1kG general population and 1kG European populations. Axis display AF values in decimal scale representation. 
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The same analysis have been performed for all populations in both projects (Figures 13 and 14), overall, 

the evidenced genetic differences support actual evolutionary models of world peopling [33].  

 

 

Figure 13. Allele Frequency scatterplots comparing Portuguese population against each gnomAD population. Plots are represented in its 
correspondent regions. The uppermost plot corresponds to Finnish (FIN) population, the bottommost to African/African Americans (AFR) 
and the other five plots represent, respectively, from left to right, Admixed Americans (AMR), Non-Finnish Europeans (NFE), Ashkenazi Jewish 
(ASJ), South Asians (SAS) and East Asians (EAS). The bottom-left scatterplot corresponds to general gnomAD population. 

 

 

Figure 14. Allele Frequency scatterplots comparing Portuguese population against each 1kG population. Plots are represented in its 
correspondent regions. Plots represent, respectively, from left to right, Americans (AMR), Europeans (EUR), Africans (AFR), South Asians 
(SAS) and East Asians (EAS). The bottom-left scatterplot corresponds to general 1kG population. 
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As it was expected, European populations in both gnomAD (Figure 13) and 1kG (Figure 14), present the 

narrowest distribution of frequencies against Portuguese individuals. It could be suggested that Finnish 

are genetically more distant to Portuguese individuals in relation to the Non-Finnish Europeans (Figure 

13), it is concordant with the suggestions that Northern Europeans and the rest of Europe descend from 

distinct ancient populations [46]. 

Both figures presented a great genetic distance to African population. The Out-of-Africa model [33,34] 

suggests that a single East African population migrated into the Middle East, constituting a founder 

population that represented only part of the African genetic variability. gnomAD map suggests a proximity 

to the Ashkenazi Jewish population, a representative group of that region from where migrated the first 

inhabitants of Southern Europe [32,46,54]. 

Additionally, both Asian populations present a proportion between genetic and geographical distance in 

both figures. Accordingly to suggested expansion models, Indigenous Americans would descend from 

ancient Siberians [33], however, colonization of the Americas by European civilizations caused a genetic 

approximation to European populations. Indications of a noticeable European ancestry in AMR 1kG 

populations have been reported [186]. This relation is reflected in both figures. 

Once our database also includes AF values for the 1kG European subpopulations, the same procedure 

has been applied to establish European-level comparisons (Figure 15).  

 

 

Figure 15. Allele Frequency scatterplots comparing Portuguese population against each European 1kG subpopulation. Plots are located 
above the regions that they represent. The uppermost plot corresponds to Finnish (FIN) population, the other four plots represent, 
respectively, from left to right and top to bottom, British from Great Britain (GBR), Central European from Utah (CEU), Iberians from Spain 
(IBS) and Tuscans from Italy (TSI). The bottom-right scatterplot correspond to the complete European population from 1kG. 
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A distinguishing genetic distance to Finnish individuals and a low genetic divergence among four of the 

five European 1kG subpopulations and our Portuguese samples were presented (Figure 15). Plots 

similarity suggested a genetic profile proximity of PT to either CEU, GBR, IBS and TSI populations. 

Nonetheless, specific differences may constitute a differentiation factor to some or all populations, as it 

is, the genetic profile of population individuals may be compared to denote population-related 

discrepancies. 

4.7 Principal Component Analysis 

A Principal Component analysis has been performed with Portuguese and European 1kG genotypes, 

subpopulations of the latter were discriminated. For this procedure, all the genotypes for the variants in 

HWE for the Portuguese population which are also reported by 1kG, presented an AF value for the 

European population above 0.1% and its document include, at least, 453 European – the total number 

of EUR individuals is 503 – and 60 PT genotypes were included. As in the case of the threshold of 60 

Portuguese genotypes, the last condition has been stipulated to include an error margin for the number 

of genotypes detected. 

 

A.    B.  

Figure 16. A) Eigenvalues by principal components. B) The 4 first scores are discriminated. 

