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Abstract Unreinforced masonry façades are specifically vulnerable to seismic actions. 

Their weak connectivity with adjacent structural members results in their detachment 

during an earthquake, thus, forming local collapse mechanisms which exhibit one-sided 

rocking motion. Such mechanisms can accommodate considerable displacements before 

collapsing/overturning. Hence, their dynamic stability is of great interest. The dynamic 

response of such collapse mechanisms has been investigated using the classical rocking 

theory. This is a reliable and fast model that efficiently simulates the dynamic response  

and energy losses of rocking structures, yet limited to simple structural configurations. As 

the problem’s complexity increases (e.g. degrees of freedom, boundary conditions, and/or 

material nonlinearities) numerical modelling of such structures has been recently gaining 

momentum. However, despite the great advances of such numerical modelling techniques, 

simulation of energy losses still remains challenging. The present work proposes a novel 

numerical block-based model that efficiently simulates energy losses during one-sided 

rocking motion. Specifically, an equivalent viscous damping model is adopted and 

calibrated in a phenomenological fashion after the classical rocking theory. Importantly, 

the unilateral dashpot formulation of the proposed viscous damping model allows for an 

accurate replication of the impulsive nature of impacts. Ready-to-use predictive equations 

are presented, which are also validated against experimental results from literature.  
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1. INTRODUCTION 

Masonry structures are particularly vulnerable to seismic actions [1]. Frequently, the 

connections among the different structural members are inadequate and masonry façades tend 

to detach and form local Out-Of-Plane (OOP) mechanisms that rock on their base [2]. These 

mechanisms are characterised by a very low force capacity, which makes them prevail among 

other mechanisms, yet have a non-negligible displacement capacity [3]. As a result, they pose 

vital dynamic stability, which eventually determines their collapse or safety against 

earthquakes [4]. In this context, static approaches for assessing this complex behaviour show 

severe limitations, since inertia dynamic and dissipative phenomena are neglected [5]. In fact, 

a more accurate estimation of the seismic response of masonry façades may be obtained using 

dynamic methods of analysis [6]. 

To this end, classical rocking dynamics have been proposed to assess the seismic 

response of OOP mechanisms [7]. The rocking motion of a rigid block was described in the 

seminal work of Housner [8], followed by extensive research and developments on the study 

of rocking bodies [9]–[13]. Lately, classical rocking dynamics has facilitated many extensions 

with regard to masonry structural configurations, accommodating the influence of thrusts and 

floor/roof elements free to move or restrained [14], [15], presence of transversal walls [16], 

[17] etc. Within this framework, energy losses are assumed to occur when the rocking block 

impacts its base, and are captured through the Coefficient of Restitution (CoR). More 

specifically, impact is treated as an instantaneous event. Thus, conservation of angular 

momentum allows the computation of the CoR based solely on the geometry of the rocking 

block [8]. Overall, classical rocking dynamics allows a fast and statistically accurate 

description of the response of simple rocking mechanisms, while energy losses are easily and 

reliably reproduced [18]–[20]. Nevertheless, the use of classical rocking dynamics becomes 

more challenging in case the mechanism’s complexity increases, e.g. Degrees of Freedom 

(DoF), boundary conditions (BC), material nonlinearities etc. [21]–[24]. 

 In the meantime, numerical methods in engineering have gained an important 

momentum the last decades, incorporating developments from different fields into powerful 

predictive tools. The simulation of masonry structures is easily facilitated in such framework, 

as the geometrical complexity of masonry’s BCs and texture are not restrained by the DoFs of 

the system, while sophisticated material constitutive laws are usually readily available. The 

most frequently used block-based numerical models are the Finite Element Method (FEM) 

[25], the Discrete Element Method (DEM) [26] and the multibody dynamics [27], [28]. 

Nevertheless, despite their widespread use, such models lack a reliable description of energy 

losses at impact of rocking bodies [29]–[31]. To this aim, viscous damping models are 

commonly employed [32], [33], yet without confidence about their energy loss consistency 

with the classical rocking theory. 

