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Abstract: In recent years there has been an increase in the number of research and developments in
deep learning solutions for object detection applied to driverless vehicles. This application benefited
from the growing trend felt in innovative perception solutions, such as LiDAR sensors. Currently, this
is the preferred device to accomplish those tasks in autonomous vehicles. There is a broad variety of
research works on models based on point clouds, standing out for being efficient and robust in their
intended tasks, but they are also characterized by requiring point cloud processing times greater than
the minimum required, given the risky nature of the application. This research work aims to provide
a design and implementation of a hardware IP optimized for computing convolutions, rectified linear
unit (ReLU), padding, and max pooling. This engine was designed to enable the configuration of
features such as varying the size of the feature map, filter size, stride, number of inputs, number
of filters, and the number of hardware resources required for a specific convolution. Performance
results show that by resorting to parallelism and quantization approach, the proposed solution could
reduce the amount of logical FPGA resources by 40 to 50%, enhancing the processing time by 50%
while maintaining the deep learning operation accuracy.

Keywords: convolutional neural network (CNN); hardware accelerator; field-programmable gate
array (FPGA); light detection and ranging (LiDAR); quantization; object detection

1. Introduction

The increased focus on research and development on intelligent systems has been
growing with different technologies providing different applications on a variety of complex
systems. Concerning autonomous vehicles, the main motivation centers on reducing human
interference while driving, thereby reducing the likelihood of road accidents caused by
human error, improving road safety [1,2]. With that, a highly detailed perception of objects
surrounding every vehicle is required, enriching the perception capabilities of these vehicles,
allowing thus an efficient capture of information about the localization, classification, and
tracking of such vehicles.

In this scope, LiDAR sensors have been highlighted as a technology that allows a
description of the vehicle surrounding by means of point cloud data, being exploited in the
literature as an augmentation to RGB cameras as a standalone solutions [3–5]. Currently,
deep learning models are widely used to process point cloud data, provided from LiDAR
sensors, to extract relevant information that may be used in a mechanism for object detection
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and localization [6–12]. Different studies suggest a higher precision rate during object
detection and classification using deep learning models aside from the classical point
cloud algorithms that manually extract features using machine learning techniques [3,6].
However, these models have some drawbacks regarding real-time execution (being often
incapable of providing inference time lower than the sampling rate of LiDAR sensors,
10/20 Hz) and the required resources for computation.

Deep learning models take advantage of recent developments of convolution neural
network architectures, resulting in pipelined architectures with different configurations that
may vary regarding the number of convolution blocks, its parameters (stride size, kernel,
pooling operation), presence/absence of activation functions, and normalization methods
through each pipeline structure. Most of those systems are deployed in graphics processing
units. Besides providing higher performance, it is necessary to deploy those systems in
edge devices, limited by tight timing constraints, which usually are not considered on
GPUs or central processing units implementation approaches [13–17].

This work is not intended to create a fully convolutional neural network on an FPGA,
instead, the main goals center on the implementation of a configurable convolution module,
evaluation of the impact on performance by applying optimization methods such as
quantization and parameter sharing, and integration of the convolution module on different
CNN architectures. To this end, parallelism approaches for the processing element (PE)
were studied and implemented and performance regarding PE gains was compared. Our
convolution module which implements a PE based on work [18] provides an improvement
of that work by increasing inside the same module the ability to compute rectified linear
unit (ReLU), padding, and max pooling. On top of that, the convolution module can be
configured to match the features of a convolution block addressed in the literature as part
of an object detection model. It means that varying the size of the feature map, filter size,
stride, number of inputs, number of filters, and the number of hardware resources required
for a specific convolution it is only necessary to change its parameters at the instantiating
time. Furthermore, the quantization technique’s impact on the performance of a 3D
object detection model, regarding metrics accuracy and inference time, was studied and
implemented. Both developments were correctly validated in different applications, where
we verified the correct operation and process efficiency on both image and point cloud
processing. To the best of our knowledge, this is the first work studying the quantization
influence on model performance as a function of the model depth.

The paper is organized as follows: Section 2 describes some applied techniques on
3D object detectors based on point clouds data. The section ends with a description of
different techniques and optimization methods applied to CNN architectures are also
discussed. Section 3 describes the proposed architecture and filter iteration through each
instantiated convolution block. Section 4 describes the most relevant parts regarding
hardware implementation, block interface, and interactions. Section 5 presents obtained
results for three different studies: (1) generic image convolution with filter applications
changing the values of its parameters regarding convolution block, presenting an evaluation
between processing time, level of parallelism, and consequently resources usage; (2) study
about quantization influence on a simple CNN architecture, using the MNIST dataset;
(3) the last validation promotes a replacement of a software convolution layer of the
PointPillars model running on a laptop with values obtained from the hardware processing
using the implemented IP. Finally, Section 6 provides thesis conclusion as well as some
considerations for future development.

