Universidade do Minho
Escola de Engenharia

Ricardo Barros Pereira

Development of a Self-diagnosis Tests System
for Integration in a Cyber-physical System

July, 2021

Universidade do Minho
Escola de Engenharia

Ricardo Barros Pereira

Development of a Self-diagnosis Tests System
for Integration in a Cyber-physical System

Master’s Dissertation

Master’s in Informatics Engineering

Work supervised by
Professor Doctor José Carlos Ramalho

Professor Doctor Miguel Abrunhosa de Brito

July, 2021

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and

good practices regarding copyright and related rights are respected.
Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated
licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

@080

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

STATEMENT OF INTEGRITY

| hereby declare having conducted this academic work with integrity. | confirm that | have not used
plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

| further declare that | have fully acknowledged the Code of Ethical Conduct of the Universidade do Minho.

Acknowledgements

| would like to express my thanks to some special people who were very important during this year and
throughout my academic journey.

First of all, | want to thank my advisors. To Professor Miguel Abrunhosa de Brito, for guiding me with
excellence, for all his availability, and all the knowledge and motivation he gave me throughout this year.
To Professor José Carlos Ramalho, for all the knowledge, experience and motivation that he provided me,
not only as advisor of this dissertation but also as a teacher on several occasions throughout my academic
journey. To Professor Pedro Rangel Henriques for his brilliant knowledge and ideas on domain-specific
languages.

To Centro de Computacao Grafica, for all the good work environment that it provided me and for all
the help during the beginning of this work, until the pandemic situation sent us all to our homes and we
had to say goodbye.

To my family, for always being by my side and for helping me whenever | need to.

To my closest friends, for always being present and also for the experiences we had during this journey.
A special thanks to my friend Hugo Carvalho for being my great example in my academic journey and for
always motivating, advising and helping me to make the right choices.

To my dear girlfriend, Océane, for always being by my side, for all the support and all the patience she
had with me while | was doing my dissertation.

Finally, I would like to dedicate this work and my entire academic journey to my parents, Antoénio and
Isabel, for the importance and significance that this achievement has for them. Special thanks to them for

always supporting me and transmitting the best values.

My sincere thanks to all of you!

Ricardo Pereira

This work is a result of the project POCI-01-0247-FEDER-040130, supported by Operational Program
for Competitiveness and Internationalization (COMPETE 2020), under the PORTUGAL 2020 Partnership
Agreement, through the European Regional Development Fund (ERDF).

Resumo

Hoje, a CONTROLAR fornece para a Bosch a Intelligent Functional Test System Machine, um sistema
ciberfisico desenvolvido para realizar diferentes niveis de testes funcionais em dispositivos e componentes
electronicos. A Bosch utiliza-a para testar o correto funcionamento dos auto-radios produzidos. Durante
este processo, os auto-radios sdo submetidos a varios testes e o problema surge quando a maquina
detecta erros em varios auto-radios consecutivos e nao € possivel saber se a propria maquina esta com
problemas, pois ndo possui nenhum mdédulo que permita saber se esta a funcionar corretamente ou no.

A origem deste trabalho surge da necessidade de encontrar uma solucdo que resolva o problema
enunciado, mas também, inovadora e com contribuicdes para o0 mundo da investigacdo em sistemas
ciberfisicos e sistemas de testes de autodiagndstico. A solucéo é integrar um sistema de autodiagnostico
na maquina que possa testar o seu funcionamento para que a Bosch possa ter certeza se o problema esta
na maquina ou nos auto-radios. Como a maquina é um sistema ciber-fisico, permite a integracdo de um
sistema de software que possa gerir a execucao de testes, sendo capaz de detectar falhas nas maquinas.

0 trabalho aqui apresentado aborda o problema criando um novo sistema de testes de autodiagndstico
que garantira a confiabilidade e integridade do sistema ciber-fisico. Em detalhe, esta dissertacdo comeca
por expdr um estudo sobre o estado da arte atual de sistemas ciber-fisicos, automacao de testes, metodo-
logia de teste keyword-driven e mais alguns conceitos relacionados a linguagens especificas de dominio
que serdo relevantes para a solucao final. Sdo apresentadas a especificacao e analise do sistema, a fim
de definir bem os seus componentes. Uma nova arquitetura modular e extensivel é proposta para siste-
mas de testes de autodiagnostico, bem como uma arquitetura para estendé-lo e integra-lo num sistema
ciberfisico. Foi proposto um novo sistema de testes de autodiagnostico que aplica a arquitetura proposta
provando que ¢ possivel realizar o autodiagnostico em tempo real do sistema ciber-fisico e permitindo a
integracao de qualquer tipo de teste. Para validar o sistema, foram realizados 28 casos de teste, abran-
gendo todas as suas funcionalidades. Os resultados mostram que todos os casos de teste passaram e,

portanto, o sistema cumpre todos os objetivos propostos.

Palavras-chave: Sistemas Ciber-fisicos, Auto-diagndstico, Automacao de Testes, Aplicacdo Web

Abstract

Nowadays, CONTROLAR supplies with Bosch the Intelligent Functional Test System Machine, a cyber-
physical system developed to perform different levels of functional tests on electronic devices and compo-
nents. Bosch uses it to test the correct functioning of the produced car radios. During this process, the car
radios are subjected to several tests and the problem arises when the machine detects errors in several
consecutive car radios and it is not possible to know if the machine itself has any problems, as it does not
have any module that allows knowing whether it's working correctly or not.

The origin of this work arises from the need to find a solution that solves the referred problem, but also,
innovative and with contributions to the world of research in cyber-physical systems and self-diagnosis tests
systems. The solution is to integrate a self-diagnosis system into the machine that can test its functionality
so that when these car radio failures appear, Bosch can be sure whether the problem is with the machine
or the car radio. As the machine is a cyber-physical system, it allows the integration of a software system
to control and manage all its actions. Therefore, it is necessary to develop a system to manage the tests
and their execution, being able to detect internal failures in the machines.

The work presented here addresses the problem by creating a new self-diagnosis tests system that
will guarantee the reliability and integrity of the cyber-physical system. In detail, this dissertation begins by
exposing a study on the current state of the art of cyber-physical systems, test automation, keyword-driven
test methodology and some more concepts related to domain-specific languages that will be relevant to
the final solution. The specification and analysis of the system are presented, to define well its compo-
nents. A new modular and extensible architecture is proposed for self-diagnosis test systems, as well as
a methodology for extending and integrate it into a cyber-physical system. A new self-diagnosis tests sys-
tem has been proposed that applies the proposed architecture proving that it is possible to carry out the
self-diagnosis in realtime of the cyber-physical system and allowing the integration of any type of test. To
validate the implementation of the system, 28 test cases were carried out to cover all its functionalities.

The results show that all test cases passed and, therefore, the system meets all the proposed objectives.

Keywords: Cyber-physical systems, Self-diagnosis, Test automation, Web Application

List of Figures

List of Tables

Listings

Acronyms

1 Introduction

11
1.2
1.3
1.4

Problem
Motivation and Objectives
Contributions

Dissertation Structure

2 State of the art

2.1
2.2
2.3

2.4

2.5
2.6

Cyber-physical systems
Test Automation L.
Keyword-Driven Testing
231 CurrentTools.
Domain-Specific Language
241 ANTLR

3 Analysis and Specification

3.1
3.2
3.3

3.4

Requirements
System structureo
Technologiestouse
3.3.1 Backendtechnology
3.3.2 Frontend technology

Discussion

Vi

.............. 10
.............. 10
.............. 12
.............. 13

Contents

xi

xiii

B W NN e

~N N o o G

14

.............. 14
.............. 16
.............. 17
.............. 17
.............. 19
.............. 21

CONTENTS

4 Architecture

4.1 Test Management and Configuration Architecture
411 Keyword-Driven Testing Methodology
4.1.2 Domain-Specific Language

4.1.3 Proposed Architecture
4.1.4 Example of Application

4.2 Self-diagnosis Tests System Architecture
421 Frontend
422 Backend

4.2.3 Proposed Architecture

4.3 General Architecture for Cyber-Physical System

4.4 Discussion,

5 Implementation

51 Database
52 Backend
521 Models.
522 Grammar
523 Controllers
524 Routes
53 Frontend
531 Components
5.3.2 ObtainingAPldata
53.3 Userlinterfaces
54 Validation

5.5 Discussion

6 Conclusions and Future Work

6.1 FutureWork

Bibliography

Appendices

A Backend code

Al Models
A2 Grammar
A3 Controllers
A4 Routes

22
22
22
23
24
25
26
26
27
28
28
30

32
32
35
36
37
40
44
47
47
48
49
55
59

60
61

62

67

67
69
71
77
82

CONTENTS

B Frontend code

B.1
B.2
B.3
B.4

APl Requests

Authentication

Routing

Pages Code

B.4.1 Execution Components

B.4.2 Configuration Components

viii

92
92
97
98

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
53
5.4
55
5.6
5.7
5.8
59

Block diagram of a standard Language Processor
Block diagram of a Lexical Analyzer
Block diagram of a Syntactic Analyzer

Block diagram of a Transformer

List of Figures

System structure - Representational State Transfer (REST) model

Processing single-thread operations in Node.js .

Object Mapping between Node.js and MongoDB managed via Mongoose

Hypertext Markup Language (HTML) simple structure example
Real Document Object Model (DOM) and React Virtual DOM

Keyword-Driven Testing (KDT) Approach

Proposed architecture for KDT with Domain-Specific Language (DSL)

Frontend tier of the architecture

Backend and Database tiers of the architecture

Proposed architecture for self-diagnosis tests system

Proposed architecture for a self-diagnosis test system integrated with the Cyber-physical sys-

tem (CPS)

Interactions between reaction components . . .
loginPage
ExecutionPage
Execution Results Table
Reportspage
Schedulespage
Form to add and update schedule
Package creation and management page . . .

Documental page about available primitive tests

5.10 System configurations page and data exportand import

11
11
12
12

17
18
19
20
21

23
24
26
27
28

29

48
49
50
50
51
52
52
53
53
54

List of Tables

2.1 Comparison of analyzedtools 9
4.1 DSL Symbols Description 24
5.1 Attributes of configurations collection oo oL 33
5.2 Attributes of tests collection L 33
5.3 Attributes of packages collection 34
5.4 Attributes of reports collection 34
5.5 Attributes of schedules collection L 35
5.6 API-GET requestsimplemented 44
5.7 API-POST requests implemented, 45
5.8 API-PUT requests implemented, 45
5.9 API-DELETE requestsimplemented 45
5.10 Results of test cases performed on test executions and management 55

5.11 Results of test cases performed on visualization reports, documentation of primitive tests

and scheduling of executions 56
5.12 Results of test cases performed in managing and creating test suites and exporting reports

o CSV . o e 57
5.13 Results of test cases performed on system backups, restoring backup versions and managing

system configurations 58

Listings

5.1 ReportModel 36
52 Grammarlexer 37
5.3 Grammar Parser 38
54 GrammarVisitor 39
5.5 Readallreportsoperation 40
5.6 Readonereportoperation. 40
5.7 Create one schedule operation 40
5.8 Updateonetestoperation 41
5.9 Update many schedules operation 41
5.10 Delete one schedule operation. 41
5.11 Execute one primitivetest 42
512 Createnewtestsuite L 42
513 Executeatestsuite 43
5.14 Example of GET request implementation 45
5.15 Example of POST request implementation 46
5.16 Example of PUT request implementation 46
5.17 Example of DELETE request implementation 46
5.18 Example of requestto obtain APl data 48
Al ADPPIS . . e 67
A.2 Configurations Model 69
A.3 Packages Model 69
A4 Reports Model 69
A5 Schedules Model 70
A6 TestsModel 70
AT Lexer . . . e e 71
A8 Parser 71
A9 Visitor ... e 72
A.10 Configurations Controller 77
A1l Packages Controller e 77
A12 ReportsController. 80

Xi

Listings

A13
A.l4
A.15
B.1

B.2

B.3

B.4

B.5

B.6

B.7

B.8

B.9

B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24
B.25
B.26
B.27
B.28
B.29
B.30
B.31
B.32
B.33

Schedules Controller
Tests Controller e
APIRoutes e
Methods for retrieving data from the APl via HTTPrequests
Authentication.js
HomeRoute.js e
PrivateRoute.js
index.html
serviceWorkerjs e

INAEX.JS . . . o o e

ADP.S . . e

ResultsTable.js e
Configuration.js e
Reports.js e
ReportsTableWithDetail.js
ReportsDetailjs
Schedules.js
ListSchedules.js e
AddSchedule.js
UpdateSchedule.js e
Packages.js e
Keywords.js e
NewPackage.js e
EditPackage.js e
AddPackageButton.js L
DocumentationTests.js
DocumentationTable.js
SystemConfigurations.js
ExportCSV.js e
MakeBackup.js

RestoreBackup.js

Xii

81
81
82
92
97
98
98
99

ANTLR Another Tool for Language Recognition
API Application Programming Interface
CPS Cyber-physical system

CRUD Create, Read, Update, and Delete
CSS Cascading Style Sheets

DOM Document Object Model

DSL Domain-Specific Language

DUT Device Under Test

HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation

JWT JSON Web Token

KDT Keyword-Driven Testing

MERN MongoDB, Express, React, Node
MVC Model-View-Controller

ODM Object Data Modeling

REST Representational State Transfer
TSIM Test System Intelligent Machines
URI Uniform Resource Identifier

URL Uniform Resource Locator

WWW World Wide Web

Xiii

Acronyms

ACRONYMS

XML Extensible Markup Language

Xiv

Chapter

Introduction

This research work is inserted in the context of a project called Test System Intelligent Machines (TSIM) and
this project comes out from the union of skills and knowledge of the Consortium between CONTROLAR,
University of Minho [4] and Centro de Computacao Grafica [7]. This arises from the challenge launched
by the partnership between Bosch and the University of Minho through the Bosch Supplier Club Initiative
Program.

Nowadays, CONTROLAR is a company dedicated to the development of hardware and software for the
industry, with a great vocation in the automotive electrical components industry and great know-how in
industrial automation, development of functional and quality test systems for electronic devices. One of
its business areas is the Test of systems and has as base the development and integration of functional
test systems, monitoring data for the validation of electrical characteristics and quality tests, using data
collection plates, generators, and specific equipment for the acquisition and analysis of signal and data.
Within this business unit, Controlar has been working with several leading manufacturers worldwide, such
as the multinational Bosch.

The objective of this project is to guarantee the creation of value in CONTROLAR’s products (as a
current Bosch supplier) and its adaptation to the reality of Bosch 4.0 Industry and the requirements of the
automotive sector. The objective is to do this through the development of tools that make CONTROLAR's
automatic test equipment more flexible, efficient and intelligent.

One of the products that CONTROLAR supplies to Bosch today is the Intelligent Functional Test System
Machine [10]. This machine is a CPS and was developed to perform different levels of functional tests on
electronic devices and components. Bosch uses this machine at the end of the production line to guarantee

the correct functionality of the produced car radios.

CHAPTER 1. INTRODUCTION

1.1 Problem

During the process of habitual use of this machine, the car radios are subjected to various tests and the
machine approves the car radios whose functionalities worked correctly compared to the tests carried out.
The problem appears when the machine detects errors in several car radios in a row, which could be an
indicator that the production line would have failed in one of its segments, thus causing possible errors in
all car radios in that line. Obviously, a scenario in which all the car radios come with errors means that
something has failed in production, and for a company like Bosch this is unacceptable as it will cause
unexpected delays and all the consequences that result. Besides, it makes it necessary to fix all car radios
wich brings increased costs.

When Bosch faces this problem it tends to attribute the problem to the machine and not to its products
and, correctly or not, tries to find out what the problem is with the machine. Another additional problem
is the fact that the machine does not have any module that allows understanding if it is working correctly
or not so the only way they have to know it is by changing physical connections and internal properties
of the machine construction to try to understand if something is a malfunction. But most of the time this
happens, those looking for errors in the machine usually end up always causing damage to the machine
itself without realizing it, as they do not know all the details of its construction and start to change many
properties until they make the machine completely unusable and without finding the problem. The most
likely result of these actions is the need to repair the machine or even replace it, which obviously causes
financial losses for CONTROLAR and Bosch itself.

1.2 Motivation and Objectives

The origin of this work arises from the need to find a solution that can solve the problem stated, but also
that it is an innovative solution with contributions to the world of research in CPS and self-diagnosis tests
systems. The solution is to integrate a self-diagnosis system in the machine that can test the functionality
of the machine itself so that when these car radios failures appear, Bosch can be sure if the problem is
really on the machine or in the production line of the car radios. As the machine is a CPS, it allows the
integration of a software system that can control and manage all of its actions. Therefore, it is necessary
to develop a testing system to manage the tests and their execution, being able to detect internal machine
failures. But before we can develop a system, it is necessary to find the correct architecture for a testing
system. This architecture should be as suitable as possible to the problem we are facing, but also as
generic as possible regarding what a testing system is.

The main objective of this dissertation is to develop a self-diagnosis tests system for integration in a
CPS, which is capable of performing the self-diagnosis of CPS in real-time, thus guaranteeing its integrity.

The steps and objectives for each phase of this work are as follows:

* Analysis and specification of the system;

CHAPTER 1. INTRODUCTION

¢ Develop and propose a new architecture for test management and configuration;
¢ Develop and propose a new architecture for the self-diagnosis tests system;

* Propose an architecture to integrate the self-diagnosis tests system in a CPS;

¢ Development of a self-diagnosis tests system;

 Validation of the self-diagnosis tests system;

* |Integration of the self-diagnosis tests system with the CPS.

The work/research methodology will be as follows:

e Study of the problem;

e Survey of the state of the art;

¢ Study on the technologies to be used in development;
¢ Development of the system architecture;

¢ Development, validation and integration of the system.

1.3 Contributions

As previously mentioned, it was expected not only to find a solution to the problem presented but also
that the solution found was innovative and had contributions to the current state of the art. Therefore, this

dissertation presents the following contributions:

* A modular and extensible architecture for self-diagnosis tests systems that combines the keyword-
driven testing methodology with a domain-specific language for managing and configuring the tests
of the system. This contribution is important because this architecture can be applied to any self-
diagnosis tests system without restricting any type of test, physical or logical, and can also be
extended to CPS.

* An architecture to extend and integrate the self-diagnosis tests system into a CPS. This contribution
is important because this architecture proves the modularity of the architecture of the self-diagnosis

tests system, demonstrating how we can extend it in a CPS.

* A self-diagnosis tests system ready to be integrated into a CPS. This contribution allows validating
the proposed architectures and the usefulness of the system developed in the self-diagnosis of
CONTROLAR’s machines.

As a result of this work, two research papers were produced, published and presented:

CHAPTER 1. INTRODUCTION

e "Architecture based on keyword driven testing with domain specific language for a testing system”
was published at the "32nd IFIP International Conference on Testing Software and Systems” (ICTSS
2020)

* "Development of Self-diagnosis Tests System Using a DSL for Creating New Test Suites for Integra-
tion in a Cyber-physical System” was published at the ”10th Symposium on Languages, Applications
and Technologies” (SLATE 2021)

1.4 Dissertation Structure

This document is organized as follows: Chapter 2 analyzes the state of the art in CPS and self-diagnosis
systems to understand whether strategies or architectures already exist for these two systems to be com-
bined into one. This chapter also examines the state of the art in test automation and KDT methodology,
in addition to analyzing and comparing some current tools that use this tests methodology. A few more
concepts that will also be important for this work are also introduced in this chapter. Chapter 3 analyzes
and specifies the requirements and structure of the system and defines the technologies used for its imple-
mentation. Chapter 4 explains the architecture defined for the system, where this process was divided into
3 steps, starting with the definition of an architecture for the management and configuration of the system
tests, which will then be integrated into the architecture of the self-diagnosis tests system, and finally, the
CPS architecture is composed, integrating all its components and the two previously defined architectures.
Chapter 5 describes the implementation of the system, explaining each of the components involved, and
presents a validation of the system carried out through several of the test cases performed. Finally, chapter

6 contains a conclusion of this work, which summarizes all the work done and also presents future work.

Chapter

State of the art

In this chapter, a review of the state of the art in CPS and test automation will be presented in Sections
2.1 and 2.2, respectively. In Section 2.3, is presented the KDT Framework and some current tools that are
a demonstration of its use, as well as the advantages and disadvantages of using them. In Section 2.4, a
brief introduction is made to the concept of DSL and, more specifically, how to apply this concept with the

Another Tool for Language Recognition (ANTLR).

2.1 Cyber-physical systems

CPS are integrations of computing, network, and physical processes. Embedded computers and networks
monitor and control physical processes. The economic and social potential of such systems is huge, and
major investments are being made worldwide to develop the technology. CPS integrates the dynamics
of physical processes with software and the network, providing abstractions and modelling, design, and
analysis techniques for the integrated whole. But to realize the full potential of CPS, the main abstractions
of computing need to be rethought and improved [32].

According to the state-of-the-art, the CPS provides the necessary technology to improve the realization
and automation corresponding to a complex system on a large scale. Currently, CPS requires solutions
that support it at the device, system, infrastructure, and application level. This is a challenge that includes
an engineering approach and a fusion of communication, information, and automation technologies [22,
35, 50]. To take advantage of the full potential of CPS, abstractions of computing need to be rethought
and improved. But to improve the effective orchestration of software and physical processes, semantic
models are needed to reflect the relevant properties to both [32]. Traditional control systems are adapted
to each case, requiring a very expensive and time-consuming effort to develop, maintain, or reconfigure.
The current challenge is to develop innovative, agile, and reconfigurable architectures for control systems,

using emerging technologies and paradigms that can provide the answer to these requirements [34]. It is

CHAPTER 2. STATE OF THE ART

still necessary to maintain a balance between these requirements and the notion of lightweight and safe
solutions [39]. Despite the great development of CPS, the development of software for it remains a large
and growing area, with a rich body of knowledge [57].

Concerning testing, the communication infrastructure is essential. Most tests focus on communication-
oriented research, privacy and security of the communication infrastructure. For the tests created to be as
appropriate as possible, research and investigation must focus on specific needs. The interconnection of
the tests would provide an excellent opportunity to combine tests with different resources. This will provide
an opportunity to reduce operating and investment costs. Therefore, tests must be designed to provide
a remote interface [8]. Verification and composition testing methods must also be adapted to the CPS.
Creating an automated or semi-automatic method to assess the results of system tests is a challenge in
CPS testing that also deserves attention [5]. The CPS test remains a challenging field of research due to
the increasing heterogeneity, scale, and complexity. While CPS bring some advances to existing testing
theory and technology, there are still many limitations to the broader industrial application of CPS testing
[60]. The challenge will be to automate the maximum number of tasks in this process and get the most
out of CPS.

2.2 Test Automation

The importance of testing automation is directly related to the quality of the final product. The execution of
all functional tests before delivery guarantees the lowest incidence of errors in the post-delivery of the final
product. As such, software developers/creators are required that their projects maintain a certain quality
standard during all phases of development until the launch of a new product. Therefore, testing at the end
of each stage no longer works in a professional environment. This is because the occurrence/discovery of
unforeseen obstacles can significantly delay the development of the software. In recent years, it has been
found that the software development market has increased its competitiveness, due to the modernization
of the technologies involved and due to the maturity of the capacity to develop software. Thus, the range of
information technology solutions, to meet the needs of consumer organizations, has increased consider-
ably, which ends up making it difficult for users to choose when purchasing a product. In this competitive
scenario, consumer organizations, when opting for software, are increasingly relying on quality criteria.
One of the pillars for ensuring this quality of the software product is the testing process [6].

In the current software market, the concern for creating quality and error-free products has led com-
panies to look for models and processes that guarantee quality to satisfy the needs of their customers.
Unsuccessful projects, with expired deadlines and defective products, lead to customer dissatisfaction,
high maintenance costs and compromise the company’s image. The main objective of a software test is
to define the implementation of this software that meets all the specifications and expectations defined
and expected by the customer, that is, the objective is to “verify” if what was specified in the requirements
phase is what really was developed. When verifying that the implemented software meets all specifications

and expectations defined and expected by the customer, it is also looked for errors in the software. The

CHAPTER 2. STATE OF THE ART

software test must be seen as a part of its quality process. Test automation is not limited to just performing
the tests but above all being aware of when and where the tests need to be carried out, thus leaving the
test team more time to plan more effective tests with better quality accuracy instead of worrying about
scheduling them. Thus, automation results in the mechanization of the entire process of monitoring and

managing the needs for testing and evaluation associated with software development [17].

2.3 Keyword-Driven Testing

KDT is a type of functional automation testing methodology that is also known as table-oriented testing or
action-based testing. In KDT, we use a table format, usually a spreadsheet, to define keywords or action
words that represent the content of the tests in a simple way. But it also allows the use of a keyword
to represent part of the test case and in this way make the creation of the test case simpler, since we
can reuse the keywords and the whole process they represent in different test cases. It allows novice or
non-technical users to write tests more abstractly and it has a high degree of reusability. The industrial
control software has been having an enormous increase in complexity as technology has developed and
requires a systematic testing approach to enable efficient and effective testing in the event of changes.
KDT has been proving that it is a valuable test method to support these test requirements [60]. Recent
results from other researchers have shown that the design of the KDT test is complex with several levels
of abstraction and that this design favours reuse, which has the potential to reduce necessary changes
during evolution [26]. Besides, keywords change at a relatively low rate, indicating that after creating a
keyword, only localized and refined changes are made. However, the same results also showed that KDT

techniques require tools to support keyword selection, refactoring, and test repair [18].

2.3.1 Current Tools

Here are presented some of the most well-known test automation tools that implement the keyword-driven
test framework, as well as their characteristics and comparisons between them. Finally, an analysis is

made of the advantages and disadvantages of using this type of tools.

e Selenium: is an easy-to-use tool and is available for free under the Apache 2.0 license. It is an
automated tool and is used to test existing applications on the web. This tool supports different
browsers, namely the main ones (Google Chrome, Internet Explorer, Mozilla Firefox, etc.) [49]. In
addition to being easy to use and being an intuitive tool, it does not require advanced technological
or programming knowledge, and it also adapts to different programming languages [20]. It does
not need installation since it works as an add-on to the browser. One of the disadvantages of this
tool comes from the fact that it does not have its own repository for the objects, implying greater

attention and care in its use [48].

CHAPTER 2. STATE OF THE ART

¢ QuickTest Professional: belonging to the Hewlett Packard quality center, it belongs to the functional
testing category. It has a wider range of supported platforms since, in addition to working as web
testing, it works on the operating system itself, requiring a license for its use. It has some privations
since it has its own IDE being exclusive to it, just accept the VBScript language and finally, it only
works in the browser associated with Microsoft, Internet Explorer [56]. For a good understanding
and use of this test tool it is necessary to have a prior knowledge of basic programming. QTP has
its own object repository, but it nevertheless has many limitations when it comes to interacting with

a cloud [31]. It has a commercial cost, having a proprietary license.

e TestComplete: is an automatic test tool that supports various types of applications from the web
(Internet Explorer, Mozilla Firefox and Google Chrome), mobile and desktop to Java, .NET and WPF
technologies [52]. This software monitors the most used keyword-driven operations and facilitates
access to them, however for this to be possible the program must contain the Keyword test editor
functionality [28]. Finally it is considered a very versatile tool as it supports a wide variety of pro-
gramming languages from JavaScript, Python and Vbscript to C and C ++, however it only supports

the Microsoft Windows operating system and presents a high-value commercial license [51].

* SilkTest: is a robust automation tool for testing web and corporate applications [14]. It is a functional
testing tool as well as a regression testing tool that is economical and tests the aforementioned
applications efficiently and intuitively. This tool saves time, tests scripts effectively and tests several
platforms and also several browsers [36]. This software supports Windows only, but it nevertheless
supports both the Windows-specific browser, Internet Explorer, as well as Mozilla Firefox. Unlike
QTP, it supports several programming languages, from Java, 4Test, VBScript, C and VB.net. It also

has a proprietary license at moderate cost.

* RobotFramework: has an open-source testing structure that uses the keyword-driven approach,
that is, keyword-driven test for their automation, thus becoming an automatic testing tool [16]. In
addition to the keyword-driven, this program has the ability to use behaviour-driven and data-driven
test, however, it does not have support from popular IDE’s which makes it difficult to debug the
tests. It is also considered easy to install and use as it does not depend on extensive knowledge of
high-level tests and provides several tools in several libraries that support the creation and execution
of test cases [25]. It is a free tool under the Apache 2.0 license that was developed for Windows
and Linux only and supports the most popular browsers, such as Internet Explorer, Mozilla Firefox

and Google Chrome.

* Ranorex: is also an automated tool that tests web applications, with the main disadvantage of not
being free. It is the best software within those mentioned, for easy installation for non-programmers.
This tool can be used to identify objects, such as automatic object synchronization, use of the Xpath
expression, features not provided by Selenium, for example. Also, it offers resources for reuse [25].

It is only existing software for Microsoft Windows, supporting different browsers: Google Chrome,

CHAPTER 2. STATE OF THE ART

Safari, Microsoft Edge, Internet Explorer and Mozilla Firefox, without any kind of free license. In
addition to the support of web applications, it also offers possibilities to work in applications of the
operating system, as well as in terms of mobile applications, existing for Android and iOS. Like QTP,
it has its own IDE, having the advantage of not being limited to a single programming language,
and here, there is the possibility to program in C, VB.Net or Python. In addition to being an easy to
use tool and very intuitive in its interaction, it has the ability to create tests without the use of any
type of programming and supports the execution of several tests in parallel. Finally, it presents a

shareable object repository [47].

Operating Browser Application Allowed

Tool System License Support Languages Cost
Java, C#,
| Web Ruby,
Selenium All All Apache 2.0 - Python, Free
Application
PHP,
Perl, ...
QuickTest Microsoft Internet Web and . Commercial
. . Owner Desktop VBScript .
Professional Windows Explorer o (Free Trial)
Application
| Web, Mobile ' 2oCTPt |
Microsoft Java, Commercial
TestComplete _ All Owner and Desktop .
Windows Application C++, (High)
PP Python
_ Internet Java,
SilkTest VMV:E;O;&J[Explorer, Owner yeblication 4Test, Commercial
Firefox PP VB, C#
Microsoft Web and é?,\;;sn
RobotFramework Windows, All Apache 2.0 Desktop Net Pé:arl Free
Linux Application PHP
Microsoft Web and C#, VB, Commercial
Ranorex _ All Owner Desktop .
Windows o Python (Free trial)
Application

Table 2.1: Comparison of analyzed tools

After analyzing and observing the characteristics of each of these tools, the following advantages and

disadvantages are presented as a conclusion of their use:

2.3.1.1 Advantages

* Fast execution of test cases;
* Software testing in less time;

¢ All manual testing problems are solved by automated testing;

CHAPTER 2. STATE OF THE ART

* Repeating test cases are handled in an easy way.

2.3.1.2 Disadvantages

¢ Sometimes some knowledge of programming and skill is needed to use these tools;
* Some tools have high purchase prices;
¢ Maintenance is a complicated task and can be expensive;

e They do not have general use, that is, some tools have key limitations in relation to browsers or

operating systems.

2.4 Domain-Specific Language

DSL is a language meant to be used in the context of a particular domain. A domain could be a business
context or an application context. A DSL does not attempt to please all. Instead, it is created for a limited
sphere of applicability and use, but it's powerful enough to represent and address the problems and so-
lutions in that sphere [19]. A DSL can be used to generate source code from a keyword. However, code
generation from a DSL is not considered mandatory, as its primary purpose is knowledge. However, when
it is used, code generation is a serious advantage in engineering. DSL will never be a solution to all soft-
ware engineering problems [37], but their application is currently unduly limited by the lack of knowledge
available to DSL developers, so further exploration of this area is needed [29]. Other researchers used
DSL in CPS and left their testimony of how the specification language hides the details of the implemen-
tation. The specifications are automatically enriched with the implementation through reusable mapping
rules. These rules are implemented by the developers and specify the execution order of the modules and
how the input/output variables are implemented [9]. This allows the reuse of software components (e.g.

modules or classes) and improves software productivity and quality [30].

2.4.1 ANTLR

ANTLR is a parser generator, a tool that helps you to create parsers [42]. A parser takes a piece of text
and transforms it into an organized structure, a parse tree, also known as an Abstract Syntax Tree (AST)
[55]. AST is like a story describing the content of the code, or also as its logical representation, created by

putting together the various pieces [43]. Figure 2.1 shows the parsing process.

10

CHAPTER 2. STATE OF THE ART

Character
Stream

oy oy oy
Lexical Analysis Syntatic Analysis Transformations
A — | — | —
Token AST
Stream (Parse Tree) Output

Figure 2.1: Block diagram of a standard Language Processor

The Parsing process shown in Figure 1 goes through three major phases explained below:

e Lexical Analysis:

It is performed by a component usually called Lexer, Scanner, Lexical Analyser or Tokenizer;

The Lexer reads and divides the input (character or byte stream) into tokens applying lexical

rules;

Lexical rules are defined using regular expressions and aim to identify terminal symbols and

specify tokens;
In the end, the Lexer generates a token stream as output.

Figure 2.2 shows the illustration of this process:

Terminal Symbols

—Source Language Lexer Token Stream———»

Error Messages

Figure 2.2: Block diagram of a Lexical Analyzer

» Syntactic Analysis:

It is performed by a component usually called Parser, Syntatic Analyser or Grammar;
The parser gives the token stream a structure by checking token order against structural rules;
These Structural rules define the order and structure of token combination;

In the end, the Parser generates a parse tree as output.