 The present work aims to bridge the gap of energy losses treatment between the well-

established and statistically accurate classical rocking dynamics and the widely used block-

based numerical models. This will permit the use of complex numerical rocking models with 

a reliable representation of the damping phenomena. To this end, a viscous damping model is 

calibrated to replicate both the manner and extent of energy losses, similarly with the CoR of 
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classical rocking dynamics. Furthermore, one of the most commonly recurrent OOP 

mechanisms is studied herein, i.e. the one-sided rocking of façades. This mechanism occurs 

when a façade detaches from the transversal walls due to their weak connectivity, and thus is 

free to rock only outwards, while it impacts both with its base and its transversal side walls. 

 The paper is structures as follows: Section 1 introduces the research framework and 

presents the objectives of the work. Section 2 describes the dynamics and modelling methods 

used to analyse the one-sided rocking problem, while Section 3 proceeds with the calibration 

of a viscous damping dashpot and proposes ready-to-use equations. Section 4 validates the 

proposed damping model against experimental data of one-sided rocking masonry façades 

from literature. Finally, Section 5 concludes the work by highlighting the main outcomes and 

indicating possible future research directions.  

2. MODELLING STRATEGIES OF ROCKING STRUCTURES 

2.1. Analytical rocking dynamics 

Consider a rigid block experiencing planar rocking motion on its base while restrained at its 

side, as shown in Figure 1 (a). The equation of motion can be written as [8]-[16]: 

  2 sin( ) cos
gu

p
g

    
 

     
 

 (1) 

where   is the slenderness of the block ( arctan( / )h b  ),   describes the rocking response, 

gu  denotes the seismic ground acceleration, p  is defined as 0/p mgR I , with m referring 

to the mass of the block, and 0I  is the rotational moment of inertia with respect to the pivot 

points. The moment-rotation diagram of the rigid system is indicated by the solid line in 

Figure 1 (c). Note that Eq. (1) refers to the smooth part of the rocking motion, i.e. when the 

block pivots, which is identical both for the one-sided rocking (“1s”) studied herein and the 

classical two-sided rocking (“2s”), as this part of the motion in not affected by the side 

restrain. 

 The smooth rocking response is interrupted by non-smooth impacts with its base and 

side, which are assumed to be instantaneous. Impacts result in loss of energy for the system 

and are described by the CoR e , which relates the pre-impact and post-impact angular 

velocities. Furthermore, assuming no bouncing or sliding occurs, the CoR may be computed 

by applying the conservation of angular momentum (just) before and after the impact. 

Importantly, this equilibrium yields that the CoR is solely dependent on the geometry of the 

block, and not a material dependent parameter. In the classical two-sided rocking motion (not 

restrained at its side), the block impacts only at its base and the CoR reads [8]: 

 2

2

3
1 sin

2
se    (2) 

In the case of one-sided rocking motion, the block impacts both with the base and the side. 

Sorrentino et al. [16] pointed out that this results in three consecutive impacts, taking place in 
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close but distinct time instants. Firstly, the block impacts with the base (point 2 in Figure 1 

(a)), followed by an impact at the upper corner of the side (point 3 in Figure 1 (a)) and finally 

an additional impact with the base (point 1 in Figure 1 (a)). Among them, the first and third 

impacts are described by Eq. (2), while for the second Sorrentino et al. [16] computed another 

CoR as: 

 23
1 cos

2
sidee    (3) 

Therefore, all three impacts during the one-sided rocking motion may be expressed with one 

lumped CoR as [16]: 

 1 2 2s s side se e e e    (4) 

Note that Eq. (3) yields negative values for common cases of slenderness, and thus the 

lumped one-sided CoR 
1se results in a post-impact rocking motion over the same pivot point 

(point 1 in Figure 1 (a)) but in the opposite direction.  

The solution of the analytical problem herein is obtained by solving the differential 

Eq. (1) interrupted by event-based impacts, using mathematical programming in MATLAB 

[34]. 

 

Figure 1. (a) Scheme of the classical rigid block experiencing one-sided rocking motion; (b) Numerical 

modelling of the one-sided rocking block with finite stiffness; and (c) Moment-rotation diagram of rigid 

and finite stiffness modelling techniques. 