2. State of The Art

This section provides a brief description of related works and improvements on hard-
ware accelerators for convolutional blocks. Convolution neural network (CNN) architec-
tures are widely used in image recognition and are efficient for object detection, localization,
and classification [19]. There are several key CNN architectures, namely LeNET [20], VG-
GNet [21], and ResNet [22], generally speaking, they are typically built using fundamental
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layers like convolution, pooling, and fully connected. Convolution layers perform a vital
role in how CNN architecture operates, being responsible for around 90% of all computa-
tion. Thus, this section focuses on presenting a brief description of 3D point cloud model
architectures and developments of hardware accelerators already implemented.

2.1. Deep Learning for 3D Point Cloud

Recent works on 3D point cloud models present a sequential architecture that is
split into three stages: (1) data representation, (2) feature extraction, and (3) detection
modules. Stage (1) processes the data from the LiDAR sensor and organizes it as a structure
that can be easily readable and processed by the following stage. Concerning literature,
those structures are created as “Voxels”, “Frustums”, “Pillars”, or 2D projections [6,7,9,10].
Stage (2) presents the feature extraction process for a given point cloud. The last stage (3) is
defined by its output values which lead to possible object detection. Those outputs describe
the probability of object classification, bounding box regression, and object orientation.

These models have in common the conversion of the input into a pseudo-image upon
the first stage, (1) data representation, which means that 2D representations are applied in
further convolution layers. The convolution operation is a fundamental process for feature
extraction, providing object classification and bounding box regression.

2.2. Convolution Implementations in FPGAs

Convolutional layers present in CNN architectures introduce high computational costs,
due to the extensive number of arithmetic operations, parameter sharing, and memory
access. These issues not only increase the amount of hardware resources required but also
hampers some complex CNN from achieving their full potential as they are not able to
output inferences in a real-time manner. Therefore, migrating convolutional blocks to hard-
ware aims at mitigating those problems, providing a hardware architecture optimized for
these operations and, consequently, more reliable, efficient, and time-consuming with fewer
resources. Research works [14,18,23] provide advanced architectures that take advantage
of parallel computation.

2.2.1. Sliding Window Dataflow

In the proposed architecture in work [23], the processing element unit has a MAC unit
and multiply and accumulate operation. Besides the MAC unit, PE blocks hold on-chip
memories for input data, weight values, and outputs results. The proposed architecture
in work [14] presents parallel multipliers to compute all output products in a single clock
cycle, and an adder tree to aggregate all outcomes. The adder tree is predefined to hold
a fixed number of multiply operations, which means is limited to a certain convolution
process regarding filter size. Both works [14,23] provide hardware blocks optimized for
processing time. However, these solutions rely on redundant on-chip memory access,
promoting high energy consumption.

2.2.2. Rescheduled Dataflow Optimized for Energy Efficiency

In work [18], a processing element is featured with a multiply and an accumulate
operation, MAC unit. Input feature map data and weight data needed for the convolution
process are loaded from off-chip memory to on-chip memory. Once on-chip memory is
connected to the processing units, memory access requires low energy consumption as data
transfer is faster than between off-chip and on-chip memories. Data present on on-chip
memory are never discarded, providing access reduction to off-chip memory, decreasing
system latency. After finishing the convolution process, the output values are sent to an
on-chip memory reserved to hold output values. If necessary, output data stored on output
on-chip memory is transferred to off-chip memory for data analysis.
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2.3. Optimization Methods

Deep learning algorithms are usually implemented in software using 32 bit floating-
point values (FP32). Migrating a deep learning algorithm to an ASIC or an FPGA re-
quires for a bit width reduction which is possible using the quantization technique [24–26].
A quantized model and a non-quantized model execute the same operations, however, a
quantized model with bit-width reduction promotes a memory reduction and allows the
execution of more operations per cycle. This memory reduction allows a more compact
model representation, which leads to a better deployment in a hardware platform. For hard-
ware, implementation is intended to convert a 32 bit floating-point value to a 16/8/4 bit
fixed-point value INT (fixed-point expression), respectively [27]. The bit reduction may
lead to a considerable accuracy gap on full precision models as suggested by [28].