11

CHAPTER 2. STATE OF THE ART

— Figure 2.3 shows the illustration of this process:

Non Terminal Symbols

Token Stream Parser Parse Tree— »

Error Messages

!

Figure 2.3: Block diagram of a Syntactic Analyzer

¢ Transformations:

It is performed by a component usually called Transformer or Walker and it follows the pattern

Visitor or Listener;

The Transformer traverses the parse tree in order to produce some output;

The traversal defines an action for each node of the parse tree;

The action can output text (string) or any other complex object.

Figure 2.4 shows the illustration of this process:

Parse Tree Transformer Output (any object)}——»

Figure 2.4: Block diagram of a Transformer

ANTLR is a parser generator that uses ALL(*). It parses the input dynamically at runtime and uses a
top-down parser left to right by constructing a Leftmost derivation of the input and looking any number of
ahead tokens when selecting among alternative rules [44]. The Visitor pattern let us decide how to traverse

the tree and wich nodes we will visit. It also allows us to define how many times we visit a node [41].

2.5 REST

REST is an architectural style for providing standards between computer systems on the web, making it

easier for systems to communicate with each other[2]. It is a protocol developed specifically to create web

12

CHAPTER 2. STATE OF THE ART

services, which aims to be platform and language independent, using Hypertext Transfer Protocol (HTTP)

for communication between servers. This protocol is based on 6 fundamental principles[11, 12]:

* (Client-Server Architecture - there is a separation of the different responsibilities of the system in
modules, such as, for example, the separation between the system interface and the service mod-

ules;

o Stateless - all requests are processed independently, the server is unaware of the status of the

client-side application;

e (Cache - consists of storing data on the client-side, to reduce the need for requests to the server,

optimizing the system;

* Uniform Interface - this architecture focuses on simplicity, accessibility, interoperability and the

ability to discover resources;

* Layered System - the use of different layers allows the system to protect certain components, making

them not all accessible in public;

¢ Code-On-Demand - which allows the server to provide the code transfer capability that can be used

on the client.

2.6 Discussion

In this chapter, the state of the art of this dissertation was presented. A review of the current state of
research development in CPS, as well as exposing the proven importance of test automation. The concepts
of the KDT framework were presented since it will be a key element in the development of this work as well
as some tools that are examples of its use today. The topic DSL was also addressed, which will also be
another key element of this work. Within the domain of DSL, it was explained how ANTLR works internally.
Finally, the REST protocol was presented, as well as the reasons for being, today, one of the most used
protocols in the construction of web services.

This state-of-the-art review revealed that, although there are several tools dedicated to the management
and execution of tests, none of them are intended for testing or, more specifically, for self-diagnosis of CPS.
Therefore, the goal of this work will be, taking advantage of those that are the best characteristics of the
automatic test systems, to develop a system aimed at the self-diagnosis of the CPS itself.

That said, having the necessary theoretical knowledge already, the next chapters will focus more on
the process of modelling, developing and implementing the system. Starting with the explanation of the
requirements, where all the clauses that the system must comply with will be mapped, followed by a
specification and analysis of the technologies to be used as well as the system architecture, ending with

the implementation chapter, where all the work will be explained.

13

Chapter

Analysis and Specification

The purpose of this chapter is to provide a detailed analysis of the requirements that the system must
satisfy, which were also accompanied by the requirements of CONTROLAR since the system will be devel-
oped for application in its CPS. After the analysis and specification of the requirements, the presentation

of the system structure and the technologies to be used for the development of the system follows.

3.1 Requirements

The main objective of this work is the construction of a system that allows the self-diagnosis of the CPS
through the execution of tests on it. Therefore, this system must be also able to manage the tests performed

and also the results obtained. Thus, system requirements include:

¢ General requirements

— Unlimited number of errors (scalable solution) - The system must be able to define an unlim-
ited number of errors and be scalable to be able to update in the future with new situations

that appear;

— Modular tests at different levels - The system must be able to execute several test levels

(physical and logical) in a modular way;

— Ability to self-assess (frequently) - The test equipment can run the self-diagnosis system peri-

odically or on request;

— Communication and assured integration of electronic tests with the system - The system wiill
have to communicate bi-directionally with the Controller / Server of the electronic tests to
receive inputs related to the test sequencing for diagnostics of the machine and send the test

results back;

14

CHAPTER 3. ANALYSIS AND SPECIFICATION

— Universal - The system should work on any operating system without compromising its relia-
bility;
— Intuitive interface - The system must have an interface that allows the user, in a simple and

intuitive way, to use it unequivocally.

¢ Specific requirements

— Multiple selection of tests to run - The user selects the test set he wants to run;
— Test execution request - The tests selected by the user are performed;

— Running a test suite - Trigger the execution of a set of tests performed by the Server / Controller

of the electronic tests through the communication established between this and the system;

— Runremote and local tests - The system should allow the user to perform local tests (machine)

or remote tests (car radio);
— Schedule a test suite to run - The user can schedule the time to run a set of selected tests;

— Presentation of test results - After the execution of the tests and the communication of their
results to the system, by the Controller / Server of the electronic tests, the results obtained

for each of the tests performed are presented to the user;

— Consultation of documentation for each test - The user can consult the documentation and

information (metadata) associated with each of the tests in the system;

— Consult the history of tests performed - The history of the test reports performed must be

available to the user for consultation;

— Automatic update of tests available on the system - The system should allow adding, updating

and removing of tests available on the system automatically;

— Provide a specific language for creating new test packages - The system should allow using

a specific language for programming test packages;

— Test package creation - The user must be able to create new test runs, specifying those
runs using the language provided by the system (this will be available as a file for execution,

planned or on request, in the same way as the tests available in the system).
— Add new test packages to the system - The user can add new test packages to the system;

— Update test packages in the system - The user can update test packages existing in the

system;
— Remove test packages from the system - The user can remove test packages from the system;

— Export executions reports to CSV file - The user can export the data related to the execution
reports to a CSV file, specifying the start and end dates of these reports or exporting all

available ones;

15

CHAPTER 3. ANALYSIS AND SPECIFICATION

— Perform system backups - The user can perform backup copies of the system at any time,

being able to select and specify the data he wants to copy;

— Restore system backups - The user can restore a system backup at any time, correcting

possible failures or corrupted data;

e User types and permissions

— Industrial operator - The industrial operator is the most basic type of user in the system. He
is responsible for realizing the tests to the car radios and the machine in the industrial day-
to-day. This user will only have access to the so-called execution mode, in which he will only
be able to execute tests and packages. In this mode, the user must not have access to any

other functionality so that it is not possible to compromise the system;

— Test Manager / Administrator - The test manager or administrator, as the word suggests, will
be responsible for managing the system and all of its settings, in addition to any tests that
the system will have available for execution. This user has access to all system resources.
This user has access to all the features of the system and will be someone with more tech-
nical capabilities, so he has a more sophisticated environment, but maintaining the graphic

simplicity that characterizes an industrial production environment.

3.2 System structure

After elaborating the system requirements, this section aims to present an overview of the system struc-
ture. In the requirements analysis, the solution chosen for the structure of this system is a client-server
architecture, based on the REST model. The client-server model aims at the division of tasks to reduce the
system load. The server will offer a series of services to a specific user, that is, an Application Programming
Interface (API), and will perform the tasks requested by the user and return the data. On the other hand,
the client is responsible for requesting a specific service from the server, through messages. This is the
most used model in the web community since it is possible to run several clients without compromising
the operation of the system.

The system will then be composed of the web client and the server. The web client will communicate
with the server via HTTP requests and, in turn, the server will respond via HTTP responses. The server will
be responsible for connecting to the database, making the necessary transactions or queries and returning
the results.

Figure 3.1 represents an illustration of the system structure.

16

CHAPTER 3. ANALYSIS AND SPECIFICATION

. "

3

\

HTTP Requests

Client

|::> Queries u
‘ Client
QiL —

} Results ~

API Server Database

20, , 400)
‘: g

HTTF Responses

Client

20,
=’

Client

Figure 3.1: System structure - REST model

3.3 Technologies to use

After analyzing the requirements and the structure of the system, this section describes the chosen tech-
nologies for the system development and implementation. As we saw in the previous section, the system
can be divided into two main components. The component that represents the Client-side will be called

Frontend and the component that represents the Server-side will be called Backend.

3.3.1 Backend technology

This component of the system will include the API Server and the database that will be used to ensure the
consistency of the system data. Once it was decided that the system should be implemented as a web
application, it makes sense to use a platform that works in the web language, JavaScript [45]. For this,
Node.js [15] was chosen, which consists of a development platform based on Google JavaScript Engine
V8, which allows the JavaScript language to be used on a web application server.

The main objective of application development in Node.js is to be able to create fast and scalable
applications that, at the same time, perform well with low memory consumption [54]. For that to happen,

the platform is based on 3 concepts:

* Non-blocking I/0;
¢ Asynchronous event-driven programming;

¢ Single thread.

Unlike other development frameworks, Node.js does not rely on multithreading to run simultaneous

processes, operating only on a single thread, using an event-based approach and non-blocking input and

17

CHAPTER 3. ANALYSIS AND SPECIFICATION

output. The use of non-blocking /0 operations prevents the application from being blocked when calling
any operation. This means that the server never waits for data to be returned. These types of attributes
make Node.js lightweight and efficient compared to other structures that use 1/0 blocking operations [33].

In figure 3.2, it is possible to observe the processing of operations in Node.js:

Lo gl
e HTTP Requests
‘ > Single
l- I I > thread
q - -ff-}
\\9@0}!“ ,’\\D\
':er\‘\"' '_-/@*\'}
R
. o
n) ..52}\\
PO
+0 N
Ia

Figure 3.2: Processing single-thread operations in Node.js

As we can see in figure 3.2, several | / O operations can occur in parallel and the respective callback of
the event will be invoked as soon as the operation is finished. For this to happen, an event loop is required,
which is a mechanism that will perform two tasks in a continuous cycle: event detection and triggering
event handlers. The event loop is just a thread running within a process, so we can draw two conclusions:
only one event handler will be running at the time and any event handler will run until the end, without
being interrupted [1].

To maximize the potential of Node.js, we use the Express Framework, which provides a robust set of
features for web applications and will make the system more flexible. This framework allows the creation
of an APl in a very fast and simple way, having a multitude of middleware methods at your disposal [13].
In summary, this framework helps us to maximize our API developed in Node.js.

For data consistency, the MongoDB database was chosen. MongoDB is a document database, which
means that it stores data in JavaScript Object Notation (JSON) type documents. As the data will always
be traded as JSON documents, the use of MongoDB will maintain this consistency in a more natural,
expressive and powerful way than any other model [53]. The way to ensure the best communication
between the APl and the database will be through Mongoose, which is an Object Data Modeling (ODM)
library for MongoDB and Node.js [21]. It manages relationships between data, provides schema validation

and is used to translate between objects in code and the representation of those objects in MongoDB.

18

CHAPTER 3. ANALYSIS AND SPECIFICATION

In figure 3.3, we can see this mapping of objects between Node.js and MongoDB through Mongoose.

n\%de — Mmongoose

- MONGO DRIVER

.1nongo

Figure 3.3: Object Mapping between Node.js and MongoDB managed via Mongoose

3.3.2 Frontend technology

For choosing the Frontend technology, obviously, there are many options, many of which are based on
JavaScript and all are intended to assist in the process of building user interfaces. For this system, the tool
chosen was React.js [23] due to its ability to interact with applications developed with the technologies
chosen for Backend [46].

In React.js it is easy to create an interactive Ul because it projects simple visualizations for each
application state, efficiently updates and renders the right components when their data changes. These
declarative views make the code more predictable and easier to debug [3]. React.js allows the creation of
encapsulated components that manage their own state and through the composition of these components,
it is possible to create more complex interfaces with less complexity in the code.

For the creation of components, it is still necessary to understand the basics of 5 more technologies
with which we form the components in React.js:

e HTML - is a web page development language and is the main markup language on the WWW.
Through HTML it is possible to create web pages, which are essentially HTML documents that are
interpreted by browsers [58]. Its syntax is quite simple, based on tags, as in Extensible Markup
Language (XML), where each tag will represent an element of the page, as can be seen in figure
3.4.

19

CHAPTER 3. ANALYSIS AND SPECIFICATION

<html>»
<hesad>»
<title>My Page</title>
</head>
<body>
<h1l>My Heading</hl>
<p>»My paragraph.</p>»
</body>»
< /html>

Figure 3.4: HTML simple structure example

e (Cascading Style Sheets (CSS) - is a language used to describe the appearance of HTML elements
[59], that is, through CSS it is possible to manipulate the various HTML elements so that the
appearance of the application is as expected. It is an easy-to-use technology, simpler than similar
ones, with agile design and no license to use.

e JavaScript-is an interpreted and object-oriented programming language [38]. Initially, it was created
to be executed only on the client-side, that is, in browsers, but nowadays it is also used on the server-
side, as in Node.js. The use of this technology will be relevant both on the Node.js server-side and

on the React.js client-side, as it is through it that the logic of the components will be developed.

e JSON - is a format for exchanging data. Its structure is based on the key-value relationship, that
is, for each value represented, a key is assigned [27]. This format is easily interpreted by humans
and machines. In this case, this technology will be particularly important since it will be used to

exchange data both between the server and the client and between the server and the database.

e HTTP -is a communication protocol that aims to exchange data between the client and the server.
In this protocol, the React.js server sends requests, HTTP Requests, to the Node.js server, which

after executing the tasks, responds with HTTP responses with the data.

Since the component’s logic is written in JavaScript instead of models, we can easily pass data through
the application and maintain the state outside the DOM [24]. The React virtual DOM allows the implementa-
tion of some intelligent alternative solutions that guarantee the quick rendering of the components, which
is necessary since the data has to be presented immediately and effectively. In these situations, React
finds an ideal way to update the Ul and all you need to do is provide the data flow through the API [40].
Basically, the React virtual DOM acts as an intermediate step whenever there are changes in the web page
and allows the renderings to be faster and more efficient, making the pages highly dynamic.

We can see the difference between Real DOM and React Virtual DOM in figure 3.5.

20

CHAPTER 3. ANALYSIS AND SPECIFICATION

updates _’f
Web page Real DOM ‘
< events _
updates |) updates ("
Web page Reacéj(sm\;irtual Real DOM ‘
PE—
events \ J events \

Figure 3.5: Real DOM and React Virtual DOM

3.4 Discussion

As mentioned, the system analysis and specification were carried out in this chapter. The system require-
ments have been divided into three parts to allow a better interpretation in the development of the system.
A basic system structure was defined, separating it into two, the APl Server, responsible for accessing the
data and implementing the logic, and the Client, responsible for the user interface. Finally, the technologies
chosen for the development of the system were presented and explained. For the server-side, MongoDB,
Express and Node.js were chosen and for the client-side, React.js was chosen. These technologies, due
to their recurring use together in the web community, are also known as MongoDB, Express, React, Node
(MERN) Stack.

Having all the objectives well defined and the necessary theoretical knowledge about the structure and
technologies to be used in the construction of the system, in the next chapter the final abstraction of the

entire system will be presented in the form of general and detailed architecture for it.

21

Chapter

Architecture

In this chapter, the general architecture of the CPS will be presented. However, as this architecture encom-
passes several diversified components, its modelling was divided into three phases. In the first phase, the
part of the architecture that concerns the management and configuration of the system tests is explained.
The architecture of the system to be developed is explained below. In the end, the general architecture of
the CPS is presented.

4.1 Test Management and Configuration Architecture

The architecture that we propose in this section aims to automate and facilitate the process of creating new
tests. In this architecture, we use the KDT methodology in conjunction with a DSL. To fully understand the
architecture and how its components interconnect, it will be explained first how KDT and DSL are applied

and only later how they are integrated into the same architecture.

4.1.1 Keyword-Driven Testing Methodology

KDT will be used to abstract low-level code scripts, associating each script with a keyword that will represent
it most descriptively and explicitly possible. In this way, the user does not need to know the details of the
script implementation, but only what it does. We will also associate each keyword with metadata related
to the corresponding test, which will be stored in a database. Figure 4.1 represents the approach taken in
using KDT. The names given to the tests in the figure are only fictitious names to show that the names

given to the keywords must be as descriptive as possible.

22

CHAPTER 4. ARCHITECTURE

Tests
Scripts
Keywords
Read
Write
Connect [
Disconnect
. o
Close
Tester
Tests
Metada

Figure 4.1: KDT Approach

In Figure 4.1, we see a stack of scripts that represent the test scripts that already exist in the system,
in this case, primitive tests that focus only on testing a feature or set of features, as long as they can be
well-identified only by a word that can serve as a keyword. We see also the representation of a database
that will be where all the information and metadata about the tests existing in the system will be stored,
that is, the same ones that are represented in the stack of scripts. Connected to the database and the
stack of scripts, we see a table with keywords in which each keyword represents all the information related
to a test. This table is the most relevant element in the figure because it is where we can relate all the
information from the stack of scripts and the database, and this is done with just one word that concedes
testers with little programming knowledge to interpret what each test does or means. Finally, we have the
link between the Tester and the keywords table that demonstrates the Tester will only have access to the

keywords, without needing to know any details of implementation.

4.1.2 Domain-Specific Language

This use of KDT alone does not bring great advantages, as we still need someone to design a test execution
flow according to its purpose. This is where the importance of DSL comes in, as it allows to define a friendly
language for testers, without the need for very sophisticated programming knowledge. The proposed lan-
guage is extremely simple but allows the creation of new scripts with new execution flows and logical rules
applied. This is achieved only using the keywords defined by the KDT and some terminal symbols defined
in the DSL. Table 4.1 shows the symbols of the defined DSL terminal and what they represent.

23

CHAPTER 4. ARCHITECTURE

Symbol Description
keyword Catches the keywords in the script
Catches the "next”symbol, which means that after that symbol the next block
to be executed arrives

(Catches the opening parenthesis
) Catches the closing parenthesis
? Catches the conditional expressions from the script
Catches the next block of code to be executed when a condition is false
& Catches the logical operator that means intersection

[Catches the logical operator that means union
Catches the end of the script

Table 4.1: DSL Symbols Description

4.1.3 Proposed Architecture

To achieve the full potential of the integration between KDT and DSL, a final abstraction of all these pro-
cesses is necessary. Figure 4.2 presents the architecture that guarantees to abstract the entire complex
process of creating new tests for the system, thus giving the possibility to users less endowed with pro-

gramming knowledge to be able to build new tests.

Keywords
Read
Write N =
Connect
Disconnect T
Open U & Get Tests
Close Q 'l‘
L] Cﬂmp”e
Symbols —
= L]
Generate Code
[
) Write Script l
}J '
L]
L]
—
L]
&
New Test Script

Figure 4.2: Proposed architecture for KDT with DSL

The two tables illustrated in Figure 4.2, Keywords and Symbols represent the elements that can
be used to form new test scripts. The elements present in the Keywords table are the keywords that

correspond to the tests defined and available in the system to be used in the creation of new tests. It is

24

CHAPTER 4. ARCHITECTURE

also possible to verify the connection between the existing tests programmed in lower-level languages, such
as C++, with the Keywords table. The elements in the Symbo1s table contain the terminal symbols of the
defined DSL, that is, the only symbols recognized by the DSL. These allow giving logic and organization
to the new tests of the system. Therefore, it is possible for the Tester, with the elements available in these
two tables, to write the new test script and this is what is represented with the connections between the
Write Script element and the tables.

As soon as a new test script is written, the DSL will analyze it, using a Lexer and Parser, and verify
that it is syntactically and lexically well written. This step is represented in the Compile connection. If the
script complies with the defined rules, the DSL will compile that script and generate the code for a new
test. But, for that, it needs to have access to the code of the tests that were used through the keywords
and that is what is represented with the connection Get Tests. At the end of this process, the DSL will
be able to generate the code for a new test. This is represented in the Generate Code link. From that

moment, the new test is available for execution in the system.

4.1.4 Example of Application

In this section, a complete example of creating a new test with this architecture is presented to demonstrate
its simplicity and efficiency. In this example, it is assumed that the scope of the tests will be the same as
shown in the Keywords table in figure 4.2 and the symbols that we can use are those shown in Table 4.1.
The first step is to compose the script with the keywords and available symbols. In this example, we will

use the following script:
(Connect & Open) ? Read -> Write -> Close : Disconnect ;

Here the scripts corresponding to the keywords Connect and Open will be executed and if both return
a true value the execution will follow to the block just after 2. If any of the scripts return a false value, the
next block of execution will be the one after the : symbol. The block after ? will execute the three scripts
corresponding to the keywords Read, Write and Close sequentially in the order they are specified in the
script. The block after : will execute only the script corresponding to the keyword Disconnect.

Once the script is written, it will be analyzed by Lexer that will verify that all the elements that are in the
script are part of the language. In this case, all symbols will be recognized successfully and then it is the
time for Parser to continue with his analysis and check that all the rules of phrase formation are respected.
After these checks, if the script is written correctly, it will be compiled and generated the new source code
for the new test script. The source code of the new test will be based on the source code of the tests that

were used with the keywords but adding the logic applied with the symbols used in the script.

25

CHAPTER 4. ARCHITECTURE

4.2 Self-diagnosis Tests System Architecture

In this section, the architecture for the self-diagnosis tests system will be presented. To obtain a complete
understanding of this architecture, it was decided to divide it into 3 tiers, Frontend, Backend and Database.

In each tier, the internal components will be presented and explained.

4.2.1 Frontend

In this subsection, the Frontend tier of the architecture is presented and explained. We can see this in

figure 4.3.

FRONTEND TIER

OPERATOR

SYSTEM
CONFIGURATION

l |
I

USER INTERFACE SERVER
(REACT)

TESTS EXECUTION

Figure 4.3: Frontend tier of the architecture

In this tier, we have two first elements, OPERATOR and TEST MANAGER, which represent the two types
of users that the system has. Therefore, according to the permissions of each one, this tier makes available
to each user the respective interface that will give access to the realization of the functions of each one in
the system.

The two elements below in the tier, TESTS EXECUTION and SYSTEM CONFIGURATION, represent the
different interfaces that each user will have access to. In this case, the OPERATOR type user will have
access to the system TESTS EXECUTION mode and the TEST MANAGER type user will have access to
the SYSTEM CONFIGURATION mode. The differences between these two users are listed and explained
in section 3.1 and the interfaces to which they correspond must conform to those specifications.

The last element of this tier, USER INTERFACE SERVER, represents the logic of the Client. It is in
charge of implementing any logic that exists in this tier, such as, for example, providing an adequate
interface for the type of user that must comply with it or even the manipulation of data in the formation of
web pages. It is also this server that establishes the connection to the Backend tier, making HTTP requests

to request data or actions, receiving and validating data that arrives through HTTP responses.

26

CHAPTER 4. ARCHITECTURE

4.2.2 Backend

In this subsection, the Backend and Database tiers of the architecture are presented and explained. We

can see this in the figure 4.4.

BACKEND TIER

DATABASE TIER
APl FRAMEWORK

(EXPRESS)
[Queries
BUSINESS LOGIC SERVER
(NCDEJS)
l
JSON Data
TESTS MANAGEMENT < I
(KDT+DSL)

l MONGODB

OBJECT DATA MODELING
(MONGOOSE)

Figure 4.4: Backend and Database tiers of the architecture

The Backend tier, unlike what was done in the Frontend tier, will be analyzed from the bottom up,
as it will be understood more intuitively. In this tier, we start by looking at two elements in parallel. The
OBJECT DATA MODELING element represents the module responsible for establishing the connection be-
tween this tier and the Database tier, that is, it is this module that performs the queries and receives data
from the database. Element TESTS MANAGEMENT is responsible for the acquisition and management of the
primitive tests of the system and the configuration of new test suites for the system, using the KDT method-
ology and a DSL. This component represents the previous architecture, presented and explained in section
4.1, which is now integrated into this tier of the system. Above, we see the BUSINESS LOGIC SERVER
element that represents the Server that implements all the logic of this tier. This component is responsible
for executing the tests and for the internal organization of all other components of this tier. Manages all
data arriving at the system, guaranteeing its integrity, and also provides the routes or services through
which this tier responds to Clients requests. The last element of this tier, API FRAMEWORK, is responsible
for building and making the REST API available to the Client. This element implements the routes that are
created in the BUSINESS LOGIC SERVER element and, in this way, the Client can make HTTP requests
to the Server.

Finally, it remains only to present and explain the Database tier, which is also the simplest tier of this
architecture. It consists of the system database, which is a document database that stores documents in
JSON. All data sent to the Backend tier, via OBJECT DATA MODELING, is in JSON, which is an advantage

because all data processing and manipulation in the system is always done in this format.

27

CHAPTER 4. ARCHITECTURE

4.2.3 Proposed Architecture

After presenting and explaining all the tiers of the system, we can now form the architecture by joining
the tiers according to the structure that was previously defined for the system. It should be noted that this
architecture corresponds to the self-diagnosis tests system that will later be integrated into a CPS and,
therefore, the physical components referring to the CPS and external software components will not be

represented here. Figure 4.5 shows the system architecture.

BACKEND TIER

FRONTEND TIER DATABASE TIER
API FRAMEWORK

(EXPRESS)
OPERATOR
HTTP Requests [Queries =
> BUSINESS LOGIC SERVER

(NODEJS)
SYSTEM
TESTS EXECUTION CONFIGURATION HTTP Responses |
- __JSON Data
[I TESTS MANAGEMENT < |

I (KDT+DSL)

USER INTERFACE SERVER [MONGODB
(REACT)

OBJECT DATA MODELING
(MONGOOSE)

Figure 4.5: Proposed architecture for self-diagnosis tests system

In this architecture are represented the 3 main tiers of the system, already explained in the previ-
ous sections. The Frontend tier, responsible for the Client-side, communicates with the Backend tier,
responsible for the system logic, through HTTP requests and responses. The Backend tier communi-
cates with the Database tier, responsible for the consistency of the system data, through requests in the
form of queries and responses in the form of JSON documents, all processed and validated through the
OBJECT DATA MODELING module, mentioned and explained above.

The most important point of this architecture, which sets it apart from the rest, is the inclusion and in-
tegration of the Test Management and Configuration Architecture, proposed in section 4.1, which, together
with the other components of the system, will allow the system to guarantee its integrity and functional-
ity through self-diagnosis tests in real-time and also configuring new tests for the system with much less

complexity.

4.3 General Architecture for Cyber-Physical System

In this section, the final CPS architecture is presented and explained, where we integrate all its components
with the self-diagnosis tests system. This architecture aims to allow the CPS to obtain the ability to diagnose
itself and, thus, be able to identify the failures in case of any internal error. The architecture, being the final

abstraction of the system, can be seen in figure 4.6 and is explained below.

28

CHAPTER 4. ARCHITECTURE

e ————————————————
CYBER-PHYSICAL SYSTEM ARCHITECTURE ; SELF-DIAGNOSIS TESTS SYSTEM
i
7777777777777777777777 1 [
! ELECTRONIC TESTDRIVERS | 1 API FRAMEWORK
e ' | (EXPRESS)
EXECUTABLE |
DRIVER A T
REST API
METADATA BUSINESS
{ LoGIC SERVER I
(NODEJS)
_________________ : EXECUTABLE]
E DEVICE UNDER TEST | DRIVER] USER TYPES
{ METADATA TESTS MANAGEMENT EEERIIERERCE SYSTEM _
i| TsIMMACHINE (KDT+DSL) ey CONFIGURATION |11 | 1 s Manacer
(HARDWARE) (!)]
7}
EXECUTABLE ¢
CAR RADIO DRIVER '
! OBJECT DATA TESTS EXECUTION |
= MODELING] OPERATOR
; METADATA ioNCoer]

EXECUTABLE V/
DRIVER

‘- : ‘ DATABASE
METADATA [MCNENDE)

Figure 4.6: Proposed architecture for a self-diagnosis test system integrated with the CPS

In this architecture, we can easily identify 4 groups of components in which three of them will form an
integral part of the CPS: Devices Under Test, Electronic Test Drivers and the Self-Diagnosis Tests System.
The last group will be an important intervenient, but it is not an integral part of the CPS, the User Types.
Each of these groups will be explained in detail, as each has its particularities.

The Devices Under Test group contains, as the name implies, the devices that can be subjected to tests
which are the car radios and the machine itself. The elements CAR RADIO and TSIM MACHINE represent
the two types of devices, the car radio and the machine, respectively.

The Electronic Test Drivers group is responsible for the primitive tests of the system, which in this
case will be mostly electronic tests, but which can be any type of test as long as they respect the same

integration format. Each element of this group must respect the following format:

e EXECUTABLE DRIVER - Provides an executable driver file to run that will contain several primitive

tests that can be run and test the Devices Under Test;

e METADATA - Provides a metadata file that contains all the information about the tests that the driver

can perform.

The Self-Diagnosis Tests System group is where the system developed in this work is represented,
which will allow users to manage and execute the system tests. This system will be fed with primitive tests
from the group of Electronic Test Drivers. The TESTS MANAGEMENT element is responsible for loading all
the metadata of the primitive tests, available in the METADATA files of the Electronic Test Drivers group,
and managing them so that they are saved in the system database and are available for execution. The
link element with the system database is the 0BJECT DATA MODELING that will make the connection
and handle queries and transactions to the database, which is the DATABASE element. This test man-

agement is done through the KDT methodology, explained previously, and the configuration of new test

29

CHAPTER 4. ARCHITECTURE

suites made through the developed DSL also explained previously. The tests will be performed by the
BUSINESS LOGIC SERVER element, which will receive the execution orders from the end-user and pro-
ceed with the executions. The way to do this is to execute the drivers that are available as executable files.
This Server will know which tests are available to execute on each driver since the TESTS MANAGEMENT
element has already collected the metadata of all drivers and at that moment made available for execution,
all the tests contained therein. This entire organization is orchestrated by the Server, which is responsible
for the logic of the system and is represented by the element BUSINESS LOGIC SERVER. This Server not
only controls all the data and logic of the system but also defines the routes and types of requests that
can be made by the Client-side. It defines the services that will be available and this is called an API. The
API FRAMEWORK element is responsible for creating and providing a REST API for any client to access,
but obviously with the appropriate permissions, also defined by the BUSINESS LOGIC SERVER.

In this system architecture, USER INTERFACE SERVER represents the Client-side, that is, it is the
server responsible for creating the web interface for end-users. It makes HTTP requests specifying the
services, through routes, that it wants to access, to obtain the data it needs for its pages. Two types
of interfaces are available, the execution interface, represented by the TESTS EXECUTION element, and
the test and configuration management interface, represented by the SYSTEM CONFIGURATION element.
Each of these interfaces will have its correspondent as a user, which brings us to the last group specified
in the architecture, the User Types.

This group is represented by the USER TYPES element and represents the different types of users of
the final system. The first and most basic type of user is the OPERATOR, that is, the industrial operator
who is working and commanding the CPS and performs only the tests or test packages of the system.
The second type of user, already more sophisticated, is the TEST MANAGER, who is someone with the

responsibility of managing the entire system, using the appropriate interface for that.

4.4 Discussion

As mentioned, in this chapter the architecture of the system was presented and explained, dividing it into
3 stages. In the first step, the architecture for managing and configuring the system tests was built. In the
second step, the first architecture is presented as an encapsulated element that integrates the architecture
of the self-diagnosis tests system. This architecture represents the system architecture to be developed in
this work. Finally, the architecture of the CPS was composed, which integrates all the components of this
system, including the architecture of the self-diagnosis tests system. We opted for the greater detail of the
architecture of the self-diagnosis tests system and the test management and configuration architecture
because in the context of this work they are the focus of development.

The defined architecture represents an innovation for research in self-diagnosis tests systems and CPS,
as it will allow the joining of these two types of system in one. Although the focus of the architecture is
the application in a CPS, it is also applicable to any type of system, since the test feed is what defines the

type of tests that will be performed on the system and, therefore, is generic to accept any level of testing.

30

CHAPTER 4. ARCHITECTURE

This architecture follows the separation and structuring in microservices, which also allows the execution
of the tests to be carried out remotely or by any other system with access permissions to the API provided
by the Server.

In the next chapter of this dissertation, having already gathered all the necessary information and

knowledge, the entire process of implementing the system will be presented.

31

Chapter

Implementation

This dissertation aims to create a self-diagnosis tests system that will be an integrated application in CON-
TROLAR's cyber-physical machines that will allow its self-diagnosis in real-time. The proposed architecture
for the self-diagnosis tests system allows the management, configuration and execution of system tests,
presenting a modular and extensible model that allows exploring different levels of tests to be performed
on the devices under test.

This chapter describes the implementation of the system and its validation. Thus, Section 5.1 explains
each collection of data maintained in our database. Section 5.2 describes the Backend tier where the
system logic is, including the management of the system data and the configuration and execution of the
tests. Section 5.3 describes the Frontend tier that contains the user interface and the different features
available for each type of user. Section 5.4 presents the results obtained from the validation performed
to ensure the correct functioning of the system. Finally, section 5.5 discusses the implementation of the

system and the results that have emerged from it.

5.1 Database

For the database, MongoDB was used, which is a document database, that is, it stores the data in the
form of JSON documents. According to the data that the system needs, 5 collections of data have been
identified to be stored in the database: Configurations, Tests, Packages, Reports and Schedules. Each of
these collections contains specific attributes and will be explained in detail.