 

As it may be observed in the first obtained PCA (Figure 17), PC1 closely grouped Portuguese population 

with IBS and TSI populations. By its time, PC2 presented a slight differentiation in relation to IBS. 

PC3 evidenced a detachment in opposing directions of Portuguese and Tuscan individuals from the 

remaining 1kG European populations (Figure 18). PC4 did not suggest any inter-populational difference 

as it clustered all populations together. By combining the three first components, a three-dimension 

PC EigenValue 

1 50.22 

2 23.13 

3 19.90 

4 19.23 
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general view was created that suggested that the Portuguese individuals are most related to IBS 

population. (Figure 18.B) 

 

Figure 17. Scatterplot of the first two components. PC1 distinguish individuals horizontally, PC2 vertically. 

 

A.  B.  

Figure 18. A) Scatterplot of the components 3 and 4. PC3 distinguish individuals horizontally, PC4 vertically. B) 3D scatterplot of the first 
three components, PC1 scores determines individuals position over the x-axis, PC2 on the y-axis and PC3 on the z-axis. 

 

As the previous scatterplots revealed, Finnish population is the most distinct group among 1kG European 

subpopulations. The distance to the closest Non-Finnish groups that may be observed in Figure 18 

suggest that its populationally characteristic variations are the most influential differences in PC1. This 

finding would be concordant to hypothesis that postulate the recolonization of Europe after the Last Glacial 

Maximum from southwestern refugia [32,45,46], as an apparent proportion is denoted between the 

genetic distance of the three clusters obtained from the Principal Component 1 and the geographic 
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distance of the European regions where each cluster may be situated – PT, IBS and TSI in South-western 

(SW) Europe. CEU and GBR in Central Europe and FIN in Northern Europe. 

PC2 support a slight differentiation between SW and Central European groups, however, FIN individuals 

overlap SW populations in this component, suggesting that there may exist characteristic variants for 

Central European group. Finally, while PC3 depicts a detachment among SW group populations, the 

strong association of IBS to GBR, CEU and FIN populations does not permit to draw conclusions about 

regional-specific comparisons, nonetheless, the isolation of Portuguese individuals in relation to the other 

populations compared may signify the existence of potential genetic markers for Portuguese population. 

4.8 Differences against Europeans in 1kG 

 Allele distribution differences  

Using alternative allele and total allele counts for all 503 samples in the European population of 1kG it 

has been possible to ascertain the statistical significance of the difference between allele frequencies for 

this group and Portuguese population. Only filtered variants were included in this procedure. 

Overall, 165,589 filtered variants were tested for difference against each population with Fisher’s exact 

test, after adjusting p-values for False Discovery Rate (FDR). A significant difference was obtained to, at 

least, one population for 4.4% (7,284) of the tested variants. 8.5% of them (619 variants) displayed a 

significant difference to all the tested populations. 

Analysing by population, there were vast differences to Finnish individuals in comparison to the other four 

populations tested (Table 13 and Figure 19), 73.0% of the differences found were exclusively significant 

for that group. This finding corroborate the previous results that suggest a distinctive genetic distance of 

Finnish individuals in relation to any other European population; this difference endorses the separation 

of both groups as it is done in gnomAD project.  

It was also suggested that Finnish population differences conceal some eventual relations regarding the 

differences of Portuguese individuals to the other European populations (Figure 19 - red circle), a 

considerable number of variants present significantly different allele distributions in relation to Portuguese 

populations for GBR or CEU individuals but not for IBS or TSI, however, these relations are not reflected 

by the number of exclusively different variants (Table 13). 

To asses these differences and be able to compare and evidence divergences among the closest 

populations, Finnish differences were excluded of the analysis. This filter would expectably avoid drawing 
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general European-level conclusions based on values that may be biased by the high number of exclusively 

different variants for Finnish. 