Therefore, it is necessary to achieve a trade-off regarding model accuracy, model
parameters, and hardware (HW) performance. The work in [29,30] presents a method that
takes full advantage of a DSP block for 8 bit quantization. However, the trade-off between
accuracy and inference time might be required and applied whenever possible, therefore,
this study provides insights about the model degradation for various model depths, i.e.,
number of layers.

3. Convolution Hardware-Based Block

The proposed block IP was designed taking into consideration the developments in
deep learning models for object detection addressed in the last five years. Our work based
on rescheduled dataflow, exploited by work [18], provides a different implementation since
we create an IP capable of computing not only convolution but also rectified linear units,
padding, and max pooling, that can be configured by simply changing its parameters and
adapting it to different CNN architectures. Besides that, quantization was applied to each
weight value which leads to a reduction in bit-width leading to parameter sharing and
promoting a DSP resource usage decrease. Therefore, the parameters and the range of
values that might change from model to model were identified, in order to tailor the block
for any desired architecture whenever required.

3.1. Block Architecture

As Figure 1 depicts, the architecture of the convolution block proposed in this work
comprises the following three distinct modules: processing element, rectified linear unit,
and max pooling. The convolution block has six parameters that provide different architec-
ture configurations. Five of the six parameters are related to the theoretical convolution
process. The ability to change the six parameters provides an advantage to other works
since different configurations are possible. We defined the number and set of configurable
parameters according to the convolutions layers implemented in the literature for 3D object
detection. These parameters are as follows: (1) feature map size, (2) weight/filter/kernel
size, (3) stride value, (4) padding value, (5) maxpool enable/disable, and (6) number of
DSP block per convolution block.

Figure 1. Convolution block architecture overview.
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Inside the convolution block, on Figure 1, processing data flows through modules
sequentially, i.e., PE result output is forwarded towards the following module, ReLU,
which after performing its operations, forwarded its output to the next module, maxpool,
whenever parameter (5) is enabled. A “controller” module ensures precise BRAM addresses
management, providing an ordered data transfer from a block RAM to a convolution block.

3.2. Processing Element

The processing element module is considered a low-level block inside the proposed
architecture. All convolution processes, meaning multiply and accumulate operations,
are carried out by the PE module. At the same clock instant, three new values are fed to
the input ports of each PE module, as Figure 2 illustrates: (1) feature map value, (2) filter
(weight) value, and (3) previous PE output value.

Figure 2. Processing element simplified block diagram on the left side. The right side illustrates a
detailed version of DSP48E1 block diagram with input data path highlighted [31].

We explore the DSP block usage to reduce the amount of resources required, as DSP
templates provide a favorable trade-off between developed configuration and resources
usage. Flexibility during architecture implementation is ensured as every DSP signal and
parameter is changeable during instantiation, otherwise using another of the three types of
inference leads to lower flexibility and higher resource consumption.

3.3. Memory Access and Dataflow

In order to reduce the limitations of the sliding window approach discussed in state of
the art, namely on memory access and redundant data, our solution proposes a distinct
approach of the research works [14,18], being thus inspired by the research work [23]. The
proposed architecture follows sequential processing data, meaning that each FM value
is fed one by one to the processing module. This mechanism ensures that the system
architecture only changes when applying filters with different dimensions, providing a
scalable and stable architecture.

The dependency data flow chart in Figure 3 illustrates graphically how each outcome
from a multiply operation must be connected to other multiply operations, where: (1) F_xx
refers to input FM data; (2) W_xx refers to weight/filter/kernel data; (3) O_xx refers to
output FM data; (4) for each vertical line, with 9 values corresponding filter size, all data
are computed simultaneously; (5) each vertical line is processed with one delay clock cycle;
(6) black arrows refer to input data of the next processing element, added up with the
corresponding multiply outcome.
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Figure 3. Dependency dataflow for a 4 × 4 FM, a 3 × 3 filter with stride = 1 and padding = 0.

This architecture provides a modular configuration, meaning that changing the input
FM dimensions or filter dimensions leads to easy reconfiguration without losing architec-
ture integrity and maintaining the correct convolution function. Equation (1) presents the
required processing time as a function of the characteristics of the input data, namely FM
size (FM), number of input FM (num.FM); level of parallelism required (Num.PEs), and
board clock (ClockFreq.).