The configuration collection contains attributes about some configurations that may differ from ma-
chine to machine and are necessary to ensure the correct functioning of the system. The attributes of this

collection are specified and explained in table 5.1:

32

CHAPTER 5. IMPLEMENTATION

Attribute Description Value Type
i Thlslattrlb.ute is the unique id of the system String
configurations
This attribute contains the MongoDB bin directory, which
dbBinDir contains the executables needed to perform exports and | String
imports to the database
A00Dir This attribute contains the directory where the system Strin
PP folder is located 8
: This attribute contains the directory to which system .
backupDir backups will be exported and imported String
, . This attribute contains the id that allows access to the .
userConfiguration|D . . String
system configurations

Table 5.1: Attributes of configurations collection

The tests collection stores all metadata for the system’s primitive tests. This metadata is provided by

those who create and make the primitive tests available, so they are only imported into the system database

and updated whenever there are changes. The attributes of this collection are specified and explained in

table 5.2:
Attribute Description Value Type
. This attribute is the unique id of each primitive test in .

_id String
the system

active This attribute has a true or false value, depending on whether Boolean
the test is active, that is, available for execution, or if it is not
This attribute is the test id provided by the team that develops

id the primitive tests and will only be used in the system to call | String
the test execution
This attribute contains the name of the driver that must be .

module . String
executed to call the test execution

name This attribute contains the name of the test String

description This attribute contains a description of the test String

defaultParam This attribute contains the pgrameter that, by default, String
must be used when performing the test

Table 5.2: Attributes of tests collection

The packages collection stores all metadata for the new test suites that are created in the system from

the primitive tests. The attributes of this collection are specified and explained in table 5.3:

33

CHAPTER 5. IMPLEMENTATION

Attribute Description Value Type

_id This attribute is the unique id of each test suite in the system | String

active This attribute has a true or false value, depending on whether Boolean
the test suite is active, that is, available for execution or not

name This attribute contains the name of the test suite String

description | This attribute contains a description of the test suite String
This attribute contains the test suite code script developed by

code the system test manager. This code is developed according to | String
the rules of the language specified in the system

ath This attribute contains the name of the executable file String
generated to run the test suite
This attribute contains the list of primitive test ids (_id) that

tests are used in the test suite. They work as references to the Array
primitive tests.

Table 5.3: Attributes of packages collection

The reports collection stores all reports of execution of primitive tests or test packages in the system.

The attributes of this collection are specified and explained in table 5.4:

Attribute Description Value Type
id This attribute is the unique id of each report in String
the system
. This attribute is the id of the user who performed .
id_user . String
the execution
date This attribute contains the execution date String
results This attribute contains the list of results of all Arra
tests performed, each with its own attributes y
. This attribute is the unique id (_id) of the .
results | id_test primitive test that was performed String Array
odule This attribute contains the name of the driver Strin
that have been executed to call the test g
This attribute contains the name of the test .
name String
performed
This attribute contains the test result .
reSU|t n n m: H n n |n Strlng
("success”, "inconclusive”, "fail”)
This attribute contains the message sent about .
message . String
running the test
. This attribute contains the test execution
runtime . Number
time (ms)
This attribute contains the return value of the .
resultValue String
test performed

Table 5.4: Attributes of reports collection

34

CHAPTER 5. IMPLEMENTATION

The schedules collection stores all primitive test executions or test suite executions scheduled for a

specific time by the user. The attributes of this collection are specified and explained in table 5.5:

Attribute | Description Value Type

_id This attribute is the unique id of each schedule in the system | String

This attribute has a true or false value, depending on whether

the schedule is enabled to execute or not

This attribute contains the time when the schedule is to .

hour String
be executed

This attribute contains the list of ids (_id) of all primitive tests

that must be performed

This attribute contains the list of ids (_id) of all test suites that

must be performed

active Boolean

tests Array

packages Array

Table 5.5: Attributes of schedules collection

After specifying the data to be saved in each collection of the system’s database, the next section will

explain how the system interacts with the database, through queries, to obtain the data for its operation.

5.2 Backend

The Backend is the system tier responsible for managing the database and making the data available
to Frontend. Therefore, framed in the Model-View-Controller (MVC) architecture, it is the Controller of the
system and establishes the connection between the database and the user interfaces, thus guaranteeing
the integrity of the data, not allowing other components to access or change them.

The technology used to develop this server was Node.js combined with Framework Express. This server
is organized so that there is a division of the code according to its function, that is, instead of all the code
being in one file, it was divided into different files and directories according to its purpose on the server.
This will allow the reuse and modularity of the developed code, which will also facilitate its maintenance
and understanding in the future.

Thus, the server structure is as follows:

* Models: Here are the models that correspond to the collections saved in the database. Each model
contains the attributes corresponding to its collection and performs validations related to data types

to ensure that wrong data types are not inserted into the database;

e Controllers: Here are the files responsible for performing all system operations, such as database

queries, executing primitive tests and test suites, and creating new test suites using the DSL defined;

e Grammar: Corresponds to the DSL developed for the system, where is the grammar, composed by

a Lexer and a Parser, and the Visitor that generates the code for the new test suites;

35

10

11

12

13

14

15

16

17

18

19

20

21

CHAPTER 5. IMPLEMENTATION

e Routes: Here is the file that routes the requests, from the client, that is, from the user interfaces to
the controllers, according to the Uniform Resource Locator (URL) request. As soon as the requested

operations are completed, sends the requested data to the client;

e app.js: The server is activated here, through the imported Express module. From the moment it is

activated, it can start receiving requests from the Client. This file can be seen in Listing A.1.

Each of these elements mentioned above, has a fundamental role in the Server’s logic, so each of

them will be explained in the next subsections individually.

5.2.1 Models

The models represent, as mentioned, the collections stored in the database and here each model must
then represent its collection and validate the data types of its attributes before transactions are made with
the database. In these models, the module "mongoose” is imported, which is an object data modelling
that will allow connection to the database in an asynchronous environment and will send and receive data
in JSON format, which will facilitate the use of the data in the system.

Listing 5.1, shown below, serves as an example for the structure of the model files, choosing to demon-
strate the model of the reports collection as it is the most complex and realizing this, all the others will be

of the same or lesser level of complexity.

Listing 5.1: Report Model

const mongoose = require(”mongoose”);

const testsSchema = new mongoose.Schema(
{
id_test: { type: mongoose.Schema.Types.ObjectId, required: true },
module: { type: String, required: true },
name: { type: String, required: true },
result: { type: String, required: true },
message: { type: String, required: false },
runtime: { type: Number, required: true },
resultValue: { type: String, required: false },
}s
{ versionKey: false }
)3

const reportSchema = new mongoose.Schema(
{
id_user: { type: String, required: true },
date: { type: String, required: true },
results: [testsSchema],
b

36

22

23

24

25

10

11

12

13

CHAPTER 5. IMPLEMENTATION

{ versionKey: false }
);

module.exports = mongoose.model(”report”, reportSchema);

We can see in line 1 of Listing 5.1 the import of the "mongoose”module. Next, between lines 3 and
14, inclusive, we see the model in the form of an object that represents the structure of a test result with
its attributes and data types. This object serves as an auxiliary structure, in this case, to be introduced
in the report model. Between lines 16 and 23, inclusive, we see the report model, also in the form of an
object with its attributes and data types. In line 20, where the attribute "results”is specified, which is a
list of objects, which in this case are objects with the structure specified above for the results of each test.
Finally, in line 25 we see the export of the created model, making it available for use by other files, in this
case, it will be used by the Controller who will be responsible for the reports collection operations.

The remaining models were also developed according to the existing collections and follow the same
format, but applying their particularities according to the attributes it contains. All of them can be seen in
Appendix A.1.

5.2.2 Grammar

The DSL developed in this dissertation aims to enable the creation of new test suites, from the primitive
tests available in the system, with rules and logic applied. This will allow the test suites to be optimized
to execute in the shortest possible time and may shorten certain executions whenever the suite specifies
it. The language was created from the identification of terminal symbols, that is, the symbols that would
be identified by Lexer. After this step, the Parser was created, where the rules of logic and sentence
construction of the grammar are specified.

The terminal symbols have already been identified in table 4.1. The Lexer structure is shown below in
Listing 5.2:

Listing 5.2: Grammar Lexer

lexer grammar TestlLexer;

NEXT : '->' ;
AND : '&' ;
OR : '"|"' 3
IF @ '?'
ELSE : ':'

RPAREN : ')' ;
LPAREN : '(' ;

END : ';'

37

14

15

16

17

18

19

20

10

11

12

13

14

15

16

17

18

19

20

21

22

CHAPTER 5. IMPLEMENTATION

KEYWORD : ([A-Za-z]+([/ _-1[A-Za-z]+)*)

WS
: [\r\n\t] -> skip

J

The structure of the Lexer is quite simple, starting with its identification and then just specifying all
terminal symbols that must be recognized. The way these symbols are specified is through regular expres-
sions, that is, for each symbol the regular expression that represents it is defined, however, always taking
care that this definition does not include unexpected elements and, therefore, is not ambiguous.

The symbols we see in this grammar are very intuitive and this is also one of its advantages, as it
will be easy for the end-user to understand, which is one of the objectives. The only symbol that gives
rise to any further explanation is the KEYWORD symbol. This symbol must recognize all the names of the
primitive tests introduced in the script and, therefore, its regular expression includes isolated words or also
the composition of several words, thus giving the user some freedom to be more expressive in the choice
of keywords since this it is also the purpose of the KDT methodology applied in the system.

After defining the terminal symbols and the Lexer specification, it is time to specify the sentence

construction rules with these symbols and this is done in the Parser, which is shown below in Listing 5.3:

Listing 5.3: Grammar Parser

parser grammar TestParser;

options {

tokenVocab=TestlLexer;

test
: statement END

statement
: condition #Conditional

| seq #Sequence

b

condition
. expr IF statement ELSE statement #IfElse
| expr IF statement #If

)

seq

: KEYWORD (NEXT statement)x

38

23

24

25

26

27

28

CHAPTER 5. IMPLEMENTATION

expr
: LPAREN KEYWORD (AND KEYWORD)* RPAREN #And
| LPAREN KEYWORD (OR KEYWORD)* RPAREN #O0r

)

The Parser also starts with its identification, following the reference for the Lexer that it provides the
symbols to be able to know which are the terminal symbols. After these two steps, the sentences of the
grammar are specified and here there is no more than a specification of the sequences that the elements
of the language can follow. We can see, for example, in the element statement two possibilities. One
possible statement is the condition that represents a conditional expression and the other possibility
is a seq that represents a tests sequence. The most important part of the Parser to retain is the elements
that come at the end of the lines for each possibility determined at the beginning of words by a #. This
allows the Visitor to know the possible paths in the parsing tree that this Parser will generate.

So that this grammar can now be used by the system and generate the parsing tree that will be
interpreted by the Visitor, it is still necessary to find a way to use it in the system. Since ANTLR offers the
transformation of these grammars for several known programming languages, we will proceed to transform
the grammar into JavaScript and include the code directly in the system. For this, it is necessary to execute

the following command:
$ antlr4 -Dlanguage=JavaScript Lexer.g4 Parser.g4 -no-listener -visitor

In this command, we specify the Lexer and Parser to be transformed and we also specify that we do
not want the generation of a Listener because, by default, it generates the Listener. Finally, we specify the
generation of a Visitor because, by default, it does not generate the Visitor. After executing this command,
several files will be generated, among which, the Visitor that will be the most important in the next steps,
as this is where the code to be generated for the new test suites will be specified.

We can see below, in Listing 5.4, an example of a Visitor function:

Listing 5.4: Grammar Visitor

TestParserVisitor.prototype.visitAnd = function (ctx) {

UH

for (let 1 = 0; 1 < ctx.KEYWORD().length; i++) {
this.auxList.push(ctx.KEYWORD(1));

}

return "";

this.aux0p

+;

The Visitor's strategy developed is to go through the code script through the elements specified in
the Parser and each element generate the corresponding code. The generated code, within the Visitor, is

nothing more than a string that is incremented and filled up to the end of the parsing tree. All keywords

39

CHAPTER 5. IMPLEMENTATION

are also being saved in a list so that the list and the string containing the generated script are returned at
the end. The list of keywords is necessary because after generating this code it will be necessary to match
the keywords with the primitive tests but this is a process already done in the packages controller.

The entire Visitor code can be seen in more detail in Appendix A.9.

5.2.3 Controllers

The controllers, as mentioned earlier, are responsible for performing the system operations, that is, all
queries, all executions of primitive tests and test suites and the creation of new test suites. So the way
the controllers are structured is similar to the models, there is a file for each model that is responsible
for carrying out the operations related to that collection or model. In each controller, several operations
are available according to what is necessary for each one, but what is common to all are the Create,
Read, Update, and Delete (CRUD) operations. In addition to these operations, there are even more that
are particular to only a few models, such as the execution of primitive tests which is an operation developed
only on the tests controller, the creation of new test suites that make use of the developed DSL and the
execution of those same test suites which are operations developed only on the packages controller.

The following operations demonstrate some examples of the CRUD operations mentioned, with differ-

ent controllers:

Method to get all reports from the database, ordered by date in descending order:

Listing 5.5: Read all reports operation

1 module.exports.getReports = () => {
2 return Report.find().sort({ date: -1 }).exec();
3 s

* Method to get information related to one report, passing the id of the report as an argument:

Listing 5.6: Read one report operation

1 module.exports.getReport = (idReport) => {
2 return Report.findOne({ _id: idReport }).exec();
3 s

* Method to insert a schedule in the schedules collection, passing as an argument an object with the

attributes and values of the new schedule:

Listing 5.7: Create one schedule operation

1 module.exports.insertSchedule = (schedule) => {
2 let s = new Schedule(schedule);

3 return s.save();

4 };

40

CHAPTER 5. IMPLEMENTATION

e Method to update a test in the tests collection, passing as argument the id of the test to be updated

and an object with the attributes and values of the updated test:

Listing 5.8: Update one test operation

1 module.exports.updateTest = (idTest, newTest) => {
2 return Test.findOneAndUpdate({ _id: idTest }, newTest);
3 };

¢ Method to update all schedules in the schedules collection, in this case, to remove a particular test
from all schedules, passing the id of the test to remove as an argument. This method is generally
used when a test is removed from the system and it no longer makes sense to have a scheduled

execution including the respective test:

Listing 5.9: Update many schedules operation

1 module.exports.removeTestFromAll = (idTest) => {
2 return Schedule.updateMany(

3 {1}

4 { $pull: { tests: idTest } }

5).exec();

6 s

e Method to delete a schedule from the schedules collection, passing the id of the schedule to be

removed as an argument:

Listing 5.10: Delete one schedule operation

1 module.exports.deleteSchedule = (idSchedule) => {
2 return Schedule.deleteOne({ _id: idSchedule });
3 };

The operations shown below are those mentioned different from the usual CRUD, however, given the

context of the system they are fundamental to its performance:

¢ Method to execute a primitive test, passing as arguments the directory where the electronic test

drivers are kept, the id of the test to be executed and the parameters of the test.

In the first phase of this method, a query is made to obtain all the information related to the test
and the counting of the execution time starts. Then, the driver responsible for executing the test
is executed, which executes it and returns the results. As soon as the results arrive, the run time
count stops and the test run time is saved in the results. Finally, some information about the test
is added to the results to be saved in the reports and the object containing the results of the test

execution is returned:

41

CHAPTER 5. IMPLEMENTATION

10

11

12

13

14

15

16

10

11

12

13

Listing 5.11: Execute one primitive test

module.exports.runTest = async (driversDirectory, idTest, defaultParam) => {

let test = await Test.findOne({ _id:

let startTime =

idTest }).exec();

process.hrtime()

exec(${driversDirectory}\\${test.module} "${idTest}” "${defaultParam}”", (err,

— stdout, stderr) => {

b

if (err)

else {
let e
let r
resul
resul
resul
resul

retur

return stderr
ndTime = process.hrtime(startTime)
esult = JSON.parse(stdout)
t.runtime =
t.id_test = idTest;
t.module =

t.

test.module;
name = test.name;

n result;

(endTime[1] / 1000000).toFixed(3);

Method to create a new test suite and insert it into the database, passing an object with the pack-

age’s attributes as an argument.

This method starts by using the grammar defined, using the Lexer and the Parser, to analyze the

code script that was written by the user. At the end of this process, a parsing tree was generated

and passed on to the Visitor of the grammar as an argument. If no error is found in the parsing tree,

the Visitor will go through that tree and generate the code for the new test suite. After generating

the code for the new script, it will be written to a file that will be saved in the directory where the

system’s test suites are. Then, the new test suite is also inserted into the database with all its

attributes:

Listing 5.12: Create new test suite

module
let
let
let
let

parser.buildParseTrees =

let

if (tree.parser._syntaxErrors

.exports
chars =
lexer =
tokens

parser

tree =

let list
let visi
visitor.

let text

.insertPackage = async (package) => {
new antlr4.InputStream(package.script);
new Lexer(chars);

= new antlr4.CommonTokenStream(lexer);

= new Parser(tokens);

true;

parser.test();

) {
0fTests = await Test.getTests();
tor = new Visitor(listOfTests);
visitTest(tree);

nn

File = visitor.getRes() + ;

42

CHAPTER 5. IMPLEMENTATION

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

let t = visitor.getTests();

let tests = t.filter(function (elem, pos) {
return t.indexOf(elem) == pos;

3

let fileName = package.name.toLowerCase().replace(/\s/g, '_') + ".js";

let filePath = scripts_path + fileName;

fs.writeFile(filePath, textFile, "utf8”, function (err) {
if (err) throw err;
let t = new Package({
name: package.name,
description: package.description,
code: package.script,
path: fileName,
tests: tests,
s
return t.save();
});
} else {

return { errors: tree.parser._syntaxErrors };

Method to execute a test suite, passing the id of the test suite to be executed as an argument.

This method starts by querying the package collection for information about the package to be
executed. After receiving this information, it only needs to import the file containing the test suite
code and call the "execute” method that triggers the execution of the test suite. In the end, wait

for the results and return them.

Listing 5.13: Execute a test suite

module.exports.runPackage = async (idPackage) => {
let package = await Package.findOne({ _id: idPackage }).exec();
if(package){
const file = require(”./../public/Packages/” + package.path);
return await file.execute();
¥
return {};
¥

The operations demonstrated and explained are examples of the different types of operations that

the system performs and supports, however, we can see that all of them have in common the fact that

each of them performs only a certain action that allows to isolate these actions and reuse them frequently

in different parts of the code for different purposes. This will also allow better maintenance of these

43

CHAPTER 5. IMPLEMENTATION

operations, since whenever it is necessary to make any changes in any of them, it will be done only once
and in the indicated location, instead of having to change in different locations, which would easily cause
inconsistencies in the code in the long-term.

All controllers can be seen in Appendix A.3.

5.2.4 Routes

The server’s routes, as mentioned previously, are responsible for defining the requests that the client can
request and in this case, they are the ones that receive these requests, forward them to carry out the
operations that are necessary to satisfy them, and in end, send the data to the client. The way the routes
are built is based on the URL, that is, for each request, a URL is associated and as the defined API follows
the REST architecture these routes will follow very specific and clear formats to be more noticeable the
type of operation that needs to be executed.

As we saw earlier in the controllers, CRUD operations are the most common and here in routes there
is also a way to signal requests to determine the type of operations they are dealing with. In this case, they

are HTTP requests and in this system, four types of requests were implemented:

e GET - The GET method is used to retrieve information from the server using a given Uniform Re-
source Identifier (URI). Requests using GET should only retrieve data and should have no other

effect on the data. We can see the GET requests that the api provides in table 5.6;

e POST - A POST request is used to send data to the server. We can see the POST requests that the
api provides in table 5.7;

e PUT - Replaces all current representations of the target resource with the loaded content. We can

see the PUT requests that the api provides in table 5.8;

e DELETE - Removes all current representations of the target resource provided by the URI. We can
see the DELETE requests that the api provides in table 5.9.

Method | Route Sub-route Description

GET / Checks for updates in primitive tests
GET /backups Get backups available in the backups directory
GET /configurations Get system configurations

GET /tests Get the primitive tests

GET /tests /:idTest Get metadata from a primitive test
GET /packages Get the test suites

GET /packages /:idPackage | Get metadata from a test suite

GET /reports Get the execution reports

GET /reports /:idReport Get an execution report

GET /schedules Get the system execution schedules
GET /schedules /:idSchedule | Get an execution schedule

Table 5.6: API - GET requests implemented

44

CHAPTER 5. IMPLEMENTATION

Method | Route Sub-route | Description
POST /login Log in the user and assign a token
POST /backups Back up the system
POST /restore /:backup | Restore the system with a backup
POST /configurations Create configurations for the system
POST /tests /run Execute a primitive test
POST /packages Create a new tests suite
POST /packages /run Execute a tests suite
POST /reports Create an execution report
POST /schedules Create an execution schedule
Table 5.7: API - POST requests implemented
Method | Route Sub-route Description
PUT /configurations | /:idConfiguration | Update system configurations
PUT /packages /:idPackage Update a tests suite
PUT /schedules /:idSchedule Update an execution shedule
Table 5.8: API - PUT requests implemented
Method | Route Sub-route Description
DELETE | /packages | /:idPackage | Delete a tests suite
DELETE | /schedules | /:idSchedule | Delete an execution shedule

Table 5.9: API - DELETE requests implemented

In the previous tables, we see all the services that the developed APl makes available to the client. The

implementation of all of them will not be detailed here, but only of some, as a demonstrative example of

the implementation format, which, except for some more complex requests, is always the same.

In Listing 5.14, shown below, we can see the implementation of the route for the GET /tests request:

Listing 5.14: Example of GET request implementation

router.get(”/tests”, function (req, res) {

Tests.getTests()

.then((data) => res.jsonp(data))

.catch((error) => res.status(500).jsonp(error));

s

In this example, we see in line 2 the use of "Tests”, which is the reference already imported into the

tests controller. Then, with this reference, the " getTests” method is called, which is exported in the tests

controller. So, what is happening is exactly what was described previously, this router is forwarding the

operation to the controller responsible for it, and then it just waits for the results to arrive to return them

to the client.

45

CHAPTER 5. IMPLEMENTATION

In Listing 5.15, shown below, we can see the implementation of the route for the POST /packages

request:

Listing 5.15: Example of POST request implementation

router.post(”/packages”, function (req, res) {
Packages.insertPackage(req.body)
.then((data) => res.jsonp(data))

.catch((error) => res.status(500).jsonp(error));

3

In this example, the process is very similar to the previous one. The only difference is that in POST
requests the information to be saved in the system comes in the body of the request ("req.body”) and
therefore it is necessary to send this information to the method that deals with the operation.

In Listing 5.16, shown below, we can see the implementation of the route for the PUT /schedules/:idSchedule

request:

Listing 5.16: Example of PUT request implementation

router.put(”/schedules/:1dSchedule”, function (req, res) {
Schedules.updateSchedule(req.params.idSchedule, req.body)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

s

In this example, we see again the same similarities, but with a slight difference. PUT requests usually
bring the identifier of the element that we want to update in the sub-route and, therefore, to have access to
it we must access the request parameters ("req.params”). In the previous example, we saw the passage
of the body information of the request to be passed to the controller and now we also see but with the
addition that the identifier of the element to be updated is also passed.

In Listing 5.17, shown below, we can see the implementation of the route for the DELETE /pack-

ages/:idPackage request:

Listing 5.17: Example of DELETE request implementation

router.delete(”/packages/:idPackage”, function (req, res, next) {
Packages.deletePackage(req.params.idPackage)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));
});

In this example, we see the same structure again, but to delete an element from the system, we only
need to access the request parameters to get the identifier and pass it to the controller.

All other requests implemented by the API can be seen in Appendix A.4.

46

CHAPTER 5. IMPLEMENTATION

5.3 Frontend

The frontend is the system tier responsible for creating and managing graphical interfaces for end-users. In
this case, there are two types of users in the system, already specified in section 3.1, and it is important to
understand well the limits on what each one should be allowed to do or not do. The first type of user, more
basic, will only have access to the execution of primitive tests and test suites. The second type of user,
already responsible for managing the system and also the test suites for it, has access to all other features.
The technology used to develop this tier was React, as it will allow us to create dynamic interfaces, with
components managing their state and the possibility to compose the components themselves. This allows

the code to be modularized and, in the future, it will be easier to understand the code.

5.3.1 Components

As mentioned, the development of components in React becomes an asset, but to master the use of
technology it is necessary to understand the fundamentals and the way the components interact with

each other. The three concepts that | highlight are the following:

e State: The state of a component is mutable and can be changed by the component itself, due to
the actions performed by the user. Information stored in a component’s state can be accessed as

attributes of the component, such as "this.state.name”;

* Props: Props are state information from a parent component to a child component, so the child
cannot directly change the props but can access them in the same way as the parent, such as
"this.props.name”. They are generally used to determine some properties of the child component

when it is created:;

e Events: Events are how the child component should inform the parent component of changes that
have occurred. This is how a child component can change the state of the parent component,

through events that will inform the parent component so that it updates its state.

Thus, to understand how these concepts apply in practice and make the most of the use of React

components, we can see below, in figure 5.1, an illustration of how these concepts are related:

47

CHAPTER 5. IMPLEMENTATION

PROPS /N
] EVENTS EVENTS
COMPONENT

(sTatE
> o,
& A '9% ﬁ%@
w =
i iy
[y
EVENTS EVENTS
COMPONENT COMPONENT COMPONENT
(DsTatE (DsTatE (Dstate
A,
ﬁ”) =] o]
VB =) w 3 i) =
& N i S 2 u
w w
Y k.
COMPONENT COMPONENT COMPONENT COMPONENT
STATE STATE STATE STATE
:\ / O » O > EVENTS

Figure 5.1: Interactions between reaction components

5.3.2 Obtaining API data

Another important aspect for this part of the system to work as planned is to obtain the data that is
managed by the Backend tier. For the graphical interfaces built to be as optimized as possible and quick
in obtaining data, so that the user does not have to wait long to load the pages, the data must be obtained
in the best way. And here the decision made was that the parent components of each page make the
data requests to the API at the time of its creation. With this, what happens on the system pages is that
whenever the user changes the page or enters a new page, the data is requested and loaded. This will allow
the actions taken by the user on the components belonging to these pages to be carried out much more
quickly, giving the user the perception that nothing has happened when real events and state changes
have already occurred witch allows the page to become dynamic with speed desired.

The way to obtain the data is through HTTP requests, explained previously, therefore, to make the code
clearer, a file was created only for the methods of requesting data from the API. This file contains the base
URL of the Data API and all methods add only the route and sub-route as needed. We can see below, in

Listing 5.18, an example of a method of obtaining data by making an HTTP request to the data API:

Listing 5.18: Example of request to obtain API data

export const getTests = async () => {
try {
const response = await axios.get(${url}/tests’);
return response.data;
} catch (error) {
const statusCode = error.response ? error.response.status : 500;

throw new Error(statusCode.toString());

48

CHAPTER 5. IMPLEMENTATION

In this example, we can see how HTTP requests are made to the API. These requests are made through
the imported module "Axios”since the technology does not provide this functionality natively. Another
important feature that we see in this example is the use of the keyword "await”, which in this particular
case makes the method wait for the results of the API. This is also one of the strong characteristics of the
technologies used, as they allow to establish of asynchronous communications.

All other methods that make API requests to the Frontend are visible in Appendix B.1.

5.3.3 User Interfaces

Taking into account the users of the system, the division of access to the pages by each user was carried
out immediately through the login on the first page, which will allow assigning a JSON Web Token (JWT)
to the user and will only give him access to the appropriate functionalities. We can see the login page in

figure 5.2:

Sistema de Autodiagnéstico dos Sistemas de Teste Automatico

Escolha o modo de execugao:

EXECUGAO CONFIGURAGAO

Figure 5.2: Login Page

On this page, the user must enter his ID (provided by CONTROLAR) and enter the appropriate mode.
If it is an operator it must enter the execution mode, if it is the test manager it must enter the configuration
mode. Still, the system according to the ID only allows users to enter the appropriate mode.

On the page available to the operator, it is only possible to execute primitive tests or test packages. The
operator has, on the left side of the interface, a list with all the primitive tests of the system. To execute
these tests, it must select the ones he wants, and they can execute all at once, and send them to the list on
the right which is properly identified as the list of tests to be executed. After selecting the tests and passing
them to the execution pipe, it just needs to press the button to execute. The system will execute the tests
and, in the end, a table will be presented to the user with the results obtained. The execution interface

and the results table presented to the user can be viewed below, in figures 5.3 and 5.4, respectively:

49

CHAPTER 5. IMPLEMENTATION

Execucgao de Testes AR

Testes Primitivos Pacotes de Testes
Lista de Testes Executar Lista de Testes Executar
[J check_inversion [J Loopback_Reverse O Pacote AMFM
[J conf_Contr_Resp [0 Loopback_Disable [J Pacote Exemplo
[conf_Master [J Eletric_failure [J Pacote Completo
[J conf_Slave [J send_packet [J Pacote Loopback
[0 value_sNrR O rai_Eror [0 Pacote BroadR-Reach
[0 Power_off O Poweron [0 Pacote Sequéncia
[J set_Tune_fm_frequency [J Pacote Condicional
EXECUTAR EXECUTAR

Figure 5.3: Execution Page

The way described above for the process of selecting and executing primitive tests by the user is the
same for the test suites but on the right side of the page. The results in this case are also shown in the

same way.

Relatorio dos Testes efetuados

Médulo Tempo de Execugio Mensagem Resultado
AM_seek_left 0.020ms O teste ocorreu com sucesso. 1710 unidades Passou®
AM_seek_right 0.015ms O teste ocorreu Com sucesso. 1710 unidades Passou®
am_power_on 0.014ms O teste ocorreu Com sucesso. Sem valor de resultado Passou®

Set_Tune_am_frequency 0.020ms O teste ocorreu Com sucesso. 1710 unidades Passou®

Check_am_signal_quality 0.013ms O teste ocorreu Com sucesso. 1 unidades Passou®

Check_fm_signal_guality 0.010ms O teste ocormeu Com SuCesso. 1 unidades Passou®

FECHAR

Figure 5.4: Execution Results Table

As for the results table presented to the user, it shows all the data provided to us from the execution
drivers and also some metadata that is already added by the system for better understanding. In this
case, the table data provided by the execution drivers are the message, the result value and the test result.
The message is an informative attribute for the user about the occurrence of the test. The result value
is the value returned by the test execution because normally the drivers perform practical functions with
results in the order of the units corresponding to the test application. The important metric for the effect
of the test results on the system is the result and it simply tells us whether the test passed, failed or was

inconclusive. To give greater visual intuition about the test results, coloured balls were also added to the

50

CHAPTER 5. IMPLEMENTATION

test result, in which green means that the test passed, yellow was inconclusive and red failed. In this way,
the visualization of the results and the interpretation will be better. For the first type of user, the industrial
operator, these are the actions and resources to which he has access. Note that the purpose of these
interfaces is to be as simple and functional as possible so that there are no ambiguities in the user’s
decision making.

For the second type of user, the test manager or administrator, there will be more pages and resources
accessible. Starting with the execution reports page shown in figure 5.5, this page presents a table with
all the execution reports made in the system. What we see in each row of this table is the information
summarized in the report, such as the id of the employee who performed the executions of that report,
the date of execution, the time of execution of all tests performed and the results, that is, a relationship
between the number of approved and failed or inconclusive tests. Again, here we also see the use of

colours in the results to facilitate the reading and analysis of the results of the executions.

RELATORIOS AGENDAMENTOS GESTAO DE PACOTES DOCUMENTAGAO CONFIGURAGOES SAIR

ID Funcionario Data de Execugio Tempo de Execugio Resultados
0543 2021-02-22 17:46 0.059ms 66 e v

0543 2021-02-22 17:46 0.039ms s e A~

Médulo Teste Tempo de Execugio Mensagem Valor Resultado
BroadR-Reach Loopback_xIl 0021ms O teste ocorreu com sucesso Sem valor de resultado Passou®
BroadR-Reach Loopback_PCS 0.007ms O teste ocorreu com sucesso Sem valor de resultado Passou®
BroadR-Reach Loopback_Analog 0.006ms O teste ocorreu com sucesso Sem valor de resultado Passou®

BroadR-Reach Loopback_Reverse 0.005ms O teste ocormeu com SUCEsso. Sem valor de resultado Passou®
0543 2021-02-22 17:46 0.076ms, 99 e v
0543 2021-02-22 17:46 0.132ms 19/19 ® v
0543 2021-02-22 17:44 0.031ms. sig® v
0543 2021-02-22 17:43 0.105ms, 2727 @ v

0543 2021-02-22 17:43 0.156ms, 1819 v

1110171 >

Figure 5.5: Reports page

Each row in the table also allows for expansion that opens an internal table, detailing the results of all
tests performed in this report. This internal table follows the same format as the table shown to the user
when executing the tests on the test execution page.

The second page that the manager has access to is the execution schedules page, shown in figure
5.6. On this page, we see a list of schedules, in which each element of the list contains the time when
it will be executed, a button to determine if is active or not and an option to delete. An informational
message is detailed, stating how many hours and minutes are left to run. To edit the schedule and change
its properties, just click on the desired element and a form similar to the one for creating the schedule is

opened, with the difference that it is already filled in with its information.