2.2. Numerical modelling of rocking 

The simulation of the two parts of rocking motion (i.e. the smooth pivoting and the non-

smooth impacts) using block-based numerical methods differs. Firstly, the replication of 

the smooth part of rocking requires considering the geometrical nonlinearities during the 

analysis of the problem. Physically, this is related to the stabilising role of the self-weight 

and its gradual loss upon rotations, while graphically this is depicted by the softening part 

of the moment-rotation diagram in Figure 1 (c). Furthermore, an essential role in the 

numerical models is attributed to the contact law adopted to describe the interaction of the 

different bodies in contact [35]. In general, there are two main strategies to treat contact. 

On one hand, there are methods that forbid any penetration among the bodies, being a 
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reasonable physical condition [36]. However, this implies the loss of all the kinetic energy 

of the colliding nodes and thus the energy losses of the system become numerically mesh-

dependent. On the other hand, there exist contact laws that describe interaction of bodies 

with finite interface stiffness [22], [37], avoiding in this way the introduction of artificial 

energy losses and thus preserving the system’s energy balance [38]. Importantly, the 

interface stiffness might be used to replicate meso-scale stiffness properties of contacting 

bodies [39], simulate macro characteristics such as mortar flexibility [19] and degradation 

[40], or foundation flexibility [41]. Considering the above, this work adopts the latter 

strategy, with finite interface stiffness acting in the normal direction between the rocking 

block and the base ( ,n bk ) and between the block and the side ( ,n sk ), as illustrated in Figure 1 

(b). Consequently, the finite stiffness of the system ( ,rot contactk , the moment-rotation curve 

for which is also shown also in Figure 1 (c)), results in impacts that occur over finite 

displacement and time, in contrast with the instantaneous behaviour of the analytical 

model. 

 To simulate physical energy losses, numerical block-based models usually employ 

viscous damping formulations, which consist a mathematically convenient way to 

replicate dissipative phenomena that are not explicitly considered [42]. More specifically, 

viscous damping models assume that the damping forces are proportional to the velocity 

of the system, while a variety of alternative formulations are available depending on: i) 

the DoFs employed, ii) the behaviour of the model during the time-history, and iii) the 

methods used to calibrate them [43], [44]. In the particular rocking problem examined 

herein, a stiffness-proportional dashpot formulation acting locally at the contact interfaces 

composes a convenient way of simulating the instantaneous features of energy losses at 

impact [29]. Therefore, a unilateral viscous damping is adopted in this work and set to act 

in parallel with the interface stiffness at the contact interfaces. More specifically, the 

rocking body interacts with its base with a damping ratio b  and with its side with a 

damping ratio s , as shown in Figure 1 (b). 

 The numerical simulations are herein performed using the FEM software ABAQUS 

CAE [45], while the solution is advanced using an explicit time-stepping integration scheme. 

It is worth highlighting that the adopted viscous damping modelling strategy has been 

validated also in other block-based simulation software [29], including FEM with an implicit 

scheme and DEM with an explicit scheme. This highlights the universal applicability of the 

proposed numerical viscous damping model. 

3. THE PROPOSED VISCOUS DAMPING MODEL 

3.1. Calibration methodology 

Viscous damping models are in essence mathematical “artifices”, and therefore they need to 

be tuned to reproduce a desired dissipative behaviour. To this end, this work conducts a 

phenomenological calibration so that the numerical viscous damping model dissipates energy 

similarly with the CoR-based rocking dynamics. More specifically, the latter modelling 
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strategy is assumed as reference, and the former is adjusted to mimic it. Essentially, the 

objective of the calibration is to find a correlation among the CoR e  and the damping ratio  , 

as the former is estimated easily and with confidence, while the latter may be integrated 

within the numerical block-based models. The workflow of the calibration methodology 

adopted herein is depicted in Figure 2 and a more detailed description of its key steps follows. 

 

Figure 2. Flowchart of the adopted phenomenological calibration process.  