FM2

Num.PEs × Num.It × Num.FM
ClockFreq.(MHz))

(µs) (1)

As Figure 4 depicts, for a filter of 3 × 3 the processing element module is built with
nine DSP blocks. As illustrated, in every N DSP block, a ShiftRAM is placed, N being
equal to filter size (3 for the above example). Each ShiftRAM introduces a predetermined
delay which serves as synchronization for data processing in the next DSP block. The
predetermined delay depends on feature map and filter dimensions. The delay value is
obtained by subtracting the FM dimension from the filter dimension. At the end of this
section, a different configuration is present regarding quantization models, for that, DSP
block and ShiftRAMs usage decrease due to bit width reduction making it possible to have
two multiplication and one accumulate operation for a single DSP block.
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Figure 4. Processing element configuration for a 3 × 3 filter.

3.4. Board Resources-Driven Architecture

To provide a convolution block that can be tailored for a certain application, three
new configurable parameters were added which will influence the number of PE mod-
ules for simultaneously processing. These parameters are as follows: (1) DSP available,
(2) BRAM available, and (3) BRAM memory bit. The parameters (2) and (3) emerge from
memory limitation, allowing the user to specify the amount of memory available for a set
of convolution blocks.

Considering hardware resource limitations as a constraint of many CNN hardware
implementations, parameter (1) DSP availability is added to indicate the maximum number
of DSP blocks that can be distributed through the PEs components of our convolution block.
In order for our block to automatically adapt its architecture to the resources available on the
target board, parameters (2) and (3) are considered for specifying the amount of filters that
can be simultaneously processed. It will ensure that the number of convolution blocks is
limited by the memory available. The minimum memory required for one filter application
is given by output FM dimension and output data bit width. Equations (2) and (3) provide
information on the number of parallel filters and number of PEs modules that can be
instantiated:

Numbero f Parallel f ilter =
BRAMavailable × BRAMmem.bit

OUTFMsize × OUTFMsize × OUTwidth
(2)

Numbero f PEblocks =
Numbero f f ilterstoapply

Num.ParallelFilters × KERNELsize × KERNELsize
(3)

3.5. Filters Iteration—Control Module

Each convolution block only has access to the values corresponding to a single filter,
meaning that for the proposed convolution block architecture, the number of blocks re-
quired to instantiate and to assure the correct operation in parallel matches the number of
filters desired to apply simultaneously. As illustrated in Figure 5, all convolution blocks
are instantiated inside a layer block, which has a state machine that controls each stage for
data processing. Each stage has distinct functionalities since reading memory from input
BRAMs, data transfer to lower levels modules, and write memory to output BRAMs.

As Figure 5 presents, in idle stage (1), a reset is performed to all internal registers
ensuring transition for the second stage, providing weights load from BRAM to PE modules.
State machine continues in load weights stage (2) until all weight values are transferred
to PE modules. Data transfer ends after Kernel_size*Kernel_size clock cycles. In load
in/process FM stage (3), the convolution process begins, all FM data are transferred and
processed one by one, as mentioned at the beginning of the design section. The final stage
(4), indicates that a new FM was generated being the correspondent output data in memory.
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3.6. Optimization Methods

This section presents two methods for optimizing the convolution operations on the
proposed convolution block architecture by including features such as parameter sharing
and quantization. The quantization process is considered an efficient and fundamental
approach for compression of such model targeting resource-constraint devices, such as
edge devices. Due to input feature map and weight bit width reduction performed by quan-
tization technique from 32 bit floating point to 8 bit fixed point, the previously described
architecture should be updated to handle the new data format.

Figure 5. State machine diagram with stages interaction.

Architecture Reconfiguration with 8 bit Quantization

In research work [29], two parallel MAC operations compute two dot products. For
implementing these two MAC operations, it is necessary to use input port D from the
DSP48Ex block. For the two multiply operations, it is necessary to apply the following
equation P = (AB + DB) + C. The value that port A receives is arithmetically left-shifted by
18 bits. Data in the D register are stored in the least significant bits positions and data in the
A register are left-shifted 18 bits to ensure that the outcome from the pre-adder module
does not lose any weight value for each computation.

As Figure 6 illustrates, the reconfigured architecture has, for a single DSP block, two
MAC modules, promoting fewer shift RAM blocks usage since more DSP blocks are directly
connected. As Figure 6 presents, four DSP blocks have a direct connection which refers
to the filter/kernel dimension (in this case a filter of 4 × 4 is applied). The proposed
architecture needs to ensure that outcomes from MAC modules are correctly sent for the
following DSP blocks. In case of a direct connection, each result is directly sent to the C
input port. This new DSP block receives as input the first weight value of the following
four consecutive Weight values. After finishing processing the first four weight values,
represented in blue, results from the last MAC module are sent to the first shift RAM.
Output data from a shift RAM has the same delay as presented for the first proposed
architecture, which varies regarding weight/filter/kernel dimension, FM dimension, and
stride value. The shift RAM block receives one value that holds two different results
regarding blue and red DSP block computation. For a correct accumulation of the first red
DSP block, output data from shift RAM need to be 8 bit right-shifted.
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Figure 6. Block diagram for reconfigured architecture, providing two 8 bit products per DSP block.