51

CHAPTER 5. IMPLEMENTATION

RELATORIOS AGENDAMENTOS GESTAO DE PACOTES DOCUMENTAGAO CONFIGURAGGOES

08:00
ra executar em 15 horas e 12 Minutos

09:00
ra executar em 16 horas e 12 Minutos

10:00
ra executar em 17 horas € 12 Minutos

11:00
4 executar em 18 horas e 12 Minutos

-

12:00

ra executar em 19 horas e 12 Minutos

13:00
ra executar em 20 horas e 12 Minutos

14:00
ra executar em 21 horas e 12 Minutos

15:00
4 executar em 22 horas € 12 Minutos

-

16:00
4 executar em 23 horas e 12 Minutos

Figure 5.6: Schedules page

In the form, the information to be filled out is the time to execute, the activation of the scheduling and

the selection of the primitive tests and test suites to be executed. The form can be seen in figure 5.7.

Atualizar Agendamento

Hora ~
12:00 @
Testes a executar

Todos

Loopback_xMil

Loopback_PCS

Loopback_Analog

Loopback_Reverse

Loopback_Disable

Pacotes a executar

CANCELAR ATUALIZAR

Figure 5.7: Form to add and update schedule

The next page that the user has available is the page for managing and configuring new test suites for
the system, which can be seen in figure 5.8. The user has on this page at his disposal the list of existing
packages in the system, where he can remove or edit them. There is also a form for creating a new test
suite, where the user only needs to specify the name, description and code of the new test suite, the code
is written with the DSL developed in this work. In this case, the elements that can be used to write the
code are the connectors below the form that are made available to the user according to the status of
their script, to help the user and try to avoid errors. The other elements to include in the script are the
primitive tests, and these are made available in a list next to the form where the user can even see the

description to understand what the test does. To include a test in the script just needs to click on it and it

52

CHAPTER 5. IMPLEMENTATION

is automatically added to the script. This way, the user does not need to write anything manually, having

to select the elements he wants to add to the script.

RELATORIOS AGENDAMENTOS GESTAO DE PACOTES DOCUMENTAGAO CONFIGURACOES SAIR
Lista de Pacotes Criar Novo Pacote Lista de Testes
ome Send_packet [+]
Novo pacote
Pacote AM FM
Fail_Error o
Pacote Exemplo o
Novo pacote, apenas para demonstracio Power_on [+
Pacote Completo
Power_off [
Pacote Loopback
. Set_Tune_fm_frequency [+
Pacote BroadR-Reach Power_on -> Procurar uma frequéncia vélida na banda
FM no emulador

Pacote Sequéncia Fi k_right
m_seek_rig

Pacote Condicional
AMFM_RX_set_Volume

Check_fm_signal_quality
Get_fm_SNR_value

Conetores: | > | (| & | |
Get_fm_RSS_value

© © 0 00

LIMPAR GUARDAR

Figure 5.8: Package creation and management page

The fourth page that the manager has access to is the primitive tests documentation page, and this is
a purely informative but important page for those who will manage the tests and test suites for the system.
This is because whoever develops the primitive tests may not be the same person who later manages the
system and even who creates the test suites, so there needs to be a page where users can be informed

about the primitive tests of the system. This page can be seen in figure 5.9.

RELATORIOS AGENDAMENTOS GESTAO DE PACOTES DOCUMENTAGAO CONFIGURACOES SAIR
14 M Power_on Ligar o modulo AMFM na banada FM no emulador
15 AMFM Power_off Desligar o modulo AMFM no emulador
16 M Set_Tune_fm_frequency Definir uma frequéncia na banda FM (64-108 MHz) no emulador 8750
17 M Fm_seek_left Procurar uma frequéncia valida na banda FM no emulador 8750
18 M Fm_seek_right Procurar uma frequéncia valida na banda FM no emulador 10790
19 AMFM AMFM_RX_set_Volume Definir valor de volume no modulo AMFM no emulador 63
20 M Check_fm_signal_quality Verificar qualidade de sinal recebido do médulo AM no emulador 1
21 M Get_fm_SNR_value Obter o valor de Signal to Noise Ratio (SNR) do médulo AM no emulador 03
2 M Get_fm_RSSI_value Obter o valor de Recelved Signal Strength Indicator (RSS1) do médulo AM no emulador 20
2 RDS Get Programme Type Obter o identificador do tipo de programa da estacéo sintonizada ¢a banda FM no emulador
24 RDS Get Programme Service Name Obter 0 nome da estagdo atualmente o ar da banda FIM no emulador
25 RDS Get Radio Text Obter mensagem de texto de radio da estacio sintonizada da banda FM no emulador
2 AM am_power_on Ligar 0 modulo para a banda AM no emulador
27 An Set_Tune_am_frequency Definir uma frequéncia na banda AM (520-1710 kHz) no emulador 1710
28 AM AM_seek_left Procurar uma frequéncia valida na banda AM no emulador 1710

Figure 5.9: Documental page about available primitive tests

The manager's last page is the page he has access to and must update the system configurations
whenever necessary. These configurations are necessary for the system to function, as they are used in
fundamental processes all the time. As configurations there is the manager ID, which is the only one to

have access to this system mode, it has the MongoDB bin directory, that is, the directory where MongoDB

53

CHAPTER 5. IMPLEMENTATION

executable files are located and which allow data extractions and imports, there is the directory where the
system itself is installed and finally the directory to which backups are to be exported and also where they

are to be imported from. This page can be seen in figure 5.10:

RELATORIOS AGENDAMENTOS GESTAO DE PACOTES DOCUMENTAGAO CONFIGURAGOES SAIR

Configuragdes do Sistema:

Exportar relatorios de execucao no formato CSV:
€500
Data Inicial (] Data Final ()]

MongoD8 bin Directo

C:\Program Files\MongoDB\Server\4.2\bin DOWNLOAD CSV

Appicaton Directo
C:\Users\Bosch\Desktop\Bolsa\App
Efetuar copia de seguranca ao sistema:

Backups Dirsctor (Escolher opcdes a incluir no backup, pelo menos tem que escolher uma)
C:\Users\Bosch\Desktop\Bolsa\App\backups
Relatorios Pacotes de Testes

Agendamentos Configuracdes

EFETUAR BACKUP

Carregar backup e restabelecer copia de seguranca do sistema:

(insira 0 nome da diretoria correspondente & verséo do backup que quer carregar)

Backup -

CARREGAR BACKUP

Figure 5.10: System configurations page and data export and import

The features that this page has available to the user, in addition to the management of the system
configurations, are the possibility to export the system execution reports in CSV format, which can be
filtered between two dates or not, the possibility to make backup copies, be able to customize the data
you want to copy and restore backup copies on the system. The backup copies will allow the system to
be always aware of situations of failure or data corruption. However, all of these features require that the
system configurations are properly completed and correct.

Having thus presented all the pages that the system makes available, all the code developed for them
can be found in Appendix B.4.

54

CHAPTER 5. IMPLEMENTATION

5.4 \Validation

Having already implemented the system with all the requirements that were established, several test cases
were created to be carried out in the system to validate the solution and confirm the fulfilment of all the
proposed objectives. The first tests were carried out on the most fundamental functionalities of the system,
the execution of the tests and the automation of the update in the face of changes introduced in its supply.

Several test scenarios were simulated and the system behaved as expected, passing all tests performed.

We can see the tests performed and their results in table 5.10.

Test Case Test Steps Test Data Expected Result Actual Results Pass/Fail
1. Select tests to execute Tests Selected:
Check the execution | 2. Click the button to run am_power_on A table with the test Table presented Pass
of primitive tests 3. When window to confirm set_frequency results must appear with the results
appear, select yes am_seek_left
1. Select all tests to execute
Check the execution | 2. Click the button to run Tests Selected: A table with the all test Table presented Pass
of all primitive tests 3. When window to confirm All available results must appear with all results
appear, select yes
A -
warning message Message
Check for a message . should appear
. 1. Click button to execute o appeared
when no test is)) None notifying you that . Pass
) without selecting tests with the
selected to notify the user has not e L
notification
selected any tests
1. Go to the electronic test
drivers directory
) 2. Remove driverA.json from
Check if system) .
directory Tests from driver A must | Tests are
updates the removed) None) Pass
L 3. Open the system in the not appear to be selected | not available
primitve tests i
execution mode
4. Check if tests of driver A
are available
1. Go to the electronic test
drivers directory
Check if system 2.' Add driverA.json from .
directory Tests from driver A must | Tests are
updates the added) None) Pass
L 3. Open the system in the appear to be selected available
primitve tests i
execution mode
4. Check if tests of driver A
are available
Check the execution | 1. Select test suite to execute | Test suites Selected: | A table with the test suite | Table presented Pass
of a test suite 2. Click the button to run Pacote AM FM results must appear with the results
1. Select all test suites
Check the execution to exgcute Test suitesSelected: | A table with the all test Table presented
) 2. Click the button to run))) Pass
of all test suites i All available suite results must appear | with all results
3. When window to
confirm appear, select yes
A warning message Message
Check for a message . should appear
p 1. Click button to execute . appeared
when no test suite is) . None notifying you that _ Pass
) without selecting tests with the
selected to notify the user has not L
. notification
selected any test suites

Table 5.10: Results of test cases performed on test executions and management

This table contains in each row:

e Test Case - The test case is the description of the test and the functionality that will be tested, so it

55

CHAPTER 5. IMPLEMENTATION

must be as descriptive and explicit as possible so that anyone who does not know the functionality

of the system can understand what the test does;

e Test Steps - The test steps are the steps that the tester must follow strictly to reproduce exactly the

same result or attempt;

e Test Data - The test data is the data that will be needed to perform the test, it may be necessary to

insert in forms in the interface for example;

¢ Expected Result - The expected result is the result that the test must achieve to meet the system

requirements;
e Actual Result - The actual result is the result that the test obtained after the execution;

e Pass/Fail - The test, in the end, must pass or fail. It must pass if the actual result obtained from its

realization is equal to the expected result and fails otherwise.

After carrying out the test cases discussed above, the test cases were performed for all other features
of the system, with the results tables all having the same format. We can see the results and test cases

remaining in the following tables: 5.11, 5.12 and 5.13.

Test Case Test Steps Test Data Expected Result Actual Results | Pass/Fail
heck th A table with the all Tabl
Chec .t © 1. Open tab "Relatdrios” None table with the a able Pass
execution reports reports must appear Presented
N o A table with the evidence
Check the details of 1. Open tab "Relatdrios of the results of the tests | Table
) 2. Choose a report and None)) Pass
an execution report)) carried out in that report | Presented
click on it
must be presented
Check documentation " - Atable with all primitve Table
. 1. Open tab "Documentacdo” | None tests metada must be Pass
of primitive tests Presented
presented
1. Click in the button to add
schedule- Time: 8:00
2. Enter time)
3. Activate the option button Active: True
Check the schedule ' -p‘) Tests Selected: A new schedule must be | Schedule
) 4. Select the primitive tests Pass
of a new execution power_on added to the system created
o execute set_fm_frequenc
5. Select the test suites to -7 q y
fm_seek_right
execute
6. Click in the save button
Check trying to L. Click in the button to add An error message must
schedule) .
schedule a new) Time: 10:00 appear stating that at Message
)) 2. Enter time) Pass
execution without) . Active: True least one test must be appeared
selecting any test 3. Activate the option button selected
gany 4. Click in the save button
1. Click in the schedule
Check the update timed to 8:00 Time: 9:00 The schedule must Schedule Pass
of a schedule 2. Change time to 9:00 T be updated updated
3. Click in the save button
Check the removal L. Click in Fhe Optin button The schedule must Schedule
to remove in the schedule None Pass
of a schedule) be removed removed
timed to 9:00

Table 5.11: Results of test cases performed on visualization reports, documentation of primitive tests and
scheduling of executions

56

CHAPTER 5. IMPLEMENTATION

4. Click download button

Test Case Test Steps Test Data Expected Result Actual Results | Pass/Fail
Package Name:
1. Open tab "Gestao de Pacotes” Novo Pacote -
) Package Description: | An error alert must
Check the creation 2. Enter package name
) . Pacote para appear to the user | Alert
of a new test suite 3. Enter package description ; Pass
) .) i demonstrar erro saying the code showned
with wrong script 4., Write the script))
o Package Script: is not correct
5. Click in the save button
InventedTest ->
am_power_on ->
Package name:
" ~ . | New Package
1. Open tab "Gestao de Pacotes .)
Package description: | Test suite must be)
) 2. Enter package name Test suite
Check the creation . Package for created and should
) 3. Enter package description))) created and Pass
of a new test suite) i demonstrattion appear in the list)
4. Write the script Package script: on the left side available
5. Click in the save button g Pt
power_on->
am_power_on ;
1. Open tab "Gestao de Pacotes”
2. Click in the package named Package name:
Check the update "New Package” New Picka o ' Test suite must Test suite Pass
of a test suite 3. Click in the edit button g be updated was updated
to Remove
4. Change the name
5. Click in the save button
1. Open tab "Gestao de Pacotes”
Check the removal 2. Click in the package named Test suite must Test suite
) N R None Pass
of a test suite New Package to remove be removed was removed
3. Click in the remove button
1. Open tab "Configuracoes”
Check the exportof | 2 ENter begin date on Begin Date: ACSVfile must | CSV file was
i export CSV 25/07/2021
reports to a CSV with . be downloaded downloaded Pass
dates no covered 3. Enter end date on End Date: without lines with no lines
export CSV 01/09/2021
4. Click download button
1. Open tab "Configuracoes _ A CSV file must be | CSV file
2. Enter begin date on Begin Date: downloaded that downloaded
Check the export of | export CSV 01/01/2021 . .
contains all the with the all Pass
reports to a CSV 3. Enter end date on End Date: reports from the reports from
export CSV 01/08/2021 specified interval the interval

Table 5.12: Results of test cases performed in managing and creating test suites and exporting reports to

Csv

57

CHAPTER 5. IMPLEMENTATION

Test Case Test Steps Test Data | Expected Result Actual Results Pass/Fail
1. Open tab "Configuracoes” A2|p file must t?e saved Zip file
in the backup directory successfully
Check system backup, 2. Include Packages and P
.) specified in the system saved to the
including schedules Schedules None i)) Pass
L configurations and a backup directory
and packages 3. Click int the make
success message should | and the success
backup button
appear message appeared
A zip file must be saved Zip file
Check system backup, 1. Open tab Cor?flguragoes in thielbac‘kup directory successfully
including all system 2. Include all options None specified in the system saved to the Pass
data g y 3. Click int the make configurations and a backup directory
backup button success message should | and the success
appear message appeared
R) I An error message must
Check the system backup, L. Open tab Cor?flguragoes appear informing that all Error messagg
L 2. Include all options) appeared stating that
with incomplete system S None fields of system) Pass
))) 3. Click int the make) g all fields must be
configurations fields configurations must be
backup button completed
completed
1. Open tab "Agendamentos”
2. Delete the 8:00 schedule
3. Open tab "Gestdo de Pacoes” Schedules and
Check the restore of a ,‘,1 Delete packagej with name The removed schedules packages have
) Pacote Exemplo and packages must be on | been
backup in the system, ") e))
.) 5. Open tab "Configuracoes None the system again and a re-established Pass
including schedules
6. Select backup to restore success message should | and the message
and packages)))
with name ending with appear of success has
substring ”_sp” appeared
7. Click the button to
make restore
1. Open tab "Agendamentos”
2. Delete all schedules
3. Open tab "Gestéo de Pacoes”
All data was
4. Delete all packages The removed elements)
Check the restore of a .) o re-established
) 5. Open tab "Configuracoes must be on the system
backup in the system, None) and the message Pass
. . 6. Select backup to restore again and a success
including all data))) of success has
with name ending with message should appear
o " appeared
substring”_crsp
7. Click the button to
make restore
A
Check the restore of a 1. Open tab "Configuracoes” " error. mesgage must Error message
) appear informing that all)
backup in the system 2. Select backup to restore None fields of svstemn appeared stating that Pass
with incomplete fields 3. Click the button to) y all fields must be
!) configurations must be
on system configurations | make restore completed
completed
Check the update of L. Open tab Conﬁgurggoes Backup directory Backup directory
svsten confiaurations 2. Delete the backup directory None must be empty is empty Pass
Y g 3. Click in the save button P P

Table 5.13: Results of test cases performed on system backups, restoring backup versions and managing
system configurations

In total, 28 test cases were carried out covering all the functionality of the system and in some of them
with more than one test case. No more test cases were carried out because the time it would take to do
so is immense, but the test cases performed were considered to be the most comprehensive cases and
therefore will give the greatest coverage of requirements. After analyzing all the results obtained in the tests
and verifying that they all passed, we can say that all requirements have been successfully implemented

and the system is ready to be integrated with the other components.

58

CHAPTER 5. IMPLEMENTATION

5.5 Discussion

As mentioned, the entire implementation of the system was presented in this chapter. The different tiers
of the system were presented, as well as the technologies, methods and strategies used in each one to
develop a system that would respond in the best way to all requirements. The entire code was not explained
or detailed because it is very extensive, but the most relevant parts were explained and allow, for those
who read it, the reproduction of this work and application in its context. It should also be noted that the
developed system is prepared to be integrated with a CPS and with the integration of electronic tests
guaranteed and, therefore, ready to carry out the self-diagnosis of the CONTROLAR machines. To validate
the implementation of the system and its compliance with the established requirements, 28 test cases
were carried out to cover all requirements. The results show that all test cases have been approved and,
therefore, the system meets all the proposed requirements.

In the next chapter, the conclusions of this dissertation will be presented, as well as an analysis of

their contributions and some suggestions for future work.

59

Chapter

Conclusions and Future Work

The main contributions of this dissertation are the design of the architecture to integrate a self-diagnosis
tests system into a CPS and its implementation. An integrated system that will allow CONTROLAR to carry
out the self-diagnosis of its machines in realtime, thus guaranteeing their integrity.

After reviewing the current state of the art, we found that the existing solutions for testing systems are
still very much focused only on software testing and very little on the integration of other types of tests
and consequently on integration in CPS. In light of the knowledge that has been acquired through the
analysis of software test systems and test automation, it is now possible to create a system with some
of these characteristics, but designed to be integrated and self-diagnose the CPS. With that in mind, an
architecture for the self-diagnosis tests system was designed that combines the KDT methodology with a
DSL to manage and configure the tests of the system. This architecture provides a modular and extensible
solution so that the system can be integrated with the CPS and perform any type of test. Also, another
architecture was designed to extend and integrate the self-diagnosis tests system into a CPS that proves
the modularity of the proposed architecture for self-diagnosis tests system, demonstrating how we can
extend it into a CPS.

The last phase of the work in this dissertation was the implementation of the system, according to the
specified requirements. The system was implemented based on the proposed architecture, proving that
it gives the system the ability to be modular and allow self-diagnosis by performing any type of test. To
validate the implementation of the system and its compliance with the established requirements, 28 test
cases were carried out to cover all requirements. The results show that all test cases have passed and,
therefore, the system meets all the proposed requirements.

The proposed modular and extensible architecture represents an innovation for research in self-diagnosis
systems and CPS, as it allows the combination of these two types of systems, through the use of KDT
methodology with a DSL to manage and configure the tests of the system. This architecture also allows the

execution of the tests to be done remotely or by any other system with permission to make HTTP requests

60

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

to the API REST provided. Although the focus of the architecture is the application in a CPS, it is also appli-
cable to any type of system, since it is generic to accept any type of test. With this work, we proved that it is
possible to integrate self-diagnosis tests systems into a CPS with a practical and also generic solution that
can be integrated with other types of testing systems. These contributions offer the guarantee of safety,
performance and functionality when using CONTROLAR'’s machines, as they can now be diagnosed in

real-time, allowing clients like Bosch to make the most of their use in the production environment.

6.1 Future Work

As future work, it would be interesting to improve the interface for creating new test suites in the system.
Although the solution currently implemented is practical and allows good use, it could be even more
practical and simple for the user if a drag and drop window were developed in the design of new test
suites instead of writing a code script. Another aspect that could be expanded would be the possibility of
introducing weekly or monthly schedules according to the annual production calendars, which would be
even more useful for this resource.

Although the system is quite complete and correctly implements all the features required by CON-
TROLAR, there is still a potential for expansion in other types of uses that have not been explored by the
company, such as, for example, the introduction of machine learning. It will be possible in the future, from
the data generated in a production environment, to make predictions of the daily or even weekly moments
when the machine will be more vulnerable to errors. This is a topic that can be extremely interesting, as
it can give users of the machines a better perception of how they should and not use them to obtain the

best performance from them.

61

[1]
[2]

[3]
[4]

[5]

[6]

[/]

[8]

[9]

[10]

[11]

Bibliography

L. Abreu. Nodejs - Construcdo De Aplicacées Web. FCA, 2016.

C. Academy. What is REST? 2021. url: https://www.codecademy.com/articles/what-1is-
rest. (accessed: 28.01.2021).

S. Aggarwal. Modern Web-Development using ReactJS. Tech. rep. 2018.

C. ALGORITMI. Ongoing Projects. url: http://algoritmi.uminho.pt/projects/ongoing-
projects/. (accessed: 14.12.2020).

S. A. Asadollah, R. Inam, and H. Hansson. “A survey on testing for cyber physical system.” In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). 2015. isbn: 9783319259444 doi: 10 . 1007 /978 -3-319-
25945-1_12.

M. F. A. Carvalho. Automatizacéo de Testes de Software. 2010. url: https://files. isec.pt/
DOCUMENTOS /SERVICOS/BIBLIO/teses/Tese_Mest_Marcio-Carvalho. pdf. (accessed:
20.01.2021).

CCG. TSIM - Test System Intelligent Machines. url: https://www.ccg.pt/my-product/tsim-
test-system-intelligent-machines/. (accessed: 14.12.2020).

M. H. Cintuglu, O. A. Mohammed, K. Akkaya, and A. S. Uluagac. A Survey on Smart Grid Cyber-
Physical System Testbeds. 2017. doi: 10.1109/C0OMST.2016.2627399.

S. Ciraci, J. C. Fuller, J. Daily, A. Makhmalbaf, and D. Callahan. “A Runtime Verification Framework
for Control System Simulation.” In: 2014 IEEE 38th Annual Computer Software and Applications
Conference. 2014, pp. 75-84. doi: 10.1109/COMPSAC.2014.14.

Controlar. Maquina Inteligente de Sistema de Testes Funcionais. url: https://controlar.com/

areas-de-negocio/sistemas-de-teste/tsim/. (accessed: 14.12.2020).

B. Costa, P. F. Pires, F. C. Delicato, and P. Merson. “Evaluating a Representational State Transfer
(REST) architecture: What is the impact of REST in my architecture?” In: Proceedings - Working
IEEE/IFIP Conference on Software Architecture 2014, WICSA 2014. 2014. isbn: 9781479934126.
doi: 10.1109/WICSA.2014.29.

62

https://www.codecademy.com/articles/what-is-rest
https://www.codecademy.com/articles/what-is-rest
http://algoritmi.uminho.pt/projects/ongoing-projects/
http://algoritmi.uminho.pt/projects/ongoing-projects/
https://doi.org/10.1007/978-3-319-25945-1_12
https://doi.org/10.1007/978-3-319-25945-1_12
https://files.isec.pt/DOCUMENTOS/SERVICOS/BIBLIO/teses/Tese_Mest_Marcio-Carvalho.pdf
https://files.isec.pt/DOCUMENTOS/SERVICOS/BIBLIO/teses/Tese_Mest_Marcio-Carvalho.pdf
https://www.ccg.pt/my-product/tsim-test-system-intelligent-machines/
https://www.ccg.pt/my-product/tsim-test-system-intelligent-machines/
https://doi.org/10.1109/COMST.2016.2627399
https://doi.org/10.1109/COMPSAC.2014.14
https://controlar.com/areas-de-negocio/sistemas-de-teste/tsim/
https://controlar.com/areas-de-negocio/sistemas-de-teste/tsim/
https://doi.org/10.1109/WICSA.2014.29

BIBLIOGRAPHY

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

B. Costa, P. F. Pires, F. C. Delicato, and P. Merson. “Evaluating REST architectures - Approach,
tooling and guidelines.” In: Journal of Systems and Software. 2016. doi: 10.1016/j.jss.2015.
09.039.

Express.js. Express - Node.js web application framework. 2017.

M. Focus. Silk test automation for web, mobile and enterprise apps. 2021. url: https://www.

microfocus.com/en-us/products/silk-test/overview. (accessed: 20.01.2021).
0. Foundation. Node.js. 2021. url: https://nodejs.org/en/. (accessed: 29.12.2020).
R. Framework. Robot Framework. url: https://robotframework.org/. (accessed: 20.01.2021).

Guru99. What is Automation Testing? 2021. url: https://www.guru99. com/automation-
testing.html. (accessed: 20.01.2021).

R. Hametner, D. Winkler, and A. Zoitl. “Agile testing concepts based on keyword-driven testing
for industrial automation systems.” In: [ECON 2012 - 38th Annual Conference on IEEE Industrial
Electronics Society. 2012, pp. 3727-3732. doi: 10.1109/IECON.2012.6389298.

F. Hermans, M. Pinzger, and A. Van Deursen. “Domain-specific languages in practice: A user study
on the success factors.” In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). 2009. isbn: 3642044247. doi: 10.
1007/978-3-642-04425-0_33.

A. Holmes and M. Kellogg. “Automating functional tests using Selenium.” In: AGILE 2006 (AG-
ILE’06). 2006, 6 pp.—275. doi: 10.1109/AGILE.2006.19.

S. Holmes. Mongoose for Application Development. 2013. isbn: 978-1-78216-819-5. arXiv: arXiv:
1011.1669v3.

L. Hu, N. Xie, Z. Kuang, and K. Zhao. “Review of cyber-physical system architecture.” In: Proceed-
ings - 2012 15th IEEE International Symposium on Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops, ISORCW 2012. 2012. isbn: 9780769546698. doi: 10.1109/
ISORCW.2012.15.

F. Inc. React- A JavaScript library for building user interfaces. 2021. url: https://reactjs.org/.
(accessed: 30.12.2020).

A. Javeed. “Performance Optimization Techniques for ReactJS.” In: Proceedings of 2019 3rd IEEE
International Conference on Electrical, Computer and Communication Technologies, ICECCT 2019.
2019. isbn: 9781538681572. doi: 10.1109/ICECCT.2019.8869134.

L. Jian-Ping, L. Juan-Juan, and W. Dong-Long. “Application Analysis of Automated Testing Frame-
work Based on Robot.” In: 2012 Third International Conference on Networking and Distributed
Computing. 2012, pp. 194-197. doi: 10.1109/ICNDC.2012.53.

63

https://doi.org/10.1016/j.jss.2015.09.039
https://doi.org/10.1016/j.jss.2015.09.039
https://www.microfocus.com/en-us/products/silk-test/overview
https://www.microfocus.com/en-us/products/silk-test/overview
https://nodejs.org/en/
https://robotframework.org/
https://www.guru99.com/automation-testing.html
https://www.guru99.com/automation-testing.html
https://doi.org/10.1109/IECON.2012.6389298
https://doi.org/10.1007/978-3-642-04425-0_33
https://doi.org/10.1007/978-3-642-04425-0_33
https://doi.org/10.1109/AGILE.2006.19
https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1109/ISORCW.2012.15
https://doi.org/10.1109/ISORCW.2012.15
https://reactjs.org/
https://doi.org/10.1109/ICECCT.2019.8869134
https://doi.org/10.1109/ICNDC.2012.53

BIBLIOGRAPHY

[26] Jingfan Tang, Xiaohua Cao, and A. Ma. “Towards adaptive framework of keyword driven automation
testing.” In: 2008 IEEE International Conference on Automation and Logistics. 2008, pp. 1631-
1636. doi: 10.1109/ICAL.2008.4636415.

[27] json.org. JSON. 2021. url: https://www.json.org/json-en.html. (accessed: 30.12.2020).

[28] M. Kaur and R. Kumari. “Comparative Study of Automated Testing Tools: TestComplete and Quick-
Test Pro.” In: International Journal of Computer Applications 24.1 (2011), pp. 1-7. doi: 10.5120/
2918-3844.

[29] T. Kosar, S. Bohra, and M. Mernik. “Domain-Specific Languages: A Systematic Mapping Study.” In:
Information and Software Technology (2016). issn: 09505849. doi: 10.1016/j.infsof.2015.
11.001.

[30] C.W. Krueger. “Software Reuse.” In; ACM Computing Surveys (CSUR) (1992). issn: 15577341. doi:
10.1145/130844.130856.

[31] T. Lalwani. QuickTest Professional Unplugged: 2nd Edition. Knowledgelnbox, 2011. isbn: 0983675910.

[32] E.A.Lee. “Cyber physical systems: Design challenges.” In: Proceedings - 11th IEEE Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, ISORC 2008. 2008. isbn:
9780769531328. doi: 10.1109/ISORC.2008.25.

[33] K. Lei, Y. Ma, and Z. Tan. “Performance comparison and evaluation of web development tech-
nologies in PHP, Python and Node.js.” In: Proceedings - 17th IEEE International Conference on
Computational Science and Engineering, CSE 2014, Jointly with 13th IEEE International Confer-
ence on Ubiquitous Computing and Communications, IUCC 2014, 13th International Symposium
on Pervasive Systems, Algorithms, and Networks, I-SPAN 2014 and 8th International Conference
on Frontier of Computer Science and Technology, FCST 2014. 2015. isbn: 9781479979813. doi:
10.1109/CSE.2014.142.

[34] P. Leitdo. “Agent-based distributed manufacturing control: A state-of-the-art survey.” In: Engineering
Applications of Artificial Intelligence (2009). issn: 09521976. doi: 10.1016/j .engappai.2008.
09.005.

[35] P. Leitdo, A. W. Colombo, and S. Karnouskos. “Industrial automation based on cyber-physical sys-
tems technologies: Prototype implementations and challenges.” In: Computers in Industry (2016).
issn: 01663615. doi: 10.1016/j.compind.2015.08.004.

[36] T.Lima, A. Dantas, and L. Vasconcelos. “Usando o SilkTest para automatizar testes: um Relato de

Experiéncia.” In: lcomp.Ufam.Edu.Br. 2012.

[37] M. Mernik, J. Heering, and A. M. Sloane. “When and how to develop domain-specific languages.”
In: ACM Computing Surveys (2005). issn: 03600300. doi: 10.1145/1118890.1118892.

[38] Motzilla. JavaScript. 2021. url: https: //developer . mozilla.org/pt-PT/docs/Web/
JavaScript. (accessed: 30.12.2020).

64

https://doi.org/10.1109/ICAL.2008.4636415
https://www.json.org/json-en.html
https://doi.org/10.5120/2918-3844
https://doi.org/10.5120/2918-3844
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1145/130844.130856
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1109/CSE.2014.142
https://doi.org/10.1016/j.engappai.2008.09.005
https://doi.org/10.1016/j.engappai.2008.09.005
https://doi.org/10.1016/j.compind.2015.08.004
https://doi.org/10.1145/1118890.1118892
https://developer.mozilla.org/pt-PT/docs/Web/JavaScript
https://developer.mozilla.org/pt-PT/docs/Web/JavaScript

BIBLIOGRAPHY

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng. “loT Middleware: A Survey on
Issues and Enabling Technologies.” In: IEEE Internet of Things Journal (2017). issn: 23274662.
doi: 10.1109/JI0T.2016.2615180.

E. Obinna. Use the React Profiler for Performance. 2018.

J. Palsberg and C. B. Jay. “The essence of the Visitor pattern.” In: Proceedings - International Com-
puter Software and Applications Conference. 1998. isbn: 0818685859. doi: 10.1109/CMPSAC.
1998.716629.

T. J. Parr and R. W. Quong. “ANTLR: A predicatedILL(k) parser generator.” In: Software: Practice
and Experience (1995). issn: 1097024X. doi: 10.1002/spe.4380250705.

T. Parr and K. Fisher. “LL(*): The foundation of the ANTLR parser generator.” In: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). 2011.
isbn: 9781450306638. doi: 10.1145/1993498.1993548.

T. Parr, S. Harwell, and K. Fisher. “Adaptive LL(*) parsing.” In: ACM SIGPLAN Notices (2014). issn:
0362-1340. doi: 10.1145/2714064.2660202.

Pluralsight. JavaScript. 2021. url: https://www. javascript.com/. (accessed: 29.12.2020).

P. Porter, S. Yang, and X. Xi. “The Design and Implementation of a RESTful loT Service Using the
MERN Stack.” In: Proceedings - 2019 IEEE 16th International Conference on Mobile Ad Hoc and
Smart Systems Workshops, MASSW 2019. 2019. isbn: 9781728141213. doi: 10.1109/MASSW .
2019.00035.

Ranorex. Test Automation Tools. 2021. url: https://www.ranorex.com/test-automation-
tools/. (accessed: 20.01.2021).

R. A. Razak and F. R. Fahrurazi. “Agile testing with Selenium.” In: 2011 Malaysian Conference in
Software Engineering. 2011, pp. 217-219. doi: 10.1109/MySEC.2011.6140672.

Selenium. About Selenium. url: https://www.selenium.dev/about/. (accessed: 20.01.2021).

S. A. Seshia, S. Hu, W. Li, and Q. Zhu. “Design Automation of Cyber-Physical Systems: Challenges,
Advances, and Opportunities.” In: IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems (2017). issn: 02780070. doi: 10.1109/TCAD.2016.2633961.

SmartBear. TestComplete System Requirements. 2020. url: https://support.smartbear.

com/ testcomplete / docs / general - info/ system- requirements . html. (accessed:
20.01.2021).

SmartBear. TestComplete Automated Ul Testing Tool. 2021. url: https: // smartbear . com/
product/testcomplete/overview/. (accessed: 20.01.2021).