Table 13. Number of variants with significantly different allele distributions in relation to the Portuguese samples. Successive analyses are 
presented. For each population comparison, the total number of Fisher test p-values below 0.05 is presented in the second column. The 
number of null hypothesis rejected after p-value correction for false discovery rate (FDR) in third column, the percentage of variants that 
these numbers represent among all variants tested (165589) is presented in the fourth column. Fifth and sixth columns contain, respectively, 
the number of variants that only present a significantly different allele distribution for a sole population and its percentage among the total 
results corrected for FDR (7284 variants). 

Population 
p-value < 

0.05 

Corrected 

for FDR 

% of 

total 

Exclusively 

different 

% of total 

corrected 

IBS 7,433 987 0.60% 57 0.78% 

TSI 9,634 1,071 0.65% 137 1.88% 

GBR 12,148 1,220 0.74% 140 1.92% 

CEU 11,611 1,285 0.77% 172 2.36% 

FIN 24,042 6,610 3.99% 5,320 73.0% 

 

 

Figure 19. Venn Diagram for variants with significantly different allele distributions for each population after correction for FDR. Red circle 
highlight the larger bulk of variants that are not different for all populations, it include the variants are simultaneously different for FIN and 
GBR or CEU populations and do not present differences to IBS or TSI individuals. 
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27.0% (1,964) of the initially reported variants presented significant differences to, at least, one of the 

populations, 33.2% of them (652 variants) presented a significant difference to the four populations 

(Figure 20). 

In the same way as the results obtained in previous large-scale comparisons, this approach denotes 

progressively larger amounts of exclusive differences that reflect a relationship between the genetic and 

geographic distance (Table 14). The most noticeable finding is that the expected higher proximity of 

Portuguese samples to IBS population is corroborated regardless of the approach. Additionally, results 

presented in Table 14 comply to previously reported relations suggested by Principal components 2 and 

3, a larger genetic distance of Portuguese individuals to both GBR and CEU corroborates the distances 

between these groups displayed in both components. Differences between South-Western (Portuguese, 

IBS and TSI) populations are also concordant with the relations presented for those groups in PC3. 

Table 14. Recalculation of the number of variants that only present a significantly different allele distribution for a sole population and its 
percentage among the results corrected for FDR for that population in a subset that do not account for Finnish differences to Portuguese 
individuals. Population location is presented for each group to reflect the geographical distance to Portugal, located in the South-westernmost 
extremity of Europe. 

Population 
Exclusively 

different variants 

% of total 

corrected 

Population Location 

IBS 95 3.02% South-western Europe; Bordering Portugal 

TSI 178 5.66% South of Europe; Mediterranean Coast of Italy 

GBR 267 8.49% North-western Europe; British islands 

CEU 318 10.11% USA; Northern and Western European ascendancy 

 

 

Figure 20. Reformulation of the Venn Diagram for variants with significantly different allele distributions for each population after excluding 
Finnish data. 
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 European genetic differentiation 

Since genetic differences has been reported throughout the present work at a scale-dependent variable 

extent, these differences may be analysed under diverse perspectives. 

Availing this dataset and the obtained p-values, significative differences were found for the allele 

distribution between our population and the other 1kG European subpopulations in 7,284 variants 

distributed by 2,571 genes. Differences were grouped by gene and the number of differences in relation 

to each population revealed diverse patterns of gene variation across European populations (Table 15). 

Table 15. Count of variants with significant differences to each population by gene. Results against FIN population were not included. Only 
the 21 genes with highest number of alterations reported in the results are presented. All those genes denoted differences for, at least, 8 
variants among the four populations. Population-gene pairs that reported, by itself, 5 or more variants among these results were highlighted 
at red, on the other hand, population-gene pair that reported none or a single difference to Portuguese individuals was highlighted at green. 