 Firstly, all the parameters of the problem are examined in order to identify their 

influence on the behaviour of the viscous damping model, i.e. i) slenderness /h b , ii) scale 

R , iii) rocking amplitude 
0 /  , and iv) normal interface stiffness ,n bk  and ,n sk . Moreover, 

the influence of the CoR e  is also varied independently of the slenderness of the block, i.e. 

Eqs. (2-3) are disregarded. This choice allows the viscous damping proposal to be adaptable 

to any CoR correction suggestions, based either on experimental [16], [19], or theoretical 

basis [46], [47]. Table 1 collects the range of values that the aforementioned parameters 

consider in the calibration process, together with their reference value. Afterwards, for each 

combination of the problem’s parameters, numerous free-rocking simulations are performed 

with both modelling strategies by varying their energy controlling parameter, i.e. the CoR e  

and the damping ratio  . This allows matching the e   pairs that minimise the root mean 
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square error of the two responses. At this stage, only the essential parameters that influence 

the viscous damping model are identified and selected, which are found to be the slenderness 

and the normal interface stiffness at the base [29]. Finally, all the matched e   pairs are 

employed in a multivariable regression analysis, with the damping ratio being the dependent 

variable and the CoR together with the slenderness and normal interface stiffness at the base 

the independent ones. It is worth noting that that since the one-sided rocking problem is 

characterised by two dependent variables, i.e. the damping ratio at the base b  and the 

damping ratio at the side s , the aforementioned problem is overdetermined. Therefore, the 

proposed calibration methodology is applied in a consecutive way: firstly for the two-sided 

rocking problem where only b  is included, and afterwards, by presuming the calibrated b , 

the problem becomes determined and s  is calibrated in sequence. 
 

Parameter Range Reference value 

Scale:  [m]R  1.4 – 2.8 2.1 

Slenderness:  [-]h b  4.0 – 15.0 7.0 

Amplitude:
0  [-]   0.3 – 0.8 0.5 

Normal interface stiffness at base:
3

,  [ ]n bk N m  8 80.5 10 30 10    
85 10  

Normal interface stiffness at side:
3

,  [ ]n sk N m  8 80.5 10 30 10    
85 10  

Table 1. Independent parameters considered for the calibration process (Figure 2). 

3.2. Proposed viscous damping model 

The application of the aforementioned calibration methodology results in two predictive e   

equations, one for the damping ratio acting at the base b  and one for the damping ratio acting 

at the side s : 

 

0.935

0.343

, 20.000292 lnb n b s

h
k e

b


 
     

 
 (5) 

 

0.2548

0.1283

,0.0807 lns n b side

h
k e

b
  

     
 

 (6) 

Note that Eqs. (5-6) have been generated after more than a thousand numerical simulations 

and are characterised by a coefficient of determination 2 0.978R   and 2 0.994R  , 

respectively, indicating a noteworthy predictive capability. 

 An illustrative example of the performance of the calibration methodology and Eqs. 

(5-6) is shown in Figure 3. The comparison examines the one-sided free rocking response of a 

block with height 2 4.2 mh  and width 2 0.6 mb  , analysed using both the analytical 

rocking dynamics outlined in Section 2.1 and the numerical model described in Section 2.2. 

The analytical model includes a CoR acting at the base 2 0.97se   (Eq. (2)) and a CoR acting 
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at the side 0.47sidee   (Eq. (3)). The numerical model assumes equal normal interface at the 

base and side 8 3

, , 5 10  N/mn b n sk k   , while the damping ratios of the base and side are 

computed using Eqs. (5-6), accordingly as 5.3 %b   and 0.74 %s  . Figure 3 (a) depicts 

the rocking angle of the response, while Figure 3 (b) compares the corresponding (total) 

energy content of the models (i.e. kinetic and potential). Overall, the two models show a very 

good agreement, despite being fundamentally different. More specifically, the proposed 

viscous damping model appears to dissipate with a step-like manner at impacts alike the CoR-

based model, while the amount of dissipated energy matches well owing to the calibration 

procedure. 