V. Subramanian and V. Subramanian. “MongoDB.” In: Pro MERN Stack. 2019. doi: 10.1007/978-
1-4842-4391-6_6.

65

https://doi.org/10.1109/JIOT.2016.2615180
https://doi.org/10.1109/CMPSAC.1998.716629
https://doi.org/10.1109/CMPSAC.1998.716629
https://doi.org/10.1002/spe.4380250705
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/2714064.2660202
https://www.javascript.com/
https://doi.org/10.1109/MASSW.2019.00035
https://doi.org/10.1109/MASSW.2019.00035
https://www.ranorex.com/test-automation-tools/
https://www.ranorex.com/test-automation-tools/
https://doi.org/10.1109/MySEC.2011.6140672
https://www.selenium.dev/about/
https://doi.org/10.1109/TCAD.2016.2633961
https://support.smartbear.com/testcomplete/docs/general-info/system-requirements.html
https://support.smartbear.com/testcomplete/docs/general-info/system-requirements.html
https://smartbear.com/product/testcomplete/overview/
https://smartbear.com/product/testcomplete/overview/
https://doi.org/10.1007/978-1-4842-4391-6_6
https://doi.org/10.1007/978-1-4842-4391-6_6

BIBLIOGRAPHY

[54]

[59]

[56]

[57]

[58]

[59]

[60]

S. Tilkov and S. Vinoski. “Node.js: Using JavaScript to build high-performance network programs.”
In: IEEE Internet Computing (2010). issn: 10897801. doi: 10.1109/MIC.2010.145.

G. Tomassetti. The ANTLR Mega Tutorial. 2021. url: https://tomassetti.me/antlr-mega-
tutorial/. (accessed: 27.01.2021).

Q. Tutorial. Tutorialspoint. url: https://www. tutorialspoint.com/qtp/index.htm. (ac-
cessed: 20.01.2021).

V. Vyatkin. Software engineering in industrial automation: State-of-the-art review. 2013. doi: 10 .
1109/TII.2013.2258165.

W3C. HTML5: A vocabulary and associated APIs for HTML and XHTML. 2010. url: https://www.
w3.0rg/TR/2010/WD-htm15-20100624/. (accessed: 30.12.2020).

W3C. Cascading Style Sheets. 2021. url: https://www.w3.0rg/Style/CSS/0Overview.en.
html. (accessed: 30.12.2020).

X. Zhou, X. Gou, T. Huang, and S. Yang. “Review on Testing of Cyber Physical Systems: Methods and
Testbeds.” In: IEEE Access 6 (2018), pp. 52179-52194. doi: 10.1109/ACCESS.2018.2869834.

66

https://doi.org/10.1109/MIC.2010.145
https://tomassetti.me/antlr-mega-tutorial/
https://tomassetti.me/antlr-mega-tutorial/
https://www.tutorialspoint.com/qtp/index.htm
https://doi.org/10.1109/TII.2013.2258165
https://doi.org/10.1109/TII.2013.2258165
https://www.w3.org/TR/2010/WD-html5-20100624/
https://www.w3.org/TR/2010/WD-html5-20100624/
https://www.w3.org/Style/CSS/Overview.en.html
https://www.w3.org/Style/CSS/Overview.en.html
https://doi.org/10.1109/ACCESS.2018.2869834

10

11

12

13

14

15

16

17

18

19

20

21

22

Appendix

Backend code

This appendix contains the complete code for the Backend tier, that is, for the Server of the System. Al-
though the examples specified and presented in the main document are more than sufficient to understand
the work done, all the code has been exposed here as supporting documentation for this work. Thus, it is

possible to reproduce the work done with the presented documentation and code.

Listing A.1: App.js

const createError = require(”http-errors”);
const express = require(”express”);

const path = require(”path”);

const logger = require(”morgan”);

const mongoose = require(”mongoose”);

const cors = require(”cors”);

mongoose
.connect(”mongodb://localhost:27017/TSIM", {
useNewUrlParser: true,
useUnifiedTopology: true,
)
.then(() => console.log(”Mongo Ready: " + mongoose.connection.readyState))

”

.catch((erro) => console.log(”Mongo: erro na conexao: + erro));
const apiRouter = require(”./routes/api”);

const app = express();

// view engine setup

app.set(”views”, path.join(__dirname, "views”));

app.set(”view engine”, "pug”);

67

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

APPENDIX A. BACKEND CODE

const corsOpts = {
origin: "x",
credentials: true,
methods: ["GET”, "PUT”, "POST”, "DELETE”, "OPTIONS”],
allowedHeaders: [
"Accept”,
"Authorization”,
"Cache-Control”,
"Content-Type”,
"DNT"”,
"If-Modified-Since”,
"Keep-Alive”,
"0rigin”,
"User-Agent”,
"X-Requested-With”,
"Content-Length”,
1,
}s

app.use(cors(corsOpts));

app.use(logger(”dev”));

app.use(express.json());

app.use(express.urlencoded({ extended: false }));
app.use(express.static(path.join(__dirname, "public”)));

app.use(”/", apiRouter);

// catch 404 and forward to error handler

app.use(function (req, res, next) {
next(createError(404));

s

// error handler
app.use(function (err, req, res, next) {
// set locals, only providing error in development

res.locals.message = err.message;

res.locals.error = req.app.get(”env”) === "development” ? err :

// render the error page
res.status(err.status || 500);
res.render(”error”);

s

module.exports = app;

{};

68

10

11

12

13

10

11

12

13

14

15

APPENDIX A. BACKEND CODE

A.1 Models

Listing A.2: Configurations Model

const mongoose = require(”mongoose”);

const configurationSchema = new mongoose.Schema(

{
dbBinDir: { type: String, required: true },
appDir: { type: String, required: false },
userConfigurationID: { type: String, required: false },
backupDir: { type: String, required: false },

I

{ versionKey: false }
)3

module.exports mongoose.model(”configuration”, configurationSchema);

Listing A.3: Packages Model

const mongoose = require(”mongoose”);

const packageSchema = new mongoose.Schema(
{
active: { type: Boolean, default: true },
name: { type: String, required: true },
description: { type: String, required: false },
code: { type: String, required: true },
path: { type: String, required: true },
tests: [{ type: mongoose.Schema.Types.ObjectId, required: true }],
b,
{ versionKey: false }
)3

module.exports = mongoose.model(”package”, packageSchema);

Listing A.4: Reports Model

const mongoose = require(”mongoose”);

const testsSchema = new mongoose.Schema(
{
id_test: { type: mongoose.Schema.Types.ObjectId, required: true },
module: { type: String, required: true },
name: { type: String, required: true },
result: { type: String, required: true },

message: { type: String, required: false },

69

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

10

11

12

13

10

11

12

APPENDIX A. BACKEND CODE

runtime: { type: Number, required: true },
resultValue: { type: String, required: false },
}s

{ versionKey: false }

)5

const reportSchema = new mongoose.Schema(

{
id_user: { type: String, required: true },
date: { type: String, required: true },
results: [testsSchemal],

b

{ versionKey: false }

)3

module.exports = mongoose.model(”report”, reportSchema);

Listing A.5: Schedules Model

const mongoose = require(”mongoose”);

const scheduleSchema = new mongoose.Schema(

{
hour: { type: String, required: true },
active: { type: Boolean, required: true },
tests: [{ type: mongoose.Schema.Types.ObjectId, required: true }],
packages: [{ type: mongoose.Schema.Types.ObjectId, required: true }1],
b,

{ versionKey: false }

)3

module.exports mongoose.model(”schedule”, scheduleSchema);

Listing A.6: Tests Model

const mongoose = require(”mongoose”);

const testSchema = new mongoose.Schema(

{
id: { type: Number, required: true },
module: { type: String, required: true },
name: { type: String, required: true },
description: { type: String, required: false },
defaultParam: { type: String, required: false },
active: { type: Boolean, default: true 1},

b

{ versionKey: false }

70

13

14

15

10

11

12

13

14

15

16

17

18

19

20

10

11

12

13

14

APPENDIX A. BACKEND CODE

)5

module.exports = mongoose.model(”test”, testSchema);

A.2 Grammar

Listing A.7: Lexer

lexer grammar TestlLexer;

NEXT : '->'
AND : '&' ;
OR : '|"' 3

IF : '?' 3
ELSE : ':' ;

RPAREN : ')' ;
LPAREN : '(' ;

KEYWORD : ([A-Za-z]+([/ _-1[A-Za-z]+)*)

WS
[\r\n\t] -> skip

Listing A.8: Parser

parser grammar TestParser;

options {

tokenVocab=TestLexer;

test
. statement END

statement
: condition #Conditional

| seq #Sequence

b

71

15

16

17

18

19

20

21

22

23

24

25

26

27

28

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

APPENDIX A. BACKEND CODE

condition
¢ expr IF statement ELSE statement #IfElse
| expr IF statement #If

b

seq

: KEYWORD (NEXT statement)x*

expr
: LPAREN KEYWORD (AND KEYWORD)* RPAREN #And
| LPAREN KEYWORD (OR KEYWORD)* RPAREN #O0r

)

Listing A.9: Visitor

const antlr4

require(”antlr4/index”);

const get_id = (list, name) => {

let test = list.filter((t) => t.name == name);
return test[0]._id;

s

const getId = (list, name) => {
let test = list.filter((t) => t.name == name);
return test[0].1d;

s

const getDefaultParam = (list, name) => {
let test = list.filter((t) => t.name == name);
return test[0].defaultParam;

s

const getModule = (1list, name) => {
let test = list.filter((t) => t.name == name);

return test[0].module;
s

// This class defines a complete generic visitor for a parse

function TestParserVisitor(listOfTests) {
antlr4.tree.ParseTreeVisitor.call(this);
this.tabs = 4;
this.aux0p = 0;

this.auxList =

[1;

72

tree produced by TestParser.

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

APPENDIX A. BACKEND CODE

this.tests = [];
this.auxTests = list0fTests;
this.res =
'const TsimTest = require(”./../TsimTest/TsimTest”);\n\nmodule.exports.execute = () =>
— {\n let results = [1;\n\n';
this.getRes = () => {
return this.res;
b
this.getTests = () => {
return this.tests;
b

return this;

TestParserVisitor.prototype = Object.create(
antlrd.tree.ParseTreeVisitor.prototype

)3

TestParserVisitor.prototype.constructor = TestParserVisitor;

// Visit a parse tree produced by TestParseritest.
TestParserVisitor.prototype.visitTest = function (ctx) {
this.visit(ctx.statement());

non

this.res += "\n” + .repeat(this.tabs) + "return results;\n};\n”;

return

nn,
3

b

// Visit a parse tree produced by TestParser#Conditional.

TestParserVisitor.prototype.visitConditional = function (ctx) {
return this.visit(ctx.condition());

¥

// Visit a parse tree produced by TestParser#Sequence.
TestParserVisitor.prototype.visitSequence = function (ctx) {
return this.visit(ctx.seq());

};

// Visit a parse tree produced by TestParser#IfElse.
TestParserVisitor.prototype.visitIfElse = function (ctx) {
this.visit(ctx.expr());
let t = " ".repeat(this.tabs);
this.auxList.map((n) => {
let id = getId(this.auxTests, n);
let param = getDefaultParam(this.auxTests, n);
let module = getModule(this.auxTests, n);

— nn,
n+="";

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

APPENDIX A. BACKEND CODE

let countOccorrences = this.tests.filter(t => t === get_id(this.auxTests, n)).length
let k = n.replace(/\/|\-| /g, "_");
this.res += t + "let ” + k + 1d + countOccorrences + ” = TsimTest.RunTest(” + id + ",\"”

< + param + "\"”);\n";

this.res += t + k + 1d + countOccorrences + '.id_test = "' + get_id(this.auxTests, n) +
s tma\n's
this.res += t + k + id + countOccorrences + '.name = "' + n + '";\n';

' m

this.res += t + k + 1d + countOccorrences + '.module = + module + '";\n';

”

this.res += t + "results.push(” + k + id + countOccorrences + ");\n";
this.tests.push(get_1id(this.auxTests, n));

s

this.res += "\n” + t + "if (";

if (this.auxOp == 0) {
this.auxList.map((n) => {

let id = getId(this.auxTests, n);

n+="";
let countOccorrences = this.tests.filter(t => t === get_id(this.auxTests, n)).length
— -1
let k = n.replace(/\/|\-| /g, "_");
this.res += k + id + countOccorrences + '.result === "success” && ';
s
} else {
this.auxList.map((n) => {
let id = getId(this.auxTests, n);
n+="";
let countOccorrences = this.tests.filter(t => t === get_id(this.auxTests, n)).length
— -1
k = n.replace(/\/|\-| /g9, "_");
this.res += k + id + countOccorrences + '.result === "success” || ';
s

}

this.auxList = [];

this.res = this.res.substring(0, this.res.length - 4);
this.res += ") {\n”;

this.tabs += 4;
this.visit(ctx.statement(0));

this.tabs -= 4;

this.res += t + "I\n” + t + "else {\n";
this.tabs += 4;
this.visit(ctx.statement(1));

this.tabs -= 4;

this.res += t + "}\n";

return

nn,
)

74

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

APPENDIX A. BACKEND CODE

// Visit a parse tree produced by TestParser#If.
TestParserVisitor.prototype.visitIf = function (ctx) {
this.visit(ctx.expr());
let t = " ".repeat(this.tabs);
this.auxList.map((n) => {
let id = getId(this.auxTests, n);
let param = getDefaultParam(this.auxTests, n);

let module = getModule(this.auxTests, n);

n += nn ;

let countOccorrences = this.tests.filter(t => t === get_id(this.auxTests, n)).length

k = n.replace(/\/|\-| /g9, "_");

this.res += t + "let ” + k + 1d + countOccorrences + ” = TsimTest.RunTest(” + id + ",\"”

— + param + "\");\n";

this.res +=

t + k + id + countOccorrences + '.id_test = "' + get_id(this.auxTests, n) + '";\n';
this.res += t + k + id + countOccorrences + '.name = "' + n + '";\n';
this.res += t + k + id + countOccorrences + '.module = "' + module + '";\n';

"

this.res += t + "results.push(” + k + id + countOccorrences + ");\n";

this.tests.push(get_1id(this.auxTests, n));

s
this.res += "\n” + t + "if ("
if (this.auxOp == 0) {

this.auxList.map((n) => {

let id = getId(this.auxTests, n);

n+="";
let countOccorrences = this.tests.filter(t => t === get_id(this.auxTests, n)).length
— -1
k = n.replace(/\/|\-| /g9, "_");
this.res += k + id + countOccorrences + '.result === "success” && ';
})s
} else {
this.auxList.map((n) => {
let id = getId(this.auxTests, n);
n+="";
let countOccorrences = this.tests.filter(t => t === get_id(this.auxTests, n)).length
— -1
k = n.replace(/\/|\-| /g9, "_");
this.res += k + id + countOccorrences + '.result === "success” || ';
s

this.auxList = [];

this.res = this.res.substring(0, this.res.length - 4);
this.res += ") {\n";

this.tabs += 4;

this.visit(ctx.statement());

75

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

APPENDIX A. BACKEND CODE

this.tabs -= 4;
this.res += t + "}\n”;

return 5

b

// Visit a parse tree produced by TestParser#seq.
TestParserVisitor.prototype.visitSeq = function (ctx) {
let n = ctx.KEYWORD() + "";
let id = getId(this.auxTests, n);
let param = getDefaultParam(this.auxTests, n);

let module = getModule(this.auxTests, n);

let t = " ".repeat(this.tabs);

let countOccorrences = this.tests.filter(t => t === get_id(this.auxTests, n)).length

k = n.replace(/\/|\-| /9, "_");

this.res += t + "let ” + k + id + countOccorrences + " = TsimTest.RunTest(” + id + ",\"” +

< param + "\");\n";

this.res += t + k + 1d + countOccorrences + '.id_test = "' + get_id(this.auxTests, n) + '
AN
this.res += t + k + id + countOccorrences + '.name = "' + n + '";\n';

' "m

this.res += t + k + i1d + countOccorrences + '.module = + module + '";\n';

”

this.res += t + "results.push(” + k + id + countOccorrences + ");\n";
this.tests.push(get_id(this.auxTests, n));

this.visitChildren(ctx);

return

nn,
3

b

// Visit a parse tree produced by TestParser#And.
TestParserVisitor.prototype.visitAnd = function (ctx) {
this.aux0p = 0;
for (let 1 = 0; 1 < ctx.KEYWORD().length; i++) {
this.auxList.push(ctx.KEYWORD(1));
}
return

nm,
b

};

// Visit a parse tree produced by TestParser#0r.
TestParserVisitor.prototype.visitOr = function (ctx) {
this.aux0p = 1;
for (let 1 = 0; 1 < ctx.KEYWORD().length; i++) {
this.auxList.push(ctx.KEYWORD(1));
}

return

nm,

Y

exports.TestParserVisitor = TestParserVisitor;

76

10

11

12

13

14

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

APPENDIX A. BACKEND CODE

A.3 Controllers

Listing A.10: Configurations Controller

const Configuration = require(”../models/configurations”);

module.exports.getConfigurations = () => {
return Configuration.find().exec();
};

module.exports.insertConfiguration = (configuration) => {
let ¢ = new Configuration(configuration);
return c.save();

+;

module.exports.updateConfiguration = (idConfiguration, configuration) => {
return Configuration.findOneAndUpdate({ _id: idConfiguration }, configuration);
}s

Listing A.11: Packages Controller

const fs = require(”fs”);

const antlr4 = require(”antlr4”);

const Lexer = require(”../public/Grammar/TestLexer”).TestLexer;

const Parser = require(”../public/Grammar/TestParser”).TestParser;

const Visitor = require(”../public/Grammar/TestParserVisitor”)
.TestParserVisitor;

const Package = require(”../models/packages”);

const Test = require(”./tests”);

const scripts_path = "./../tsim-tests-api/public/Packages/";

module.exports.getPackages = () => {
return Package.find().exec();

b

module.exports.getPackage = async (idPackage) => {

let p = await Package.findOne({ _id: idPackage }).exec();
let script = fs.readFileSync(scripts_path + p.path, "utf8”);
return {

_id: p._1d,

name: p.name,

description: p.description,

code: p.code,

script: script,

tests: p.tests,

b

77

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

APPENDIX A

. BACKEND CODE

module.exports.insertPackage = async (package) => {
let chars = new antlr4.InputStream(package.script);
let lexer = new Lexer(chars);
let tokens = new antlr4.CommonTokenStream(lexer);
let parser = new Parser(tokens);
parser.buildParseTrees = true;

let tree = parser.test();

if (tree.parser._syntaxErrors === 0) {
let 1istOfTests = await Test.getTests();
let visitor = new Visitor(listOfTests);
visitor.visitTest(tree);
let textFile = visitor.getRes() + "";

let t = visitor.getTests();

let tests = t.filter(function (elem, pos) {
return t.1index0Of(elem) == pos;

})s

let fileName = package.name.tolLowerCase().replace(/\s/g,

let filePath

scripts_path + fileName;

fs.writeFile(filePath, textFile, "utf8”, function (err) {
if (err) throw err;
let t = new Package({
name: package.name,
description: package.description,
code: package.script,
path: fileName,
tests: tests,
});
return t.save();
s
} else {

return { errors: tree.parser._syntaxErrors };

b

module.exports.updatePackage = async (idPackage, package) => {
// Insert New
let chars = new antlr4.InputStream(package.script);
let lexer = new Lexer(chars);
let tokens = new antlr4.CommonTokenStream(lexer);
let parser = new Parser(tokens);
parser.buildParseTrees = true;

let tree = parser.test();

78

_') o+

”

.js

",

b

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

APPENDIX A. BACKEND CODE

if (tree.parser._syntaxErrors === 0) {
let 1istOfTests = await Test.getTests();
let visitor = new Visitor(listOfTests);
visitor.visitTest(tree);
let textFile = visitor.getRes() + "";
let t = visitor.getTests();
let tests = t.filter(function (elem, pos) {

return t.1index0Of(elem) == pos;

})s

let fileName = package.name.toLowerCase().replace(/\s/g, '_

let filePath scripts_path + fileName;
// Delete old
let p = await Package.findOne({ _1id: idPackage }).exec();
try {

fs.unlinkSync(scripts_path + p.path);

let del = await Package.deleteOne({ _id: idPackage });
} catch (err) {

throw err;

fs.writeFile(filePath, textFile, "utf8”, function (err) {
if (err) throw err;
let t = new Package({
_id: idPackage,
name: package.name,
description: package.description,
code: package.script,
path: fileName,
tests: tests,
active: true
3
return t.save();
s
} else {

return { errors: tree.parser._syntaxErrors };

};

module.exports.deactivatePackageAndRemoveTest = async (idPackage,
— => {
return Package.findOneAndUpdate({ _id: idPackage }, {
active: false,

name: package.name,

79

"o oson

') + ".js";

package, idTest, testName)

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

10

11

12

13

14

15

16

17

18

APPENDIX A. BACKEND CODE

description: package.description,
code: package.code.replace(new RegExp(testName,”g”),''),
path: package.path,
tests: package.tests.filter(t => t !== idTest),
b
b

module.exports.deletePackage = async (idPackage) => {
let p = await Package.findOne({ _id: idPackage }).exec();
try {
fs.unlinkSync(scripts_path + p.path);
return await Package.deleteOne({ _id: idPackage });
} catch (err) {

throw err;

b

module.exports.runPackage = async (idPackage) => {
let package = await Package.findOne({ _id: idPackage }).exec();
if(package){
const file = require(”./../public/Packages/” + package.path);
return await file.execute();
}
return {};

b

Listing A.12: Reports Controller

const Report = require(”../models/reports”);

module.exports.getReports = () => {
return Report.find().sort({ date: -1 }).exec();
s

module.exports.getReport = (idReport) => {
return Report.findOne({ _id: idReport }).exec();
s

module.exports.insertReport = (report) => {
let r = new Report(report);
return r.save();

b
module.exports.updateReport = (idReport, report) => {
return Report.findOneAndUpdate({ _id: idReport }, report);

b

80

19

20

21

22

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

1

APPENDIX A. BACKEND CODE

module.exports.deleteReport = (idReport) => {
return Report.deleteOne({ _id: idReport });
s

Listing A.13: Schedules Controller

const Schedule = require(”../models/schedules”);

module.exports.getSchedules = () => {
return Schedule.find().sort({ hour: 1 }).exec();

b

module.exports.getSchedule = (idSchedule) => {
return Schedule.findOne({ _id: idSchedule }).exec();
};

module.exports.insertSchedule = (schedule) => {
let s = new Schedule(schedule);
return s.save();

b

module.exports.updateSchedule = (idSchedule, schedule) => {
return Schedule.findOneAndUpdate({ _id: idSchedule }, schedule);
s

module.exports.removeTestFromAll = (idTest) => {
return Schedule.updateMany(
{1}
{ $pull: { tests: idTest } }
).exec();
b

module.exports.removePackageFromAll = (idPackage) => {
return Schedule.updateMany(
{}
{ $pull: { packages: idPackage } }
).exec();
¥

module.exports.deleteSchedule = (idSchedule) => {
return Schedule.deleteOne({ _id: idSchedule });
¥

Listing A.14: Tests Controller

const Test = require(”../models/tests”);

81

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

APPENDIX A. BACKEND CODE

module.exports.getTests = () => {
return Test.find({active: true}).sort({ id: 1 }).exec();

b

module.exports.getTest = (idTest) => {
return Test.findOne({ _id: idTest }).exec();
s

module.exports.insertTest = (test) => {
let t = new Test(test);
return t.save();

b

module.exports.updateTest = (idTest, newTest) => {
return Test.findOneAndUpdate({ _id: idTest }, newTest);
};

module.exports.runTest = async (driversDirectory, idTest, defaultParam) => {
let test = await Test.findOne({ _id: idTest }).exec();
let startTime = process.hrtime()
exec(${driversDirectory\\${test.module} "${idTest}” "${defaultParam}”", (err, stdout,
— stderr) => {
if (err) return stderr
else {
let endTime = process.hrtime(startTime)
let result = JSON.parse(stdout)
result.runtime = (endTime[1] / 1000000).toFixed(3);
result.id_test = idTest;
result.module = test.module;
result.name = test.name;

return result;

A.4 Routes

Listing A.15: API Routes

const express = require(”express”);
const router = express.Router();
const exec = require('child_process').exec;

const fs = require('fs');

82

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

APPENDIX A. BACKEND CODE

const jwt = require(”jsonwebtoken”);

const cron = require(”node-cron”);

const _ = require(”underscore”)

const Tests = require(”../controllers/tests”);

const Packages = require(”../controllers/packages”);

const Reports = require(”../controllers/reports”);

const Schedules = require(”../controllers/schedules”);

const Configurations = require(”../controllers/configurations”);

const TsimTest = require(”./../public/TsimTest/TsimTest”);

const checkForUpdates = async () => {
let newTests = await TsimTest.GetListOfTests();
let oldTests = await Tests.getTests();
let oldIds = oldTests.map(t => t.id)
let newIds = newTests.map(t => t.id)
let updates = 0
let unrwap = ({id, module, name, description, defaultParam}) => ({id, module,

< description, defaultParam})

newTests.map(test => {
if(oldIds.includes(test.id)){
let old = oldTests.filter(t => t.id === test.id)[0]
let checkOld = unrwap(old)
if(!(_.1isEqual(test, checkOld))){
Tests.updateTest(old._1id, test)

.then()
.catch((error) => res.status(500).jsonp(error));
updates =1
¥
}
else{
Tests.insertTest(test)
.then()
.catch((error) => res.status(500).jsonp(error));
updates = 1
}

9]

oldTests.map(old => {
if(!newIds.includes(old.id)){
Tests.updateTest(old._id, Object.assign(old, {active: false}))
.then((dados) => {
Schedules.removeTestFromAll(old._1id)
.then()

.catch((error) => res.status(500).jsonp(error));

83

name,

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

APPENDIX A. BACKEND CODE

Packages.getPackages()
.then((packages) => {
packages.map(p => {
if(p.tests.includes(old._1id)){
Schedules.removePackageFromAll(p._1id)
.then()
.catch((error) => res.status(500).jsonp(error));

Packages.deactivatePackageAndRemoveTest(p._id, p, old

—)
.then()
.catch((error) => res.status(500).jsonp(error));
3
1)
b
.catch((error) => res.status(500).jsonp(error));
})
.catch((error) => res.status(500).jsonp(error));
updates = 1

}

return updates

const generateBackupName = (options) => {
var tempDate = new Date();
let tmpDay = tempDate.getDate() + "”;
let day = tmpDay.length === ? "0" + tmpDay : tmpDay;
let tmpMonth = tempDate.getMonth() + 1 + "";
let month = tmpMonth.length === 1 ? "0” + tmpMonth : tmpMonth;
let year = tempDate.getFullYear() + "";
var tempHour = tempDate.getHours() + "";
var tempMin = tempDate.getMinutes() + ””;

var tempSec = tempDate.getSeconds() + "";

let hour = tempHour.length === 1 ? "0"” + tempHour : tempHour;
let min = tempMin.length === 1 ? "0” + tempMin : tempMin;
let sec = tempSec.length === 1 ? "0"” + tempSec : tempSec;

var date = year + month + day + hour + min + sec;

nmon

_"+ (options.configurations ? "c

nmo. nn

return "Backup_v"” + date +

— " : "") + (options.schedules ? "s

s
const getDate = () => {

var tempDate = new Date();

let tmpDay = tempDate.getDate() + "”;

84

._id, old.name

) + (options.reports ? "r

¢ "") + (options.packages ? "p” : "");

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

APPENDIX A

. BACKEND CODE

let day = tmpDay.length === 1 ? "0” + tmpDay : tmpDay;
let tmpMonth = tempDate.getMonth() + 1 + "";
let month = tmpMonth.length === 1 ? "0” + tmpMonth : tmpMonth;

let year = tempDate.getFullYear() + "";
var tempHour = tempDate.getHours() + "";

nn

var tempMin = tempDate.getMinutes() + ;

let hour = tempHour.length === 1 ? "0"” + tempHour : tempHour;
let min = tempMin.length === 1 ? "0” + tempMin : tempMin;
var date = year + ”"-" + month + ”"-" + day + " ” + hour + ":” + min;

return date;

};

const getHour = () => {
var tempDate = new Date();
var tempHour = tempDate.getHours() + "";
var tempMin = tempDate.getMinutes() + "";
let hour = tempHour.length === 1 ? "0"” + tempHour : tempHour;
let min = tempMin.length === 1 ? "0” + tempMin : tempMin;

men

var date = hour + + min;
return date;

b

cron.schedule(”* * * * x”_ function () {
Schedules.getSchedules()

.then(async (data) => {
let date = getDate();
let hour = getHour();
let list = data.filter((s) => s.hour === hour && s.active);
let listOfTests = list.map((s) => s.tests);
let listOfPackages = list.map((s) => s.packages);

if (listOfTests.length > 0 || listOfPackages.length > 0) {
let tests = list0fTests[0];
let packages = listOfPackages[0];
let results = [];

for (let 1 = 0; 1 < tests.length; i++) {
let r = await Tests.runTest(tests[i]);

results.push(r);

for (let 1 = 0; 1 < packages.length; i++) {
let r = await Packages.runPackage(packages[i]);
if(r[o])

r.map((res) => results.push(res));

85

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

APPENDIX A. BACKEND CODE

awailt Reports.insertReport({
id_user: 5000,
date: date,
results: results,

s

9]

.catch((error) => console.log(error));

s

router.get(”/"”, function (req, res) {
checkForUpdates()
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

s

router.get(”/backups”, function (req, res) {
Configurations.getConfigurations()
.then((data) =>
fs.readdir(datal[0].backupDir, (err, files) => {

if(err)
res.status(500).jsonp(err)

else{
let validFiles = []
files.forEach(file => {

let name = file.split(”.zip”)[0];

let words = name.split(”_v")

if(words[1]){
let ids = words[1].split(”_")
if(words[0] === "Backup” && /"\d+$/.test(ids[0]) && /[a-zA-Z]+/.test(ids
— [1]1)){
validFiles.push(file)
}
}
3

res.jsonp(validFiles)

})
)

.catch((error) => res.status(500).jsonp(error));
1)

router.post(”/backups”, async function (req, res) {

86

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

217

218

APPENDIX A. BACKEND CODE

Configurations.getConfigurations()
.then((data) => {
let backupName = generateBackupName(req.body)
fs.mkdir(${datal0].backupDir}\\${backupName} , function(err) {
if (err) res.status(500).jsonp(err)
else {
fs.writeFile(${datal[0].backupDir}\\${backupName\\info.json , JSON.stringify(
< req.body, null, 4), (err) => {
if (err) res.status(500).jsonp(err)
else {
exec(${data[0].appDir}\\bin\\exportBackup.bat "${data[@].appDir}” "${
< data[0].dbBinDir}” "${data[0].backupDir}” "${req.body.packages}” ”
— ${req.body.reports}” "${req.body.schedules}” "${req.body.
— configurations}” ${backupName}', (err, stdout, stderr) => {
if (err) res.status(500).jsonp(err)

else res.jsonp(stdout)

})

.catch((error) => res.status(500).jsonp(error));

s

router.post(”/restore/:backup”, function (req, res) {
let strOptions = req.params.backup.split(”_")[2].split(”.zip"”)[0]
let reports = strOptions.includes(”r"”)
let packages = strOptions.includes(”p”)
let schedules = strOptions.includes(”s”)
let configurations = strOptions.includes(”c”)
Configurations.getConfigurations()
.then((data) => {
exec(${datal[0].appDir}\\bin\\restoreBackup.bat "${data[0].appDir}” "${data[0].
<— dbBinDir}” "${datal[0].backupDir}” ${req.params.backup.split(”.”)[0]1} "${
<— packages}” "${reports}” "${schedules}” "${configurations}”", (err, stdout,
< stderr) => {
if (err) res.status(500).jsonp(err)
else res.jsonp(stdout)
});
})
.catch((error) => res.status(500).jsonp(error));
})s

router.post(”/login”, function (req, res) {

87

219

220

222

223

224

225

226

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

258

259

260

261

262

263

APPENDIX A. BACKEND CODE

Configurations.getConfigurations()
.then((data) => {
if (req.body.id == data[0].userConfigurationID) {
res.jsonp(
jwt.sign({ id: req.body.id, role: "admin” }, "tsim_secret”, {
expiresIn: "1h",
})
)3
} else {
res.jsonp(
jwt.sign({ id: req.body.id, role: "worker” }, "tsim_secret”, {
expiresIn: "1h",
})
)3

9]

.catch((error) => res.status(500).jsonp(error));
});

// Configuration Requests
router.get(”/configurations”, function (req, res) {
Configurations.getConfigurations()
.then((data) => res.jsonp(data[0]))
.catch((error) => res.status(500).jsonp(error));

s

router.post(”/configurations”, function (req, res) {
Configurations.insertConfiguration(req.body)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));
s

router.put(”/configurations/:idConfiguration”, function (req, res) {
Configurations.updateConfiguration(req.params.idConfiguration, req.body)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

s

// Test Requests
router.get(”/tests”, function (req, res) {
Tests.getTests()
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

s

88

264

265

266

267

268

269

270

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

APPENDIX A. BACKEND CODE

router.get("”/tests/:1dTest”, function (req, res) {
Tests.getTest(req.params.idTest)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

s

router.post(”/tests/run”, async function (req, res) {
let tests = req.body.tests;
let results = [1];

for (let 1 = 0; 1 < tests.length; i++) {
let r = await Tests.runTest(tests[1]);
results.push(r);

}

await Reports.insertReport({
id_user: req.body.id_user,
date: reqg.body.date,
results: results,

s

res.jsonp(results);

s

// Packages Requests
router.get(”/packages”, function (req, res) {
Packages.getPackages()
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

s

router.get("”/packages/:idPackage”, function (req, res) {
Packages.getPackage(req.params.idPackage)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));
})s

router.post(”/packages”, function (req, res) {
Packages. insertPackage(req.body)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

s

router.post(”/packages/run”, async function (req, res) {
let packages = req.body.packages;
let newReport = {

id_user: req.body.id_user,

89

309

310

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

APPENDIX A. BACKEND CODE

date: reqg.body.date,
results: [],
b
for (let 1 = 0; 1 < packages.length; i++) {
let r = await Packages.runPackage(packages[i]);
r.map((res) => newReport.results.push(res));
}
awailt Reports.insertReport(newReport);
res.jsonp(newReport.results);
});

router.put(”/packages/:idPackage”, function (req, res) {
Packages.updatePackage(req.params.idPackage, req.body)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

s

router.delete(”/packages/:i1dPackage”, function (req, res, next) {
Packages.deletePackage(req.params.idPackage)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));
});

// Reports Requests
router.get(”/reports”, function (req, res) {
Reports.getReports()
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

s

router.get(”/reports/:idReport”, function (req, res) {
Reports.getReport(req.params.idReport)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

Hs

router.post(”/reports”, function (req, res) {
Reports.insertReport(req.body)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

})s
// Schedules Requests

router.get(”/schedules”, function (req, res) {

Schedules.getSchedules()

90

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

380

381

382

APPENDIX A. BACKEND CODE

.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

s

router.get("”/schedules/:1dSchedule”, function (req, res) {
Schedules.getSchedule(req.params.idSchedule)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

s

router.post(”/schedules”, function (req, res) {
Schedules. insertSchedule(req.body)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));
3

router.put(”/schedules/:1dSchedule”, function (req, res) {
Schedules.updateSchedule(req.params.idSchedule, req.body)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));

s

router.delete(”/schedules/:idSchedule”, function (req, res, next) {
Schedules.deleteSchedule(req.params.idSchedule)
.then((data) => res.jsonp(data))
.catch((error) => res.status(500).jsonp(error));
3

module.exports = router;

91

Appendix

Frontend code

This appendix contains the complete code for the Frontend tier, that is, for the System Interface. Although
the examples specified and presented in the main document are more than sufficient to understand the
work done, all the code has been exposed here as supporting documentation for this work. Thus, it is

possible to reproduce the work done with the presented documentation and code.