Gene IBS TSI GBR CEU Total 

MICA 8 7 11 18 18 

SDHA 0 16 4 15 16 

HLA-G 7 7 8 12 13 

HERC2 1 1 11 10 13 

ANKRD36 8 0 2 3 11 

MYOM3 5 6 11 5 11 

COL6A1 10 9 6 9 10 

MUC5B 3 4 2 8 9 

KRT38 3 3 9 6 9 

ADH1C 1 1 6 9 9 

HLA-B 1 1 8 9 9 

KIR3DL1 8 6 7 8 8 

GPATCH1 7 2 1 8 8 

AHRR 6 1 7 6 8 

C9orf84 2 2 8 7 8 

RESP18 1 1 2 8 8 

MRS2 1 1 8 1 8 

DHX38 1 0 1 8 8 

PIEZO2 0 8 6 6 8 

LCT 0 8 7 8 8 

PLK2 0 0 8 7 8 
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Among the 21 genes with the highest number of detected differences, some genes have been already 

reported in the literature as highly polymorphic, such as KIR3DL1, HLA-B and HLA-G [63,187–189], and 

genes that had been already used for genetic populational comparisons as SDHA [190] and ANKRD36 

[191], none of the studies found for each case included Portuguese individuals. Additionally, studies for 

two other genes comprised Spanish individuals, Europeans samples from 1kG were included in a 

comparative analysis of allele frequencies for the gene AHRR [192] and the allelic diversity of the gene 

MICA has previously been analysed in a population of the region of Murcia, Spain [193]. 

Finally, LCT gene, from chromosome 2, a previously confirmed genetic marker [194,195] may be 

presented as a paradigmatic case of the power for this type of analysis. Significant differences were found 

for 8 variants from this gene. None of them presented those differences in relation to IBS populations, all 

8 presented those differences in relation to TSI and CEU, and excepting one of them, all were significantly 

different in comparison to GBR (Table 16). 

The most noticeable finding is the consistent pattern presented by the allele frequencies reported for each 

population – TSI < PT < IBS < GBR < CEU for all but one case, for which the order is reverted. Besides 

confirming an accordance with previous results. 

 

Table 16. LCT gene variants that reported significantly different allele distributions in relation to, at least, one population. Allele frequencies 
for Portuguese individuals is highlighted in grey. Variant-population pairs for which significant corrected p-values were reported are highlighted 
in red for the cases where the correspondent allele frequency values are lower than the value calculated for Portuguese individuals and in 
green for the opposite case. 

Position Ref Alt PT AF IBS AF TSI AF GBR AF CEU AF 

136546110 A G 57.1% 65.0% 41.1% 75.8% 81.8% 

136555659 T C 51.5% 62.2% 36.9% 75.3% 80.8% 

136558157 C T 50.0% 57.5% 25.7% 73.1% 79.8% 

136561557 G A 71.4% 74.8% 50.5% 81.9% 87.4% 

136569848 C A 50.0% 57.5% 25.7% 73.1% 79.8% 

136575199 G T 50.0% 57.5% 25.7% 73.1% 79.8% 

136590746 C T 27.1% 21.5% 43.5% 15.9% 11.6% 

136594158 G A 49.3% 57.9% 25.7% 73.1% 79.8% 

 

In this case, an Iberic relation is confirmed between Portuguese and IBS populations. Additionally, as the 

relations presented were found to be concordant with the genetic distribution of a well reported marker, 

this finding suggest a potentiality of the present dataset to find new genetic markers in further analyses.   
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4.9 Work relevance 

The presented work was developed under the scope of the In2Genome project. This project aims, among 

other things to improve diagnosis of congenital diseases.  

The combination of all reported genotypes and the information regarding location, gene and predictions 

provided by GEMINI enable a more direct and complete assessment of the variants. 

As it is, the constructed database may constitute a relevant auxiliary reference for genetic analysis of 

Portuguese patients. The database is scalable and may include information for more samples sequenced 

in the future, it would benefit further analyses and would imporve the accuracy of the eventual diagnoses. 