 

Figure 3. Behaviour of the viscous damping model. Comparison with the analytical model, in terms of variation 

of the (a) rocking angle and (b) total energy content over time. Details of the examined structure: 2 4.2 [m]h  , 

2 0.6 [m]b  , 2 0.97se  , 0.47sidee   , 
8 3

, ,
5 10  [N/m ]

n b n s
k k   , 5.3 [%]b   and 0.74 [%]s  . 

4. PERFORMANCE OF THE VISCOUS DAMPING MODEL 

This section assesses the performance of the proposed numerical viscous damping model. 

While its calibration has been based on the analytical rocking model, its robustness is tested 

using actual experimental results. To this end, the experimental campaign reported in [16] is 

used, where a variety of masonry walls were tested under one-sided free rocking vibrations. 

Details regarding the specimens’ characteristics can be found in Table 2, while the interested 

reader is referred to the original experimental work of [16] for further details. Given the fact 

that the proposed model has been calibrated independently of Eqs. (2-4), the experimentally 

measured CoR 
1se  can be inserted in Eqs. (5-6) to get the damping ratio of the viscous 

damping model and obtain a better replication of the experimental results. 
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Reference code H [m] exp [rad] 1 ,expse [-] b [%] s [%] 

brick, h80, cd12, t01 0.8 0.1184 -0.328 4.35 1.15 

brick, h82, cd06, t03 0.82 0.1157 -0.441 4.24 0.84 

brick, h136, cd06, t01 1.36 0.0420 -0.458 1.44 1.09 

brick, h163, cd06, t01 1.63 0.0371 -0.273 1.26 1.87 

tuff, h128, cd12, t02 1.28 0.0699 -0.403 2.48 1.10 

tuff, h163, cd12, t02 1.63 0.0546 -0.309 1.90 1.52 
Note: Reference code: material, height (cm), contact depth of sidewalls, test number. 

Table 2. Details of the examined specimens and tests [16] 

 Figure 3 collects the response histories of all the examined cases reported in Table 2. 

More specifically, it compares the experimental outcomes provided by [16] against the results 

obtained with the numerical model. In general, it appears that the proposed numerical viscous 

damping model presents a very good estimation of the experimental response of all the 

masonry walls. Some rather small differences may be observed among them, yet within an 

acceptable level considering the experimental uncertainties of such campaigns. Nevertheless, 

the dissipative phenomena are still very well captured by the numerical viscous damping 

model: significant amount of energy is lost at impact, resulting in the damping out of the 

oscillation after two or three impacts. 

 

Figure 4. Free-rocking response of the proposed numerical viscous damping model compared with ethe 

experimental response reported in [16]: (a) brick, h80, cd12, t01, (b) brick, h82, cd06, t03, (c) brick, h136, cd06, 

t01, (d) brick, h163, cd06, t01, (e) tuff, h128, cd12, t02, and (f) tuff, h163, cd12, t02 (Table 2). 
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5. CONCLUSIONS 

This work presents a numerical strategy for modelling the dynamic response of one-sided 

rocking mechanisms with particular focus on the energy losses. More specifically, it proposes 

a viscous damping model that dissipates similarly with the CoR-based analytical rocking 

dynamics. This is achieved by following a phenomenological calibration methodology, where 

the analytical model is assumed as reference and the viscous damping model is tuned to 

mimic the former. After over a thousand of numerical simulations, predictive ready-to-use 

equations are provided that respect energy consistency of the two fundamentally different 

models. Importantly, the proposed stiffness-proportional unilateral dashpot model results in 

impulsive energy losses similarly to that of the CoR-based model. Finally, the performance of 

the proposed model is evaluated against experimental results available in literature, showing 

very good predictive capabilities. 

 In conclusion, the current paper presents a reliable and consistent way to model the 

damping phenomena of rocking structures when using numerical block-based models. This 

allows the simulation of even more complex structures, with many DoFs, varying BCs or 

material nonlinearities with ease, overcoming difficulties faced by the analytical rocking 

dynamics. Moreover, the proposed viscous damping model is universal and adaptable, as it 

can be used with any block-based numerical method and with any experimental or theoretical 

corrections on the adopted CoR. 
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