10

11

12

13

14

15

16

17

18

19

B.1 API Requests

Listing B.1: Methods for retrieving data from the API via HTTP requests

import axios from "axios”;

import { getToken } from ”../auth/auth”;

const url = "http://localhost:5000";

export

b

var
let
let
let
let
let
var
var
let
let

var

const getDate = () => {
tempDate = new Date();

tmpDay = tempDate.getDate() + "";

day = tmpDay.length === 1 ? "0” + tmpDay : tmpDay;
tmpMonth = tempDate.getMonth() + 1 + "";

month = tmpMonth.length === 1 ? "0” + tmpMonth : tmpMonth;
year = tempDate.getFullYear() + "";

tempHour = tempDate.getHours() + "";

tempMin = tempDate.getMinutes() + "";

hour = tempHour.length === 1 ? "0” + tempHour : tempHour;

min = tempMin.length === 1 ? "0” + tempMin : tempMin;

" " Lo hour + "

date = year + "-" + month + "-" + day + + min;

return date;

92

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

APPENDIX B. FRONTEND CODE

export const checkUpdates = async () => {
try {
const response = await axios.get(${url}/);
return response.data;
} catch (error) {
const statusCode = error.response ? error.response.status : 500;

throw new Error(statusCode.toString());

Y

export const login = async (id) => {

try {
const response = await axios.post(${url}/login’, {
id: d,
s

return response.data;
} catch (error) {
const statusCode = error.response ? error.response.status : 500;

throw new Error(statusCode.toString());

};

export const getConfigurations = async () => {
try {
const response = awailt axios.get(${url}/configurations’);
return response.data;
} catch (error) {
const statusCode = error.response ? error.response.status : 500;

throw new Error(statusCode.toString());

b

export const updateConfigurations = async (id, newConfigs) => {
try {
const response = await axios.put(${url}/configurations/${id}" , newConfigs);
return response.data;
} catch (error) {
const statusCode = error.response ? error.response.status : 500;

throw new Error(statusCode.toString());

b

export const getBackups = async () => {
try {

93

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

APPENDIX B. FRONTEND CODE

const response = await axios.get(${url}/backups’);
return response.data;
} catch (error) {

return []

};

export const makeBackup = async (options) => {
try {
const response = await axios.post(${url}/backups’, options)
return response.data;
} catch (error) {

return -1;

+;

export const restoreBackup = async (backup) => {
try {

b

const response = await axios.post(${url}/restore/${backup.split(”.”)[0]1}");

return response.data;
} catch (error) {
const statusCode = error.response ? error.response.status

throw new Error(statusCode.toString());

b

export const getTests = async () => {
try {
const response = await axios.get(${url}/tests’);
return response.data;
} catch (error) {
const statusCode = error.response ? error.response.status

throw new Error(statusCode.toString());

};

export const getPackages = async () => {
try {
const response = await axios.get(${url}/packages’);
return response.data;
} catch (error) {
const statusCode = error.response ? error.response.status

throw new Error(statusCode.toString());

94

: 500;

: 500;

: 500;

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

APPENDIX B. FRONTEND CODE

export const runTests = async (tests) => {
try {
const d = getDate();
const token = await getToken();
const response = await axios.post(${url}/tests/run’, {
tests: tests,
id_user: token.id,
date: d,
})s
return response.data;
} catch (error) {
const statusCode = error.response ? error.response.status

throw new Error(statusCode.toString());

b

export const runPackages = async (packages) => {
try {
const d = getDate();

const token = await getToken();

const response = await axios.post(${url}/packages/run’, {

packages: packages,
id_user: token.1id,
date: d,
})s
return response.data;
} catch (error) {
const statusCode = error.response ? error.response.status

throw new Error(statusCode.toString());

b

export const getReports = async () => {
try {
const response = await axios.get(${url}/reports’);
return response.data;
} catch (error) {
const statusCode = error.response ? error.response.status

throw new Error(statusCode.toString());

b

export const getSchedules = async () => {
try {

95

: 500;

: 500;

: 500;

APPENDIX B. FRONTEND CODE

155 const response = await axios.get(${url}/schedules’);

156 return response.data;

157 } catch (error) {

158 const statusCode = error.response ? error.response.status : 500;
159 throw new Error(statusCode.toString());

160 }

161 | };

162

163 |export const insertSchedule = async (newSchedule) => {

164 try {

165 const response = await axios.post(${url}/schedules’, newSchedule);
166 return response.data;

167 } catch (error) {

168 const statusCode = error.response ? error.response.status : 500;
169 throw new Error(statusCode.toString());

170 }

171 |}

172

173 | export const updateSchedule = async (id, newSchedule) => {

174 try {

175 const response = await axios.put(${url}/schedules/${id} , newSchedule);
176 return response.data;

177 } catch (error) {

178 const statusCode = error.response ? error.response.status : 500;

179 throw new Error(statusCode.toString());

180 }

181 | };

182

183 |export const deleteSchedule = async (id) => {

184 try {

185 const response = await axios.delete(${url}/schedules/${id});
186 return response.data;

187 } catch (error) {

188 const statusCode = error.response ? error.response.status : 500;
189 throw new Error(statusCode.toString());

190 }

191 | };

192

193 | export const deletePackage = async (id) => {

194 try {

195 const response = awailt axios.delete(${url}/packages/${id}");
196 return response.data;

197 } catch (error) {

198 const statusCode = error.response ? error.response.status : 500;
199 throw new Error(statusCode.toString());

96

APPENDIX B. FRONTEND CODE

200 }
201 | };
202

203 |export const updatePackage = async (id, newPackage) => {

204 try {

205 const response = await axios.put(${url}/packages/${id}", newPackage);
206 return response.data;

207 } catch (error) {

208 return { errors: 1 };

209 }

210 | };

211

212 | export const insertPackage = async (newPackage) => {

213 try {

214 const response = await axios.post(${url}/packages’, newPackage);
215 return response.data;

216 } catch (error) {

217 return { errors: 1 };

218 }

219 | };

B.2 Authentication

Listing B.2: Authentication.js

1 | import Cookie from "js-cookie”;

2 | import decode from "jwt-decode”;

4 |export const getToken = () => {

5 const token = Cookie.get(”tsimToken”);

6 return token ? JSON.parse(token) : null;
7 1};

8

9 |export const addToken = (encodedToken) => {

10 deleteToken();

11 const decodedToken = decode(encodedToken);

12 const token = {

13 encoded: encodedToken,

14 ...decodedToken,

15 };

16 Cookie.set(”tsimToken”, token, { expires: 1 });
17 return token;

18 | };

19

97

20

21

22

23

24

25

26

10

11

12

13

14

15

16

17

18

19

20

21

22

23

APPENDIX B. FRONTEND CODE

export const deleteToken = () => Cookie.remove(”tsimToken”);

export const isAuthenticated = () => {
const token = getToken();
if (!token) return false;
return token.role;

};

B.3 Routing

Listing B.3: HomeRoute.js

import React from "react”;
import { Route, Redirect } from "react-router-dom”;

import { isAuthenticated } from "../../auth/auth”;

const PrivateRoute = ({ children, path, ...rest }) => {
let role = isAuthenticated();
return (
<Route
{...rest}
render={(props) =>
role === "admin” ? (
<Redirect to="/configs” />
) : role === "worker” ? (
<Redirect to="/execution” />
)+ (

children

/>

Y

export default PrivateRoute;

Listing B.4: PrivateRoute.js

import React from "react”;
import { Route, Redirect } from "react-router-dom”;

import { isAuthenticated } from "../../auth/auth”;

const PrivateRoute = ({ children, role, path, ...rest }) => (
<Route
{...rest}

98

10

11

12

13

14

10

11

10

11

12

13

14

15

16

17

18

19

APPENDIX B. FRONTEND CODE

render={(props) =>

isAuthenticated() === role ? children : <Redirect to="/" />

/>
)5

export default PrivateRoute;

B.4 Pages Code

Listing B.5: index.html

<!DOCTYPE html>
<html lang="pt">
<head>
<meta charset="utf-8" />
<meta name="viewport” content="width=device-width, initial-scale=1" />
<title>TSIM Tests Aplication</title>
</head>
<body style="font-family: Arial, Helvetica, sans-serif;”>
<div i1d="root"></div>
</body>
</html>

Listing B.6: serviceWorker.js

const isLocalhost = Boolean(
window.location.hostname === "localhost” ||
window.location.hostname === "[::1]" ||
window.location.hostname.match(
/7M127(2:\.(?:25[0-5]]2[0-4][0-9]|[01]?[0-9][0-9]?)){3}$/

)5

export function register(config) {

if (process.env.NODE_ENV === "production” && "serviceWorker” in navigator) {

const publicUrl = new URL(process.env.PUBLIC_URL, window.location.href);

if (publicUrl.origin !== window.location.origin) {

return;

window.addEventListener(”load”, () => {

const swUrl = “${process.env.PUBLIC_URL}/service-worker.js";

if (isLocalhost) {

99

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

APPENDIX B. FRONTEND CODE

checkValidServiceWorker(swUrl, config);

navigator.serviceWorker.ready.then(() => {

console. log(
"This web app is being served cache-first by a service " +
"worker. To learn more, visit https://bit.ly/CRA-PWA”
);

3
} else {
registerValidSW(swUrl, config);
}
})s

function registerValidSW(swUrl, config) {

navigator.serviceWorker

.register(swlrl)

.then((registration) => {

registration.onupdatefound = () => {

const installingWorker = registration.installing;

if (installingWorker == null) {

¥

return;

installingWorker.onstatechange = () => {

if (installingWorker.state === "installed”) {
if (navigator.serviceWorker.controller) {
console. log(
"New content is available and will be used when all " +
"tabs for this page are closed. See https://bit.ly/CRA-PWA.”
)3

if (config && config.onUpdate) {
config.onUpdate(registration);
}
} else {

console.log(”Content is cached for offline use.”);

if (config && config.onSuccess) {

config.onSuccess(registration);

100

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

APPENDIX B. FRONTEND CODE

.catch((error) => {
console.error(”Error during service worker registration:”, error);

s

function checkValidServiceWorker(swUrl, config) {
fetch(swlrl, {
headers: { "Service-Worker”: "script” },
})
.then((response) => {
const contentType = response.headers.get(”content-type”);
if (
response.status === 404 ||
(contentType != null &&
contentType. index0f(”javascript”) === -1)
) {
navigator.serviceWorker.ready.then((registration) => {
registration.unregister().then(() => {
window.location.reload();
3
3
} else {
registerValidSW(swUrl, config);

})
.catch(() => {
console. log(
"No internet connection found. App is running in offline mode.”
)3
})s

export function unregister() {
if ("serviceWorker” in navigator) {
navigator.serviceWorker.ready

.then((registration) => {
registration.unregister();

)

.catch((error) => {
console.error(error.message);

s

Listing B.7: index.js

101

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

APPENDIX B. FRONTEND CODE

import
import
import

import

React from "react”;
ReactDOM from "react-dom”;
App from "./App”;

* as serviceWorker from "./serviceWorker”;

ReactDOM. render(<App />, document.getElementById(”root”));

serviceWorker.unregister();

Listing B.8: App.js

import
import
import
import
import
import
import

import

export

React, {useEffect} from "react”;
{ BrowserRouter, Switch } from "react-router-dom”;

”

Execution from "./pages/Execution”;

Configs from "./pages/Configs”;

Login from ”./pages/Login”;

PrivateRoute from ”./components/routes/PrivateRoute”;

”

HomeRoute from ”./components/routes/HomeRoute”;

{checkUpdates} from ”./api/api”

default function App() {

useEffect(() => {

async function fetchData() {

await checkUpdates();

fetchData();

bo0Ds

return (

)5

<BrowserRouter>

<Switch>

<PrivateRoute path="/execution” role="worker”>
<Execution />

</PrivateRoute>

<PrivateRoute path="/configs” role="admin”>
<Configs />

</PrivateRoute>

<HomeRoute path="/">
<Login />

</HomeRoute>

</Switch>

</BrowserRouter>

102

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

APPENDIX B. FRONTEND CODE

Listing B.9: Login Component

import React, { useState } from "react”;
import { useHistory } from ”"react-router-dom”;

import AppBar from "@material-ui/core/AppBar”;

import Toolbar from "@material-ui/core/Toolbar”;

import Typography from "@material-ui/core/Typography”;
import Button from "@material-ui/core/Button”;

import TextField from "@material-ui/core/TextField”;
import Card from '@material-ui/core/Card';

import Grid from '@material-ui/core/Grid';

import CardContent from '@material-ui/core/CardContent';
import { login, getConfigurations } from ”

import { addToken } from "../auth/auth”;

../api/api”;

export default function Login() {
const history = useHistory();
const [id, setId] = useState(""”);

const [error, setError] = useState(false);

const handleChange = (event) => {
const { name, value } = event.target;

”s

if (name === "1d"”) setId(value);

b

const handleClickExecution = async () => {

let configurations = await getConfigurations();

if (id === "" || id === configurations.userConfigurationID) {
setError(true);

} else {
setError(false);
let res = await login(id);
awailt addToken(res);

history.push(”/execution”);

};

const handleClickConfigs = async () => {

let configurations = await getConfigurations();

if (id === "" || id !== configurations.userConfigurationID) {
setError(true);

} else {
setError(false);
let res = await login(id);
awailt addToken(res);

history.push(”/configs”);

103

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

APPENDIX B. FRONTEND CODE

};

return (
<div style={{ textAlign: "center” }}>
<AppBar position="static” style={{ alignItems: "center” }}>
<Toolbar>
<Typography variant="h3">
Sistema de Autodiagndstico dos Sistemas de Teste
Automdtico
</Typography>
</Toolbar>
</AppBar>
<Grid
container
spacing={0}
direction="column”
alignItems="center”
justify="center”

style={{ minHeight: '70vh' }}

<Grid item xs={12}>
<Card style={{width: 600, textAlign: "center”}}>
<CardContent>
<h1>Escolha o modo de execugao:</hl>
<TextField
name="1d"
error={error}
label="ID Funcionario”
variant="outlined”
value={id}
onChange={handleChange}
/>

<Button
style={{ marginRight: 20 }}
variant="contained”
color="primary”
size="large”
disableElevation

onClick={handleClickExecution}

Execucao

</Button>

104

APPENDIX B. FRONTEND CODE

90 <Button

91 style={{ marginLeft: 20 }}
92 variant="contained”

93 color="primary”

94 size="large”

95 disableElevation

96 onClick={handleClickConfigs}
97 >

98 Configuracao

99 </Button>

100 </CardContent>

101 </Card>

102 </Grid>

103 </Grid>

104 </div>

105)3

106 |}

B.4.1 Execution Components

Listing B.10: Execution.js

1 | import React from "react”;

2 | import { useHistory } from "react-router-dom”;

3 [import { deleteToken } from ”../auth/auth”;

4 | import Button from "@material-ui/core/Button”;

5 |import Typography from "@material-ui/core/Typography”;
6 | import AppBar from "@material-ui/core/AppBar”;

7 | import Toolbar from "@material-ui/core/Toolbar”;

”

8 | import Test from ”../components/execution/tests/Test”;

10 | export default function Execution() {

11 const history = useHistory();

12

13 const logout = async () => {

14 await deleteToken();

15 history.push(”/");

16 b

17

18 return (

19 <div>

20 <AppBar position="static”>
21 <Toolbar>

22 <Typography variant="h4" style={{ flexGrow: 1, textAlign: "center” }}>
23 Execucao de Testes

105

24

25

26

27

28

29

30

31

32

33

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

APPENDIX B. FRONTEND CODE

</Typography>
<Button color="inherit” onClick={logout}>
Satir
</Button>
</Toolbar>
</AppBar>
<Test />
</div>
)3

Listing B.11: Tests.js

import React, { useEffect, useState } from "react”;

import TransferList from ”./TransferList”;

import { getTests, getPackages, runTests, runPackages } from "../../../api/apl”;
import SplitPane from "react-split-pane”;

import ResultsTable from ”./ResultsTable”;

import CircularProgress from "@material-ui/core/CircularProgress”;

export default function Testar() {
const [loading, setLoading] = useState(false);
const [executingTests, setExecutingTests] = useState(false);
const [executingPackages, setExecutingPackages] = useState(false);
const [tests, setTests] = useState([]);
const [packages, setPackages] = useState([]);

const [results, setResults] = useState([]);

const executeTests = async (listOfTests) => {
setExecutingTests(true);
let results = await runTests(listOfTests);
setExecutingTests(false);
setResults(results);

};

const executePackages = async (listOfPackages) => {
setExecutingPackages(true);
let results = await runPackages(listOfPackages);
setExecutingPackages(false);
setResults(results);

b

useEffect(() => {
setLoading(true);
async function fetchData() {

let tests = await getTests();

106

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

APPENDIX B. FRONTEND CODE

setTests(tests);
let packages = await getPackages();
setPackages(packages.filter(p => p.active));
setLoading(false);
}
fetchData();
Y}, [

let showResults =
results.length > 0 ? (
<ResultsTable results={results} setResults={setResults} />
) =

nn

);

return (
<div>
{loading ? (
<h3 style={{ textAlign: "center” }}>A carregar dados...</h3>
)
<SplitPane split="vertical” defaultSize={"50%"}>

<div
style={{
textAlign: "center”,
borderRight: "1px solid #3f51b5",
3s
>

<h2>Testes Primitivos</h2>
<TransferList tests={tests} execute={executeTests} />

{executingTests ? <CircularProgress /> : ""}
</div>
<div style={{ textAlign: "center” }}>
<h2>Pacotes de Testes</h2>
<TransferList
tests={packages}
execute={executePackages}
/>

{executingPackages ? <CircularProgress /> : ""}
</div>
</SplitPane>
)}

107

79

80

81

82

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

APPENDIX B. FRONTEND CODE

{showResults}
</div>

)3

Listing B.12: TransferList.js

import React, { useState } from "react”;

import { makeStyles } from "@material-ui/core/styles”;

import Grid from "@material-ui/core/Grid”;
import List from "@material-ui/core/List”;

import Card from "@material-ui/core/Card”;

import CardHeader from "@material-ui/core/CardHeader”;

import ListItem from "@material-ui/core/ListItem”;

import ListItemText from "@material-ui/core/ListItemText”;

import ListItemIcon from "@material-ui/core/ListItemIcon”;

import Checkbox from "@material-ui/core/Checkbox”;
import Button from "@material-ui/core/Button”;
import Divider from "@material-ui/core/Divider”;

import ResponsiveButton from ”./ResponsiveButton”;

const useStyles = makeStyles((theme) => ({
root: {
margin: "auto”,
}s
cardHeader: {

padding: theme.spacing(2, 3),

b
list: {
width: 300,
height: 350,
backgroundColor: theme.palette.background.paper,
overflow: "auto”,
}s
button: {
margin: theme.spacing(1, 0),
b,

s

function not(a, b) {

return a.filter((value) => b.index0f(value) ===

function intersection(a, b) {

return a.filter((value) => b.index0f(value) !==

108

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

APPENDIX B. FRONTEND CODE

function union(a, b) {

return [...a, ...not(b, a)l;

function getTestName(list, id) {
return list.filter((t) => t._id === 1d)[0].name;

export default function TransferList(props) {
const classes = useStyles();
const [checked, setChecked] = useState([]);
const [left, setLeft] = useState(props.tests.map((t) => t._id));
const [right, setRight] = useState([]);

const leftChecked = intersection(checked, left);

const rightChecked = intersection(checked, right);

const handleToggle = (value) => () => {
const currentIndex = checked.index0f(value);

const newChecked = [...checked];

if (currentIndex === -1) {
newChecked.push(value);
} else {

newChecked.splice(currentIndex, 1);

setChecked(newChecked);
};

const cleanList = () => {
setChecked([]);
setLeft(left.concat(right));
setRight([]);

b

const numberOfChecked = (items) => intersection(checked, items).length;

const handleToggleAll = (items) => () => {

if (numberOfChecked(items) === items.length) {
setChecked(not(checked, items));
} else {

setChecked(union(checked, items));

109

APPENDIX B. FRONTEND CODE

85 };

86

87 const handleCheckedRight = () => {

88 setRight(right.concat(leftChecked));

89 setLeft(not(left, leftChecked));

90 setChecked(not(checked, leftChecked));

91 };

92

93 const handleCheckedLeft = () => {

94 setLeft(left.concat(rightChecked));

95 setRight(not(right, rightChecked));

96 setChecked(not(checked, rightChecked));

97 };

98

99 const customList = (title, items) => (

100 <Card>

101 <CardHeader

102 className={classes.cardHeader}

103 avatar={

104 <Checkbox

105 color="primary”

106 onClick={handleToggleAll(items)}
107 checked={

108 numberOfChecked(items) === items.length &&
109 items.length !== 0

110 }

111 indeterminate={

112 numberOfChecked(items) !== items.length &&
113 numberOfChecked(items) !== 0
114 }

115 disabled={items.length === 0}

116 />

117 }

118 title={title}

119 subheader={" ${number0fChecked(items)}/${
120 items.length

121 } selecionados’}

122 />

123 <Divider />

124 <List className={classes.list} dense component="div” role="1list”>
125 {items.map((value) => {

126 const labelld = “transfer-list-all-item-${value}-label’;
127

128 return (

129 <ListItem

110

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

APPENDIX B. FRONTEND CODE

key={value}

role="1istitem”

button
onClick={handleToggle(value)}

>
<ListItemIcon>
<Checkbox
color="primary”
checked={checked. index0f(value) !== -1}
tabIndex={-1}
disableRipple
inputProps={{ "aria-labelledby”: labelld }}
/>
</ListItemIcon>
<ListItemText
id={1labelId}
primary={getTestName(props.tests, value)}
/>
</ListItem>
)3
b}
</List>
</Card>
)3
return (
<div>
<Grid
contatiner
spacing={2}
justify="center”
alignItems="center”
className={classes.root}
>

<Grid item>{customList(”Lista de Testes”, left)}</Grid>
<Grid item>
<Grid container direction="column” alignItems="center”>
<Button
variant="outlined”
className={classes.button}
onClick={handleCheckedRight}

disabled={leftChecked.length === 0}
>

>
</Button>

111

APPENDIX B. FRONTEND CODE

175 <Button

176 variant="outlined”

177 className={classes.button}
178 onClick={handleCheckedLeft}
179 disabled={rightChecked.length === 0}
180 >

181 <

182 </Button>

183 </Grid>

184 </Grid>

185 <Grid item>{customList(”Executar”, right)}</Grid>
186 </Grid>

187

188 <ResponsiveButton

189 tests={right}

190 execute={props.execute}

191 clean={cleanList}

192 />

193 </div>

194)3

195 |}

Listing B.13: ExecuteButton.js

1 | import React from "react”;

2 |import Button from "@material-ui/core/Button”;

3 | import Dialog from "@material-ui/core/Dialog”;

4 | import DialogActions from "@material-ui/core/DialogActions”;

5 |import DialogContent from "@material-ui/core/DialogContent”;

6 | import DialogContentText from "@material-ui/core/DialogContentText”;
7 | import DialogTitle from "@material-ui/core/DialogTitle”;

8 | import useMediaQuery from "@material-ui/core/useMediaQuery”;

9 |import { useTheme } from "@material-ui/core/styles”;

10

11 |export default function ResponsiveButton(props) {

12 const [open, setOpen] = React.useState(false);

13 const [noTest, setNoTest] = React.useState(false);

14 const theme = useTheme();

15 const fullScreen = useMediaQuery(theme.breakpoints.down(”sm"”));
16

17 const handleClickOpen = () => {

18 props.tests.length === @ ? setNoTest(true) : setOpen(true);
19 };

20

21 const handleClose = () => {

22 setNoTest(false)

112

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

APPENDIX B. FRONTEND CODE

setOpen(false);
b

const handleExecute = () => {
setOpen(false);
props.clean();
props.execute(props.tests);

b

return (
<div>
<Button
variant="outlined”
color="primary”
onClick={handleClickOpen}

Executar

</Button>

<Dialog
disableBackdropClick={true}
fullScreen={fullScreen}

open={noTest}

<DialogTitle>
{"Tem que selecionar pelo menos um teste.”}
</DialogTitle>

<DialogActions>

<Button onClick={handleClose} color="primary” autoFocus>

0k
</Button>
</DialogActions>
</Dialog>
<Dialog
disableBackdropClick={true}
fullScreen={fullScreen}

open={open}

<DialogTitle>
{"Tem a certeza que quer executar estes testes?”}
</DialogTitle>
<DialogContent>
<DialogContentText>
Selecionou {props.tests.length} testes.
</DialogContentText>
</DialogContent>

113

68

69

70

71

72

73

74

75

76

77

78

79

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

APPENDIX B. FRONTEND CODE

<DialogActions>
<Button autoFocus onClick={handleClose} color="primary”>
Nao
</Button>
<Button onClick={handleExecute} color="primary” autoFocus>
Sim
</Button>
</DialogActions>
</Dialog>
</div>

)3

Listing B.14: ResultsTable.js

import React from "react”;

import Button from "@material-ui/core/Button”;

import Dialog from "@material-ui/core/Dialog”;

import DialogActions from "@material-ui/core/DialogActions”;
import DialogContent from "@material-ui/core/DialogContent”;
import DialogTitle from "@material-ui/core/DialogTitle”;
import Table from "@material-ui/core/Table”;

import TableBody from "@material-ui/core/TableBody”;

import TableCell from "@material-ui/core/TableCell”;

import TableContainer from "@material-ui/core/TableContainer”;
import TableHead from "@material-ui/core/TableHead”;

import TableRow from "@material-ui/core/TableRow”;

import Paper from "@material-ui/core/Paper”;

import FiberManualRecordIcon from "@material-ui/icons/FiberManualRecord”;

export default function ResultsTable(props) {

const [open, setOpen] = React.useState(true);

const handleClose = () => {
props.setResults([]);
setOpen(false);

b

return (
<Dialog maxWidth="1g"” disableBackdropClick={true} open={open}>
<DialogTitle>{"Relatdorio dos Testes efetuados”}</DialogTitle>
<DialogContent>
<TableContainer component={Paper}>
<Table>
<TableHead>

<TableRow>

114

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

APPENDIX B. FRONTEND CODE

<TableCell>
Médulo
</TableCell>
<TableCell align="center”>
Teste
</TableCell>
<TableCell align="center”>
Tempo de Execucdo
</TableCell>
<TableCell align="center”>
Mensagem
</TableCell>
<TableCell align="center”>
Valor
</TableCell>
<TableCell align="right”>
Resultado
</TableCell>
</TableRow>
</TableHead>
<TableBody>
{props.results.map((test) => {
return (
<TableRow key={test._1id}>
<TableCell component="th"” scope="row"”>
{test.module}
</TableCell>
<TableCell align="center”>
{test.name}
</TableCell>
<TableCell align="center”>
{test.runtime}ms
</TableCell>
<TableCell align="center"”>
{test.message}
</TableCell>
<TableCell align="center"”>

{test.resultValue}

</TableCell>
<TableCell align="right"”>
{test.result === "success”
? "Passou”
(test.result === "fail” ? "Falhou” : "Inconclusivo”)}
{test.result === "success” ? (

<FiberManualRecordIcon

115

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

APPENDIX B. FRONTEND CODE

style={{
color: "green”,
fontSize: "12px”,
verticalAlign: "center”,
1}
/>
) + (test.result === "fail” ?
<FiberManualRecordIcon
style={{
color: "red”,
fontSize: "12px”,

verticalAlign: "center”,

1}
/>
<FiberManualRecordIcon
style={{
color: "yellow”,
fontSize: "12px”,
verticalAlign: "center”,
1}
/>
)}
</TableCell>
</TableRow>
)3
H}
</TableBody>
</Table>
</TableContainer>
</DialogContent>
<DialogActions>

<Button autoFocus onClick={handleClose} color="primary”>
Fechar
</Button>
</DialogActions>
</Dialog>
)3

B.4.2 Configuration Components

Listing B.15: Configuration.js

import React, { useState } from "react”;

import { useHistory } from ”"react-router-dom”;

116

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

APPENDIX B. FRONTEND CODE

import { deleteToken } from "../auth/auth”;

import Button from "@material-ui/core/Button”;

import AppBar from "@material-ui/core/AppBar”;

import Toolbar from "@material-ui/core/Toolbar”;

import Schedules from ”../components/configs/schedules/Schedules”;

”

import Docs from ”../components/configs/docs/Docs”;

import Packages from ”../components/configs/packages/Packages”;
import Historico from ”../components/execution/reports/Historico”;
import Configuracoes from ”../components/configs/configurations/Configurations”;

export default function Configs() {
const history = useHistory();

const [section, setSection] = useState(”Relatérios”);

const logout = async () => {
await deleteToken();
history.push(”/”);

};

return (
<div>
<AppBar position="static”>
<Toolbar>
<Button
color="inherit”
onClick={() => setSection(”Relatérios”)}
style={{ flexGrow: 1 }}

>
Relatérios
</Button>
<Button
color="inherit”
onClick={() => setSection(”Agendamentos”)}
style={{ flexGrow: 1 }}
>
Agendamentos
</Button>
<Button
color="inherit”
onClick={() => setSection("Testes”)}
style={{ flexGrow: 1 }}
>
Gestao de Pacotes
</Button>
<Button

117

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

10

11

12

13

14

15

16

APPENDIX B. FRONTEND CODE

color="inherit”
onClick={() => setSection(”Documentacdo”)}

style={{ flexGrow: 1 }}

>
Documentacao

</Button>

<Button
color="inherit”
onClick={() => setSection(”Configuracdes”)}
style={{ flexGrow: 1 }}

>
Configuragdes

</Button>

<Button color="inherit” onClick={logout}>

Satir
</Button>
</Toolbar>
</AppBar>
{
section === "Agendamentos” ? <Schedules /> :
section === "Testes” ? <Packages /> :
section === "Documentacao” ? <Docs /> :
section === "Configuracdes” ? <Configuracoes /> :
}
</div>

<Historico />

Listing B.16: Reports.js

import React, { useEffect, useState } from "react”;
import ReportsTable from ”./ReportsTable”;

”

import { getReports } from ”../../../api/apil”;
export default function Historico() {
const [loading, setLoading] =

useState([]);

useState(false);

const [data, setData] =

useEffect(() => {
setLoading(true);
async function fetchData() {
let reports = await getReports();
setData(reports);
setLoading(false);

}
fetchData();

118

17

18

19

20

21

22

23

24

25

26

27

28

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

APPENDIX B. FRONTEND CODE

b0

return (
<div>
{loading ? (
<h3 style={{ textAlign: "center” }}>A carregar dados...</h3>
) 2
<ReportsTable data={data} />
)}
</div>