Additionally, the unknown variants reported constitute an increase on the genetic information available 

and may prompt future studies to constitute Portuguese-specific genetic markers. 
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5. CONCLUSION 

The present work successfully created a database that enhanced diverse analyses and comparisons, the 

storage of the genotypes as accessible and manageable repositories was the principal advantage of this 

resource. Compilation of information from multiple sources enabled the assessment of the studied data 

under diverse perspectives. The 224,155 variants found on 70 Portuguese exomic samples constituted 

the basis for the present work. Among those variants, 16.4% constitute novel variants, a proportional 

value in relation to previous studies on different sample sizes. Comparisons to the same projects report 

that a lesser number of low frequency variants is found among the present work data, however, there 

was a concordance on the percentage of singletons found by the studies. 

These findings and the low representativity for the present dataset in relation to the variants rareness 

allow to conclude that an eventual project containing a larger number of samples would approximate the 

obtained results to the scenario presented by large-scale endeavours. 

At a populational point of view, the analysed data corroborate established hypothesis for historical 

migrations and its respective influence on evolution and genetic differentiation. 

Notwithstanding, significative differences could be found despite the similarities presented between the 

Portuguese individuals and previously described 1kG European populations. 

Among those differences, previously described genetic markers have been found and populational 

relations are plausible, thus, the present work may prompt future studies to confirm genetic differences 

and establish Portuguese-specific genetic markers. 

Epitomizing, the present study represents a significant contribution to enrich large-scale genomic 

initiatives with complementary information and may stand as a useful auxiliary reference for genetic 

analyses of Portuguese patients. 
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ATTACHMENT I 

AI – Schema of the subsets of variants analysed through the present work. 
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ATTACHMENT II 

AII - Total count of variants by impact. According to GEMINI impact classification. 

Impact Total SNVs Indels Severity 

Synonymous variants 42,517 42,517 0 

LOW 

Intron variants 99,273 93,960 5,313 

3-prime UTR variants 7,244 6,877 367 

5-prime UTR variants 5,581 5,342 239 

Downstream Gene variants 443 424 19 

Upstream Gene variants 1,030 985 45 

Intergenic variants 41 41 0 

Non-coding Transcript variants 780 743 37 

Stop Retained variants 37 37 0 

Missense variants 54,949 54,949 0 

MED 

Coding Sequence variants 4 1 3 

Inframe Deletions 366 0 366 

Inframe Insertions 116 0 116 

Protein Altering variants 2 0 2 

Splice Region variants 8,323 7,971 352 

Frameshift variants 1,707 0 1,707 

HIGH 

Stop Loss variants 92 91 1 

Stop Gain variants 835 821 14 

Splice Acceptor variants 364 327 37 

Splice Donor variants 328 306 22 

Start Loss variants 123 119 4 

Splicing variants 9,015 8,604 411  

LoF variants 3,335 1,567 1,768  
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ATTACHMENT III 

AIII.1 – Allele Frequency scatterplots comparing Portuguese population (x-axis) against each gnomAD 

population (y-axis). Axis display AF values in decimal scale representation. gnom – gnomAD general values; 

AFR – African/African Americans; AMR – Admixed Americans; ASJ – Ashkenazi Jewish; EAS – East Asians; 

FIN – Finnish; NFE – Non-Finnish Europeans; SAS – South Asians. 

 

 

   

 

   



 

73 

 

   

 

 

   

 

 

 

 

 

 



 

74 

AIII.2 – Allele Frequency scatterplots comparing Portuguese population (x-axis) against each 1kG 

population (y-axis). Axis display AF values in decimal scale representation. KG – 1kG general values; AFR 

– Africans; AMR – Americans; EAS – East Asians; EUR – Europeans; SAS – South Asians. 
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AIII.3 – Allele Frequency scatterplots comparing Portuguese population (x-axis) against each 1kG 

European population (y-axis). Axis display AF values in decimal scale representation. CEU – Central 

Europeans from Utah; FIN – Finnish in Finland; GBR – British from England and Scotland; IBS – Iberians 

from Spain; TSI – Tuscans from Italy. 
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