4. Implementation

All code was implemented using Verilog with all the modules previously described
being implemented on the programmable logic (PL). To validate the implemented hardware
IP, after test bench validation for behavioral and timing simulations, it is necessary to
validate the IP on an FPGA board. The tests present in the results section were deployed
on a Zybo Z7:Zynq-7000 board [32]. To evaluate the consumed resources by the proposed
IP an input image of 252 × 252 dimension was used, which is a typical size widely adopted
in deep learning models. To build an entire CNN architecture with our convolution IP, it is
only required to instantiate the correct number of convolution blocks while ensuring that
data flow is correctly performed.

Using our IP interface, the user is able to configure at design time each parameter
addressed to a convolution. This means that for the application of the module in a real CNN
deployment it is mandatory to determine the correct number of convolution layers and each
parameter value, before implementing it on an FPGA. As found in the literature, a major
problem regarding CNN implementation in hardware centers on resources limitations, such
as DSP blocks and memory. Considering that constraint, three parameters (DSP available,
BRAM available, and BRAM memory bit), which are used to define the number of filters
processed at the same time, were added.

Figure 7 and Table 1 presents the resources required for implementing a convolu-
tion of a 3 × 3 filter to an image of 252 × 252 using only one PE block (9 DSP blocks)
with a clock source of 100 MHz. The figure shows the resources required for IP (de-
sign_1_layer_2_0_0_synth_1) at the bottom. The total of resources required for managing
the ARM processor, DMA module, blocks of RAM, and our IP is displayed as impl_1.
Additionally in the figure are illustrated how resources are split on the FPGA device.
The resources related to the implemented IP are highlighted with red, inside the purple
square box. The other resources are related to AXI modules, DMA controller, BRAMs, and
processing system.
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Table 1. Resources used for convolution IP and all integrated design (central direct memory access
(CDMA) module, blocks RAM and Zynq PS).

Clock Source Convolution of a 252 × 252 FM with 3 × 3 Filter

100 MHz LUT FF DSP BRAM

Convolution IP 2044 993 9 0
All Design 10,832 11,425 9 32.5 blocks

Figure 7. Resources usage and timing analysis for an image of 252 × 252 with a filter of 3 × 3, using
only 1 PE.

5. Results

The tests presented in this section were obtained with each image loaded to an SD card
that is connected to the Zybo board. Using the ARM processor, provided by the Zybo Z7
board [32], the DMA controller was configured to store input image data in DDR memory.
Thus, before the convolution process begins, the DMA controller sends input images to the
RAM blocks that are directly connected to the proposed IP.

5.1. Generic Convolution

To evaluate the correct functionality of the convolution block, it was applied different
filters to a set of figures, changing the values of the stride, padding, and maxpool parame-
ters. The dimensions of input FM are 252 × 252, with a filter application of 3 × 3. Figure 8
depicts each output from applying the same 3 × 3 sharpen filter using a stride of 1 and 3,
resulting in outputs of 250 × 250 and 84 × 84, respectively.

Figure 8. Right upper output image represents a sharpen filter application with stride 1, padding 0.
Right bottom image represents a sharpen filter application with stride 3, padding 0.
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5.1.1. Parallelism Influence on Processing Time

Considering that in the previous example we used a 252 × 252 image with a filter
application of 3 × 3, the study begins with the simple case which uses only one PE block,
providing less resource usage and higher processing time. Each test iteration increases the
number of PE blocks to a maximum of 100 PEs. For a filter of 3 × 3 and applying up to
100 PEs blocks, 900 DSP blocks are required. As illustrated by Figure 9, the instantiation of
only one PE module leads to a higher processing time. The application of two PE modules
in parallel leads to a reduction in 50% of the previous processing time. Applying three
PE modules in parallel reduces the processing time by 65%. As illustrated, after 20/30 PE
modules in parallel the processing time reduction is less relevant.

Figure 9. Study of PE modules influence on processing time. It begins with 1 PE block and finishes
with 100 PE blocks.

The blue curve in Figure 9, represents theoretical processing time values previously
computed regarding PEs block usage, the orange curve represents processing time val-
ues during hardware IP processing measured in the same previous conditions. A slight
deviation in theoretical values and hardware measures appears on the graph since for
“theoretical time” we do not consider the initial clock cycles that do not generate valid
outcomes, as explained in the design section.