)3

Listing B.17: ReportsTableWithDetail.js

import React, {useState} from 'react';

import { makeStyles } from '@material-ui/core/styles';

import Paper from '@material-ui/core/Paper';

import Table from '@material-ui/core/Table';

import TableBody from '@material-ui/core/TableBody';

import TableCell from '@material-ui/core/TableCell’;

import TableContainer from '@material-ui/core/TableContainer';

import TableHead from '@material-ui/core/TableHead';

import TablePagination from '@material-ui/core/TablePagination';

import TableRow from '@material-ui/core/TableRow';

import FiberManualRecordIcon from "@material-ui/icons/FiberManualRecord”;
import IconButton from '@material-ui/core/IconButton’;

import KeyboardArrowDownIcon from '@material-ui/icons/KeyboardArrowDown';
import KeyboardArrowUpIcon from '@material-ui/icons/KeyboardArrowUp';
import Box from '@material-ui/core/Box';

import Collapse from '@material-ui/core/Collapse’;

import ReportDetail from ”./ReportDetail”

const useStyles = makeStyles({
root: {
margin: "1%",
width: '98%"',
}s
container: {
maxHeight: 770,
}s
});

const useRowStyles = makeStyles({
root: {

& > k' {

119

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

APPENDIX B. FRONTEND CODE

borderBottom: 'unset',
}
b
3

function Row(props) {
const { row } = props;
const [open, setOpen] = useState(false);

const classes = useRowStyles();

return (
<React.Fragment>
<TableRow hover className={classes.root}>

<TableCell>{row.id_user}</TableCell>

<TableCell align="center”>{row.date}</TableCell>

<TableCell align="center”>{row.results.map(r => r.runtime).reduce((a, b) => a + b,

< 0).toFixed(3)}ms</TableCell>

<TableCell align="center”>

{row.results.filter(r => r.result === "success”).length}/{row.results.length}{"”
— "}

<FiberManualRecordIcon

style={{
color: row.results.filter(r => r.result === "fail”).length > 0
? "red”
row.results.filter(r => r.result === "inconclusive”).length > 0
? "yellow”
: "green”,

fontSize: "12px”,
o
/>
</TableCell>
<TableCell align="center”>
<IconButton size="small” onClick={() => setOpen('!open)}>
{open ? <KeyboardArrowUpIcon /> : <KeyboardArrowDownIcon />}
</IconButton>
</TableCell>
</TableRow>
<TableRow>
<TableCell style={{ paddingBottom: 0, paddingTop: 0 }} colSpan={6}>
<Collapse in={open} timeout="auto” unmountOnExit>
<Box margin={1}>
<ReportDetail report={row.results} />
</Box>
</Collapse>
</TableCell>

120

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

APPENDIX B. FRONTEND CODE

</TableRow>
</React.Fragment>
)3

export default function ReportsTable(props) {
const classes = useStyles();
const [page, setPage] = useState(0);

const [rowsPerPage, setRowsPerPage] = useState(11);

const handleChangePage = (event, newPage) => {
setPage(newPage);

b

const handleChangeRowsPerPage = (event) => {
setRowsPerPage(+event.target.value);
setPage(0);

};

return (
<Paper className={classes.root}>
<TableContainer className={classes.container}>
<Table stickyHeader>
<TableHead>
<TableRow>
<TableCell>ID Funciondario</TableCell>
<TableCell align="center”>Data de Execucao</TableCell>
<TableCell align="center”>Tempo de Execugao</TableCell>
<TableCell align="center”>Resultados</TableCell>
<TableCell align="center”/>
</TableRow>
</TableHead>
<TableBody>
{props.data.slice(page * rowsPerPage, page * rowsPerPage + rowsPerPage).map
< ((row) => <Row row={row} />)}
</TableBody>
</Table>
</TableContainer>
<TablePagination
rowsPerPageOptions={[11]1}
labelRowsPerPage="Relatérios por Pagina:”
component="div”
count={props.data.length}
rowsPerPage={rowsPerPage}

page={page}

121

119

120

121

122

123

124

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

APPENDIX B. FRONTEND CODE

onChangePage={handleChangePage}
onChangeRowsPerPage={handleChangeRowsPerPage}
/>
</Paper>
)3

Listing B.18: ReportsDetail.js

import React from "react”;

import Table from "@material-ui/core/Table”;

import TableBody from "@material-ui/core/TableBody”;

import TableCell from "@material-ui/core/TableCell”;

import TableContainer from "@material-ui/core/TableContainer”;
import TableHead from "@material-ui/core/TableHead”;

import TableRow from "@material-ui/core/TableRow”;

import Paper from "@material-ui/core/Paper”;

import FiberManualRecordIcon from "@material-ui/icons/FiberManualRecord”;

export default function ReportDetail(props) {
return (
<TableContainer component={Paper}>
<Table>
<TableHead>
<TableRow>
<TableCell>
Médulo
</TableCell>
<TableCell align="center"”>
Teste
</TableCell>
<TableCell align="center”>
Tempo de Execucao
</TableCell>
<TableCell align="center”>
Mensagem
</TableCell>
<TableCell align="center"”>
Valor
</TableCell>
<TableCell align="right”>
Resultado
</TableCell>
</TableRow>
</TableHead>
<TableBody>

122

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

APPENDIX B. FRONTEND CODE

{props.report.map((r) => {

return (

<TableRow key={r._id}>

<TableCell component="th” scope="row”>

{r.module}

</TableCell>

<TableCell align="center”>
{r.name}

</TableCell>

<TableCell align="center”>
{r.runtime}ms

</TableCell>

<TableCell align="center”>
{r.message}

</TableCell>

<TableCell align="center”>

{r.resultValue}

</TableCell>
<TableCell align="right”>
{r.result === "success”
? "Passou”
(r.result === "fail” ? "Falhou” :
{r.result === "success” ? (

<FiberManualRecordIcon
style={{
color: "green”,

fontSize: "12px”,

verticalAlign: "center”,

}r
/>
) + (r.result === "fail” ?
<FiberManualRecordIcon
style={{
color: "red”,

fontSize: "12px”,

verticalAlign: "center”,

s
/>
<FiberManualRecordIcon
style={{
color: "yellow”,

fontSize: "12px”,

verticalAlign: "center”,

}r
/>

123

"Inconclusivo”)}

83

84

85

86

87

88

89

90

91

92

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

APPENDIX B. FRONTEND CODE

)}
</TableCell>
</TableRow>
);
H}
</TableBody>
</Table>

</TableContainer>
);

Listing B.19: Schedules.js

import React, { useEffect, useState } from "react”;

import { getSchedules, getTests, getPackages } from "../../../api/apil”;

import ListSchedules from ”./ListSchedules”;

export default function Schedules() {
const [loading, setLoading] = useState(false);
const [schedules, setSchedules] = useState([]);
const [tests, setTests] = useState([]);

const [packages, setPackages] = useState([]);

useEffect(() => {
setLoading(true);
async function fetchData() {
let res = await getSchedules();
let t = awailt getTests();
let p = await getPackages();
setSchedules(res);
setTests(t);
setPackages(p.filter(pa => pa.active));
setLoading(false);
}
fetchData();
o 0D

return (
<div style={{ textAlign: "center” }}>
{loading ? (

<h3 style={{ textAlign: "center” }}>A carregar dados...</h3>

)+ (
<ListSchedules
schedules={schedules}
setSchedules={setSchedules}
tests={tests}

124

34

35

36

37

38

39

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

APPENDIX B. FRONTEND CODE

packages={packages}
/>
)}
</div>
)3

Listing B.20: ListSchedules.js

import React, { useState } from "react”;

import { makeStyles } from "@material-ui/core/styles”;

import List from "@material-ui/core/List”;

import ListItem from "@material-ui/core/ListItem”;

import ListItemSecondaryAction from "@material-ui/core/ListItemSecondaryAction”;

import ListItemText from "@material-ui/core/ListItemText”;

import Switch from "@material-ui/core/Switch”;

import DeleteIcon from "@material-ui/icons/Delete”;

import IconButton from "@material-ui/core/IconButton”;

import AddIcon from "@material-ui/icons/Add”;
import Fab from "@material-ui/core/Fab”;
import UpdateSchedule from ”./UpdateSchedule”;
import AddSchedule from ”./AddSchedule”;
import {

updateSchedule,

deleteSchedule,

getSchedules,

insertSchedule,

”

} from ”../../../api/apil”;
const nextExecute = (h) => {
var time = h.split(”:");
var hour = parseInt(time[0]);
var min = parseInt(time[1]);
var date = new Date();
var hourNow = parseInt(”” + date.getHours());
var minNow = parseInt(”” + date.getMinutes());
let nextMin = 0;
let nextHour = 0;
var result = "";
if (hour > hourNow) {
nextHour = hour - hourNow;
if (min >= minNow) nextMin = min - minNow;
else nextMin = 60 - (minNow - min);
} else if (hour < hourNow) {
nextHour = 24 - (hourNow - hour);

if (min >= minNow) nextMin = min - minNow;

125

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

APPENDIX B. FRONTEND CODE

else nextMin = 60 - (minNow - min);
} else {
if (min > minNow) {
nextHour = 0;
nextMin = min - minNow;
} else if (min < minNow) {
nextHour = 23;

nextMin = 60 - (minNow - min);

}

if (nextHour === 0 && nextMin === 0) result += "A executar”;

else

result +=

" ”

"Ird executar em ” + nextHour + ” horas e
return result;

b

const useStyles = makeStyles((theme) => ({
root: {
marginTop: "20px”,
justifyContent: "center”,
display: "flex”,
b,
list: {
width: "100%",
maxWidth: 600,
maxHeight: 710,
overflow: "auto”,
backgroundColor: theme.palette.background.paper,
}s
fab: {

margin: theme.spacing(3),

1

export default function ListSchedules(props) {
const classes = useStyles();
const [add, setAdd] = useState(false);
const [update, setUpdate] = useState(false);

const [schedule, setSchedule] = useState(””);

const handleUpdate = (s) => {
setSchedule(s);
setUpdate(true);

b

126

+ nextMin + " Minutos”;

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

112

113

114

115

116

117

118

119

120

122

123

124

125

126

127

APPENDIX B. FRONTEND CODE

const handleToggle = async (i, s) => {
await updateSchedule(i, {
tests: s.tests,
packages: s.packages,
hour: s.hour,
active: !s.active,
s
let scheds = await getSchedules();
props.setSchedules(scheds);

};

const handlelnsert = async (newSchedule) => {
await insertSchedule(newSchedule);
let scheds = await getSchedules();
props.setSchedules(scheds);

b

const handleUpdateSchedule = async (idSchedule, newSchedule) => {
await updateSchedule(idSchedule, newSchedule);
setUpdate(false);
let scheds = await getSchedules();
props.setSchedules(scheds);

b

const handleDelete = async (i) => {
await deleteSchedule(1i);
let scheds = await getSchedules();
props.setSchedules(scheds);

};

return (
<div>
<div className={classes.root}>
<List className={classes.list}>
{props.schedules.map((s) => {
return (
<ListItem button onClick={() => handleUpdate(s)}>
<ListItemText
id={s._1id}
primary={s.hour}
secondary={
s.active
? nextExecute(s.hour)

: "Desligado”

127

APPENDIX B. FRONTEND CODE

128 }

129 />

130 <ListItemSecondaryAction>
131 <Switch

132 color="primary”

133 edge="end”

134 onChange={() => handleToggle(s._id, s)}
135 checked={s.active}
136 />

137 <IconButton

138 onClick={() => handleDelete(s._1id)}
139 >

140 <DeleteIcon color="action” />
141 </IconButton>

142 </ListItemSecondaryAction>
143 </ListItem>

144)3

145 H}

146 </List>

147 </div>

148 <div>

149 <Fab

150 color="primary”

151 className={classes.fab}

152 onClick={() => setAdd(true)}

153 >

154 <AddIcon />

155 </Fab>

156 </div>

157 <div>

158 {add ? (

159 <AddSchedule

160 add={add}

161 setAdd={setAdd}

162 tests={props.tests}

163 handleInsert={handleInsert}

164 packages={props.packages}

165 />

166)

167 "

168)}

169 {update ? (

170 <UpdateSchedule

171 update={update}

172 setUpdate={setUpdate}

128

APPENDIX B. FRONTEND CODE

173 schedule={schedule}

174 tests={props.tests}

175 packages={props.packages}
176 handleUpdate={handleUpdateSchedule}
177 />

178)+ (

179 "

180)}

181 </div>

182 </div>

183)3

184 |}

Listing B.21: AddSchedule.js

1 | import React, { useState } from "react”;

2 |import { makeStyles } from "@material-ui/core/styles”;

3 |import Button from "@material-ui/core/Button”;

4 | import Dialog from "@material-ui/core/Dialog”;

5 | import DialogActions from "@material-ui/core/DialogActions”;

6 |import DialogContent from "@material-ui/core/DialogContent”;

7 |import DialogTitle from "@material-ui/core/DialogTitle”;

8 | import useMediaQuery from "@material-ui/core/useMediaQuery”;

9 |[import { useTheme } from "@material-ui/core/styles”;

10 | import Switch from "@material-ui/core/Switch”;

11 | import Checkbox from "@material-ui/core/Checkbox”;

12 | import TextField from "@material-ui/core/TextField”;

13 | import Alert from "@material-ui/lab/Alert”;

14 |import Table from '@material-ui/core/Table';

15 | import TableBody from '@material-ui/core/TableBody';

16 | import TableCell from '@material-ui/core/TableCell';

17 | import TableContainer from '@material-ui/core/TableContainer';

18 | import TableHead from '@material-ui/core/TableHead';

19 | import TableRow from '@material-ui/core/TableRow';

20 |import Paper from '@material-ui/core/Paper';

21 | import IconButton from '@material-ui/core/IconButton’;

22 | import KeyboardArrowDownIcon from '@material-ui/icons/KeyboardArrowDown';
23 | import KeyboardArrowUpIcon from '@material-ui/icons/KeyboardArrowUp';
24

25 | const useStyles = makeStyles((theme) => ({

26 form: {

27 textAlign: "center”,

28 3,

29 formControl: {

30 margin: theme.spacing(2),
31 width: 300,

129

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

APPENDIX B. FRONTEND CODE

H);

export default function AddSchedule(props) {
const theme = useTheme();
const classes = useStyles();
const fullScreen = useMediaQuery(theme.breakpoints.down(”sm"”));
const [hour, setHour] = useState(”08:00");
const [active, setActive] = useState(false);
const [tests, setTests] = useState([]);
const [packages, setPackages] = useState([]);
const [alert, setAlert] = useState(false);
const [openTests, setOpenTests] = useState(false);

const [openPackages, setOpenPackages] = useState(false);
const handleChangeHour = (event) => {
setHour(event.target.value);

b

const handleChangePackages = (event, value) => {

if(value === "Todos"”){
if(props.packages.length === packages.length) setPackages([])
else setPackages(props.packages.map(p => p._1id))
}
else{
packages.includes(value) === true
? setPackages(
packages.filter((id) => {
if (id === value) return false;
else return true;
})
)
. setPackages(packages.concat(value));
}

};

const handleChangeTests = (event, value) => {

if(value === "Todos"”){
if(props.tests.length === tests.length) setTests([])
else setTests(props.tests.map(t => t._id))

}

else{
tests.includes(value) === true

? setTests(

tests.filter((id) => {

130

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

APPENDIX B. FRONTEND CODE

if (id === value) return false;
else return true;

}

: setTests(tests.concat(value));

s

const handleClose = () => {
props.setAdd(false);
setHour(”08:00");
setActive(false);
setTests([]);
setPackages([1);

b

const handleInsert = async () => {

if (hour === "" || (tests.length === 0 && packages.length
setAlert(true);
} else {

let newSchedule = {
hour: hour,
active: active,
tests: tests,
packages: packages
s
props.handleInsert(newSchedule);
props.setAdd(false);
setHour(”08:00");
setActive(false);
setTests([]);
setPackages([]);

};

let displayAlert =
alert === false ? (
)
<div>
<Alert
severity="error”
variant="filled”
onClose={() => {
setAlert(false);

131

)) A

APPENDIX B. FRONTEND CODE

122 I

123 >

124 Tem que preencher os campos todos!

125 </Alert>

126

127 </div>

128);

129

130 return (

131 <Dialog

132 disableBackdropClick

133 fullScreen={fullScreen}

134 open={props.add}

135 onClose={handleClose}

136 >

137 <DialogTitle>Adicionar Novo Agendamento</DialogTitle>

138 <DialogContent>

139 <div className={classes.form}>

140 <TextField

141 label="Hora”

142 type="time"”

143 name="hour"”

144 value={hour}

145 onChange={handleChangeHour}

146 inputProps={{ step: 900 }}

147 />

148 <Switch

149 color="primary”

150 onChange={() => setActive((prev) => !prev)}

151 checked={active}

152 />

153 </div>

154

155 <TableContainer component={Paper} style={{maxHeight: 300, width: 350}}>

156 <Table size="small”>

157 <TableHead>

158 <TableRow onClick={() => setOpenTests(!openTests)} style={{cursor: ”
— pointer”}}>

159 <TableCell>

160 <IconButton >

161 {openTests ? <KeyboardArrowUpIcon fontSize="large” /> : <

<— KeyboardArrowDownIcon fontSize="large” />}

162 </IconButton>

163 </TableCell>

164 <TableCell>

132

APPENDIX B. FRONTEND CODE

165 <h3>Testes a executar</h3>

166 </TableCell>

167 </TableRow>

168 </TableHead>

169 <TableBody>

170 {

171 openTests ?

172 <TableRow key={"Todos"”}>

173 <TableCell>

174 <Checkbox

175 checked={tests.length === props.tests.length}

176 color="primary”

177 onClick={(event) => handleChangeTests(event, "Todos”)}

178 />

179 </TableCell>

180 <TableCell>Todos</TableCell>

181 </TableRow> : "”

182 }

183 {

184 openTests ?

185 props.tests.map((t) => (

186 <TableRow key={t._id}>

187 <TableCell>

188 <Checkbox

189 checked={tests.includes(t._id)}

190 color="primary”

191 onClick={(event) => handleChangeTests(event, t._1id)}

192 />

193 </TableCell>

194 <TableCell>{t.name}</TableCell>

195 </TableRow>

196)) = "

197 }

198 </TableBody>

199 </Table>

200 </TableContainer>

201

202 <TableContainer component={Paper} style={{maxHeight: 300, width: 350}}>

203 <Table size="small”>

204 <TableHead>

205 <TableRow onClick={() => setOpenPackages(!openPackages)} style={{cursor:
— "pointer”}}>

206 <TableCell>

207 <IconButton >

133

208

209

210

212

213

214

215

216

217

218

219

220

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

APPENDIX B. FRONTEND CODE

{openPackages ? <KeyboardArrowUpIcon fontSize="large” /> : <
— KeyboardArrowDownIcon fontSize="large” />}
</IconButton>
</TableCell>
<TableCell>

<h3>Pacotes a executar</h3>

</TableCell>
</TableRow>
</TableHead>
<TableBody>
{
openPackages ?
<TableRow key={"Todos"”}>
<TableCell>
<Checkbox
checked={packages.length === props.packages.length}
color="primary”
onClick={(event) => handleChangePackages(event, "Todos”)}
/>
</TableCell>
<TableCell>Todos</TableCell>
</TableRow> : "”
}
{
openPackages ?
props.packages.map((t) => (
<TableRow key={t._id}>
<TableCell>
<Checkbox
checked={packages.includes(t._1id)}
color="primary”
onClick={(event) => handleChangePackages(event, t._1id)}
/>
</TableCell>
<TableCell>{t.name}</TableCell>
</TableRow>
)) = "
}
</TableBody>
</Table>
</TableContainer>
{displayAlert}
</DialogContent>
<DialogActions>

<Button autoFocus onClick={handleClose} color="primary”>

134

252

253

254

255

256

257

258

259

260

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

APPENDIX B. FRONTEND CODE

Cancelar

</Button>

<Button autoFocus onClick={handleInsert} color="primary”>
Adicionar

</Button>

</DialogActions>
</Dialog>
)3

Listing B.22: UpdateSchedule.js

import React, { useState } from "react”;

import { makeStyles } from "@material-ui/core/styles”;
import Button from "@material-ui/core/Button”;

import Dialog from "@material-ui/core/Dialog”;

import DialogActions from "@material-ui/core/DialogActions”;
import DialogContent from "@material-ui/core/DialogContent”;
import DialogTitle from "@material-ui/core/DialogTitle”;
import useMediaQuery from "@material-ui/core/useMediaQuery”;
import { useTheme } from "@material-ui/core/styles”;

import Switch from "@material-ui/core/Switch”;

import Checkbox from "@material-ui/core/Checkbox”;

import TextField from "@material-ui/core/TextField”;

import Alert from "@material-ui/lab/Alert”;

import Table from '@material-ui/core/Table';

import TableBody from '@material-ui/core/TableBody';

import TableCell from '@material-ui/core/TableCell’;

import TableContainer from '@material-ui/core/TableContainer';
import TableHead from '@material-ui/core/TableHead';

import TableRow from '@material-ui/core/TableRow';

import Paper from '@material-ui/core/Paper';

import IconButton from '@material-ui/core/IconButton';
import KeyboardArrowDownIcon from '@material-ui/icons/KeyboardArrowDown';

import KeyboardArrowUpIcon from '@material-ui/icons/KeyboardArrowUp';

const useStyles = makeStyles((theme) => ({
form: {
textAlign: "center”,
b,
formControl: {
margin: theme.spacing(2),
width: 300,

135

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

APPENDIX B. FRONTEND CODE

export default function UpdateSchedule(props) {
const theme = useTheme();
const classes = useStyles();
const fullScreen = useMediaQuery(theme.breakpoints.down(”sm”));
const [hour, setHour] = useState(props.schedule.hour);
const [active, setActive] = useState(props.schedule.active);
const [tests, setTests] = useState(props.schedule.tests);
const [alert, setAlert] = useState(false);
const [packages, setPackages] = useState(props.schedule.packages);
const [openTests, setOpenTests] = useState(false);

const [openPackages, setOpenPackages] = useState(false);

const handleChangeHour = (event) => {
setHour(event.target.value);
};

const handleChangePackages = (event, value) => {

if(value === "Todos”){
if(props.packages.length === packages.length) setPackages([])
else setPackages(props.packages.map(p => p._1id))
}
else{
packages.includes(value) === true
? setPackages(
packages.filter((id) => {
if (id === value) return false;
else return true;
})
)
: setPackages(packages.concat(value));
}

b

const handleChangeTests = (event, value) => {

if(value === "Todos"”){
if(props.tests.length === tests.length) setTests([])
else setTests(props.tests.map(t => t._1id))

}

else{

tests.includes(value) === true
? setTests(
tests.filter((id) => {
if (id === value) return false;
else return true;

}

136

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

APPENDIX B. FRONTEND CODE

: setTests(tests.concat(value));

b

const handleClose = () => {
props.setUpdate(false);
b

const handleUpdate = async () => {

if (hour === "" || (tests.length === 0 && packages.length
setAlert(true);
} else {

let newSchedule = {
hour: hour,
active: active,
tests: tests,
packages: packages
b
props.handleUpdate(props.schedule._id, newSchedule)

b

let displayAlert =
alert === false ? (
)
<div>
<Alert
severity="error”
variant="filled”
onClose={() => {
setAlert(false);

1}

Tem que preencher os campos todos!
</Alert>

</div>

)5

return (
<Dialog
disableBackdropClick
fullScreen={fullScreen}

137

)) o

APPENDIX B. FRONTEND CODE

125 open={props.update}

126 onClose={handleClose}

127 >

128 <DialogTitle>Atualizar Agendamento</DialogTitle>

129 <DialogContent>

130 <div className={classes.form}>

131 <TextField

132 label="Hora”

133 type="time"”

134 name="hour"”

135 value={hour}

136 onChange={handleChangeHour}

137 inputProps={{ step: 900 }}

138 />

139 <Switch

140 color="primary”

141 onChange={() => setActive((prev) => !prev)}
142 checked={active}

143 />

144 </div>

145

146 <TableContainer component={Paper} style={{maxHeight: 400, width: 350}}>
147 <Table size="small”>

148 <TableHead>

149 <TableRow onClick={() => setOpenTests(!openTests)} style={{cursor: ”

< pointer”}}>

150 <TableCell>
151 <IconButton >
152 {openTests ? <KeyboardArrowUpIcon fontSize="large” /> : <

< KeyboardArrowDownIcon fontSize="large” />}

153 </IconButton>

154 </TableCell>

155 <TableCell>

156 <h3>Testes a executar</h3>
157 </TableCell>

158 </TableRow>

159 </TableHead>

160 <TableBody>

161 {

162 openTests ?

163 <TableRow key={"Todos"”}>

164 <TableCell>

165 <Checkbox

166 checked={tests.length === props.tests.length}
167 color="primary”

138

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

APPENDIX B. FRONTEND CODE

onClick={(event) => handleChangeTests(event, "Todos"”)}

/>
</TableCell>
<TableCell>Todos</TableCell>
</TableRow> : "”
}
{
openTests ?
props.tests.map((t) => (
<TableRow key={t._id}>
<TableCell>
<Checkbox
checked={tests.includes(t._id)}
color="primary”
onClick={(event) => handleChangeTests(event, t._1id)}
/>
</TableCell>
<TableCell>{t.name}</TableCell>
</TableRow>
DI
¥
</TableBody>
</Table>
</TableContainer>

<TableContainer component={Paper} style={{maxHeight: 300, width: 350}}>
<Table size="small”>
<TableHead>
<TableRow onClick={() => setOpenPackages(!openPackages)} style={{cursor:
— "pointer”}}>
<TableCell>
<IconButton >
{openPackages ? <KeyboardArrowUpIcon fontSize="large” /> : <
< KeyboardArrowDownIcon fontSize="large” />}
</IconButton>
</TableCell>
<TableCell>
<h3>Pacotes a executar</h3>
</TableCell>
</TableRow>
</TableHead>
<TableBody>
{
openPackages ?

<TableRow key={"Todos"”}>

139

211

212

213

214

215

216

217

218

220

221

222

223

225

226

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

APPENDIX B. FRONTEND CODE

<TableCell>
<Checkbox
checked={packages.length === props.packages.length}
color="primary”
onClick={(event) => handleChangePackages(event, "Todos”)}
/>
</TableCell>
<TableCell>Todos</TableCell>

</TableRow> : "”

openPackages ?
props.packages.map((t) => (
<TableRow key={t._id}>
<TableCell>
<Checkbox
checked={packages.includes(t._1id)}
color="primary”
onClick={(event) => handleChangePackages(event, t._1id)}
/>
</TableCell>
<TableCell>{t.name}</TableCell>
</TableRow>
)) =
}
</TableBody>
</Table>
</TableContainer>
{displayAlert}
</DialogContent>
<DialogActions>
<Button autoFocus onClick={handleClose} color="primary”>
Cancelar
</Button>
<Button autoFocus onClick={handleUpdate} color="primary”>
Atualizar
</Button>
</DialogActions>
</Dialog>
)3

Listing B.23: Packages.js

import React, { useEffect, useState } from "react”;

import SplitPane from "react-split-pane”;

140

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

APPENDIX B. FRONTEND CODE

”

import { getPackages, getTests, deletePackage } from "../../../api/api”;
import ListItem from "@material-ui/core/ListItem”;

import ListItemText from "@material-ui/core/ListItemText”;

import { List } from "@material-ui/core”;

import Button from "@material-ui/core/Button”;

import EditPackage from ”./EditPackage”;

import NewPackage from ”./NewPackage”;

import ResponsiveButton from ”./ResponsiveButton”;

import ErrorIcon from '@material-ui/icons/Error';

import Tooltip from '@material-ui/core/Tooltip';

import { Typography } from "@material-ui/core”;

export default function Packages() {
const [loading, setLoading] = useState(false);
const [tests, setTests] = useState([]);
const [packages, setPackages] = useState([]);
const [selectedIndex, setSelectedIndex] = useState(””);

const [edit, setEdit]

useState(false);

const [open, setOpen] = useState(false);

useEffect(() => {
setLoading(true);
async function fetchData() {
let t = awailt getTests();
setTests(t);
let p = await getPackages();
setPackages(p);
setLoading(false);
}
fetchData();
b, 0D

const handleCancelEdition = () => {
setEdit(false);
setSelectedIndex("”"”);

b

const handleSelect = (id) => {

if (edit) {
setEdit(false);
setSelectedIndex(id);
} else {

setSelectedIndex(id);

141

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

APPENDIX B. FRONTEND CODE

const handleEdit = () => {
setEdit(true);
b

const handleDelete = async () => {
setOpen(false);
setEdit(false);
await deletePackage(selectedIndex);
let p = await getPackages();
setSelectedIndex(”"”);
setPackages(p);

b

const handleRefresh = async () => {
setEdit(false);
let p = await getPackages();
setPackages(p);

b

return (
<div>

{loading ? (

<h3 style={{ textAlign: "center” }}>A carregar dados...</h3>

)
<SplitPane split="vertical” defaultSize={"30%"}>

<div
style={{
textAlign: "center”,
s
>

<h2>Lista de Pacotes</h2>

<List
style={{
marginLeft: "15%",
marginRight: "15%",
overflow: "auto”,
maxHeight: 600,
1}
>

{packages.map((p) => {
if(!p.active){
return (
<ListItem

button

142

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

APPENDIX B. FRONTEND CODE

key={p._1id}
selected={selectedIndex === p._id}
onClick={() => handleSelect(p._id)}

>
<Tooltip placement="top-start” title={<Typography>0 pacote
<— precisa de ser atualizado devido a atualizacbes nos
— testes primitivos.</Typography>}>
<ListItemText primary={p.name} />
</Tooltip>
<ErrorIcon />
</ListItem>
)
}
else{
return (
<ListItem
button
key={p._1id}
selected={selectedIndex === p._id}
onClick={() => handleSelect(p._id)}
>
<ListItemText primary={p.name} />
</ListItem>
)
}
Hi
</List>

<div>
<Button

style={{ marginRight: 10 }}
disabled={!(selectedIndex.length > 0)}
variant="outlined”

color="primary”

onClick={() => setOpen(true)}

>
Remover

</Button>

<Button
style={{ marginLeft: 10 }}
disabled={!(selectedIndex.length > 0)}
variant="outlined”
color="primary”
onClick={handleEdit}

>

143

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

APPENDIX B. FRONTEND CODE

)3

Editar
</Button>
</div>
<ResponsiveButton
selectedIndex={selectedIndex}
open={open}
setOpen={setOpen}
handleDelete={handleDelete}
/>
</div>
<div style={{ textAlign: "center” }}>
{ledit ? (
<NewPackage
handleRefresh={handleRefresh}
tests={tests}
packages={packages}
/>
)
<EditPackage
handleRefresh={handleRefresh}
tests={tests}
packages={packages}

package={
packages.filter(
(p) => p._1d === selectedIndex
)[0]
}
handleCancelEdition={handleCancelEdition}
/>
)}
</div>
</SplitPane>
)}
</div>

Listing B.24: Keywords.js

import
import
import
import
import
import

import

React from "react”;

{ makeStyles } from "@material-ui/core/styles”;
ListItem from "@material-ui/core/ListItem”;
ListItemText from "@material-ui/core/ListItemText”;
List from "@material-ui/core/List”;

AddCircleIcon from "@material-ui/icons/AddCircle”;

Tooltip from '@material-ui/core/Tooltip';

144

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

10

11

APPENDIX B. FRONTEND CODE

import { Typography } from "@material-ui/core”;

const useStyles = makeStyles((theme) => ({
root: {
overflow: "auto”,
width: 350,
maxHeight: 500,
marginLeft: "25%",

backgroundColor: theme.palette.background.paper,

1)

export default function Keywords(props) {

const classes = useStyles();

return (
<div>
<h3>Lista de Testes</h3>
<List className={classes.root}>
{props.tests.map((test) => (
<ListItem button={true} onClick={() => props.add(test.name)} key={test._id}>
<Tooltip placement="top-start” title={<Typography>{test.description}</
— Typography>}>
<ListItemText primary={test.name} />
</Tooltip>
<AddCircleIcon color="primary” />
</ListItem>
))}
</List>
</div>

)3

Listing B.25: NewPackage.js

import React, { useState } from "react”;
import TextField from "@material-ui/core/TextField”;
import SplitPane from "react-split-pane”;

”

import Keywords from "./Keywords”;

import Button from "@material-ui/core/Button”;

import ButtonGroup from "@material-ui/core/ButtonGroup”;
import Alert from "@material-ui/lab/Alert”;

import Tooltip from '@material-ui/core/Tooltip';

import { Typography } from "@material-ui/core”;

”

import { insertPackage } from ”../../../api/api”;

145

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

APPENDIX B. FRONTEND CODE

const

b,

conectores = [

” ”

simbol: "->",

tip: "NEXT”

simbol: (",

tip: "BEGIN LOGICAL EXPRESSION”

simbol: "&",

tip: "AND”

simbol: "|",

tip: "OR”

simbol: ")",

tip: "END LOGICAL EXPRESSION”

simbol: "?",

tip: "IF”
simbol: ":",
tip: "ELSE”

simbol: ";",

tip: "END”

export default function NewPackage(props) {

const [name, setName] = useState(””);

const [description, setDescription] = useState(””);

const [script, setScript] = useState(""”);

const [error, setError] = useState({active: false, description: ""});

const [nameRepetead, setNameRepetead] = useState(false);

const handleClickable = (simbol) => {

let reg = script.match(/->|\(|\)|&|\||\?]|:]|;]|([A-Za-z]1+([/ _-1[A-Za-z]+)*)/g)

146

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

APPENDIX B. FRONTEND CODE

s

let regArray = script.length > 0 ? reg.map(r => r.match(/([A-Za-z]+([/ _-1[A-Za-z]+)*)/
<) ? "keyword” : r) : []
let numOpen = regArray.filter(r => r === "(").length
let numClose = regArray.filter(r => r === ")").length
let numIf = regArray.filter(r => r === "?").length
let numElse = regArray.filter(r => r === ":").length
if(simbol === ";"){
if(regArray[regArray.length - 1] !== "keyword” || numOpen !== numClose || numClose
< !== numIf) return false
}
else if(simbol === "->"){
if(regArray[regArray.length - 1] !== "keyword” || numOpen !== numClose || numClose
< !== numIf || regArray.includes(”;"”)) return false
}
else if(simbol === "("){
if(regArray[regArray.length - 1] === "keyword” || regArray[regArray.length - 1] ===
< 3" || numOpen !== numClose || numClose !== numIf || regArray.includes(”;"))
< return false
}
else if(simbol === ")"){
if(regArray[regArray.length - 1] !== "keyword” || numOpen === numClose || regArray.
< 1includes(”;"”)) return false
}
else if(simbol === "&"){
if(regArray[regArray.length - 1] !== "keyword” || numOpen === numClose || regArray[
< regArray.length - 2] === "|"” || regArray.includes(”;”)) return false
}
else if(simbol === "|"){
if(regArray[regArray.length - 1] !== "keyword” || numOpen === numClose || regArray[
< regArray.length - 2] === "&"” || regArray.includes(”;”)) return false
}
else if(simbol === "?"){
if(regArray[regArray.length - 1] !==")" || regArray.includes(”;")) return false
}
else if(simbol === ":"){
if(regArray[regArray.length - 1] !== "keyword” || numOpen !== numClose || numIf <=
< numElse || regArray.includes(”;"”)) return false
}

return true

const handleChange = (event) => {

const { name, value } = event.target;
if (name === "name”) setName(value);

if (name === "description”) setDescription(value);

147

g

”

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

APPENDIX B. FRONTEND CODE

if (name === "script”) setScript(value);

};

const handleClean = () => {
setName("");
setDescription(”"”);
setScript("””);

b

const handleAddKeyword = (name) => {

non

let newScript = script + + name + ” "3
setScript(newScript);

b

const handleAddSimbol = (simbol) => {
if(handleClickable(simbol)){

let newScript = script +

non n o,

+ simbol +

setScript(newScript);

b

const handleCreate = async () => {
if(!props.packages.map(p => p.name).includes(name)){
let 1 = await insertPackage({
name: name,
description: description,
script: script,
1)
if (i.errors) {
setError({active: true, description: i.errors});
} else {
setName("");
setDescription(””);
setScript(””);
props.handleRefresh();

}
else{

setNameRepetead(true)

b

return (

<SplitPane split="vertical” defaultSize={"50%"}>

<div>

148

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

172

173

174

175

176

177

178

179

180

181

182

APPENDIX B. FRONTEND CODE

<h3>Criar Novo Pacote</h3>
<TextField
label="Nome”
name="name"”
variant="outlined”
value={name}
onChange={handleChange}
/>

<TextField
label="Descricao”
name="description”
variant="outlined”
style={{ maxWidth: 500 }}
multiline
fullWwidth={true}
rows={4}
value={description}
onChange={handleChange}
/>

<TextField
style={{ maxWidth: 500 }}
label="C6digo”
name="script”
variant="outlined”
fullWidth={true}
multiline
rows={10}
value={script}
onChange={handleChange}
/>
<p>
Conetores:
<ButtonGroup style={{ marginLeft: 10 }} color="primary”>
{conectores.map((c) => (
<Tooltip title={<Typography>{c.tip}</Typography>}>
<Button
color={handleClickable(c.simbol) ? "primary” : "secondary”}

onClick={() => handleAddSimbol(c.simbol)}

{c.simbol}
</Button>

149

APPENDIX B. FRONTEND CODE

183 </Tooltip>

184))}

185 </ButtonGroup>

186 </p>

187 <Button

188 style={{ marginRight: 10 }}

189 disabled={name.length === 0 && description.length === 0 && script.length === 0}
190 variant="outlined”

191 color="primary”

192 onClick={handleClean}

193 >

194 Limpar

195 </Button>

196 <Button

197 style={{ marginLeft: 10 }}

198 disabled={!(name.length > 0 && description.length > 0 && script.length > 0)}
199 variant="outlined”

200 color="primary”

201 onClick={handleCreate}

202 >

203 Guardar

204 </Button>

205 {error.active ? (

206 <Alert

207 style={{ marginTop: 10 }}

208 severity="error”

209 variant="filled”

210 onClose={() => setError({active: false, description: ""})}
211 >

212 0 cddigo nao estad correto!

213 </Alert>

214) ot (

215 "

216)}

217 {nameRepetead ? (

218 <Alert

219 style={{ marginTop: 10 }}

220 severity="error”

221 variant="filled”

222 onClose={() => setNameRepetead(false)}
223 >

224 Ja existe um pacote com esse nome!
225 </Alert>

226)

227 "

150

228

229

230

231

232

233

234

235

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

APPENDIX B. FRONTEND CODE

)}
</div>
<div>

<Keywords tests={props.tests} add={handleAddKeyword} />

</div>
</SplitPane>
)3
}
Listing B.26: EditPackage.js
import React, { useState } from "react”;
import TextField from "@material-ui/core/TextField”;
import SplitPane from "react-split-pane”;
import Keywords from ”./Keywords”;
import Button from "@material-ui/core/Button”;
import ButtonGroup from "@material-ui/core/ButtonGroup”;
import Alert from "@material-ui/lab/Alert”;
import Tooltip from '@material-ui/core/Tooltip';
import { Typography } from "@material-ui/core”;
import { updatePackage } from ”../../../api/apil”;
const conectores = [
{
simbol: "->",
tip: "NEXT”
b,
{
simbol: " (",
tip: "BEGIN LOGICAL EXPRESSION”
b,
{
simbol: "&",
tip: "AND”
b,
{
simbol: "|",
tip: "OR”
b,
{
simbol: ”)”,
tip: "END LOGICAL EXPRESSION”
b,
{

simbol: "?",

tip: "IF”

151

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

APPENDIX B. FRONTEND CODE

b

men

simbol: ":",

tip: "ELSE”

simbol: ";",

tip: "END”

export default function EditPackage(props) {
const [name, setName] = useState(props.package.name);
const [description, setDescription] = useState(props.package.description);

const [script, setScript] = useState(props.package.code);

const [error, setError] = useState({active: false, description: ""});

const [nameRepetead, setNameRepetead] = useState(false);

const handleClickable = (simbol) => {

let reg = script.match(/->|\(|\)|&|\||\?]:|;]|([A-Za-z]1+([/ _-1[A-Za-z]+)*)/g)
let regArray = script.length > 0 ? reg.map(r => r.match(/([A-Za-z]+([/ _-1[A-Za-z]+)*)/g
—) ? "keyword” : r) : []
let numOpen = regArray.filter(r => r === "(").length
let numClose = regArray.filter(r => r === ")").length
let numIf = regArray.filter(r => r === "?").length
let numElse = regArray.filter(r => r === ":").length
if(simbol === ";"){
if(regArray[regArray.length - 1] !== "keyword” || numOpen !== numClose || numClose
< !== numIf) return false
}
else if(simbol === "->"){
if(regArray[regArray.length - 1] !== "keyword” || numOpen !== numClose || numClose
< !== numIf || regArray.includes(”;"”)) return false
}
else if(simbol === "("){
if(regArray[regArray.length - 1] === "keyword” || regArray[regArray.length - 1] === "
< 3" || numOpen !== numClose || numClose !== numIf || regArray.includes(”;"))
= return false
}
else if(simbol === ")"){
if(regArray[regArray.length - 1] !== "keyword” || numOpen === numClose || regArray.
— 1includes(”;"”)) return false
}
else if(simbol === "&"){

152

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

APPENDIX B. FRONTEND CODE

b

if(regArray[regArray.length - 1] !== "keyword” || numOpen === numClose || regArray[
< regArray.length - 2] === "|" || regArray.includes(”;"”)) return false
}
else if(simbol === "|"){
if(regArray[regArray.length - 1] !== "keyword” || numOpen === numClose || regArray[
< regArray.length - 2] === "&" || regArray.includes(”;"”)) return false
}
else if(simbol === "?"){
if(regArray[regArray.length - 1] !== ")" || regArray.includes(”;”)) return false
}
else if(simbol === ":"){
if(regArray[regArray.length - 1] !== "keyword” || numOpen !== numClose || numIf <=
“— numElse || regArray.includes(”;”)) return false
}

return true

const handleChange = (event) => {

};

const { name, value } = event.target;

if (name === "name”) setName(value);
if (name === "description”) setDescription(value);
if (name === "script”) setScript(value);

const handleAddKeyword = (name) => {

b

nmon nwon,

let newScript = script + + name +

setScript(newScript);

const handleAddSimbol = (simbol) => {

b

non non,

let newScript = script + + simbol +

setScript(newScript);

const handleUpdate = async () => {

if(!props.packages.filter(p => p._1id !== props.package._id).map(p => p.name).includes(
< name)){
if(props.package.name !== name || props.package.description !== description || props.
< package.script !== script){

let 1 = await updatePackage(props.package._1id, {
name: name,
description: description,
script: script,

})s

if (i.errors) {

153

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

APPENDIX B. FRONTEND CODE

setError({active: true, description:

} else {
props.handleRefresh();

}
else {

props.handleRefresh();

¥
else{

setNameRepetead(true)

b

return (

i.errors});

<SplitPane split="vertical” defaultSize={"50%"}>

<div>

<h3>Editar Pacote</h3>

<TextField
label="Nome”
name="name"”
variant="outlined”
value={name}
onChange={handleChange}

/>

<TextField
label="Descricao”
name="description”
variant="outlined”
style={{ maxWidth: 500 }}
multiline
fullWwidth={true}
rows={4}
value={description}
onChange={handleChange}

/>

<TextField
style={{ maxWidth: 500 }}
label="Cd6digo”
name="script”

variant="outlined”

154

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

APPENDIX B. FRONTEND CODE

fullWwidth={true}
multiline
rows={10}
value={script}
onChange={handleChange}
/>
<p>
Conetores:
<ButtonGroup style={{ marginLeft: 10 }} color="primary”>
{conectores.map((c) => (
<Tooltip title={<Typography>{c.tip}</Typography>}>
<Button
color={handleClickable(c.simbol) ? "primary” : "secondary”}
onClick={() => handleAddSimbol(c.simbol)}

{c.simbol}
</Button>
</Tooltip>
))}
</ButtonGroup>
</p>
<Button
style={{ marginRight: 10 }}
variant="outlined”
color="primary”

onClick={props.handleCancelEdition}

>
Cancelar

</Button>

<Button
style={{ marginLeft: 10 }}
disabled={!(name.length > 0 && description.length > 0 && script.length > 0)}
variant="outlined”
color="primary”
onClick={handleUpdate}

>
Guardar

</Button>

{error.active ? (
<Alert
style={{ marginTop: 10 }}
severity="error”
variant="filled”

onClose={() => setError(false)}

155

204

205

206

207

208

209

210

213

214

215

216

217

218

219

220

221

222

223

224

226

227

10

11

12

13

14

15

16

17

18

19

APPENDIX B. FRONTEND CODE

)3

0 cddigo nao estad correto!

</Alert>
)
)}
{nameRepetead ? (
<Alert
style={{ marginTop: 10 }}
severity="error”
variant="filled”
onClose={() => setNameRepetead(false)}
>
Ja existe um pacote com esse nome!
</Alert>
)+ (
)}
</div>
<div>

<Keywords tests={props.tests} add={handleAddKeyword} />

</div>

</SplitPane>

Listing B.27: AddPackageButton.js

import
import
import
import
import
import

import

export

React from "react”;

Button from "@material-ui/core/Button”;

Dialog from "@material-ui/core/Dialog”;

DialogActions from "@material-ui/core/DialogActions”;
DialogTitle from "@material-ui/core/DialogTitle”;
useMediaQuery from "@material-ui/core/useMediaQuery”;

{ useTheme } from "@material-ui/core/styles”;

default function ResponsiveDialog(props) {

const theme = useTheme();

const fullScreen = useMediaQuery(theme.breakpoints.down(”sm”));

return (

<Dialog

disableBackdropClick={true}
fullScreen={fullScreen}

open={props.open}

<DialogTitle>

156

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

{"Tem a certeza que pretende remover o pacote?”}
</DialogTitle>
<DialogActions>
<Button
onClick={() => props.setOpen(false)}

color="primary”

autoFocus
>

Nao
</Button>

<Button onClick={props.handleDelete} color="primary” autoFocus>

Sim
</Button>
</DialogActions>
</Dialog>
)3

Listing B.28: DocumentationTests.js

import React, { useEffect, useState } from "react”;
import SimpleTable from ”./SimpleTable”;
import { getTests } from "../../../api/apil”;

export default function Docs() {
const [loading, setLoading] = useState(false);

const [tests, setTests] = useState([]);

useEffect(() => {
setLoading(true);
async function fetchData() {
let t = awailt getTests();
setTests(t);
setLoading(false);
}
fetchData();
o[

return (
<div>

{loading ? (

<h3 style={{ textAlign: "center” }}>A carregar dados...</h3>

)+ (
<SimpleTable tests={tests} />
)}

</div>

157

APPENDIX B. FRONTEND CODE

27

28

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

APPENDIX B. FRONTEND CODE

Listing B.29: DocumentationTable.js

import React from "react”;

import Table from "@material-ui/core/Table”;

import TableBody from "@material-ui/core/TableBody”;
import TableCell from "@material-ui/core/TableCell”;

import TableContainer from "@material-ui/core/TableContainer”;

import TableHead from "@material-ui/core/TableHead”;
import TableRow from "@material-ui/core/TableRow”;

import Paper from "@material-ui/core/Paper”;

export default function SimpleTable(props) {

return (

<TableContainer

style={{ margin: "1%"”, width: "”98%"”, maxHeight:

component={Paper}

<Table>
<TableHead>
<TableRow>

<TableCell>
ID Teste

</TableCell>

<TableCell align="center”>
Médulo

</TableCell>

<TableCell align="center”>

Teste
</TableCell>
<TableCell align="center”>
Descricao
</TableCell>

<TableCell align="center"”>
Parametro Por Defeito
</TableCell>
</TableRow>
</TableHead>
<TableBody>
{props.tests.map((test) => (
<TableRow key={test._id}>
<TableCell>{test.id}</TableCell>

820 }}

<TableCell align="center”>{test.module}</TableCell>

158

42

43

44

45

46

47

48

49

50

51

52

53

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

APPENDIX B. FRONTEND CODE

<TableCell align="center”>{test.name}</TableCell>
<TableCell align="center”>
{test.description}
</TableCell>
<TableCell align="center”>{test.defaultParam}</TableCell>
</TableRow>
))}
</TableBody>
</Table>
</TableContainer>
)3

Listing B.30: SystemConfigurations.js

import React, { useEffect, useState } from "react”;

import Grid from '@material-ui/core/Grid';

import TextField from "@material-ui/core/TextField”;

import Button from "@material-ui/core/Button”;

import { getConfigurations, getBackups, updateConfigurations, makeBackup, restoreBackup,

”

< getReports } from "../../../api/apl”;
import ExportCSV from "./ExportCSv”
import MakeBackup from ”./MakeBackup”

import RestoreBackup from ”./RestoreBackup”

export default function Configurations() {
const [loading, setLoading] = useState(false);
const [backups, setBackups] = useState([]);
const [reports, setReports] = useState([]);
const [configurations, setConfigurations] = useState({});
const [userConfigurationID, setUserConfigurationID] = useState(””);
const [dbBinDir, setDbBinDir] = useState(””);
const [appDir, setAppDir] = useState(””);
const [backupSelected, setBackupSelected] = useState(”"”);
const [backupDir, setBackupDir] = useState(”"”);
const [backupDone, setBackupDone] = useState(false);
const [restoreDone, setRestoreDone] = useState(false);

const [unvalidPath, setUnvalidPath]

useState(false);
const [noDiretories, setNoDiretories] = useState(false);

const [dirNotFound, setDirNotFound] = useState(false);

useEffect(() => {
setLoading(true);
async function fetchData() {
let ¢ = await getConfigurations();

let b = awailt getBackups();

159

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

APPENDIX B. FRONTEND CODE

let r = await getReports()
setReports(r)
setUserConfigurationID(c.userConfigurationID)
setDbBinDir(c.dbBinDir)
setAppDir(c.appDir)
setBackupDir(c.backupDir)
setConfigurations(c)
setBackups(b);
setLoading(false);

}

fetchData();

Y, 0D

const handleChange = (event) => {

const { name, value } = event.target;

if (name === "userConfigurationID”) setUserConfigurationID(value);
if (name === "dbBinDir"”) setDbBinDir(value);

if (name === "appDir”) setAppDir(value);

if (name === "backupDir”) setBackupDir(value);

if (name === "backupSelected”) setBackupSelected(value);

b

const handleRestore = async () => {
if(appDir && dbBinDir && backupDir && backupSelected){

setLoading(true);
awailt restoreBackup(backupSelected)
let ¢ = await getConfigurations();
let b = awailt getBackups();
setUserConfigurationID(c.userConfigurationID)
setDbBinDir(c.dbBinDir)
setAppDir(c.appDir)
setBackupDir(c.backupDir)
setConfigurations(c)
setBackups(b);
setBackupSelected("”")

setLoading(false);
setRestoreDone(true)
}
else{
setUnvalidPath(true)
}

b

const handleBackup = async (options) => {

if(appDir && dbBinDir && backupDir){

160

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

APPENDIX B. FRONTEND CODE

setLoading(true);

let res = await makeBackup(options);

if(res === -1){
setDirNotFound(true)

}

else{

let b = await getBackups();

setBackups(b);
setBackupDone(true)
}
setLoading(false);
}
else{
setNoDiretories(true)
}

b

const handleGuardarConfiguracoes = async () => {
setLoading(true);
await updateConfigurations(configurations._id, {
userConfigurationID: userConfigurationID,
dbBinDir: dbBinDir,
backupDir: backupDir,
appDir: appDir
})
let ¢ = await getConfigurations();
let b = await getBackups();
setUserConfigurationID(c.userConfigurationID)
setDbBinDir(c.dbBinDir)
setAppDir(c.appDir)
setBackupDir(c.backupDir)
setConfigurations(c)
setBackups(b);
setLoading(false);
b

const handleCancelar = () => {
setUserConfigurationID(configurations.userConfigurationID)
setDbBinDir(configurations.dbBinDir)
setAppDir(configurations.appDir)
setBackupDir(configurations.backupDir)

b

return (

<div style={{ textAlign: "center” }}>

161

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

APPENDIX B. FRONTEND CODE

{loading ? (

<h3>A carregar dados...</h3>
) =

<Grid container spacing={3}>

<Grid item xs={6}>

<h2>Configuragdes do Sistema:</h2>

<TextField
style={{ width: 500 }}
label="User Configuration ID”
name="userConfigurationID”
variant="outlined”
value={userConfigurationID}
onChange={handleChange}

/>

<TextField
style={{ width: 500 }}
label="MongoDB bin Directory”
name="dbBinDir”
variant="outlined”
value={dbBinDir}
onChange={handleChange}

/>

<TextField
style={{ width: 500 }}
label="Application Directory”
name="appDir”
variant="outlined”
value={appDir}
onChange={handleChange}

/>

<TextField
style={{ width: 500 }}
label="Backups Directory”

name="backupDir”

162

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

APPENDIX B. FRONTEND CODE

variant="outlined”
value={backupDir}
onChange={handleChange}
/>

<Button
style={{marginRight: 10}}

disabled={(configurations.backupDir

=== backupDir && configurations.

< userConfigurationID === userConfigurationID && configurations.

< dbBinDir === dbBinDir && configurations.appDir === appDir)}

variant="outlined”
color="primary”
onClick={handleCancelar}

>
Cancelar
</Button>
<Button
style={{marginLeft: 10}}
disabled={(configurations.backupDir === backupDir && configurations.
< userConfigurationID === userConfigurationID && configurations.
< dbBinDir === dbBinDir && configurations.appDir === appDir)}
variant="outlined”
color="primary”
onClick={handleGuardarConfiguracoes}
>
Guardar
</Button>
</Grid>
<Grid item xs={6}>

<ExportCSV reports={reports} />

<MakeBackup

handleBackup={handleBackup}
noDiretories={noDiretories}
setNoDiretories={setNoDiretories}
backupDone={backupDone}
setBackupDone={setBackupDone}
dirNotFound={dirNotFound}
setDirNotFound={setDirNotFound}
/>

163

207

208

209

210

212

213

214

215

216

217

218

219

220

222

223

224

225

226

227

10

11

12

13

14

15

16

17

18

19

20

21

22

APPENDIX B. FRONTEND CODE

<RestoreBackup
appDir={appDir}
dbBinDir={dbBinD1ir}
backupDir={backupDir}
backupSelected={backupSelected}
restoreDone={restoreDone}
setRestoreDone={setRestoreDone}
unvalidPath={unvalidPath}
setUnvalidPath={setUnvalidPath}
backups={backups}
handleChange={handleChange}

handleRestore={handleRestore}

/>
</Grid>
</Grid>
)}
</div>

)5

Listing B.31: ExportCSV.js

import React, { useState } from "react”;
import Paper from '@material-ui/core/Paper';
import Button from "@material-ui/core/Button”;
import { CSVLink } from "react-csv”;
import Grid from '@material-ui/core/Grid';
import DateFnsUtils from '@date-io/date-fns';
import {

MuiPickersUtilsProvider,

KeyboardDatePicker,

} from '@material-ui/pickers';

export default function ExportCSV(props) {

const [reports, setReports] = useState(props.reports);

const [reportsToExport, setReportsToExport] = useState(props.reports);

const [initialDate, setInitialDate] = useState(null);

const [finalDate, setFinalDate] = useState(null);

const headers = [
{ label: "User ID”, key: ”"id_user” },
{ label: "Date”, key: "date” },
{ label: "Module”, key: "module” },

{ label: "Name”, key: "name” },

164

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

APPENDIX B. FRONTEND CODE

{ label: "Message”, key: "message” },

{ label: "Execution Time”, key: "runtime” },

{ label: "Result Value”, key: "resultValue” },
{ label: "Result”, key: "result” }

const getFormatedDate = (tempDate, i) => {

b

nn

let tmpDay = tempDate.getDate() +
let day = tmpDay.length === 1 ? "0” + tmpDay : tmpDay;

let tmpMonth = tempDate.getMonth() + 1 + "";

let month = tmpMonth.length === 1 ? "0” + tmpMonth : tmpMonth;
let year = tempDate.getFullYear() + "";

nn nn

let date = "" + year + + month + + day

let tempHour = tempDate.getHours() + "";

let tempMin = tempDate.getMinutes() + "”;

let tempSec = tempDate.getSeconds() + "”;

let hour = tempHour.length === 1 ? "0"” + tempHour : tempHour;
let min = tempMin.length === 1 ? "0” + tempMin : tempMin;

let sec = tempSec.length === 1 ? "0"” + tempSec : tempSec;

{1 === ? date += "000000” : (i === 1 ? date += "235959” : date += hour + min + sec)

return date;

const getDate = () => {

};

let tempDate = new Date();

let tmpDay = tempDate.getDate() + "";

let day = tmpDay.length === 1 ? "0” + tmpDay : tmpDay;

let tmpMonth = tempDate.getMonth() + 1 + "";

let month = tmpMonth.length === 1 ? "0” + tmpMonth : tmpMonth;
let year = tempDate.getFullYear() + "";

let tempHour = tempDate.getHours() + "";

let tempMin = tempDate.getMinutes() + "";

let tempSec = tempDate.getSeconds() + "";

let hour = tempHour.length === 1 ? "0"” + tempHour : tempHour;
let min = tempMin.length === 1 ? "0” + tempMin : tempMin;

let sec = tempSec.length === 1 ? "0"” + tempSec : tempSec;

nn nn nn nn

let date = ""” + year + + month + + day + + hour +

return date;

const handleClick = (event, done) => {

let reportsAux = []
reports.filter(rep => {
if(initialDate !== null && finalDate !== null){
let begin = getFormatedDate(initialDate, 0)

165

+ min +

nn

+ sec;

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

APPENDIX B. FRONTEND CODE

}

let end = getFormatedDate(finalDate, 1)

let tempDate = new Date(parselnt(rep.date.split(” ”)[0].split(”-")[0]), parselInt(
<— rep.date.split(” ”)[0].split(”-")[1]) - 1, parselnt(rep.date.split(” ")[0].
— split(”-")[2]), parseInt(rep.date.split(” ")[1].split(”:")[0]), parselnt(
<> rep.date.split(” ")[1].split(”:”)[1]1))

let current = getFormatedDate(tempDate, 2)

if(current >= begin && current <= end) return true

else if(initialDate !== null){

}

let begin = getFormatedDate(initialDate, 0)

let tempDate = new Date(parselnt(rep.date.split(” ")[0].split(”-")[0]), parseInt(
— rep.date.split(” ")[0].split(”-")[1]) - 1, parselnt(rep.date.split(” ")[0].
— split(”-")[2]), parseInt(rep.date.split(” ")[1].split(”:")[0]), parselnt(
— rep.date.split(” ”)[1].split(”:”)[1]))

let current = getFormatedDate(tempDate, 2)

if(current >= begin) return true

else if(finalDate !== null){

}

let end = getFormatedDate(finalDate, 1)

let tempDate = new Date(parseInt(rep.date.split(” ")[0].split(”-")[0]), parseInt(
— rep.date.split(” ")[0].split(”-")[1]) - 1, parselnt(rep.date.split(” ")[0].
— split(”-")[2]), parselnt(rep.date.split(” ”)[1].split(”:”)[0]), parselnt(
— rep.date.split(” ")[1].split(”:”)[1]))

let current = getFormatedDate(tempDate, 2)

if(current <= end) return true

return false

}).map(rep => rep.results.map(test =>

))

reportsAux.push({

1)

date: rep.date,

id_user: rep.id_user,

module: test.module,

name: test.name,

message: test.message,

runtime: test.runtime,

resultValue: test.resultValue,

result: test.result === "success” ? "Passou” : (test.result === "{inconclusive” ? ”

< Inconclusivo” : "Falhou”),

setReports(props.reports)

setReportsToExport(reportsAux)
setInitialDate(null)
setFinalDate(null)

done()

166

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

APPENDIX B. FRONTEND CODE

}
return (
<Paper style={{maxWidth: 700, backgroundColor: "#d6f0d6"}}>

<h3>Exportar relatérios de execucao no formato CSV:</h3>
<MuiPickersUtilsProvider utils={DateFnsUtils}>
<Grid container justify="space-around”>
<KeyboardDatePicker
margin="normal”
id="date-picker-initial”
label="Data Inicial”
format="yyyy/MM/dd”
value={initialDate}
onChange={setInitialDate}
/>
<KeyboardDatePicker
margin="normal”
id="date-picker-final”
label="Data Final”
format="yyyy/MM/dd”
value={finalDate}
onChange={setFinalDate}
/>
</Grid>
</MuiPickersUtilsProvider>

<CSVLink
data={reportsToExport}
headers={headers}
asyncOnClick={true}
onClick={handleClick}
filename={"reports_v” + getDate() + ".csv"}

style={{textDecoration: "none”}}

>
<Button
variant="outlined”
color="primary”
>
Download CSV
</Button>
</CSVLink>

</Paper>

167

APPENDIX B. FRONTEND CODE

148)

149 |}

Listing B.32: MakeBackup.js

1 | import React, { useState } from "react”;

2 | import Button from "@material-ui/core/Button”;

3 |import Alert from "@material-ui/lab/Alert”;

4 | import Paper from '@material-ui/core/Paper';

5 | import FormControl from '@material-ui/core/FormControl’;

6 | import FormControlLabel from '@material-ui/core/FormControlLabel’;

7 | import Checkbox from '@material-ui/core/Checkbox';

8

9 |export default function MakeBackup(props) {

10 const [options, setOptions] = useState({

11 reports: true,

12 schedules: true,

13 packages: true,

14 configurations: true,

15 });

16

17 const handleChange = (event) => {

18 if([options.reports, options.schedules, options.packages, options.configurations].filter

< ((v) => v).length > 1 || !options[event.target.name])

19 setOptions({ ...options, [event.target.name]: event.target.checked });

20 b

21

22 const handleBackup = async () => {

23 props.handleBackup(options)

24 };

25

26 return (

27 <div>

28 <Paper style={{maxWidth: 700, backgroundColor: "#d6f0d6"}}>

29

30 <h3>Efetuar cépia de seguranca ao sistema:</h3>

31 <p>(Escolher opgbdes a incluir no backup, pelo menos tem que escolher uma)</p>

32 <FormControl>

33 <FormControlLabel

34 control={<Checkbox color="primary” checked={options.reports} onChange={
< handleChange} name="reports” />}

35 label="Relatérios”

36 />

37 <FormControlLabel

38 control={<Checkbox color="primary” checked={options.schedules} onChange={
< handleChange} name="schedules” />}

168

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

APPENDIX B. FRONTEND CODE

label="Agendamentos”
/>
</FormControl>
<FormControl>
<FormControlLabel
control={<Checkbox color="primary” checked={options.packages} onChange={
<— handleChange} name="packages” />}
label="Pacotes de Testes”
/>
<FormControlLabel
control={<Checkbox color="primary” checked={options.configurations} onChange
<— ={handleChange} name="configurations” />}
label="Configuracdes”
/>
</FormControl>

<Button
variant="outlined”
color="primary”

onClick={handleBackup}

>
Efetuar Backup
</Button>

{
props.noDiretories ?
<div>
<Alert
style={{ margin: 10 }}
severity="error”
variant="filled”
onClose={() => props.setNoDiretories(false)}
>
Tem de preencher todas diretorias para efetuar uma cdépia de seguranca.
</Alert>

</div> : """
}
{
props.dirNotFound ?
<div>
<Alert

style={{ margin: 10 }}

169

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

10

11

12

13

14

15

APPENDIX B. FRONTEND CODE

severity="error”
variant="filled”

onClose={() => props.setDirNotFound(false)}

>
A diretoria de backups nao foil encontrada.
</Alert>

</div> : "”
}
</Paper>
{
props.backupDone ?
<div>

<Alert
style={{ margin: 10, maxWidth: 650 }}
severity="success”
variant="filled”
onClose={() => props.setBackupDone(false)}
>
A copia de seguranca foil efetuada com sucesso!
</Alert>
</div> : """
}
</div>

Listing B.33: RestoreBackup.js

import React from "react”;

import Paper from '@material-ui/core/Paper';

import Button from "@material-ui/core/Button”;

import Alert from "@material-ui/lab/Alert”;

import InputLabel from '@material-ui/core/InputLabel’;
import MenuItem from '@material-ui/core/Menultem';
import FormControl from '@material-ui/core/FormControl’;

import Select from '@material-ui/core/Select';

export default function RestoreBackup(props) {
return (
<div>
<Paper style={{maxWidth: 700, backgroundColor: "#d6f0d6"}}>

<h3>Carregar backup e restabelecer coépia de seguranca do sistema:</h3>

170

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

APPENDIX B. FRONTEND CODE

<p>(Insira o nome da diretoria correspondente aversdo do backup que quer carregar)
— </p>
<FormControl variant="outlined” style={{ width: 300, textAlign: "left” }}>
<InputlLabel>Backup</InputLabel>
<Select
value={props.backupSelected}
name="backupSelected”
onChange={props.handleChange}
label="Backup”

>
<MenuItem value="">Nenhum</MenuItem>
{props.backups.map(b => <MenuItem value={b}>{b.split(”.”)[0]}</Menultem>)}

</Select>

</FormControl>

<Button

variant="outlined”
color="primary”

onClick={props.handleRestore}

>
Carregar Backup
</Button>

{
props.unvalidPath ?
<div>
<Alert
style={{ margin: 10 }}
severity="error”
variant="filled”
onClose={() => props.setUnvalidPath(false)}
>
Tem que selecionar um dos backups disponiveis! Se nao existe nenhum pode
< ser porque a diretoria especificada nao contém nenhum backup ou
< nao estdo preenchidas todas diretorias necessarias.
</Alert>

</div> : "”
}
</Paper>

{
props.restoreDone ?

<div>

171

58

59

60

61

62

63

64

65

66

67

68

69

70

71

APPENDIX B. FRONTEND CODE

<Alert
style={{ margin: 10, maxWidth: 650 }}
severity="success”
variant="filled”

onClose={() => props.setRestoreDone(false)}

>
A coépila de seguranca fol carregada com sucesso e o sistema fol atualizado!
</Alert>
</div> @ """
}
</div>

172

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Problem
	Motivation and Objectives
	Contributions
	Dissertation Structure

	State of the art
	Cyber-physical systems
	Test Automation
	Keyword-Driven Testing
	Current Tools

	Domain-Specific Language
	ANTLR

	REST
	Discussion

	Analysis and Specification
	Requirements
	System structure
	Technologies to use
	Backend technology
	Frontend technology

	Discussion

	Architecture
	Test Management and Configuration Architecture
	Keyword-Driven Testing Methodology
	Domain-Specific Language
	Proposed Architecture
	Example of Application

	Self-diagnosis Tests System Architecture
	Frontend
	Backend
	Proposed Architecture

	General Architecture for Cyber-Physical System
	Discussion

	Implementation
	Database
	Backend
	Models
	Grammar
	Controllers
	Routes

	Frontend
	Components
	Obtaining API data
	User Interfaces

	Validation
	Discussion

	Conclusions and Future Work
	Future Work

	Bibliography
	Appendices
	Backend code
	Models
	Grammar
	Controllers
	Routes

	Frontend code
	API Requests
	Authentication
	Routing
	Pages Code
	Execution Components
	Configuration Components