5.1.2. Block RAM Influence on PEs/Number of Parallel Filter/Processing Time

For the following example, the IP parameters were configured as: kernel size = 3, FM
size = 252, padding = 0, stride = 1, maxpool = 0, input FM channels = 64, num of filters = 32,
DSP block available = 1000, and clock source of 100 MHz.

As Figure 10 presents, when only one block of RAM is used only one filter is applied
(orange line), consequently, the maximum possible number of PE blocks are used. Increas-
ing the number of blocks of RAM leads to an increase in the number of parallel filters.
Consequently, the number of PE blocks per convolution block decreases since more PE
blocks are spread to different filters reducing the number of available PEs for a single con-
volution block. Increasing the number of parallel filters provides a decrease in processing
time, as illustrated in the graph on the right side. However, after the two lines intersect
in the upper graph, processing time increases. This can be explained once more filters are
computed simultaneously which results in fewer DSP blocks allocated per convolution
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block. Thus, once fewer DSP blocks are used in a single convolution block the processing
time increases.

Figure 10. Number of PEs to use, number of parallel filters and processing time due to BRAM data.

5.2. Quantization Influence Study

This section presents a study regarding the quantization impact on two different deep
learning models based on a CNN architecture. The MNIST model is used for handwritten
digit detection in an image. The other model refers to a 3D object detector and classi-
fier model based on point clouds, namely, PointPillars. The two deep learning models
supported by the software version use the input data and weight values in a 32 bit floating-
point format. This study intends to convert the aforementioned data from single-precision
to an 8 bit fixed-point format.

5.2.1. MNIST Dataset Model

The model configuration used for validation is built with two convolutions layers,
fully connected and softmax. Figure 11 illustrates what changes were performed to validate
the IP functionality. In the first study, the values were hardware computed using the
developed IP. In a second study, with an integration of eight new convolution layers, the
quantization methods through all layers were implemented. As represented inside the red
square, the input values of the first convolution layer are sent to hardware IP. The output
values from hardware processing, which are quantized due to hardware conversion from
32 bit floating-point format to 8 bit fixed-point format return to the software (SW) model
to feed the next convolution layer, the input values of the second layer are replaced with
hardware values.

The fixed-point representation is expressed as Qi.d, where i refers to the integer part
of the fixed point, in other words, the number of bits present on the left side of the fixed
point, and d refers to the number of bits on the right side of the fixed point, as a decimal
fraction. The weights values for the first convolution layer were quantized with three
different quantization levels: Q2_6, Q3_5, and Q4_4. For each one of them, the output FM
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quantization level was tested with different configurations providing a better study on
classification score due to weight and output FM value quantization.

Figure 11. Two quantization studies on the MNIST model. Hardware replacement and influence on
model performance as a function of model depth.

Figure 12. Evaluate classification score for Q2_6/Q3_5/Q4_4 weight quantization and Q2_6, Q3_5,
and Q4_4 FM quantization. Blue bar provides SW data, grey quantized data and orange bar provides
difference from SW_version and each quantized format.

Convolution Weights and Bias Quantized

In a second iteration, illustrated in Figure 11 by the green box, the study was extended
to apply quantization to all layers of the MNIST model. To the previous MNIST model a
few more convolution layers were added, with that we intend to verify the quantization
impact on deeper CNN architectures, so we added eight (8) new convolution layers.
The quantization was performed using the same IP that was used in the previous study.
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With this, we can obtain a quantization result that is approximately close to a possible
implementation of the entire architecture in HW. This means if we intend to implement the
entire model on hardware, which is not the goal with this study, the results expected will
be close enough to the results presented in Figure 12.

For this study, only Q1_7 and Q2_6 configurations were applied, another type of
configuration such as Q3_5 or Q4_4 leads to worse results since the number of fractional
bits is reduced, leading to accuracy loss. The previous study only uses as input one image,
this study applies four different images with handwritten digits of 1, 2, 3, and 4. The
graphs depicted in Figures 13 and 14 present the obtained score for the correct classification.
In other words, associates each of the four images with a correct classification (image
1—digit 1, image 2—digit 2, and so on). The blue bar on graphs represents the score values
obtained using an SW-only version. The gray bars, from left to right, represent the score
obtained by applying quantization to all layers of the MNIST model and quantization
only on convolution layers, respectively. As expected, applying quantization to all layers
leads to a slight score reduction. This reduction, presenting a higher error on image 2 with
1.88%, varies depending on which image is used for classification. Nonetheless, it is almost
insignificant, leading to a robust classification for each of the four different images.

Figure 13. Weight and bias quantization for all MNIST model layers, and only for convolution layers
with Q1_7. Blue bar provides SW data, grey quantized data and orange bar provides difference from
SW_version and each quantized format.
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Figure 14. Weight and bias quantization for all MNIST model layers, and only for convolution layers with
Q2_6. Orange bar provides difference from SW_version and each hardware quantized format.

5.2.2. PointPillars Model
Quantized Convolution Weights

On the PointPillars model, we verified how quantized convolution weights of back-
bone convolution layers affect score detection and interest over union (IoU). For this
analysis, we adopt the performance metric mean average precision (mAP) while using the
Kitti dataset. The mAP is used to measure the accuracy of an object detector regarding its
precision and recall. Using a Python script, it was possible to obtain a result checkpoint
using different frames of the Kitti dataset, the result checkpoint provides mAP values for
the evaluation scenarios of bounding box (BBOX), bird’s eye view (BEV), 3D, and average
orientation similarity (AOS).

Figure 15 presents the mAP metric value for each of the four scenarios regarding the
three difficulty levels, using SW-only version with 32-bit weight values and quantized
version with 8-bit. In Figure 15, below each scenario presents three bars regarding the three
difficulty levels (from left to right refers to easy, moderate, and hard). Each difficulty level
value for the SW-only version is directly compared with the correspondent value for a
quantized version, which means, for the BBOX metric, it is possible to evaluate the SW and
Q_CONV result value that combines the same bar color. In this case, the SW-only version
for the easy level results in an mAP of 83.73% while the quantized version results in 80.84%.
The same evaluations are applied for the remaining metrics. This mAP degradation can
be explained by the precision loss of the feature maps, but also due to the fact that the
outputted classification scores are affected as will be further shown, suggesting that the
score threshold should be adjusted to reduce the metric performance loss.
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Figure 15. Evaluation between SW-only version and quantized model, with BBOX, BEV, 3D, and
AOS metrics for easy, moderate, and hard difficulty levels.

Different frames were evaluated through Kitti Viewer, thus classification score and IoU
values were collected using checkpoint files resulting from the previous step, i.e., evaluate
using the SW-only version model and quantized model version (quantized weight values
from the backbone convolution layer). After analyzing every frame regarding classification
score, IoU, and object distance to LiDAR sensor, the graphs in Figure 16 were plotted. Each
blue dot represents a detected object for a given frame, describing object depth regarding
the LiDAR sensor and its correspondent classification score value and IoU value. This
study tries to establish a direct relationship between the obtained classification score value
for a given object and its distance to the LiDAR sensor.

Figure 16. Scoreclassification and IoU distribution regarding object distance to LiDAR sensor. Left
presents score and IoU for SW-only model version, right side presents results for quantized backbone
convolution weights.



Sensors 2022, 22, 2184 17 of 20

As showcased in the graphs of Figure 16, greater object accumulation can be indicated
for classification scores higher than 0.6. These objects are located at a maximum distance of
30 m from the LiDAR sensor, representing 65.5% of objects for the SW-only version using
32 bit weights. For the quantized version, using weights with 8 bits, object accumulation
continues high under 30 m distance from the sensor, with higher score values (total of
65.98% of objects). As for the IoU metric, the graph in Figure 16 presents a higher object
concentration with higher IoU values for distances up to 30 m, resulting in 62.02% of the
total objects. For the quantized model, regarding IoU values, the graph presents a higher
scatter of the object’s distribution, due to bit reduction, which leads to some null values,
resulting in a quantitative reduction to 51.55%.

The two graphs in Figure 17 illustrate how the score and IoU error is spread regarding
object distance from the LiDAR sensor. In each graph, it is possible to verify that some
error values are negative, meaning that the classification score or IoU value is higher for
the quantized weights model version, providing an improvement of detection accuracy
once score and IoU metrics increase. The graph that represents the error score shows
a higher accumulation of values for an error under 0.05 and over −0.05, representing a
point accumulation of 61.63% for all objects. This point distribution, as expected from
previous graphs, is located in the range below the 30-meter distance from the LiDAR sensor,
represented by the red box. For the IoU metric, higher point accumulation occurs for an
error under 0.25 and a distance less than 30 m, representing 55.43% of all objects.

Convolution Layer Hardware Replacement

As described in work [6], the backbone stage is built with sixteen convolution layers
through each of the three blocks, which requires a lot of DSP and memory hardware
resources, only two layers of block 3 were hardware processed. The inference process was
done using a robotic operating system (ROS) platform that runs a new point cloud frame
while initiating the PointPillars network for object detection and classification.

Figure 17. Error between SW-only model version and quantized backbone convolution weights,
classification score, and IoU metrics.

Tables 2 and 3 present the obtained results for each evaluated metric regarding point
cloud object detection. The score metric represents the probability of an object belonging to
a certain class, in this example, cars. The location metric, expressed in meters, provides a
spatial object identification on the point cloud. Each object position is given regarding the
LiDAR sensor. The bounding box metric represents the BBOX around an object. Rotation_y
and Alpha are related to the observation angle for each object.
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Table 2. Software only model version metrics for the evaluated frame.

SW-Only Score (0. . . 1) Location x, y, z (m) BBOX (Left, Top, Right, Bottom) Rotation_y Alpha

Car 1 0.90 2.88, 1.74, 6.42 770.46, 201.58, 1219.04, 370 4.68 4.27
Car 2 0.95 2.96, 1.54, 13.24 702.26, 182.34, 843.80, 277.94 4.69 4.47
Car 3 0.86 2.85, 1.55, 19.36 677.58, 181.34, 745.63, 243.11 4.78 4.63
Car 4 0.84 −6.13, 1.88, 23.85 373.33, 191.57, 463.90, 241.74 1.67 1.92
Car 5 0.72 −6.55, 1.69, 46.78 489.81, 182.45, 518.89, 207.38 1.49 1.62
Car 6 0.73 2.70, 1.03, 50.08 630.30, 173.84, 655.06, 195.71 4.71 4.66

Table 3. Software–hardware model version metrics for the evaluated frame.

SW-HW Score (0. . . 1) Location x, y, z (m) BBOX (Left, Top, Right, Bottom) Rotation_y Alpha

Car 1 0.77 2.52, 1.51, 6.55 753.33, 188.01, 1102.09, 370 4.74 4.39
Car 2 0.83 2.55, 1.39, 12.97 691.09, 177.49, 813.00, 269.46 4.74 4.54
Car 3 0.83 2.58, 1.31, 19.16 670.47, 175.11, 735.29, 234.51 4.79 4.66
Car 4 0.85 −5.81, 1.69, 23.56 379.53, 186.77, 472.51, 236.24 4.89 5.13
Car 5 0.82 −6.45, 1.52, 46.16 487.63, 180.95, 521.33, 204.80 4.74 4.88
Car 6 - - - - -

From the obtained results, it is possible to notice there is not a huge divergence between
the SW and hybrid versions, which uses values from hardware processing. During the
hybrid model inference process it was verified that the number of false positives increases
for the same score threshold value used during SW-only inference. To filter some of the
false positives, which do not provide any valuable information about object detection or
classification, the threshold value was increased from 0.5 to 0.75. However, the hybrid
model presents one detection loss regarding the furthest car (car 6), as Figure 18 depicts and
for the lack of metric results in Table 3. This detection loss was expected as expressed from
a previous study exploited in Figure 16, which provides a visual perception that further
objects tend to be less detected and present lower accuracy.

Figure 18. Point cloud frame displaying six cars with bounding box representation labeled from 1–6.
SW–HW (hybrid) output detection for different score threshold value, left side with 0.5 and right side
with 0.75.

6. Conclusions

This paper had as its main goal the design and implementation of a convolution
block, with the particularity of being totally customizable and applicable to any 3D object
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detection model. To increase parallelism for each convolution operation, the possibility of
having several processing elements operating at the same time was added to the proposed
architecture to improve inference time at the cost of energy and consumed logical resources.

Along with the development and implementation of the proposed generic convolution
block, a study was conducted regarding the influence of quantization and parameter
sharing. The quantization process, which reduces the bit-width of each parameter value,
enables the second possible optimization that is related to “parameter sharing”. The bit-
width reduction of weight values promotes a decrease of DSP usage of around 40% to
50%.

The developed IP was validated using RGB and point cloud data, in each evaluation it
was verified that the proposed solution was capable of adaption regarding different model
requirements. In the case of the model using point cloud data, with the PointPillars model
it was possible to verify that higher scores and IoU values tend to appear near the LiDAR
sensor, around less than 30 m. Furthermore, the quantization process affected both score
and IoU values up a 10% decrease. Using the developed IP we visually confirmed the
correct operation of the proposed solution. It was also possible to qualitatively validate the
correct operation of the integration setup, the model being able to detect objects within a
range of 30 m from the LiDAR.
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